
1
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

Embedded Processors on FPGA: Soft vs Hard

 Vivek Jayakrishnan Chirag Parikh
 School of Engineering School of Engineering
 Grand Valley State University Grand Valley State University
 Grand Rapids, MI, 49504 Grand Rapids, MI, 49504
Email: vivekjay14@gmail.com Email: parikhc@gvsu.edu

Abstract

In the past, Field Programmable Gate Arrays (FPGAs) were primarily used for prototyping and
debugging purposes. However, with their increased popularity, many commercial products now
incorporate FPGAs. In the late 1990s, FPGA vendors introduced System-on-chip (SoC) devices
that included one or more hard-core processors and an FPGA fabric on a single integrated circuit
to allow for more complex designs that involved hardware and software co-integration. While
this approach provides advantages of running your design at much higher speeds it does not
provide the flexibility of modification to suit the application. Because of this, many FPGA
vendors provide the solution of using soft-core processors that is configured from logic resources
inside the FPGA. Depending on several factors, a designer can choose either Hard or Soft
processor in his design depending on the application. This paper presents an in-depth
performance analysis and direct one-on-one comparison between the two. For this task two
different platforms, one housing a hard-core processor and another housing a soft-core processor
is chosen to run a digital oscilloscope application. This is then used to measure the FPGA
resource utilization, execution speed and power consumption on each.

Keywords — FPGA, System-on-Chip, ARM, VHDL, Verilog

I. Introduction

FPGA (Field Programmable Gate Arrays) are reprogrammable silicon chips that rewire
themselves to implement user’s functionality rather than just run a software application from
memory like a processor. The term field programmable in the name implies that the user in the
field can reconfigure the chip’s hardware for specific applications. FPGAs consist of mixes of
configurable static Random Access Memory (SRAM or Flash), high-speed input/ output pins
(I/O), logic blocks, and routing. Programmable blocks called Configurable Logic Blocks (CLB)
along with reconfigurable interconnects, that allow CLBs to be physically connected to one
another, are the main components of an FPGA.

The development and drop in price of semiconductors and electronics in general has slowly
blurred the lines between FPGAs and microprocessors by combining the two in a single package
with more flexibility. FPGAs offer several advantages over ASICs speed, reliability and
flexibility. However, we face a trade-off by only using an FPGA for processing and I/O
connectivity in the system. FPGAs do not have the driver ecosystem and code/IP base that
microprocessors and Operating Systems (OS) do. Microprocessors coupled with OS provide the
foundation for file structures and communication to peripherals used for essential tasks. To
tackle this a hybrid architecture has emerged in which a microprocessor is paired with an FPGA.

2
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

This can be done in two ways. The first one is embedding a hard core, by having a dedicated
block on the FPGA silicon. The second one is the so-called soft-core where the implementation
of a processing core is dynamically configured on the FPGA.

FPGA designers face a dilemma in choosing either Hard-core or Soft-core processor for their

design. Each approach comes with its own pros and cons. In this paper, We talk about an
application that was developed and implemented on both; a hard-core processor based FPGA
system and a soft-core processor based FPGA system. The paper then compares the two
approaches based on several important factors such as performance, power consumption and
resource utilization.

The primary objective of this paper is to compare and contrast both the approaches and suggest
conditions for choosing one approach over the other. In the next section, we talk about other
studies on this topic. Then in section III software design approach is described in brief followed
by a section on hardware design. Section V is where the experimental results are discussed. The
last section concludes the paper with our findings and suggestions.

II. Related Works

Before we present the results from our experiments, let us look at some of the work published
in the area of comparison between hard processor and a soft processor. In their paper, Martos and
Baglivo2 showed the result of implementing the Cortex M0 Design Start soft-core processor on a
low-end FPGA from Xilinx. The processor was simulated on test bench and then successfully
tested with an LED toggling application. Mondragon and Christman in their paper3 compared a
soft-core processor with an actual micro controller. The paper highlights the trade-off that both
methodologies can offer. Both methods are compared on the basis of environment, visibility to
internal signal behavior, testability, design flexibility, cost and availability, power consumption
etc. Three different control systems are implemented on both soft-core and hard-core based
FPGAs and compared by Weber and Chin in their paper4.

Anemaet & As5 presented an evaluation of design methods and concepts of soft-core

processors. A detailed overview of Xilinx Microblaze soft-core is given as well as soft-core
implementations of established fixed-core processors like Intel and Pentium Z80. Also discussed
are the pros and cons of FPGAs over ASICs. In the white paper by Sandia National
Laboratories6, the author compared three reconfigurable FPGA based soft-core processors – the
Microblaze, the open sourced Leon3, and the licensed Leon3. Using two different benchmarking
applications, the resource utilization was measured for each. Miney & Kukenska7 study the
implementation of soft-core processors in FPGA and some of the decisions and design trade-offs
which must be made during the design process. It looks at the operational performance as well as
the power required to implement the design system functionality. Salem, Othman & Saoud8
implemented a Real Time Operating System on both Hard-core and Soft-core processors and
used them to control a DC motor drive. In his paper, Prado9 presented a comparison in speed,
power, flexibility and cost between a micro-controller and its soft-core version. Soft-core
developed by university of Massachusetts is compared against a hard PIC16F84 micro-
controller. The soft-core was found to outperform the microcontroller by a speed factor of 6.9
and in power consumption by a factor of 28.

3
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

III. Software Design

A digital Oscilloscope application was designed to analyze the performance of both the

development boards used in this paper. Majority of the processing that forms the backbone of
this application is implemented in hardware, which is discussed in the section Hardware
Implementation. The software for the application is written in C. First, the FPGA is programmed
with a specific bit file that allows us to upload this C code onto the non-volatile external PSRAM
memory in Nexys-4 development board through UART. Following this, we program the FPGA
with the bit file for the Oscilloscope application. The main component in the C application is a
while loop. Figure 1 graphically represents the control flow inside the while loop. The loop
repeats again after each refresh period of the display.

Initially 500 ADC values are read from the XADC port of the development board. These

values are then processed and scaled to values that correspond to the location on the VGA
display. For this, an equation was developed which transformed the analog voltage value (which
ranged from 0-1 Volt) to a function of the X and Y axes on the display where X is the sample
number and Y is the amplitude.

 x = x_plotarea_start + index (1)

 y = (y_plotarea_stop+1) - analog_value (2)

where:
• x and y are the coordinates on the display area (within a 640x480)
• x_plotarea_start is the offset from the right border on the screen and is set as 70
• y_plotarea_stop is the midpoint of the screen from where the positive y axis starts and is set

as 239

• index is the position of the element in the 500 long array and analog_value is the value of
the element

After this the memory location in the video buffer corresponding to these X and Y values are

calculated and written into. Since the hardware implementation of the VGA module in FPGA
enables independent refreshing of the display, the buffer values which have been written would
be visible on the display as colored pixels. Following this step, a delay loop is executed so that

Figure 1. An overview of the contents of the while loop

4
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

the waveform snapshot appears stable enough for the user to see it clearly. Immediately after
this, the buffer is cleared so that the next set of ADC values can be written to it. To increase the
refresh rate of the screen, only the memory locations that were written are cleared. These set of
steps are repeated in each iteration thus giving rise to a continuously refreshing Digital
oscilloscope.

IV. Hardware Design

Hardware Implementation has been done on two separate development boards. The first one is

the Digilent Nexys-4 board that houses an Artix-7 FPGA and a softcore ARM cortex M0. The
second one is the Digilent Zybo board that houses both a Zynq 7010 FPGA and a dual core ARM
Cortex A9 processor. The implementations for both are slightly different because of the
difference in hardware and bus architectures.

A. Soft-core based design

On the Nexys-4 development board, we are using soft-core ARM Cortex M0 processor

distributed by ARM as open source, as the embedded processor. Following this different custom
IP modules were designed for the peripherals and their related functionalities in Verilog and
VHDL. All the custom IPs along with those provided by ARM for their AMBA (AHB Lite) bus
were combined to generate a Block diagram named System Wrapper which was then connected
to the Cortex M0 DS processor to make up the entire top level. The Cortex M0 DS processor
communicates to the peripherals in the system wrapper module using the AMBA 3 AHB-Lite
bus. Figure 2 shows a block diagram representation of how the top level module looks like. The
top level consists of two main modules that are the Cortex soft-core module and the System
Wrapper module.

B. Hard-core based design

For the hard-core based design, Digilent Zybo FPGA development board was used. This

board houses an ARM Cortex A9 dual core processor inside the Zynq series FPGA logic. The IP

Figure 2. Top level block for the Soft-Core based design

Reset

Clock

Cortex M0 Design Start
Processor

System Wrapper

I/O port signals

AHB Bus signals

5
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

block provided by Xilinx for the Zynq processor was used to form the block diagram for the top-
level design in Vivado. Compared to Soft-core based design, no system wrapper was needed in
the top level, as AXI Interconnect IP block added along with Zynq Processing block performs
Address and Data Multiplexing. The main components of the top level design (shown in Figure
3) are the Zynq processing system, the Bus interfacing IPs, VGA module and the I/O blocks.

V. Experimental Results

A. Experimental Setup

In this section we will discuss how both the implementations were tested on hardware and the

results that were obtained. Figure 4 shows what a typical testing set up involves. An Analog
voltage function is given to the FPGA through the XADC port. The FPGA does the required
processing on the data and sends the necessary VGA signals to the monitor which displays the
dynamically refreshing waveform on an oscilloscope background. An Oscilloscope can be
optionally connected between the function generator and the FPGA board so as to verify the
wave function.

B. Results

a) Speed

 The speed of the system is calculated by looking at the time taken for each core to write a
single pixel data to the display buffer. First, sine wave is chosen as the wave function for
easiness in measuring. Then for each design (Hard-core/Soft-core), we find a frequency that
results in a single period of the wave fitting the screen perfectly. As we know that each
waveform on the monitor has maximum of 500 pixels, we can calculate the approximate time

Voltage wave
function

FPGA
board

VGA Monitor

Figure 4. An overview of the hardware Setup

Zynq processing
system

 Custom IP blocks
VGA, I/O, Bus IP

Reset

Clock

Figure 3. Top level for the Hard-core based design

6
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

taken to write one such pixel from the 500 long array (in which we store the ADC values) into
the display buffer.

 For the Soft-core based design, this frequency was found to be 75 Hz which corresponds to
26.6 µs to write a single data point to the display buffer. For the Hard-core based design, the
frequency was found to be 1.5 KHz which corresponds to 1.33 µs. Thus the Hard-core was found
to have faster read-write speed by this method.

b) Power

 Xilinx Vivado tool gives an opportunity to perform power analysis and it generates report
with the results. The data in this report is compared for both designs to learn more about the
power consumption in each. According to the Vivado power analysis report, hard-core was
predicted to consume much more power (1.443 W) compared to the soft-core (0.170 W).

 However, this is in contrast with what most studies report. For instance work done by
Mundragon and Christman3 found that hard-core processors generally consume lower power
compared to its soft-core counterparts. This discrepancy in our testing results was attributed to
the black box nature of the Cortex M0 Design Start processor provided by ARM. We are under
the assumption that the processor might have a feature where most of the logic and peripherals
are put into sleep mode when inactive and wake up when a service is requested from the
processor.

c) Resource Utilization

 Xilinx Vivado also provides the user with the Resource Utilization data for the design after
the Implementation phase. This data was compared for both the designs. And as expected, hard-
core based design utilized less resources (Figure 5) than the Soft-core (Figure 6) one since the
Cortex M0 Design Start processor is completely simulated using FPGA logic.

Figure 5. Logic utilization for the Hard-core based design

7
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

Figure 6. Logic utilization for the Soft-core based design

VI. Conclusion

The cores were compared based on three factors – Speed, power consumption and resource

utilization. The hard-core outperformed the soft-core in both speed and resource utilization
categories. The hard-core processor is not limited by the FPGA fabric speed as in the case of
soft-core. Also unlike the soft-core, the hard-core exists as an independent component on the
same chip separate from the FPGA logic, resulting in lower utilization stats. However, in case of
power consumption soft-core comes out on top because the ARM Cortex A9 processor consumes
more power in our testing. Table 1 shows a side-by-side comparison of hard-core and soft-core
processors depending on the results from out testing. A check mark and a cross is used in the
table to denote which type of processor is better in terms of the differentiating factor listed on the
leftmost column.

The high speed of Hard-core based FPGA make them perfect for time intensive applications.

Also the spare FPGA logic that would be used for soft-core processor could be used to further
add more functionality or memory. An example of a real world application is Microsoft’s
internet search tool Bing, which swapped Microprocessors for FPGAs with embedded ARM
processors on its data centers that drive its search algorithm and deep learning neural networks10.
The same algorithms performed 40 times faster on the new chips compared to previous ones.

Table 1. Soft-core vs Hard-core test results

 Soft-core Hard-core

Power consumption

Speed

Resource utilization

Flexibility for design

8
Proceedings of the 2019 ASEE North Central Section Conference

Copyright © 2019, American Society for Engineering Education

The soft-core meanwhile is better suited for applications that has the potential to undergo
constant improvement in design. Its re-configurable aspect empowers the user to change the
design requirements on the go. Peripherals can be added or removed from the design at ease in
very few steps resulting in a custom processor that only contains the functionality needed. Soft-
cores could also be used to test the functionalities of a design during the prototyping phase so
they can eventually be replaced by a hard-core processor in the final design. In short, we can
observe that the hard-core processor is best suited for applications were speed and resource
minimization is of prime concern, whereas soft-core processor should be preferred where
flexibility of application is main priority. Analysis presented in this paper does not account for
all the aspects of a processor core and is mainly geared towards comparison of two specific
architectures for a discrete set of metrics. More in-depth analysis can be performed to get a
thorough comparison between the two cores.

Bibliography

[1]. Vazhoth Kanhiroth, V.J., “Embedded Processors on FPGAs – Hard-core vs Soft-core”, Master’s Thesis, April

2017.
[2]. Martos, P., Baglivo, F. “Implementing the Cortex-M0 Design Start processor on a low end FPGA”, 2011
[3]. Mondragon, A. F., & Christman, J. “Hard Core vs. Soft Core: A Debate”. In American Society for Engineering

Education, 2012
[4]. Weber, J. M., & Chin, M. J. “Using FPGAs with embedded processors for complete hardware and software

systems”. In T. S. Meyer, & R. Webber (Eds.), AIP Conference Proceedings (Vol. 868, No. 1, pp. 187-192).
AIP, November 2006

[5]. Anemaet, P., & As, T. V. “Microprocessor Soft-Cores: An Evaluation of Design Methods and Concepts on
FPGAs”. part of the Computer Architecture (Special Topics) course ET4078, Department of Computer
Engineering, 2003.

[6]. Learn, M. “Evaluation of Soft-Core Processors on a Xilinx Virtex-5”. Sandia National Laboratories.
SAND2011-2733.

[7]. Minev, P. B., & Kukenska, V. S., “Implementation of soft-core processors in FPGAs”. In UNITECH'07
International Sceintific Conference, November 2007.

[8]. Salem, A. K. B., Othman, S. B., & Saoud, S. B. “Hard and soft-core implementation of embedded control
application using RTOS”. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on (pp.
1896-1901). IEEE, June 2008

[9]. Prado, D. F. G., “Embedded micro-controller and FPGA soft-cores”. In ELECTRÓNICA – UNMSM (No. 18).
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA, December
2006

[10]. McMillan, Robert. "Microsoft Supercharges Bing Search With Programmable Chips". WIRED. N.p., 2017.
 Web. 31 Mar. 2017.

