
ModelSim®
SE

Command Reference
V e r s i o n 5 . 8 c

P u b l i s h e d : 5 / M a r / 0 4
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ii

Mod
ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are
produced by Model Technology™, a Mentor Graphics Corporation company.
Copying, duplication, or other reproduction is prohibited without the written consent
of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX, and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Macrovision, Inc. IBM, AT, and PC are registered trademarks, AIX and RISC
System/6000 are trademarks of International Business Machines Corporation.
Windows, Microsoft, and MS-DOS are registered trademarks of Microsoft
Corporation. OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
USA and other countries. SPARC is a registered trademark and SPARCstation is
a trademark of SPARC International, Inc. Sun Microsystems is a registered
trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990-2004, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

Model Technology
8005 Boeckman Road, Bldg. E4
Wilsonville, OR 97070 USA

phone: (503) 685-0820
fax: (503) 685-0910
e-mail: support@model.com, sales@model.com
home page: http://www.model.com
support page: http://www.model.com/support
elSim SE Command Reference

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

Technical support and updates iii
Technical support and updates

Support

Model Technology online and email technical support options, maintenance renewal, and
links to international support contacts:
www.model.com/support/default.asp

Mentor Graphics support:
www.mentor.com/supportnet

Updates

Access to the most current version of ModelSim:
www.model.com/downloads/default.asp

Latest version email

Place your name on our list for email notification of news and updates:
www.model.com/products/informant.asp
ModelSim SE Command Reference

http://www.model.com/support/default.asp
http://www.mentor.com/supportnet/
http://www.model.com/downloads/default.asp
http://www.model.com/products/informant.asp

iv

Mod
Where to find our documentation

ModelSim documentation is available from our website at www.model.com/support or in
the following formats and locations:

Document Format How to get it

ModelSim SE Installation &
Licensing Guide

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE Quick Guide
(command and feature
quick-reference)

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation, also available
from the Support page of our web site: www.model.com

ModelSim SE Tutorial PDF, HTML select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE User’s
Manual

PDF, HTML select Main window > Help > SE Documentation

ModelSim SE Command
Reference

PDF, HTML select Main window > Help > SE Documentation

Foreign Language
Interface Reference

PDF, HTML select Main window > Help > SE Documentation

Std_DevelopersKit User’s
Manual

PDF www.model.com/support/documentation/BOOK/sdk_um.pdf

The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.

Command Help ASCII type help [command name] at the prompt in the Main window

Error message help ASCII type verror <msgNum> at the Main window or shell prompt

Tcl Man Pages (Tcl
manual)

HTML select Main window > Help > Tcl Man Pages, or find
contents.htm in \modeltech\docs\tcl_help_html

Technotes HTML select Technotes dropdown on www.model.com/support
elSim SE Command Reference

http://www.model.com/support
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.model.com/support

 CR-5
Table of Contents
Technical support and updates -iii

Where to find our documentation -iv

Syntax and conventions (CR-9)

Documentation conventions CR-10

File and directory pathnames CR-11

HDL and SystemC item names CR-12

Wildcard characters CR-17

ModelSim variables CR-17

Simulation time units CR-18

Comments in argument files CR-18

Command shortcuts CR-19

Command history shortcuts CR-20

Numbering conventions CR-21

GUI_expression_format CR-23

Commands (CR-33)

Command reference table CR-34

.main clear CR-44

.wave.tree interrupt CR-45

.wave.tree zoomfull CR-46

.wave.tree zoomin CR-47

.wave.tree zoomlast CR-48

.wave.tree zoomout CR-49

.wave.tree zoomrange CR-50

abort CR-51

add button CR-52

add dataflow CR-54

add list CR-55

add_menu CR-58

add_menucb CR-60

add_menuitem CR-61

add_separator CR-62

add_submenu CR-63

add wave CR-64

alias CR-68

assertion fail CR-69

assertion pass CR-71

assertion report CR-73

batch_mode CR-75

bd CR-76

bookmark add wave CR-77

bookmark delete wave CR-78

bookmark goto wave CR-79

bookmark list wave CR-80

bp CR-81

cd CR-84

cdbg CR-85

change CR-87

change_menu_cmd CR-89

check contention add CR-90

check contention config CR-92

check contention off CR-93

check float add CR-94

check float config CR-95

check float off CR-96

check stable off CR-97

check stable on CR-98

checkpoint CR-99

compare add CR-100

compare annotate CR-104

compare clock CR-105

compare configure CR-107

compare continue CR-109

compare delete CR-110

compare end CR-111

compare info CR-112

compare list CR-113

compare options CR-114

compare reload CR-118

compare reset CR-119

compare run CR-120

compare savediffs CR-121
ModelSim SE Command Reference

CR-6 Table of Contents

Model
compare saverules CR-122

compare see CR-123

compare start CR-125

compare stop CR-127

compare update CR-128

configure CR-129

context CR-133

coverage clear CR-134

coverage exclude CR-135

coverage reload CR-136

coverage report CR-137

coverage save CR-140

dataset alias CR-141

dataset clear CR-142

dataset close CR-143

dataset info CR-144

dataset list CR-145

dataset open CR-146

dataset rename CR-147

dataset save CR-148

dataset snapshot CR-149

delete CR-151

describe CR-152

disablebp CR-153

disable_menu CR-154

disable_menuitem CR-155

do CR-156

down CR-157

drivers CR-159

dumplog64 CR-160

echo CR-161

edit CR-162

enablebp CR-163

enable_menu CR-164

enable_menuitem CR-165

environment CR-166

examine CR-167

exit CR-171

find CR-172

force CR-176

gdb dir CR-179

getactivecursortime CR-180

getactivemarkertime CR-181

help CR-182

history CR-183

lecho CR-184

left CR-185

log CR-187

lshift CR-189

lsublist CR-190

macro_option CR-191

mem display CR-192

mem list CR-194

mem load CR-195

mem save CR-198

mem search CR-200

modelsim CR-202

next CR-203

noforce CR-204

nolog CR-205

notepad CR-207

noview CR-208

nowhen CR-209

onbreak CR-210

onElabError CR-211

onerror CR-212

pause CR-213

play CR-214

pop CR-215

power add CR-216

power report CR-217

power reset CR-218

precision CR-219

printenv CR-220

profile clear CR-221

profile interval CR-222
Sim SE Command Reference

 CR-7
profile off CR-223

profile on CR-224

profile option CR-225

profile report CR-226

project CR-227

property list CR-228

property wave CR-229

push CR-231

pwd CR-232

quietly CR-233

quit CR-234

radix CR-235

readers CR-236

record CR-237

report CR-238

restart CR-240

restore CR-242

resume CR-243

right CR-244

run CR-246

sccom CR-248

scgenmod CR-251

search CR-253

searchlog CR-255

seetime CR-257

setenv CR-258

shift CR-259

show CR-260

simstats CR-261

splitio CR-262

status CR-263

step CR-264

stop CR-265

tb CR-266

tcheck_set CR-267

tcheck_status CR-269

toggle add CR-271

toggle disable CR-273

toggle enable CR-274

toggle report CR-275

toggle reset CR-276

transcribe CR-277

transcript CR-278

transcript file CR-279

tssi2mti CR-280

unsetenv CR-281

up CR-282

vcd add CR-284

vcd checkpoint CR-285

vcd comment CR-286

vcd dumpports CR-287

vcd dumpportsall CR-289

vcd dumpportsflush CR-290

vcd dumpportslimit CR-291

vcd dumpportsoff CR-292

vcd dumpportson CR-293

vcd file CR-294

vcd files CR-296

vcd flush CR-298

vcd limit CR-299

vcd off CR-300

vcd on CR-301

vcd2wlf CR-302

vcom CR-303

vcover convert CR-310

vcover merge CR-311

vcover stats CR-313

vdel CR-315

vdir CR-316

verror CR-317

vgencomp CR-318

view CR-320

virtual count CR-322

virtual define CR-323

virtual delete CR-324

virtual describe CR-325
ModelSim SE Command Reference

CR-8 Table of Contents

Model
virtual expand CR-326

virtual function CR-327

virtual hide CR-330

virtual log CR-331

virtual nohide CR-333

virtual nolog CR-334

virtual region CR-336

virtual save CR-337

virtual show CR-338

virtual signal CR-339

virtual type CR-342

vlib CR-344

vlog CR-345

vmake CR-355

vmap CR-356

vsim CR-357

vsim<info> CR-373

vsource CR-374

when CR-375

where CR-380

wlf2log CR-381

wlf2vcd CR-383

wlfman CR-384

wlfrecover CR-387

write cell_report CR-388

write format CR-389

write list CR-391

write preferences CR-392

write report CR-393

write transcript CR-394

write tssi CR-395

write wave CR-397

Licensing Agreement (CR-399)

Index (CR-405)
Sim SE Command Reference

 CR-9
Syntax and conventions

Chapter contents
Documentation conventions CR-10

File and directory pathnames CR-11

HDL and SystemC item names CR-12
Item name syntax CR-12
SystemC class/structure/union member specification. CR-13
Specifying names CR-14
Escaping brackets and spaces in array slices CR-15
Environment variables and pathnames CR-16
Name case sensitivity CR-16
Extended identifiers CR-16

Wildcard characters CR-17

ModelSim variables CR-17

Simulation time units CR-18

Comments in argument files CR-18

Command shortcuts CR-19

Command history shortcuts CR-20

Numbering conventions CR-21
VHDL numbering conventions CR-21
Verilog numbering conventions CR-22

GUI_expression_format CR-23
Expression typing CR-23
Expression syntax CR-24
Signal and subelement naming conventions CR-28
Grouping and precedence CR-28
Concatenation of signals or subelements CR-28
Record field and SystemC class/structure/union members . . . CR-30
Searching for binary signal values in the GUI CR-30
ModelSim SE Command Reference

CR-10 Syntax and conventions

Model
Documentation conventions

This manual uses the following conventions to define ModelSim command syntax.

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a user-
defined argument; do not enter the brackets in commands

[] square brackets generally indicate an optional item; if the
brackets surround several words, all must be entered as a group;
the brackets are not entereda

a. One exception to this rule is when you are using Verilog syntax to designate an array
slice. For example,

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

{ } braces indicate that the enclosed expression contains one or
more spaces yet should be treated as a single argument, or that
the expression contains square brackets for an index; for either
situation, the braces are entered

... an ellipsis indicates items that may appear more than once; the
ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on either side
of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by the number
sign (#); useful for adding comments to DO files (macros)

Note: Neither the prompt at the beginning of a line nor the <Enter> key that ends a line
is shown in the command examples.
Sim SE Command Reference

File and directory pathnames CR-11
File and directory pathnames

Several ModelSim commands have arguments that point to files or directories. For
example, the -y argument to vlog specifies the Verilog source library directory to search for
undefined modules. Spaces in file pathnames must be escaped or the entire path must be
enclosed in quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/mcarnes/simprims

or

vlog top.v -y "C:/Documents and Settings/mcarnes/simprims"
ModelSim SE Command Reference

CR-12 Syntax and conventions

Model
HDL and SystemC item names

VHDL, Verilog, and SystemC items are organized hierarchically. Each of the following
items creates a new level in the hierarchy:

• VHDL
component instantiation statement, block statement, and package

• Verilog
module instantiation, named fork, named begin, task and function

• SystemC
module instantiation

Item name syntax

The syntax for specifying item names in ModelSim is as follows:

[<datasetName><datasetSeparator>][<pathSeparator>][<hierarchicalPath>]<item
Name>[<elementSelection>]

where

datasetName

is the logical name of the WLF file in which the item exists. The currently active
simulation is the “sim” dataset. Any loaded WLF file is referred to by the logical name
specified when the WLF file was loaded. See Chapter 9 - WLF files (datasets) and
virtuals for more information.

datasetSeparator

is the character used to terminate the dataset name. The default is ’:’, though a different
character (other than ’\’) may be specified as the dataset separator via the
DatasetSeparator (UM-623) variable in the modelsim.ini file. The default is ':'. This
character must be different than the pathSeparator character.

pathSeparator

is the character used to separate hierarchical item names. Normally, '/' is used for VHDL
and '.' is used for Verilog, although other characters (except '\') may be specified via the
PathSeparator (UM-624) variable in the modelsim.ini file. This character must be different
than the datasetSeparator. Both '.' and '/' can be used for SystemC.

hierarchicalPath

is a set of hierarchical instance names separated by a path separator and ending in a path
separator prior to the itemName. For example, /top/proc/clk.

itemName

is the name of an object in a design.

elementSelection

indicates some combination of the following:

Array indexing - Single array elements are specified using either parentheses "()" or
square brackets "[]" around a single number.

Array slicing - Slices (or part-selects) of arrays are specified using either parentheses "()"
or square brackets "[]" around a range specification. A range is two numbers separated
by one of the following: " to ", " downto ", ":". See "Escaping brackets and spaces in array
Sim SE Command Reference

HDL and SystemC item names CR-13
slices" (CR-15) for important information about using square brackets in ModelSim
commands.

Record field selection - A record field is specified using a period "." followed by the
name of the field.

C++ class, structure, and union member selection - A class, structure, or union member
is specified using the record field specification syntax, described just above.

SystemC class/structure/union member specification

You can specify members of SystemC structures and classes using HDL record syntax. The
syntax for specifying members of a base class using ModelSim is different than C++. In
C++, it is not necessary to specify the base class:

<instance>.<base_member>

Whereas, in ModelSim you must include the name of the base class:

<instance>.<base>.<base_member>

Example

Let’s say you have a base class and a descendant class:

class dog
{

private:
int value;

};

class beagle : public dog
{

private:
int value;
dog d;

};

You have an sc_signal<> of type beagle somewhere in your code:

sc_signal<beagle> spot;

Legal names for viewing this signal are:

spot
spot.*
spot.value
spot.dog
spot.dog.*
spot.dog.value

Now, to examine the member value of the base class dog, you would type:

exa spot.dog.value

To examine the member value of member d, you would type:

exa spot.d.value

To examine the member value, you would type:

exa spot.value
ModelSim SE Command Reference

CR-14 Syntax and conventions

Model
Specifying names

We distinguish between four "types" of item names: simple, relative, fully-rooted, and
absolute.

A simple name does not contain any hierarchy. It is simply the name of an item (e.g., clk or
data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset
name or a hierarchical path (e.g., u1/data or view:clk). A relative name is relative to the
current context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to an item
(e.g., /top/u1/clk).There is a special case of a fully-rooted name where the top-level design
unit name can be unspecified (e.g., /u1/clk). In this case, the first top-level instance in the
design is assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and
a fully rooted name (e.g., sim:/top/u1/clk).

The current dataset is used when accessing items where a dataset name is not specified as
part of the name. The current dataset is determined by the dataset currently selected in the
Structure window or by the last dataset specified in an environment command (CR-166).

The current context in the current or specified dataset is used when accessing items with
relative or simple names. The current context is either the current process, if any, or the
current instance if there is no current process or the current process is not in the current
instance. The situation of the current process not being in the current instance can occur,
for example, by selecting a different instance in the Structure tab or by using the
environment command (CR-166) to set the current context to a different instance.

Here are some examples of item names and what they specify:

Syntax Description

clk specifies the item clk in the current context

/top/clk specifies the item clk in the top-level design unit.

/top/block1/u2/clk specifies the item clk, two levels down from the
top-level design unit

block1/u2/clk specifies the item clk, two levels down from the
current context

array_sig[4] specifies an index of an array item

{array_sig(1 to 10)} specifies a slice of an array item in VHDL or
SystemC; see "Escaping brackets and spaces in
array slices" (CR-15) for more information

{mysignal[31:0]} specifies a slice of an array item in Verilog or
SystemC; see "Escaping brackets and spaces in
array slices" (CR-15) for more information

record_sig.field specifies a field of a record, a C++ class or structure
member, or a C++ base class
Sim SE Command Reference

HDL and SystemC item names CR-15
Escaping brackets and spaces in array slices

Because ModelSim is a Tcl-based tool, you must use curly braces (’{}’) to "escape" square
brackets and spaces when specifying array slices. For example:

toggle add {data[3:0]} or
toggle add {data(3 to 0)}

For complete details on Tcl syntax, see "Tcl command syntax" (UM-594).

Further details

As a Tcl-based tool, ModelSim commands follow Tcl syntax. One problem people
encounter with ModelSim commands is the use of square brackets (’[]’) or spaces when
specifying array slices. As shown on the previous page, square brackets are used to specify
slices of arrays (e.g., data[3:0]). However, in Tcl, square brackets signify command
substitution. Consider the following example:

set aluinputs [find -in alu/*]

ModelSim evaluates the find command first and then sets variable aluinputs to the result
of the find command. Obviously you don’t want this type of behavior when specifying an
array slice, so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]}

You must also use the escape characters if using VHDL syntax with spaces:

add wave {/s/abc/data_in(10 downto 1)}
ModelSim SE Command Reference

CR-16 Syntax and conventions

Model
Environment variables and pathnames

You can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library
file und1 and search it for undefined modules. See "Environment variables" (UM-613) for
more information.

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case
sensitive except for extended identifiers in VHDL 1076-1993 or later. In contrast, all
Verilog names are case sensitive.

Names in ModelSim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive. SystemC names are case sensitive.

Extended identifiers

The following are supported formats for extended identifiers for any command that takes
an identifier.

{\ext ident!\ } # Note that trailing space before closing brace is required

\\ext\ ident\!\\ # All non-alpha characters escaped

Note: Environment variable expansion does not occur in files that are referenced via the
-f argument to vcom, vlog, or vsim.
Sim SE Command Reference

Wildcard characters CR-17
Wildcard characters

Wildcard characters can be used in HDL item names in some simulator commands.
Conventions for wildcards are as follows:

The WildcardFilter Tcl preference variable filters matching items for the add wave, add
log, add list, and find commands.

ModelSim variables

ModelSim variables can be referenced in simulator commands by preceding the name of
the variable with the dollar sign ($) character. ModelSim uses global Tcl variables for
simulator state variables, simulator control variables, simulator preference variables, and
user-defined variables (see "Preference variables located in Tcl files" (UM-631) for more
information).

See Appendix A - ModelSim variables in the User’s Manual for more information on
variables.

The report command (CR-238) returns a list of current settings for either the simulator state
or simulator control variables.

Syntax Description

* matches any sequence of characters

? matches any single character

[] matches any one of the enclosed characters; a
hyphen can be used to specify a range (for
example, a-z, A-Z, 0-9); can be used only with
the find command (CR-172)

Note: A wildcard character will never match a path separator. For example, /dut/* will
match /dut/siga and /dut/clk. However, /dut* won’t match either of those.
ModelSim SE Command Reference

CR-18 Syntax and conventions

Model
Simulation time units

You can specify the time unit for delays in all simulator commands that have time
arguments. For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always
expressed using the resolution units that are specified by the UserTimeUnit variable. See
UserTimeUnit (UM-626).

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Comments in argument files
Argument files may be loaded with the -f <filename> argument of the vcom, vlog, sccom
and vsim commands. The -f <filename> argument specifies a file that contains more
command line arguments.

Comments within the argument files follow these rules:

• All text in a line beginning with // to its end is treated as a comment.

• All text bracketed by /* ... */ is treated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the
newline characters treated as space characters. There is no need to put '\' at the end of each
line.
Sim SE Command Reference

Command shortcuts CR-19
Command shortcuts

• You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top
ModelSim SE Command Reference

CR-20 Syntax and conventions

Model
Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)
Sim SE Command Reference

Numbering conventions CR-21
Numbering conventions

Numbers in ModelSim can be expressed in either VHDL or Verilog style. Two styles can
be used for VHDL numbers, one for Verilog.

VHDL numbering conventions

The first of two VHDL number styles is:

[-] [radix #] value [#]

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value
or expression in the List or Wave window. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to -0110--. If you don’t include the double
quotes, ModelSim will read the ‘-’ as a negative sign.

Examples

16#FFca23#
2#11111110
-23749

The second VHDL number style is:

base "value"

Examples

B"11111110"
X"FFca23"

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is
required if a radix is used, the second is always optional

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digits in the appropriate base with optional underscore
separators; default is decimal; required
ModelSim SE Command Reference

CR-22 Syntax and conventions

Model
Verilog numbering conventions

Verilog numbers are expressed in the style:

[-] [size] [base] value

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value
or expression in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to 7'b-0110--. If you don’t include the
double quotes, ModelSim will read the ‘-’ as a negative sign.

Examples

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D,
hex: ‘h or ‘H; optional

value specifies digits in the appropriate base with optional underscore
separators; default is decimal, required
Sim SE Command Reference

GUI_expression_format CR-23
GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate
within the ModelSim GUI environment. The expressions help you locate and examine
items within the List and Wave windows (expressions may also be used through the Edit >
Search menu in both windows). The commands that use the expression format are:

compare add (CR-100), compare clock (CR-105), compare configure (CR-107), configure
(CR-129), down (CR-157), examine (CR-167), left (CR-185), right (CR-244), searchlog (CR-

255), up (CR-282), virtual function (CR-327), and virtual signal (CR-339)

Expressions may be typed directly on the VSIM command line, or you can use the "The
GUI Expression Builder" (UM-395).

Expression typing

GUI expressions are typed. The supported types consist of six scalar types and two array
types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration,
and signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’
’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ and ’-’.

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are
ignored. Conversion is done automatically when referencing Verilog nets or registers.

SystemC scalar types that are supported are: bool, int, unsigned int, long, unsigned long,
short, unsigned short, char, unsigned char, double, float, enumeration, and signal state.
SystemC signal states can be ’0’ ’1’ ’X’ and ’Z’.

Array types

The supported array types are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically
converted to these array types. The array type can be treated as either UNSIGNED or
SIGNED, as in the IEEE std_logic_arith package. Normally, referencing a signal array
causes it to be treated as UNSIGNED by the expression evaluator; to cause it to be treated
as SIGNED, use casting as described below. Numeric operations supported on arrays are
performed by the expression evaluator via ModelSim’s built-in numeric_standard (and
similar) package routines. The expression evaluator selects the appropriate numeric routine
based on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals
may be used in the expression as long as some variable of that enumeration type is
referenced in the expression. This is useful for sub-expressions of the form:

(/memory/state == reading)

The supported SystemC array types are sc_bv<w>, sc_lv<w>, sc_int<w>, sc_uint<w>,
sc_bigint<w>, sc_biguint<w>, sc_fixed<...>, and sc_ufixed<...>.
ModelSim SE Command Reference

CR-24 Syntax and conventions

Model
Expression syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and
Verilog-specific conventions supported. These expressions are not parsed by the Tcl parser,
and so do not support general Tcl; parentheses should be used rather than curly braces.
Procedure calls are not supported.

A GUI expression can include the following elements: Tcl macros, constants, array
constants, variables, array variables, signal attributes, operators, and casting.

Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have been
previously saved. The substitution is done only once, when the expression is first parsed.
Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants

Array constants, expressed in any of the following formats

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ ’-’ 1’b0 1’b1

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|W|L|H|-)*"
Example: "11010X11"

Verilog notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F, and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes
the ambiguity about the number of bits.)

Based notation 0x..., 0X..., 0o..., 0O..., 0b..., OB...
ModelSim automatically zero fills unspecified upper bits.
Sim SE Command Reference

GUI_expression_format CR-25
Variables

Array variables

Signal attributes

<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a
signal in Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X
(unknown) value.

See "Examples" (CR-27) below for further details on ’delayed and ’hasX.

Variable Type

Name of a signal The name may be a simple name, a VHDL or Verilog style extended
identifier, or a VHDL or Verilog style path. The signal must be one
of the following types:
-- VHDL signal of type INTEGER, REAL, or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- Verilog net, Verilog register, Verilog integer, or Verilog real
-- SystemC primitive channels of type scalar (e.g. bool, int, etc.)

NOW Returns the value of time at the current location in the WLF file as
the WLF file is being scanned (not the most recent simulation time).

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register
-- Verilog net array
-- SystemC primitive channels of type vector (e.g. sc_bv, sc_int,
etc.)
A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]
ModelSim SE Command Reference

CR-26 Syntax and conventions

Model
Operators

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right
arithmetic

!= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

!== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT/~ unary bitwise
inversion

rem/REM arithmetic
remainder

and/AND/& bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor

Note: Arithmetic operators use the std_logic_arith package.
Sim SE Command Reference

GUI_expression_format CR-27
Casting

Examples

/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
is equal to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit
hex constant; otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals
hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with /top/signalB.

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes
the logical AND of the result with the current value of /top/signalB. The '#' notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector
ModelSim SE Command Reference

CR-28 Syntax and conventions

Model
((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == 'x' ||
dbus(1) == 'x'} This makes it possible to search for X values without having to write
a type specific literal.

Signal and subelement naming conventions

ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL
array indexing, Verilog bit selection, VHDL subrange specification, and Verilog part
selection. All supported naming conventions for VHDL and Verilog are valid for SystemC
designs.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

All of the above examples are valid for SystemC.

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend liberal
use of parentheses.

Concatenation of signals or subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation
that are records, the entire record becomes one top-level element in the result. To specify
that the records be broken down so that their subelements become top-level elements in the
concatenation, use the concat_flatten directive. Currently we do not support leaving full
arrays as elements in the result. (Please let us know if you need that option.)

If the elements being concatenated are of incompatible base types, a VHDL-style record
will be created. The record object can be expanded in the Signals and Wave windows just
like an array of compatible type elements.

Concatenation syntax for VHDL

<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation syntax for Verilog

&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition
multipliers are supported, as illustrated in the second line. The repetition element itself may
be an arbitrary concatenation subexpression.
Sim SE Command Reference

GUI_expression_format CR-29
Concatenation directives

A concatenation directive (as illustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) downto 0, where n
is the number of elements in the array.

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.

(concat_ascending) <concatenationExpr>

The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat_flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat_noflatten) <concatenationExpr>

The concat_noflatten directive groups signals together without merging them into one
big array. The signals become elements of a record and retain their original names. When
expanded, the new signal looks just like a group of signals. The directive can be used
hierarchically with no limits on depth.

(concat_sort_wild_ascending) <concatenationExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat_reverse) <concatenationExpr>

The concat_reverse directive reverses the bits of the concatenated signals.

Examples

&{ "mybusbasename*" }

Gathers all signals in the current context whose names begin with "mybusbasename",
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not derive
the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in descending
order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

(concat_reverse)(bus1 & bus2)

Specifies that the bits of bus1 and bus2 be reversed in the output virtual signal.
ModelSim SE Command Reference

CR-30 Syntax and conventions

Model
Record field and SystemC class/structure/union members

Arbitrarily-nested arrays and records are supported, but operators will only operate on one
field at a time. That is, the expression {a == b} where a and b are records with multiple
fields, is not supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2)...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Searching for binary signal values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you
should be aware of how ModelSim maps between binary radix and std_logic. The issue
arises because there is no “un-initialized” value in binary, while there is in std_logic. So,
ModelSim relies on mapping tables to determine whether a match occurs between the
displayed binary signal value and the underlying std_logic value.

This matching algorithm applies only to searching via the GUI. It does not apply to VHDL
or Verilog testbenches.

For comparing VHDL std_logic/std_ulogic objects, ModelSim uses the table shown below.
An entry of “0” in the table is “no match”; an entry of “1” is a “match”; an entry of “2” is
a match only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that
X will match a U, and - will match anything.

Search
Entry

Matches as follows:

U X 0 1 Z W L H -

U 1 1 0 0 0 0 0 0 1

X 1 1 2 2 2 2 2 2 1

0 0 2 1 0 0 0 1 0 1

1 0 2 0 1 0 0 0 1 1

Z 0 2 0 0 1 0 0 0 1

W 0 2 0 0 0 1 0 0 1

L 0 2 1 0 0 0 1 0 1

H 0 2 0 1 0 0 0 1 1

- 1 1 1 1 1 1 1 1 1
Sim SE Command Reference

GUI_expression_format CR-31
For comparing Verilog net values, ModelSim uses the table shown below. An entry of “2”
is a match only if you set the Tcl variable “VLOG_X_MatchesAnything” to 1.

This table also applies to SystemC types: sc_bit, sc_bv, sc_logic, sc_int, sc_uint, sc_bigint,
sc_biguint.

Search
Entry

Matches as follows:

0 1 Z X

0 1 0 0 2

1 0 1 0 2

Z 0 0 1 2

X 2 2 2 1
ModelSim SE Command Reference

CR-32 Syntax and conventions

Model
Sim SE Command Reference

 CR-33
Commands

Chapter contents
Command reference table CR-34

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use
the ModelSim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use
the Tcl commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl Man Pages).

Note: ModelSim commands are case sensitive. Type them as they are shown in this
reference.
ModelSim SE Command Reference

CR-34 Commands

Model
Command reference table

The following table provides a brief description of each ModelSim command. Command
details, arguments, and examples can be found at the page numbers given in the Command
name column.

Command name Action

.main clear (CR-44) clears the Main window transcript

.wave.tree interrupt (CR-45) halts the drawing of waves in the Wave window

.wave.tree zoomfull (CR-46) zooms the Wave window from time zero to the current simulation time

.wave.tree zoomin (CR-47) zooms in the Wave window by the specified factor

.wave.tree zoomlast (CR-48) zooms the Wave window to the previous setting

.wave.tree zoomout (CR-49) zooms out the Wave window by the specified factor

.wave.tree zoomrange (CR-50) zooms the Wave to the specified range

abort (CR-51) halts the execution of a macro file interrupted by a breakpoint or error

add button (CR-52) adds a user-defined button to the Main window button bar

add dataflow (CR-54) adds the specified item to the Dataflow window

add list (CR-55) lists VHDL signals and variables, and Verilog nets and registers, and their
values in the List window

add log also known as the log command; see log (CR-187)

add_menu (CR-58) adds a menu to the menu bar of the specified window, using the specified
menu name

add_menucb (CR-60) creates a checkbox within the specified menu of the specified window

add_menuitem (CR-61) creates a menu item within the specified menu of the specified window

add_separator (CR-62) adds a separator as the next item in the specified menu path in the specified
window

add_submenu (CR-63) creates a cascading submenu within the specified menu path of the specified
window

add wave (CR-64) adds VHDL signals and variables, and Verilog nets and registers to the Wave
window

alias (CR-68) creates a new Tcl procedure that evaluates the specified commands

assertion fail (CR-69) configures fail tracking for PSL assertions

assertion pass (CR-71) configures pass tracking for PSL assertions

assertion report (CR-73) produces textual summary of PSL assertion results
Sim SE Command Reference

Command reference table CR-35
batch_mode (CR-75) returns a 1 if ModelSim is operating in batch mode, otherwise returns a 0

bd (CR-76) deletes a breakpoint

bookmark add wave (CR-77) adds a bookmark to the specified Wave window

bookmark delete wave (CR-78) deletes bookmarks from the specified Wave window

bookmark goto wave (CR-79) zooms and scrolls a Wave window using the specified bookmark

bookmark list wave (CR-80) displays a list of available bookmarks

bp (CR-81) sets a breakpoint

cd (CR-84) changes the ModelSim local directory to the specified directory

cdbg (CR-85) provides command-line equivalents of the menu options that are available for
"C Debug" (UM-473)

change (CR-87) modifies the value of a VHDL variable or Verilog register variable

change_menu_cmd (CR-89) changes the command to be executed for a specified menu item label, in the
specified menu, in the specified window

check contention add (CR-90) enables contention checking for the specified nodes

check contention config (CR-92) writes checking messages to a file

check contention off (CR-93) disables contention checking for the specified nodes

check float add (CR-94) enables float checking for the specified nodes

check float config (CR-95) writes checking messages to a file

check float off (CR-96) disables float checking for the specified nodes

check stable off (CR-97) disables stability checking

check stable on (CR-98) enables stability checking on the entire design

checkpoint (CR-99) saves the state of your simulation

compare add (CR-100) compares signals in a reference design against signals in a test design

compare annotate (CR-104) marks a compare difference as "ignore" or tags it with a text message

compare clock (CR-105) defines a clock to be used with clocked-mode comparisons

compare configure (CR-107) modifies options for compare signals or regions

compare continue (CR-109) continues difference computation that had been suspended

compare delete (CR-110) deletes a signal or region from the current comparison

compare end (CR-111) closes the currently open comparison

compare info (CR-112) lists the results of the comparison

Command name Action
ModelSim SE Command Reference

CR-36 Commands

Model
compare list (CR-113) lists all the compare add commands currently in effect

compare options (CR-114) sets defaults for options used in other compare commands

compare reload (CR-118) reloads a comparison previously saved with the compare savediffs command

compare reset (CR-119) clears the current compare differences

compare run (CR-120) runs the comparison on selected signals

compare savediffs (CR-121) saves comparison differences to a file that can be reloaded later

compare saverules (CR-122) saves comparison setup information to a file that can be reloaded later

compare see (CR-123) displays a comparison difference in the Wave window

compare start (CR-125) starts a new dataset comparison

compare stop (CR-127) halts active difference computation

compare update (CR-128) updates the comparison differences

configure (CR-129) invokes the List or Wave widget configure command for the current default
List or Wave window

context (CR-133) provides several operations on a context’s name

coverage clear (CR-134) clears all coverage data obtained during previous run commands

coverage exclude (CR-135) loads an exclusion filter file

coverage reload (CR-136) seeds the coverage statistics with the output of a previous coverage report
command

coverage report (CR-137) produces a textual output of the coverage statistics that have been gathered up
to this point

coverage save (CR-140) saves current coverage statistics to a file that can be reloaded later, preserving
instance-specific information

dataset alias (CR-141) assigns an additional name to a dataset

dataset clear (CR-142) clears the current simulation WLF file

dataset close (CR-143) closes a dataset

dataset info (CR-144) reports information about the specified dataset

dataset list (CR-145) lists the open dataset(s)

dataset open (CR-146) opens a dataset and references it by a logical name

dataset rename (CR-147) changes the logical name of an opened dataset

dataset save (CR-148) saves data from the current WLF file to a specified file

dataset snapshot (CR-149) saves data from the current WLF file at a specified interval

Command name Action
Sim SE Command Reference

Command reference table CR-37
delete (CR-151) removes HDL items from either the List or Wave window

describe (CR-152) displays information about the specified HDL item

disablebp (CR-153) turns off breakpoints and when commands

disable_menu (CR-154) disables the specified menu within the specified window

disable_menuitem (CR-155) disables the specified menu item within the specified menu path of the
specified window

do (CR-156) executes commands contained in a macro file

down (CR-157) searches for signal transitions or values in the specified List window

drivers (CR-159) displays in the Main window the current value and scheduled future values
for all the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-160) dumps the contents of the vsim.wlf file in a readable format

echo (CR-161) displays a specified message in the Main window

edit (CR-162) invokes the editor specified by the EDITOR environment variable

enablebp (CR-163) turns on breakpoints and when commands turned off by the disablebp
command (CR-153)

enable_menu (CR-164) enables a previously-disabled menu

enable_menuitem (CR-165) enables a previously-disabled menu item

environment (CR-166) displays or changes the current dataset and region environment

examine (CR-167) examines one or more HDL items, and displays current values (or the values
at a specified previous time) in the Main window

exit (CR-171) exits the simulator and the ModelSim application

find (CR-172) displays the full pathnames of all HDL items in the design whose names
match the name specification you provide

force (CR-176) applies stimulus to VHDL signals and Verilog nets and registers

gdb dir (CR-179) sets the source directory for FLI/PLI/VPI C source code when using C Debug

getactivecursortime (CR-180) gets the time of the active cursor in the Wave window

getactivemarkertime (CR-181) gets the time of the active marker in the List window

help (CR-182) displays in the Main window a brief description and syntax for the specified
command

history (CR-183) lists the commands executed during the current session

lecho (CR-184) takes one or more Tcl lists as arguments and pretty-prints them to the Main
window

Command name Action
ModelSim SE Command Reference

CR-38 Commands

Model
left (CR-185) searches left (previous) for signal transitions or values in the specified Wave
window

log (CR-187) creates a wave log format (WLF) file containing simulation data for all HDL
items whose names match the provided specifications

lshift (CR-189) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-190) returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern

macro_option (CR-191) controls the speed and delay of macro (DO file) playback, plus the level of
debugging feedback

mem display (CR-192) displays the memory contents of a selected instance to the screen

mem list (CR-194) displays a flattened list of all memory instances in the current or specified
context after a design has been elaborated

mem load (CR-195) updates the simulation memory contents of a specified instance

mem save (CR-198) saves the contents of a memory instance to a file in any of the supported
formats: Verilog binary, Verilog hex, and MTI memory pattern data

mem search (CR-200) finds and prints to the screen the first occurring match of a specified memory
pattern in the specified memory instance

modelsim (CR-202) starts the ModelSim GUI without prompting you to load a design; valid only
for Windows platforms

next (CR-203) continues a search; see the search command (CR-253)

noforce (CR-204) removes the effect of any active force (CR-176) commands on the selected
HDL items

nolog (CR-205) suspends writing of data to the WLF file for the specified signals

notepad (CR-207) opens a simple text editor

noview (CR-208) closes a window in the ModelSim GUI

nowhen (CR-209) deactivates selected when (CR-375) commands

onbreak (CR-210) specifies command(s) to be executed when running a macro that encounters
a breakpoint in the source code

onElabError (CR-211) specifies one or more commands to be executed when an error is encountered
during elaboration

onerror (CR-212) specifies one or more commands to be executed when a running macro
encounters an error

pause (CR-213) interrupts the execution of a macro

Command name Action
Sim SE Command Reference

Command reference table CR-39
play (CR-214) plays a sequence of keyboard and mouse actions that were previously saved
to a file with the record command (CR-237)

pop (CR-215) moves one level up the C callstack

power add (CR-216) specifies the signals or nets to track for power information

power report (CR-217) writes out the power information for the specified signals or nets

power reset (CR-218) resets power information to zero for the signals or nets specified with the
power add command (CR-216)

precision (CR-219) determines how real numbers display in the GUI

printenv (CR-220) echoes to the Main window the current names and values of all environment
variables

profile clear (CR-221) clears any data that has been gathered during previous run commands

profile interval (CR-222) selects the frequency with which the profiler collects samples during a run
command

profile off (CR-223) discontinues runtime profiling

profile on (CR-224) enables runtime analysis of where your simulation is spending its time

profile option (CR-225) allows various profiling options to be changed

profile report (CR-226) produces a textual output of the profiling statistics that have been gathered up
to this point

project (CR-227) performs common operations on new projects

property list (CR-228) changes one or more properties of the specified signal, net, or register in the
List window (UM-286)

property wave (CR-229) changes one or more properties of the specified signal, net, or register in the
Wave window (UM-337)

push (CR-231) moves one level down the C callstack

pwd (CR-232) displays the current directory path in the Main window

quietly (CR-233) turns off transcript echoing for the specified command

quit (CR-234) exits the simulator

radix (CR-235) specifies the default radix to be used

record (CR-237) starts recording a replayable trace of all keyboard and mouse actions

report (CR-238) displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation

restart (CR-240) reloads the design elements and resets the simulation time to zero

Command name Action
ModelSim SE Command Reference

CR-40 Commands

Model
restore (CR-242) restores the state of a simulation that was saved with a checkpoint command
(CR-99) during the current invocation of vsim

resume (CR-243) resumes execution of a macro file after a pause command (CR-213) or a
breakpoint

right (CR-244) searches right (next) for signal transitions or values in the specified Wave
window

run (CR-246) advances the simulation by the specified number of timesteps

sccom (CR-248) compiles SystemC design units

scgenmod (CR-251) creates a VHDL entity’s or Verilog module’s equivalent SystemC foreign
module declaration, writing it to standard output

search (CR-253) searches the specified window for one or more items matching the specified
pattern(s)

searchlog (CR-255) searches one or more of the currently open logfiles for a specified condition

seetime (CR-257) scrolls the List or Wave window to make the specified time visible

setenv (CR-258) sets an environment variable

shift (CR-259) shifts macro parameter values down one place

show (CR-260) lists HDL items and subregions visible from the current environment

simstats (CR-261) reports performance-related statistics about active simulations

splitio (CR-262) operates on a VHDL inout or out port to create a new signal having the same
name as the port suffixed with “__o”

status (CR-263) lists all currently interrupted macros

step (CR-264) steps to the next HDL statement

stop (CR-265) stops simulation in batch files; used with the when command (CR-375)

tb (CR-266) displays a stack trace for the current process in the Main window

tcheck_set (CR-267) modifies a timing check’s reporting or X generation status

tcheck_status (CR-269) prints to the Transcript the current status of timing checks

toggle add (CR-271) enables collection of toggle statistics for the specified nodes

toggle disable (CR-273) disables collection of toggle statistics for the specified nodes

toggle enable (CR-274) re-enables collection of toggle statistics for the specified nodes

toggle report (CR-275) displays to the screen a list of all nodes that have not transitioned to both 0
and 1 at least once

toggle reset (CR-276) resets the toggle counts to zero for the specified nodes

Command name Action
Sim SE Command Reference

Command reference table CR-41
transcribe (CR-277) displays a command in the Main window, then executes the command

transcript (CR-278) controls echoing of commands executed in a macro file; also works at top
level in batch mode

transcript file (CR-279) sets or queries the pathname for the transcript file

tssi2mti (CR-280) converts a vector file in Fluence Technology (formerly TSSI) Standard
Events Format into a sequence of force (CR-176) and run (CR-246) commands

unsetenv (CR-281) deletes an environment variable

up (CR-282) searches for signal transitions or values in the specified List window

vcd add (CR-284) adds the specified items to the VCD file

vcd checkpoint (CR-285) dumps the current values of all VCD variables to the VCD file

vcd comment (CR-286) inserts the specified comment in the VCD file

vcd dumpports (CR-287) creates a VCD file that captures port driver data

vcd dumpportsall (CR-289) creates a checkpoint in the VCD file that shows the current values of all
selected ports

vcd dumpportsflush (CR-290) flushes the VCD buffer to the VCD file

vcd dumpportslimit (CR-291) specifies the maximum size of the VCD file

vcd dumpportsoff (CR-292) turns off VCD dumping and records all dumped port values as x

vcd dumpportson (CR-293) turns on VCD dumping and records the current values of all selected ports

vcd file (CR-294) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-284)

vcd files (CR-296) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-284); supports multiple VCD files

vcd flush (CR-298) flushes the contents of the VCD file buffer to the VCD file

vcd limit (CR-299) specifies the maximum size of the VCD file

vcd off (CR-300) turns off VCD dumping and records all VCD variable values as x

vcd on (CR-301) turns on VCD dumping and records the current values of all VCD variables

vcd2wlf (CR-302) translates VCD files into WLF files

vcom (CR-303) compiles VHDL design units

vcover convert (CR-310) converts a 5.7 coverage file to a 5.8 format

vcover merge (CR-311) merges multiple coverage data files

vcover stats (CR-313) produces summary statistics from multiple coverage data files

Command name Action
ModelSim SE Command Reference

CR-42 Commands

Model
vdel (CR-315) deletes a design unit from a specified library

vdir (CR-316) lists the contents of a design library

verror (CR-317) prints a detailed description of a message number

vgencomp (CR-318) writes a Verilog module’s equivalent VHDL component declaration to
standard output

view (CR-320) opens a ModelSim window and brings it to the front of the display

virtual count (CR-322) counts the number of currently defined virtuals that were not read in using a
macro file

virtual define (CR-323) prints the definition of the virtual signal or function in the form of a command
that can be used to re-create the object

virtual delete (CR-324) removes the matching virtuals

virtual describe (CR-325) prints a complete description of the data type of one or more virtual signals

virtual expand (CR-326) produces a list of all the non-virtual objects contained in the virtual signal(s)

virtual function (CR-327) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual hide (CR-330) sets a flag in the specified real or virtual signals so that the signals do not
appear in the Signals window

virtual log (CR-331) causes the sim-mode dependent signals of the specified virtual signals to be
logged by the simulator

virtual nohide (CR-333) resets the flag set by a virtual hide command

virtual nolog (CR-334) stops the logging of the specified virtual signals

virtual region (CR-336) creates a new user-defined design hierarchy region

virtual save (CR-337) saves the definitions of virtuals to a file

virtual show (CR-338) lists the full path names of all the virtuals explicitly defined

virtual signal (CR-339) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-342) creates a new enumerated type

vlib (CR-344) creates a design library

vlog (CR-345) compiles Verilog design units

vmake (CR-355) creates a makefile that can be used to reconstruct the specified library

vmap (CR-356) defines a mapping between a logical library name and a directory

vsim (CR-357) loads a new design into the simulator

Command name Action
Sim SE Command Reference

Command reference table CR-43
vsim<info> (CR-373) returns information about the current vsim executable

vsource (CR-374) specifies an alternative file to use for the current source file

when (CR-375) instructs ModelSim to perform actions when the specified conditions are met

where (CR-380) displays information about the system environment

wlf2log (CR-381) translates a ModelSim WLF file(vsim.wlf) to a QuickSim II logfile

wlfman (CR-384) outputs information about or a new WLF file from an existing WLF file

wlfrecover (CR-387) attempts to repair an incomplete WLF file

write cell_report (CR-388) creates a report of cell instances in the design that are optimized (-fast)

write format (CR-389) records the names and display options in a file of the HDL items currently
being displayed in the List or Wave window

write list (CR-391) records the contents of the most recently opened or specified List window in
a list output file

write preferences (CR-392) saves the current GUI preference settings to a Tcl preference file

write report (CR-393) prints a summary of the design being simulated

write transcript (CR-394) writes the contents of the Main window transcript to the specified file

write tssi (CR-395) records the contents of the default or specified List window in a “TSSI
format” file

write wave (CR-397) records the contents of the most currently opened or specified Wave window
in PostScript format

Command name Action
ModelSim SE Command Reference

CR-44 Commands

Model
.main clear

The .main clear command clears the transcript. The behavior is the same as the Main
window File > Transcript > Clear Transcript menu selection.

Syntax

.main clear

Arguments

None.

See also

Main window (UM-262)
Sim SE Command Reference

.wave.tree interrupt CR-45
.wave.tree interrupt

The .wave.tree interrupt command halts the drawing of waves in the Wave window. This
command can be useful when you have a large WLF file that is taking a long time to
display.

Syntax

.wave.tree interrupt

Arguments

None.
ModelSim SE Command Reference

CR-46 Commands

Model
.wave.tree zoomfull

The .wave.tree zoomfull command redraws the Wave window to show the entire
simulation from time 0 to the current simulation time. The behavior is the same as the Wave
window (UM-337) View > Zoom > Zoom Full menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomfull

Arguments

None.

See also

.wave.tree zoomin (CR-47), .wave.tree zoomlast (CR-48), .wave.tree zoomout (CR-49),

.wave.tree zoomrange (CR-50), "Zooming - changing the waveform display range" (UM-

360)

Example

.wave.tree zoomfull
{0 ns}{2310 ns}
Sim SE Command Reference

.wave.tree zoomin CR-47
.wave.tree zoomin

The .wave.tree zoomin command allows you to zoom in the Wave window by some factor.
The behavior is similar to the Wave window (UM-337) View > Zoom > Zoom In menu
selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomin
<factor>

Arguments

<factor>

A number that specifies how much you want to zoom in the Wave window. Required.

See also

.wave.tree zoomfull (CR-46), .wave.tree zoomlast (CR-48), .wave.tree zoomout (CR-49),

.wave.tree zoomrange (CR-50)

Example

.wave.tree zoomin 2
{577 ns}{1733 ns}
ModelSim SE Command Reference

CR-48 Commands

Model
.wave.tree zoomlast

The .wave.tree zoomlast command zooms the Wave window to the setting prior to the
most recent zoom change. The behavior is the same as the Wave window (UM-337) View >
Zoom > Zoom Last menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomlast

Arguments

None.

See also

.wave.tree zoomfull (CR-46), .wave.tree zoomin (CR-47), .wave.tree zoomout (CR-49),

.wave.tree zoomrange (CR-50)

Example

.wave.tree zoomlast
{0 ns}{2310 ns}
Sim SE Command Reference

.wave.tree zoomout CR-49
.wave.tree zoomout

The .wave.tree zoomout command allows you to zoom out the Wave window by some
factor. The behavior is similar to the Wave window (UM-337) View > Zoom > Zoom Out
menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomout
<factor>

Arguments

<factor>

A number that specifies how much you want to zoom out the Wave window. Required.

See also

.wave.tree zoomfull (CR-46), .wave.tree zoomin (CR-47), .wave.tree zoomlast (CR-48),

.wave.tree zoomrange (CR-50)

Example

.wave.tee zoomout 2
{865 ns}{1445 ns}
ModelSim SE Command Reference

CR-50 Commands

Model
.wave.tree zoomrange

The .wave.tree zoomrange command lets you set the zoom range for the Wave window.
The behavior is the same as the Wave window (UM-337) View > Zoom > Zoom Range
menu selection.

Returns the zoom range as two time values.

Syntax
.wave.tree zoomrange

[<time1> [<time2>]]

Arguments

<time1>

<time2>

time1 and time2 are floating point numbers that specify a zoom range. If neither number
is specified, the command returns the current zoom range. If only time1 is specified, then
the zoom range is set to start at 0 and end at time1.

Either range number may include an optional VHDL resolution time-unit. The resolution
and range number must be enclosed in either quotes or curly brackets (see the example
below). If not specified the resolution defaults to the UserTimeUnit (UM-626) set in the
modelsim.ini file.

Examples

.wave.tree zoomrange {.5 us} {1.75 us}
{500 ns} {1750 ns}

Zooms the Wave window between .5 us and 1.75 us and returns the zoom range in current
simulator time units.

See also

.wave.tree zoomfull (CR-46), .wave.tree zoomin (CR-47), .wave.tree zoomlast (CR-48),

.wave.tree zoomout (CR-49)
Sim SE Command Reference

abort CR-51
abort

The abort command halts the execution of a macro file interrupted by a breakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified
number of nesting levels, or abort all macros. The abort command may be used within a
macro to return early.

Syntax

abort
[<n> | all]

Arguments

<n> | all

An integer giving the number of nested macro levels to abort; all aborts all levels.
Optional. Default is 1.

See also

onbreak (CR-210), onElabError (CR-211), onerror (CR-212)
ModelSim SE Command Reference

CR-52 Commands

Model
add button

The add button command adds a user-defined button to the Main window button bar. New
buttons are added to the right end of the bar. You can also add buttons with a ModelSim
tool: "The Button Adder" (UM-400).

Returns the path name of the button widget created.

Syntax

add button
<Text> <Cmd> [Disable | NoDisable] [{<option> <value> ...}]

Arguments

<Text>

The label to appear on the face of the button. Required.

<Cmd>

The command to be executed when the button is clicked with the left mouse button. To
echo the command and display the return value in the Main window, prefix the command
with the transcribe command (CR-277). Transcribe will also echo the results to the
transcript window. Required.

Disable | NoDisable

If Disable, the button will be grayed-out during a run and not active. If NoDisable, the
button will continue to be active during a run. Optional. The default is Disable.

{<option> <value> ...}

A list of option-value pairs that will be applied to the button widget. Optional. Any
properties belonging to Tk button widgets may be set. Useful options are foreground
color (-fg), background color (-bg), width (-width), and relief (-relief).

For a complete list of available options, use the configure command addressed to the
newly-created widget. For example:

.dockbar.tbf0.standard.button_51 config

Note: Because the arguments are positional, a Disable | NoDisable option must be
specified in order to use the options argument.
Sim SE Command Reference

add button CR-53
Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled “pwd” that invokes the transcribe command (CR-277) with the
pwd Tcl command, and echoes the command and its results to the Main window (see
graphic below). The button remains active during a run.

add button date {transcribe exec date} Disable {-fg blue -bg yellow \
-activebackground red}

Creates a button labeled “date” that echoes the system date to the Main window. The
button is disabled during a run; its colors are: blue foreground, yellow background, and
red active background.

add button doit {run 1000 ns; echo did it} Disable {-underline 1}

Creates a “doit” button and underlines the second character of the label, the "o" of "doit".

.dockbar.tbf0.standard.tb.button_13 config -command {run 10000} -bg red

Changes the button command to "run 10000" and changes the button background color
to red.

See also

transcribe (CR-277), "The Button Adder" (UM-400) tool
ModelSim SE Command Reference

CR-54 Commands

Model
add dataflow

The add dataflow command adds the specified process, signal, net, or register to the
Dataflow window. Wildcards are allowed.

Syntax

add dataflow

<item> [-window <wname>]

<item>

Specifies a process, signal, net, or register that you want to add to the Dataflow window.
Required. Multiple items separated by spaces may be specified. Wildcards are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.)

-window <wname>

Adds the items to the specified Dataflow window <wname> (e.g., dataflow2). Optional.
Used to specify a particular window when multiple instances of that window type exist.
Selects an existing window; does not create a new window. Use the view command (CR-

320) with the -new option to create a new window.

See also

Dataflow window (UM-270)
Sim SE Command Reference

add list CR-55
add list

The add list command adds the following items and their values to the List window: VHDL
signals and variables; Verilog nets and registers; and SystemC primitive channels (signals).
User-defined buses may also be added.

If no port mode is specified, add list will display all items in the selected region with names
matching the item name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable’s full
name only (no wildcards).

Syntax

add list
[-allowconstants] [-depth <level>] [-in] [-inout] [-internal]
[[<item_name> | {<item_name> {sig1 sig2 sig3 ...}}] ...] ...
[-label <name>] [-nodelta] [-notrigger | -trigger] [-optcells] [-out]
[-ports] [-<radix>] [-recursive] [-width <n>] [-window <wname>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

-depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. VHDL
variables are not selected. Optional.

<item_name>

Specifies the name of the item to be listed. Optional. Wildcard characters are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.) Variables may be added if preceded by the
process name. For example,

add list myproc/int1
ModelSim SE Command Reference

CR-56 Commands

Model
{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus in place of item_name; ‘sigi’ are signals to be concatenated
within the user-defined bus. Optional. Specified items may be either scalars or various
sized arrays as long as they have the same element enumeration type.

-label <name>

Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This alternative name is not valid in a force (CR-176) or examine (CR-167)
command; however, it can be used in a search command (CR-253) with the -list option.

-nodelta

Specifies that the delta column not be displayed when adding signals to the List window.
Optional. Identical to configure list -delta none.

-notrigger

Specifies that items are to be listed, but does not cause the List window to be updated
when the items change value. Optional.

-optcells

Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

-ports

For use with wildcard searches. Specifies that the scope of the search is to include all
ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid entries (or
any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, and
default. If no radix is specified for an enumerated type, the default representation is used.
You can change the default radix for the current simulation using the radix command
(CR-235). You can change the default radix permanently by editing the DefaultRadix (UM-

623) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. You can use the -depth argument to specify how far down the hierarchy to
descend.

-trigger

Specifies that items are to be listed and causes the List window to be updated when the
items change value. Optional. Default.

-width <n>

Specifies the column width in characters. Optional.
Sim SE Command Reference

add list CR-57
-window <wname>

Adds items to the specified List window <wname> (e.g., list2). Optional. Used to specify
a particular window when multiple instances of that window type exist. Selects an
existing window; does not create a new window. Use the view command (CR-320) with
the -new option to create a new window.

Examples

add list -r /*

Lists all items in the design.

add list *

Lists all items in the region.

add list -in *

Lists all input ports in the region.

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

Displays a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -notrigger a b c d

Lists clk, a, b, c, and d only when clk changes.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

Lists clk, a, b, c, and d every 100 ns.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list vec1 -hex vec2 -dec vec3 vec4

Lists the item vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

See also

add wave (CR-64), log (CR-187), "Extended identifiers" (CR-16)
ModelSim SE Command Reference

CR-58 Commands

Model
add_menu

The add_menu command adds a menu to the menu bar of the specified window, using the
specified menu name. Use the add_menuitem (CR-61), add_separator (CR-62),
add_menucb (CR-60), and add_submenu (CR-63) commands to complete the menu.

Returns the full Tk pathname of the new menu.

Color and other Tk properties of the menu may be changed, after creating the menu, using
the Tk menu widget configure command.

Syntax

add_menu
<window_name> <menu_name> [<shortcut> [-hide_menubutton]]

Arguments

<window_name>

Tk path of the window to contain the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_name>

Name to be given to the Tk menu widget. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional unless you
specify -hide_menubutton, in which case <shortcut> is required. Default is "-1", which
indicates no shortcut is to be used.

-hide_menubutton

Causes the new menu not to be displayed. Optional. You can add the menu later by
calling tk_popup on the menu path widget. Note that you must specify <shortcut> if
you specify -hide_menubutton.
Sim SE Command Reference

add_menu CR-59
Examples

The following Tcl code is an example of creating user-customized menus. It adds a menu
containing a top-level item labeled "Do My Own Thing...", which prints
"my_own_thing.signals", and adds a cascading submenu labeled "changeCase" with two
entries, "To Upper" and "To Lower", which echo "my_to_upper" and "my_to_lower"
respectively. A checkbox that controls the value of myglobalvar (.signals:one) is also
added.

view signals
set myglobalvar(.signals:one) 0
set myglobalvar(.signals:two) 1
proc AddMyMenus {wname} {

global myglobalvar
set cmd1 "echo my_own_thing $wname"
set cmd2 "echo my_to_upper $wname"
set cmd3 "echo my_to_lower $wname"

WindowName Menu MenuItem label Command
---------- ---- -------------------- -------
add_menu $wname mine 0;# 0th letter (M) is underlined
add_menuitem $wname mine "Do My Own Thing..." $cmd1
add_separator $wname mine ;#----------------------------
add_submenu $wname mine changeCase
add_menuitem $wname mine.changeCase "To Upper" $cmd2
add_menuitem $wname mine.changeCase "To Lower" $cmd3
add_submenu $wname mine vars
add_menucb $wname mine.vars "Feature One" -variable

myglobalvar($wname:one)
-onvalue 1 -offvalue 0 -indicatoron 1

}
AddMyMenus .signals

This example is available in the following DO file: <install_dir>/modeltech/examples/
addmenu.do. You can run the DO file to add the "Mine" menu shown in the illustration, or
modify the file for different results.

To execute the DO file, select Tools > Execute Macro (Main window), or use the do
command (CR-156).

See also

add_menucb (CR-60), add_menuitem (CR-61), add_separator (CR-62), add_submenu
(CR-63), change_menu_cmd (CR-89)
ModelSim SE Command Reference

CR-60 Commands

Model
add_menucb

The add_menucb command creates a checkbox within the specified menu of the specified
window. A checkbox is a small box with a label. Clicking on the box will toggle the state,
from on to off or the reverse. When the box is "on", the Tcl global variable <var> is set to
<onval>. When the box is "off", the global variable is set to <offval>. Also, if something
else changes the global variable, its current state is reflected in the state of the checkbox.
Returns nothing.

Syntax

add_menucb
<window_name> <menu_name> <Text> -variable <var> -onvalue <onval>
-offvalue <offval> [-indicatoron <val>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_name>

Name of the Tk menu widget. Required.

<Text>

Text to be displayed next to the checkbox. Required.

-variable <var>

Global Tcl variable to be reflected and changed. Required.

-onvalue <onval>

Value to set the global Tcl variable to when the box is "on". Required.

-offvalue <offval>

Value to set the global Tcl variable to when the box is "off". Required.

-indicatoron <val>

0 or 1. If 1, the status indicator is displayed. Otherwise it is not displayed. Optional. The
default is 1.

Examples
add_menucb $wname mine.vars "Feature One" -variable myglobalvar($wname:one) \

-onvalue 1 -offvalue 0 -indicatoron 1

See also

add_menu (CR-58), add_menuitem (CR-61), add_separator (CR-62), add_submenu (CR-

63), change_menu_cmd (CR-89)

The add_menucb command is also used as part of the add_menu (CR-58) example.
Sim SE Command Reference

add_menuitem CR-61
add_menuitem

The add_menuitem command creates a menu item within the specified menu of the
specified window. May be used within a submenu. Returns nothing.

Syntax

add_menuitem
<window_name> <menu_path> <Text> <Cmd> [<shortcut>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<Text>

Text to be displayed. Required.

<Cmd>

The command to be executed when the menu item is selected with the left mouse button.
To echo the command and display the return value in the Main window, prefix the
command with the transcribe command (CR-277). Transcribe will also echo the results
to the transcript window. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut is to be used.

Examples

add_menuitem $wname user "Save Results As..." $my_save_cmd

See also

add_menu (CR-58), add_menucb (CR-60), add_separator (CR-62), add_submenu (CR-63),
change_menu_cmd (CR-89)

The add_menuitem command is also used as part of the add_menu (CR-58) example.
ModelSim SE Command Reference

CR-62 Commands

Model
add_separator

The add_separator command adds a separator as the next item in the specified menu path
in the specified window. Returns nothing.

Syntax

add_separator
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

Examples

add_separator $wname user

See also

add_menu (CR-58), add_menucb (CR-60), add_menuitem (CR-61), add_submenu (CR-

63), change_menu_cmd (CR-89)

The add_separator command is also used as part of the add_menu (CR-58) example.
Sim SE Command Reference

add_submenu CR-63
add_submenu

The add_submenu command creates a cascading submenu within the specified menu path
of the specified window. May be used within a submenu.

Returns the full Tk path to the new submenu widget.

Syntax

add_submenu
<window_name> <menu_path> <name> [<shortcut>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<name>

Name to be displayed on the submenu. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut is to be used.

See also

add_menu (CR-58), add_menucb (CR-60), add_menuitem (CR-61), add_separator (CR-

62), change_menu_cmd (CR-89)

The add_submenu command is also used as part of the add_menu (CR-58) example.
ModelSim SE Command Reference

CR-64 Commands

Model
add wave

The add wave command adds the following items to the List window: VHDL signals and
variables; Verilog nets and registers; and SystemC primitive channels (signals).
User-defined buses may also be added.

If no port mode is specified, add wave will display all items in the selected region with
names matching the item name specification.

Limitations: VHDL variables and Verilog memories can be added using the variable’s full
name only (no wildcards).

Syntax

add wave

[-allowconstants] [-color <standard_color_name>] [-depth <level>] [-expand

<signal_name>] [-<format>] [-height <pixels>] [-in] [-inout] [-internal]

[[-divider <divider_name>...] | [<item_name> | {<item_name> {sig1 sig2 sig3

...}}] ...] [-label <name>] [-noupdate] [-offset <offset>] [-optcells]

[-out] [-ports] [-<radix>] [-recursive] [-scale <scale>] [-window <wname>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored
because they do not change.

-color <standard_color_name>

Specifies the color used to display a waveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names (“light
blue”) in quotes.

-depth <level>

Restricts a recursive search (specified with the -recursive option) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-divider <divider_name>

Adds a divider with the specified name. Optional. You can specify one or more names.
All names listed after -divider are taken to be names.

-expand <signal_name>

Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-<format>

Specifies the display format of the items:

literal
logic
analog-step
analog-interpolated
analog-backstep
Sim SE Command Reference

add wave CR-65
Optional. Literal waveforms are displayed as a box containing the item value. Logic
signals may be U, X, 0, 1, Z, W, L, H, or ‘-’.

The way each state is displayed is specified by the logic type display preference (see
"Preference variables located in INI files" (UM-617)). Analog signals are sized by -scale
and by -offset. Analog-step changes to the new time before plotting the new Y.
Analog-interpolated draws a diagonal line. Analog-backstep plots the new Y before
moving to the new time. See "Editing and formatting items in the Wave window" (UM-

347) for more information.

-height <pixels>

Specifies the height (in pixels) of the waveform. Optional.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. Optional.

<item_name>

Specifies the names of items to be included in the Wave window display. Optional.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching items with wildcard patterns. Variables may be
added if preceded by the process name. For example,

add wave myproc/int1

{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus with the name <item_name>; ‘sigi’ are signals to be
concatenated within the user-defined bus. Optional.

-label <name>

Specifies an alternative name for the signal being added to the Wave window. Optional.
For example,

add wave -label c clock

adds the clock signal, labeled as "c", to the Wave window.

This alternative name is not valid in a force (CR-176) or examine (CR-167) command;
however, it can be used in a search command (CR-253) with the wave option.

-noupdate

Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

-offset <offset>

Modifies an analog waveform’s position on the display. Optional. The offset value is part
of the wave positioning equation (see -scale below).

Note: You can also select Tools > Combine Signals (Wave window) to create a
user-defined bus.
ModelSim SE Command Reference

CR-66 Commands

Model
-optcells

Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

-ports

For use with wildcard searches. Specifies that the scope of the listing is to include ports
of modes IN, OUT, or INOUT. Optional.

-<radix>

Specifies the radix for the items that follow in the command. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii character, unsigned decimal,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the
default representation is used. You can change the default radix for the current simulation
using the radix command (CR-235). You can change the default radix permanently by
editing the DefaultRadix (UM-623) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. You can use the -depth argument to specify how far down the hierarchy to
descend.

-scale <scale>

Scales analog waveforms. Optional. The scale value is part of the wave positioning
equation shown below.

The position and size of the waveform is given by:

(signal_value + <offset>) * <scale>

If signal_value + <offset> = 0, the waveform will be aligned with its name. The <scale>
value determines the height of the waveform, 0 being a flat line.

-window <wname>

Adds items to the specified window <wname> (e.g., wave2). Optional. Used to specify
a particular window when multiple instances of that window type exist. Selects an
existing window; does not create a new window. Use the view command (CR-320) with
the -new option to create a new window.

Examples

add wave -logic -color gold out2

Displays an item named out2. The item is specified as being a logic item presented in
gold.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

Displays a user-defined, hex formatted bus named address.
Sim SE Command Reference

add wave CR-67
add wave *

Waves all items in the region.

add wave -in *

Waves all input ports in the region.

add wave -hex {mybus {scalar1 vector1 scalar2}}

Creates a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}

add wave {vector3[4:0]}

add wave vec1 -hex vec2 -dec vec3 vec4

Adds the item vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

See also

add list (CR-55), log (CR-187), "Extended identifiers" (CR-16), "Concatenation directives"
(CR-29)
ModelSim SE Command Reference

CR-68 Commands

Model
alias

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands. Returns nothing.
Existing ModelSim commands (e.g., run, env, etc.) cannot be aliased.

Syntax

alias

[<name> ["<cmds>"]]

Arguments

<name>

Specifies the new procedure name to be used when invoking the commands.

"<cmds>"

Specifies the command or commands to be evaluated when the alias is invoked.

Examples

alias

Lists all aliases currently defined.

alias <name>

Lists the alias definition for the specified name if one exists.

alias myquit "write list ./mylist.save; quit -f"

Creates a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list (CR-391), and quits ModelSim by
invoking quit (CR-234).
Sim SE Command Reference

assertion fail CR-69
assertion fail

The assertion fail command configures simulator behavior in response to an assertion
failure.

Syntax

assertion fail
[-action continue|break|exit] [-disable] [-enable] [-limit <count>|none]
[-log on|off] [-recursive] <path> [<path>...]

Arguments

-action continue|break|exit

Specify the action to take when an assertion fails. This option may be specified multiple
times; it applies to all paths that follow it in the command line. One of the following
values is required:

continue–No action taken. This is not the same as disabling an assertion since logging
may still be enabled for the directive. This is the default value.

break–Halt simulation and return to the ModelSim prompt.

exit–Halt simulation and exit ModelSim.

You can change the permanent default by setting the AssertionFailAction (UM-621)
variable in the modelsim.ini file.

-disable

Turns off failure tracking for the specified assertions. Optional. Assertion failure tracking
is enabled by default. You can change the permanent default by setting the
AssertionFailEnable (UM-621) variable in the modelsim.ini file.

-enable

Turns on failure tracking for the specified assertions. Optional. Default. You can change
the permanent default by setting the AssertionFailEnable (UM-621) variable in the
modelsim.ini file.

-limit <count>|none

Sets a limit on the number of times ModelSim responds to an assertion failing. Optional.
By default the limit is set to 1. One of the following values is required:

<count>–Specify a whole number.

none–No limit; failure tracking remains enabled for the duration of the simulation.

Once the limit is reached for a particular assertion, ModelSim disables failure tracking
on that assertion. ModelSim continues to respond to others if their limit has not been
reached. You can change the permanent default by setting the AssertionFailLimit (UM-

621) variable in the modelsim.ini file.
ModelSim SE Command Reference

CR-70 Commands

Model
-log on|off

Specify whether to write a transcript message when an assertion fails. This option may
be specified multiple times; it applies to all paths that follow it in the command line. One
of the following values is required:

on–Enable transcript logging. Default.

off–Disable transcript logging.

You can change the permanent default by setting the AssertionFailLog (UM-621) variable
in the modelsim.ini file.

-recursive

For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Applies to all paths specified in the command.

<path>

Specifies the assertions to be affected. Required. Multiple paths and wildcards are
allowed. The path specifies assertions or a design region containing multiple assertions.

Examples

assertion fail -disable a.b.c.assert__0

Disables assertion a.b.c.assert__0.

assertion fail -log off a.b.c.assert__0 a.b.c.assert__1

Disables logging for assertions a.b.c.assert__0 and a.b.c.assert__1. The -log argument
applies to all paths that follow it on the command line.

assertion fail -log off a.b.c.assert__0 -log on a.b.c.assert__1

Disables logging for assertion a.b.c.assert__0 but enables it for a.b.c.assert__1.

assertion fail -limit 4

Sets the failure response limit to 4. Each assertion failure will be responded to a
maximum of 4 times during the current simulation.

See also

"Enabling/disabling failure and pass checking" (UM-510), "Setting failure and pass limits"
(UM-512), "Setting failure action" (UM-513), assertion pass command (CR-71), and assertion
report command (CR-73)
Sim SE Command Reference

assertion pass CR-71
assertion pass

The assertion pass command configures simulator behavior in response to an assertion
pass.

Syntax

assertion pass
[-disable] [-enable] [-limit <count>|none] [-log on|off] [-recursive]
<path> [<path>...]

Arguments

-disable

Turns off pass tracking for the specified assertions. Optional. Default. You can change
the permanent default by setting the AssertionPassEnable (UM-621) variable in the
modelsim.ini file.

-enable

Turns on pass tracking for the specified assertions. Optional. Assertion pass tracking is
disabled by default. You can change the permanent default by setting the
AssertionPassEnable (UM-621) variable in the modelsim.ini file.

-limit <count>|none

Sets a limit on the number of times ModelSim responds to an assertion pass. Optional.
By default the limit is set to 1. One of the following values is required:

<count>–Specify a whole number.

none–No limit; pass tracking remains enabled for the duration of the simulation.

This limit is global; it is applied to each assertion in the simulation. Once the limit is
reached for a particular assertion, ModelSim disables pass tracking on that assertion.
ModelSim continues to respond to others if their limit has not been reached. You can
change the permanent default by setting the AssertionPassLimit (UM-621) variable in the
modelsim.ini file.

-log on|off

Specify whether to write a transcript message when an assertion passes. This option may
be specified multiple times; it applies to all paths that follow it in the command line. One
of the following values is required:

on–Enable transcript logging. Default.

off–Disable transcript logging.

You can change the permanent default by setting the AssertionPassLog (UM-621) variable
in the modelsim.ini file.

-recursive

For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Applies to all paths specified in the command.

<path>

Specifies the assertions to be affected. Required. Multiple paths and wildcards are
allowed. The path specifies assertions or a design region containing multiple assertions.
ModelSim SE Command Reference

CR-72 Commands

Model
Examples

assertion pass -enable -log on a.b.c.assert__0 -log off a.b.c.assert_1

Enables assertions a.b.c.assert__0 and a.b.c.assert__1 and turns logging on for
a.b.c.assert__0 but not a.b.c.assert__1.

See also

"Enabling/disabling failure and pass checking" (UM-510), "Setting failure and pass limits"
(UM-512), assertion fail command (CR-69), and assertion report command (CR-73)
Sim SE Command Reference

assertion report CR-73
assertion report

The assertion report command returns a status report for each assertion matching the path
specification. By default the command prints a concise report containing only assertion
names and their fail and pass counts. Adding the -verbose argument to the command will
print the following:

• source language (PSL or other)

• assertion name (full path)

• design unit where the assertion is declared

• source language (VHDL)

• filename (line number)

• fail enable status (enabled or disabled)

• pass enable status (enabled or disabled)

• fail count

• pass count

• attempted flag (indicates whether the assertion has ever attempted evaluation)

• fail action

• fail log

• pass log

• fail limit

• pass limit

Normally, the report is formatted for users with one line of the report reserved for each
assertion specified by the path(s).

For a more interactive look at this data, open the Assertion Browser in the ModelSim GUI.
See "Viewing assertions in the Assertion Browser" (UM-507) for details.

Syntax

assertion report
[-number] [-recursive] [-tcl_list] [-verbose] <path> [<path>...]

Arguments

-number

Report the number of assertions that match the path argument(s). This option overrides
the normal report.

-recursive

For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-tcl_list

Format the report as a Tcl list.
ModelSim SE Command Reference

CR-74 Commands

Model
-verbose

Produces the detailed report as noted in the command description above. Optional.

<path>

Specifies the assertions on which to report. Required. Multiple names and wildcards are
allowed. The path specifies assertions or a design region containing multiple assertions.

Example
VSIM 1> assertion report *

Name File(Line) Failure Pass
Count Count

/tb/assert__reset_state dramcon_sim.vhd(53) 0 0
/tb/assert__test_read_response dramcon_sim.vhd(59) 0 0
/tb/assert__test_write_response dramcon_sim.vhd(60) 0 0
/tb/assert__check_as_deasserts dramcon_sim.vhd(64) 0 0

See also

"Viewing assertions in the Assertion Browser" (UM-507)
Sim SE Command Reference

batch_mode CR-75
batch_mode

The batch_mode command returns a 1 if ModelSim is operating in batch mode, otherwise
it returns a 0. It is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will
work in or out of batch mode, you can use the batch_mode command to determine which
command to use. For example:

if [batch_mode] {

log /*

} else {

add wave /*

}

See also

"ModelSim modes of operation" (UM-23)
ModelSim SE Command Reference

CR-76 Commands

Model
bd

The bd command deletes a breakpoint. You must specify a filename and line number or a
specific breakpoint id#. You may specify multiple filename/line number pairs and id#s.

Syntax

bd
<filename> <line_number> | <id#>

Arguments

<filename>

Specifies the name of the source file in which the breakpoint is to be deleted. Required if
an id# is not specified. The filename must match the one used previously to set the
breakpoint, including whether a full pathname or a relative name was used.

<line_number>

Specifies the line number of the breakpoint to be deleted. Required if an id# is not
specified.

<id#>

Specifies the id number of the breakpoint to be deleted. Required if a filename and line
number are not specified. If you are deleting a C breakpoint, the id# will have a "c" prefix.

Examples

bd alu.vhd 127

Deletes the breakpoint at line 127 in the source file named alu.vhd.

bd 5

Deletes the breakpoint with id# 5.

bd 6 alu.vhd 234

Deletes the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd c.4

Deletes the C breakpoint with id# c.4.

See also

bp (CR-81), onbreak (CR-210), Chapter 14 - C Debug
Sim SE Command Reference

bookmark add wave CR-77
bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range
and scroll position in the specified Wave window. Bookmarks are saved in the wave format
file and are restored when the format file is read (see write format command (CR-389)).

Syntax

bookmark add wave
<label> <zoomrange> <topindex> [-window <window_name>]

Arguments

<label>

Specifies the name for the bookmark. Required.

<zoomrange>

Specifies a list of two times with optional units. Required. These two times must be
enclosed in braces ({}) or quotation marks ("").

<topindex>

Specifies the vertical scroll position of the window. Required. The number identifies
which item the window should be scrolled to. For example, specifying 20 means the
Wave window will be scrolled down to show the 20th item.

-window <window_name>

Specifies the window to which the bookmark will be added. Optional. If this argument is
omitted, the bookmark is added in the current default Wave window.

Examples

bookmark add wave foo {{10 ns} {1000 ns}} 20

Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th item in the
window.

See also

bookmark delete wave (CR-78), bookmark goto wave (CR-79), bookmark list wave (CR-

80), write format (CR-389)
ModelSim SE Command Reference

CR-78 Commands

Model
bookmark delete wave

The bookmark delete wave command deletes bookmarks from the specified Wave
window.

Syntax

bookmark delete wave
<label> [-all] [-window <window_name>]

Arguments

<label>

Specifies the name of the bookmark to delete. Required unless the -all switch is used.

-all

Specifies that all bookmarks in the window be deleted. Optional.

-window <window_name>

Specifies the window from which bookmark(s) will be deleted. Optional. If this argument
is omitted, bookmark(s) in the current default Wave window are deleted.

Examples

bookmark delete wave foo

Deletes the bookmark named "foo" from the current default Wave window.

bookmark delete wave -all -window wave1

Deletes all bookmarks from the Wave window named "wave1".

See also

bookmark add wave (CR-77), bookmark goto wave (CR-79), bookmark list wave (CR-80),
write format (CR-389)
Sim SE Command Reference

bookmark goto wave CR-79
bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the
specified bookmark.

Syntax

bookmark goto wave
<label> [-window <window_name>]

Arguments

<label>

Specifies the bookmark to go to. Required.

-window <window_name>

Specifies the Wave window to which the bookmark applies. Optional. Bookmarks can be
used only in the windows in which they were originally created.

See also

bookmark add wave (CR-77), bookmark delete wave (CR-78), bookmark list wave (CR-

80), write format (CR-389)
ModelSim SE Command Reference

CR-80 Commands

Model
bookmark list wave

The bookmark list wave command displays a list of available bookmarks in the Main
window transcript.

Syntax

bookmark list wave
[-window <window_name>]

Arguments

-window <window_name>

Specifies the Wave window for which you want a list of bookmarks. Optional. If this
argument is omitted, ModelSim lists the bookmarks for the current default Wave
window.

See also

bookmark add wave (CR-77), bookmark delete wave (CR-78), bookmark goto wave (CR-

79), write format (CR-389)
Sim SE Command Reference

bp CR-81
bp

The bp or breakpoint command either sets a file-line breakpoint or returns a list of currently
set breakpoints. A set breakpoint affects every instance in the design unless the
-inst <region> argument is used.

Syntax

bp

<filename> <line_number>

[-c [<function_name> | <file_name>:<line#> | <line#> | *0x<hex_address>]]

[-id <id#>] [-inst <region>] [-disable] [-cond {<condition_expression>}]

[{<command>...}] | [-query <filename> [<line_number> [<line_number>]]]

Arguments

<filename>

Specifies the name of the source file in which to set the breakpoint. Required if you are
setting HDL breakpoints.

<line_number>

Specifies the line number at which the breakpoint is to be set. Required if you are setting
HDL breakpoints.

-c [<function_name> | <file_name>:<line#> | <line#> | *0x<hex_address>]

Sets a C breakpoint in SystemC designs, or when you are using "C Debug" (UM-473). The
-c argument is required when setting C breakpoints to distinguish them from HDL
breakpoints. See examples below.

-id <id#>

Attempts to assign this id number to the breakpoint. Optional. If the id number you
specify is already used, ModelSim will return an error.

-inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

-disable

Sets the breakpoint to a disabled state. Optional. You can enable the breakpoint later
using the enablebp command (CR-163). By default, breakpoints are enabled when they
are set.

-cond {<condition_expression>}

Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition is true, the simulation stops at the breakpoint. If false, the simulation bypasses
the breakpoint.

Note: Ids for breakpoints are assigned from the same pool as those used for the when
command (CR-375). So, even if you haven’t used an id number for a breakpoint, it’s
possible it is used for a when command.
ModelSim SE Command Reference

CR-82 Commands

Model
The condition can be an expression with these operators:

The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals; i.e., Name = Name is not possible.

{<command>...}

Specifies one or more commands that are to be executed at the breakpoint. Optional.
Multiple commands must be separated by semicolons (;) or placed on multiple lines. The
entire command must be placed in curly braces.

Any commands that follow a run (CR-246) or step (CR-264) command will be ignored. A
run or step command terminates the breakpoint sequence. This applies if macros are
used within the bp command string as well. A restore (CR-242) command should not be
used.

If many commands are needed after the breakpoint, they can be placed in a macro file.

-query <filename> [<line_number> [<line_number>]]

Returns information about the breakpoints set in the specified file. The information
returned varies depending on which arguments you specify. See the examples below for
details.

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND

OR ||, OR
Sim SE Command Reference

bp CR-83
Examples

bp

Lists all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp alu.vhd 147

Sets a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147 {do macro.do}

Executes the macro.do macro file after the breakpoint.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

Sets a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of variables
var1 and var2 are examined. This breakpoint is initially disabled; it can be enabled with
the enablebp command (CR-163).

bp test.vhd 14 {if {$now /= 100} then {cont}}

Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the command is run. This command causes the simulator to
continue if the current simulation time is not 100.

bp -query testadd.vhd

Lists the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd 48

Lists details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn’t exist); the second item is always 1; the third item is the file
name in the compiled source; the fourth item is the breakpoint line number; the fifth item
is the breakpoint id; and the sixth item (0 or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 2 59

Lists all executable lines in testadd.vhd between lines 2 and 59.

bp -c and_gate_init

Sets a C breakpoint at the entry to C function and_gate_init.

bp -c and_gate.c:46

Sets a C breakpoint at line 46 in the file and_gate.c.

bp -c 44

Sets a C breakpoint at line 44 in the current C or SystemC file.

bp -c *0xff130504

Sets a C breakpoint at hexadecimal address 0xff130504.

See also

add button (CR-52), bd (CR-76), disablebp (CR-153), enablebp (CR-163), onbreak (CR-210),
when (CR-375) , Chapter 7 - SystemC simulation, Chapter 14 - C Debug

Note: Any breakpoints set in VHDL code and called by either resolution functions or
functions that appear in a port map are ignored.
ModelSim SE Command Reference

CR-84 Commands

Model
cd

The cd command changes the ModelSim local directory to the specified directory. This
command cannot be executed while a simulation is in progress. Also, executing a cd
command will close the current project.

Syntax

cd

[<dir>]

Arguments

<dir>

The directory to which to change. Optional. If no directory is specified, ModelSim
changes to your home directory.
Sim SE Command Reference

cdbg CR-85
cdbg

The cdbg command provides command-line equivalents of the menu options that are
available for "C Debug" (UM-473). For some of the commands there is a required argument
"on | off". The value can be either 'on' or 'off'. For example:

cdbg enable_auto_step on
cdbg stop_on_quit off

Syntax

cdbg

auto_find_bp | debug_on | enable_auto_step <on | off> | init_mode_complete

| init_mode_setup | interrupt | keep_user_init_bps <on | off> | quit |

refresh_source_window | set_debugger <path> |

show_source_balloon <on | off> | stop_on_quit <on | off>

Arguments

auto_find_bp

Sets breakpoints on all currently known function entry points. See "Finding function
entry points with Auto find bp" (UM-479). Equivalent to selecting Tools > C Debug >
Auto find bp.

debug_on

Enables the C Debugger. Equivalent to selecting Tools > C Debug > Start C Debug.

enable_auto_step <on | off>

Enables/disables auto-step mode. See "Identifying all registered function calls" (UM-480).
Equivalent to selecting Tools > C Debug > Enable auto step.

init_mode_complete

Continues loading the design without stopping at functions calls. See "Debugging
functions during elaboration" (UM-483). Equivalent to selecting Tools > C Debug >
Complete load.

init_mode_setup

Enables initialization mode. See "Debugging functions during elaboration" (UM-483).
Equivalent to selecting Tools > C Debug > Init mode.

interrupt

Reactivates the C debugger when stopped in HDL code. Equivalent to selecting Tools >
C Debug > C Interrupt or clicking the 'C Interrupt' toolbar button.

keep_user_init_bps <on | off>

Specifies whether breakpoints set during initialization mode are retained after the design
finishes loading. See "Debugging functions during elaboration" (UM-483). Equivalent to
toggling the 'Keep user init bps' button in the C Debug setup dialog.

quit

Quits the C Debugger. Equivalent to selecting Tools > C Debug > Quit C Debug.

refresh_source_window

Re-opens a C source file if you close the Source window inadvertently while stopped in
the C debugger. Equivalent to selecting Tools > C Debug > Refresh.
ModelSim SE Command Reference

CR-86 Commands

Model
set_debugger <path>

Sets the path to your gdb installation. The argument path is required and is the complete
pathname to the gdb executable. For example:

 cdbg set_debugger_path /usr/bin/gdb

show_source_balloon <on | off>

Enables/disables the source balloon popup. See "C Debug dialog reference" (UM-490).
Equivalent to toggling the 'Show source balloon' button on the C Debug setup dialog.

stop_on_quit <on | off>

Enables/disables debugging capability when the simulator is exiting. See "Debugging
functions when quitting simulation" (UM-487). Equivalent to toggling the 'Stop on quit'
button on the C Debug setup dialog.
Sim SE Command Reference

change CR-87
change

The change command modifies the value of a VHDL constant, generic, or variable;
Verilog register or variable; or C variable if running C Debug (UM-473).

Syntax

change
<variable> <value>

Arguments

<variable>

Specifies the name of one of the following types of objects:

VHDL

• Scalar variables, constants, and generics of all types except FILE

• Scalar subelements of composite variables, constants, and generics of all types
except FILE

• One-dimensional arrays of enumerated character types (including slices)

• Access types (an access type pointer can be set to "null"; the value that an access type
points to can be changed as specified above)

Verilog

• Parameters

• Registers and memories

• Integer, real, realtime, and time variables

• Subelements of register, integer, real, realtime, and time multi-dimensional arrays
(all dimensions must be specified)

• Bit-selects and part-selects of the above except for objects whose basic type is real

C

• Scalar C variables of type int, char, double, or float

• Individual fields of a C structure

• SystemC primitive channels are not supported

The name can be a full hierarchical name or a relative name. A relative name is relative
to the current environment. Wildcards cannot be used. Required.

<value>

Defines a value for the variable. Required. The specified value must be appropriate for
the type of the variable.

Note that the initial type of a parameter determines the type of value that it can be given.
For example, if a parameter is initially equal to 3.14 then only real values can be set on
it. Also note that changing the value of a parameter or generic will not modify any design
elements that depended on the parameter or generic during elaboration (for example,
sizes of arrays).
ModelSim SE Command Reference

CR-88 Commands

Model
Examples

change count 16#FFFF

Changes the value of the variable count to the hexadecimal value FFFF.

change {rega[16]} 0

Changes the value of the element of rega that is specified by the index (i.e., 16).

change {foo[20:22]} 011

Changes the value of the set of elements of foo that is specified by the slice (i.e., 20:22).

change x 1.5

Sets the value of x (type double) to 1.5.

change a1.c1 0

Sets the value of structure member a1.c1 (type int) to 0.

change val_b "abcdefg"

Sets val_b (type char *) to point to the string "abcdefg".

change file_name \"test2.txt\"

Sets the Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with ’\’.

See also

force (CR-176)
Sim SE Command Reference

change_menu_cmd CR-89
change_menu_cmd

The change_menu_cmd command changes the command to be executed for a specified
menu item label, in the specified menu, in the specified window. The menu path and label
must already exist for this command to function. Returns nothing.

Syntax

change_menu_cmd

<window_name> <menu_path> <label> <Cmd>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of an existing Tk menu widget plus any submenu path. Required.

<label>

Current label on the menu item. Required.

<Cmd>

New Tcl command to be executed when selected. Required.

See also

add_menu (CR-58), add_menucb (CR-60), add_menuitem (CR-61), add_separator (CR-

62), add_submenu (CR-63)
ModelSim SE Command Reference

CR-90 Commands

Model
check contention add

The check contention add command enables contention checking for the specified nodes.
The allowed nodes are Verilog nets and VHDL signals of types std_logic and
std_logic_vector. Any other node types and nodes that don't have multiple drivers are
silently ignored by the command.

Syntax

check contention add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that contention checking is enabled recursively into subregions. Optional. If
omitted, contention check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal (non-port) items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

Description

Bus contention checking detects bus fights on nodes that have multiple drivers. A bus fight
occurs when two or more drivers drive a node with the same strength and that strength is
the strongest of all drivers currently driving the node. The following table provides some
examples for two drivers driving a std_logic signal:

driver 1 driver 2 fight

Z Z no

0 0 yes

1 Z no

0 1 yes

L 1 no
Sim SE Command Reference

check contention add CR-91
Detection of a bus fight results in an error message specifying the node and its drivers’
current driving values. If a node's drivers later change value and the node is still in
contention, a message is issued giving the new values of the drivers. A message is also
issued when the contention ends. The bus contention checking commands can be used on
VHDL and Verilog designs.

See also

check contention config command (CR-92), check contention off command (CR-93)

L H yes

driver 1 driver 2 fight
ModelSim SE Command Reference

CR-92 Commands

Model
check contention config

The check contention config command allows you to write checking messages to a file
(messages display on your screen by default). You may also configure the contention time
limit.

Syntax

check contention config
[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to which to write contention messages. Optional. If this option is selected,
the messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be in contention. Optional. Contention is detected
if a node is in contention for as long as or longer than the limit. The default limit is 0.

See also

check contention add command (CR-90), check contention off command (CR-93)
Sim SE Command Reference

check contention off CR-93
check contention off

The check contention off command disables contention checking for the specified nodes.

Syntax

check contention off
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables contention checking for all nodes that have checking enabled. Optional.

-r

Specifies that contention checking is disabled recursively into subregions. Optional. If
omitted, contention check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal (non-port) items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

check contention add command (CR-90), check contention config command (CR-92)
ModelSim SE Command Reference

CR-94 Commands

Model
check float add

The check float add command enables float checking for the specified nodes. The allowed
nodes are Verilog nets and VHDL signals of type std_logic and std_logic_vector (other
types are silently ignored).

You can set a time limit (the default is zero) for float checking using the -time <limit>
argument to the check float config command (CR-95). If you choose to modify the limit,
you should do so prior to invoking any check float add commands.

Syntax

check float add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that float checking is enabled recursively into subregions. Optional. If omitted,
float check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal (non-port) items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

Description

Bus float checking detects nodes that are in the high impedance state for a time equal to or
exceeding a user-defined limit. This is an error in some technologies. Detection of a float
violation results in an error message identifying the node. A message is also issued when
the float violation ends. The bus float checking commands can be used on VHDL and
Verilog designs.

See also

check float config command (CR-95), check float off command (CR-96)
Sim SE Command Reference

check float config CR-95
check float config

The check float config command allows you to write checking messages to a file
(messages display on your screen by default). You may also configure the float time limit.

Syntax

check float config
[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to which to write float messages. Optional. If this option is selected, the
messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be floating. Optional. An error is detected if a node
is floating for as long as or longer than the limit. The default limit is 0. Note that you
should configure the time limit prior to invoking any check float add commands.

See also

check float add command (CR-94), check float off command (CR-96)
ModelSim SE Command Reference

CR-96 Commands

Model
check float off

The check float off command disables float checking for the specified nodes.

Syntax

check float off
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables float checking for all nodes that have checking enabled. Optional.

-r

Specifies that float checking is disabled recursively into subregions. Optional. If omitted,
float check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal (non-port) items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

check float add command (CR-94), check float config command (CR-95)
Sim SE Command Reference

check stable off CR-97
check stable off

The check stable off command disables stability checking. You may later enable it with
check stable on (CR-98), and meanwhile, the clock cycle numbers and boundaries are still
tracked.

Syntax

check stable off

Arguments

None.

See also

check stable on command (CR-98)
ModelSim SE Command Reference

CR-98 Commands

Model
check stable on

The check stable on command enables stability checking on the entire design.

Syntax

check stable on
[-file <filename>] [-period <time>] [-strobe <time>]

Arguments

-file <filename>

Specifies a file to which to write the error messages. If this option is selected, the
messages are not displayed to the screen. Optional.

-period <time>

Specifies the clock period (which is assumed to begin at the time the check stable on
command is issued). Optional. This option is required the first time you invoke the check
stable on command. It is not required if you later enable checking after it was disabled
with the check stable off command (CR-97).

-strobe <time>

Specifies the elapsed time within each clock cycle that the stability check is performed.
Optional. The default strobe time is the period time. If the strobe time falls on a period
boundary, then the check is actually performed one timestep earlier. Normally the strobe
time is specified as less than or equal to the period, but if it is greater than the period, then
the check will skip cycles.

Description

Design stability checking detects when circuit activity has not settled within a period you
define for synchronous designs. You specify the clock period for the design and the strobe
time within the period during which the circuit must be stable. A violation is detected and
an error message is issued if there are pending driver events at the strobe time. The message
identifies the driver that has a pending event, the node that it drives, and the cycle number.
The design stability checking commands can be used on VHDL and Verilog designs.

Examples

check stable on -period "100 ps" -strobe "199 ps"

Performs a stability check 99 ps into each even numbered clock cycle (cycle numbers
start at 1).

See also

check stable off command (CR-97)
Sim SE Command Reference

checkpoint CR-99
checkpoint

The checkpoint command saves the state of your simulation. The checkpoint command
saves the simulation kernel state, the vsim.wlf file, the list of the HDL items shown in the
List and Wave windows, the file pointer positions for files opened under VHDL and the
Verilog $fopen system task, the states of foreign architectures, and VCD output. Changes
you made interactively while running vsim are not saved; for example, macros, virtual
objects, command-line interface additions like user-defined commands, and states of
graphical user interface windows are not saved. Also, toggle statistics (see the toggle
report command (CR-275)) are not saved.

Once saved, a checkpoint file may be used with the restore command (CR-242) during the
same simulation to restore the simulation to a previous state. A VSIM session may also be
started with a checkpoint file by using the vsim -restore command (CR-357).

Compression of the checkpoint file is controlled by the CheckpointCompressMode
variable in the modelsim.ini file.

If a checkpoint occurs while ModelSim is writing a VCD file, the entire VCD file is copied
into the checkpoint file. Since VCD files can be very large, it is possible that disk space
problems could occur. Consequently, ModelSim issues a warning in this situation.

Syntax

checkpoint
<filename>

Arguments

<filename>

Specifies the name of the checkpoint file. Required.

See also

restore (CR-242), restart (CR-240), vsim (CR-357), "The difference between checkpoint/
restore and restart" (UM-85)
ModelSim SE Command Reference

CR-100 Commands

Model
compare add

The compare add command compares signals in a reference design against signals in a test
design. You can specify whether to compare two signals, all signals in the region, or just
ports or a subset of ports. Constant signals such as parameters and generics are ignored. See
Chapter 13 - Waveform Compare for a general overview of waveform comparisons.

The table below shows how compares work between specified reference items and test
items.

The compare add command supports arguments that specify how each signal state
matches std_logic or Verilog values (e.g., -vhdlmatches, see below). Since state matching
can also be set on a global basis with the compare options command or PrefCompare() Tcl
variables, ModelSim follows state match settings in this order:

1 Use local matching values specified when the compare was created using compare add
or subsequently configured using compare configure.

2 If no local values were set, use global matching values set with the compare options
command.

3 If no compare options were set, use default matching values specified by PrefCompare
Tcl variables.

Syntax

compare add

-clock <name> [-help] [-label <label>] [-list] [-<mode>] [-nowin]

[-rebuild] [-recursive] [-separator <string>] [-tol <delay>]

[-tolLead <delay>] [-tolTrail <delay>] [-verbose]

[-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}]

[-vlogmatches {<ref-logic-value>=<test-logic-value>:...}]

[-wavepane <n>] [-wave] [-when {<expression>}] [-win <wname>]

<referencePath> [<testPath>]

Reference item Test item Result

signal signal compare the two signals

signal region compare a signal with a name matching the
reference signal in the specified test region

region region compare all matching signals in both regions

glob expression signal legal only if the glob expression selects only one
signal

glob expression region compare all signals matching the glob expression
that match signals in the test region
Sim SE Command Reference

compare add CR-101
Arguments

-clock <name>

Specifies the clock definition to use when sampling the specified regions. Required for a
clocked comparison; not used for asynchronous comparisons.

-help

Lists the description and syntax for the compare add command in the Main window
transcript. Optional.

-label <label>

Specifies a name for the comparison when it is displayed in the Wave window. Optional.

-list

Causes specified comparisons to be displayed in the default List window. Optional.

-<mode>

Specifies the mode of signal types that are compared. Optional. The actual values the
option may take are -in, -out, -inout, -internal, -ports, and -all. You can use more than one
mode option in the same command.

-nowin

Specifies that compare signals shouldn’t be added to any window. Optional. By default,
compare signals are added to the default Wave window. See -wave below.

-rebuild

Rebuilds a fragmented bus in the test design region and compares it with the
corresponding bus in the reference design region. Optional. If a signal is found having
the same name as the reference signal, the -rebuild option is ignored. When rebuilding
the test signal, the name of the reference signal is used as the wildcard prefix.

-recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

-separator <string>

Used with the -rebuild option. When a bus has been broken into bits (bit blasted) by a
synthesis tool, ModelSim expects a separator between the base bus name and the bit
indication. This option identifies that separator. The default is "_". For example, the
signal "mybus" might be broken down into "mybus_0", "mybus_1", etc.

-tol <delay>

Specifies the maximum time a test signal edge is allowed to lead or trail a reference edge
in an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with
the time value, the time must be placed in curly braces.

-tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the
time value, the time must be placed in curly braces.
ModelSim SE Command Reference

CR-102 Commands

Model
-tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the
time value, the time must be placed in curly braces.

Graphical representation of tolLead and tolTrail

-verbose

Prints information in the Main window confirming the signals selected for comparison
and any type conversions employed. Optional.

-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is {U=UWXD:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:
D=UX01ZWLHD}. The 'D' character represents the '-' "don't care" std_logic value.

-vlogmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how Verilog signal states in the reference dataset should match values in the
test dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is {0=0:1=1:Z=Z:X=X}.

-wavepane <n>

Specifies the pane of the Wave window in which the differences will be viewed.
Optional.

-wave

Specifies that compare signals be added automatically to the default Wave window.
Optional. Default.

-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to
be reported. Optional. The expression is evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-23) for legal expression syntax.

-win <wname>

Specifies a particular window to which to add items. Optional. Used to specify a
particular window when multiple instances of that window type exist.

Reference Signal

Test Signal

tolLead
tolTrail
Sim SE Command Reference

compare add CR-103
<referencePath>

Specifies an absolute or relative path to the reference signal or region, or it can be a glob
expression. Required. Relative paths are relative to the current context of the reference
dataset. If you specify a glob expression, it will match signals only in the containing
context.

<testPath>

Specifies an absolute or relative path to the test signal or region. Cannot be a glob
expression. Optional. If omitted, the test path defaults to the same path as
<referencePath> except for the dataset name.

Examples

compare add /*

Selects signals in the reference and test dataset top region according to the default mode.
Uses asynchronous comparison with the default tolerances. Assumes that the top regions
of the reference and test datasets have the same name and contain the same signals with
the same names.

compare add -port -clock myclock10 gold:.test_ringbuf.ring_inst

Selects port signals of instance .test_ringbuf.ring_inst in both datasets to be compared
and sampled on strobe myclock10.

compare add -r gold:/top/cpu test:/testbench/cpu

Selects all signals in the cpu region to be compared asynchronously using the default
tolerances. Requires that the reference and test relative hierarchies and signal names
within the cpu region be identical, but they need not be the same above the cpu region.

compare add -clock clock12 gold:.top.s1

Specifies that signal gold:.top.s1 should be sampled at clock12 and compared with
test:.top.s1, also sampled at clock12.

compare add -tolLead {3 ns} -tolTrail {5 ns} gold:/asynch/abc/s1 sim:/flat/
sigabc

Specifies that signal gold:/asynch/abc/s1 should be compared asynchronously with
signal sim:/flat/sigabc using a leading tolerance of 3 ns and a trailing tolerance of 5 ns.

compare add -rebuild gold:.counter1.count test:.counter2.cnt

Causes signals test:.counter2.cnt_dd to be rebuilt into bus test:.counter2.cnt[...] and
compared against gold:.counter1.count.

See also

compare annotate (CR-104), compare clock (CR-105), compare configure (CR-107),
compare continue (CR-109), compare delete (CR-110), compare end (CR-111), compare
info (CR-112), compare list (CR-113), compare options (CR-114), compare reload (CR-118),
compare reset (CR-119), compare run (CR-120), compare savediffs (CR-121), compare
saverules (CR-122), compare see (CR-123), compare start (CR-125), compare stop (CR-

127), compare update (CR-128), and Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-104 Commands

Model
compare annotate

The compare annotate command either flags a comparison difference as "ignore" or adds
a text string annotation to the difference. The text string appears when the difference is
viewed in error message info popups or in the output of a compare info command (CR-112).

Syntax

compare annotate

[-ignore] [-noignore] [-text <message>] <idNum1> [<idNum2>...]

Arguments

-ignore

Flags the specified difference as "ignore." Optional.

-noignore

Undoes a previous -ignore command. Optional.

-text <message>

Adds a text string annotation to the difference that is shown wherever the difference is
viewed. Optional.

<idNum1>

Identifies the difference number to annotate. Required. You can obtain a difference’s
number using the compare start command (CR-125) or a popup dialog. Difference
numbers are ordered by time of the difference start, but there may be more than one
difference starting at a given time.

<idNum2>...

Identifies a second, third, etc. difference number to be annotated in the same way as
idNum1. Optional. These are individual references; ranges of numbers cannot be
specified.

Examples

compare annotate -ignore 1 2 10

Flags difference numbers 1, 2, and 10 as "ignore."

compare annotate -text "THIS IS A CRITICAL PROBLEM" 12

Annotates difference number 12 with the message "THIS IS A CRITICAL PROBLEM."

See also

compare add (CR-100), compare info (CR-112), and Chapter 13 - Waveform Compare
Sim SE Command Reference

compare clock CR-105
compare clock

The compare clock command defines a clock that can then be used for clocked-mode
comparisons. In clocked-mode comparisons, signals are sampled and compared only at or
just after an edge on some signal.

Syntax

compare clock

[-delete] [-offset <delay>] [-rising | -falling | -both]

[-when {<expression>}] <clock_name> <signal_path>

Arguments

-delete

Deletes an existing compare clock. Optional.

-offset <delay>

Specifies a time value for delaying the sample time beyond the specified signal edge.
Optional. The default is 0. If a unit (e.g., ps) is used with the time value, the time must
be placed in curly braces.

-rising

Specifies that the rising edge of the specified signal should be used. Optional. This is the
default.

-falling

Specifies that the falling edge of the specified signal should be used. Optional. The
default is rising.

-both

Specifies that both the rising and the falling edge of the specified signal should be used.
Optional. The default is rising.

-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for that clock edge
to be used as a strobe. Optional. The expression is evaluated at the time of the clock edge,
rather than after the delay has been applied. See "GUI_expression_format" (CR-23) for
legal expression syntax.

<clock_name>

A name for this clock definition. Required. This name will be used with the compare add
command when doing a clocked-mode comparison.

<signal_path>

A full path to the signal whose edges are to be used as the strobe trigger. Required.
ModelSim SE Command Reference

CR-106 Commands

Model
Examples

compare clock -rising strobe gold:.top.clock

Defines a clocked compare strobe named "strobe" that samples signals on the rising edge
of signal gold:.top.clock.

compare clock -rising -delay {12 ns} clock12 gold:/mydesign/clka

Defines a clocked compare strobe named "clock12" that samples signals 12 ns after the
rising edge of signal gold:/mydesign/clka.

See also

compare add (CR-100), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare configure CR-107
compare configure

The compare configure command modifies options for compare signals and regions. The
modified options are applied to all items in the specified compare path.

Syntax

compare configure

[-clock <name>] [-recursive] [-tol <delay>] [-tolLead <delay>] [-tolTrail

<delay>] [-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}]

[-vlogmatches {<ref-logic-value>=<test-logic-value>:...}]

[-when {<expression>}] <comparePath>

Arguments

-clock <name>

Changes the strobe signal for the comparison. Optional. If the comparison is currently
asynchronous, it will be changed to clocked. This switch may not be used with the -tol,
-tolLead, and -tolTrail options.

-recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

-tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is
used (e.g., ps) with the time value, the time must be in curly braces.

-tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

-tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the
time value, the time must be placed in curly braces.

-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is {U=UWXD:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:
-=UX01ZWLHD}.
ModelSim SE Command Reference

CR-108 Commands

Model
-vlogmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how Verilog signal states in the reference dataset should match values in the
test dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is {0=0:1=1:Z=Z:X=X}.

-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to
be reported. Optional. The expression is evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-23) for legal expression syntax.

<comparePath>

Identifies the path of a compare signal, region, or glob expression. Required.

See also

compare add (CR-100), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare continue CR-109
compare continue

This command is used to continue with comparison difference computations that were
suspended using the compare stop button or Control-C. If the comparison was not
suspended, compare continue has no effect.

Syntax

compare continue

Arguments

None

See also

compare stop (CR-127), Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-110 Commands

Model
compare delete

The compare delete command deletes a signal or region from the current open comparison.

Syntax

compare delete

[-recursive] <objectPath>

Arguments

-recursive

Deletes a region recursively. Optional.

<objectPath>

Path in the reference design to the signal or region to be deleted. Required. The dataset
prefix is not needed.

See also

compare add (CR-100), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare end CR-111
compare end

The compare end command closes the active comparison without saving any information.

Syntax

compare end

Arguments

None

See also

compare add (CR-100), Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-112 Commands

Model
compare info

The compare info command lists the results of the comparison in the Main window
transcript. To save the information to a file, use the -write argument.

Syntax

compare info

[-all] [-count] [-primaryonly] [-signals] [-secondaryonly]

[<startNum> [<endNum>]] [-summary] [-write <filename>]

Arguments

-all

Lists all differences (even those marked as "ignore") in the output. Optional. By default,
ignored differences are not listed in the output of a compare info command.

-count

Returns the total number of primary differences found.

-primaryonly

Lists only differences on individual bits, ignoring aggregate values such as a bus.
Optional.

-signals

Returns a Tcl list of compare signal names that have at least one difference.

-secondaryonly

Lists only aggregate value differences such as a bus, ignoring the individual bits.

<startNum> [<endNum>]

Specifies the difference numbers to start and end the list with. Optional. If omitted,
ModelSim starts the listing with the first difference and ends it with the last. If just
endNum is omitted, ModelSim ends the listing with the last difference.

-summary

Lists only summary information. Optional.

-write <filename>

Saves the summary information to <filename> rather than the Main window transcript.
Optional.

Examples

compare info

Lists all errors in the Main window transcript.

compare info -summary

Lists only an error summary in the Main window transcript.

compare info -write myerrorfile 20 50

Writes errors 20 through 50 to the file myerrorfile.

See also

compare add (CR-100), compare annotate (CR-104), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare list CR-113
compare list

Displays in the Main window a list of all the compare add commands currently in effect.

Syntax

compare list

[-expand]

Arguments

-expand

Expands groups specified by the compare add command to individual signals. Optional.

See also

compare add (CR-100), Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-114 Commands

Model
compare options

The compare options command sets defaults for various waveform comparison
commands. Those defaults are used when other compare commands are invoked during the
current session. To set defaults permanently, edit the appropriate PrefCompare() Tcl
variable in the pref.tcl file (see "Preference variables located in Tcl files" (UM-631) for
details).

If no arguments are used, compare options returns the current setting for all options. If one
option is given that requires a value, and if that value is not given, compare options returns
the current value of that option.

Syntax

compare options

[-addwave] [-hide] [-noaddwave] [-show] [-ignoreVlogStrengths]

[-noignoreVlogStrengths] [-maxsignal <n>] [-maxtotal <n>]

[-listwin <name>] [-<mode>] [-separator <string>] [-tol <delay>]

[-tolLead <delay>] [-tolTrail <delay>] [-track] [-notrack]

[-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}]

[-vlogmatches {<ref-logic-value>=<test-logic-value>:...}]

[-wavepane <n>] [-wavewin <name>]

Arguments

-addwave

Specifies that new comparison objects are added automatically to the Wave window.
Optional. Default. You can specify that objects aren’t added automatically using the
-noaddwave argument. Related Tcl variable is PrefCompare(defaultAddToWave).

-hide

Hides all comparisons except those that have at least one difference. Optional. Related
Tcl variable is PrefCompare(defaultHideIfNoDiffs).

-noaddwave

Specifies that new comparison objects are not added automatically to the Wave window.
Optional. The default is to add comparison objects automatically. Related Tcl variable is
PrefCompare(defaultAddToWave).

-show

Shows all comparisons even if they don’t have any differences. Optional. Default.
Related Tcl variable is PrefCompare(defaultHideIfNoDiffs).

-ignoreVlogStrengths

Specifies that Verilog net strengths should be ignored when comparing two Verilog nets.
Optional. Default. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

-noignoreVlogStrengths

Specifies that Verilog net strengths should not be ignored when comparing two Verilog
nets. Optional. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

-listwin <name>

Causes specified comparisons to be displayed in the specified List window. Optional.
Related Tcl variable is PrefCompare(defaultListWindow).
Sim SE Command Reference

compare options CR-115
-maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When
that limit is reached, ModelSim stops computing differences on that signal. Optional. The
default is 100. Related Tcl variable is PrefCompare(defaultMaxSignalErrors).

-maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default is 1000. Related Tcl
variable is PrefCompare(defaultMaxTotalErrors).

-<mode>

Specifies the default mode of signal types that are compared with the compare add
command (CR-100). Optional. The actual values the option may take are -in, -out, -inout,
-internal, -ports, and -all. More than one mode option may be used in the same compare
options command.

-separator <string>

Used with the -rebuild option of the compare add command (CR-100). When a bus has
been broken into bits (bit blasted) by a synthesis tool, ModelSim expects a separator
between the base bus name and the bit indication. This option identifies that separator.
The default is "_". For example, the signal "mybus" might be broken down into
"mybus_0", "mybus_1", etc. Optional. Related Tcl variable is
PrefCompare(defaultRebuildSeparator).

-tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is
used (e.g., ps) with the time value, the time must be in curly braces.

You can specify different values for the leading and trailing tolerances using -tolLead
and -tolTrail.

-tolLead <delay>

Specifies the default maximum time the test signal edge is allowed to lead the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used
with the time value, the time must be in curly braces. Related Tcl variables are
PrefCompare(defaultLeadTolerance) and PrefCompare(defaultLeadUnits).

-tolTrail <delay>

Specifies the default maximum time the test signal edge is allowed to trail the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit is used
(e.g., ps) with the time value, the time must be in curly braces. Related Tcl variables are
PrefCompare(defaultTrailTolerance) and PrefCompare(defaultTrailUnits).
ModelSim SE Command Reference

CR-116 Commands

Model
Graphical representation of tolLead and tolTrail

-track

Specifies that the waveform comparison should track the current simulation. Optional.
Default. The differences will be updated at the end of each run command, so if you want
to see differences soon after they occur, use many relatively short run commands.
Related Tcl variable is PrefCompare(defaultTrackLiveSim).

-notrack

Specifies that the waveform comparison should not track the current simulation.
Optional. Related Tcl variable is PrefCompare(defaultTrackLiveSim).

-vhdlmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is {U=UWX-:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:
-=UX01ZWLHD}. Related Tcl variable is PrefCompare(defaultVHDLMatches).

-vlogmatches {<ref-logic-value>=<test-logic-value>:...}

Specifies how Verilog signal states in the reference dataset should match values in the
test dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is {0=0:1=1:Z=Z:X=X}. Related Tcl variable is
PrefCompare(defaultVLOGMatches).

-wavepane <n>

Specifies the default pane of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWavePane).

-wavewin <name>

Specifies the default name of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWaveWindow).

Reference Signal

Test Signal

tolLead
tolTrail
Sim SE Command Reference

compare options CR-117
Examples

compare options

Returns the current value of all options.

compare options -maxtotal 2000

Sets the maxtotal option to 2000 differences.

compare options -maxtotal

Returns the current value of the maxtotal option.

compare options -ignoreVlogStrengths

Sets the option to ignore Verilog net strengths.

compare options -vlogxmatches {0=0:1=1:Z=Z:X=XZ0}

Verilog X will now match X, Z, or 0.

compare options -vhdlmatches {X=UXWD}

VHDL std_logic X will now match 'U', 'X', 'W', or 'D'.

compare options -tolLead {300 ps}

Sets the leading tolerance for asynchronous comparisons to 300 picoseconds.

compare options -tolTrail {250 ps}

Sets the trailing tolerance for asynchronous comparisons to 250 picoseconds.

See also

compare add (CR-100), compare clock (CR-105), Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-118 Commands

Model
compare reload

The compare reload command reloads comparison differences to allow their viewing
without recomputation. Prior to invoking compare reload, you must open the relevant
datasets with the same names that were used during the original comparison.

Syntax

compare reload

<rulesFilename> <diffsFilename>

Arguments

<rulesFilename>

Specifies the name of the file that was previously saved using the compare saverules
command. Required. Must be the first argument.

<diffsFilename>

Specifies the name of the file that was previously saved using the compare savediffs
command. Required.

See also

compare add (CR-100), compare savediffs (CR-121), compare saverules (CR-122),
compare run (CR-120), compare start (CR-125), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare reset CR-119
compare reset

Clears the current compare differences, allowing another compare run command to be
executed. Does not modify any of the compare options or any of the signals selected for
comparison. This allows you to re-run the comparison with different options or with a
modified signal list.

Syntax

compare reset

Arguments

None

See also

compare add (CR-100), compare run (CR-120), and Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-120 Commands

Model
compare run

The compare run command runs the difference computation on the signals selected via a
compare add command. Reports in the Main window the total number of errors found.

Syntax

compare run

[<startTime>] [<endTime>]

Arguments

<startTime>

Specifies when to start computing differences. Optional. Default is zero. If a unit (e.g.,
ps) is used with the time value, the time must be in curly braces. The default units are
determined by the simulation resolution. (Default simulation resolution is nanoseconds.
Simulation resolution can be changed with the -t argument of the vsim command (CR-

357)).

<endTime>

Specifies when to end computing differences. Optional. Default is the end of the dataset
simulation run that ends earliest. If a unit (e.g., ps) is used with the time value, the time
must be placed in curly braces.

Examples

compare run

Computes differences over the entire time range.

compare run {5.3 ns} {57 ms}

Computes differences from 5.3 nanoseconds to 57 milliseconds.

See also

compare add (CR-100), compare end (CR-111), compare start (CR-125), Chapter 13 -
Waveform Compare
Sim SE Command Reference

compare savediffs CR-121
compare savediffs

The compare savediffs command saves the comparison results to a file that can be
reloaded later. To be able to reload the file later, you must also save the comparison setup
using the compare saverules command.

Syntax

compare savediffs

<diffsFilename>

Arguments

<diffsFilename>

Specifies the name of the file to create. Required. To load the file at a later time, use the
compare reload command (CR-118).

See also

compare add (CR-100), compare reload (CR-118), compare saverules (CR-122), Chapter
13 - Waveform Compare
ModelSim SE Command Reference

CR-122 Commands

Model
compare saverules

The compare saverules command saves the comparison setup information (or "rules") to
a file that can be re-executed later. The command saves compare options, clock definitions,
and region and signal selections.

Syntax

compare saverules

[-expand] <rulesFilename>

Arguments

-expand

Expands groups specified by the compare add (CR-100) command to individual signals.
Optional. If you added a region with the compare add command and then deleted signals
from that region, you must use the -expand argument or the rules will not reflect the
signal deletions.

<rulesFilename>

Specifies the name of the file to which you want to save the rules. Required. To load the
file at a later time, use the compare reload command (CR-118).

See also

compare add (CR-100), compare reload (CR-118), compare savediffs (CR-121), Chapter 13
- Waveform Compare
Sim SE Command Reference

compare see CR-123
compare see

The compare see command displays the specified comparison difference in the Wave
window using whatever horizontal and vertical scrolling are necessary. The signal
containing the specified difference will be highlighted, and the active cursor will be
positioned at the starting time of the difference.

Syntax

compare see

[-first] [-last] [-next] [-nextanno] [-previous] [-prevanno]

[-wavepane <n>] [-wavewin <name>]

Arguments

-first

Shows the first difference, ordered by time. Optional. Performs the same action as the
Find First Difference button in the Wave window.

-last

Shows the last difference, ordered by time. Optional. Performs the same action as the
Find Last Difference button in the Wave window.

-next

Shows the next difference (in time) after the currently selected difference. Optional.
Performs the same action as the Find Next Difference button in the Wave window.

-nextanno

Shows the next annotated difference (in time) after the currently selected difference.
Optional. Performs the same action as the Next Annotated Difference button in the Wave
window.

-previous

Shows the previous difference (in time) before the currently selected difference.
Optional. Performs the same action as the Previous Difference button in the Wave
window.

-prevanno

Shows the previous annotated difference (in time) before the currently selected
difference. Optional. Performs the same action as the Previous Annotated Difference
button in the Wave window.

-wavepane <n>

Specifies the pane of the Wave window in which the difference should be shown.
Optional.

-wavewin <name>

Specifies the name of the Wave window in which the difference should be shown.
Optional.
ModelSim SE Command Reference

CR-124 Commands

Model
Examples

compare see -first

Shows the earliest difference (in time) in the default Wave window.

compare see -next

Shows the next difference (in time) in the default Wave window.

See also

compare add (CR-100), compare run (CR-120), Chapter 13 - Waveform Compare
Sim SE Command Reference

compare start CR-125
compare start

The compare start command begins a new dataset comparison. The datasets that you’ll be
comparing must already be open.

Syntax

compare start

[-batch] [-hide] [-show] [-maxsignal <n>] [-maxtotal <n>]

[-refDelay <delay>] [-testDelay <delay>] <reference_dataset>

[<test_dataset>]

Arguments

-batch

Specifies that comparisons will not be automatically inserted into the Wave window.
Optional.

-hide

Hides all comparisons except those that have at least one difference. Optional. You can
change the default using the compare options command (CR-114) or by editing the
PrefCompare(defaultHideIfNoDiffs) variable in the pref.tcl file.

-show

Shows all comparisons even if they don’t have any differences. Optional. Default. You
can change the default using the compare options command (CR-114) or by editing the
PrefCompare(defaultHideIfNoDiffs) variable in the pref.tcl file.

-maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When
that limit is reached, ModelSim stops computing differences on that signal. Optional. The
default limit is 100. You can change the default using the compare options command
(CR-114) or by editing the PrefCompare(defaultMaxSignalErrors) variable in the pref.tcl
file.

-maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default limit is 1000. You can
change the default using the compare options command (CR-114) or by editing the
PrefCompare(defaultMaxTotalErrors) variable in the pref.tcl file.

-refDelay <delay>

Delays the reference dataset relative to the test dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-100). For each signal compared, a delayed virtual signal is
created with "_d" appended to the signal name, and these are the signals viewed in the
Wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.
ModelSim SE Command Reference

CR-126 Commands

Model
-testDelay <delay>

Delays the test dataset relative to the reference dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-100). For each signal compared, a delayed virtual signal is
created with "_d" appended to the signal name, and these are the signals viewed in the
Wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.

<reference_dataset>

The dataset to be used as the comparison reference. Required.

<test_dataset>

The dataset to be tested against the reference. Optional. If not specified, ModelSim uses
the current simulation. The reference and test datasets may be the same.

Examples

compare start gold

Begins a waveform comparison between a dataset named "gold" and the current
simulation. Assumes the gold dataset was already opened.

dataset open gold_typ.wlf gold
dataset open bad_typ.wlf test
compare start -maxtotal 5000 -maxsignal 1000 gold test

This command sequence opens two datasets and starts a comparison between the two
using greater than default limits for total differences encountered.

See also

compare add (CR-100), compare options (CR-114), compare stop (CR-127), Chapter 13 -
Waveform Compare
Sim SE Command Reference

compare stop CR-127
compare stop

This command is used internally by the compare stop button to suspend comparison
computations in progress. If a compare run execution has returned to the VSIM prompt,
compare stop has no effect. Under Unix, entering a Control-C character in the window that
invoked ModelSim has the same effect as compare stop.

Syntax

compare stop

Arguments

None

See also

compare run (CR-120), compare start (CR-125), Chapter 13 - Waveform Compare
ModelSim SE Command Reference

CR-128 Commands

Model
compare update

This command is primarily used internally to update the comparison differences when
comparing a live simulation against a .wlf file. The compare update command is called
automatically at the completion of each simulation run if the "-track" compare option is in
effect.

The user can also call compare update periodically during a long simulation run to cause
difference computations to catch up with the simulation. This command does nothing if the
-track compare option was not in effect when the compare run command (CR-120) was
executed.

Syntax

compare update

Arguments

None

See also

compare run (CR-120), Chapter 13 - Waveform Compare
Sim SE Command Reference

configure CR-129
configure

The configure (config) command invokes the List or Wave widget configure command for
the current default List or Wave window. To change the default window, use the view
command (CR-320).

Syntax

configure
list|wave [-window <wname>] [<option> <value>]

[-delta [all | collapse | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [<value>]]
[-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<value>]]

[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]]
[-gridcolor [<color>]] [-griddelta [<pixels>]] [-gridoffset [<time>]]
[-gridperiod [<time>]] [-namecolwidth [<width>]] [-rowmargin [<pixels>]]
[-signalnamewidth [<value>]] [-timecolor [<color>]]
[-timeline [<value>]] [-valuecolwidth [<width>]] [-vectorcolor [<color>]]
[-waveselectcolor [<color>]] [-waveselectenable [<value>]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that attribute

• with one or more option-value pairs it changes the values of the specified attributes to the
new values

The returned information has five fields for each attribute: the command-line switch, the
Tk widget resource name, the Tk class name, the default value, and the current value.

Arguments

list|wave

Specifies either the List or Wave widget to configure. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the configure command.
(The view command (CR-320) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-320).

<option> <value>

-bg <color>

Specifies the window background color. Optional.

-fg <color>

Specifies the window foreground color. Optional.

-selectbackground <color>

Specifies the window background color when selected. Optional.
ModelSim SE Command Reference

CR-130 Commands

Model
-selectforeground <color>

Specifies the window foreground color when selected. Optional.

-font

Specifies the font used in the widget. Optional.

-height <pixels>

Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]

The all option displays a new line for each time step on which items change; collapse
displays the final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltriggers must be set to 1 (on). Optional.

-gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last
list row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

-gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would
normally have displayed a row of data. See the "GUI_expression_format" (CR-23) for
information on expression syntax.

-usegating [<value>]

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the
expression.) See "Setting List window display properties" (UM-293) for additional
information on using gating with triggers.

-strobeperiod [<period>]

Specifies the period of the list strobe. When using a time unit, the time value and unit
must be placed in curly braces. Optional.

-strobestart [<start_time>]

Specifies the start time of the list strobe. When using a time unit, the time value and unit
must be placed in curly braces. Optional.

-usesignaltriggers [<value>]

If 1, uses signals as triggers; if 0, not. Optional.

-usestrobe [<value>]

If 1, uses the strobe to trigger; if 0, not. Optional.
Sim SE Command Reference

configure CR-131
Arguments, Wave window only

-childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional. Default is 2. Related Tcl
variable is PrefWave(childRowMargin).

-cursorlockcolor [<color>]

Specifies the color of a locked cursor. Default is red. Related Tcl variable is
PrefWave(cursorLockColor).

-gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional. Related Tcl variable
is PrefWave(gridColor).

-griddelta [<pixels>]

Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will
be removed. Optional. Default is 40. Related Tcl variable is PrefWave(gridDelta).

-gridoffset [<time>]

Specifies the time (in user time units) of the first grid line. Optional. Default is 0. Related
Tcl variable is PrefWave(gridOffset).

-gridperiod [<time>]

Specifies the time (in user time units) between subsequent grid lines. Optional. Default
is 1. Related Tcl variable is PrefWave(gridPeriod).

-namecolwidth [<width>]

Specifies in pixels the width of the name column. Optional. Default is 150. Related Tcl
variable is PrefWave(nameColWidth).

-rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals. Default is 4. Related Tcl
variable is PrefWave(rowMargin).

-signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of a signal name shown in
the pathname pane. Optional. Default of 0 displays the full path. 1 displays only the leaf
path element, 2 displays the last two path elements, and so on. Related Tcl variable is
PrefWave(SignalNameWidth). Can also be set with the WaveSignalNameWidth variable
in the modelsim.ini file.

-timecolor [<color>]

Specifies the time axis color. Default is green. Optional. Related Tcl variable is
PrefWave(timeColor).

-timeline [<value>]

Specifies whether the horizontal axis displays simulation time (default) or grid period
count. Default is zero. When set to 1, the grid period count is displayed. Related Tcl
variable is PrefWave(timeline).

-valuecolwidth [<width>]

Specifies in pixels the width of the value column. Default is 100. Related Tcl variable is
PrefWave(valueColWidth).

-vectorcolor [<color>]

Specifies the vector waveform color. Default is #b3ffb3. Optional. Related Tcl variable
is PrefWave(vectorColor).
ModelSim SE Command Reference

CR-132 Commands

Model
-waveselectcolor [<color>]

Specifies the background highlight color of a selected waveform. Default is grey30.
Related Tcl variable is PrefWave(waveSelectColor).

-waveselectenable [<value>]

Specifies whether the waveform background highlights when an item is selected. 1
enables highlighting; 0 disables highlighting. Default is 0. Related Tcl variable is
PrefWave(waveSelectEnabled).

To get a more readable listing of all attributes and current values, use the lecho (CR-184)
command, which pretty-prints a Tcl list.

There are more options than are listed here. See the output of a configure list or configure
wave command for all options.

Examples

config list -strobeperiod

Displays the current value of the strobeperiod attribute.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

Sets the period of the list strobe and turns it on.

config wave -vectorcolor blue

Sets the wave vector color to blue.

config wave -signalnamewidth 1

Sets the display in the current Wave window to show only the leaf path of each signal.

See also

view (CR-320), "Preference variables located in Tcl files" (UM-631)
Sim SE Command Reference

context CR-133
context

The context command provides several operations on a context's name. The option you
specify determines the operation.

Syntax

context dataset | exists | isInst | isNet | isProc | isVar | join | parent |
split | tail | type
<name>

Arguments

context dataset <name>

Return the dataset name from the name.

context exists <name>

Returns 1 if the name is valid, 0 otherwise.

context isInst <name>

Returns 1 if the name is an instance pathname, 0 otherwise.

context isNet <name>

Returns 1 if the name is a Signal or Net pathname, 0 otherwise.

context isProc <name>

Returns 1 if the name is a Process pathname, 0 otherwise.

context join <name> <name> ...

Takes one or more names and combines them, using the correct path separator.

context parent <name>

Returns the parent path of the name by removing the tail (see context tail).

context path <name>

Returns the pathname portion of the name, removing the dataset name.

context split <name>

Returns a list whose elements are the path components in the name. The first element of
the list will be the dataset name if one is present in the name, including the dataset
separator. For example, context split /foo/bar/baz returns / foo bar baz .

context tail <name>

Returns all of the characters in the name after the last path separator. If the name contains
no separators then returns the name. Any trailing path separator is discarded.

context type <name>

Returns a string giving the acc type of the name.

<name>

Name of a context object or region. Required. Does not have to be a valid object name
unless the specified option requires this (i.e., exists or isInst).
ModelSim SE Command Reference

CR-134 Commands

Model
coverage clear

The coverage clear command clears all code coverage statement and branch counts
obtained during previous run commands and unloads the current exclusion filter file.

Syntax

coverage clear
[<filename>] [-all | -excluded [-user | -pragma | -instance]]

Arguments

<filename>

Specifies the name of the file you wish to clear. Optional.

-all

Clears all statement and branch counts and all user exclusion flags set with the coverage
exclude command. Optional.

-excluded

Unloads a currently loaded exclusion filter file. Exclusion filter files specify files and line
numbers that you wish to exclude from Code Coverage statistics. See "Excluding items
from coverage" (UM-443) for more details.

-user

Clears only user exclusions.

-pragma

Clears only pragma exclusions.

-instance

Clears only instance-specific exclusions.

Example

coverage clear -excluded -pragma

Clears the statement exclusion flags that have been set by the coverage exclude
command. Only pragma exclusions are cleared.

See also

Chapter 12 - Code Coverage, coverage exclude (CR-135), coverage reload (CR-136),
coverage report (CR-137), coverage save (CR-140)
Sim SE Command Reference

coverage exclude CR-135
coverage exclude

The coverage exclude command loads an exclusion filter file. Exclusion filter files specify
files and line numbers that you wish to exclude from Code Coverage statistics. (See
"Excluding items from coverage" (UM-443) for more details).

Syntax

coverage exclude
<filename>

Arguments

<filename>

Specifies the file name of the exclusion filter you wish to load. Required. See "Excluding
items from coverage" (UM-443) for filter file syntax.

See also

Chapter 12 - Code Coverage, coverage clear (CR-134), coverage reload (CR-136),
coverage report (CR-137), coverage save (CR-140)
ModelSim SE Command Reference

CR-136 Commands

Model
coverage reload

The coverage reload command seeds the coverage statistics with the output of a previous
coverage save command. This allows you to gather statistics from multiple simulation
runs.

Syntax

coverage reload
-57<filename> [-incremental] [-install <path>] [-root <new_root_name>]
[-strip <n>]

Arguments

-57

Specifies that the file being reloaded was produced in ModelSim version 5.7x. Optional.
The coverage file format changed in version 5.8, so you must flag files that are from the
earlier version.

<filename>

Specifies the file(s) containing data to reload. Required. This file should be the output of
a previous coverage save command.

-incremental

Merges loaded coverage data with current coverage data. Optional. Without this
argument, loading coverage data overwrites existing data.

-install <path>

Adds <path> as additional hierarchy on the front end of instance and signal names in the
data file. Optional. This argument allows you to merge coverage results from simulations
that have different hierarchies.

-root <new_root_name>

Specifies the root name of the design for which you have a saved coverage report.
Optional. This argument has been superseded by the -strip and -install arguments. It is
included for backwards compatibility only.

-strip <n>

Removes <n> levels of hierarchy from instance and signal names in the data file.
Optional. This argument allows you to merge coverage results from simulations that have
different hierarchies.

See also

Chapter 12 - Code Coverage, coverage clear (CR-134), coverage exclude (CR-135),
coverage report (CR-137), coverage save (CR-140)
Sim SE Command Reference

coverage report CR-137
coverage report

The coverage report command produces textual output of coverage statistics. You can
choose from a number of report output options using the arguments listed below. To view
this data more interactively, right-click in the Files tab of the Main window Workspace and
select Coverage > Coverage Reports from the popup context menu.

Syntax

coverage report
[-above <percent> | -below <percent>] [-append]
[-byinstance] [-excluded [[-pragma] [-user]] | -totals | [-lines] [-zeros]]
[-file <filename>] [-instance <pathname>] [-noannotate] [-recursive]
[-select bces[t|x]] [-source <filename>] [-xml]

Arguments

-above <percent>

Specifies that only items with coverage values above this percentage be included in the
output. Optional.

-below <percent>

Specifies that only items with coverage values below this percentage be included in the
output. Optional.

-append

Appends the current coverage statistics to the named output file (-file <filename>).
Optional. Can be used with the -excluded, -instance, -lines, -total, and -zeros arguments
to append specific reports to the output file.

-byinstance

Writes out a coverage summary for all instances. Optional.

-excluded

Writes out the files and lines that are currently being excluded by the user from the
coverage analysis. Shows both pragma and user-based exclusions unless -pragma or
-user are specified. Optional. This is the same information that is shown in the "Current
Exclusions pane" (UM-431).

-pragma

When used with the -excluded argument, writes out only lines currently being
excluded by pragmas. Optional.

-user

When used with the -excluded argument, writes out files and lines currently being
excluded by the coverage exclude command. Optional.

-file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Main
window. Environment variables may be used in the pathname.

-instance <pathname>

Writes out the source file summary coverage data for the selected instance. Optional.
ModelSim SE Command Reference

CR-138 Commands

Model
-lines

Writes out the source file summary data and after each file it writes out the details for
each executable line in the file. Optional.

-noannotate

Produces the same report as -lines but removes source code from the output report.
Optional.

-recursive

Reports on the instance specified with -instance and every included instance, recursively.
Can also be used with -lines and -totals. Optional.

-select bces[t|x]

Specifies which coverage statistics to include in the report. Optional. By default the
report includes statistics for all categories you enabled at compile time.

The characters are as follows:

b–Include branch statistics.

c–Include condition statistics.

e–Include expression statistics.

s–Include statement statistics.

t–Include toggle statistics.

x–Include extended toggle statistics.

-source <filename>

Writes a summary of statement coverage data for a specific source file. Optional.
Environment variables may be used in the pathname.

-totals

Writes out a top-level summary of the number of files, statements, branches, hits, and
signal toggles for both file-based and instance-based views of the current analysis.
Optional. Useful for tracking changes.

-xml

Outputs report in XML format. Optional. See "Reporting coverage data" (UM-446) for
more information.

-zeros

Writes out a file-based summary of lines that have not been executed (zero hits).
Optional. For a detailed report that includes line numbers, use:
coverage report -zeros -lines.

Examples

coverage report -totals -file myreport.txt

Writes a top-level summary of the number of files, statements, branches, hits, and signal
toggles to myreport.txt.

coverage report -lines -noannotate -select bcs

Writes detailed branch, condition, and statement statistics, without associated source
code, to the specified file.

coverage report -byinstance

Writes a summary of code coverage for all instances to the Main window transcript.
Sim SE Command Reference

coverage report CR-139
coverage report -lines -byinstance -file myreport.txt

Writes code coverage details of all instances in the design to myreport.txt. The -lines
option reports coverage statistics for each statement and branch. Branch coverage
statistics will following statement statistics and will be presented in four columns: line,
column, true branch count, false branch count.

coverage report -lines -instance /top/p

Writes code coverage details of one specific instance to the Main window transcript.

coverage report -excluded -file myexclusions.txt

Writes both pragma and user-based exclusions to myexclusions.txt.

coverage report -lines -below 90 -file myreport.txt

Writes a summary of coverage by source file for coverage less than or equal to 90%.

coverage report -zeros byinstance -file myzerocov.txt

Writes a list of statements with zero coverage to myzerocov.txt.

See also

Chapter 12 - Code Coverage, coverage clear (CR-134), coverage exclude (CR-135),
coverage reload (CR-136), coverage save (CR-140), vsim (CR-357) -coverage option
ModelSim SE Command Reference

CR-140 Commands

Model
coverage save

The coverage save command saves current coverage statistics to a file that can be reloaded
later, preserving instance-specific information.

Syntax

coverage save
[-instance <path>] <filename>

Arguments

-instance <path>

Saves coverage data for only the specified instance and any of its children, recursively.
Optional. <path> is a path to the instance.

<filename>

Specifies a file name for the report. Required.

See also

Chapter 12 - Code Coverage, coverage clear (CR-134), coverage exclude (CR-135),
coverage reload (CR-136), coverage report (CR-137), "$coverage_save(<filename>,
[<instancepath>], [<xml_output>])" (UM-149) Verilog system task
Sim SE Command Reference

dataset alias CR-141
dataset alias

The dataset alias command assigns an additional name (alias) to a dataset. The dataset can
then be referenced by that alias. A dataset can have any number of aliases, but all dataset
names and aliases must be unique.

Syntax

dataset alias
<dataset_name> [<alias_name>]

Arguments

<dataset_name>

Specifies the name of the dataset to which to assign the alias. Required.

<alias_name>

Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, ModelSim lists current aliases for the specified dataset_name.

See also

dataset list (CR-145), dataset open (CR-146), dataset save (CR-148)
ModelSim SE Command Reference

CR-142 Commands

Model
dataset clear

The dataset clear command removes all event data from the current simulation WLF file
while keeping all currently logged signals logged. Subsequent run commands will continue
to accumulate data in the WLF file.

Syntax

dataset clear

Example

add wave *
run 100000ns
dataset clear
run 100000ns

Clears data in the WLF file from time 0ns to 100000ns, then logs data into the WLF file
from time 100000ns to 200000ns.

See also

"WLF files (datasets)" (UM-240), log (CR-187)
Sim SE Command Reference

dataset close CR-143
dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset
open command.

Syntax

dataset close
<logicalname> | [-all]

Arguments

<logicalname>

Specifies the logical name of the dataset or alias you wish to close. Required if -all isn’t
used.

-all

Closes all open datasets including the simulation. Optional.

See also

dataset open (CR-146)
ModelSim SE Command Reference

CR-144 Commands

Model
dataset info

The dataset info command reports a variety of information about a dataset.

Syntax

dataset info
<option> <dataset_name>

Arguments

<option>

Identifies what information you want reported. Required. Only one option per command
is allowed. The current options include:

name - Returns the actual name of the dataset. Useful for identifying the real dataset name
of an alias.

file - Returns the name of the WLF file associated with the dataset.

exists - Returns "1" if the dataset exists; "0" if it doesn’t.

<dataset_name>

Specifies the name of the dataset or alias for which you want information. Required.

See also

dataset alias (CR-141), dataset list (CR-145), dataset open (CR-146)
Sim SE Command Reference

dataset list CR-145
dataset list

The dataset list command lists all active datasets.

Syntax

dataset list
[-long]

Arguments

-long

Lists the filename corresponding to each dataset’s or alias’ logical name. Optional.

See also

dataset alias (CR-141), dataset save (CR-148)
ModelSim SE Command Reference

CR-146 Commands

Model
dataset open

The dataset open command opens a WLF file (representing a prior simulation) and assigns
it the logical name that you specify. To close a dataset, use dataset close.

Syntax

dataset open
<filename> [<logicalname>]

Arguments

<filename>

Specifies the WLF file to open as a view-mode dataset. Required.

<logicalname>

Specifies the logical name for the dataset. Optional. This is a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the
specified WLF file.

Examples

dataset open last.wlf test

Opens the dataset file last.wlf and assigns it the logical name test.

See also

dataset alias (CR-141), dataset list (CR-145), dataset save (CR-148), vsim (CR-357) -view
option
Sim SE Command Reference

dataset rename CR-147
dataset rename

The dataset rename command changes the logical name of a dataset to the new name you
specify.

Syntax

dataset rename
<logicalname> <newlogicalname>

Arguments

<logicalname>

Specifies the existing logical name of the dataset. Required.

<newlogicalname>

Specifies the new logical name for the dataset. Required.

Examples

dataset rename test test2

Renames the dataset file "test" to "test2".

See also

dataset alias (CR-141), dataset list (CR-145), dataset open (CR-146)
ModelSim SE Command Reference

CR-148 Commands

Model
dataset save

The dataset save command writes data from the current simulation to the specified file.
This lets you save simulation data while the simulation is still in progress.

Syntax

dataset save
<datasetname> <filename>

Arguments

<datasetname>

Specifies the name of the dataset you want to save. Required.

<filename>

Specifies the name of the file to save. Required.

Examples

dataset save sim gold.wlf

Saves all current log data in the sim dataset to the file "gold.wlf".

See also

dataset snapshot (CR-149)
Sim SE Command Reference

dataset snapshot CR-149
dataset snapshot

The dataset snapshot command saves data from the current WLF file (vsim.wlf by default)
at a specified interval. This lets you take sequential or cumulative "snapshots" of your
simulation data.

Syntax

dataset snapshot
[-dir <directory>] [-disable] [-enable] [-file <filename>] [-filemode
overwrite | increment] [-mode cumulative | sequential] [-report] [-reset]
-size <file size> | -time <simulation time>

Arguments

-dir <directory>

Specifies a directory into which the files should be saved. Optional. Default is to save into
the directory where ModelSim is writing the current WLF file.

-disable

Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

-enable

Turns snapshotting on. Optional. Default.

-file <filename>

Specifies the name of the file to save. Optional. Default is "vsim_snapshot". ".wlf" will
be appended to the file and possibly an incrementing suffix if -filemode is set to
"increment".

-filemode overwrite | increment

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Default is "overwrite". If you specify "increment", a new file is created for each snapshot.
An incrementing suffix (1 to n) is added to each new file (e.g., vsim_snapshot_1.wlf).

-mode cumulative | sequential

Specifies whether to keep all data from the time signals are first logged. Optional. Default
is "cumulative". If you specify "sequential", the current WLF file is cleared every time a
snapshot is taken. See the examples for further details.

-report

Lists current snapshot settings in the Main window transcript. Optional. All other options
are ignored if you specify -report.

-reset

Resets values back to defaults. Optional. The behavior is to reset to the default, then
apply the remainder of the arguments on the command line. See examples below. If
specified by itself without any other arguments, -reset disables dataset snapshot.

-size <file size>

Specifies that a snapshot occurs based on WLF file size. You must specify either -size or
-time. See examples below.

-time <simulation time>

Specifies that a snapshot occurs based on simulation time. You must specify either -time
or -size. See examples below.
ModelSim SE Command Reference

CR-150 Commands

Model
Examples

dataset snapshot -size 10

Creates the file vsim_snapshot.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10 -mode sequential

Similar to the previous example but in this case the current WLF file is cleared every time
it reaches 10 MB.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential -filemode
increment

Assuming simulator time units are ps, this command saves a file called gold_n.wlf every
1000000 ps. If you ran for 3000000 ps, you’d have three files: gold_1.wlf with data from
0 to 1000000 ps, gold_2.wlf with data from 1000001 to 2000000, and gold_3.wlf with
data from 2000001 to 3000000.

dataset snapshot -reset -time 10000

Enables snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

See also

dataset save (CR-148)

Note: Because this example uses "sequential" mode, if you ran the simulation for
3500000 ps, the resulting vsim.wlf (the default log file) file will contain data only from
3000001 to 3500000 ps.
Sim SE Command Reference

delete CR-151
delete

The delete command removes items from either the List or Wave window.

Syntax

delete
list|wave [-window <wname>] <item_name>

Arguments

list|wave

Specifies the target window for the delete command. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the delete command (the
view command (CR-320) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-320).

<item_name>

Specifies the name of an item. Required. Must match an item name used in an add list
(CR-55) or add wave (CR-64) command. Multiple item names may be specified. Wildcard
characters are allowed.

Examples

delete list -window list2 vec2

Removes the item vec2 from the list2 window.

See also

add list (CR-55), add wave (CR-64), and "Wildcard characters" (CR-17)
ModelSim SE Command Reference

CR-152 Commands

Model
describe

The describe command displays information about the specified HDL item, C variable, or
design region. The description is displayed in the Main window transcript. The following
kinds of items can be described:

• Design region

• VHDL
signals, variables, and constants

• Verilog
nets and registers

• C
variables

• SystemC
signals and ports

VHDL signals, Verilog nets and registers, and SystemC signals and ports may be specified
as hierarchical names.

C variables can be described if you are running "C Debug" (UM-473), and the variables are
local to the active call frame for the line in the function in the C source file where you are
stopped.

Syntax

describe
<name>

Arguments

<name>

The name of an HDL item, SystemC signal, or C variable for which you want a
description. HDL item names can be full hierarchical names or relative names.

Examples

describe x

Prints the type of C variable x.

describe *p

Prints the type of what p points to.

describe clk prw prdy

Prints the types of the three specified signals.
Sim SE Command Reference

disablebp CR-153
disablebp

The disablebp command turns off breakpoints and when commands. To turn the
breakpoints or when statements back on again, use the enablebp command.

Syntax

disablebp

[<id#>]

Arguments

<id#>

Specifies a breakpoint or when command id to disable. Optional. If you don’t specify an
id#, all breakpoints are disabled. Note that C breakpoint id#s (see "C Debug" (UM-473))
are prefixed with "c.".

See also

bd (CR-76), bp (CR-81), enablebp command (CR-163), onbreak (CR-210), resume (CR-243),
when (CR-375)
ModelSim SE Command Reference

CR-154 Commands

Model
disable_menu

The disable_menu command disables the specified menu within the specified window.
The disabled menu will become grayed-out and nonresponsive. Returns nothing.

Syntax

disable_menu
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.) as shown
in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

disable_menu "" File

Disables the file menu of the Main window.

disable_menu .mywindow File

Disables the file menu of the mywindow window.

See also

add_menu (CR-58), enable_menu (CR-164)
Sim SE Command Reference

disable_menuitem CR-155
disable_menuitem

The disable_menuitem command disables a specified menu item within the specified
menu path of the specified window. The menu item will become grayed-out and
nonresponsive. Returns nothing.

Syntax

disable_menuitem
<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.

<label>

Menu item text. Required.

Examples

disable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window, and disables the Save Results As... menu
item in the save submenu of the file menu.

See also

add_menuitem (CR-61), enable_menuitem (CR-165)
ModelSim SE Command Reference

CR-156 Commands

Model
do

The do command executes commands contained in a macro file. A macro file can have any
name and extension. An error encountered during the execution of a macro file causes its
execution to be interrupted, unless an onerror command (CR-212), onbreak command (CR-

210), or the OnErrorDefaultAction Tcl variable has specified the resume command (CR-

243).

Syntax

do
<filename> [<parameter_value>]

Arguments

<filename>

Specifies the name of the macro file to be executed. Required. The name can be a
pathname or a relative file name.

Pathnames are relative to the current working directory if the do command is executed
from the command line. If the do command is executed from another macro file,
pathnames are relative to the directory of the calling macro file. This allows groups of
macro files to be moved to another directory and still work.

<parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through $9 in
the macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than
the number of parameters actually used in the macro), you must use the argc (UM-634)
simulator state variable in the macro. See "Making macro parameters optional" (UM-608).

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. You can use the shift command (CR-259) to see
the other parameters.

Examples

do macros/stimulus 100

This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do testfile design.vhd 127

If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

See also

Chapter 21 - Tcl and macros (DO files), "ModelSim modes of operation" (UM-23), "Using
a startup file" (UM-629), DOPATH (UM-613)
Sim SE Command Reference

down CR-157
down

The down command searches for signal transitions or values in the specified List window.
It executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a signal
takes on a particular value, or an expression of multiple signals evaluates to true. See the
up command (CR-282) for related functionality.

The procedure for using down includes three steps: click on the desired signal; click on the
desired starting location; issue the down command. (The seetime command (CR-257) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

down
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced List window. A signal may be specified
either by its full path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (CR-23) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Specifies that delta-width glitches are to be ignored. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Optional. Must be specified in the same radix
that the selected signal is displayed. Case is ignored, but otherwise the value must be an
exact string match -- don't-care bits are not yet implemented.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-320) to change the default
window.
ModelSim SE Command Reference

CR-158 Commands

Model
<n>

Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

Examples

down -noglitch -value FF23

Finds the next time at which the selected vector transitions to FF23, ignoring glitches.

down

Goes to the next transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-23) and can be built with the aid of the "The GUI Expression
Builder" (UM-395).

down -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches down for an expression that evaluates to a boolean 1 when signal clk just
changed from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant.

down -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches down for an expression that evaluates to a boolean 1 when the upper 8 bits of
the 32-bit signal /top/u3/addr equals hex ac.

down -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches down for an expression that evaluates to a boolean 1 when logfile time is
between 23 and 54 microseconds, clock just changed from low to high, and signal mode
is enumeration writing.

See also

"GUI_expression_format" (CR-23), view (CR-320), seetime (CR-257), up (CR-282)
Sim SE Command Reference

drivers CR-159
drivers

The drivers command displays the names of all drivers of the specified item. The driver
list is expressed relative to the top-most design signal/net connected to the specified item.
If the item is a record or array, each subelement is displayed individually.

Syntax

drivers
<item_name>

Arguments

<item_name>

Specifies the name of the signal or net whose drivers are to be shown. Required. All
signal or net types are valid. Multiple names and wildcards are accepted.

See also

readers (CR-236) command
ModelSim SE Command Reference

CR-160 Commands

Model
dumplog64

The dumplog64 command dumps the contents of the specified WLF file in a readable
format to stdout. The WLF file cannot be opened for writing in a simulation when you use
this command.

The dumplog64 command cannot be used in a DO file.

Syntax

dumplog64
<filename>

Arguments

<filename>

The name of the WLF file to be read. Required.
Sim SE Command Reference

echo CR-161
echo

The echo command displays a specified message in the Main window.

Syntax

echo
[<text_string>]

Arguments

<text_string>

Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

echo “The time is $now ns.”

If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, all blank spaces of two or more are compressed into one space.

echo The time is $now ns.

If the current time is 1000ns, this command produces the message:

The time is 1000 ns.

echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.
ModelSim SE Command Reference

CR-162 Commands

Model
edit

The edit command invokes the editor specified by the EDITOR environment variable.

Syntax

edit
[<filename>]

Arguments

<filename>

Specifies the name of the file to edit. Optional. If the <filename> is omitted, the editor
opens the current source file. If you specify a non-existent filename, it will open a new
file.

See also

notepad (CR-207), and the EDITOR (UM-613) environment variable
Sim SE Command Reference

enablebp CR-163
enablebp

The enablebp command turns on breakpoints and when commands that were previously
disabled.

Syntax

enablebp

[<id#>]

Arguments

<id#>

Specifies a breakpoint or when statement id to enable. Optional. If you don’t specify an
id#, all breakpoints are enabled. Note that C breakpoint id#s (see "C Debug" (UM-473))
are prefixed with "c.".

See also

bd (CR-76), bp (CR-81), disablebp command (CR-153), onbreak (CR-210), resume (CR-243),
when (CR-375), Chapter 14 - C Debug (UM-473)
ModelSim SE Command Reference

CR-164 Commands

Model
enable_menu

The enable_menu command enables a previously-disabled menu. The menu will be
changed from grayed-out to normal and will become responsive. Returns nothing.

Syntax

enable_menu
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

enable_menu "" File

Enables the previously-disabled File menu of the Main window.

enable_menu .mywindow File

Enables the previously-disabled File menu of the mywindow window.

See also

add_menu (CR-58), disable_menu (CR-154)
Sim SE Command Reference

enable_menuitem CR-165
enable_menuitem

The enable_menuitem command enables a previously-disabled menu item. The menu
item will be changed from grayed-out to normal, and will become responsive. Returns
nothing.

Syntax

enable_menuitem
<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.

<label>

Menu item text. Required.

Examples

enable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window and enables the previously-disabled Save
Results As... menu item in the save submenu of the file menu.

See also

add_menuitem (CR-61), disable_menuitem (CR-155)
ModelSim SE Command Reference

CR-166 Commands

Model
environment

The environment, or env command, allows you to display or change the current dataset
and region/signal environment.

Syntax

environment
[-dataset] [-nodataset] [[<dataset_prefix>] [<pathname>]]

Arguments

-dataset

Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.

-nodataset

Displays the specified environment pathname without a dataset prefix. Optional.

<dataset_prefix>

Changes all unlocked windows to the specified dataset context. Optional. The prefix is
the logical name of the dataset followed by a colon (e.g., "sim:"). If the <pathname>
argument is specified as well, it will change the environment to that specified context. If
<pathname> is omitted, the environment reflects the previously set context. If you don’t
specify a dataset prefix, then the current dataset is used.

<pathname>

Specifies the pathname to which the current region/signal environment is to be changed.
Optional. If omitted the command causes the pathname of the current region/signal
environment to be displayed.

Multiple levels of a pathname must be separated by the character specified in the
PathSeparator (UM-624). A single path separator character can be entered to indicate the
top level. Two dots (..) can be entered to move up one level.

Examples

env

Displays the pathname of the current region/signal environment.

env -dataset test

Changes all unlocked windows to the context of the "test" dataset.

env test:/top/foo

Changes all unlocked windows to the context "test: /top/foo".

env blk1/u2

Moves down two levels in the design hierarchy.

env /

Moves to the top level of the design hierarchy.
Sim SE Command Reference

examine CR-167
examine

The examine command examines one or more HDL or SystemC items, and displays
current values (or the values at a specified previous time) in the Main window (UM-262). It
optionally can compute the value of an expression of one or more items. If you are using C
Debug (UM-473), examine can display the value of a C variable as well.

 The following items can be examined:

• VHDL
signals, shared variables, process variables, constants, and generics

• Verilog
nets, registers, and variables

• C
variables

• SystemC
signals and ports

When stopped in C code, examine (with no arguments) displays the values of the local
variables and arguments of the current C function.

To display a previous value, specify the desired time using the -time option. To compute
an expression, use the -expr option. The -expr and the -time options may be used together.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL item:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first item name cannot be found
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching item name.

• If no items of the specified name can be found in the specified context, then an upward
search is done to look for a matching item in any visible enclosing scope up to an instance
boundary. If at least one match is found within a given context, no (more) upward
searching is done; therefore, some items that may be visible from a given context will not
be found when wildcards are used if they are within a higher enclosing scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name and
inside of a slice specification.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See "HDL and SystemC item names" (CR-12) for more information on specifying names.
ModelSim SE Command Reference

CR-168 Commands

Model
Syntax

examine
[-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-expr <expression>] [-name] [-<radix>] [-time <time>] [-value] <name>...

Arguments

-delta <delta>

Specifies a simulation cycle at the specified time from which to fetch the value. Optional.
The default is to use the last delta of the time step. The items to be examined must be
logged via the add list, add wave, or log command in order for the examine command to
be able to return a value for a requested delta. This option can be used only with items
that have been logged via the add list, add wave, or log command.

-env <path>

Specifies a path to look for a signal name. Optional.

-expr <expression>

Specifies an expression to be evaluated. Optional. The items to be examined must be
logged via the add list, add wave, or log command in order for the examine command to
be able to evaluate the specified expression. If the -time argument is present, the
expression will be evaluated at the specified time, otherwise it will be evaluated at the
current simulation time. See "GUI_expression_format" (CR-23) for the format of the
expression. The expression must be placed within curly braces.

-in

Specifies that <name> include ports of mode IN. Optional.

-out

Specifies that <name> include ports of mode OUT. Optional.

-inout

Specifies that <name> include ports of mode INOUT. Optional.

-internal

Specifies that <name> include internal (non-port) signals. Optional.

-ports

Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

-name

Displays signal name(s) along with the value(s). Optional. Default is -value behavior
(see below).

The lecho command (CR-184) will return the output of an examine command in
"pretty-print" format. For example,

lecho [examine -name clk prw pstrb]

-<radix>

Specifies the radix for the items that follow in the command. Valid entries (or any unique
abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, and default. If
no radix is specified for an enumerated type, the default representation is used. You can
change the default radix for the current simulation using the radix command (CR-235).
Sim SE Command Reference

examine CR-169
You can change the default radix permanently by editing the DefaultRadix (UM-623)
variable in the modelsim.ini file.

-time <time>

Specifies the time value between 0 and $now for which to examine the items. Optional.
If an expression is specified it will be evaluated at that time. The items to be examined
must be logged via the add list, add wave, or log command in order for the examine
command to be able to return a value for a requested time. This option can be used only
with items that have been logged via the add list, add wave, or log command.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

-value

Returns value(s) as a curly-braces separated Tcl list. Default. Use to toggle off a previous
use of -name.

<name>...

Specifies the name of any HDL or SystemC item. Required (except when the -expr
option is used). All item types are allowed, except those of the type file. Multiple names
and wildcards are accepted. Spaces, square brackets, and extended identifiers require
curly braces; see examples below for more details. To examine a VHDL variable you can
add a process label to the name. For example (make certain to use two underscore
characters):

exa line__36/i

Examples

examine /top/bus1

Returns the value of /top/bus1.

examine {rega[16]}

Returns the value of the subelement of rega that is specified by the index (i.e., 16). Note
that you must use curly braces when examining subelements.

examine {foo[20:22]}

Returns the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the curly braces.

examine {/top/\My extended id\ }

Note that when specifying an item that contains an extended identifier as the last part of
the name, there must be a space after the closing '\' and before the closing '}'.

examine -time {3450 us} -expr {/top/bus and $bit_mask}

In this example the -expr option specifies a signal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.
ModelSim SE Command Reference

CR-170 Commands

Model
examine -expr {clk’event && (/top/xyz == 16’hffae)}

Because -time is not specified, this expression will be evaluated at the current simulation
time. Note the signal attribute and array constant specified in the expression.

Commands like find (CR-172) and examine return their results as a Tcl list (just a blank-
separated list of strings). You can do things like:

foreach sig [find ABC*] {echo "Signal $sig is [exa $sig]" ...}

if {[examine -bin signal_12] == “11101111XXXZ”} {...}

examine -hex [find *]

The Tcl variable array, $examine (), can also be used to return values. For example,
$examine (/clk). You can also examine an item in the Source window (UM-325) by
selecting it with the right mouse button.

examine x

Prints the value of C variable x.

examine *p

Prints the value *p (de-references p).

examine ip->in1

Prints the structure member in1 pointed to by ip.

See also

"HDL and SystemC item names" (CR-12), "Wildcard characters" (CR-17),
"GUI_expression_format" (CR-23), Chapter 14 - C Debug (UM-473)
Sim SE Command Reference

exit CR-171
exit

The exit command exits the simulator and the ModelSim application.

If you want to stop the simulation using a when command (CR-375), you must use a stop
command (CR-265) within your when statement. DO NOT use an exit command or a quit
command (CR-234). The stop command acts like a breakpoint at the time it is evaluated.

Syntax

exit
[-force]

Argument

-force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting.
ModelSim SE Command Reference

CR-172 Commands

Model
find

The find command locates items in the design whose names match the name specification
you provide. You must specify the type of item you want to find. When searching for nets
and signals, the find command returns the full pathname of all nets, signals, registers,
variables, and named events that match the name specification.

When searching for nets and signals, the order in which arguments are specified is
unimportant. When searching for virtuals, however, all optional arguments must be
specified before any item names.

The following rules are used by the find command to locate an item:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first item name cannot be found
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching item name.

• If no items of the specified name can be found in the specified context, then an upward
search is done to look for a matching item in any visible enclosing scope up to an instance
boundary. If at least one match is found within a given context, no (more) upward
searching is done; therefore, some items that may be visible from a given context will not
be found when wildcards are used if they are within a higher enclosing scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name and
inside of a slice specification. Square bracket ’[]’ wildcards can also be used.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

• Because square brackets are wildcards in the find command, only parentheses ’()’ can be
used to index or slice arrays.

• The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See "HDL and SystemC item names" (CR-12) for more information on specifying names.

Syntax

find nets | signals
[-in] [-inout] [-internal] <item_name> ... [-nofilter] [-out] [-ports]
[-recursive]

find instances
[-recursive] <item_name> ...

find virtuals
[-kind <kind>] [-unsaved] <item_name> ...

find classes
[<class_name>]

find objects
[-class <class_name>] [-isa <class_name>] [<object_name>]
Sim SE Command Reference

find CR-173
Arguments for nets and signals

-in

Specifies that the scope of the search is to include ports of mode IN. Optional.

-inout

Specifies that the scope of the search is to include ports of mode INOUT. Optional.

-internal

Specifies that the scope of the search is to include internal (non-port) items. Optional.

<item_name> ...

Specifies the net or signal for which you want to search. Required. Multiple nets and
signals and wildcard characters are allowed. Wildcards cannot be used inside of a slice
specification. Spaces, square brackets, and extended identifiers require special syntax;
see the examples below for more details.

-nofilter

Specifies that the WildcardFilter Tcl preference variable be ignored when finding signals
or nets. Optional.

-out

Specifies that the scope of the search is to include ports of mode OUT. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional. Has the same effect
as specifying -in, -out, and -inout together.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

Arguments for instances

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

<item_name> ...

Specifies the instance for which you want to search. Required. Multiple instances and
wildcard characters are allowed.

Arguments for virtuals

-kind <kind>

Specifies the kind of virtual object for which you want to search. Optional. <kind> can
be one of designs, explicits, functions, implicits, or signals.

-unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

<item_name> ...

Specifies the virtual object for which you want to search. Required. Multiple virtuals and
wildcard characters are allowed.
ModelSim SE Command Reference

CR-174 Commands

Model
Arguments for classes

<class_name>

Specifies the incrTcl class for which you want to search. Optional. Wildcard characters
are allowed. The options for class_name include nets, objects, signals, and virtuals. If you
do not specify a class name, the command returns all classes in the current namespace
context. See "incrTcl commands" in the Tcl Man Pages for more information.

Arguments for objects

-class <class_name>

Restricts the search to objects whose most-specific class is class_name. Optional.

-isa <class_name>

Restricts the search to those objects that have class_name anywhere in their heritage.
Optional.

<object_name>

Specifies the incrTcl object for which you want to search. Optional. Wildcard characters
are allowed. If you do not specify an object name, the command returns all objects in the
current namespace context. See "incrTcl commands" in the Tcl Man Pages for more
information.

Examples

find signals -r /*

Finds all signals in the entire design.

find nets -in /top/xy*

Finds all input signals in region /top that begin with the letters "xy".

find signals -r u1/u2/cl*

Finds all signals in the design hierarchy at or below the region <current_context>/u1/u2
whose names begin with "cl".

find signals {s[1]}

Finds a signal named s1. Note that you must enclose the item in curly braces because of
the square bracket wildcard characters.

find signals {s[123]}

Finds signals s1, s2, or s3.

find signals s(1)

Finds the element of signal s that is indexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.

find signals {/top/data(3 downto 0)}

Finds a 4-bit array named data. Note that you must use curly braces due to the spaces in
the array slice specification.

find signals {/top/\My extended id\ }

Note that when specifying an item that contains an extended identifier as the last part of
the name, there must be a space after the closing '\' and before the closing '}'.
Sim SE Command Reference

find CR-175
if {[find signals /dut/core/pclk] != ""} {
echo "pclk does exist"

}

If /dut/core/pclk exists, prints the message "pclk does exist" in the transcript. This would
typically be run in a Tcl script.

Additional search options

To search for HDL items within a specific display window, use the search command (CR-

253) or select Edit > Find.

See also

"HDL and SystemC item names" (CR-12), "Wildcard characters" (CR-17)
ModelSim SE Command Reference

CR-176 Commands

Model
force

The force command allows you to apply stimulus interactively to VHDL signals and
Verilog nets. Since force commands (like all commands) can be included in a macro file,
it is possible to create complex sequences of stimuli.

You can force Virtual signals (UM-248) if the number of bits corresponds to the signal value.
You cannot force virtual functions. In VHDL and mixed models, you cannot force an input
port that is mapped at a higher level or that has a conversion function on the input.

You cannot force bits or slices of a register; you can force only the entire register. You
cannot force VHDL or Verilog variables (reg, integer, time, real (or realtime)); these must
be changed. See the change command (CR-87).

You cannot force a VHDL alias of a VHDL signal.

You cannot force any items within SystemC modules.

Syntax

force
[-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>] <item_name>
<value> [<time>] [, <value> <time> ...]

Arguments

-freeze

Freezes the item at the specified value until it is forced again or until it is unforced with
a noforce command (CR-204). Optional.

-drive

Attaches a driver to the item and drives the specified value until the item is forced again
or until it is unforced with a noforce command (CR-204). Optional.

This option is illegal for unresolved signals.

-deposit

Sets the item to the specified value. The value remains until there is a subsequent driver
transaction, or until the item is forced again, or until it is unforced with a noforce
command (CR-204). Optional.

If one of the -freeze, -drive, or -deposit options is not used, then -freeze is the default
for unresolved items and -drive is the default for resolved items.

If you prefer -freeze as the default for resolved and unresolved VHDL signals, change
the default force kind in the DefaultForceKind (UM-623) preference variable.

-cancel <time>

Cancels the force command at the specified <time>. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero
cancels the force at the end of the current time period. Optional.

-repeat <time>

Repeats the force command, where <time> is the time at which to start repeating the
cycle. The time is relative to the current time. A repeating force command will force a
Sim SE Command Reference

force CR-177
value before other non-repeating force commands that occur in the same time step.
Optional.

<item_name>

Specifies the name of the HDL item to be forced. Required. A wildcard is permitted only
if it matches one item. See "HDL and SystemC item names" (CR-12) for the full syntax of
an item name. The item name must specify a scalar type or a one-dimensional array of
character enumeration. You may also specify a record subelement, an indexed array, or
a sliced array, as long as the type is one of the above. Required.

<value>

Specifies the value to which the item is to be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with a radix of 2, 8, 10 or 16. For example, the
following values are equivalent for a signal of type bit_vector (0 to 3):

<time>

Specifies the time to which the value is to be applied. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @. If
the time units are not specified, then the default is the resolution units selected at
simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than the
next) simulation delta cycle.

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

Note: For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate
value for the number’s enumerated type. The translation is controlled by the translation
table in the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it uses the left
bound of the signal type (type’left) for that value.
ModelSim SE Command Reference

CR-178 Commands

Model
Examples

force input1 0

Forces input1 to 0 at the current simulator time.

force bus1 01XZ 100 ns

Forces bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 16#f @200

Forces bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force input1 1 10, 0 20 -r 100

Forces input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition is to 1 at 100 time units after the current
simulation time.

force input1 1 10 ns, 0 {20 ns} -r 100ns

Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000

Forces signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit. So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}

Forces siga to decimal value 85 whenever the value on the signal is 1.

See also

noforce (CR-204), change (CR-87)

Note: You can configure defaults for the force command by setting the
DefaultForceKind variable in the modelsim.ini file. See "Force command defaults" (UM-

630).
Sim SE Command Reference

gdb dir CR-179
gdb dir

The gdb dir command sets the source directory search path for the C debugger. See
"Setting up C Debug" (UM-475) for more information.

Syntax

gdb dir
[<src_directory_path_1>[:<src_directory_path_2>[:<...>]]]

Argument

<src_directory_path_1>[:<src_directory_path_2>[:<...>]]

Specifies one or more directories for C source code. Optional. If no directory is specified,
the source directory search path is set to the gdb default–$cdir:$cwd.

Examples

gdb dir /a/b/c:~/foo

Sets the source directory search path to /a/b/c:~/foo:$cdir:$cwd

See also

Chapter 14 - C Debug (UM-473)
ModelSim SE Command Reference

CR-180 Commands

Model
getactivecursortime

The getactivecursortime command gets the time of the active cursor in the Wave window.

Returns the time value.

Syntax

getactivecursortime
[-window <wname>]

Arguments

-window <wname>

Specifies an instance of the Wave window that is not the default. Otherwise, the default
Wave window is used. Optional. Use the view command (CR-320) to change the default
window.

Examples

getactivecursortime

Returns:

980 ns

See also

left (CR-185), right (CR-244)
Sim SE Command Reference

getactivemarkertime CR-181
getactivemarkertime

The getactivemarkertime command gets the time of the active marker in the List window.

Returns the time value. If -delta is specified, returns time and delta.

Syntax

getactivemarkertime
[-window <wname>] [-delta]

Arguments

-window <wname>

Specifies an instance of the List window that is not the default. Otherwise, the default List
window is used. Optional. Use the view command (CR-320) to change the default
window.

-delta

Returns the delta value. Optional. Default is to return only the time.

Examples

getactivemarkertime -delta

Returns:

980 ns, delta 0

See also

down (CR-157), up (CR-282)
ModelSim SE Command Reference

CR-182 Commands

Model
help

The help command displays in the Main window a brief description and syntax for the
specified command.

Syntax

help
[<command> | <topic>]

Arguments

<command>

Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

<topic>

Specifies a topic for which you want help. The entry is case and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and topics

debugging Lists debugging commands

execution Lists commands that control execution of
your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL commands
Sim SE Command Reference

history CR-183
history

The history command lists the commands you have executed during the current session.
History is a Tcl command. For more information, consult the Tcl Man Pages.

Syntax

history
[clear] [keep <value>]

Arguments

clear

Clears the history buffer. Optional.

keep <value>

Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.
ModelSim SE Command Reference

CR-184 Commands

Model
lecho

The lecho command takes one or more Tcl lists as arguments and pretty-prints them to the
Main window. Returns nothing.

Syntax

lecho
<args> ...

Arguments

<args> ...

Any Tcl list created by a command or user procedure.

Examples

lecho [configure wave]

Prints the Wave window configuration list to the Main window.
Sim SE Command Reference

left CR-185
left

The left command searches left (previous) for signal transitions or values in the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signals evaluates to true.
See the right command (CR-244) for related functionality.

The procedure for using left entails three steps: click on the desired waveform; click on the
desired starting location; issue the left command. (The seetime command (CR-257) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

left
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced Wave window. A signal may be specified
either by its full path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (CR-23) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Looks at signal values only on the last delta of a time step. For use with -value option
only. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Must be specified in the same radix in which the
selected waveform is displayed. Case is ignored, but otherwise the value must be an exact
string match — don't-care bits are not yet implemented. Only one signal may be selected,
but that signal may be an array. Optional.

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-320) to change the default
window.
ModelSim SE Command Reference

CR-186 Commands

Model
<n>

Specifies to find the nth match. If less than n are found, the number found is returned with
a warning message, and the cursor is positioned at the last match. Optional. The default
is 1.

Examples

left -noglitch -value FF23 2

Finds the second time to the left at which the selected vector transitions to FF23, ignoring
glitches.

left

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-23) and can be built with the aid of the "The GUI Expression
Builder" (UM-395).

left -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches left for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant; otherwise is 0.

left -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches left for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

left -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches left for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-23), right (CR-244), seetime (CR-257), view (CR-320)

Note: Wave window mouse and keyboard shortcuts (UM-363) are also available for next
and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).
Sim SE Command Reference

log CR-187
log

The log command creates a wave log format (WLF) file containing simulation data for all
HDL items whose names match the provided specifications. Items (VHDL signals and
variables, Verilog nets and registers, and SystemC primitive channels and ports) that are
displayed using the add list (CR-55) and add wave (CR-64) commands are automatically
recorded in the WLF file. The log is stored in a WLF file (formerly a WAV file) in the
working directory. By default the file is named vsim.wlf. You can change the default name
using the -wlf option of the vsim (CR-357) command.

If no port mode is specified, the WLF file contains data for all items in the selected region
whose names match the item name specification.

The WLF file is the source of data for the List and Wave windows. An item that has been
logged and is subsequently added to the List or Wave window will have its complete
history back to the start of logging available for listing and waving.

Limitations: Verilog memories and VHDL variables can be logged using the variable’s full
name only.

Syntax

log
[-depth <level>] [-flush] [-howmany] [-in] [-inout] [-internal]
[-optcells] [-out] [-ports] [-recursive] <item_name> ...

Arguments

-depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-flush

Adds region data to the WLF file after each individual log command. Optional. Default
is to add region data to the log file only when a command that advances simulation time
is executed (e.g., run, step, etc.) or when you quit the simulation.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Specifies that the WLF file is to include data for ports of mode IN whose names match
the specification. Optional.

-inout

Specifies that the WLF file is to include data for ports of mode INOUT whose names
match the specification. Optional.

-internal

Specifies that the WLF file is to include data for internal (non-port) items whose names
match the specification. Optional.
ModelSim SE Command Reference

CR-188 Commands

Model
-optcells

Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

-out

Specifies that the WLF file is to include data for ports of mode OUT whose names match
the specification. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region. You can use the -depth argument
to specify how far down the hierarchy to descend.

<item_name>

Specifies the item name which you want to log. Required. Multiple item names may be
specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference
variable identifies types to ignore when matching items with wildcard patterns.)

Examples

log -r /*

Logs all items in the design.

log -out *

Logs all output ports in the current design unit.

See also

add list (CR-55), add wave (CR-64), nolog (CR-205), Chapter 9 - WLF files (datasets) and
virtuals (UM-239), and "Wildcard characters" (CR-17)

Note: The log command is also known as the "add log" command.
Sim SE Command Reference

lshift CR-189
lshift

The lshift command takes a Tcl list as an argument and shifts it in-place, one place to the
left, eliminating the 0th element. The number of shift places may also be specified. Returns
nothing.

Syntax

lshift
<list> [<amount>]

Arguments

<list>

Specifies the Tcl list to target with lshift. Required.

<amount>

Specifies the number of places to shift. Optional. Default is 1.

Examples
proc myfunc args {

 # throws away the first two arguments

 lshift args 2

 ...

 }

See also

See the Tcl man pages (Help > Tcl Man Pages) for details.
ModelSim SE Command Reference

CR-190 Commands

Model
lsublist

The lsublist command returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern.

Syntax

lsublist
<list> <pattern>

Arguments

<list>

Specifies the Tcl list to target with lsublist. Required.

<pattern>

Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

Examples

In the example below, variable ‘t’ returns "structure signals source".
set window_names "structure signals variables process source wave list
dataflow"

set t [lsublist $window_names s*]

See also

The set command is a Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.
Sim SE Command Reference

macro_option CR-191
macro_option

This command is available for UNIX only (excluding Linux).

The macro_option command controls the speed and delay of macro (DO file) playback,
plus the level of debugging feedback. If invoked without any options, macro_option
returns all current settings; returns a specific setting if invoked with an option and no
argument; returns the previous setting if invoked with both an option and an argument.

Syntax

macro_option
[speed fast | demo] | [delay <delay_time>] | [debug <level>]

Arguments

speed fast | demo

Set the macro playback speed to fast or demo. Optional.

delay <delay_time>

Set the delay time in milliseconds; delay is the time between events in demo mode.
Optional.

debug <level>

Set the debug level from 1 to 9; 9 giving the most feedback. Optional.

See also

play (CR-214), run (CR-246)
ModelSim SE Command Reference

CR-192 Commands

Model
mem display

The mem display command displays the memory contents of a selected instance to the
screen. As a shorthand, if the given instance path only contains a single array signal or
variable, the signal or variable name need not be specified.

Address radix, data radix, and address range for the output can also be specified, as well as
special output formats.

You can redirect the output of the mem display command into a file for later use with the
mem load command. The output file can also be read by the Verilog $readmem system
tasks if the memory module is a Verilog module and Verilog memory format (hex or
binary) is specified. The format settings are stored at the top of this file as a pseudo
comment so that subsequent mem load commands can correctly interpret the data. Do not
edit this data when manipulating a saved file.

By default, identical data lines are printed. To replace identical lines with a single line
containing the asterisk character, you can enable compression with the -compress
argument.

Syntax

mem display
[-format [bin | hex | mti]] [-addressradix <radix>] [-dataradix <radix>]
[-wordsperline <Nwords>] [-startaddress <st>] [-endaddress <end>]
[-noaddress] [-compress] [<path>]

Arguments

-format [bin | hex | mti]

Specifies the output format of the contents. Optional. The default format is mti. For
details on mti format, see the description contained in mem load (CR-195).

-addressradix <radix>

Specifies the address radix for the default (mti) formatted files. The <radix> can be
specified as: d (decimal) or h (hex). Optional. If the output format is mti, the default is d.

-dataradix <radix>

Specifies the data radix for the default (mti) formatted files. Optional. If unspecified, the
global default radix is used. Valid entries (or any unique abbreviations) are: binary,
decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified for an
enumerated type, the symbolic representation is used. You can change the default radix
for the current simulation using the radix (CR-235). You can change the default radix
permanently by editing the DefaultRadix (UM-623) variable in the modelsim.ini file.

-wordsperline <Nwords>

Specifies how many words are to be printed on each line, with the default assuming an
80 column display width. <Nwords> is an unsigned integer. Optional.

-startaddress <st>

Specifies the start address for a range of addresses to be displayed. The <st> can be
specified as any valid address in the memory. Optional. If unspecified, the default is the
start of the memory.
Sim SE Command Reference

mem display CR-193
-endaddress <end>

Specifies the end address for a range of addresses to be displayed. The <end> can be
specified as any valid address in the memory. Optional. If unspecified, the default is the
end of the memory.

-noaddress

Specifies that addresses not be printed. Optional.

-compress

Specifies that identical lines not be printed. Optional. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during a mem load operation.

<path>

Specifies the full path to the memory instance. Optional. The default is the current
context, as shown in the Structure window. Index can be specified.

Examples

mem display -startaddress 5 -endaddress 10/top/c/mru_mem

This command displays the memory contents of instance /top/m/mru_mem, addresses 5
to 10 to the screen as follows:

5: 110 110 110 110 110 000

mem display -format hex -startaddress 5 -endaddress 10 /top/c/mru_mem

Displays the memory contents of the same instance to the screen in hex format, as
follows:

5: 6 6 6 6 6 0

See Also

mem load (CR-195)
ModelSim SE Command Reference

CR-194 Commands

Model
mem list

The mem list command displays a flattened list of all memory instances in the current or
specified context after a design has been elaborated. Each instance line is prefixed by
"VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, and depth and width of the memory.

Syntax

mem list
[-recursive] [<path>]

Arguments

-recursive

Recursively descends into sub-modules when listing memories. Optional.

<path>

The hierarchical path to the location the search should start. Optional. The default is the
current context, as shown in the Structure window.

Examples

mem list -r /

Recursively lists all memories at the top level of the design. Returns:

Verilog: /top/m/mem[0:255](256d x 16w)

mem list /top2/uut -r

Recursively lists all memories in /top2/uut. Returns:

Verilog: /top2/uut/mem[0:255] x 16w
Sim SE Command Reference

mem load CR-195
mem load

The mem load command updates the simulation memory contents of a specified instance.
You can upload contents either from a memory data file, a memory pattern, or both. If both
are specified, the pattern is applied only to memory locations not contained in the file.

A relocatable memory file is one that has been saved without address information. You can
load a relocatable memory file into the instance of a memory core by specifying an address
range on the mem load command line. If no address range (starting and ending address) is
specified, the memory is loaded starting at the first location.

The order in which the data is placed into the memory depends on the format specified by
the -format option. If you choose bin or hex format, the memory is filled low to high, to be
compatible with $readmem commands. This is in contrast to the default mti format, which
fills the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in a file is
wider than the word width of the memory, the leftmost bits (msb’s) in the data words are
ignored. If the word width in the file is less than the width of the memory, and the left-most
digit of the file data is not ’X’, then the left-most bits are zero filled. Otherwise, they are
X-filled.

The type of data required for the -filldata argument is dependent on the -filltype specified:
a fixed value, or one that governs an incrementing, decrementing, or random sequence.

• For fixed pattern values, the fill pattern is repeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

• For incrementing or decrementing patterns, each memory word is treated as an unsigned
quantity, and each successive memory location is filled in with a value one higher or
lower than the previous value. The initial value must be specified.

• For a random pattern, a random data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequence is
identical.

The interpretation of the pattern data is performed according to the default system radix
setting. However, this can be overridden with a standard Verilog-style
‘<radix_char><data> specification.

Syntax

mem load

[-infile <infile> -format [bin | hex | mti]]

[-filltype <filltype> -filldata <patterndata> [-skip <Nwords>]]

[-startaddress <st> -endaddress <end>] [<path>]|

Arguments

-infile <infile>

Updates memory data from the specified file. Required unless the -filltype argument is
used.
ModelSim SE Command Reference

CR-196 Commands

Model
-format [bin | hex | mti]

Specifies the format of the file to be loaded. The <formtype> can be specified as: bin,
hex, or mti. bin and hex are the standard Verilog hex and binary memory pattern file
formats. These can be used with Verilog memories, and with VHDL memories composed
of std_logic types. mti is the "MTI memory data file format" (UM-313).

In the MTI memory data file format, internal file address and data radix settings are
stored within the file itself. Thus, there is no need to specify these settings on the mem
load command line. If a format specified on the command line and the format signature
stored internally within the file do not agree, the file cannot be loaded.

-filltype <filltype>

Fills in memory data patterns algorithmically. The <filltype> can be specified as: value,
inc, dec, or rand. Required unless the -infile argument is used, in which case it is optional.
Default is value.

-filldata <patterndata>

Specifies the pattern parameters, value for fixed-value fill operations, and seed or starting
point for random, increment, or decrement fill operations. Required if -filltype is used.

A fill pattern covers any of the selected address range that is not populated from file
values. If a fill pattern is used without a file option, the entire memory or specified
address range is initialized with the fill pattern.

-skip <Nwords>

Specifies the number of words to be skipped between each fill pattern value. <Nwords>
is specified as an unsigned integer. Optional. Used with -filltype and -filldata.

-startaddress <st>

Specifies the start address for a range of addresses to be loaded. The <st> can be specified
as any valid address in the memory. Optional.

-endaddress <end>

Specifies the end address for a range of addresses to be loaded. The <st> can be specified
as any valid address in the memory. Optional.

<path>

The hierarchical path to the memory instance. If the memory instance name is unique,
shorthand instance names can be used. Optional. The default is the current context, as
shown in the Workspace area of the Main window.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.
Sim SE Command Reference

mem load CR-197
Examples

mem load -infile vals.mem -format bin -filltype value -filldata 1‘b0
/top/m/mem

Loads the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1‘b0. When you enter the mem
display command on memory addresses 0 through 12, you see the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem
0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value -filldata
16’Hbeef /top/m/mru_mem

Loads the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16’Hbeef.

mem load -filltype value -filldata "16’hab 16’hcd" /top/mem2 -skip 3

Loads memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

See also

mem save (CR-198)
ModelSim SE Command Reference

CR-198 Commands

Model
mem save

The mem save command saves the contents of a memory instance to a file in any of the
supported formats: Verilog binary, Verilog hex, and MTI memory pattern data.

This command works identically to the mem display command, except that its output is
written to a file rather than a display.

The order in which the data is placed into the saved file depends on the format specified by
the -format argument. If you choose bin or hex format, the file is populated from low to
high, to be compatible with $readmem commands. This is in contrast to the default mti
format, which populates the file according to the memory declaration, from left index to
right index.

You can use the mem save command to generate relocatable memory data files. The
-noaddress option omits the address information from the memory data file. You can later
load the generated memory data file using the memory load command.

Syntax

mem save
[-format bin | hex | mti] [-addressadix <radix>] [-dataradix <radix>]
[-wordsperline <Nwords>] [-startaddress <st> -endaddress <end>]
[-noaddress] [-compress] [<path>] -outfile <filename>

Arguments

-format bin | hex | mti

Specifies the output format. The <format_spec> can be specified as Bin, Hex, or mti.
Optional. The default format is mti. The MTI memory pattern data format is described in
mem load (CR-195).

-addressadix <radix>

Specifies the address radix for the default mti formatted files. Optional. The <radix> can
be specified as: Dec or Hex. The default is the decimal representation.

-dataradix <radix>

Specifies the data radix for the default mti formatted files. Optional. The <radix> can be
specified as: Symbolic, Binary, Octal, Decimal, Unsigned, or Hex. You can change the
default radix for the current simulation using the radix (CR-235). You can change the
default radix permanently by editing the DefaultRadix (UM-623) variable in the
modelsim.ini file.

-wordsperline <Nwords>

Specifies how many memory values are to be printed on each line. Optional. The default
assumes an 80 character display width. The <Nwords> is specified as an unsigned
integer.

-startaddress <st>

Specifies the start address for a range of addresses to be saved. The <st> can be specified
as any valid address in the memory. Optional.

-endaddress <end>

Specifies the end address for a range of addresses to be saved. The <st> can be specified
as any valid address in the memory. Optional.
Sim SE Command Reference

mem save CR-199
-noaddress

Prevents addresses from being printed. Optional. Mutually exclusive with the
-compress option.

-compress

Specifies that only unique lines are printed, identical lines are not printed. Optional.
Mutually exclusive with the -noaddress option.

-outfile <filename>

Specifies that the memory contents be stored in <filename>. Required.

<path>

The hierarchical path to the location the memory instance. Optional. The default is the
current context, as shown in the Structure window.

Examples

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

Saves the memory contents of the instance /top/m/mem(0:10) to memfile, written in the
default mti radix. The contents of memfile are as follows:

// memory data file (do not edit the following line - required for mem load
use)
// format=mti addressradix=d dataradix=s version = 1.0
0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 xxxxxxxxxxxxxxxx

See also

mem display (CR-192), mem load (CR-195)
ModelSim SE Command Reference

CR-200 Commands

Model
mem search

The mem search command finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance. Shorthand instance names are
accepted. Optionally, you can instruct the command to print all occurrences. The search
pattern can be one word or a sequence of words.

Syntax

mem search
[-addressradix <radix>] [-dataradix <radix>] [-all]
[-replace <word>[<word>...]] [-startaddress <st>] [-endaddress <end>]
[<path>] -pattern <word>[<word>...]

Arguments

-addressradix <radix>

Specifies the radix for the address being displayed. The <radix> can be specified as
decimal or hexadecimal. Default is decimal. Optional.

-dataradix <radix>

Specifies the radix for the memory data being displayed. Optional. By default, the radix
displayed is the system default.

-all

Searches specified memory range and prints out all matching occurrences to the screen.
Optional. By default only the first matching occurrence is printed.

-replace <word>[<word>...]

Replaces the found patterns with a designated pattern. Optional. If this option is used,
each pattern specified by the -pattern argument must have a corresponding pattern
specified by the -replace argument. Multiple word patterns are accepted, separated by a
single white space. No wildcards are allowed in the replaced pattern.

-startaddress <st>

Specifies the start address for a range of addresses to search. The <st> can be specified
as any valid address in the memory. Optional.

-endaddress <end>

Specifies the end address for a range of addresses to search. The <st> can be specified as
any valid address in the memory. Optional.

<path>

Specifies the hierarchical path to the location of the memory instance. Optional. The
default is the current context value, as shown in the Structure window.

-pattern <word>[<word>...]

Specifies the value of the pattern for the search. Required. Multiple word patterns are
accepted, separated by a single white space. Wildcards are accepted in the pattern.
Sim SE Command Reference

mem search CR-201
Examples

mem search -pattern 16‘Hbeef -dataradix hex /uut/u0/mem3

Searches for and prints to the screen all occurrences of the pattern 16‘Hbeef in /uut/u0/
mem3. Returns:

#7845: beef
#7846: beef
#100223: beef

mem search -p 16‘Hbeef -d hex -replace 16‘Hcafe -st 7846 -end 150000 /uut/
u1/mem3

Searches for and prints only the first occurrences of 16‘Hbeef in the address range
7845:150000, replacing them with 16‘Hcafe in /uut/u0/mem3. Returns:

#7846: cafe

mem search -p 16‘Hbeef -r 16‘Habe -addressadix hex -all /uut/u1/mem3

Replaces all occurrences of 16‘Hbeef with 16‘Habe in /uut/u0/mem3. Returns:

#1ea5: 2750
#1ea6: 2750
#1877f: 2750

mem search -p "*f"

Searches for and prints the first occurrence any pattern ending in f.

mem search -p "abe cafe" /uut/u1/mem3

Searches for and prints the first occurrence of this multiple word pattern.
ModelSim SE Command Reference

CR-202 Commands

Model
modelsim

The modelsim command starts the ModelSim GUI without prompting you to load a design.
This command is valid only for Windows platforms, and may be invoked in one of three
ways:

from the DOS prompt
from a ModelSim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODELSIM prompt after the GUI starts or
from a DO file called by modelsim.

Syntax

modelsim
[-do <macrofile>] [-project <project file>]

Arguments

-do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

-project <project file>

Specifies the .mpf file to load for this session. Optional.

See also

vsim (CR-357), do (CR-156), and "Using a startup file" (UM-629)

Note: In addition to the macro called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command (CR-357)
is invoked.
Sim SE Command Reference

next CR-203
next

The next command continues a search after you have invoked the search command. See
"search" (CR-253) for more information.

Syntax

next
<win_type> [-window <wname>]

Arguments

<win_type>

Specifies structure, signals, process, variables, wave, list, source, or a unique
abbreviation thereof. Required.

-window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-320) to change the default window.
ModelSim SE Command Reference

CR-204 Commands

Model
noforce

The noforce command removes the effect of any active force (CR-176) commands on the
selected HDL items. The noforce command also causes the item’s value to be re-evaluated.

Syntax

noforce
<item_name> ...

Arguments

<item_name>

Specifies the name of a item. Required. Must match an item name used in a previous
force command (CR-176). Multiple item names may be specified. Wildcard characters are
allowed.

See also

force (CR-176) and "Wildcard characters" (CR-17)
Sim SE Command Reference

nolog CR-205
nolog

The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals. A flag is written into the WLF file for each signal turned off, and the GUI
displays "-No Data-" for the signal(s) until logging (for the signal(s)) is turned back on.
Logging can be turned back on by issuing another log command (CR-187) or by doing a
nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files
created when using the nolog command cannot be read by older versions of the simulator.
If you are using dumplog64.c, you will need to get an updated version.

Syntax

nolog
[-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out]
[-ports] [-recursive] [-reset] [<item_name>...]

Arguments

-all

Turns off logging for all signals currently logged. Optional.

-depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Turns off logging only for ports of mode IN whose names match the specification.
Optional.

-inout

Turns off logging only for ports of mode INOUT whose names match the specification.
Optional.

-internal

Turns off logging only for internal (non-port) items whose names match the
specification. Optional.

-out

Turns off logging only for ports of mode OUT whose names match the specification.
Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region. You can use the -depth argument
to specify how far down the hierarchy to descend.
ModelSim SE Command Reference

CR-206 Commands

Model
-reset

Turns logging back on for all unlogged signals. Optional.

<item_name>...

Specifies the item name which you want to unlog. Optional. Multiple item names may be
specified. Wildcard characters are allowed.

Examples

nolog -r /*

Unlogs all items in the design.

nolog -reset

Turns logging back on for all unlogged signals.

See also

add list (CR-55), add wave (CR-64), log (CR-187)
Sim SE Command Reference

notepad CR-207
notepad

The notepad command opens a simple text editor. It may be used to view and edit ASCII
files or create new files. This mode can be changed from the Notepad Edit menu. See
"Mouse and keyboard shortcuts" (UM-269) for a list of editing shortcuts.

Returns nothing.

Syntax

notepad
[<filename>] [-r | -edit]

Arguments

<filename>

Name of the file to be displayed. Optional.

-r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.
ModelSim SE Command Reference

CR-208 Commands

Model
noview

The noview command closes a window in the ModelSim GUI. To open a window, use the
view command.

Syntax

noview
[*] <window_name>...

Arguments

*
Wildcards can be used, for example: l* (List window), s* (Signal, Source, and Structure
windows), even * alone (all windows). Optional.

<window_name>...

Specifies the ModelSim window type to close. Multiple window types may be used; at
least one type (or wildcard) is required. Available window types are:

dataflow, list, memory, process, signals, source, structure, variables, and
wave

Examples

noview wave1

Closes the Wave window named "wave1".

noview l*

Closes all List windows.

noview s*

Closes all Structure, Signals, and Source windows.

See also

view (CR-320)
Sim SE Command Reference

nowhen CR-209
nowhen

The nowhen command deactivates selected when (CR-375) commands.

Syntax

nowhen
[<label>]

Arguments

<label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples

when -label 99 b {echo “b changed”}
…
nowhen 99

This nowhen command deactivates the when (CR-375) command labeled 99.

nowhen *

This nowhen command deactivates all when (CR-375) commands.
ModelSim SE Command Reference

CR-210 Commands

Model
onbreak

The onbreak command is used within a macro. It specifies one or more commands to be
executed when running a macro that encounters a breakpoint in the source code. Using the
onbreak command without arguments will return the current onbreak command string.
Use an empty string to change the onbreak command back to its default behavior (i.e.,
onbreak ""). In that case, the macro will be interrupted after a breakpoint occurs (after any
associated bp command (CR-81) string is executed).

onbreak commands can contain macro calls.

Syntax

onbreak
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. It is an error to execute any
commands within an onbreak command string following a run (CR-246), run -continue,
or step (CR-264) command. This restriction applies to any macros or Tcl procedures used
in the onbreak command string. Optional.

Examples

onbreak {exa data ; cont}

Examine the value of the HDL item data when a breakpoint is encountered. Then
continue the run command (CR-246).

onbreak {resume}

Resume execution of the macro file on encountering a breakpoint.

set broken 0
onbreak {

set broken 1
resume

}
run -all
if { $broken } {

puts "failure"
} else {

puts "success"
}

This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnAssertion variable setting
(see "[vsim] simulator control variables" (UM-621)). By default a severity level of failure
or above causes a breakpoint; a severity level of error or below does not.

See also

abort (CR-51), bd (CR-76), bp (CR-81), do (CR-156), onerror (CR-212), resume (CR-243),
status (CR-263)
Sim SE Command Reference

onElabError CR-211
onElabError

The onElabError command specifies one or more commands to be executed when an error
is encountered during elaboration. The command is used by placing it within the
modelsim.tcl file or a macro. During initial design load onElabError may be invoked from
within the modelsim.tcl file; during a simulation restart onElabError may be invoked from
a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces. Optional.

See also

do (CR-156)
ModelSim SE Command Reference

CR-212 Commands

Model
onerror

The onerror command is used within a macro; it specifies one or more commands to be
executed when a running macro encounters an error. Using the onerror command without
arguments will return the current onerror command string. Use an empty string to change
the onerror command back to its default behavior (i.e., onerror ""). Use onerror with a
resume command (CR-243) to allow an error message to be printed without halting the
execution of the macro file.

Syntax

onerror
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

Example

onerror {quit -f}

Forces the simulator to quit if an error is encountered while the macro is running.

See also

abort (CR-51), do (CR-156), onbreak (CR-210), resume (CR-243), status (CR-263)

Note: You can also set the global OnErrorDefaultAction Tcl variable in the pref.tcl file
to dictate what action ModelSim takes when an error occurs. The onerror command is
invoked only when an error occurs in the macro file that contains the onerror command.
Conversely, OnErrorDefaultAction will run even if the macro does not contain a local
onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.
Sim SE Command Reference

pause CR-213
pause

The pause command placed within a macro interrupts the execution of that macro.

Syntax

pause

Arguments

None.

Description

When you execute a macro and that macro gets interrupted, the prompt will change to:

VSIM(paused)>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets interrupted,
you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command (CR-263). It will show
you which macros are interrupted, at what line number, and show you the interrupted
command.

To resume the execution of the macro, use the resume command (CR-243). To abort the
execution of a macro use the abort command (CR-51).

See also

abort (CR-51), do (CR-156), resume (CR-243), run (CR-246)
ModelSim SE Command Reference

CR-214 Commands

Model
play

This command is available for UNIX only (excluding Linux).

The play command replays a sequence of keyboard and mouse actions that were previously
saved to a file with the record command (CR-237). Returns nothing.

Play returns immediately; the playback proceeds in the background. Caution must be used
when putting play commands in do (macro) files.

Syntax

play
<filename>

Arguments

<filename>

Specifies the recorded file to replay. Required.

Playback controls

The following Tcl set commands control the playback type and speed by setting the
play_macro() global variables. The commands are invoked from the ModelSim command
line.

set play_macro(speed)

Specify the playback speed: either demo (with the delay specified below), or fast (no
delays).

set play_macro(delay)

Specifies the delay time in milliseconds. Controls the speed of playback in demo mode.

See also

macro_option (CR-191), record (CR-237)
Sim SE Command Reference

pop CR-215
pop

This command is used with C Debug. See Chapter 14 - C Debug (UM-473) for more
information.

The pop command moves the specified number of call frames up the C callstack.

Syntax

pop
<#_of_levels>

Arguments

<#_of_levels>

Specifies the number of call frames to move up the C callstack. Optional. If unspecified,
1 level is assumed.

Examples

pop

Moves up 1 call frame.

pop 4

Moves up 4 call frames.

See also

push (CR-231), Chapter 14 - C Debug (UM-473)
ModelSim SE Command Reference

CR-216 Commands

Model
power add

The power add command specifies the signals or nets to track for power information. Data
produced by these commands can be translated (by a Synopsys utility) to drive the
Synopsys power analysis tools.

The power add command is intended to be used as follows:

1 Add the items of interest with the power add command.

2 Run the simulation with the run command (CR-246).

3 Produce a report with the power report command (CR-217).

Syntax

power add
[-in] [-inout] [-internal] [-out] [-ports] [-r] <signalsOrNets> ...

Arguments

-in

Specifies only inputs. Optional.

-inout

Specifies only inouts. Optional.

-internal

Specifies only design internal signals or nets. Optional.

-out

Specifies only outputs. Optional.

-ports

Specifies only design ports. Optional.

-r

Searches recursively on a wildcard specified for the signal or net. Optional.

<signalsOrNets> ...

Specifies the signal or net to track. Required. Multiple names or wildcards may be used.
Must refer to VHDL signals of type bit, std_logic, or std_logic_vector, or to Verilog nets.

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals. If you specify more than one of these arguments, the logical OR of the
arguments is performed.

See also

power report (CR-217), power reset (CR-218)

See the Synopsys Power documentation for more information.
Sim SE Command Reference

power report CR-217
power report

The power report command reports power information for the specified signals or nets.
The report can be written to a file or to the Main window. Data produced by these
commands can be translated (by a Synopsys utility) to drive the Synopsys power analysis
tools.

The power report command is intended to be used as follows:

1 Add the items of interest with the power add command (CR-216).

2 Run the simulation with the run command (CR-246).

3 Produce the report with the power report command.

Syntax

power report
[-all] [-noheader] [-file <filename>]

Arguments

-all

Writes information on all items logged. Optional.

-noheader

Suppresses the header to aid in post processing. Optional.

-file <filename>

Specifies a filename for the power report. Optional. Default is to write the report to the
Main window.

Description

The report format for each line is:

signal path, toggle count, hazard count, time at a 1, time at a 0, time at an X

• toggle count is the number of 0->1 and 1->0 transitions

• hazard count is the number of 0/1->X, and X->0/1 transitions

Note that if a signal is initialized at X, and later transitions to 0 or 1, it is not counted as
a hazard.

• times are the times spent at each of the three respective states

You will also need to know the total simulation time.

 See also

power add (CR-216), power reset (CR-218)

See the Synopsys Power documentation for more information.
ModelSim SE Command Reference

CR-218 Commands

Model
power reset

The power reset command selectively resets power information to zero for the signals or
nets specified with the power add command (CR-216). Returns nothing.

Syntax

power reset
[-all] [-in] [-inout] [-out] [-internal] [-ports] [-r]
<signalsOrNets> ...

Arguments

-all

Resets all signals/nets. Optional.

-in

Resets only inputs. Optional.

-inout

Resets only inouts. Optional.

-out

Resets only outputs. Optional.

-internal

Resets only design internal signals or nets. Optional.

-ports

Resets only design ports. Optional.

-r

Searches recursively on a wildcard specified for the signal or net. Optional.

<signalsOrNets> ...

Specifies the signal or net to reset. Required. Multiple names or wildcards may be used.

See also

power add (CR-216), power report (CR-217)

See the Synopsys Power documentation for more information.
Sim SE Command Reference

precision CR-219
precision

The precision command determines how real numbers display in the graphic interface
(e.g., Signals, Wave, Variables, and List windows). It does not affect the internal
representation of a real number and therefore precision values over 17 are not allowed.

Using the precision command without any arguments displays the current precision
setting.

Syntax

precision
[<digits>[#]]

Arguments

<digits>[#]

Specifies the number of digits to display. Optional. Default is 6. Trailing zeros are not
displayed unless you append the ’#’ sign. See examples for more details.

Examples

precision 4

Results in 4 digits of precision. For example:

1.234 or 6543

precision 8#

Results in 8 digits of precision including trailing zeros. For example:

1.2345600 or 6543.2100

precision 8

Results in 8 digits of precision but doesn’t print trailing zeros. For example:

1.23456 or 6543.21
ModelSim SE Command Reference

CR-220 Commands

Model
printenv

The printenv command echoes to the Main window the current names and values of all
environment variables. If variable names are given as arguments, prints only the names and
values of the specified variables. Returns nothing. All results go to the Main window.

Syntax

printenv
[<var>...]

Arguments

<var>...

Specifies the name(s) of the environment variable(s) to print. Optional.

Examples

printenv

Prints all environment variable names and their current values. For example,

CC = gcc
DISPLAY = srl:0.0
...

printenv USER HOME

Prints the specified environment variables:

USER = vince
HOME = /scratch/srl/vince
Sim SE Command Reference

profile clear CR-221
profile clear

The profile clear command clears any performance data that has been gathered during
previous run commands. After this command is executed, all profiling data will be reset.

This command has no effect on the current profiling session. The last profile on or profile
off command will still be in effect.

Syntax

profile clear

Arguments

None

See also

Chapter 11 - Performance Analyzer (UM-407), profile interval (CR-222), profile off (CR-

223), profile on (CR-224), profile option (CR-225), profile report (CR-226)

Note: Profiling must be active when this command is invoked. Use the profile on
command (CR-224) to begin profiling.
ModelSim SE Command Reference

CR-222

Model
profile interval

The profile interval command selects the frequency with which the profiler collects
samples during a run command. To use this command, first enable profiling with the
profile on command (CR-224).

Syntax

profile interval
[<sample_frequency>]

Arguments

<sample_frequency>

An integer value from 1 to 999 that represents how many milliseconds to wait between
each sample collected during a profiled simulation run. Default is 10 ms.

If the sample-frequency is not supplied, the profile interval command returns the current
sample frequency.

See also

Chapter 11 - Performance Analyzer (UM-407), profile clear (CR-221), profile off (CR-223),
profile on (CR-224), profile option (CR-225), profile report (CR-226)
Sim SE Command Reference

profile off CR-223
profile off

The profile off command disables runtime profiling.

Syntax

profile off

Arguments

None

See also

Chapter 11 - Performance Analyzer (UM-407), profile clear (CR-221), profile interval (CR-

222), profile on (CR-224), profile option (CR-225), profile report (CR-226)
ModelSim SE Command Reference

CR-224 Commands

Model
profile on

The profile on command enables Performance Analyzer, a tool that performs runtime
analysis of where your simulation is spending its time. After this command is executed,
every subsequent run command will be profiled.

See Chapter 11 - Performance Analyzer (UM-407) for further details on profiling.

Syntax

profile on

Arguments

None

See also

Chapter 11 - Performance Analyzer (UM-407), profile clear (CR-221), profile interval (CR-

222), profile off (CR-223), profile option (CR-225), profile report (CR-226)

Example

profile on
run 1000 ns
profile report -hier -file perf.rpt

This set of commands enables the profiler, runs the simulation for 1000 nanoseconds, and
outputs the profiling data to perf.rpt.
Sim SE Command Reference

profile option CR-225
profile option

The profile option command changes how profiling data are reported. To use this
command, first enable profiling with the profile on command (CR-224).

Syntax

profile option
collapse_sections | raw_data [on | off | status]

Arguments

collapse_sections

Groups profiling data by section. A section consists of regions of code such as VHDL
processes, functions, or Verilog always blocks. By default all profiling data are reported
on a per line basis. Required if raw_data isn’t specified.

raw_data

Reports the raw number of samples that occurred in a line or a section. By default all
profiling results are reported on a percentage basis. Required if collapse_sections isn’t
specified.

on | off | status

Specifies whether to enable, disable, or report the status of the profile options. Optional.
If omitted, the profile option command acts as a toggle.

See also

Chapter 11 - Performance Analyzer (UM-407), profile clear (CR-221), profile interval (CR-

222), profile off (CR-223), profile on (CR-224), profile report (CR-226)
ModelSim SE Command Reference

CR-226 Commands

Model
profile report

The profile report command outputs profiling data that have been gathered up to the point
that you execute the command. To use this command, first enable profiling using the
profile on command (CR-224).

See Chapter 11 - Performance Analyzer (UM-407) for further details on profiling.

Syntax

profile report
[-hierarchical | -ranked] [-file <filename>] [-cutoff <percentage>]

Arguments

-hierarchical

Produces a hierarchical report of profiling data in a call-graph style format. Optional.
Default.

-ranked

Produces a sorted report of profiling data. The ranked format sorts the modules and code
lines by simulation time. Optional.

-file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Main
window transcript.

-cutoff <percentage>

Filter out entries in the report that had less than <percentage> of time spent in them.
Optional. Default is to report all entries (i.e., 0%).

See also

Chapter 11 - Performance Analyzer (UM-407), profile clear (CR-221), profile interval (CR-

222), profile off (CR-223), profile on (CR-224), profile option (CR-225)

Example

profile on
run 1000 ns
profile report -hier -file perf.rpt

This set of commands enables the profiler, runs the simulation for 1000 nanoseconds, and
outputs the profiling data to perf.rpt.
Sim SE Command Reference

project CR-227
project

The project commands are used to perform common operations on projects. Use this
command outside of a simulation session.

Syntax

project
[addfile <filename>] | [close] | [compileall] | [delete <project>] | [env]
| [history] | [new <home_dir> <proj_name> [<defaultlibrary>]
[<use_current>]] | [open <project>] | [removefile <filename>]

Arguments

addfile <filename>

Adds the specified file to the current open project. Optional.

close

Closes the current project. Optional.

compileall

Compiles all files in the current project. Optional.

delete <project>

Deletes a specified project file. Optional.

env

Returns the current project file. Optional.

history

Lists a history of manipulated projects. Optional.

new <home_dir> <proj_name> [<defaultlibrary>] [<use_current>]

Creates a new project under a specified home directory with a specified name and
optionally a default library. Optional. If use_current is set to 1, then ModelSim uses the
current modelsim.ini file when creating the project rather than the default. You must
specify a default library if you want to specify use_current.

open <project>

Opens a specified project file, making it the current project. Changes the current working
directory to the project's directory. Optional.

removefile <filename>

Removes the specified file from the current project. Optional.

Examples

project open /user/george/design/test3/test3.mpf

Makes /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project compileall

Executes current project library build scripts.
ModelSim SE Command Reference

CR-228 Commands

Model
property list

The property list command changes one or more properties of the specified signal, net, or
register in the List window (UM-286). The properties correspond to those you can set by
selecting View > Signal Properties (List window). At least one argument must be used.

Syntax

property list
[-window <wname>] [-label <label>] [-radix <radix>]
[-trigger <setting>] [-width <number>] <pattern>

Arguments

-window <wname>

Specifies a particular List window when multiple instances of the window exist (e.g.,
list2). Optional. If no window is specified the default window is used; the default window
is determined by the most recent invocation of the view command (CR-320).

-label <label>

Specifies the label to appear at the top of the List window column. Optional.

-radix <radix>

Specifies the radix for List window items. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal,
hex, symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using
the radix command (CR-235). You can change the default radix permanently by editing
the DefaultRadix (UM-623) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-trigger <setting>

Valid settings are 0 or 1. Setting trigger to 1 will enable the List window to be triggered
by changes in the items matching the specified pattern. Optional.

-width <number>

Valid numbers are 1 through 256. Specifies the desired column width for the items
matching the specified pattern. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full pathnames of the signals, nets, or
registers for which you are defining the property change. Required.
Sim SE Command Reference

property wave CR-229
property wave

The property wave command changes one or more properties of the specified signal, net,
or register in the Wave window (UM-337). The properties correspond to those you can set
by selecting View > Signal Properties (Wave window). At least one argument must be
used.

Syntax

property wave
[-window <wname>] [-color <color>] [-format <format>] [-height <number>]
[-offset <number>] [-radix <radix>] [-scale <float>] <pattern>

Arguments

-window <wname>

Specifies a particular Wave window when multiple instances of the window exist (e.g.,
wave2). Optional. If no window is specified the default window is used; the default
window is determined by the most recent invocation of the view command (CR-320).

-color <color>

Specifies the color to be used for the waveform. Optional.

-format <format>

The waveform <format> can be expressed as:

analog

Displays a waveform whose height and position is determined by the -scale and -offset
values (shown below). Optional.

literal

Displays the waveform as a box containing the item value (if the value fits the space
available). Optional.

logic

Displays values as 0, 1, X, or Z. Optional.

-height <number>

Specifies the height (in pixels) of the waveform. Optional.

-offset <number>

Specifies the waveform position offset in pixels. Valid only when -format is specified as
analog. Optional.

-radix <radix>

Specifies the radix for Wave window items. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal,
hex, symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using
the radix command (CR-235). You can change the default radix permanently by editing
the DefaultRadix (UM-623) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.
ModelSim SE Command Reference

CR-230 Commands

Model
-scale <float>

Specifies the waveform scale relative to the unscaled size value of 1. Valid only when
-format is specified as analog. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full path names of the signals, nets, or
registers for which you are defining the property change. Required.
Sim SE Command Reference

push CR-231
push

This command is used with C Debug. See Chapter 14 - C Debug (UM-473) for more
information.

The push command moves the specified number of call frames down the C callstack.

Syntax

push
<#_of_levels>

Arguments

<#_of_levels>

Specifies the number of call frames to move down the C callstack. Optional. If
unspecified, 1 level is assumed.

Examples

push

Moves down 1 call frame.

push 4

Moves down 4 call frames.

See also

pop (CR-215), Chapter 14 - C Debug (UM-473)
ModelSim SE Command Reference

CR-232 Commands

Model
pwd

The Tcl pwd command displays the current directory path in the Main window.

Syntax

pwd

Arguments

None.
Sim SE Command Reference

quietly CR-233
quietly

The quietly command turns off transcript echoing for the specified command.

Syntax

quietly
<command>

Arguments

<command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Main window
transcript. To disable echoing for all commands use the transcript command (CR-278)
with the -quietly option.

See also

transcript (CR-278)
ModelSim SE Command Reference

CR-234 Commands

Model
quit

The quit command exits the simulator. If you want to stop the simulation using a when
command (CR-375), you must use a stop command (CR-265) within your when statement.
DO NOT use an exit command (CR-171) or a quit command. The stop command acts like
a breakpoint at the time it is evaluated.

Syntax

quit
[-f | -force] [-sim]

Arguments

-f | -force

Quits without asking for confirmation. Optional. If omitted, ModelSim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim

Unloads the current design in the simulator without exiting ModelSim. All files opened
by the simulation will be closed including the WLF file (vsim.wlf).
Sim SE Command Reference

radix CR-235
radix

The radix command specifies the default radix to be used for the current simulation. The
command can be used at any time. The specified radix is used for all commands (force (CR-

176), examine (CR-167), change (CR-87), etc.) as well as for displayed values in the Signals,
Variables, Dataflow, List, and Wave windows. You can change the default radix
permanently by editing the DefaultRadix (UM-623) variable in the modelsim.ini file.

Syntax

radix
[-symbolic | -binary | -octal | -decimal | -hexadecimal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length. For example, -symbolic could be expressed as
-s or -sy, etc. Optional.

Also, -signed may be used as an alias for -decimal. The -unsigned radix will display as
unsigned decimal. The -ascii radix will display a Verilog item as a string equivalent using
8 bit character encoding.

If no arguments are used, the command returns the current default radix.
ModelSim SE Command Reference

CR-236 Commands

Model
readers

The readers command displays the names of all readers of the specified item. The reader
list is expressed relative to the top-most design signal/net connected to the specified item.

Syntax

readers
<item_name>

Arguments

<item_name>

Specifies the name of the signal or net whose readers are to be shown. Required. All
signal or net types are valid. Multiple names and wildcards are accepted.

See also

drivers (CR-159) command
Sim SE Command Reference

record CR-237
record

This command is available for UNIX only (excluding Linux).

The record command starts recording a replayable trace of all keyboard and mouse actions.
Record and play operations may also be run from the macro-helper menu item of the macro
menu. Returns nothing.

Syntax

record
[<filename>]

Arguments

<filename>

Specifies the file for the saved recording. If <filename> is not specified, the recording
terminates.

See also

macro_option (CR-191), play (CR-214)
ModelSim SE Command Reference

CR-238 Commands

Model
report

The report command displays the value of all simulator control variables, or the value of
any simulator state variables relevant to the current simulation.

Syntax

report
simulator control | simulator state

Arguments

simulator control

Displays the current values for all simulator control variables.

simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

report simulator control

Displays all simulator control variables.

UserTimeUnit = ns
RunLength = 100
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 0

report simulator state

Displays all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns
Sim SE Command Reference

report CR-239
Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. You can view preference variables from the Preferences dialog
box. Select Tools > Edit Preferences (Main window).

See also

"Preference variables located in INI files" (UM-617), and "Preference variables located in
Tcl files" (UM-631)
ModelSim SE Command Reference

CR-240 Commands

Model
restart

The restart command reloads the design elements and resets the simulation time to zero.
Only design elements that have changed are reloaded. (Note that SDF files are always
reread during a restart.) Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command (CR-357) is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless you specify the -keeploaded
argument to vsim).

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

You can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. See "Restart command defaults" (UM-630).

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined
task or function, and register a misctf class of callback. To handle restarts with Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. See Chapter 6 - Verilog PLI / VPI for
more information on the Verilog PLI/VPI and the ModelSim FLI Reference for more
information on the FLI.

Syntax

restart
[-force] [-noassertions] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

-force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

-noassertions

Specifies that the current assertions configuration will not be maintained after the
simulation is restarted. Optional. The default is for assertion settings to be maintained
after the simulation is restarted.

-nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted. Optional.
The default is for all breakpoints to be reinstalled after the simulation is restarted.

-nolist

Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently listed HDL items and
their formats to be maintained.

-nolog

Specifies that the current logging environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently logged items to continue
to be logged.
Sim SE Command Reference

restart CR-241
-nowave

Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default is for all items displayed in the Wave
window to remain in the window with the same format.

See also

checkpoint (CR-99), restore (CR-242), vsim (CR-357), "Checkpointing and restoring
simulations" (UM-84), "The difference between checkpoint/restore and restart" (UM-85)
ModelSim SE Command Reference

CR-242 Commands

Model
restore

The restore command restores the state of a simulation that was saved with a checkpoint
command (CR-99) during the current invocation of VSIM (called a "warm restore").

The items restored are: simulation kernel state, vsim.wlf file, HDL items listed in the List
and Wave windows, file pointer positions for files opened under VHDL and under Verilog
$fopen, and the saved state of foreign architectures.

If you want to restore while running VSIM, use this command. If you want to start up
VSIM and restore a previously-saved checkpoint, use the -restore switch with the vsim
command (CR-357) (called a "cold restore").

Syntax

restore
<filename>

Arguments

<filename>

Specifies the name of the checkpoint file. Required.

See also

checkpoint (CR-99), vsim (CR-357), "The difference between checkpoint/restore and
restart" (UM-85)

Note: Checkpoint/restore allows a cold restore, followed by simulation activity,
followed by a warm restore back to the original cold-restore checkpoint file. Warm
restores to checkpoint files that were not created in the current run are not allowed except
for this special case of an original cold restore file.
Sim SE Command Reference

resume CR-243
resume

The resume command is used to resume execution of a macro file after a pause command
(CR-213) or a breakpoint. It may be input manually or placed in an onbreak (CR-210)
command string. (Placing a resume command in a bp (CR-81) command string does not
have this effect.) The resume command can also be used in an onerror (CR-212) command
string to allow an error message to be printed without halting the execution of the macro
file.

Syntax

resume

Arguments

None.

See also

abort (CR-51), do (CR-156), onbreak (CR-210), onerror (CR-212), pause (CR-213)
ModelSim SE Command Reference

CR-244 Commands

Model
right

The right command searches right (next) for signal transitions or values in the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signals evaluates to true.
See the left command (CR-185) for related functionality.

The procedure for using right entails three steps: click on the desired waveform; click on
the desired starting location; issue the right command. (The seetime command (CR-257)
can initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

right
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced Wave window. A signal may be specified
either by its full path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (CR-23) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Looks at signal values only on the last delta of a time step. For use with the -value option
only. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Species a value of the signal to match. Must be specified in the same radix that the
selected waveform is displayed. Case is ignored, but otherwise the value must be an exact
string match -- don't-care bits are not yet implemented. Only one signal may be selected,
but that signal may be an array. Optional.

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-320) to change the default
window.
Sim SE Command Reference

right CR-245
<n>

Specifies to find the nth match. If less than n are found, the number found is returned with
a warning message, and the cursor is positioned at the last match. Optional. The default
is 1.

Examples

right -noglitch -value FF23 2

Finds the second time to the right at which the selected vector transitions to FF23,
ignoring glitches.

right

Goes to the next transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-23) and can be built with the aid of the "The GUI Expression
Builder" (UM-395).

right -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches right for an expression that evaluates to a boolean 1 when signal clk just
changed from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant; otherwise is 0.

right -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches right for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

right -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches right for an expression that evaluates to a boolean 1 when logfile time is
between 23 and 54 microseconds, and clock just changed from low to high and signal
mode is enumeration writing.

See also

"GUI_expression_format" (CR-23), left (CR-185), seetime (CR-257), view (CR-320)

Note: Wave window mouse and keyboard shortcuts (UM-363) are also available for next
and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).
ModelSim SE Command Reference

CR-246 Commands

Model
run

The run command advances the simulation by the specified number of timesteps.

Syntax

run
[<timesteps>[<time_units>]] | [-all] | [-continue] | [-finish] | [-next] |
[-step] | [-over]

Arguments

<timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified absolute by preceding the value with the character @.
Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). See
"Setting default simulation options" (UM-386). Time steps and time units may also be set
with the RunLength (UM-625) and UserTimeUnit (UM-626) variables in the modelsim.ini
file.

-all

Causes the simulator to run the current simulation forever, or until it hits a breakpoint or
specified break event. Optional.

-continue

Continues the last simulation run after a step (CR-264) command, step -over command or
a breakpoint. A run -continue command may be input manually or used as the last
command in a bp (CR-81) command string. Optional.

-finish

In "C Debug" (UM-473) only, continues the simulation run and returns control to the
calling function. Optional.

-next

Causes the simulator to run to the next event time. Optional.

-step

Steps the simulator to the next HDL statement. Optional.

-over

Specifies that VHDL procedures, functions and Verilog tasks are to be executed but
treated as simple statements instead of entered and traced line by line. Optional.

Examples

run 1000

Advances the simulator 1000 timesteps.

run 10.4 ms

Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.
Sim SE Command Reference

run CR-247
run @8000

Advances the simulator to timestep 8000.

See also

step (CR-264)
ModelSim SE Command Reference

CR-248 Commands

Model
sccom

The sccom command compiles SystemC source code into the work library. The sccom
compiler interacts with a C/C++ compiler to compile and link designs.

This command may be invoked from within ModelSim or from the operating system
command prompt. This command may also be invoked during simulation.

Compiled libraries are platform dependent. If you move between platforms, you will need
to run vdel -allsystemc on the working library and then recompile your SystemC source.

Compiled libraries are version dependent. For example, you cannot use a library compiled
with 5.8 in a simulation using 5.8a vsim. You have to re-compile your design with the
updated version of sccom.

Certain restrictions apply when compiling SystemC modules with HP aCC. See
"Restrictions on compiling with HP aCC" (UM-194) for details.

During the linking of the design (with sccom -link) the order in which you specify archives
(.a) and object files is very important. Any dependent .a or .o must be specified before the
.a or .o on which it depends.

Syntax

sccom
[<CPP compiler options>] [-help] [-link] [-log <logfile>] [-nologo]
[-nonamebind] [-scv] [-vv] [-verbose] [-version] <filename>

Arguments

<CPP compiler options>

Any normal C++ compiler option can be used, with the exception of the -o and -c options.
By default, sccom compiles without debugging information. Specify the -g argument to
compile for debugging. You can specify arguments for all ModelSim runs by editing the
CppOptions variable in the modelsim.ini file.

-help

Displays the command’s options and arguments. Optional.

-link

Performs the final link of all previously compiled SystemC source code. Required before
running simulation. Any dependent .a or .o must be specified before the .a or .o on which
it depends. Two types of dependencies are possible, and where you place the -link
argumnent is different based on which type of dependency the files have.

If your archive or object is dependent on the .o files created by sccom (i.e. your code
references symbols in the generated SystemC .o files), then you must specify the -link
argument after the list of files, as shown below:

sccom a.o b.o libtemp.a -link

Under the covers, the C++ linker’s command and argument order looks like this:

ld a.o b.o libtemp.a <internal list of SC .o files> libsystemc.a

However, if the .o files created by sccom are dependent on the object or archive you
provided, then the -link argument must be placed after the object files or archive:
Sim SE Command Reference

sccom CR-249
sccom -link a.o b.o libtemp.a

In this case, the "undercover" command and argument order looks like this:

ld <internal list of SC .o files> libsystemc.a a.o b.o libtemp.a

-log <logfile>

Specifies the logfile in which to collect output. Optional. Related modelsim.ini variable
is sccomLogfile.

-nologo

Disables the startup banner. Optional.

-nonamebind

Disables the automatic name binding for all modules declared in header files. Optional.
If a module declared in a C++ source file uses the SC_CTOR macro, then automatic
name binding should be disabled. For more information, see "Name association
(binding)" (UM-204). Related modelsim.ini variable is NoNameBind.

-scv

Includes the SystemC verification library. Optional. If you specify this argument when
compiling your C code with sccom, you must also specify it when linking the object files
with sccom -link. Related modelsim.ini variable is UseSvc.

-vv

Prints all subprocess invocation information. Optional. An example is the call to gcc
along with the command-line arguments.

-verbose

Prints the name of each sc_module encountered during compilation. Optional. Related
modelsim.ini variable sccomVerbose.

-version

Displays the version of sccom used to compile the design. Optional.

<filename>

Specifies the name of a file containing the SystemC/C++ source to be compiled.
Required. Multiple filenames separated by spaces can be entered, or wildcards can be
used (e.g., *.cpp).

Examples

sccom -g example.cpp

Compiles example.cpp with debugging information.

sccom -link

Links the example.vhd.

sccom -I/home/systemc/include -DSC_INCLUDE_FX -g a.cpp b.cpp

Compiles the SystemC code with an include directory and the compile time macro
(SC_INCLUDE_FX) to compile the source with support for fixed point types. For more
information, see "Fixed point types" (UM-205).

Important: If you use -nonamebind for one compilation, you must use it for all
subsequent compilations of that design, or a fatal error will occur.
ModelSim SE Command Reference

CR-250 Commands

Model
sccom -02 a.cpp

Compiles with the g++ -02 optimization argument.

sccom -L home/libs/ -l mylib -link

Links in the library libmylib.a when creating the .so file. The -L argument specifies the
search path for the libraries.

See also

Chapter 7 - SystemC simulation, vdel -allsystemc command (CR-315)
Sim SE Command Reference

scgenmod CR-251
scgenmod

Once a Verilog or VHDL module is compiled into a library, you can use the scgenmod
command to write its equivalent SystemC foreign module declaration to standard output.
Optional arguments allow you to generate sc_bit, sc_bv, or resolved port types; sc_logic
and sc_lv port types are generated by default.

Syntax

scgenmod
[-help] [-lib <library_name>] [-b] [-r] [-s] <module_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work
is used. Optional.

-b

Causes scgenmod to generate sc_bit or sc_bv port types. Optional.

-r

Causes scgenmod to generate resolved port types. Optional.

-s

Used for the explicit declaration of default sc_logic and sc_lv port types. This is the
default. Optional.

<module_name>

Specifies the name of the Verilog/VHDL module to be accessed. Required.
ModelSim SE Command Reference

CR-252 Commands

Model
Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module vcounter (clock, topcount, count);
input clock;
input topcount;
output count;

reg count;
...

endmodule

After compiling using vlog (CR-345), you invoke scgenmod on the compiled module with
the following command:

scgenmod vcounter

The SystemC foreign module declaration for the above Verilog module is:

class vcounter : public sc_foreign_module
{

public:
sc_in<sc_logic> clock;
sc_in<sc_logic> topcount;
sc_out<sc_logic> count;

vcounter(sc_module_name nm, const char* hdl_name)
: sc_foreign_module(nm, hdl_name),

clock("clock"),
topcount("topcount"),
count("count")

{}
~vcounter()
{}

};

See also

Chapter 7 - SystemC simulation
Sim SE Command Reference

search CR-253
search

The search command searches the specified window for one or more items matching the
specified pattern(s). The search starts at the item currently selected, if any; otherwise it
starts at the window top. The default action is to search downward until the first match, then
move the selection to the item found, and return the index of the item found. The search can
be continued using the next command.

Returns the index of a single match, or a list of matching indices. Returns nothing if no
matches are found.

Syntax

search
<win_type> [-window <wname>] [-all] [-field <n>] [-toggle]
[-forward | -backward] [-wrap | -nowrap] [-exact] [-regexp] [-nocase]
[-count <n>] <pattern>

Arguments for all windows

<win_type>

Specifies structure, signals, process, variables, wave, list, source, or a unique
abbreviation thereof. Required.

-window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-320) to change the default window.

-forward

Search in the forward direction. Optional. This is the default.

-backward

Search in the reverse direction. Optional. Default is forward.

<pattern>

String or glob-style wildcard pattern. Required. Must be the last argument specified.

Arguments, for all EXCEPT the Source window

-all

Finds all matches and returns a list of the indices of all items that match. Optional.

-field <n>

Selects different fields to test, depending on the window type:

Window n=1 n=2 n=3 default

structure instance entity/
module

architecture instance

signals name - cur. value name

process status process
label

fullpath fullpath
ModelSim SE Command Reference

CR-254 Commands

Model
Default behavior for the List window is to attempt to match the label and if that fails, try
to match the full signal name.

-toggle

Adds signals found to the selection. Does not do an initial clear selection. Optional.
Otherwise deselects all and selects only one item.

-wrap

Specifies that the search continue from the top of the window after reaching the bottom.
Optional. This is the default.

-nowrap

Specifies that the search stop at the bottom of the window and not continue searching at
the top. Optional. The default is to wrap.

Arguments, Source window only

-exact

Search for an exact match. Optional.

-regexp

Use the pattern as a Tcl regular expression. Optional.

-nocase

Ignore case. Optional. Default is to use case.

-count <n>

Search for the nth match. Optional. Default is to search for the first match.

Description

With the -all option, the entire window is searched, the last item matching the pattern is
selected, and a Tcl list of all corresponding indices is returned.

With the -toggle option, items found are selected in addition to the current selection.

For the List window, the search is done on the names of the items listed, that is, across the
header. To search for values of signals in the List window, use the down command (CR-157)
and up command (CR-282). Likewise, in the Wave window, the search is done on signal
names and values in the values column. To search for signal values in the waveform pane
of the Wave window, use the right command (CR-244) and the left command (CR-185). You
can also select Edit > Search in both windows.

See also

find (CR-172), next (CR-203), view (CR-320)

variables name - cur. value name

wave name - cur. value name

list label fullname - label

Window n=1 n=2 n=3 default
Sim SE Command Reference

searchlog CR-255
searchlog

The searchlog command searches one or more of the currently open logfiles for a specified
condition. It can be used to search for rising or falling edges, for signals equal to a specified
value, or for when a generalized expression becomes true.

Syntax

searchlog
[-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] [-value <string>]
<startTime> <pattern>

If at least one match is found, it returns the time (and optionally delta) at which the last
match occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the
delta of the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found,
but less than the number requested, it is not considered an error condition, and the time
of the farthest match is returned, with the count of the matches found.

Arguments

-count <n>

Specifies to search for the nth occurrence of the match condition, where <n> is a positive
integer. Optional.

-deltas

Indicates to test for a match on simulation delta cycles. Otherwise, matches are only
tested for at the end of each simulation time step. Optional.

-env <path>

Provides a design region in which to look for the signal names. Optional.

-expr {<expr>}

Specifies a general expression of signal values and simulation time. Optional. searchlog
will search until the expression evaluates to true. The expression must have a boolean
result type. See "GUI_expression_format" (CR-23) for the format of the expression.

-reverse

Specifies to search backwards in time from <startTime>. Optional.

-rising | -falling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored for
compound signals. If no options are specified, the default is -anyedge.

-startDelta <num>

Indicates a simulation delta cycle on which to start. Optional.

-value <string>

Specifies to search until a single scalar or compound signal takes on this value. Optional.
ModelSim SE Command Reference

CR-256 Commands

Model
<startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard
VHDL time units (fs, ps, ns, us, ms, sec).

<pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required unless the -expr argument is used.

See also

virtual signal (CR-339), virtual log (CR-331), virtual nolog (CR-334)
Sim SE Command Reference

seetime CR-257
seetime

The seetime command scrolls the List or Wave window to make the specified time visible.
For the List window, a delta can be optionally specified as well.

Returns nothing

Syntax

seetime
list|wave [-window <wname>] [-select] [-delta <num>] <time>

Arguments

list|wave

Specifies the target window type. Required.

-window <wname>

Specifies an instance of the Wave or List window that is not the default. Optional.
Otherwise, the default Wave or List window is used. Use the view command (CR-320) to
change the default window.

-select

Also moves the active cursor or marker to the specified time (and optionally, delta).
Optional. Otherwise, the window is only scrolled.

-delta <num>

For the List window when deltas are not collapsed, this option specifies a delta. Optional.
Otherwise, delta 0 is selected.

<time>

Specifies the time to be made visible. Required.
ModelSim SE Command Reference

CR-258 Commands

Model
setenv

The setenv command changes or reports the current value of an environment variable. The
setting is not persistent–it is valid only for the current ModelSim session.

Syntax

setenv
<varname> [<value>]

Arguments

<varname>

The name of the environment variable you wish to set or check. Required.

<value>

The value for the environment variable. Optional. If you don’t specify a value, ModelSim
reports the variable’s current value.

See also

unsetenv (CR-281)
Sim SE Command Reference

shift CR-259
shift

The shift command shifts macro parameter values left one place, so that the value of
parameter $2 is assigned to parameter $1, the value of parameter $3 is assigned to $2, etc.
The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file requires
more than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc (UM-634) variable.

Syntax

shift

Arguments

None.

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named,
the value of the tenth parameter becomes the value of $9 and can be accessed from within
the macro file.

See also

do (CR-156)
ModelSim SE Command Reference

CR-260 Commands

Model
show

The show command lists HDL items and subregions visible from the current environment.
The items listed include:

• VHDL
signals and instances

• Verilog
nets, registers, tasks, functions, instances, and memories

If using "C Debug" (UM-473), show displays the names and types of the local variables and
arguments of the current C function.

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

Syntax

show
[-all] [<pathname>]

Arguments

-all

Display all names at and below the specified path recursively. Optional.

<pathname>

Specifies the pathname of the environment for which you want the items and subregions
to be listed. Optional; if omitted, the current environment is assumed.

Examples

show

Lists the names of all the items and subregion environments visible in the current
environment.

show /uut

Lists the names of all the items and subregions visible in the environment named /uut.

show sub_region

Lists the names of all the items and subregions visible in the environment named
sub_region which is directly visible in the current environment.

See also

environment (CR-166), find (CR-172)
Sim SE Command Reference

simstats CR-261
simstats

The simstats command returns performance-related statistics about the simulation.

If executed without arguments, the command returns a list of pairs like the following:

{memory 57376} {{working set} 56152} {time 0} {{cpu time} 0} {context 0} /
{{page faults} 0}

See the arguments below for descriptions of each pair.

Units for time values are in seconds. Units for memory values vary by platform:

• For SunOS and Linux, the memory size is reported in Kbytes

• For HP-UX, the memory size is reported in the number of pages

• For Windows, the memory size is reported in bytes.

Some of the values may not be available on all platforms and other values may be
approximates. Different operating systems report these numbers differently.

Syntax

simstats
[memory | working | time | cpu | context | faults]

Arguments

memory

Returns the amount of virtual memory that the OS has allocated for vsim. Optional.

working

Returns the portion of allocated virtual memory that is currently being used by all vsim
processes. Optional. If this number exceeds the actual memory size, you will encounter
performance degradation.

time

Returns the cumulative "wall clock time" of the run commands. Optional.

cpu

Returns the cumulative processor time of the run commands. Optional. Processor time
differs from wall clock time in that processor time is only counted when the cpu is
actually running vsim. If vsim is swapped out for another process, cpu time does not
increase.

context

Returns the number of context swaps (vsim being swapped out for another process) that
have occurred during the run commands. Optional.

faults

Returns the number of page faults that have occurred during the run commands.
Optional.
ModelSim SE Command Reference

CR-262 Commands

Model
splitio

The splitio command operates on a VHDL inout or out port to create a new signal having
the same name as the port suffixed with "__o". The new signal mirrors the output driving
contribution of the port.

Syntax

splitio
[-outalso | -outonly] [-r] <signal_name>...

Arguments

-outalso

Allows splitio to work on out ports as well as inout ports. Optional.

-outonly

Allows splitio to work only on out ports. Optional.

-r

Specifies that the port selection occurs recursively into subregions. Optional. If omitted,
included ports are limited to the current region.

<signal_name>...

Specifies the VHDL port. Operates only on inout ports by default; out ports may be
specified with the options above. Separate multiple port names with spaces. Required.
Wildcards can be used.

Examples

The splitio command operates on inout or out ports and silently ignores any other signals
specified. The new signals created may be specified in any vsim (CR-357) commands that
operate on signals. These signals appear to be out ports to the signal selection options on
vsim commands. For example,

splitio /data

Creates a signal data__o if data is an inout port.

Note: In ModelSim versions prior to 5.5c, splitio was used to split the VHDL inout or
output ports so you could re-simulate your design from a vcd file using
vsim -vcdread. In later versions, addition of the vcd dumpports command (CR-287)
eliminated the need for splitio.
Sim SE Command Reference

status CR-263
status

The status command lists summary information about currently interrupted macros. If
invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak (CR-210) or onerror (CR-212) commands that have been defined for each
interrupted macro.

Syntax

status
[file | line]

Arguments

file

Reports the file pathname of the current macro.

line

Reports the line number of the current macro.

Examples

The transcript below contains examples of resume (CR-243), and status commands.

VSIM(paused)> status
Macro resume_test.do at line 3 (Current macro)
command executing: “pause”
is Interrupted
ONBREAK commands: “resume”
Macro startup.do at line 34
command executing: “run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: “resume”
VSIM(paused)> resume
Resuming execution of macro resume_test.do at line 4

See also

abort (CR-51), do (CR-156), pause (CR-213), resume (CR-243)
ModelSim SE Command Reference

CR-264 Commands

Model
step

The step command steps to the next HDL or C statement. Current values of local HDL
variables may be observed at this time using the Variables window. VHDL procedures and
functions, Verilog tasks and functions, and C functions can optionally be skipped over.
When a wait statement or end of process is encountered, time advances to the next
scheduled activity. The Process and Source windows will then be updated to reflect the next
activity.

Syntax

step
[-over] [<n>]

Arguments

-over

Specifies that VHDL procedures and functions, Verilog tasks and functions, and C
functions should be executed but treated as simple statements instead of entered and
traced line by line. Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run (CR-246)
Sim SE Command Reference

stop CR-265
stop

The stop command is used with the when command (CR-375) to stop simulation in batch
files. The stop command has the same effect as hitting a breakpoint. The stop command
may be placed anywhere within the body of the when command.

Syntax

stop

Arguments

None.

Use the run command (CR-246) with the -continue option to continue the simulation run,
or the resume command (CR-243) to continue macro execution. If you want macro
execution to resume automatically, put the resume command at the top of your macro file:

onbreak {resume}

See also

bp (CR-81), resume (CR-243), run (CR-246), when (CR-375)

Note: If you want to stop the simulation using a when command (CR-375), you must use
a stop command within your when statement. DO NOT use an exit command (CR-171)
or a quit command (CR-234). The stop command acts like a breakpoint at the time it is
evaluated.
ModelSim SE Command Reference

CR-266 Commands

Model
tb

The tb (traceback) command displays a stack trace for the current process in the Main
window. This lists the sequence of HDL function calls that have been entered to arrive at
the current state for the active process.

If you are using "C Debug" (UM-473), tb displays a stack trace of the C call stack.

Syntax

tb
[<#_of_levels>]

Arguments

<#_of_levels>

Specifies the number of call frames in the C stack to display. Optional. If you don’t
specify a level, the entire C stack is displayed. Argument is available only for "C Debug"
(UM-473).
Sim SE Command Reference

tcheck_set CR-267
tcheck_set

The tcheck_set command works in tandem with tcheck_status (CR-269) to report on and
enable/disable individual timing checks. tcheck_set modifies either a check's reporting or
X-generation status and reports the new setting in the Main window transcript.

Disabling a timing check's reporting prevents generation of associated violation messages.
For Verilog modules this means ModelSim disables message reporting. For VHDL design
units this means ModelSim sets the MsgOn parameter in a VITAL timing check procedure
(TCP) to FALSE. Disabling a timing check's X generation removes a timing check’s ability
to affect the outputs of the simulation. For Verilog modules this means ModelSim toggles
the timing check's notifier. For VHDL design units this means ModelSim sets the Xon
parameter in a VITAL TCP to FALSE.

tcheck_set does not override the effects of invoking vlog (CR-345) or vsim (CR-357) with
the +nospecify, +notimingchecks, or +no_neg_tchk argument. tcheck_set can override
the effects of invoking vsim (CR-357) with the +no_notifier, +no_tchk_msg, -g, or -G
argument. These latter arguments establish initial values for the simulation, and those
values can be modified by tcheck_set.

Keep in mind the following if you are using VHDL VITAL:

• VITAL does not provide the granularity to set individual period or width checks. These
checks are part of a single VITAL TCP, and tcheck_set toggles MsgOn and Xon for all
checks in the TCP. See "Examples" below for further information.

• If an instance is not Level-1 optimized, you cannot set values for individual TCPs. You
can set values only for the entire instance. tcheck_status reports "ALL" for instances that
aren’t Level-1 optimized. See "Examples" below for further information.

Syntax

tcheck_set

[-quiet] [-r] <instance> [<tcheck>] <Stat>|<MsgStat> <XStat>

Arguments

-quiet

Suppresses printing the new setting to the Main window transcript. Optional.

-r

Attempts to change all checks on this instance and instances below this instance.
Optional.

<instance>

Specifies the instance for which you want to change the reporting or X-generation status.
Required.

<tcheck>

Specifies a specific timing check to change. Optional. If you don’t specify <tcheck> or
-r, or you specify ALL for <tcheck>, ModelSim attempts to apply the change to all
timing checks in the instance.

You can specify either the integer that is assigned to each timing check (and reported via
tcheck_status) or the actual timing check name enclosed in double quotes (see
"Examples" below). Note that the integer number may change between library compiles.
ModelSim SE Command Reference

CR-268 Commands

Model
<Stat>

Enables/disables both X generation and violation message reporting for the specified
timing check(s). Required unless you specify <MsgStat> and <XStat>. Specify either
ON (enable) or OFF (disable).

<MsgStat>

Enables/disables violation message reporting for the specified timing check(s). Required
unless you specify <Stat>. Specify either ON (enable) or OFF (disable).

<XStat>

Enables/disables X generation for the specified timing check(s). Required unless you
specify <Stat>. Specify either ON (enable) or OFF (disable).

Examples

tcheck_set top.y1.u2 "(WIDTH (negedge CLK))" OFF

Turns off message reporting and X generation for the "(WIDTH (negedge CLK))" check
in instance top.y1.u2. Creates the following output in the Transcript pane:

#0 (WIDTH (negedge CLK)) MsgOff XOff

tcheck_set top.y1.u2 1 OFF ON

Turns off message reporting for timing check number 1 in instance top.y1.u2. Creates the
following output in the Transcript pane:

#1 (WIDTH (posedge CLK)) MsgOff XOn

VSIM 2> tcheck_status dff1
1 (PERIOD CLK) MsgOn, XOn
(WIDTH (posedge CLK)) MsgOn, XOn
(WIDTH (negedge CLK)) MsgOn, XOn

VSIM 3> tcheck_set dff1 "(WIDTH (posedge CLK))" off on
1 (PERIOD CLK) MsgOff, XOn
(WIDTH (posedge CLK)) MsgOff, XOn
(WIDTH (negedge CLK)) MsgOff, XOn

Shows how period and hold checks work with VHDL VITAL. In this case, specifying
"off on" for (WIDTH (posedge CLK)) also sets (PERIOD CLK) and (WIDTH (negedge
CLK)) to the same values.

VSIM 3> tcheck_status dff5
ALL MsgOn XOn

VSIM 4> tcheck_set dff5 on off
ALL MsgOn XOff

Instance dff5 is from an unaccelerated model so tcheck_set can only toggle message
reporting and X generation for all checks on the instance.

See also

tcheck_status (CR-269), "VITAL compliance warnings" (UM-92), Chapter 17 - Standard
Delay Format (SDF) Timing Annotation, "Disabling timing checks" (UM-555), -g, -G,
no_notifier, +no_tchk_msg, +nospecify, +no_neg_tchk, and +notimingchecks
arguments to the vsim command (CR-357)
Sim SE Command Reference

tcheck_status CR-269
tcheck_status

The tcheck_status command works in tandem with tcheck_set (CR-267) to report on and
enable/disable individual timing checks. tcheck_status prints in the Main window
transcript the current status of all timing checks in the instance or a specific timing check
specified with the optional <tcheck> argument.

Disabling a timing check's reporting prevents generation of associated violation messages.
For Verilog modules this means ModelSim disables message reporting. For VHDL design
units this means ModelSim sets the MsgOn parameter in a VITAL timing check procedure
(TCP) to FALSE. Disabling a timing check's X generation removes a timing check’s ability
to affect the outputs of the simulation. For Verilog modules this means ModelSim toggles
the timing check's notifier. For VHDL design units this means ModelSim sets the Xon
parameter in a VITAL TCP to FALSE.

Syntax

tcheck_status

[-lines] <instance> [<tcheck>]

Arguments

-lines

Specifies that the HDL source file and line numbers of the check(s) be displayed.
Optional. Has no effect on VHDL instances. Note that line information may not always
be available.

<instance>

Specifies the instance for which you want timing check status reported. Required.

<tcheck>

Specifies a specific timing check within the instance on which to report status. Optional.
By default ModelSim reports all timing checks within the specified instance. You can
specify either the integer that is assigned to each timing check (and reported via
tcheck_status) or the actual timing check name enclosed in double quotes (see
"Examples" below). Note that the integer number may change between library compiles.

Output

The output of the tcheck_status command looks as follows:

#<Number> <SDF_Description> [<src_line>] <MsgStat> <XStat>

Field Description

<Number> an integer that can be used as shorthand to specify the check in the
tcheck_status or tcheck_set commands (as the <tcheck>
argument); this number can change with compiler optimizations,
and you can’t assume it will stay the same between library compiles

<SDF_Description> an SDF specification of the timing check including enclosing
parentheses ’()'
ModelSim SE Command Reference

CR-270 Commands

Model
Examples

tcheck_status top.y1.u2

Creates the following output:

#0 (WIDTH (negedge CLK)) MsgOn XOn
#1 (WIDTH (posedge CLK)) MsgOn XOn
#2 (SETUP (negedge D) (posedge CLK)) MsgOFF XOFF
#3 (HOLD (posedge CLK) (negedge D)) MsgOn XOff

tcheck_status -lines top.y1.u2 1

Creates the following output:

#1 (WIDTH (posedge CLK)) 'cell.v:224' MsgOn XOn

See also

tcheck_set (CR-267), Chapter 17 - Standard Delay Format (SDF) Timing Annotation

<src_line> the source file and line number for the timing check specification;
output if you specify the -lines argument; the format of the item is
<source_file_name>:<line_number>.

<MsgStat> violation message reporting status indicator

MsgON/MsgOFF - violation reporting is enabled/disabled and
unchangeable

MsgOn/MsgOff - violation reporting is enabled/disabled and
modifiable

<XStat> violation X generation status indicator

XON/XOFF - X generation is enabled/disabled and
unchangeable

XOn/XOff - X generation is enabled/disabled and modifiable

Field Description
Sim SE Command Reference

toggle add CR-271
toggle add

The toggle add command enables collection of toggle statistics for the specified nodes. The
allowed nodes are Verilog nets and registers and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored).

You can also collect and view toggle statistics in the ModelSim GUI. See Chapter 12 -
Code Coverage for details.

Syntax

toggle add
[-full] [-in] [-inout] [-internal] [-out] [-ports] [-r] <node_name>

Returns

Arguments

-full

Enables extended mode toggle coverage, which tracks the following six transitions:

1) 1 or H --> 0 or L

2) 0 or L --> 1 or H

3) X or Z --> 1 or H

4) X or Z --> 0 or L

5) 1 or H --> X or Z

6) 0 or L --> X or Z

Optional. By default only transitions to 0 and 1 are counted.

-in

Enables toggle statistics collection on nodes of mode IN. Optional.

-inout

Enables toggle statistics collection on nodes of mode INOUT. Optional.

-internal

Enables toggle statistics collection on internal (non-port) items. Optional.

-out

Enables toggle statistics collection on nodes of mode OUT. Optional.

Command result Return value

no signals are added and no signals are
found to be already in the toggle set

Nothing added.

no signals are added and some signals
are found to be already in the toggle set

0

some signals are added the number of bits added
ModelSim SE Command Reference

CR-272 Commands

Model
-ports

Enables toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r

Specifies that toggle statistics collection is enabled recursively into subregions. Optional.
If omitted, toggle statistic collection is limited to the current region.

<node_name>

Enables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

Examples

toggle add /dut/data/a

Enables toggle statistics collection for signal /dut/data/a.

toggle add {/dut/data_in[5]]}

Enables toggle statistics collection for bit 6 of bus /dut/data_in. The curly braces must be
added in order to escape the square brackets (’[]’).

See also

"Toggle coverage" (UM-437), toggle report (CR-275), toggle reset (CR-276)
Sim SE Command Reference

toggle disable CR-273
toggle disable

The toggle disable command disables toggle statistics collection on the specified nodes.
The command provides a method of implementing coverage exclusions for toggle
coverage.

The command is intended to be used as follows:

1 Enable toggle statistics collection for all signals using the -cover t/x argument to vcom
(CR-303) or vlog (CR-345).

2 Exclude certain signals by disabling them with the toggle disable command.

Syntax

toggle disable
[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

-all

Disables toggle statistics collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

-in

Disables toggle statistics collection on nodes of mode IN. Optional.

-out

Disables toggle statistics collection on nodes of mode OUT. Optional.

-inout

Disables toggle statistics collection on nodes of mode INOUT. Optional.

-internal

Disables toggle statistics collection on internal (non-port) items. Optional.

-ports

Disables toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r

Specifies that toggle statistics collection is disabled recursively into subregions.
Optional. If omitted, the disable is limited to the current region.

<node_name>

Disables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

"Toggle coverage" (UM-437), toggle add (CR-271), toggle enable (CR-274)
ModelSim SE Command Reference

CR-274 Commands

Model
toggle enable

The toggle enable command re-enables toggle statistics collection on nodes whose toggle
coverage had previously been disabled via the toggle disable command.

Syntax

toggle enable
[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

-all

Enables toggle statistics collection for all nodes that have toggle checking disabled.
Optional. Must be used alone without other arguments.

-in

Enables toggle statistics collection on disabled nodes of mode IN. Optional.

-out

Enables toggle statistics collection on disabled nodes of mode OUT. Optional.

-inout

Enables toggle statistics collection on disabled nodes of mode INOUT. Optional.

-internal

Enables toggle statistics collection on disabled internal (non-port) items. Optional.

-ports

Enables toggle statistics collection on disabled nodes of modes IN, OUT, or INOUT.
Optional.

-r

Specifies that toggle statistics collection is enabled recursively into subregions. Optional.
If omitted, the enable is limited to the current region.

<node_name>

Enables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

"Toggle coverage" (UM-437), toggle disable (CR-273)
Sim SE Command Reference

toggle report CR-275
toggle report

The toggle report command displays a list of all nodes that have not transitioned to both 0
and 1 at least once. Also displayed is a summary of the number of nodes checked, the
number that toggled, the number that didn't toggle, and a percentage that toggled.

You can also collect and view toggle statistics in the ModelSim GUI. See Chapter 12 -
Code Coverage for details.

The toggle report command is intended to be used as follows:

1 Enable statistics collection with the toggle add command (CR-271).

2 Run the simulation with the run command (CR-246).

3 Produce the report with the toggle report command.

Syntax

toggle report
[-all] [-file <filename>] [<signal>...] [-summary]

Arguments

-all

Lists all nodes checked along with their individual transition to 0 and 1 counts. Optional.

-file <filename>

Specifies a file to which to write the report. By default the report is displayed in the Main
window. Optional.

<signal>...

Specifies the name of a signal whose toggle statistics is to be displayed. Multiple signal
names, separated by spaces, may be specified. Wildcards may be used.

-summary

Selects only the summary portion of the report. Optional.

See also

"Toggle coverage" (UM-437), toggle add (CR-271), toggle reset (CR-276)
ModelSim SE Command Reference

CR-276 Commands

Model
toggle reset

The toggle reset command resets the toggle counts to zero for the specified nodes.

Syntax

toggle reset
[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

-all

Resets toggle statistics collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

-in

Resets toggle statistics collection on nodes of mode IN. Optional.

-out

Resets toggle statistics collection on nodes of mode OUT. Optional.

-inout

Resets toggle statistics collection on nodes of mode INOUT. Optional.

-internal

Resets toggle statistics collection on internal (non-port) items. Optional.

-ports

Resets toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r

Specifies that toggle statistics collection is reset recursively into subregions. Optional. If
omitted, the reset is limited to the current region.

<node_name>

Resets toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

"Toggle coverage" (UM-437), toggle add (CR-271), toggle report (CR-275)
Sim SE Command Reference

transcribe CR-277
transcribe

The transcribe command displays a command in the Main window, then executes the
command. The transcribe command is normally used to direct commands to the Main
window from an external event such as a menu pick or button selection. The add button
(CR-52) and add_menuitem (CR-61) commands can utilize transcribe. Returns nothing.

Syntax

transcribe
<command>

Arguments

<command>

Specifies the command to execute. Required.

Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled "pwd" that invokes transcribe with the pwd Tcl command, and
echoes the command and its results to the Main window. The button remains active
during a run.

See also

add button (CR-52), add_menuitem (CR-61)
ModelSim SE Command Reference

CR-278 Commands

Model
transcript

The transcript command controls echoing of commands executed in a macro file. If no
option is specified, the current setting is reported.

Syntax

transcript
[on | off | -q | quietly]

Arguments

on

Specifies that commands in a macro file will be echoed to the Main window as they are
executed. Optional.

off

Specifies that commands in a macro file will not be echoed to the Main window as they
are executed. Optional. The transcribe command (CR-277) can be used to force a
command to be echoed.

-q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a
Tcl conditional expression. Optional.

quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command (CR-233). Optional.

Examples

transcript on

Commands within a macro file will be echoed to the Main window as they are executed.

transcript

If issued immediately after the previous example, the message:

Macro transcripting is turned on.

appears in the Main window.

See also

echo (CR-161), transcribe (CR-277)
Sim SE Command Reference

transcript file CR-279
transcript file

The transcript file command sets or queries the pathname for the transcript file. You can
use this command to clear a transcript in batch mode or to limit the size of a transcript file.
It offers an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax

transcript file
[<filename>]

Arguments

<filename>

Specifies the full path and filename for the transcript file. Optional. If you specify a new
file, the existing transcript file is closed and a new transcript file opened. If you specify
an empty string (""), the existing file is closed and no new file is opened. If you don’t
specify this argument, the current setting is returned.

Examples

transcript file ""

Closes the current transcript file and stops writing data to the file. This is a method for
reducing the size of your transcript.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms

This series of commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new transcript
and records data from 1 ms to 2 ms.

See also

"Transcript" (UM-264)
ModelSim SE Command Reference

CR-280 Commands

Model
tssi2mti

The tssi2mti command is used to convert a vector file in Fluence Technology (formerly
TSSI) Standard Events Format into a sequence of force (CR-176) and run (CR-246)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti
<signal_definition_file> [<sef_vector_file>]

Arguments

<signal_definition_file>

Specifies the name of the Fluence Technology signal definition file describing the format
and content of the vectors. Required.

<sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

tssi2mti trigger.def trigger.sef > trigger.do

The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def < trigger.sef > trigger.do

This example is exactly the same as the previous one, but uses the standard input instead.

See also

force (CR-176), run (CR-246), write tssi (CR-395)
Sim SE Command Reference

unsetenv CR-281
unsetenv

The unsetenv command deletes an environment variable. The deletion is not permanent–it
is valid only for the current ModelSim session.

Syntax

unsetenv
<varname>

Arguments

<varname>

The name of the environment variable you wish to delete. Required.

See also

setenv (CR-258)
ModelSim SE Command Reference

CR-282 Commands

Model
up

The up command searches for signal transitions or values in the specified List window. It
executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a signal
takes on a particular value, or an expression of multiple signals evaluates to true. See the
down command (CR-157) for related functionality.

The procedure for using up includes three steps: click on the desired signal; click on the
desired starting location; issue the up command. (The seetime command (CR-257) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

up
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced List window. A signal may be specified
either by its full path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (CR-23) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Specifies that delta-width glitches are to be ignored. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Optional. Must be specified in the same radix
that the selected signal is displayed. Case is ignored, but otherwise must be an exact
string match -- don't-care bits are not yet implemented.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-320) to change the default
window.
Sim SE Command Reference

up CR-283
<n>

Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

Examples

up -noglitch -value FF23

Finds the last time at which the selected vector transitions to FF23, ignoring glitches.

up

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-23) and can be built with the aid of the "The GUI Expression
Builder" (UM-395).

up -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches up for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant.

up -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches up for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

up -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Searches up for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-23), view (CR-320), seetime (CR-257), down (CR-157)
ModelSim SE Command Reference

CR-284 Commands

Model
vcd add

The vcd add command adds the specified items to a VCD file. The allowed items are
Verilog nets and variables and VHDL signals of type bit, bit_vector, std_logic, and
std_logic_vector (other types are silently ignored).

All vcd add commands must be executed at the same simulation time. The specified items
are added to the VCD header and their subsequent value changes are recorded in the
specified VCD file.

By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add
[-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>]
<item_name>

Arguments

-r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in

Includes only port driver changes from ports of mode IN. Optional.

-out

Includes only port driver changes from ports of mode OUT. Optional.

-inout

Includes only port driver changes from ports of mode INOUT. Optional.

-internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.

-ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.

-file <filename>

Specifies the name of the VCD file. This option should be used only when you have
created multiple VCD files using the vcd files command (CR-296).

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim SE Command Reference

vcd checkpoint CR-285
vcd checkpoint

The vcd checkpoint command dumps the current values of all VCD variables to the
specified VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-286 Commands

Model
vcd comment

The vcd comment command inserts the specified comment in the specified VCD file.

Syntax

vcd comment
<comment string> [<filename>]

Arguments

<comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd dumpports CR-287
vcd dumpports

The vcd dumpports command creates a VCD file that includes port driver data.

By default all port driver changes are captured in the file. You can filter the output using
arguments detailed below.

Related Verilog task: $dumpports

Syntax

vcd dumpports
[-compress] [-file <filename>] [-in] [-inout] [-out] [-unique]
[-vcdstim] <item_name>

Arguments

-compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

-file <filename>

Specifies the path and name of a VCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during a single simulation.

-in

Includes ports of mode IN. Optional.

-inout

Includes ports of mode INOUT. Optional.

-out

Includes ports of mode OUT. Optional.

-unique

Generates unique VCD variable names for ports, even if those ports are connected to the
same collapsed net. Optional.

-vcdstim

Ensure that the order that the port names appear in the VCD file matches the order that
they are declared in the instance’s module or entity declaration. Optional. See "Port order
issues" (UM-564) for further information.

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.
ModelSim SE Command Reference

CR-288 Commands

Model
Examples

vcd dumpports -in -file counter.vcd /test_counter/dut/*

Creates a VCD file named counter.vcd of all IN ports in the region /test_counter/dut/.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

These two commands resimulate a design from a VCD file. See "Simulating with input
values from a VCD file" (UM-562) for further details.

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd

This series of commands creates VCD files for the instances proc and cache and then re-
simulates the design using the VCD files in place of the instance source files. See
"Replacing instances with output values from a VCD file" (UM-563) for more information.
Sim SE Command Reference

vcd dumpportsall CR-289
vcd dumpportsall

The vcd dumpportsall command creates a checkpoint in the VCD file which shows the
value of all selected ports at that time in the simulation, regardless of whether the port
values have changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-290 Commands

Model
vcd dumpportsflush

The vcd dumpportsflush command flushes the contents of the VCD file buffer to the
specified VCD file.

Related Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd dumpportslimit CR-291
vcd dumpportslimit

The vcd dumpportslimit command specifies the maximum size of the VCD file (by
default, limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

Syntax

vcd dumpportslimit
<dumplimit> [<filename>]

Arguments

<dumplimit>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-292 Commands

Model
vcd dumpportsoff

The vcd dumpportsoff command turns off VCD dumping and records all dumped port
values as x.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd dumpportson CR-293
vcd dumpportson

The vcd dumpportson command turns on VCD dumping and records the current values of
all selected ports. This command is typically used to resume dumping after invoking vcd
dumpportsoff.

Related Verilog task: $dumpportson

Syntax

vcd dumpportson
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-294 Commands

Model
vcd file

The vcd file command specifies the filename and state mapping for the VCD file created
by a vcd add command (CR-284). The vcd file command is optional. If used, it must be
issued before any vcd add commands.

Related Verilog task: $dumpfile

Syntax

vcd file
[-dumpports] [<filename>] [-map <mapping pairs>] [-nomap]

Arguments

-dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and any subsequent vcd add command (CR-284) will
accept only qualifying ports (silently ignoring all other specified items).

<filename>

Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

Note: vcd file is included for backward compatibility. Use the vcd files command (CR-

296) if you want to use multiple VCD files during a single simulation.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1
Sim SE Command Reference

vcd file CR-295
See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.

1 1 - x

Z z

VHDL VCD VHDL VCD
ModelSim SE Command Reference

CR-296 Commands

Model
vcd files

The vcd files command specifies a filename and state mapping for a VCD file created by a
vcd add command (CR-284). The vcd files command is optional. If used, it must be issued
before any vcd add commands.

Related Verilog task: $fdumpfile

Syntax

vcd files
[-compress] <filename> [-map <mapping pairs>] [-nomap]

Arguments

-compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

<filename>

Specifies the name of a VCD file to create. Required. Multiple files can be opened during
a single simulation; however, you can create only one file at a time. If you want to create
multiple files, invoke vcd files multiple times.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd files -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z
Sim SE Command Reference

vcd files CR-297
Examples

The following example shows how to "mask" outputs from a VCD file until a certain time
after the start of the simulation. The example uses two vcd files commands and the vcd on
(CR-301) and vcd off (CR-300) commands to accomplish this task.

vcd files in_inout.vcd
vcd files output.vcd
vcd add -in -inout -file in_inout.vcd /*
vcd add -out -file output.vcd /*
vcd off output.vcd
run 1us
vcd on output.vcd
run -all

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-298 Commands

Model
vcd flush

The vcd flush command flushes the contents of the VCD file buffer to the specified VCD
file. This command is useful if you want to create a complete VCD file without ending your
current simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim SE Command Reference

vcd limit CR-299
vcd limit

The vcd limit command specifies the maximum size of a VCD file (by default, limited to
available disk space). When the size of the file exceeds the limit, a comment is appended
to the file and VCD dumping is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Syntax

vcd limit
<filesize> [<filename>]

Arguments

<filesize>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-300 Commands

Model
vcd off

The vcd off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim SE Command Reference

vcd on CR-301
vcd on

The vcd on command turns on VCD dumping to the specified file and records the current
values of all VCD variables. By default, vcd on is automatically performed at the end of
the simulation time that the vcd add (CR-284) commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax

vcd on

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-294) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 18 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog system tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-302 Commands

Model
vcd2wlf

vcd2wlf is a utility that translates a VCD (Value Change Dump) file into a WLF file that
can be displayed in ModelSim using the vsim -view argument.

Syntax

vcd2wlf

[-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>]

<vcd filename> <wlf filename>

Arguments

-splitio

Specifies that extended VCD port values are to be split into their corresponding input and
output components by creating 2 signals instead of just 1 in the resulting .wlf file.
Optional. By default the new input-component signal keeps the same name as the original
port name while the output-component name is the original name with "__o" appended
to it.

-splitio_in_ext <extension>

Specifies an extension to add to input-component signal names created by using -splitio.
Optional.

-splitio_out_ext <extension>

Specifies an extension to add to output-component signal names created by using
-splitio. Optional.

<vcd filename>

Specifies the name of the VCD file you want to translate into a WLF file. Required.

<wlf filename>

Specifies the name of the output WLF file. Required.
Sim SE Command Reference

vcom CR-303
vcom

The vcom command compiles VHDL source code into a specified working library (or to
the work library by default).

This command may be invoked from within ModelSim or from the operating system
command prompt. This command may also be invoked during simulation.

Compiled libraries are major-version dependent. For example you cannot use a library
compiled with 5.7 in a simulation using 5.8 vsim. You would have to refresh the libraries
using the -refresh argument to vcom. This is not true for minor versions (e.g., 5.7a libraries
work in 5.7d).

Syntax

vcom
[-87] [-93] [-2002] [+acc[=<spec>][+<entity>[(architecture)]]]
[-check_synthesis] [-cover <stat>] [-debugVA] [-explicit]
[-f <filename>] [-force_refresh] [-help] [-ignoredefaultbinding]
[-ignorevitalerrors] [-just abcep] [-skip abcep] [-line <number>]
[-lint] [-no1164] [-noaccel <package_name>] [-nocasestaticerror]
[-nocheck] [-nocoverage] [-nodebug[=ports]] [-noindexcheck] [-nologo]
[-nonstddriverinit] [-noothersstaticerror] [-nopsl] [-norangecheck]
[-novital] [-novitalcheck] [-nowarn <number>]
[-O0 | -O1 | -O4 | -O5] [-pedanticerrors]
[-performdefaultbinding] [-pslfile <filename>] [-quiet] [-rangecheck]
[-refresh] [-s] [-source] [-time] [-version]
[-work <library_name>] <filename>

Arguments

-87

Disables support for VHDL-1993 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini
file to set this permanently (see "Preference variables located in INI files" (UM-617)).

-93

Disables support for VHDL-1987 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini
file to set this permanently (see "Preference variables located in INI files" (UM-617)).

-2002

Specifies that the compiler is to support VHDL-2002. Optional. This is the default.

+acc[=<spec>][+<entity>[(architecture)]]

Enables access to design objects that would otherwise become unavailable due to
optimizations. Optional. Note that using this option may reduce optimizations.

<spec> currently has only one choice:

v–Enable access to variables, constants, and aliases in processes that would otherwise be
merged due to optimizations.

<entity> and (<architecture>) specify the design unit(s) in which to allow the access. If
(<architecture>) is not specified, then all architectures of a given <entity> are enabled for
access.
ModelSim SE Command Reference

CR-304 Commands

Model
-check_synthesis

Turns on limited synthesis rule compliance checking. Specifically, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis (UM-619) variable in the
modelsim.ini file to set a permanent default.

-cover <stat>

Enables various coverage statistics collection. Optional.

<stat> is one or more of the following characters:

b–Collect branch statistics.

c–Collect condition statistics.

e–Collect expression statistics.

s–Collect statement statistics. Default.

t–Collect toggle statistics. Cannot be used if ’x’ is specified.

x–Collect extended toggle statistics (see "Toggle coverage" (UM-437) for details).
Cannot be used if ’t’ is specified.

By default only statement coverage is enabled when you invoke vsim with the -coverage
option.

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

-explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools
choose explicit operators over implicit operators. Using this switch makes ModelSim
compatible with common industry practice.

-f <filename>

Specifies a file with more command-line arguments. Optional. Allows complex
argument strings to be reused without retyping. Nesting of -f options is allowed.

The file syntax basically follows what you type on the command line with the exception
that newline characters are ignored. Environment variable expansion (for example in a
pathname) does not occur in -f files.

-force_refresh

Forces the refresh of a design unit. Optional. When the compiler refreshes a design unit,
it checks each dependency to ensure its source has not been changed and recompiled. If
a dependency has been changed and recompiled, the compiler will not refresh the
dependent design unit (unless you use -force_refresh). To avoid potential errors or
mismatches caused by the dependency recompilation, you should recompile the
dependent design unit’s source rather than use this switch.

-help

Displays the command’s options and arguments. Optional.

-ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional.
You must explicitly bind all components in the design to use this switch.
Sim SE Command Reference

vcom CR-305
-ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

-just abcep

Directs the compiler to “just” include:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-skip abcep

Directs the compiler to skip all:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default,
the compiler starts at the beginning of the file.

-lint

Enables a warning message if the result of the built-in concatenation operator ("&") is the
actual for a subprogram formal parameter of an unconstrained array type. Optional.

-no1164

Causes the source files to be compiled without taking advantage of the built-in version
of the IEEE std_logic_1164 package. Optional. This will typically result in longer
simulation times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package_name>

Turns off acceleration of the specified package in the source code using that package.

-nocasestaticerror

Suppresses case statement static warnings. Optional. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions
which are globally static are allowed. This switch prevents the compiler from warning on
such expressions. If the -pedanticerrors switch is specified, this switch is ignored.

-nocheck

Disables index and range checks. Optional. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-nocoverage

Disables collection of statement coverage statistics, which is on by default. Optional.
ModelSim SE Command Reference

CR-306 Commands

Model
-nodebug[=ports]

Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, signals, processes, and variables will not display in ModelSim’s
windows. In addition, none of the hidden objects may be accessed through the Dataflow
window or with commands. This also means that you cannot set breakpoints or single
step within this code. Don’t compile with this switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.

The optional =ports switch hides the ports for the lower levels of your design; it should
only be used to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

-noindexcheck

Disables checking on indexing expressions to determine whether indices are within
declared array bounds. Optional.

-nologo

Disables display of startup banner. Optional.

-nonstddriverinit

Forces ModelSim to match pre-5.7c behavior in initializing drivers in a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly
initialized drivers if the port did not have an explicit initialization value and the actual
connect to the port had explicit initial values. Depending on a number of factors,
Modelsim could incorrectly use the actual signal's initial value when initializing lower
level drivers. Note that the argument does not cause all lower-level drivers to use the
actual signal's initial value; it only does this in the specific cases where older versions
used the actual signal's initial value.

-noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having
"others" clauses that are not locally static. Optional. If the -pedanticerrors switch is
specified, this switch is ignored.

-nopsl

Instructs the compiler to ignore embedded PSL assertions. By default vcom parses any
PSL assertion statements it finds in the specified files. See "Compiling and simulating
assertions" (UM-506) for more information.

-norangecheck

Disables run time range checking. In some designs, this results in a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. See "Range and index checking" (UM-74) for additional information.
Sim SE Command Reference

vcom CR-307
-novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional.
Allows breakpoints to be set in the VITAL behavior process and permits single stepping
through the VITAL procedures to debug your model. Also all of the VITAL data can be
viewed in the Variables or Signals windows.

-novitalcheck

Disables VITAL 2000 compliance checking if you are using VITAL 2.2b. Optional.

-nowarn <number>

Selectively disables an individual warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles via the Main window
Options > Compile Options menu command or the modelsim.ini file (see the "[vcom]
VHDL compiler control variables" (UM-619)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = VITAL compliance checks
7 = VITAL optimization messages
8 = lint checks
9 = signal value used in expression evaluated at elaboration
10 = VHDL-1993 constructs in VHDL-1987 code

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional. Note that changing from the default
-O4 to -O1 may cause event order differences in your simulation.

Enable standard SE optimizations with -O4. Default. The main differences between -O4
and -O1 are that ModelSim attempts to improve memory management for vectors and
accelerate VITAL Level 1 modules with -O4.

Enable maximum optimization with -O5. Optional. We recommend use of this switch
with large sequential blocks only; other uses may significantly increase compile times.
-O5 attempts to optimize loops and prevents variable assignments in situations where a
variable is assigned but is not actually used. Using the +acc argument to vcom will cancel
this latter optimization.

-pedanticerrors

Forces ModelSim to error (rather than warn) on three conditions: 1) when a choice in a
case statement is not a locally static expression; 2) when an array aggregate with multiple
choices doesn’t have a locally static "others" choice; 3) when a generate statement
without a BEGIN keyword exists between the declarative items and the concurrent
statements. Optional. This argument overrides -nocasestaticerror and
-noothersstaticerror (see above).
ModelSim SE Command Reference

CR-308 Commands

Model
-performdefaultbinding
Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file. Optional.

-pslfile <filename>

Identifies an external PSL assertion file to compile along with the VHDL source files.
See "Compiling and simulating assertions" (UM-506) for more information.

-quiet

Disables ’Loading’ messages. Optional.

-rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument. See "Range and index checking" (UM-74) for additional
information.

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library> to update a different library. See vcom "Examples" (CR-309) for more
information.

-s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used if you are compiling the standard package itself.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional. By default, only the error message is displayed.

-time

Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vcom.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vcom 5.5 Compiler 2000.01 Jan 29 2000".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

<filename>

Specifies the name of a file containing the VHDL source to be compiled. One filename
is required; multiple filenames can be entered separated by spaces or wildcards may be
used (e.g., *.vhd).

If you don’t specify a filename, and you are using the GUI, a dialog box pops up allowing
you to select the options and enter a filename.
Sim SE Command Reference

vcom CR-309
Examples

vcom example.vhd

Compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -nodebug example.vhd

Hides the internal data of example.vhd. Models compiled with -nodebug cannot use any
of the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vcom -nodebug=ports level3.vhd level2.vhd
vcom -nodebug top.vhd

The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.vhd and level2.vhd. The second line compiles the top-level unit,
top.vhd, without hiding the ports. It is important to compile the top level without =ports
because top-level ports must be visible for simulation.

vcom -noaccel numeric_std example.vhd

When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -explicit example.vhd

Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration can
be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

ARITHMETIC.”=”(left, right)

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

vcom -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).
ModelSim SE Command Reference

CR-310 Commands

Model
vcover convert

The vcover convert command converts a coverage file created in ModelSim 5.7 to a
ModelSim 5.8 format. You can also use the command with the -strip or -install arguments
to create a new data file with different levels of hierarchy. The command can be invoked
within the ModelSim GUI or at the command line.

Syntax

vcover convert
[-57] [-install <path>] [-log <filename>] [-strip <n>] <file> <outfile>

Arguments

-57

Converts the specified file to a 5.8 format. Optional.

-install <path>

Adds <path> as additional hierarchy on the front end of instance and signal names in the
input file. Optional. This argument allows you to create a new coverage file with a
different level of hierarchy.

-log <filename>

Specifies the file for outputting progress messages. Optional. By default these messages
are output to vcover.log.

-strip <n>

Removes <n> levels of hierarchy from instance and signal names in the data files.
Optional. This argument allows you to create a new coverage file with a different level
of hierarchy.

<file>

Specifies the file you want to convert. Required.

<outfile>

Specifies the name of the new file you want to output. Required.

See also

vcover merge command (CR-311), vcover stats command (CR-313), Chapter 12 - Code
Coverage
Sim SE Command Reference

vcover merge CR-311
vcover merge

The vcover merge command merges multiple coverage reports without having to re-
simulate the designs. It can be invoked within the ModelSim GUI or at the command line.

Syntax

vcover merge
[-and] [-append] [-f <pathname>] [-install <path>] [-log <filename>]
[-strip <n>] [-verbose] <outfile> <file1> <file2> <filen>...

Arguments

-and

Excludes statements in the output file only if they are excluded in all input files. Optional.
By default a statement is excluded in the output merge file if the statement is excluded in
any of the input files.

-append

Specifies that progress messages are to be appended to the current log file. Optional. By
default a new log file is created each time you invoke the command.

-f <pathname>

Specifies a text file containing input filenames that you want to merge. Optional.

-install <path>

Adds <path> as additional hierarchy on the front end of instance and signal names in the
data files. Optional. This argument allows you to merge coverage results from
simulations that have different hierarchies.

-log <filename>

Specifies the file for outputting progress messages. Optional. By default these messages
are output to vcover.log.

-strip <n>

Removes <n> levels of hierarchy from instance and signal names in the data files.
Optional. This argument allows you to merge coverage results from simulations that have
different hierarchies.

-verbose

Enables summary code coverage statistics to be computed and directed to the log file
each time a file is merged into the base. The statistics are instance-based.

<outfile>

Specifies the name of the file that will contain the merged output. Required.

<file1> <file2> <filen>...

Specifies the file(s) you want to merge. Required. Multiple pathnames and wildcards are
allowed.
ModelSim SE Command Reference

CR-312 Commands

Model
Example

vcover merge myresult myfile1 myfile2

Merges code coverage statistics for myfile1 and myfile2 and writes them to myresult.

vcover merge myresult2 /dut/*.cov

Uses wildcards to merge all files with a .cov extension in a particular directory.

See also

vcover convert command (CR-310), vcover stats command (CR-313), Chapter 12 - Code
Coverage
Sim SE Command Reference

vcover stats CR-313
vcover stats

The vcover stats command computes and prints to stdout summary statistics for the
specified file(s). It can be invoked within the ModelSim GUI or at the command line.

Syntax

vcover stats
[-and] [-append] [-f <pathname>] [-incremental] [-install <path>]
[-log <filename>] [-strip <n>] [-verbose] <file1> [<file2> <filen>...]

Arguments

-and

Excludes statements in the output merge file only if they are excluded in all input files.
Optional. By default statements are excluded in the output file if the statement is
excluded in any of the input files.

-append

Specifies that progress messages are to be appended to the current log file. Optional. By
default a new log file is created each time you invoke the command.

-f <pathname>

Specifies a text file containing input filenames for which you want to produce statistics.
Optional.

-incremental

Prints statistics for the specified files as if the files were merged one after the other in the
listed order. Optional. For example, using this argument will cause vcover stats to print
the statistics for <file1>, then any incremental coverage after merging <file2>, and then
any incremental coverage after merging <file3> into the merge of <file1> and <file2>,
and so forth. At the end it prints the total statistics for the full merge. The statistics are
written to both stdout and vcover.log.

-install <path>

Adds <path> as additional hierarchy on the front end of instance and signal names in the
data files. Optional. This argument allows you to merge coverage results from
simulations that have different hierarchies.

-log <filename>

Specifies the file for outputting progress messages. Optional. By default these messages
are output to vcover.log.

-strip <n>

Removes <n> levels of hierarchy from instance and signal names in the data files.
Optional. This argument allows you to merge coverage results from simulations that have
different hierarchies.

-verbose

Enables summary code coverage statistics to be computed and directed to the log file
each time a file is merged into the base. The statistics are instance-based.

<file1> [<file2> <filen>...]

Specifies the file(s) for which you want summary statistics. Required. Multiple
pathnames and wildcards are allowed.
ModelSim SE Command Reference

CR-314 Commands

Model
See also

vcover convert command (CR-310), vcover merge command (CR-311), Chapter 12 - Code
Coverage
Sim SE Command Reference

vdel CR-315
vdel

The vdel command deletes a design unit from a specified library.

Syntax

vdel
[-help] [-lib <library_name>] [-verbose]
[-all | <design_unit> | [<arch_name>] | -allsystemc]

Arguments

-allsystemc

Deletes all SystemC modules in a design from the working directory. Optional.

-all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

<arch_name>

Specifies the name of an architecture to be deleted. Optional. If omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

-help

Displays the command’s options and arguments. Optional.

-lib <library_name>

Specifies the logical name or pathname of the library that holds the design unit to be
deleted. Optional. By default, the design unit is deleted from the work library.

-verbose

Displays progress messages. Optional.

<design_unit>

Specifies the entity, package, configuration, or module to be deleted. Required unless -all
is used. This option is not supported for SystemC modules.

Examples

vdel -all

Deletes the work library.

vdel -lib synopsys -all

Deletes the synopsys library.

vdel xor

Deletes the entity named xor and all its architectures from the work library.

vdel xor behavior

Deletes the architecture named behavior of the entity xor from the work library.

vdel base

Deletes the package named base from the work library.
ModelSim SE Command Reference

CR-316 Commands

Model
vdir

The vdir command lists the contents of a design library.

This command can also be used to check compatibility of a vendor library. If vdir cannot
read a vendor-supplied library, the library may not be ModelSim compatible. SystemC
modules are listed with this command.

Syntax

vdir
[-help] [-l] [-r] [-all] | [-lib <library_name>] [<design_unit>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-l

Prints the version of vcom, vlog, or sccom that each design unit was compiled under.
Also prints the object-code version number that indicates which versions of vcom/vlog/
sccom and ModelSim are compatible. This example was printed by vdir -l for the counter
module in the work library:

Library Vendor : Model Technology
MODULE ram_tb
Verilog Version: DPV:j32Jc=Q?7<3><C;OK0
Version number: CRW2<UhheaW;LIL2_B5o31
Source modified time: 1064511064
Source file: ram_tb.v
Opcode format: 5.8 Beta 2; VLOG SE Object version 172
Optimized Verilog design root: 1
Language standard: 1
Source directory: C:\modelsim_examples\memory\vlog_memory

-r

Prints architecture information for each entity in the output.

-all

Lists the contents of all libraries listed in the [Library] section of the active modelsim.ini
file. Optional. See "[Library] library path variables" (UM-617) for more information.

-lib <library_name>

Specifies the logical name or the pathname of the library to be listed. Optional. By
default, the contents of the work library are listed.

<design_unit>

Indicates the design unit to search for within the specified library. If the design unit is a
VHDL entity, its architectures are listed. Optional. By default, all entities,
configurations, modules, and packages in the specified library are listed.

Examples

vdir -lib design my_asic

Lists the architectures associated with the entity named my_asic that reside in the HDL
design library called design.
Sim SE Command Reference

verror CR-317
verror

The verror command prints a detailed description about a message number. It may also
point to additional documentation related to the error.

Syntax

verror
[-all [-kind <tool]] [-fmt] [-ranges] <msgNum>...

Arguments

-all [-kind <tool]

Prints all error messges. Optional. If you specify -kind <tool>, it prints just those error
messages associated with the specified tool.

-fmt

Prints the format string that is used in the actual error message. Optional.

-ranges

Prints the numeric ranges of error message numbers by tool. Optional.

<msgNum>

Specifies the message number of a ModelSim message. Required unless you specify the
-all argument. The message number can be obtained from messages that have the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

Example

Say you see the following message in the transcript:

** Error (vsim-3061) foo.v(22): Too many Verilog port connections.

You would type:

verror 3061

and receive the following output:

Message # 3061:

Too many Verilog ports were specified in a mixed VHDL/Verilog instantiation.
Verify that the correct VHDL/Verilog connection is being made and that the
number of ports matches.

[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs Chapter]
ModelSim SE Command Reference

CR-318 Commands

Model
vgencomp

Once a Verilog module is compiled into a library, you can use the vgencomp command to
write its equivalent VHDL component declaration to standard output. Optional switches
allow you to generate bit or vl_logic port types; std_logic port types are generated by
default.

Syntax

vgencomp
[-help] [-lib <library_name>] [-b] [-s] [-v] <module_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work
is used. Optional.

-b

Causes vgencomp to generate bit port types. Optional.

-s

Used for the explicit declaration of default std_logic port types. Optional.

-v

Causes vgencomp to generate vl_logic port types. Optional.

<module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top

 generic(
Sim SE Command Reference

vgencomp CR-319
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector

);
end component;
ModelSim SE Command Reference

CR-320 Commands

Model
view

The view command opens a ModelSim window and brings that window to the front of the
display. If multiple instances of a window exist, view will change the default window of
that type to the specified window. Using the -new option, view will create an additional
instance of the specified window type and set it to be the default window for that type.

Names for windows are generated as follows:

• The first window name (automatically created without using -new) has the same name as
the window type.

• Additional window names created by -new append an integer to the window type, starting
with 1.

To remove a window, use the noview command (CR-208).

The view command returns the name(s) of the viewed window(s).

Syntax

view
[*] [-height <n>] [-icon] [-new] [-title {New Window Title}] [-width <n>]
[-x <n>] [-y <n>] <window_type>...

Arguments

*
Specifies that all windows be opened. Optional.

-height <n>

Specifies the window height in pixels. Optional.

-icon

Toggles the view between window and icon. Optional.

-new

Creates a new instance of the window type specified with the <window_type> argument.
Optional. New window names are created by appending an integer to the window type,
starting with 1, then incrementing the integer.

-title {New Window Title}

Specifies the window title of the designated window. Curly braces are only needed for
titles that include spaces. Double quotes can be used in place of braces, for example
"New Window Title". If the new window title does not include spaces, no braces or
quotes are needed. For example: -title new_wave wave assigns the title new_wave to the
Wave window.

-width <n>

Specifies the window width in pixels. Optional.
Sim SE Command Reference

view CR-321
<window_type>...

Specifies the ModelSim window type to view. Required. You do no need to type the full
type (see examples below); implicit wildcards are accepted; multiple window types may
be used. Available window types are:

assertions, dataflow, list, memory, process, signals, source, structure,
variables, wave

Also creates a new instance of the specified window type when used with the -new
option. You may also specify the window(s) to view when multiple instances of that
window type exist (e.g., wave2, structure1). This works only with ModelSim-generated
window names, not with window titles specified with the -title argument.

-x <n>

Specifies the window upper-left-hand x-coordinate in pixels. Optional.

-y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Optional.

Examples

view d

Opens the Dataflow window.

view m

Opens the Memory window.

view si pr

Opens the Signals and Process windows.

view s

Opens the Signals and Source windows.

view -title {My Wave Window} wave

Opens a new Wave window with My Wave Window as its title.

view wave
view -new wave

The first command creates a window named ’wave’. The second command creates a
window named ‘wave1’. Its full Tk path is ‘.wave1’. Wave1 is now the default Wave
window. Any add wave command (CR-64) would add items to wave1.

view wave

Changes the default Wave window back to ‘wave’.

add wave -win .wave1 mysig

Will override the default Wave window and add mysig to wave1.

See also

noview (CR-208)
ModelSim SE Command Reference

CR-322 Commands

Model
virtual count

The virtual count command counts the number of currently defined virtuals that were not
read in using a macro file.

Syntax

virtual count
[-kind <kind>] [-unsaved]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-unsaved

Specifies that the count include only those virtuals that have not been saved to a macro
file. Optional.

See also

virtual define (CR-323), virtual save (CR-337), virtual show (CR-338), "Virtual Objects
(User-defined buses, and more)" (UM-248)
Sim SE Command Reference

virtual define CR-323
virtual define

The virtual define command prints to the Main window the definition of the virtual signal
or function in the form of a command that can be used to re-create the object.

Syntax

virtual define
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want definitions. Required. Wildcards
can be used.

Examples

virtual define -kind explicits *

Shows the definitions of all the virtuals you have explicitly created.

See also

virtual describe (CR-325), virtual show (CR-338), "Virtual Objects (User-defined buses,
and more)" (UM-248)
ModelSim SE Command Reference

CR-324 Commands

Model
virtual delete

The virtual delete command removes the matching virtuals.

Syntax

virtual delete
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) you want to delete. Required. Wildcards can be used.

Examples

virtual delete -kind explicits *

Deletes all of the virtuals you have explicitly created.

See also

virtual signal (CR-339), virtual function (CR-327), "Virtual Objects (User-defined buses,
and more)" (UM-248)
Sim SE Command Reference

virtual describe CR-325
virtual describe

The virtual describe command prints to the Main window a complete description of the
data type of one or more virtual signals. Similar to the existing describe command.

Syntax

virtual describe
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want descriptions. Required. Wildcards
can be used.

Examples

virtual describe -kind explicits *

Describes the data type of all virtuals you have explicitly created.

See also

virtual define (CR-323), virtual show (CR-338), "Virtual Objects (User-defined buses, and
more)" (UM-248)
ModelSim SE Command Reference

CR-326 Commands

Model
virtual expand

The virtual expand command produces a list of all the non-virtual objects contained in the
specified virtual signal(s). This can be used to create a list of arguments for a command that
does not accept or understand virtual signals.

Syntax

virtual expand
[-base] <pathname>

Arguments

-base

Causes the root signal parent to be output in place of a subelement. Optional. For
example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

<pathname>

Specifies the path to the signals and virtual signals to expand. Required. Wildcards can
be used. Any number of paths can be specified.

Examples

vcd add [virtual expand myVirtualSignal]

Adds the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command. So if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is quoted in curly braces, because it contains spaces.

See also

virtual signal (CR-339), "Virtual Objects (User-defined buses, and more)" (UM-248)
Sim SE Command Reference

virtual function CR-327
virtual function

The virtual function command creates a new signal, known only by the GUI (not the
kernel), that consists of logical operations on existing signals and simulation time, as
described in <expressionString>. It cannot handle bit selects and slices of Verilog
registers. Please see "Syntax and conventions" (CR-9) for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Signals windows. The children correspond to the inputs
of the virtual function. This allows the function to be "expanded" in the Wave window to
see the values of each of the input waveforms, which could be useful when using virtual
functions to compare two signal values.

Virtual functions can also be used to gate the List window display.

Syntax

virtual function
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the
contents of the expression string.

-env <path>

Specifies a hierarchical context for the signal names in <expressionString> so they don't
all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual function will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format. Required. See
"GUI_expression_format" (CR-23) for more information.

<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.
ModelSim SE Command Reference

CR-328 Commands

Model
Examples

virtual function { not /chip/section1/clk } clk_n

Creates a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega }
rega_slv

Creates a std_logic_vector equivalent of a verilog register rega and installs it as /chip/
rega_slv.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

Creates a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal
to hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga_diff

Creates a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB} myDelayAandB

Creates a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

Creates a one-bit signal outbus_diff which is non-zero during times when any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.
Sim SE Command Reference

virtual function CR-329
Commands fully compatible with virtual functions

Commands not currently compatible with virtual functions

See also

add list (CR-55) add log /log (CR-187) add wave (CR-64)

checkpoint (CR-99) and restore (CR-

242)

delete (CR-151) describe (CR-152) ("virtual describe" is
a little faster)

down (CR-157) / up (CR-282) examine (CR-167) find (CR-172)

restart (CR-240) left (CR-185) / right (CR-244) search (CR-253)

searchlog (CR-255) show (CR-260)

check contention add (CR-90) check contention config (CR-92) check contention off (CR-93)

check float add (CR-94) check float config (CR-95) check float off (CR-96)

check stable on (CR-98) check stable off (CR-97) drivers (CR-159)

force (CR-176) noforce (CR-204) power add (CR-216)

power report (CR-217) power reset (CR-218) toggle add (CR-271)

toggle reset (CR-276) toggle report (CR-275) vcd add (CR-284)

when (CR-375)

virtual count (CR-322) virtual define (CR-323) virtual delete (CR-324)

virtual describe (CR-325) virtual expand (CR-326) virtual hide (CR-330)

virtual log (CR-331) virtual nohide (CR-333) virtual nolog (CR-334)

virtual region (CR-336) virtual save (CR-337) virtual show (CR-338)

virtual signal (CR-339) virtual type (CR-342) Virtual Objects (User-defined
buses, and more) (UM-248)
ModelSim SE Command Reference

CR-330 Commands

Model
virtual hide

The virtual hide command sets a flag in the specified real or virtual signals, so those
signals do not appear in the Signals window. This is used when you want to replace an
expanded bus with a user-defined bus. You make the signals reappear using the virtual
nohide command.

Syntax

virtual hide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to hide. Required. Any number of names or wildcard patterns may be used.

See also

virtual nohide (CR-333), "Virtual Objects (User-defined buses, and more)" (UM-248)
Sim SE Command Reference

virtual log CR-331
virtual log

The virtual log command causes the simulation-mode dependent signals of the specified
virtual signals to be logged by the kernel. If wildcard patterns are used, it will also log any
normal signals found, unless the -only option is used. You unlog the signals using the
virtual nolog command.

Syntax

virtual log
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
log. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be logged. Optional.

-in

Specifies that the kernel log data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel log data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel log data for internal (non-port) items whose names match the
specification. Optional.

-ports

Specifies that the kernel log data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to log. Required. Any number of names or wildcard patterns may be used.
ModelSim SE Command Reference

CR-332 Commands

Model
See also

virtual nolog (CR-334), "Virtual Objects (User-defined buses, and more)" (UM-248)
Sim SE Command Reference

virtual nohide CR-333
virtual nohide

The virtual nohide command reverses the effect of a virtual hide command. It resets the
flag in the specified real or virtual signals, so those signals reappear in the Signals window.

Syntax

virtual nohide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to expose. Required. Any number of names or wildcard patterns may be used.

See also

virtual hide (CR-330), "Virtual Objects (User-defined buses, and more)" (UM-248)
ModelSim SE Command Reference

CR-334 Commands

Model
virtual nolog

The virtual nolog command reverses the effect of a virtual log command. It causes the
simulation-dependent signals of the specified virtual signals to be excluded ("unlogged")
by the kernel. If wildcard patterns are used, it will also unlog any normal signals found,
unless the -only option is used.

Syntax

virtual nolog
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
unlog. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be unlogged. Optional.

-in

Specifies that the kernel exclude data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel exclude data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel exclude data for internal (non-port) items whose names match
the specification. Optional.

-ports

Specifies that the kernel exclude data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard pattern should be used in finding the signals to
unlog. Required. Any number of names or wildcard patterns may be used.
Sim SE Command Reference

virtual nolog CR-335
See also

virtual log (CR-331), "Virtual Objects (User-defined buses, and more)" (UM-248)
ModelSim SE Command Reference

CR-336 Commands

Model
virtual region

The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region
<parentPath> <regionName>

Arguments

<parentPath>

The full path to the region that will become the parent of the new region. Required.

<regionName>

The name you want for the new region. Required.

See also

virtual function (CR-327), virtual signal (CR-339), "Virtual Objects (User-defined buses,
and more)" (UM-248)

Note: Virtual regions cannot be used in the when (CR-375) command.
Sim SE Command Reference

virtual save CR-337
virtual save

The virtual save command saves the definitions of virtuals to a file.

Syntax

virtual save
[-kind <kind>] [-append] [<filename>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-append

Specifies to save only virtuals that are not already saved or weren’t read in from a macro
file. These unsaved virtuals are then appended to the specified or default file. Optional.

<filename>

Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

See also

virtual count (CR-322), "Virtual Objects (User-defined buses, and more)" (UM-248)
ModelSim SE Command Reference

CR-338 Commands

Model
virtual show

The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show
[-kind <kind>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

See also

virtual define (CR-323), virtual describe (CR-325), "Virtual Objects (User-defined buses,
and more)" (UM-248)
Sim SE Command Reference

virtual signal CR-339
virtual signal

The virtual signal command creates a new signal, known only by the GUI (not the kernel),
that consists of concatenations of signals and subelements as specified in
<expressionString>. It cannot handle bit selects and slices of Verilog registers. Please see
"Concatenation of signals or subelements" (CR-28) for more details on syntax.

Syntax

virtual signal
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

-env <path>

Specifies a hierarchical context for the signal names in <expressionString>, so they
don't all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region virtuals:/
Signals. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual signal will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be a literal constant or computed subexpression.
Required. For details on syntax, please see "Syntax and conventions" (CR-9).

<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.
ModelSim SE Command Reference

CR-340 Commands

Model
Examples

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04 & a_03
& a_02 & a_01 & a_00) } a

Reconstructs a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are all scalars of the same type.

virtual signal -env sim:chip.alu { (concat_range [4:0])&{a_04, a_03, a_02,
a_01, a_00} } a

Reconstructs a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -install sim:/testbench { /chipa/alu/a(19 downto 13) &
/chipa/decode/inst & /chipa/mode } stuff

Creates a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of type
integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-defined
enumeration.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

Creates a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal { chip.instruction[23:21] } address_mode

Creates a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal {a & b & c & 3'b000} myextendedbus

Concatenates signals a, b, and c with the literal constant ’000’.

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

Adds three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the Wave window.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" } fullbus
add wave -unsigned fullbus

Reconstructs a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

Creates a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal bnew, the second bit is false (0). Each subexpression
is evaluated independently.

virtual signal {(concat_reverse)(bus1 & bus2[7:4])} newbus

Creates signal newbus that is a concatenation of bus1 (bit-reveresed) and bus2[7:4] (bit-
reversed). Assuming bus1 has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4:7].
See "Concatenation directives" (CR-29) for further details.
Sim SE Command Reference

virtual signal CR-341
Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when (CR-375)

See also

add list (CR-55) add log / log (CR-187) add wave (CR-64)

checkpoint (CR-99) and restore (CR-

242)

delete (CR-151) describe (CR-152) ("virtual
describe" is a little faster)

down (CR-157) / up (CR-282) examine (CR-167) find (CR-172)

force (CR-176)/noforce (CR-204) restart (CR-240) left (CR-185) / right (CR-244)

search (CR-253) searchlog (CR-255) show (CR-260)

check contention add (CR-90) check contention config (CR-92) check contention off (CR-93)

check float add (CR-94) check float config (CR-95) check float off (CR-96)

check stable on (CR-98) check stable off (CR-97) drivers (CR-159)

power add (CR-216) power report (CR-217) power reset (CR-218)

toggle add (CR-271) toggle reset (CR-276) toggle report (CR-275)

vcd add (CR-284)

virtual count (CR-322) virtual define (CR-323) virtual delete (CR-324)

virtual describe (CR-325) virtual expand (CR-326) virtual function (CR-327)

virtual hide (CR-330) virtual log (CR-331) virtual nohide (CR-333)

virtual nolog (CR-334) virtual region (CR-336) virtual save (CR-337)

virtual show (CR-338) virtual type (CR-342) Virtual Objects (User-defined
buses, and more) (UM-248)
ModelSim SE Command Reference

CR-342 Commands

Model
virtual type

The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command
works with signed integer values up to 64 bits.

Virtual types cannot be used in the when (CR-375) command.

Syntax

virtual type
-delete <name> | {<list_of_strings>} <name>

Arguments

-delete <name>

Deletes a previously defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Required if not defining a type.

{<list_of_strings>}

A list of values and their associated character strings. Required if -delete is not used.
Values can be expressed in decimal or based notation and can include "don’t-cares" (see
examples below). Three kinds of based notation are supported: Verilog, VHDL, and C-
language styles. The values are interpreted without regard to the size of the bus to be
mapped. Bus widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain
spaces they would need to be quoted, and if they contain characters treated specially by
Tcl (square brackets, curly braces, backslashes...), they would need to be quoted with
curly braces.

See the examples below for further syntax.

<name>

The user-defined name of the virtual type. Required if -delete is not used. Case is not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs
to be quoted with double quotes or with curly braces.

Examples

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Signals window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when
mysignal == 2, etc.
Sim SE Command Reference

virtual type CR-343
virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

Uses sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

virtual type -delete mystateType

Deletes the virtual type "mystateType".

virtual type {{0x01-- add}{0x02-- sub}{default bad}} mydecodetype

Creates a virtual type that includes "don’t-cares" (the ’-’ character).

virtual type {{0x0100 0xff add}{0x0200 0xff sub}{default bad}} mydecodetype

Creates a virtual type using a mask for "don’t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

See also

virtual function (CR-327), "Virtual Objects (User-defined buses, and more)" (UM-248)
ModelSim SE Command Reference

CR-344 Commands

Model
vlib

The vlib command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file. If the specified library already exists
as a valid ModelSim library, the vlib command will exit with a warning message without
touching the library.

Syntax

vlib
[-archive [-compact <percent>]] [-help] [-dos | -short | -unix | -long]
<name>

Arguments

-archive [-compact <percent>]

Causes design units that are compiled into the created library to be stored in archives
rather than in subdirectories. Optional. See "Archives" (UM-55) for more details.

You may optionally specify a decimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

-help

Displays the command’s options and arguments. Optional.

-dos

Specifies that subdirectories in a library have names that are compatible with DOS. Not
recommended if you use the vmake (CR-355) utility. Optional.

-short

Interchangeable with the -dos argument. Optional.

-unix

Specifies that subdirectories in a library may have long file names that are NOT
compatible with DOS. Optional. Default for ModelSim SE.

-long

Interchangeable with the -unix argument. Optional.

<name>

Specifies the pathname or archive name of the library to be created. Required.

Examples

vlib design

Creates the design library design. You can define a logical name for the library using the
vmap command (CR-356) or by adding a line to the library section of the modelsim.ini file
that is located in the same directory.

vlib -archive -compact .3 uut

Creates the design library uut and specifies that any design units compiled into the library
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.
Sim SE Command Reference

vlog CR-345
vlog

The vlog command compiles Verilog source code into a specified working library (or to the
work library by default).

vlog may be invoked from within ModelSim or from the operating system command
prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. For example you cannot use a library
compiled with 5.7 in a simulation using 5.8 vsim. You would have to refresh the libraries
using the -refresh argument to vlog. This is not true for minor versions (e.g., 5.7a libraries
work in 5.7d).

Syntax

vlog
[-93] [-help] [-compat] [-compile_uselibs[=<directory_name>]]
[-cover <stat>] [-debugCellOpt] [+define+<macro_name>[=<macro_text>]]
[+delay_mode_distributed] [+delay_mode_path] [+delay_mode_unit]
[+delay_mode_zero] [-f <filename>]
[-fast[=<secondary_name>] [+acc[=<spec>] [+<module>[.]]]] [-forcecode]
[-hazards] [+incdir+<directory>] [-incr] [-instantiateReadOnly]
[-keep_delta] [-L <libname>] [-Lf <libname>] [+libext+<suffix>]
[-libmap <pathname>] [-libmap_verbose] [+librescan] [-line <number>]
[-lint] [+maxdelays] [+mindelays] [+nocheckALL] [+nocheckCLUP]
[+nocheckDELAY] [+nocheckDNET] [+nocheckOPRD] [+nocheckSUDP]
[-nocoverage][-nodebug[=ports | =pli]] [-noincr] [+nolibcell] [-nologo]
[+nospecify] [+notimingchecks] [+nowarn<CODE>]
[-O0 | -O1 | -O4 | -O5] [+opt+[<lib>.]<module>] [+protect] [-quiet]
[-R [<simargs>]] [-refresh] [-source] [-sv] [-time] [+typdelays] [-u]
[-v <library_file>] [-version] [-vlog95compat] [-work <library_name>]
[-y <library_directory>] <filename>

Arguments

-93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiers to preserve case in Verilog identifiers that contain uppercase letters. Optional.

-help

Displays the command’s options and arguments. Optional.

-compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. See "Event ordering in Verilog designs" (UM-119) for additional
information.
ModelSim SE Command Reference

CR-346 Commands

Model
-compile_uselibs[=<directory_name>]

Locates source files specified in a `uselib directive (see "Verilog-XL `uselib compiler
directive" (UM-114)), compiles those files into automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_name is not specified, ModelSim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, ModelSim creates
the directory mti_uselibs in the current working directory.

-cover <stat>

Specifies type(s) of coverage statistics to collect. Optional.

<stat> is one or more of the following characters:

b–Collect branch statistics.

c–Collect condition statistics.

e–Collect expression statistics.

s–Collect statement statistics.

t–Collect toggle statistics. Cannot be used if ’x’ is specified.

x–Collect extended toggle statistics (see "Toggle coverage" (UM-437) for details).
Cannot be used if ’t’ is specified.

By default only statement coverage is enabled when you invoke vsim with the -coverage
option.

-debugCellOpt

Produces Main window transcript output that identifies why certain cells within the
design were not optimized. Used only when compiling gate-level Verilog libraries with
-fast (see below). Optional.

+define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

`define <macro_name> <macro_text>

Optional. You can specify more than one macro with a single +define. For example:

vlog +define+one=r1+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the `define
compiler directive.

+delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. See "Delay modes" (UM-

142) for details.

+delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional. See "Delay modes"
(UM-142) for details.

+delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional. See
"Delay modes" (UM-142) for details.
Sim SE Command Reference

vlog CR-347
+delay_mode_zero

Sets path delays and distributed delays to zero. Optional. See "Delay modes" (UM-142) for
details.

-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex
arguments to be reused without retyping. Nesting of -f options is allowed.

The file syntax basically follows what you type on the command line with the exception
that newline characters are ignored. Environment variable expansion (for example in a
pathname) does not occur in -f files.

-fast[=<secondary_name>] [+acc[=<spec>] [+<module>[.]]]

Increases simulation speed by allowing parameter propagation and global optimizations.
Optional. To use this parameter, you must compile the source code for your entire design
in a single invocation of the compiler. The following options are available:

=<secondary_name>

Allows you to specify a different secondary name for the optimized code. The compiler
automatically assigns a secondary name to distinguish optimized code from
un-optimized code that may exist in the same library. The default secondary name for
optimized code is "fast"; the default secondary name for un-optimized code is "verilog".

+acc[=<spec>][+<module>[.]]

Allows you to maintain design object visibility. Note that using this option may reduce
simulation speed.

<spec> is one or more of the following characters:

b–Enable access to bits of vector nets. This is necessary for PLI applications that
require handles to individual bits of vector nets. Also, some user interface commands
require this access if you need to operate on net bits.

c–Enable access to library cells. By default any Verilog module containing a
non-empty specify block may be optimized, and debug and PLI access may be limited.
This option keeps module cell visibility.

l–Enable access to line number directives and process names.

n–Enable access to nets.

p–Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require access to port handles.

r–Enable access to registers (including memories, integer, time, and real types).

s–Enable access to system tasks.

t–Enable access to tasks and functions.

If <spec> is omitted, access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, with each separated by a "+". If no modules are
specified, then all modules are affected.

Please see additional discussion about -fast in "Compiling for faster performance" (UM-

127). Also, see +opt argument below.
ModelSim SE Command Reference

CR-348 Commands

Model
-forcecode

Forces code generation for optimized inlined modules when using the -fast switch.
Optional. Use only in conjunction with the -fast switch. By default, code is not generated
for inlined modules when the -fast switch is used.

-hazards

Detects event order hazards involving simultaneous reading and writing of the same
register in concurrently executing processes. Optional. You must also specify this
argument when you simulate the design with vsim (CR-357). See "Hazard detection" (UM-

122) for more details.

+incdir+<directory>

Specifies directories to search for files included with `include compiler directives.
Optional. By default, the current directory is searched first and then the directories
specified by the +incdir options in the order they appear on the command line. You may
specify multiple +incdir options as well as multiple directories separated by "+" in a
single +incdir option.

-incr

Performs an incremental compile. Optional. Compiles only code that has changed. For
example, if you change only one module in a file containing several modules, only the
changed module will be recompiled. Note however that if the compile options change,
all modules are recompiled regardless if you use -incr or not. May be used with -fast.

-instantiateReadOnly

Enables a -fast optimized design to instantiate modules or UDPs from a work library that
has read-only permission. The instantiations will not be in-lined or further optimized.
Recommended usage is to always have write access to the work library.

-keep_delta

Disables optimizations that remove delta delays. Optional.

Delta delays result from zero delay events. Those events are normally processed in the
next iteration or "delta" of the current timestep. -fast and +opt implement optimizations
that can remove delta delays and process an event earlier.

-L <libname>

Searches the specified resource library for precompiled modules. Optional.

This argument can be used in tandem with -fast (see above) when you need to optimize
pre-compiled modules for which you don’t have source code. The library search options
you specify here must also be specified when you run the vsim command (CR-357).

-Lf <libname>

Same as -L but the specified library is searched before any ’uselib directives. (See
"Library usage" (UM-111) and "Verilog-XL `uselib compiler directive" (UM-114) for more
information). Optional.

+libext+<suffix>

Works in conjunction with the -y option. Specifies file extensions for the files in a source
library directory. Optional. By default the compiler searches for files without extensions.
If you specify the +libext option, then the compiler will search for a file with the suffix

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
Sim SE Command Reference

vlog CR-349
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they
appear in the +libext option.

-libmap <pathname>

Specifies a Verilog 2001 library map file. Optional. You can omit this argument by
placing the library map file as the first option on the vlog invocation (e.g., vlog top.map
top.v top_cfg.v).

-libmap_verbose

Displays library map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patterns in a library file.

+librescan

Scans libraries in command-line order for all unresolved modules. Optional.

-line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default,
the compiler starts at the beginning of the file.

-lint

Instructs ModelSim to perform three lint-style checks: 1) warn when Module ports are
NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation. The warnings are reported as WARNING[8]. Can also
be enabled using the Show_Lint variable in the modelsim.ini file.

+maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator (except when compiling with -fast, in which case the compiler actually throws
away the delay values that aren't needed).

+mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator (except when compiling with -fast, in which case the compiler actually throws
away the delay values that aren't needed).

+nocheckALL

Enables all +nocheck arguments described below. Optional. Argument has an effect only
when compiling gate-level cell libraries with -fast (see above). The +nocheck switches
increase the optimizations of -fast.

+nocheckCLUP

Allows connectivity loops in a cell to be optimized. Optional. Argument has an effect
only when compiling gate-level cell libraries with -fast (see above).

+nocheckDELAY

When used in conjunction with +delay_mode_path (see above), allows inlined Verilog
modules with distributed delays and no path delays to be optimized. Optional. Argument
has an effect only when compiling gate-level cell libraries with -fast (see above).

+nocheckDNET

Allows both the port and the delayed port (created for negative setup/hold) to be used in
the functional section of the cell. Optional. Argument has an effect only when compiling
gate-level cell libraries with -fast (see above).
ModelSim SE Command Reference

CR-350 Commands

Model
+nocheckOPRD

Allows an output port to be read internally by the cell. Optional. Argument has an effect
only when compiling gate-level cell libraries with -fast (see above). Note that if the value
read is the only value contributed to the output by the cell, and if there's a driver on the
net outside the cell, the value read will not reflect the resolved value.

+nocheckSUDP

Allows a sequential UDP to drive another sequential UDP. Optional. Argument has an
effect only when compiling gate-level cell libraries with -fast (see above).

-nocoverage

Disables collection of statement coverage statistics, which are on by default. Optional.

-nodebug[=ports | =pli]

Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, registers, nets, etc. will not display in ModelSim’s windows. In
addition, none of the hidden objects may be accessed through the Dataflow window or
with commands. This also means that you cannot set breakpoints or single step within
this code. Don’t compile with this switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.
Use the -fast switch to increase simulation speed.

The optional =ports switch hides the ports for the lower levels of your design; it should
be used only to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

The optional =pli switch prevents the use of pli functions to interrogate individual
modules for information; this switch may be used at any level of the design. Combine
both switches with =ports+pli or =pli+ports.

-nodebug encrypts entire files. The `protect compiler directive allows you to encrypt
regions within a file. See "ModelSim compiler directives" (UM-152) for details.

-noincr

Disables incremental compile previously turned on with -incr. Optional.

+nolibcell

By default all modules compiled from a source library are treated as though they contain
a `celldefine compiler directive. This option disables this default. The `celldefine
directive only affects the PLI access routines acc_next_cell and acc_next_cell_load.
Optional.

-nologo

Disables the startup banner. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.

+notimingchecks

Removes all timing check entries from the design as it is parsed. Optional. To disable
checks on individual instances, use the tcheck_set command (CR-267).

+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example,
Sim SE Command Reference

vlog CR-351
** WARNING: test.v(15): [RDGN] - Redundant digits in numeric literal.

This warning message can be disabled by specifying +nowarnRDGN.

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional.

Enable standard SE optimizations with -O4. Default.

Enable maximum optimization with -O5. Optional. -O5 attempts to optimize loops and
prevents variable assignments in situations where a variable is assigned but is not
actually used. Using the +acc argument to vlog will cancel this latter optimization.

Use caution with the -O5 argument. We recommend use of this argument with large
sequential blocks only; other uses may significantly increase compile times. Also, before
using -O5 with -fast (described above), try using both switches independently to make
sure the optimized design behaves the same as the original version.

+opt+[<lib>.]<module>

Generates optimized code for designs that have been previously compiled un-optimized
(without the -fast option; see above). Optional. The <module> specification is the name
of the top-level design module, and <lib>, which is optional, is the library in which it
resides. By default, the top-level module is searched for in the work library. If the design
has multiple top-level modules, then provide the names in a list separated by plus signs.
For example,

vlog +opt+testbench+globals

Any options that are appropriate with -fast are also appropriate with +opt. Specifically,
use the +acc option to enable PLI access, and use the -L and -Lf options to specify the
libraries to be searched.

Please see additional discussion about +opt and -fast in "Compiling for faster
performance" (UM-127).

+protect

Enables `protect ... `endprotect directives. Optional. See "ModelSim compiler
directives" (UM-152) for more information.

-quiet

Disables 'Loading' messages. Optional.

-R [<simargs>]

Instructs the compiler to invoke vsim (CR-357) after compiling the design. The compiler
automatically determines which top-level modules are to be simulated. The command
line arguments following -R are passed to the simulator, not the compiler. Place the -R
option at the end of the command line or terminate the simulator command line
arguments with a single "-" character to differentiate them from compiler command line
arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It
is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, it is
provided to ease the transition to ModelSim.
ModelSim SE Command Reference

CR-352 Commands

Model
-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library_name> to update a different library. See vlog examples for more information.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-sv

Enables System Verilog keywords. Optional. By default ModelSim follows the rules of
IEEE Std 1364-2001 and ignores System Verilog keywords. If a source file has a ".sv"
extension, ModelSim will automatically parse System Verilog keywords.

-time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vlog.

+typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

-u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

-v <library_file>

Specifies a source library file containing module and UDP definitions. Optional. See
"Verilog-XL compatible compiler arguments" (UM-113) for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet
defined. Modules and UDPs within the file are compiled only if they match previously
unresolved references. Multiple -v options are allowed. See additional discussion in the
examples.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vlog 5.5 Compiler 2000.01 Jan 28 2000".

-vlog95compat

Disables Verilog 2001 keywords, which ensures that code that was valid according to the
1364-1995 spec can still be compiled. By default ModelSim follows the rules of IEEE
Std 1364-2001. Some requirements in 1364-2001 conflict with requirements in 1364-
1995. Optional. Edit the vlog95compat (UM-618) variable in the modelsim.ini file to set a
permanent default.

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

-y <library_directory>

Specifies a source library directory containing module and UDP definitions. Optional.
See "Verilog-XL compatible compiler arguments" (UM-113) for more information.
Sim SE Command Reference

vlog CR-353
After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet
defined. Files within this directory are compiled only if the file names match the names
of previously unresolved references. Multiple -y options are allowed. You will need to
specify a file suffix by using -y in conjunction with the +libext+<suffix> option if your
filenames differ from your module names. See additional discussion in the examples.

<filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

vlog example.vlg

Compiles the Verilog source code contained in the file example.vlg.

vlog -nodebug example.v

Hides the internal data of example.v. Models compiled with -nodebug cannot use any of
the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vlog -nodebug=ports level3.v level2.v
vlog -nodebug top.v

The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.v and level2.v. The second line compiles the top-level unit, top.v,
without hiding the ports. It is important to compile the top level without =ports because
top-level ports must be visible for simulation.

vlog -nodebug=ports+pli level3.v level2.v
vlog -nodebug=pli top.v

The first command hides the internal data, and ports of the design units, level3.v and
level2.v. In addition it prevents the use of PLI functions to interrogate the compiled
modules for information (either =ports+pli or =pli+ports works fine for this command).
The second line compiles the top-level unit without hiding the ports but restricts the use
of PLI functions as well.

Note that the =pli switch may be used at any level of the design but =ports should only
be used on lower levels since you can’t simulate without visible top-level ports.

vlog -L work -L libA -L libB top.v

This command demonstrates how to compile hierarchical modules organized into
separate libraries that have sub-module names that overlap among the libraries. Assume
you have a top-level module top that instantiates module modA from library libA and
module modB from library libB. Furthermore, modA and modB both instantiate modules
named cellA, but the definition of cellA compiled into libA is different from that compiled
into libB. In this case, you can’t just specify -L libA - L libB because instantiations of
cellA from modB resolve to the libA version of cellA. See "Library usage" (UM-111) for
further information.

Important: Any -y arguments that follow a -refresh argument on a vlog command line
are ignored. Any -y arguments that come before the -refresh argument on a vlog
command line are processed.
ModelSim SE Command Reference

CR-354 Commands

Model
vlog -fast cpu_rtl.v

Compiles all modules in cpu_rtl.v using global optimizations. Assuming your top-level
module is named testbench, you would simulate the design as follows:

vsim -c testbench

vlog -fast=opt1 cpu_rtl.v

Compiles all modules in cpu_rtl.v using global optimizations, and assigns the secondary
name opt1 to the optimized modules.

vlog -fast +acc+foo cpu_rtl.v

Compiles modules in cpu_rtl.v using global optimizations, but preserves visibility on
module foo.

vlog -fast +acc+foo. cpu_rtl.v

Compiles modules in cpu_rtl.v using global optimizations, but preserves visibility on
module foo and all its children.

vlog -fast +acc=rn cpu_rtl.v

Compiles cpu_rtl.v using global optimizations, but enables net and register access in all
modules in the design.

vlog top.v -v und1

After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains VHDL design units be sure to regenerate the library with the
vcom command (CR-303) using the -refresh option as well. See "Regenerating your
design libraries" (UM-63) for more information.

vlog module1.v -u -O0 -incr

The -incr option determines whether or not the module source or compile options have
changed as module1.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match exactly.

Note: Please see additional discussion about -fast in "Compiling for faster performance"
(UM-127) in the Verilog simulation chapter.
Sim SE Command Reference

vmake CR-355
vmake

The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
libraries. You run vmake on a compiled design library, and the utility outputs a makefile.
You can then run the makefile with a version of MAKE (not supplied with ModelSim) to
reconstruct the library. A MAKE program is included with Microsoft Visual C/C++, as
well as many other program development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. You run vmake only once; then you can simply run
MAKE to rebuild your design. If you add new design units or delete old ones, you should
re-run vmake to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug. Also, the vmake utility
is not supported for use with SystemC.

This command must be invoked from either the UNIX or the Windows/DOS prompt.

Syntax

vmake
[-fullsrcpath] [-help] [<library_name>] [><makefile>]

Arguments

-fullsrcpath

Produces complete source file paths within generated makefiles. Optional. By default
source file paths are relative to the directory in which compiles originally occurred. This
argument makes it possible to copy and evaluate generated makefiles within directories
that are different from where compiles originally occurred.

-help

Displays the command’s options and arguments. Optional.

<library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

><makefile>

Specifies the makefile name. Optional.

Examples

To produce a makefile for the work library:

vmake >makefile

You can also run vmake on libraries other than work:

vmake mylib >mylib.mak

To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak
ModelSim SE Command Reference

CR-356 Commands

Model
vmap

The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file. With no arguments, vmap reads the appropriate
modelsim.ini file(s) and prints the current logical library to physical directory mappings.
Returns nothing.

Syntax

vmap
[-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-c

Copies the default modelsim.ini file from the ModelSim installation directory to the
current directory. Optional.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

-del

Deletes the mapping specified by <logical_name> from the current project file. Optional.

<logical_name>

Specifies the logical name of the library to be mapped. Optional.

<path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.
Sim SE Command Reference

vsim CR-357
vsim

The vsim command is used to invoke the VSIM simulator, or to view the results of a
previous simulation run (when invoked with the -view switch). You can specify a VHDL
configuration or an entity/architecture pair, or a Verilog module or configuration for
simulation. If you specify a VHDL configuration, it is invalid to specify an architecture.
During elaboration vsim determines if the source has been modified since the last compile.

To manually interrupt design elaboration use the Break key or <Ctrl-c> from a shell.

You may also invoke the vsim command from the command line within ModelSim with
most of the options shown below (all except the vsim -c and -restore options).

Syntax

vsim
[-assertfile <filename>] [-c] [-csupv2] [-compress_elab] [-coverage]
[-do “<command_string>” | <macro_file_name>] [+dumpports+direction]
[+dumpports+unique] [-elab <filename>] [-elab_cont <filename>]
[-elab_defer_fli] [-f <filename>]
[-filemap_elab <HDLfilename>=<NEWfilename>]
[-g<Name>=<Value> ...] [-G<Name>=<Value> ...] [-gui]
[-help] [-i] [-installcolormap] [-keeploaded] [-keeploadedrestart]
[-keepstdout] [-l <filename>] [-lib <libname>] [<license_option>]
[-load_elab <filename>] [-multisource_delay min | max | latest]
[+multisource_int_delays] [-nocompress] [+no_notifier] [+no_tchk_msg]
[+notimingchecks] [+pulse_int_e/<percent>] [+pulse_int_r/<percent>]
[-quiet] [-restore <filename>]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]
[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]
[-t [<multiplier>]<time_unit>] [-tag <string>] [-title <title>]
[-trace_foreign <int>] [+transport_int_delays]
[-vcdstim [<instance>=]<filename>] [-version]
[-view [<dataset_name>=]<WLF_filename>] [-wlf <filename>] [-wlfcompress]
[-wlfopt] [-wlfnocompress] [-wlfnoopt] [-wlfslim <size>]
[-wlftlim <duration>]

[-absentisempty] [-foreign <attribute>] [-nocollapse] [-nofileshare]
[-noglitch] [+no_glitch_msg] [-nopsl] [-std_input <filename>]
[-std_output <filename>] [-strictvital] [-vcdread <filename>]
[-vital2.2b]

[+alt_path_delays] [+delayed_timing_checks]
[-extend_tcheck_data_limit <percent>]
[-extend_tcheck_ref_limit <percent>]
[-hazards] [+int_delays] [-L <library_name> ...] [-Lf <library_name> ...]
[+maxdelays] [+mindelays] [+no_cancelled_e_msg] [+no_neg_tchk]
[+no_notifier] [+no_path_edge] [+no_pulse_msg] [+no_show_cancelled_e]
[+no_tchk_msg] [+nosdferror] [+nosdfwarn] [+nospecify] [+nowarn<CODE>]
[+ntc_warn] [-pli "<object list>"] [+<plusarg>]
[+pulse_e/<percent>] [+pulse_e_style_ondetect] [+pulse_e_style_onevent]
[+pulse_r/<percent>] [+sdf_nocheck_celltype] [+show_cancelled_e]
[+transport_path_delays] [+typdelays] [-v2k_int_delays]

[<library_name>.<design_unit>]

VSIM arguments are grouped alphabetically by language:

• Arguments, VHDL and Verilog (CR-358)

• Arguments, VHDL (CR-366)
ModelSim SE Command Reference

CR-358 Commands

Model
• Arguments, Verilog (CR-367)

• Arguments, object (CR-371)

Arguments, VHDL and Verilog

-assertfile <filename>

Designates an alternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating a transcript file" (UM-628)).

-c

Specifies that the simulator is to be run in command line mode. Optional. Also see
"ModelSim modes of operation" (UM-23) for more information.

-csupv2

Instructs vsim to use /usr/lib/libCsup_v2.sl for shared object loading. Optional. Use this
argument only on HP-UX 11.00 when you have compiled FLI/PLI/VPI C++ code with
aCC's -AA option. This option may also be specified with the UseCsupV2 (UM-625)
variable in the modelsim.ini file.

-compress_elab

Compresses an elaboration file when it is created. Optional. See "Simulating with an
elaboration file" (UM-136) for more information.

-coverage

Enables Code Coverage statistics collection during simulation. Optional. See Chapter 12
- Code Coverage for more information.

-do “<command_string>” | <macro_file_name>

Instructs vsim to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional. Multiple commands should be separated by semi-colons (;).

+dumpports+direction

Modifies the format of extended VCD files to contain direction information. Optional.

+dumpports+unique

Generates unique VCD variable names for ports in a VCD file, even if those ports are
connected to the same collapsed net. Optional.

-elab <filename>

Creates an elaboration file for use with -load_elab. Optional. See "Simulating with an
elaboration file" (UM-136) for more information.

-elab_cont <filename>

Creates an elaboration file for use with -load_elab and then continues the simulation.
Optional.

-elab_defer_fli

Defers the initialization of FLI models until the load of the elaboration file. Use this
argument along with -elab to create elaboration files for designs with FLI models that
don't support checkpoint/restore. Note that FLI models sensitive to design load ordering
may still not work correctly even if you use this argument. See "Simulating with an
elaboration file" (UM-136) for more information.
Sim SE Command Reference

vsim CR-359
-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for example in a
pathname) does not occur in -f files.

-filemap_elab <HDLfilename>=<NEWfilename>

Defines a file mapping during -load_elab that lets you change the stimulus. Optional.
See "Simulating with an elaboration file" (UM-136) for more information.

-g<Name>=<Value> ...

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values). Optional. Note there is no space between -g and <Name>=<Value>.

"Name" is the name of the generic/parameter, exactly as it appears in the VHDL source
(case is ignored) or Verilog source. "Value" is an appropriate value for the declared data
type of a VHDL generic or any legal value for a Verilog parameter. Make sure the Value
you specify for a VHDL generic is appropriate for VHDL declared data types. VHDL
type mismatches will cause the specification to be ignored (including no error messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic/
parameter.

Name may be prefixed with a relative or absolute hierarchical path to select generics in
an instance-specific manner. For example,

Specifying -g/top/u1/tpd=20ns on the command line would affect only the tpd generic on
the /top/u1 instance, assigning it a value of 20ns.

Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1.

Specifying -gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records)
cannot be set from the command line. However, you can set string arrays, std_logic
vectors, and bit vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this
command from a shell, put a forward tick around the string. For example:

-gstrgen=’"This is a string"’

If working within the ModelSim GUI, you would enter the command as follows:
ModelSim SE Command Reference

CR-360 Commands

Model
{-gstrgen="This is a string"}

-G<Name>=<Value> ...

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note there is
no space between -G and <Name>=<Value>.

-gui

Starts the ModelSim GUI without loading a design. Optional.

-help

Displays the command’s options and arguments. Optional.

-i

Specifies that the simulator is to be run in interactive mode. Optional.

-installcolormap

For UNIX only. Causes vsim to use its own colormap so as not to hog all the colors on
the display. This is similar to the -install switch on Netscape. Optional.

-keeploaded

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when
it restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset its internal state
during a restart in order for this to work effectively.

-keeploadedrestart

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries
during a restart. Optional. The shared libraries will remain loaded at their current
positions. User application code in the shared libraries must reset its internal state during
a restart in order for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the
user application code has set callbacks in the simulator. Otherwise, the callback function
pointers might not be valid if the shared library is loaded into a new position.

-keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout stream to
the Main window. Optional.

-l <filename>

Saves the contents of the "Main window" (UM-262) transcript to <filename>. Optional.
Default is transcript. Can also be specified via the modelsim.ini (see "Creating a
transcript file" (UM-628)) file or the modelsim.tcl preference file.

-lib <libname>

Specifies the default working library where vsim will look for the design unit(s).
Optional. Default is "work".

Note: When you compile Verilog code with -fast (see vlog (CR-345)), all parameter
values are set at compile time. Therefore, the -g option has no effect on these parameters.
Sim SE Command Reference

vsim CR-361
<license_option>

Restricts the search of the license manager. Optional. Use one of the following options.

The options may also be specified with the License (UM-624) variable in the modelsim.ini
file. Note that settings made from the command line are additive to options set in the
License variable.

-load_elab <filename>

Loads an elaboration file that was created with -elab. Optional. See "Simulating with an
elaboration file" (UM-136) for more information.

-multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate
at the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest
of the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays argument.

+multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay
behavior. Works for both Verilog and VITAL cells. Optional. Use this argument when
you have interconnect data in your SDF file and you want the delay on each interconnect
path modeled independently. Pulse handling is configured using the +pulse_int_e and
+pulse_int_r switches (described below).

-nocompress

Causes VSIM to create uncompressed checkpoint files. Optional. This option may also
be specified with the CheckpointCompressMode (UM-622) variable in the modelsim.ini
file.

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation in both Verilog and VITAL for the entire design. You can suppress X
propagation on individual instances using the tcheck_set command (CR-267).

<license_option> Description

-lic_nomgc exclude any MGC licenses from the search

-lic_nomti exclude any MTI licenses from the search

-lic_noqueue do not wait in queue when license is unavailable

-lic_plus checks out ModelSim SE/PLUS (VHDL and Verilog)
license immediately after invocation

-lic_vhdl checks out ModelSim SE/VHDL license immediately
after invocation

-lic_vlog checks out ModelSim SE/VLOG license immediately
after invocation

-lic_viewsim accepts a simulator license rather than being queued for
a viewer license
ModelSim SE Command Reference

CR-362 Commands

Model
+no_tchk_msg

Disables error messages generated when timing checks are violated. Optional. For
Verilog, it disables messages issued by timing check system tasks. For VITAL, it
overrides the MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing
check violations. You can disable individual messages using the tcheck_set command
(CR-267).

+notimingchecks

Disables Verilog and VITAL timing checks for faster simulation. Optional. By default,
Verilog timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled. You can disable individual checks using the tcheck_set command
(CR-267).

+pulse_int_e/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the
interconnect delay. Optional. Used in conjunction with +multisource_int_delays (see
above). This option works for both Verilog and VITAL cells, though the destination of
the interconnect must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with
a +pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to
80% of 10. This results in the propagation of pulses greater than or equal to 8, while all
other pulses are filtered.

+pulse_int_r/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the
interconnect delay. Optional. This option works for both Verilog and VITAL cells,
though the destination of the interconnect must be a Verilog cell. The source may be
VITAL or Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_e then it defaults to the rejection limit.

-quiet

Disable 'Loading' messages during batch-mode simulation. Optional.
Sim SE Command Reference

vsim CR-363
-restore <filename>

Specifies that vsim is to restore a simulation saved with the checkpoint command (CR-

99). Optional.

You must restore vsim under the same environment in which you did the checkpoint.
This means not only the same type of machine and OS and at least the same memory size,
but also the same vsim environment such as GUI vs. command line mode.

-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay Format
file) with minimum, typical, or maximum timing. Optional.

The optional argument @<delayScale> scales all values by the specified value. For
example, if you specify -sdfmax@1.5..., all maximum values in the SDF file will be
scaled to 150% of their original value.

The use of [<instance>=] with <sdf_filename> is also optional; it is used when the
backannotation is not being done at the top level. See "Specifying SDF files for
simulation" (UM-544).

-sdfmaxerrors <n>

Controls the number of Verilog SDF missing instance messages that will be emitted
before terminating vsim. Optional. <n> is the maximum number of missing instance
error messages to be emitted. The default number is 5.

-sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

-sdfnowarn

Disables warnings from the SDF reader. Optional. See Chapter 4 - VHDL simulation for
an additional discussion of SDF.

+sdf_verbose

Turns on the verbose mode during SDF annotation. The Main window provides detailed
warnings and summaries of the current annotation. Optional.

-t [<multiplier>]<time_unit>

Specifies the simulator time resolution. Optional. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ns; the optional <multiplier> may be 1, 10 or 100. Note that there is no
space between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in a
Verilog design with ‘timescale directives, the minimum time precision is used (see
"Simulator resolution limit" (UM-117) for further details); in Verilog designs without any
timescale directives, or in a VHDL or mixed design, the value specified for the
Resolution (UM-624) variable in the modelsim.ini file is used.

Once you’ve begun simulation, you can determine the current simulator resolution by
invoking the report command (CR-238) with the simulator state option.
ModelSim SE Command Reference

CR-364 Commands

Model
-tag <string>

Specifies a string tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.
See the ModelSim FLI Reference for more information.

-title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current ModelSim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes (e.g., "my title").

-trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called, with
the value of the arguments, and the results returned; and a set of C-language files to
replay what the foreign interface side did.

The purpose of the logfile is to aid the debugging of your FLI/PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send the FLI/
PLI/VPI code. See the ModelSim FLI Reference for more information.

+transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay are filtered). In transport mode, narrow pulses are propagated through interconnect
delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

-vcdstim [<instance>=]<filename>

Specifies a VCD file from which to re-simulate the design. Optional. The VCD file must
have been created in a previous ModelSim simulation using the vcd dumpports
command (CR-287). See "Using extended VCD as stimulus" (UM-562) for more
information.

-version

Returns the version of the simulator as used by the licensing tools, such as "Model
Technology ModelSim SE vsim 5.5 Simulator 2000.01 Jan 28 2000".

-view [<dataset_name>=]<WLF_filename>

Specifies a wave log format (WLF) file for vsim to read. Allows you to use vsim to view
the results from an earlier simulation. The Structure, Signals, Wave, and List windows
can be opened to look at the results stored in the WLF file (other ModelSim windows will
not show any information when you are viewing a dataset). See additional discussion in
"Examples" (CR-372).

-wlf <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wlf.
Optional.

-wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression.
Sim SE Command Reference

vsim CR-365
-wlfopt

Optimizes the display of waveforms in the Wave window. Default. Optional. WLF files
created prior to ModelSim version 5.8 cannot take advantage of the optimization. This
option may also be specified with the WLFOptimize (UM-626) variable in the
modelsim.ini file.

-wlfnocompress

Causes vsim to create uncompressed WLF files. Optional. Beginning with version 5.5,
WLF files are compressed by default in order to reduce file size. This may slow
simulation speed by one to two percent. You may want to disable compression to speed
up simulation or if you are experiencing problems with faulty data in the resulting WLF
file. This option may also be specified with the WLFCompress (UM-626) variable in the
modelsim.ini file.

-wlfnoopt

Disables optimization of waveform display in the Wave window. Optional.
Corresponding .ini file entry is WLFOptimize.

-wlfslim <size>

Specifies a size restriction in megabytes for the event portion of the WLF file. Optional.
The default is infinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The size restriction is
placed on the event portion only. When ModelSim exits, the entire header and symbol
portion of the WLF file is written. Consequently, the resulting file will be larger than the
size specified with -wlfslim.

If used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit (UM-626) variable in the
modelsim.ini file.

-wlftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default
is infinite time (0). The <duration> is an integer of simulation time at the current
resolution; you can optionally specify the resolution if you place curly braces around the
specification. For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time
for the specified duration. For example,

vsim -wlftlim 5000

writes at least the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit (UM-626) variable in the
modelsim.ini file.

The -wlfslim and -wlftlim switches were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by the internal granularity limits of the WLF file format.
ModelSim SE Command Reference

CR-366 Commands

Model
Arguments, VHDL

-absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages. Optional.

-foreign <attribute>

Specifies the foreign module to load. Optional. <attribute> is a quoted string consisting
of the name of a C function and a path to a shared library. For example,

vsim -foreign "c_init for.sl"

You can load up to ten foreign modules. Syntax for the attribute is further described in
the Introduction chapter of the ModelSim FLI Reference.

-nocollapse

Disables the optimization of internal port map connections. Optional.

-nofileshare

Turns off file descriptor sharing. Optional. By default ModelSim shares a file descriptor
for all VHDL files opened for write or append that have identical names.

-noglitch

Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL simulation for additional discussion of VITAL.

+no_glitch_msg

Disable VITAL glitch error messages. Optional.

-nopsl

Instructs ModelSim to ignore any PSL assertions that were compiled with the design. By
default vsim automatically invokes the PSL assertion engine at runtime if any assertions
were compiled with the design.

-std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional.

-std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional.

-strictvital

Specifies to exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations not
addressed in the VITAL LRM. Using this argument negatively impacts simulator
performance.

-vcdread <filename>

Simulates the VHDL top-level design from the specified VCD file. Optional. This
argument is included for backwards compatibility. Resimulations in ModelSim versions
5.5c and newer should use the -vcdstim argument. See "Simulating with input values
from a VCD file" (UM-562) for more details.

-vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.
Sim SE Command Reference

vsim CR-367
Arguments, Verilog

+alt_path_delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode,
a pending output transition is cancelled when a new output transition is scheduled. The
result is that an output may have no more than one pending transition at a time, and that
pulses narrower than the delay are filtered. The delay is selected based on the transition
from the cancelled pending value of the net to the new pending value. The
+alt_path_delays option modifies the inertial mode such that a delay is based on a
transition from the current output value rather than the cancelled pending value of the net.
This option has no effect in transport mode (see +pulse_e/<percent> and
+pulse_r/<percent>).

+delayed_timing_checks

Causes timing checks to be performed on the delayed versions of input ports (used when
there are negative timing check limits). Optional. See "Using delayed inputs for timing
checks" (UM-125).

-extend_tcheck_data_limit <percent>

-extend_tcheck_ref_limit <percent>

Causes a one-time extension of qualifying data or reference limits in an attempt to
provide a delay net solution prior to any limit zeroing. A limit qualifies if it bounds a
violation region which does not overlap a related violation region.

<percent> is the maximum percent of limit relaxation. See "Extending check limits
without zeroing" (UM-124) for an example of how to calculate the percentage.

-hazards

Enables event order hazard checking in Verilog modules. Optional. You must also
specify this argument when you compile your design with vlog (CR-345). See "Hazard
detection" (UM-122) for more details.

+int_delays

Optimizes annotation of interconnect delays for designs that have been compiled using
-fast (see vlog command (CR-345)). Optional. This argument causes vsim to insert
"placeholder" delay elements at optimized cell inputs, resulting in faster backannotation
of interconnect delays from an SDF file.

-L <library_name> ...

Specifies the library to search for design units instantiated from Verilog. See "Library
usage" (UM-111) for more information. If multiple libraries are specified, each must be
preceded by the -L option. Libraries are searched in the order in which they appear on
the command line.

-Lf <library_name> ...

Same as -L but libraries are searched before ‘uselib directives. See "Library usage" (UM-

111) for more information. Optional.

+maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
ModelSim SE Command Reference

CR-368 Commands

Model
+mindelays

Selects the minimum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+no_cancelled_e_msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning
and then filters negative pulses on specify path delays. You can drive an X for a negative
pulse using +show_cancelled_e.

+no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default
negative timing check limits are enabled. This is just the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations for the entire design. You can suppress X propagation
on individual instances using the tcheck_set command (CR-267).

+no_path_edge

Causes ModelSim to ignore the input edge specified in a path delay. Optional. The result
of this argument is that all edges on the input are considered when selecting the output
delay. Verilog-XL always ignores the input edges on path delays.

+no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error
results in a warning message, and the pulse is propagated as an X. The +no_pulse_msg
option disables the warning message, but the X is still propagated.

+no_show_cancelled_e

Filters negative pulses on specify path delays so they don’t show on the output. Default.
Use +show_cancelled_e to drive a pulse error state.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xs for timing check violations. You can disable individual messages
using the tcheck_set command (CR-267).

+nosdferror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

+nosdfwarn

Disables warnings from the SDF annotator. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.
Sim SE Command Reference

vsim CR-369
+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port connections.
Expected <m>, found <n>.

This warning message can be disabled with +nowarnTFMPC.

+ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recalculates the delays. This process is repeated until a
solution is found. A warning message is issued for each negative limit set to zero.

-pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. This is an alternative to specifying PLI objects in the
Veriuser entry in the modelsim.ini file, see "Preference variables located in INI files"
(UM-617). You can use environment variables as part of the path.

+<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to
the error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option.
The error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in
the propagation of pulses greater than or equal to 8, while all other pulses are filtered.
Note that you can force specify path delays to operate in transport mode by using the
+pulse_e/0 option.

+pulse_e_style_ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A
pulse error propagates to the output as an X, and the "on detect" style is to schedule the
X immediately, as soon as it has been detected that a pulse error has occurred. "on event"
style is the default for propagating pulse errors (see +pulse_e_style_onevent).

+pulse_e_style_onevent

Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" style is to schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it
had propagated through normally.
ModelSim SE Command Reference

CR-370 Commands

Model
+pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the
error limit is not specified by +pulse_e then it defaults to the rejection limit.

+sdf_nocheck_celltype

Disables the error check a for mismatch between the CELLTYPE name in the SDF file
and the module or primitive name for the CELL instance. It is an error if the names do
not match. Optional.

+show_cancelled_e

Drives a pulse error state (’X’) for the duration of a negative pulse on a specify path
delay. Optional. By default ModelSim filters negative pulses.

+transport_path_delays

Selects transport mode for path delays. Optional. By default, path delays operate in
inertial mode (pulses smaller than the delay are filtered). In transport mode, narrow
pulses are propagated through path delays. Note that this option affects path delays only,
and not primitives. Primitives always operate in inertial delay mode.

+typdelays

Selects the typical value in min:typ:max expressions. Default. Has no effect if you
specified the min:typ:max selection at compile time.

-v2k_int_delays

Causes interconnect delays to be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default ModelSim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() calls in your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf_annotate() to
remove any zero-delay MIPDs that may have been created (see "ModelSim Verilog
system tasks" (UM-149) for more information). May be used in tandem with the
+multisource_int_delays argument (see above).
Sim SE Command Reference

vsim CR-371
Arguments, object

The object arguments may be a <library_name>.<design_unit>, a .mpf file, a .wlf file, or a
text file. Multiple design units may be specified for Verilog modules and mixed VHDL/
Verilog configurations.

<library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit specifications
can be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<MPF_file_name>

Opens the specified project. Optional.

<WLF_file_name>

Opens the specified dataset. Optional.

<text_file_name>

Opens the specified text file in a Source window. Optional.

<configuration> Specifies the VHDL configuration to simulate.

<module> ... Specifies the name of one or more top-level Verilog
modules to be simulated. Optional.

<entity> [(<architecture>)] Specifies the name of the top-level VHDL entity to be
simulated. Optional. The entity may have an
architecture optionally specified; if omitted the last
architecture compiled for the specified entity is
simulated. An entity is not valid if a configuration is
specified.a

a.Most UNIX shells require arguments containing () to be single-quoted to prevent
special parsing by the shell. See the examples below.
ModelSim SE Command Reference

CR-372 Commands

Model
Examples

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

Invokes vsim on the entity cpu and assigns values to the generic parameters edge and
VCC. If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

vsim -view test=sim2.wlf

Instructs ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named test. Use the -wlf option to
specify the name of the WLF file to create if you plan to create many files for later
viewing. For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

vsim -sdfmin /top/u1=myasic.sdf

Annotates instance /top/u1 using the minimum timing from the SDF file myasic.sdf.

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

vsim ’mylib.top(only)’ gatelib.cache_set

This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

Invokes vsim on test_counter and instructs the simulator to run until a break event and
quit when it encounters a $finish task.
Sim SE Command Reference

vsim<info> CR-373
vsim<info>

The vsim<info> commands return information about the current vsim executable.

vsimAuth

Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsimDate

Returns the date the executable was built, such as "Apr 10 2000".

vsimId

Returns the identifying string, such as "ModelSim 5.4".

vsimVersion

Returns the version as used by the licensing tools, such as "1999.04".

vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -version argument of the vsim command
(CR-357).
ModelSim SE Command Reference

CR-374 Commands

Model
vsource

The vsource command specifies an alternative file to use for the current source file. This
command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.

Syntax

vsource
[<filename>]

Arguments

<filename>

Specifies a relative or full pathname. Optional. If filename is omitted the source file for
the current design context is displayed.

Examples
vsource design.vhd
vsource /old/design.vhd
Sim SE Command Reference

when CR-375
when

The when command instructs ModelSim to perform actions when the specified conditions
are met. For example, you can use the when command to break on a signal value or at a
specific simulator time (see "Time-based breakpoints" (CR-379)). Conditions can include
the following HDL items: VHDL signals, and Verilog nets and registers. Use the nowhen
command (CR-209) to deactivate when commands.

The when command uses a when_condition_expression to determine whether or not to
perform the action. The when_condition_expression uses a simple restricted language
(that is not related to Tcl), which permits only four operators and operands that may be
either HDL item names, signame’event, or constants. ModelSim evaluates the condition
every time any item in the condition changes, hence the restrictions.

With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax

when
[[-label <label>] [-id <id#>] {<when_condition_expression>} {<command>}]

Arguments

-label <label>

Used to identify individual when commands. Optional.

-id <id#>

Attempts to assign this id number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

{<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed. Required
if a command is specified. The condition is evaluated in the simulator kernel and can be
an item name, in which case the curly braces can be omitted. The command will be
executed when the item changes value. The condition can be an expression with these
operators:

Note: Virtual signals, functions, regions, types, etc. cannot be used in the when
command. Neither can simulator state variables other than $now.

Note: Ids for when commands are assigned from the same pool as those used for the bp
command (CR-81). So, even if you haven’t used an id number for a when command, it’s
possible it is used for a breakpoint.

 Name Operator

equals ==, =

not equal !=, /=

greater than >
ModelSim SE Command Reference

CR-376 Commands

Model
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly
braces ({}) with double quotes (""). This works like a macro substitution where the Tcl
variables are evaluated once and the result is then evaluated as the when condition.
Condition expressions are evaluated in the vsim kernel, which knows nothing about Tcl
variables. That's why the condition expression must be evaluated in the GUI before it is
sent to the vsim kernel. See below for an example of using a Tcl variable.

The ">", "<", ">=", and "<=" operators are the standard ones for vector types, not the
overloaded operators in the std_logic_1164 package. This may cause unexpected results
when comparing items that contain values other than 1 and 0. ModelSim does a lexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true
H000 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

less than <

greater than or
equal

>=

less than or equal <=

AND &&, AND

OR ||, OR

 Name Operator
Sim SE Command Reference

when CR-377
{<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any ModelSim or Tcl command or series of commands are valid with
one exception—the run command (CR-246) cannot be used with the when command.
Required if a when expression is specified. The command sequence usually contains a
stop command (CR-265) that sets a flag to break the simulation run after the command
sequence is completed. Multiple-line commands can be used.

Examples

The when command below instructs the simulator to display the value of item c in binary
format when there is a clock event, the clock is 1, and the value of b is 01100111. Finally,
the command tells ModelSim to stop.

when -label when1 {clk’event and clk=’1’ and b = “01100111”} {
echo “Signal c is [exa -bin c]"
stop

}

The commands below show an example of using a Tcl variable within a when command.
Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;

when -label when1 "$clkb_path'event and $clkb_path ='1'" {
echo "Detected Clk edge at path $clkb_path"

}

This next example uses the Tcl set command to disable arithmetic package warnings at time
0. Note that the time unit (ns in this case) would vary depending on your simulation
resolution.

when {$now = @1ns } {set NumericStdNoWarnings 1}
run -all

The when command below is labeled a and will cause ModelSim to echo the message “b
changed” whenever the value of the item b changes.

when -label a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo (CR-161) and a stop (CR-265) command will be executed.

when {b = 1
 and c /= 0 } {
 echo “b is 1 and c is not 0”
 stop

}

Note: If you want to stop the simulation using a when command, you must use a stop
command (CR-265) within your when statement. DO NOT use an exit command (CR-171)
or a quit command. The stop command acts like a breakpoint at the time it is evaluated.
See "Ending the simulation with the stop command" (CR-378) for examples.
ModelSim SE Command Reference

CR-378 Commands

Model
In the example below, for the declaration "wire [15:0] a;", the when command will activate
when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at time " $now}

If you encounter a vectored net caused by compiling with -fast, use the ’event qualifier to
prevent the command from falsely evaluating when unrelated bits of ’a’ change:

when {a(3:1) = 3'h7 and a(3:1)'event} {echo "matched at time " $now}

The first when command below sets up a trigger for the falling edge of RESET. When this
happens, a second when command is executed which sets up a trigger to occur 200us after
the current time.

force SIGA 1
when {RESET'falling} {

when {$now == 200us} {
noforce SIGA

}
}
run -all

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X is true," rather than
"run for X time" simulations. The multi-line when command below sets a done condition
and executes an echo (CR-161) and a stop (CR-265) command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless a stop command is
executed. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’} {

echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

Here’s another example that stops 100ns after a signal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {

when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}

}

Sim SE Command Reference

when CR-379
Time-based breakpoints

You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750ns} {stop}

You can also use:

when {errorFlag = '1' OR $now = 2ms} {stop}

This example adds 2ms to the simulation time at which the when statement is first
evaluated, then stops.

You can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the $ escaped. This prevents Tcl from expanding the variable,
because if it did, you would get:

when "0 = 1000" stop

See also

bp (CR-81), disablebp (CR-153), enablebp (CR-163), nowhen (CR-209)
ModelSim SE Command Reference

CR-380 Commands

Model
where

The where command displays information about the system environment. This command
is useful for debugging problems where ModelSim cannot find the required libraries or
support files.

The command displays two system settings:

current directory

This is the current directory that ModelSim was invoked from, or was specified on the
ModelSim command line.

current project file

This is the .mpf file ModelSim is using. All library mappings are taken from here when
a project is open.

Syntax

where

Arguments

None.
Sim SE Command Reference

wlf2log CR-381
wlf2log

The wlf2log command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile.
The command reads the vsim.wlf WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim II logfile format.

Syntax

wlf2log
[-bits] [-fullname] [-help] [-inout] [-input] [-internal]
[-l <instance_path>] [-lower] [-o <outfile>] [-output] [-quiet] <wlffile>

Arguments

-bits

Forces vector nets to be split into 1-bit wide nets in the log file. Optional.

-fullname

Shows the full hierarchical pathname when displaying signal names. Optional.

-help

Displays a list of command options with a brief description for each. Optional.

-inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-internal

Lists only the internal signals. Optional. This may be combined with the -input, -output,
or -inout switches.

-l <instance_path>

Lists the signals at or below the specified HDL instance path within the design hierarchy.
Optional.

-lower

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

-o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

-output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

Important: This command should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.
ModelSim SE Command Reference

CR-382 Commands

Model
-quiet

Disables error message reporting. Optional.

<wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

Additional information for QuickSim II users

In some cases your original QuickHDL/ModelSim simulation results (in your vsim.wlf file)
may contain signal values that do not directly correspond to qsim_12state values. The
resulting QuickSim II logfile generated by wlf2log may contain state values that are
surrounded by single quotes, e.g. '0' and '1'. To make this logfile compatible with QuickSim
models (that expect qsim_12state) you need to use a QuickSim II function named
$convert_wdb().

This function was created to convert logfiles resulting from VHDL simulation that used
std_logic and std_ulogic since these data types do not correlate to QuickSim's 12 simulation
states. Other VHDL data types such as qsim_state or bit (2 state) do not require conversion
as they are directly compatible with qsim_12state QuickSim II Waveform Databases
(WDB).

The following procedure can be used to convert a wlf2log-generated logfile into a
compatible QuickSim WDB. The procedure below shows how to convert the logfile while
loaded into memory in QuickSim II.

1 Load the logfile (the output from wlf2log) into a WDB other than "forces". "Forces" is
the default WDB, so you need to choose a unique name for the WDB when loading the
logfile (for example, "fred").

2 Enter the following at the command prompt from within QuickSim:

$convert_wdb("fred",0)

The first argument, which is "fred", is the name of the new WDB to be created. The
second argument, which is 0, specifies the type of conversion. At this time only one type
of conversion is supported. The value 0 specifies to convert std_logic or std_ulogic into
qsim_12state.

3 Do a connect_wdb (either through the pulldown menus, the "Connect WDB" palette icon
under "Stimulus", or a function invocation). You specify the name of the WDB that you
originally loaded the logfile into (in this case, "fred").

At this point you can issue the "run" command and the stimulus in the converted logfile will
be applied. Before exiting the simulation you should save the new WDB ("fred") as a WDB
or logfile so that it can be loaded again in the future. The new WDB or logfile will contain
the correct qsim_12state values eliminating the need to re-use $convert_wdb().
Sim SE Command Reference

wlf2vcd CR-383
wlf2vcd

The wlf2vcd command translates a ModelSim WLF file to a standard VCD file. Complex
data types that are unsupported in the VCD standard (records, memories, etc) are not
converted.

Syntax

wlf2vcd
[-help] [-o <outfile>] [-quiet] <wlffile>

Arguments

-help

Displays a list of command options with a brief description for each. Optional.

-o <outfile>

Specifies a filename for the output. By default the VCD output goes to stdout. Optional.

-quiet

Disables warning messages that are produced when an unsupported type (e.g., records)
is encountered in the WLF file. Optional.

<wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

Important: This command should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.
ModelSim SE Command Reference

CR-384 Commands

Model
wlfman

The wlfman command allows you to get information about and manipulate WLF files. The
command performs four functions depending on which mode you use:

• wlfman info generates file information, resolution, versions, etc.

• wlfman items generates a list of HDL items (i.e., signals) from the source WLF file and
outputs it to stdout. When redirected to a file, the output is called an item_list_file, and it
can be read in by wlfman filter. The item_list_file is a list of items, one per line.
Comments start with a '#' and continue to the end of the line. Wildcards are legal in the
leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/u1/* # all signals under u1
/top/u1 # same as line above
-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wlfman
items always creates a legal item_list_file.

• wlfman filter reads in a WLF file and optionally an item_list_file and writes out another
WLF file containing filtered information from those sources. You determine the filtered
information with the arguments you specify.

• wlfman profile generates a report of the estimated percentage of file space that each
signal is taking in the specified WLF file. This command can identify signals that account
for a large percentage of the WLF file size (e.g., a logged memory that uses a zero-delay
integer loop to initialize the memory). You may be able to drastically reduce WLF file
size by not logging those signals.

The different modes are intended to be used together. For example, you might run wlfman
profile and identify a signal that accounts for 50% of the WLF file size. If you don’t
actually need that signal, you can then run wlfman filter to remove it from the WLF file.

Syntax

wlfman info
<wlffile>

wlfman items
[-n] [-v] <wlffile>

wlfman filter
[-begin <time>] [-eend <time>] [-f <item_list_file>] [-r <item>] [-s
<symbol>]
[-t <resolution>] <sourcewlffile> <outwlffile>

wlfman profile
[-rank] [-top <number>] <wlffile>
Sim SE Command Reference

wlfman CR-385
Arguments for wlfman info

<wlffile>

Specifies the WLF file from which you want information. Required.

Arguments for wlfman items

-n

Lists regions only (no signals). Optional.

-v

Produces "verbose" output that lists item type next to each item. Optional.

<wlffile>

Specifies the WLF file for which you want a profile report. Required.

Arguments for wlfman filter

-begin <time>

Specifies the simulation time at which you want to begin reading information from the
source WLF file. Optional. By default the output includes the entire time that is recorded
in the source WLF file.

-eend <time>

Specifies the simulation time at which you want to end reading information from the
source WLF file. Optional.

-f <item_list_file>

Specifies an item-list-file created by wlfman items to include in the output WLF file.
Optional.

-r <item>

Specifies an item (region) to recursively include in the output. If <item> is a signal, the
output would be the same as using -s. Optional.

-s <symbol>

Specifies an item to include in the output. Optional. By default all items are output.

-t <resolution>

Specifies the time resolution of the new WLF file. Optional. By default the resolution is
the same as the source WLF file.

<sourcewlffile>

Specifies the source WLF file from which you want items. Required.

<outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain
all items specified by -f <item_list_file>, -r <item>, and -s <symbol>. Output WLF files
are always written in the latest WLF version regardless of the source WLF file version.
ModelSim SE Command Reference

CR-386 Commands

Model
Arguments for wlfman profile

-rank

Sorts the report by percentage. Optional.

-top <number>

Filters the report so that only the top <number> signals in terms of file space percentage
are displayed. Optional.

<wlffile>

Specifies the WLF file from which you want item information. Required.

Examples

wlfman profile -rank top_vh.wlf

The output from this command would look something like this:

#Repeated ID #'s mean those signals share the same
#space in the wlf file.
#
ID Transitions File % Name
#----- ----------- ------ --
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data
 4 675 10 % /top_vh/strans
 5 423 6 % /top_vh/cache/gen__3/s/data_out
 6 135 3 % /top_vh/paddr.
.
.
.

wlfman profile -top 3 top_vh.wlf

The output from this command would look something like this:

ID Transitions File % Name
#----- ----------- ------ --
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data

See also

Chapter 9 - WLF files (datasets) and virtuals (UM-239)
Sim SE Command Reference

wlfrecover CR-387
wlfrecover

The wlfrecover tool attempts to "repair" WLF files that are incomplete due to a crash or
the file being copied prior to completion of the simulation. The tool works only on WLF
files created by ModelSim versions 5.6 or later. You can run the tool from the VSIM> or
ModelSim> prompt or from a shell.

Syntax

wlfrecover
<filename> [-force] [-q]

Arguments

<filename>

Specifies the WLF file to repair. Required.

-force

Disregards file locking and attempts to repair the file. Required for PCs.

-q

Hides all messages unless there is an error while repairing the file. Optional.
ModelSim SE Command Reference

CR-388 Commands

Model
write cell_report

The write cell_report command writes to the Main window transcript or to a file a list of
optimized (-fast) cell instances in the current design.

Syntax

write cell_report
[-filter <number>] [-infile <filename>] [-nonopt]
[[-outfile] <filename>]

Arguments

-filter <number>

Excludes cells with instance counts fewer than <number>. Optional.

-infile <filename>

Specifies a previously generated write report file to use as input. Optional. If not
specified then the write report command will be run.

-nonopt

Reports only non-optimized instances. Optional.

[-outfile] <filename>

Writes the report to the specified output file rather than the Main window transcript.
Optional.
Sim SE Command Reference

write format CR-389
write format

The write format command records the names and display options of the HDL items
currently being displayed in the List or Wave window. The file created is primarily a list of
add list (CR-55), add wave (CR-64), and configure (CR-129) commands, though a few other
commands are included (see "Output" below). This file may be invoked with the do
command (CR-156) to recreate the List or Wave window format on a subsequent simulation
run.

When you load a wave or list format file, ModelSim verifies the existence of the datasets
required by the format file. ModelSim displays an error message if the requisite datasets do
not all exist. To force the execution of the wave or list format file even if all datasets are
not present, use the -force switch with your do command. For example:

 VSIM> do wave.do -force

Note that this will result in error messages for signals referencing nonexistent datasets.
Also, -force is recognized by the format file not the do command.

Syntax

write format
list | wave [-window <window_name>] <filename>

Arguments

list | wave

Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

-window <window_name>

Specifies the window for which you want contents recorded. Optional. Use when you
have more than one instance of the List or Wave window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write format list alu_list.do

Saves the current data in the List window in a file named alu_list.do.

write format wave alu_wave.do

Saves the current data in the Wave window in a file named alu_wave.do.

Output

Below is an example of a saved Wave window format file.

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
ModelSim SE Command Reference

CR-390 Commands

Model
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The second
WaveActivateNextPane command creates a second pane which contains three signals.The
WaveRestoreCursors command restores any cursors you set during the original
simulation, and the WaveRestoreZoom command restores the Zoom range you set. These
four commands are used only in saved Wave format files; therefore, they are not
documented elsewhere.

See also

add list (CR-55), add wave (CR-64)
Sim SE Command Reference

write list CR-391
write list

The write list command records the contents of the most recently opened or specified List
window in a list output file. This file contains simulation data for all HDL items displayed
in the List window: VHDL signals and variables and Verilog nets and registers.

Syntax

write list
[-events] [-window <wname>] <filename>

Arguments

-events

Specifies to write print-on-change format. Optional. Default is tabular format.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-320) to change the default
window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write list alu.lst

Saves the current data in the default List window in a file named alu.lst.

write list -win list1 group1.list

Saves the current data in window ‘list1’ in a file named group1.list.

See also

write tssi (CR-395)
ModelSim SE Command Reference

CR-392 Commands

Model
write preferences

The write preferences command saves the current GUI preference settings to a Tcl
preference file. Settings saved include current window locations and sizes; Wave, Signals,
and Variables window column widths; Wave, Signals, and Variables window value
justification; and Wave window signal name width.

Syntax

write preferences
<preference file name>

Arguments

<preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
(UM-614) environment variable.

See also

You can modify variables by editing the preference file with the ModelSim notepad (CR-

207):

notepad <preference file name>
Sim SE Command Reference

write report CR-393
write report

The write report command prints a summary of the design being simulated including a list
of all design units (VHDL configurations, entities, and packages, and Verilog modules)
with the names of their source files. If you have compiled a Verilog design using -fast (see
"Compiling for faster performance" (UM-127)), the report will also identify cells which have
been optimized.

Syntax

write report
[[<filename>] [-l | -s]] | [-tcl]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the report is written to the Main window transcript.

-l

Generates more detailed information about the design. Default.

-s

Generates a short list of design information. Optional.

-tcl

Generates a Tcl list of design unit information. Optional. This argument cannot be used
with a filename.

Examples

write report alu.rep

Saves information about the current design in a file named alu.rep.
ModelSim SE Command Reference

CR-394 Commands

Model
write transcript

The write transcript command writes the contents of the Main window transcript to the
specified file. The resulting file can be used to replay the transcribed commands as a DO
file (macro).

The command cannot be used in batch mode. In batch mode use the standard "Transcript"
(UM-264) file or redirect stdout.

Syntax

write transcript
[<filename>]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.

See also

do (CR-156)
Sim SE Command Reference

write tssi CR-395
write tssi

The write tssi command records the contents of the default or specified List window in a
"TSSI format" file. The file contains simulation data for all HDL items displayed in the List
window that can be converted to TSSI format (VHDL signals and Verilog nets). A signal
definition file is also generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

Syntax

write tssi
[-window <wname>] <filename>

Arguments

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-320) to change the default
window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Description

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of Volume
I, Getting Started, R11.1, dated November 15, 1999. In that document, TSSI format is
called Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the
same file name with the extension .def (e.g., listfile.def). The values in the listfile are
produced in the same order that they appear in the List window. The directionality is
determined from the port type if the item is a port, otherwise it is assumed to be
bidirectional (mode INOUT).

Items that can be converted to SEF are VHDL enumerations with 255 or fewer elements
and Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration
values defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF
values according to the table below. Other values are converted to a question mark (?) and
cause an error message. Though the write tssi command was developed for use with
std_ulogic, any signal which uses only the values defined for std_ulogic (including the
VHDL standard type bit) will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0
ModelSim SE Command Reference

CR-396 Commands

Model
Bidirectional logic values are not converted because only the resolved value is available.
The Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to
resolve the directionality of the signal and to determine the proper forcing or expected value
on the port. Lowercase values x, z, w, l, and h are converted to the same values as the
corresponding capitalized values. Any other values will cause an error message to be
generated the first time an invalid value is detected on a signal, and the value will be
converted to a question mark (?).

See also

tssi2mti (CR-280)

1 U H 1

Z Z T F

W N X ?

L D L 0

H U H 1

- N X ?

Note: The TDS ASCII In Converter and ASCII Out Converter are part of the TDS
software from Fluence Technology. ModelSim outputs a vector file, and Fluence’s tools
determine whether the bidirectional signals are driving or not.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional
Sim SE Command Reference

write wave CR-397
write wave

The write wave command records the contents of the most currently opened or specified
Wave window in PostScript format. The output file can then be printed on a PostScript
printer.

Syntax

write wave
[-window <wname>] [-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>]
[-landscape] [-portrait] <filename>

Arguments

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-320) to change the default
window.

-width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

-height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

-start <time>

Specifies the start time (on the waveform timescale) to be written. Optional.

-end <time>

Specifies the end time (on the waveform timescale) to be written. Optional.

-perpage <time>

Specifies the time width per page of output. Optional.

-landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

-portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

<filename>

Specifies the name of the PostScript output file. Required.

Examples

write wave alu.ps

Saves the current data in the Wave window in a file named alu.ps.

write wave -win wave2 group2.ps

Saves the current data in window ‘wave2’ in a file named group2.ps.
ModelSim SE Command Reference

CR-398 Commands

Model
write wave -start 600ns -end 800ns -perpage 100ns top.ps

Writes two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

To make the job of creating a PostScript waveform output file easier, use the File > Print
Postscript menu selection in the Wave window. See "Printing and saving waveforms"
(UM-363) for more information.
Sim SE Command Reference

 CR-399
Licensing Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS.

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE.

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have
acquired with this Agreement, including any updates, modifications, revisions, copies,
documentation and design data (“Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors who maintain exclusive title to all
Software and retain all rights not expressly granted by this Agreement. Mentor Graphics
grants to you, subject to payment of appropriate license fees, a nontransferable,
nonexclusive license to use Software solely: (a) in machine-readable, object-code form;
(b) for your internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site is
restricted to a one-half mile (800 meter) radius. Mentor Graphics' standard policies and
programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single
user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or
similar devices); (c) support services provided, including eligibility to receive telephone
support, updates, modifications and revisions. Current standard policies and programs are
available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development
(“ESD”) Software, Mentor Graphics grants to you a nontransferable, nonexclusive license
to reproduce and distribute executable files created using ESD compilers, including the
ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program,
provided that you distribute these files only in conjunction with your compiled computer
program. Mentor Graphics does NOT grant you any right to duplicate or incorporate
copies of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Portions or all of certain Software may contain code for experimental
testing and evaluation (“Beta Code”), which may not be used without Mentor Graphics'
explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
you a temporary, nontransferable, nonexclusive license for experimental use to test and

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited, acting directly or through their subsidiaries or authorized
distributors (collectively “Mentor Graphics”). USE OF SOFTWARE INDICATES
YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS
AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return, or, if received electronically, certify
destruction of, Software and all accompanying items within five days after receipt
of Software and receive a full refund of any license fee paid.
ModelSim SE Command Reference

CR-400 License Agreement

Model
evaluate the Beta Code without charge for a limited period of time specified by Mentor
Graphics. This grant and your use of the Beta Code shall not be construed as marketing or
offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form. If Mentor Graphics authorizes you to use the Beta
Code, you agree to evaluate and test the Beta Code under normal conditions as directed by
Mentor Graphics. You will contact Mentor Graphics periodically during your use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
your evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements. You
agree that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceives or made during or
subsequent to this Agreement, including those based partly or wholly on your feedback,
will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive
rights, title and interest in all such property. The provisions of this subsection shall survive
termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to
support the authorized use. Each copy must include all notices and legends embedded in
Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a
record of the number and primary location of all copies of Software, including copies
merged with other software, and shall make those records available to Mentor Graphics
upon request. You shall not make Software available in any form to any person other than
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does
not disclose it or use it except as permitted by this Agreement. Except as otherwise
permitted for purposes of interoperability as specified by applicable and mandatory local
law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way
derive from Software any source code. You may not sublicense, assign or otherwise
transfer Software, this Agreement or the rights under it, whether by operation of law or
otherwise (“attempted transfer”) without Mentor Graphics' prior written consent and
payment of Mentor Graphics then-current applicable transfer charges. Any attempted
transfer without Mentor Graphics’ prior written consent shall be a material breach of this
Agreement and may. at Mentor graphics’ option, result in the immediate termination of
the Agreement and licenses granted under this Agreement. The provisions of this section 4
shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period, Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual. Mentor Graphics does not warrant that Software will meet
your requirements or that operation of Software will be uninterrupted or error free.
The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT
MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH
Sim SE Command Reference

 CR-401
IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST;
OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS
IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT.
MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS)
WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY,
EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE
GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID,
MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN
CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE
THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS
MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST,
DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH YOUR USEOF SOFTWARE AS DESCRIBED
IN SECTION 7.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought
against you alleging that Software infringes a patent or copyright or misappropriates a
trade secret in the United States, Canada, Japan, or member state of the European
Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree
that as conditions to Mentor Graphics’ obligations under this section you must: (a)
notify Mentor Graphics promptly in writing of the action; (b) provide Mentor
Graphics all reasonable information and assistance to defend or settle the action; and
(c) grant Mentor Graphics sole authority and control of the defense or settlement of
the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a)
replace or modify Software so that it becomes noninfringing; (b) procure for you the
right to continue using Software; or (c) require the return of Software and refund to
you any license fee paid, less a reasonable allowance for use.
ModelSim SE Command Reference

CR-402 License Agreement

Model
9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the
modification of Software other than by Mentor Graphics; (c) the use of other than a
current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that you make, use or sell; (f) any Beta Code contained in
Software; (g) any Software provided by Mentor Graphics' licensors who do not
provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for
its attorney fees and other costs related to the action upon a final judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or condition
of this Agreement or if you fail to pay for the license when due and such failure to pay
continues for a period of 30 days after written notice from Mentor Graphics. If Software
was provided for limited term use, this Agreement will automatically expire at the end of
the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software,
including all copies, to Mentor Graphics' reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government
agencies, which prohibit export or diversion of certain products, information about the
products, and direct products of the products to certain countries and certain persons. You
agree that you will not export any Software or direct product of Software in any manner
without first obtaining all necessary approval from appropriate local and United States
government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense
and is commercial computer software provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is
subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as
applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by
Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is
a third party beneficiary of this Agreement with the right to enforce the obligations set
forth in this Agreement.

14. AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to
audit during your normal business hours all records and accounts as may contain
information regarding your compliance with the terms of this Agreement. Mentor
Graphics shall keep in confidence all information gained as a result of any audit. Mentor
Graphics shall only use or disclose such information as necessary to enforce its rights
under this Agreement.

15. CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF OREGON, USA, IF
Sim SE Command Reference

 CR-403
YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF
IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND SOUTH AMERICA.
All disputes arising out of or in relation to this Agreement shall be submitted to the
exclusive jurisdiction of Dublin, Ireland when the laws of Ireland apply, or Wilsonville,
Oregon when the laws of Oregon apply. This section shall not restrict Mentor Graphics’
right to bring an action against you in the jurisdiction where your place of business is
located.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent
jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed
from this Agreement and the remaining provisions will remain in full force and effect.

17. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating
to its subject matter and supersedes all prior or contemporaneous agreements, including
but not limited to any purchase order terms and conditions, except valid license
agreements related to the subject matter of this Agreement (which are physically signed
by you and an authorized agent of Mentor Graphics) either referenced in the purchase
order or otherwise governing this subject matter. This Agreement may only be modified in
writing by authorized representatives of the parties. Waiver of terms or excuse of breach
must be in writing and shall not constitute subsequent consent, waiver or excuse. The
prevailing party in any legal action regarding the subject matter of this Agreement shall be
entitled to recover, in addition to other relief, reasonable attorneys' fees and expenses.

Rev. 020826, Part Number 214231
ModelSim SE Command Reference

CR-404 License Agreement

Model
Sim SE Command Reference

 CR-405
Index
CR = Command Reference, UM = User’s Manual
Symbols

#, comment character UM-596
+acc option, design object visibility UM-133
+opt UM-128
+typdelays CR-352
-, in a coverage report UM-449
.so, shared object file

loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

;{} CR-15
’hasX, hasX CR-25

Numerics

1076, IEEE Std UM-25
differences between versions UM-74

1364, IEEE Std UM-25, UM-107
2001, keywords, disabling CR-352
64-bit libraries UM-64
64-bit ModelSim, using with 32-bit FLI apps UM-182
64-bit time

now variable UM-635
Tcl time commands UM-601

A

+acc option, design object visibility UM-133
abort command CR-51
absolute time, using @ CR-18
ACC routines UM-177
accelerated packages UM-62
access

hierarchical items UM-523
limitations in mixed designs UM-211

add button command CR-52
add list command CR-55
add wave command CR-64
add_menu command CR-58
add_menucb command CR-60
add_menuitem simulator command CR-61
add_separator command CR-62
add_submenu command CR-63
alias command CR-68
analog

signal formatting UM-350
supported signal types UM-350

analog, signal formatting CR-64
annotating interconnect delays, v2k_int_delays CR-370
architecture simulator state variable UM-634
archives

described UM-55
archives, library CR-344
argc simulator state variable UM-634
arguments

passing to a DO file UM-607
arithmetic package warnings, disabling UM-629
arrays

indexes CR-12
slices CR-12, CR-15

AssertFile .ini file variable UM-621
assertion fail command CR-69
assertion pass command CR-71
assertion report command CR-73
AssertionFailEnable .ini variable UM-621
AssertionFailLimit .ini variable UM-621
AssertionFailLog .ini variable UM-621
AssertionFormat .ini file variable UM-621
AssertionFormatBreak .ini file variable UM-622
AssertionFormatError .ini file variable UM-622
AssertionFormatFail .ini file variable UM-622
AssertionFormatFatal .ini file variable UM-622
AssertionFormatNote .ini file variable UM-622
AssertionFormatWarning .ini file variable UM-622
AssertionPassEnable .ini variable UM-621
AssertionPassLimit .ini variable UM-621
AssertionPassLog .ini variable UM-621
assertions

configuring from the GUI UM-387
debugging UM-516
enabling CR-69, CR-71
failure behavior CR-69
file and line number UM-621
flow UM-496
limitations UM-496
messages

alternate output file UM-514
turning off UM-629

pass behavior CR-71
reporting on CR-73, UM-514
selecting severity that stops simulation UM-387
setting format of messages UM-621
testing for with onbreak command CR-210
viewing in Wave window UM-515
warnings, locating UM-621
ModelSim SE Command Reference

CR-406 Index

Model
attributes, of signals, using in expressions CR-25
auto find bp command UM-479
auto step mode, C Debug UM-480

B

bad magic number error message UM-241
balloon dialog, toggling on/off UM-353
balloon popup

C Debug UM-490
base (radix), specifying in List window UM-291
base (radix), specifying in Memory window UM-306
batch_mode command CR-75
batch-mode simulations UM-24

halting CR-378
bd (breakpoint delete) command CR-76
binary radix, mapping to std_logic values CR-30
binding C++ objects UM-204
binding errors in SystemC, resolving UM-204
binding, VHDL, default UM-61
bitwise format UM-467
blocking assignments UM-121
bookmark add wave command CR-77
bookmark delete wave command CR-78
bookmark goto wave command CR-79
bookmark list wave command CR-80
bookmarks UM-361
bp (breakpoint) command CR-81
brackets, escaping CR-15
break

on assertion UM-387
on signal value CR-375

BreakOnAssertion .ini file variable UM-622
breakpoints

C code UM-476
conditional CR-375, UM-323
continuing simulation after CR-246
deleting CR-76, UM-329, UM-391
listing CR-81
setting CR-81, UM-329
setting automatically in C code UM-480
signal breakpoints (when statements) CR-375, UM-

323
Source window, viewing in UM-325
time-based UM-323

in when statements CR-379
.bsm file UM-283
buffered/unbuffered output UM-625
bus contention checking CR-90

configuring CR-92

disabling CR-93
bus float checking

configuring CR-95
disabling CR-96
enabling CR-94

busses
escape characters in CR-15
RTL-level, reconstructing UM-249
user-defined CR-65, UM-292, UM-345

buswise format UM-467
Button Adder (add buttons to windows) UM-400
buttons, adding to the Main window toolbar CR-52

C

C applications
compiling and linking UM-159
debugging UM-473

C callstack
moving down CR-231
moving up CR-215

C Debug UM-473
auto find bp UM-479
auto step mode UM-480
debugging functions during elaboration UM-483
debugging functions when exiting UM-487
function entry points, finding UM-479
initialization mode UM-483
menu reference UM-488
registered function calls, identifying UM-480
Stop on quit mode UM-487

C debugging CR-85
C++ applications

compiling and linking UM-164
case choice, must be locally static CR-305
case sensitivity

named port associations UM-229
VHDL vs. Verilog CR-16

causality, tracing in Dataflow window UM-277
cd (change directory) command CR-84
cdbg command CR-85
cell libraries UM-142
cells

hiding in Dataflow window UM-284, UM-285
change command CR-87
change directory, disabled UM-265
change_menu_cmd command CR-89
chasing X UM-278
check contention add command CR-90
check contention config command CR-92
Sim SE Command Reference

 CR-407
check contention off command CR-93
check float add command CR-94
check float config command CR-95
check float off command CR-96
check stable off command CR-97
check stable on command CR-98
-check_synthesis argument CR-304

warning message UM-651
checkpoint command CR-99
checkpoint/restore UM-84, UM-140
CheckpointCompressMode .ini file variable UM-622
CheckSynthesis .ini file variable UM-619
class member selection, syntax CR-13
cleanup

SystemC state-based code UM-200
clean-up of SystemC state-based code UM-200
clear differences UM-469
clock change, sampling signals at UM-297
clocked comparison UM-457, UM-463
Code Coverage

$coverage_save system task UM-149
by instance UM-420
cancel exclusions UM-431
clear coverage data UM-432
columns in workspace UM-427
condition coverage UM-420, UM-452
coverage clear command CR-134
coverage exclude command CR-135
coverage reload command CR-136
coverage report command CR-137
coverage save command CR-140
current exclusions pane UM-431
data types supported UM-421
details pane UM-433
display filter UM-432
display filter toolbar UM-442
enabling with vcom or vlog UM-423
enabling with vsim UM-423
excluding lines/files UM-443
exclusion filter files UM-444
expression coverage UM-420, UM-453
filter instance list UM-432
important notes UM-422
instance coverage UM-432
Main window coverage data UM-426
merge utility UM-451
merging report files CR-136
merging reports CR-311
missed branches UM-430
missed coverage UM-430
pragma exclusions UM-443

reports UM-446
Source window data UM-435
source window details UM-434
statistics in Main window UM-426
Tcl preference variables UM-454
toggle coverage UM-420

excluding signals CR-273
toggle details UM-433
workspace pane UM-427

columns
hide/showing in GUI UM-257
sorting by UM-257

combining signals, busses CR-65, UM-292, UM-345
command history UM-267
CommandHistory .ini file variable UM-623
command-line mode UM-23
Commands

compare commands UM-471
commands

.main clear CR-44

.wave.tree interrupt CR-45

.wave.tree zoomfull CR-46

.wave.tree zoomin CR-47

.wave.tree zoomlast CR-48

.wave.tree zoomout CR-49

.wave.tree zoomrange CR-50
abort CR-51
add button CR-52
add list CR-55
add wave CR-64
add_menu CR-58
add_menucb CR-60
add_menuitem CR-61
add_separator CR-62
add_submenu CR-63
alias CR-68
assertion fail command CR-69
assertion pass CR-71
assertion report CR-73
batch_mode CR-75
bd (breakpoint delete) CR-76
bookmark add wave CR-77
bookmark delete wave CR-78
bookmark goto wave CR-79
bookmark list wave CR-80
bp (breakpoint) CR-81
cd (change directory) CR-84
cdbg CR-85
change CR-87
change_menu_cmd CR-89
check contention add CR-90
ModelSim SE Command Reference

CR-408 Index

Model
check contention config CR-92
check contention off CR-93
check float add CR-94
check float config CR-95
check float off CR-96
check stable off CR-97
check stable on CR-98
checkpoint CR-99
compare add CR-100
compare annotate CR-104, CR-107
compare clock CR-105
compare close CR-111
compare delete CR-110
compare info CR-112
compare list CR-113
compare open CR-125
compare options CR-114
compare reload CR-118
compare savediffs CR-121
compare saverules CR-122
compare see CR-123
compare start CR-120
configure CR-129
coverage clear CR-134
coverage exclude CR-135
coverage reload CR-136
coverage report CR-137
coverage save CR-140
dataset alias CR-141
dataset clear CR-142
dataset close CR-143
dataset info CR-144
dataset list CR-145
dataset open CR-146
dataset rename CR-147, CR-148
dataset snapshot CR-149
delete CR-151
describe CR-152
disable_menu CR-154
disable_menuitem CR-155
disablebp CR-153
do CR-156
down CR-157
drivers CR-159
dumplog64 CR-160
echo CR-161
edit CR-162
enable_menu CR-164
enable_menuitem CR-165
enablebp CR-163
environment CR-166

examine CR-167
exit CR-171
find CR-172
force CR-176
gdb dir CR-179
getactivecursortime CR-180
getactivemarkertime CR-181
help CR-182
history CR-183
lecho CR-184
left CR-185
log CR-187
lshift CR-189
lsublist CR-190
macro_option CR-191
mem display CR-192
mem list CR-194
mem load CR-195
mem save CR-198
mem search CR-200
modelsim CR-202
next CR-203
noforce CR-204
nolog CR-205
notation conventions CR-10
notepad CR-207
noview CR-208
nowhen CR-209
onbreak CR-210
onElabError CR-211
onerror CR-212
pause CR-213
play CR-214
pop CR-215
power add CR-216
power report CR-217
power reset CR-218
printenv CR-219, CR-220
profile clear CR-221
profile interval CR-222
profile off CR-223
profile on CR-224
profile option CR-225
profile report CR-226
property list CR-228
property wave CR-229
push CR-231
pwd CR-232
quietly CR-233
quit CR-234
radix CR-235
Sim SE Command Reference

 CR-409
readers CR-236
record CR-237
report CR-238
restart CR-240
restore CR-242
resume CR-243
right CR-244
run CR-246
sccom CR-248
scgenmod CR-251
search CR-253
searchlog CR-255
seetime CR-257
setenv CR-258
shift CR-259
show CR-260
splitio CR-262
status CR-263
step CR-264
stop CR-265
system UM-599
tb (traceback) CR-266
tcheck_set CR-267
tcheck_status CR-269
toggle add CR-271
toggle disable CR-273
toggle enable CR-274
toggle report CR-275
toggle reset CR-276
transcribe CR-277
transcript CR-278
transcript file CR-279
TreeUpdate CR-390
tssi2mti CR-280
unsetenv CR-281
up CR-282
variables referenced in CR-17
vcd add CR-284
vcd checkpoint CR-285
vcd comment CR-286
vcd dumpports CR-287
vcd dumpportsall CR-289
vcd dumpportsflush CR-290
vcd dumpportslimit CR-291
vcd dumpportsoff CR-292
vcd dumpportson CR-293
vcd file CR-294
vcd files CR-296
vcd flush CR-298
vcd limit CR-299
vcd off CR-300

vcd on CR-301
vcom CR-303
vcover convert CR-310
vcover merge CR-311
vdel CR-315
vdir CR-316
verror CR-317
vgencomp CR-318
view CR-320
virtual count CR-322
virtual define CR-323
virtual delete CR-324
virtual describe CR-325
virtual expand CR-326
virtual function CR-327
virtual hide CR-330
virtual log CR-331
virtual nohide CR-333
virtual nolog CR-334
virtual region CR-336
virtual save CR-337
virtual show CR-338
virtual signal CR-339
virtual type CR-342
vlib CR-344
vlog CR-345
vmake CR-355
vmap CR-356
vsim CR-357
VSIM Tcl commands UM-600
vsimDate CR-373
vsimId CR-373
vsimVersion CR-373
WaveActivateNextPane CR-390
WaveRestoreCursors CR-390
WaveRestoreZoom CR-390
when CR-375
where CR-380
wlf2log CR-381
wlf2vcd CR-383
wlfman CR-384
wlfrecover CR-387
write cell_report CR-388
write format CR-389
write list CR-391
write preferences CR-392
write report CR-393
write transcript CR-394
write tssi CR-395
write wave CR-397

comment character
ModelSim SE Command Reference

CR-410 Index

Model
Tcl and DO files UM-596
comment characters in VSIM commands CR-10
compare

add region UM-462
add signals UM-461
by signal UM-461
clear differences UM-469
clocked UM-457, UM-463
continuous UM-457, UM-464
difference markers UM-467
differences UM-470
displayed in List window UM-470
end UM-468
graphic interface UM-459
icons UM-468
limit count UM-465
menu UM-468
modes UM-457
options UM-465
pathnames UM-466
reference dataset UM-459
reference region UM-462
reload UM-469
rules UM-469
run UM-468
save differences UM-469
show differences UM-469
specify dataset UM-459
start UM-468
startup wizard UM-468
tab UM-460
test dataset UM-459
test region UM-462
timing differences UM-467
tolerance UM-464
tolerances UM-457
values UM-467
verilog matching UM-465
VHDL matching UM-465
wave window display UM-466
waveforms UM-455
wizard UM-468
write report UM-469

compare add command CR-100
compare annotate command CR-104, CR-107
compare by region UM-462
compare clock command CR-105
compare close command CR-111
compare commands UM-471
compare delete command CR-110
compare info command CR-112

compare list command CR-113
compare open command CR-125
compare options command CR-114
compare reload command CR-118
compare savediffs command CR-121
compare saverules command CR-122
compare see command CR-123
compare simulations UM-239
compare start command CR-120
compatibility, of vendor libraries CR-316
compile

gensrc errors during UM-206, UM-207
compile history UM-41
compile order

auto generate UM-42
changing UM-42

compiler directives UM-150
IEEE Std 1364-2000 UM-150
XL compatible compiler directives UM-151

compiling
+opt argument UM-128
changing order in the GUI UM-42
compile history UM-41
default options, setting UM-370
-fast argument UM-127
graphic interface, with the UM-368
grouping files UM-43
order, changing in projects UM-42
properties, in projects UM-48
range checking in VHDL CR-308, UM-74
source errors, locating UM-369
SystemC CR-248, CR-251, UM-190

code modification examples UM-191
converting sc_main() UM-190
exporting top level module UM-190
for source level debug UM-192
invoking sccom UM-192
linking the compiled source UM-197
modifying source code UM-190
replacing sc_start() UM-190
replacing VCD dump functions UM-190

using sccom vs. raw C++ compiler UM-195
Verilog CR-345, UM-108

incremental compilation UM-109
library components, including CR-348
optimizing performance CR-347, UM-127
XL ’uselib compiler directive UM-114
XL compatible options UM-113

VHDL CR-303, UM-73
at a specified line number CR-305
selected design units (-just eapbc) CR-305
Sim SE Command Reference

 CR-411
standard package (-s) CR-308
VITAL packages UM-93

component declaration
generating SystemC from Verilog or VHDL UM-

238
generating VHDL from Verilog UM-226
vgencomp for SystemC UM-238
vgencomp for VHDL UM-226

component, default binding rules UM-61
Compressing files

VCD tasks UM-566
compressing files

VCD files CR-287, CR-296
concatenation

directives CR-29
of signals CR-28, CR-339

ConcurrentFileLimit .ini file variable UM-623
conditional breakpoints CR-375, UM-323
configuration simulator state variable UM-634
configurations

instantiation in mixed designs UM-225
Verilog UM-115

configurations, simulating CR-357
configure command CR-129
connectivity, exploring UM-274
constants

in case statements CR-305
values of, displaying CR-152, CR-167

contention checking CR-90
context menu

List window UM-289
context menus

code coverage in workspace UM-429
described UM-259
Library tab UM-58
Project tab UM-41
Structure window UM-333

continuous comparison UM-457
conversion, radix CR-235
convert real to time UM-97
convert time to real UM-96
coverage

merging data UM-450
saving raw data UM-450

coverage clear command CR-134
coverage exclude command CR-135
coverage reload command CR-136
coverage report command CR-137
coverage reports UM-446

sample reports UM-448
coverage save command CR-140

$coverage_save system task UM-149
CppOptions .ini file variable (sccom) UM-620
CppPath .ini file variable (sccom) UM-620
CppPath .ini variable UM-193
current exclusions

hide/show pragmas UM-431
pragmas UM-443

current exclusions pane UM-431
cursors

link to Dataflow window UM-271
locking UM-359
measuring time with UM-359
naming UM-358
trace events with UM-277
Wave window UM-358

customizing
adding buttons CR-52
via preference variables UM-631

D

deltas
explained UM-78

data types
Code Coverage UM-421

Dataflow window UM-270
automatic cell hiding UM-284, UM-285
options UM-284, UM-285
pan UM-276
zoom UM-276
see also windows, Dataflow window

dataflow.bsm file UM-283
dataset alias command CR-141
Dataset Browser UM-244
dataset clear command CR-142
dataset close command CR-143
dataset info command CR-144
dataset list command CR-145
dataset open command CR-146
dataset rename command CR-147, CR-148
Dataset Snapshot UM-246
dataset snapshot command CR-149
Datasets UM-239
datasets UM-456

environment command, specifying with CR-166
managing UM-244
reference UM-459
restrict dataset prefix display UM-245
specifying for compare UM-459
test UM-459
ModelSim SE Command Reference

CR-412 Index

Model
DatasetSeparator .ini file variable UM-623
Debug Detective UM-395
debugging

C code UM-473
declarations, hiding implicit with explicit CR-309
default binding rules UM-61
default compile options UM-370
Default editor, changing UM-613
DefaultForceKind .ini file variable UM-623
DefaultRadix .ini file variable UM-623
DefaultRestartOptions variable UM-623, UM-630
defaults

restoring UM-613
window arrangement UM-259

+define+ CR-346
definition (ID) of memory UM-302
delay

delta delays UM-78
interconnect CR-361
modes for Verilog models UM-142
SDF files UM-543
stimulus delay, specifying UM-322

+delay_mode_distributed CR-346
+delay_mode_path CR-346
+delay_mode_unit CR-346
+delay_mode_zero CR-347
’delayed CR-25
DelayFileOpen .ini file variable UM-623
delete command CR-151
deleting library contents UM-57
delta simulator state variable UM-634
deltas

collapsing in the List window UM-294
hiding in the List window CR-130, UM-294
referencing simulator iteration

as a simulator state variable UM-634
dependencies, checking CR-316
dependent design units UM-73
describe command CR-152
descriptions of HDL items UM-329
design hierarchy, viewing in Structure window UM-331
design library

creating UM-56
logical name, assigning UM-59
mapping search rules UM-60
resource type UM-54
VHDL design units UM-73
working type UM-54

design portability and SystemC UM-193
design units UM-54

hierarchy of, viewing UM-261

report of units simulated CR-393
Verilog

adding to a library CR-345
details

code coverage UM-433
directories

mapping libraries CR-356
moving libraries UM-60

directory, changing, disabled UM-265
disable_menu command CR-154
disable_menuitem command CR-155
disablebp command CR-153
distributed delay mode UM-143
dividers

adding from command line CR-64
Wave window UM-343

DLL files, loading UM-159, UM-164
do command CR-156
DO files (macros) CR-156

error handling UM-609
executing at startup UM-613, UM-625
parameters, passing to UM-607
Tcl source command UM-610

docking
window panes UM-257

documentation UM-29
DOPATH environment variable UM-613
down command CR-157
drivers

Dataflow Window UM-274
show in Dataflow window UM-347
Wave window UM-347

drivers command CR-159
drivers, multiple on unresolved signal UM-372
dump files, viewing in ModelSim CR-302
dumplog64 command CR-160
dumpports tasks, VCD files UM-565

E

echo command CR-161
edges, finding CR-185, CR-244
edit command CR-162
Editing

in notepad windows UM-639
in the Main window UM-639
in the Source window UM-639

EDITOR environment variable UM-613
editor, default, changing UM-613
elab_defer_fli argument UM-82, UM-138
Sim SE Command Reference

 CR-413
elaboration file
creating UM-81, UM-137
loading UM-81, UM-137
modifying stimulus UM-81, UM-137
resimulating the same design UM-80, UM-136
simulating with PLI or FLI models UM-82, UM-

138
elaboration, interrupting CR-357
embedded wave viewer UM-275
empty port name warning UM-650
enable_menu command CR-164
enable_menuitem command CR-165
enablebp command CR-163
encryption

+protect argument CR-351
‘protect compiler directive UM-152
-nodebug argument (vcom) CR-306
-nodebug argument (vlog) CR-350
securing pre-compiled libraries UM-65, UM-69

end comparison UM-468
end_of_construction() function UM-205
end_of_simulation() function UM-205
ENDFILE function UM-89
ENDLINE function UM-89
‘endprotect compiler directive UM-152
entities

default binding rules UM-61
entities, specifying for simulation CR-371
entity simulator state variable UM-634
enumerated types

user defined CR-342
environment command CR-166
environment variables UM-613

accessed during startup UM-657
reading into Verilog code CR-346
referencing from ModelSim command line UM-616
referencing with VHDL FILE variable UM-616
setting in Windows UM-615
specifying library locations in modelsim.ini file

UM-617
specifying UNIX editor CR-162
state of CR-220
TranscriptFile, specifying location of UM-625
used in Solaris linking for FLI UM-161
using in pathnames CR-16
using with location mapping UM-66
variable substitution using Tcl UM-599

environment, displaying or changing pathname CR-166
errors

bad magic number UM-241
during compilation, locating UM-369

getting details about messages CR-317
getting more information UM-646
multiple definition UM-208
onerror command CR-212
out-of-line function UM-208
SystemC compilation UM-206
SystemC loading UM-206
Tcl_init error UM-651
void function UM-208
VSIM license lost UM-653

errors, handling sccom -link UM-197
escape character CR-15
event order

changing in Verilog CR-345
in optimized designs UM-135
in Verilog simulation UM-119

event queues UM-119
events, tracing UM-277
examine command CR-167
examine tooltip

toggling on/off UM-353
exclusion filter files UM-444
exclusions

cancel UM-431
hide/show pragmas UM-431
lines and files UM-443
load exclusion file UM-431
save exclusion file UM-431

exit codes UM-648
exit command CR-171
expand net UM-274
Explicit .ini file variable UM-619
Exporting SystemC modules

to Verilog UM-234
exporting SystemC modules

to VHDL UM-238
exporting top SystemC module UM-190
Expression Builder UM-395, UM-463

configuring a List trigger with UM-296
specify when expression UM-463, UM-464

extended identifiers UM-225
and SystemC UM-237
syntax in commands CR-16

F

-f CR-347
F8 function key UM-641
-fast CR-347, UM-127
ModelSim SE Command Reference

CR-414 Index

Model
field descriptions
coverage reports UM-448

File compression
VCD tasks UM-566

file compression
SDF files UM-543
VCD files CR-287, CR-296

file I/O
splitio command CR-262
TextIO package UM-86
VCD files UM-559

file-line breakpoints UM-329
files, grouping for compile UM-43
filter

code coverage UM-442
filtering signals in Signals window UM-319
filters

for Code Coverage UM-444
find command CR-172
finding

cursors in the Wave window UM-359
marker in the List window UM-300
names and values UM-259

fixed point types UM-205
FLI UM-98

debugging UM-473
folders, in projects UM-46
fonts

controlling in X-sessions UM-260
force command CR-176

defaults UM-630
foreign language interface UM-98
foreign module declaration

Verilog example CR-252, UM-232
VHDL example UM-236

foreign module declaration, SystemC UM-231
format file UM-340

List window CR-389
Wave window CR-389, UM-340

FPGA libraries, importing UM-68
function calls, identifying with C Debug UM-480
functions

SystemC, unsupported UM-204

G

-g C++ compiler option UM-201
g++, alternate installations UM-193
gate-level designs, optimizing UM-129
gdb

setting source directory CR-179
gdb debugger UM-473
gdb dir command CR-179
GenerateFormat .ini file variable UM-623
generics

assigning or overriding values with -g and -G CR-
359

examining generic values CR-167
limitation on assigning composite types CR-359
VHDL UM-213

get_resolution() VHDL function UM-94
getactivecursortime command CR-180
getactivemarkertime command CR-181
glitches

disabling generation
from command line CR-366
from GUI UM-380

graphic interface UM-253
UNIX support UM-22

grouping files for compile UM-43
GUI preferences, saving UM-631
GUI_expression_format CR-23

GUI expression builder UM-395
syntax CR-24

H

halting waveform drawing CR-45
hardware model interface UM-586
’hasX CR-25
Hazard .ini file variable (VLOG) UM-618
hazards

-hazards argument to vlog CR-348
-hazards argument to vsim CR-367
limitations on detection UM-122

HDL item UM-28
help command CR-182
hierarchical profile, Performance Analyzer UM-411
hierarchical references, mixed-language UM-211
hierarchy

driving signals in UM-525, UM-534
forcing signals in UM-95, UM-530, UM-539
referencing signals in UM-95, UM-528, UM-537
releasing signals in UM-95, UM-532, UM-541
viewing signal names without UM-352

history
of commands

shortcuts for reuse CR-20, UM-638
of compiles UM-41

history command CR-183
Sim SE Command Reference

 CR-415
hm_entity UM-587
HOME environment variable UM-613
HP aCC, restrictions on compiling with UM-194

I

I/O
splitio command CR-262
TextIO package UM-86
VCD files UM-559

ieee .ini file variable UM-617
IEEE libraries UM-62
IEEE Std 1076 UM-25

differences between versions UM-74
IEEE Std 1364 UM-25, UM-107
IgnoreError .ini file variable UM-623
IgnoreFailure .ini file variable UM-623
IgnoreNote .ini file variable UM-624
IgnoreVitalErrors .ini file variable UM-619
IgnoreWarning .ini file variable UM-624
implicit operator, hiding with vcom -explicit CR-309
importing FPGA libraries UM-68
+incdir+ CR-348
include guards UM-206
incremental compilation

automatic UM-110
manual UM-110
with Verilog UM-109

index checking UM-74
indexed arrays, escaping square brackets CR-15
INF, in a coverage report UM-449
$init_signal_driver UM-534
init_signal_driver UM-525
$init_signal_spy UM-537
init_signal_spy UM-95, UM-528
init_usertfs function UM-155, UM-485
Initial dialog box, turning on/off UM-612
initialization of SystemC state-based code UM-200
initialization sequence UM-658
inlining requirements UM-197
instance

code coverage UM-420
instantiation in mixed-language design

Verilog from VHDL UM-225
VHDL from Verilog UM-229

instantiation in SystemC-Verilog design
SystemC from Verilog UM-234
Verilog from SystemC UM-231

instantiation in SystemC-VHDL design
VHDL from SystemC UM-235

instantiation in VHDL-SystemC design
SystemC from VHDL UM-237

interconnect delays CR-361, UM-555
annotating per Verilog 2001 CR-370

internal signals, adding to a VCD file CR-284
item_list_file, WLF files CR-384
iteration_limit, infinite zero-delay loops UM-79
IterationLimit .ini file variable UM-624

K

keyboard shortcuts
List window UM-301, UM-642
Main window UM-269, UM-639
Source window UM-639
Wave window UM-363, UM-643

keywords
disabling 2001 keywords CR-352
enabling System Verilog keywords CR-352

L

language templates UM-397
language versions, VHDL UM-74
lecho command CR-184
left command CR-185
Libraries

modelsim_lib UM-94
libraries

64-bit and 32-bit in same library UM-64
archives CR-344
dependencies, checking CR-316
design libraries, creating CR-344, UM-56
design library types UM-54
design units UM-54
group use, setting up UM-60
IEEE UM-62
importing FPGA libraries UM-68
including precompiled modules UM-382
listing contents CR-316
mapping

from the command line UM-59
from the GUI UM-59
hierarchically UM-628
search rules UM-60

moving UM-60
multiple libraries with common modules UM-112
naming UM-59
precompiled modules, including CR-348
predefined UM-62
ModelSim SE Command Reference

CR-416 Index

Model
refreshing library images CR-308, CR-352, UM-63
resource libraries UM-54
std library UM-62
Synopsys UM-62
vendor supplied, compatibility of CR-316
Verilog CR-367, UM-111, UM-214
VHDL library clause UM-61
working libraries UM-54
working with contents of UM-57

library map file, Verilog configurations UM-115
library maps, Verilog 2001 UM-115
library simulator state variable UM-634
License .ini file variable UM-624
licensing

License variable in .ini file UM-624
linking SystemC source UM-197
lint-style checks CR-349
List window UM-286

adding items to CR-55
context menu UM-289
setting triggers UM-296
waveform comparison UM-470
see also windows, List window

LM_LICENSE_FILE environment variable UM-613
location maps, referencing source files UM-66
locations maps

specifying source files with UM-66
lock message UM-650
log command CR-187
log file

log command CR-187
nolog command CR-205
overview UM-239
QuickSim II format CR-381
redirecting with -l CR-360
virtual log command CR-331
virtual nolog command CR-334
see also WLF files

Logic Modeling
SmartModel

command channel UM-580
SmartModel Windows

lmcwin commands UM-581
memory arrays UM-582

long simulations
saving at intervals UM-246

lshift command CR-189
lsublist command CR-190

M

macro_option command CR-191
MacroNestingLevel simulator state variable UM-634
macros (DO files) UM-607

breakpoints, executing at CR-82
creating from a saved transcript UM-264
depth of nesting, simulator state variable UM-634
error handling UM-609
executing CR-156
forcing signals, nets, or registers CR-176
parameters

as a simulator state variable (n) UM-634
passing CR-156, UM-607
total number passed UM-634

relative directories CR-156
shifting parameter values CR-259
Startup macros UM-629

.main clear command CR-44
Main window UM-262

code coverage UM-426
see also windows, Main window

manuals UM-29
mapping

data types UM-213
libraries

from the command line UM-59
hierarchically UM-628

symbols
Dataflow window UM-283

SystemC in mixed designs UM-223
SystemC to Verilog UM-220
SystemC to VHDL UM-224
Verilog states in mixed designs UM-214
Verilog states in SystemC designs UM-219
Verilog to SytemC, port and data types UM-219
Verilog to VHDL data types UM-213
VHDL to SystemC UM-217
VHDL to Verilog data types UM-216

mapping libraries, library mapping UM-59
math_complex package UM-62
math_real package UM-62
+maxdelays CR-349
mc_scan_plusargs()

using with an elaboration file UM-82, UM-138
mc_scan_plusargs, PLI routine CR-369
mem display command CR-192
mem list command CR-194
mem load command CR-195
mem save command CR-198
mem search command CR-200
Sim SE Command Reference

 CR-417
memories
displaying the contents UM-302
initializing UM-309
initializing interactively UM-311
loading memory patterns UM-309
MTI’s definition of UM-302
saving memory data to a file UM-312

memory
modeling in VHDL UM-99

Memory window UM-302
see also windows, Memory window

memory, displaying contents CR-192
memory, listing CR-194
memory, loading contents CR-195
memory, saving contents CR-198
memory, searching for patterns CR-200
menus

customizing UM-260
Dataflow window UM-272
List window UM-288
Main window UM-265
Memory window UM-303
Process window UM-315
Signals window UM-317
Source window UM-326
Structure window UM-332
tearing off or pinning menus UM-259
Variables window UM-335
Wave window UM-340

merging coverage reports CR-311
messages UM-645

bad magic number UM-241
echoing CR-161
empty port name warning UM-650
exit codes UM-648
getting more information CR-317, UM-646
loading, disbling with -quiet CR-308, CR-351
lock message UM-650
long description UM-646
metavalue detected UM-650
ModelSim message system UM-646
redirecting UM-625
sensitivity list warning UM-651
suppressing warnings from arithmetic packages

UM-629
Tcl_init error UM-651
too few port connections UM-652
turning off assertion messages UM-629
VSIM license lost UM-653
warning, suppressing UM-647

metavalue detected warning UM-650

MGC_LOCATION_MAP env variable UM-66
MGC_LOCATION_MAP variable UM-613
+mindelays CR-349
missed coverage UM-430

branches UM-430
mixed-language simulation UM-209

access limitations UM-211
mnemonics, assigning to signal values CR-342
MODEL_TECH environment variable UM-613
MODEL_TECH_TCL environment variable UM-613
modeling memory in VHDL UM-99
ModelSim

commands CR-33–CR-398
modelsim command CR-202
MODELSIM environment variable UM-614
modelsim.ini

found by ModelSim UM-658
default to VHDL93 UM-630
delay file opening with UM-630
environment variables in UM-628
force command default, setting UM-630
hierarchical library mapping UM-628
opening VHDL files UM-630
restart command defaults, setting UM-630
startup file, specifying with UM-629
transcript file created from UM-628
turning off arithmetic package warnings UM-629
turning off assertion messages UM-629

modelsim.tcl file UM-631
modelsim_lib UM-94

path to UM-617
MODELSIM_TCL environment variable UM-614
Modified field, Project tab UM-40
modules

handling multiple, common names UM-112
with unnamed ports UM-228

mouse shortcuts
Main window UM-269, UM-639
Source window UM-639
Wave window UM-363, UM-643

.mpf file UM-32
loading from the command line UM-51
order of access during startup UM-656

mti_cosim_trace environment variable UM-614
MTI_SYSTEMC macro UM-193
MTI_TF_LIMIT environment variable UM-614
multiple drivers on unresolved signal UM-372
Multiple simulations UM-239
multi-source interconnect delays CR-361
ModelSim SE Command Reference

CR-418 Index

Model
N

n simulator state variable UM-634
name association UM-204
name binding

SystemC UM-205
name case sensitivity, VHDL vs. Verilog CR-16
Name field

Project tab UM-40
names, modules with the same UM-112
negative pulses

driving an error state CR-370
Negative timing

$setuphold/$recovery UM-147
negative timing

algorithm for calculating delays UM-123
check limits UM-123
extending check limits CR-367

nets
adding to the Wave and List windows UM-322
Dataflow window, displaying in UM-270
drivers of, displaying CR-159
readers of, displaying CR-236
stimulus CR-176
values of

displaying in Signals window UM-316
examining CR-167
forcing UM-321
saving as binary log file UM-322

waveforms, viewing UM-337
next and previous edges, finding UM-644
next command CR-203
Nlview widget Symlib format UM-283
no space in time literal UM-372
NoCaseStaticError .ini file variable UM-619
NoDebug .ini file variable (VCOM) UM-619
NoDebug .ini file variable (VLOG) UM-618
-nodebug argument (vcom) CR-306
-nodebug argument (vlog) CR-350
noforce command CR-204
NoIndexCheck .ini file variable UM-619
+nolibcell CR-350
nolog command CR-205
NOMMAP environment variable UM-614
NoNameBind .ini file variable (sccom) UM-620
non-blocking assignments UM-121
NoOthersStaticError .ini file variable UM-619
NoRangeCheck .ini file variable UM-619
notepad command CR-207
Notepad windows, text editing UM-639
-notrigger argument UM-297

noview command CR-208
NoVital .ini file variable UM-619
NoVitalCheck .ini file variable UM-619
Now simulator state variable UM-634
now simulator state variable UM-634
+nowarn<CODE> CR-350
nowhen command CR-209
numeric_bit package UM-62
numeric_std package UM-62

disabling warning messages UM-629
NumericStdNoWarnings .ini file variable UM-624

O

onbreak command CR-210
onElabError command CR-211
onerror command CR-212
operating systems supported, See Installation Guide
+opt UM-128
optimizations

disabling for Verilog designs CR-351
disabling for VHDL designs CR-307
disabling process merging CR-303

optimize for std_logic_1164 UM-372
Optimize_1164 .ini file variable UM-619
optimizing Verilog designs UM-127

design object visibility UM-133
event order issues UM-135
gate-level UM-129
timing checks UM-135
without source UM-134

OptionFile entry in project files UM-374
order of events

changing in Verilog CR-345
in optimized designs UM-135

ordering files for compile UM-42
organizing projects with folders UM-46
OSCI 2.1 features supported UM-205
OSCI simulator, differences from ModelSim UM-204
OSCI simulator, differences with vsim UM-204
others .ini file variable UM-618
overriding the simulator resolution UM-198

P

Packages
util UM-94

packages
standard UM-62
textio UM-62
Sim SE Command Reference

 CR-419
VITAL 1995 UM-91
VITAL 2000 UM-91

page setup
Dataflow window UM-282
Wave window UM-366

pan, Dataflow window UM-276
panes

docking and undocking UM-257
parameters

making optional UM-608
using with macros CR-156, UM-607

path delay mode UM-143
Pathnames UM-466
pathnames

in VSIM commands CR-12
spaces in CR-11

PathSeparator .ini file variable UM-624
pause command CR-213
PedanticErrors .ini file variable UM-619
performance

improving for Verilog simulations UM-127
Performance Analyzer UM-407

%parent field UM-414
commands UM-417
getting started UM-410
hierarchical profile UM-411
in(%) field UM-413
interpreting data UM-411
name field UM-413
preferences, setting UM-417
profile report command UM-416
ranked profile UM-414
report option UM-416
results, viewing UM-411
statistical sampling UM-408
under(%) field UM-413
view_profile command UM-411
view_profile_ranked command UM-411

platforms supported, See Installation Guide
play command CR-214
PLI

specifying which apps to load UM-156
Veriuser entry UM-156

PLI/VPI UM-154
debugging UM-473
tracing UM-183

PLIOBJS environment variable UM-156, UM-614
pop command CR-215
popup

toggling waveform popup on/off UM-353, UM-467
Port driver data, capturing UM-571

ports, unnamed, in mixed designs UM-228
ports, VHDL and Verilog UM-214
Postscript

saving a waveform in UM-363
saving the Dataflow display in UM-280

power add command CR-216
power report command CR-217
power reset command CR-218
pragmas UM-431, UM-443

hide/show exclusions UM-431
precedence of variables UM-633
precision, simulator resolution UM-117, UM-211
pre-compilied libraries, optimizing with -fast UM-134
pref.tcl file UM-631
preference variables

.ini files, located in UM-617
code coverage UM-454
editing UM-631
Performance Analyzer UM-417
saving UM-631
Tcl files, located in UM-631

preferences, saving UM-631
primitives, symbols in Dataflow window UM-283
printenv command CR-219, CR-220
Printing

comparison differences UM-470
printing

Dataflow window display UM-280
waveforms in the Wave window UM-363

Process window UM-314
see also windows, Process window

processes
optimizations, disabling merging CR-303
values and pathnames in Variables window UM-

334
without wait statements UM-372

profile clear command CR-221
profile interval command CR-222
profile off command CR-223
profile on command CR-224
profile option command CR-225
profile report command CR-226, UM-416
profiler, see Performance Analyzer UM-407
Programming Language Interface UM-154
project context menus UM-41
project tab

information in UM-40
sorting UM-40

Projects
MODELSIM environment variable UM-614

projects UM-31
ModelSim SE Command Reference

CR-420 Index

Model
accessing from the command line UM-51
adding files to UM-35
benefits UM-32
code coverage settings UM-424
compile order UM-42

changing UM-42
compiler properties in UM-48
compiling files UM-38
context menu UM-41
creating UM-34
creating simulation configurations UM-44
folders in UM-46
grouping files in UM-43
loading a design UM-39
override mapping for work directory with vcom CR-

308
override mapping for work directory with vlog CR-

352
overview UM-32

propagation, preventing X propagation CR-361
property list command CR-228
property wave command CR-229
Protect .ini file variable (VLOG) UM-618
‘protect compiler directive UM-152
PSL assertions UM-493

see also assertions
pulse error state CR-370
push command CR-231
pwd command CR-232

Q

QuickSim II logfile format CR-381
Quiet .ini file variable

VCOM UM-619
Quiet .ini file variable (VLOG) UM-618
quietly command CR-233
quit command CR-234

R

race condition, problems with event order UM-119
radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-235

character strings, displaying CR-342
default, DefaultRadix variable UM-623
of signals being examined CR-168
of signals in Wave window CR-66
specifying in List window UM-291

specifying in Memory window UM-306
radix command CR-235
range checking UM-74

disabling CR-306
enabling CR-308

ranked profile UM-414
readers and drivers UM-274
readers command CR-236
real type, converting to time UM-97
rebuilding supplied libraries UM-63
reconstruct RTL-level design busses UM-249
record command CR-237
record field selection, syntax CR-13
records, values of, changing UM-334
$recovery UM-147
redirecting messages, TranscriptFile UM-625
reference region UM-462
refreshing library images CR-308, CR-352, UM-63
registered function calls UM-480
registers

adding to the Wave and List windows UM-322
values of

displaying in Signals window UM-316
saving as binary log file UM-322

waveforms, viewing UM-337
report

simulator control UM-612
simulator state UM-612

report command CR-238
reporting

code coverage UM-446
compile history UM-41
variable settings CR-17

RequireConfigForAllDefaultBinding variable UM-619
resolution

in SystemC simulation UM-198
mixed designs UM-211
overriding in SystemC UM-198
returning as a real UM-94
specifying with -t argument CR-363
verilog simulation UM-117
VHDL simulation UM-77

Resolution .ini file variable UM-624
resolution simulator state variable UM-634
resource libraries UM-61
restart command CR-240

defaults UM-630
in GUI UM-266
toolbar button UM-442

restore command CR-242
restoring defaults UM-613
Sim SE Command Reference

 CR-421
results, saving simulations UM-239
resume command CR-243
right command CR-244
RTL-level design busses

reconstructing UM-249
run command CR-246
RunLength .ini file variable UM-625

S

saving
simulation options in a project UM-44
Waveform Comparison differences UM-469
waveforms UM-239

saving simulations UM-84, UM-140
sc_cycle() function UM-204
sc_initialize(), removing calls UM-204
sc_main() function UM-204
SC_MODULE_EXPORT macro UM-190
sc_set_time_resolution() function UM-204
sc_start() function UM-204
sc_start() function, replacing in SystemC UM-204
ScalarOpts .ini file variable UM-618, UM-619
sccom

using sccom vs. raw C++ compiler UM-195
sccom command CR-248
sccom -link command UM-197, UM-234, UM-238
sccom -link errors, handling UM-197
sccomLogfile .ini file variable (sccom) UM-620
sccomVerbose .ini file variable (sccom) UM-620
scgenmod command CR-251
scgenmod, using UM-231, UM-235
scope, setting region environment CR-166
SCV library, including CR-249
SDF

controlling missing instance messages CR-363
disabling individual checks CR-267
disabling timing checks UM-555
errors and warnings UM-545
instance specification UM-544
interconnect delays UM-555
mixed VHDL and Verilog designs UM-554
specification with the GUI UM-545
troubleshooting UM-556
Verilog

$sdf_annotate system task UM-548
optional conditions UM-553
optional edge specifications UM-552
rounded timing values UM-553
SDF to Verilog construct matching UM-549

VHDL
resolving errors UM-547
SDF to VHDL generic matching UM-546

$sdf_done UM-149
search command CR-253
search libraries CR-367, UM-382
searching

binary signal values in the GUI CR-30
in the source window UM-329
in the Structure window UM-333
List window

signal values, transitions, and names CR-23,
CR-157, CR-282, UM-297

next and previous edge in Wave window CR-185,
CR-244

values and names UM-259
Verilog libraries UM-111, UM-229
Wave window

signal values, edges and names CR-185, CR-
244, UM-355

searchlog command CR-255
seetime command CR-257
sensitivity list warning UM-651
setenv command CR-258
$setuphold UM-147
shared library

building in SystemC UM-197, UM-234, UM-266,
UM-376

shared objects
loading FLI applications

see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

shift command CR-259
Shortcuts

text editing UM-639
shortcuts

command history CR-20, UM-638
command line caveat CR-19, UM-637
List window UM-301, UM-642
Main window UM-639
Main windows UM-269
Source window UM-639
Wave window UM-363, UM-643

show command CR-260
show differences UM-469
show drivers

Dataflow window UM-274
Wave window UM-347

show source lines with errors UM-371
Show_BadOptionWarning .ini file variable UM-618
ModelSim SE Command Reference

CR-422 Index

Model
Show_Lint .ini file variable (VLOG) UM-618
Show_source .ini file variable

VCOM UM-619
Show_source .ini file variable (VLOG) UM-618
Show_VitalChecksWarning .ini file variable UM-619
Show_Warning1 .ini file variable UM-619
Show_Warning2 .ini file variable UM-619
Show_Warning3 .ini file variable UM-620
Show_Warning4 .ini file variable UM-620
Show_Warning5 .ini file variable UM-620
Show3DMem .ini file variable UM-625
ShowEnumMem .ini file variable UM-625
ShowIntMem .ini file variable UM-625
signal interaction

Verilog and SystemC UM-217
Signal Spy UM-95, UM-528

overview UM-524
$signal_force UM-539
signal_force UM-95, UM-530
$signal_release UM-541
signal_release UM-95, UM-532
signals

adding to a WLF file UM-322
adding to the Wave and List windows UM-322
alternative names in the List window (-label) CR-56
alternative names in the Wave window (-label) CR-

65
applying stimulus to UM-321
attributes of, using in expressions CR-25
breakpoints CR-375, UM-323
combining into a user-defined bus CR-65, UM-292,

UM-345
Dataflow window, displaying in UM-270
drivers of, displaying CR-159
driving in the hierarchy UM-525
environment of, displaying CR-166
filtering in the Signals window UM-319
finding CR-172
force time, specifying CR-177
hierarchy

driving in UM-525, UM-534
referencing in UM-95, UM-528, UM-537
releasing anywhere in UM-532
releasing in UM-95, UM-541

log file, creating CR-187
names of, viewing without hierarchy UM-352
pathnames in VSIM commands CR-12
radix

specifying for examine CR-168
specifying in List window CR-56
specifying in Wave window CR-66

readers of, displaying CR-236
sampling at a clock change UM-297
states of, displaying as mnemonics CR-342
stimulus CR-176
transitions, searching for UM-360
types, selecting which to view UM-319
unresolved, multiple drivers on UM-372
values of

displaying in Signals window UM-316
examining CR-167
forcing anywhere in the hierarchy UM-95,

UM-530, UM-539
replacing with text CR-342
saving as binary log file UM-322

waveforms, viewing UM-337
Signals window UM-316

see also windows, Signals window
Simulating

Comparing simulations UM-239
comparing simulations UM-455

simulating
batch mode UM-23
command-line mode UM-23
default run length UM-386
delays, specifying time units for CR-18
design unit, specifying CR-357
elaboration file UM-80, UM-136
graphic interface to UM-377
iteration limit UM-387
mixed language designs

compilers UM-211
libraries UM-211
resolution limit in UM-211

mixed Verilog and SystemC designs
channel and port type mapping UM-217
SystemC sc_signal data type mapping UM-218
Verilog port direction UM-219
Verilog state mapping UM-219

mixed Verilog and VHDL designs
Verilog parameters UM-213
Verilog state mapping UM-214
VHDL and Verilog ports UM-214
VHDL generics UM-213

mixed VHDL and SystemC designs
SystemC state mapping UM-223
VHDL port direction UM-222
VHDL port type mapping UM-221
VHDL sc_signal data type mapping UM-221

optimizing Verilog performance CR-347
saving dataflow display as a Postscript file UM-280
saving options in a project UM-44
Sim SE Command Reference

 CR-423
saving simulations CR-187, CR-364, UM-239
saving waveform as a Postscript file UM-363
speeding-up with Performance Analyzer UM-407
stepping through a simulation CR-264
stimulus, applying to signals and nets UM-321
stopping simulation in batch mode CR-378
SystemC UM-187, UM-198

usage flow for SystemC only UM-189
time resolution UM-378
Verilog UM-116

delay modes UM-142
hazard detection UM-122
optimizing performance UM-127
resolution limit UM-117
XL compatible simulator options UM-126

VHDL UM-77
viewing results in List window UM-286
VITAL packages UM-93

Simulation Configuration
creating UM-44

simulations
event order in UM-119
saving results CR-148, CR-149, UM-239
saving results at intervals UM-246
saving with checkpoint UM-84, UM-140

simulator resolution
mixed designs UM-211
returning as a real UM-94
SystemC UM-198
Verilog UM-117
VHDL UM-77
vsim -t argument CR-363

simulator state variables UM-634
simulator version CR-364, CR-373
simulator, ModelSim and OSCI differences UM-204
simultaneous events in Verilog

changing order CR-345
sizetf callback function UM-173
sm_entity UM-577
SmartModels

creating foreign architectures with sm_entity UM-
577

invoking SmartModel specific commands UM-580
linking to UM-576
lmcwin commands UM-581
memory arrays UM-582
Verilog interface UM-583
VHDL interface UM-576

so, shared object file
loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

sorting
HDL items in GUI windows UM-259

source balloon
C Debug UM-490

source code pragmas UM-443
source code, security UM-65, UM-69, UM-152
source directory, setting from source window UM-326
source errors, locating during compilation UM-369
source files, referencing with location maps UM-66
source files, specifying with location maps UM-66
source libraries

arguments supporting UM-113
source lines with errors

showing UM-371
Source window UM-325

code coverage data UM-435
View menu UM-436
see also windows, Source window

source-level debug
SystemC, enabling UM-201

spaces in pathnames CR-11
specify path delays CR-370
speeding-up the simulation UM-407
splitio command CR-262
square brackets, escaping CR-15
stability checking

disabling CR-97
enabling CR-98

Standard Developer’s Kit User Manual UM-29
standards supported UM-25
start_of_simulation() function UM-205
Startup

macros UM-629
startup

alternate to startup.do (vsim -do) CR-358
environment variables access during UM-657
files accessed during UM-656
macro in the modelsim.ini file UM-625
startup macro in command-line mode UM-23
using a startup file UM-629

Startup .ini file variable UM-625
state variables UM-634
status bar

Main window UM-269
status command CR-263
Status field

Project tab UM-40
std .ini file variable UM-617
std_arith package

disabling warning messages UM-629
std_developerskit .ini file variable UM-617
ModelSim SE Command Reference

CR-424 Index

Model
Std_logic
mapping to binary radix CR-30

std_logic_arith package UM-62
std_logic_signed package UM-62
std_logic_textio UM-62
std_logic_unsigned package UM-62
StdArithNoWarnings .ini file variable UM-625
STDOUT environment variable UM-614
step command CR-264
stimulus

applying to signals and nets UM-321
modifying for elaboration file UM-81, UM-137

stop command CR-265
Structure window UM-331

see also windows, Structure window
subprogram write is ambiguous error, fixing UM-88
Support UM-30
symbol mapping

Dataflow window UM-283
symbolic constants, displaying CR-342
symbolic link to design libraries (UNIX) UM-60
symbolic names, assigning to signal values CR-342
Synopsis hardware modeler UM-586
synopsys .ini file variable UM-617
Synopsys libraries UM-62
synthesis

rule compliance checking CR-304, UM-371, UM-
619

system calls
VCD UM-565
Verilog UM-144

system commands UM-599
system tasks

ModelSim Verilog UM-149
VCD UM-565
Verilog UM-144
Verilog-XL compatible UM-147

System Verilog UM-25
enabling with -sv argument CR-352

SystemC
class and structure member naming syntax CR-13
compiling for source level debug UM-192
compiling optimized code UM-192
component declaration for instantiation UM-238
converting sc_main() UM-190
exporting sc_main, example UM-191
exporting top level module UM-190
foreign module declaration UM-231
instantiation criteria in Verilog design UM-234
instantiation criteria in VHDL design UM-237
linking the compiled source UM-197

maintaining design portability UM-193
mapping states in mixed designs UM-223

VHDL UM-224
mixed designs with Verilog UM-209
mixed designs with VHDL UM-209
name association UM-204
replacing sc_start() UM-190
simulating UM-198
source code, modifying for ModelSim UM-190
state-based code, initializing and cleanup UM-200
troubleshooting UM-206
unsupported functions UM-204
verification library, including CR-249
virtual functions UM-200

SystemC modules
exporting for use in Verilog UM-234
exporting for use in VHDL UM-238

T

tab stops, in the Source window UM-330
tb command CR-266
tcheck_set command CR-267
tcheck_status command CR-269
Tcl UM-591–UM-602

command separator UM-598
command substitution UM-597
command syntax UM-594
evaluation order UM-598
history shortcuts CR-20, UM-638
preference variables UM-631
relational expression evaluation UM-598
time commands UM-601
variable

in when commands CR-376
substitution UM-599

VSIM Tcl commands UM-600
Tcl_init error message UM-651
Technical support and updates UM-30
temp files, VSOUT UM-616
test region UM-462
testbench, accessing internal items from UM-523
text and command syntax UM-28
Text editing UM-639
TEXTIO

buffer, flushing UM-90
TextIO package

alternative I/O files UM-90
containing hexadecimal numbers UM-89
dangling pointers UM-89
Sim SE Command Reference

 CR-425
ENDFILE function UM-89
ENDLINE function UM-89
file declaration UM-86
implementation issues UM-88
providing stimulus UM-90
standard input UM-87
standard output UM-87
WRITE procedure UM-88
WRITE_STRING procedure UM-88

TF routines UM-179
TFMPC

disabling warning CR-369
explanation UM-652

time
absolute, using @ CR-18
resolution in SystemC UM-198
simulation time units CR-18
time resolution as a simulator state variable UM-634

time literal, missing space UM-372
time resolution

in mixed designs UM-211
in Verilog UM-117
in VHDL UM-77
setting

with the GUI UM-378
with vsim command CR-363

time type
converting to real UM-96

time, time units, simulation time CR-18
time-based breakpoints UM-323
timescale directive warning

disabling CR-369
investigating UM-117

timing
$setuphold/$recovery UM-147
annotation UM-543
differences shown by comparison UM-467
disabling checks CR-350, UM-555
disabling checks for entire design CR-362
disabling individual checks CR-267
in optimized designs UM-135
negative check limits

described UM-123
extending CR-367

status of individual checks CR-269
title, Main window, changing CR-364
title, windows, changing UM-255
TMPDIR environment variable UM-614
to_real VHDL function UM-96
to_time VHDL function UM-97
toggle add command CR-271

toggle coverage
excluding signals CR-273

toggle disable command CR-273
toggle enable command CR-274
toggle report command CR-275
toggle reset command CR-276
toggle statistics

enabling CR-271
reporting CR-275
resetting CR-276

toggling waveform popup on/off UM-353, UM-467
tolerance

leading edge UM-464
trailing edge UM-464

too few port connections, explanation UM-652
tooltip, toggling waveform popup UM-353
tracing

events UM-277
source of unknown UM-278

transcribe command CR-277
transcript

clearing CR-44
file name, specifed in modelsim.ini UM-628
redirecting with -l CR-360
reducing file size CR-279
saving UM-264
using as a DO file UM-264

transcript command CR-278
transcript file command CR-279
TranscriptFile .ini file variable UM-625
transitions, signal, finding CR-185, CR-244
tree windows

VHDL and Verilog items in UM-261
viewing the design hierarchy UM-261

TreeUpdate command CR-390
triggers, in the List window UM-296
triggers, in the List window, setting UM-294
troubleshooting

sccom -link errors UM-197
SystemC UM-206

TSCALE, disabling warning CR-369
TSSI CR-395

in VCD files UM-571
tssi2mti command CR-280
type

converting real to time UM-97
converting time to real UM-96

Type field, Project tab UM-40
types, fixed point in SystemC UM-205
ModelSim SE Command Reference

CR-426 Index

Model
U

-u CR-352
unbound component UM-372
UnbufferedOutput .ini file variable UM-625
undeclared nets, reporting an error CR-349
undefined symbol, error UM-207
unit delay mode UM-143
unknowns, tracing UM-278
unnamed ports, in mixed designs UM-228
unresolved signals, multiple drivers on UM-372
unsetenv command CR-281
unsupported functions in SystemC UM-204
up command CR-282
UpCase .ini file variable UM-618
use 1076-1993 language standard UM-370
use clause, specifying a library UM-62
use explicit declarations only UM-371
use flow

Code Coverage UM-420
SystemC-only designs UM-189

UseCsupV2 .ini file variable UM-625
user hook Tcl variable UM-400
user-defined bus CR-65, UM-248, UM-292, UM-345
UserTimeUnit .ini file variable UM-626
UseScv .ini file variable (sccom) UM-620
util package UM-94

V

-v CR-352
v2k_int_delays CR-370
values

describe HDL items CR-152
examine HDL item values CR-167
of HDL items UM-329
replacing signal values with strings CR-342

variable settings report CR-17
variables

adding to the Wave and List windows UM-322
describing CR-152
environment variables UM-613
LM_LICENSE_FILE UM-613
personal preferences UM-612
precedence between .ini and .tcl UM-633
reading from the .ini file UM-627
referencing in commands CR-17
setting environment variables UM-613
simulator state variables

current settings report UM-612

iteration number UM-634
name of entity or module as a variable UM-634
resolution UM-634
simulation time UM-634

value of
changing from command line CR-87
changing with the GUI UM-334
examining CR-167

values of
displaying in Signals window UM-316
saving as binary log file UM-322

Variables window UM-334
see also windows, Variables window

variables, Tcl, user hook UM-400
vcd add command CR-284
VCD and SystemC

replacing dump functions UM-190
vcd checkpoint command CR-285
vcd comment command CR-286
vcd dumpports command CR-287
vcd dumpportsall command CR-289
vcd dumpportsflush command CR-290
vcd dumpportslimit command CR-291
vcd dumpportsoff command CR-292
vcd dumpportson command CR-293
vcd file command CR-294
VCD files UM-559

adding items to the file CR-284
capturing port driver data CR-287, UM-571
case sensitivity UM-560
converting to WLF files CR-302
creating CR-284, UM-560
dumping variable values CR-285
dumpports tasks UM-565
flushing the buffer contents CR-298
from VHDL source to VCD output UM-567
generating from WLF files CR-383
inserting comments CR-286
internal signals, adding CR-284
specifying maximum file size CR-299
specifying name of CR-296
specifying the file name CR-294
state mapping CR-294, CR-296
stimulus, using as UM-562
supported TSSI states UM-571
turn off VCD dumping CR-300
turn on VCD dumping CR-301
VCD system tasks UM-565
viewing files from another tool CR-302

vcd files command CR-296
vcd flush command CR-298
Sim SE Command Reference

 CR-427
vcd limit command CR-299
vcd off command CR-300
vcd on command CR-301
vcd2wlf command CR-302
vcom

enabling code coverage UM-423
vcom command CR-303
vcover command UM-451
vcover convert command CR-310
vcover merge command CR-311
vdel command CR-315
vdir command CR-316
vector elements, initializing CR-87
vendor libraries, compatibility of CR-316
Vera, see Vera documentation
Verilog

ACC routines UM-177
capturing port driver data with -dumpports CR-294,

UM-571
cell libraries UM-142
compiler directives UM-150
compiling and linking PLI C applications UM-159
compiling and linking PLI C++ applications UM-

164
compiling design units UM-108
compiling with XL ’uselib compiler directive UM-

114
component declaration UM-226
configurations UM-115
creating a design library UM-108
event order in simulation UM-119
instantiation criteria in mixed-language design UM-

225
instantiation criteria in SystemC design UM-231
instantiation of VHDL design units UM-229
language templates UM-397
library usage UM-111
mapping states in mixed designs UM-214
mapping states in SystemC designs UM-219
mixed designs with SystemC UM-209
mixed designs with VHDL UM-209
parameters UM-213
port direction UM-219
sc_signal data type mapping UM-218
SDF annotation UM-548
sdf_annotate system task UM-548
simulating UM-116

delay modes UM-142
XL compatible options UM-126

simulation hazard detection UM-122
simulation resolution limit UM-117

SmartModel interface UM-583
source code viewing UM-325
standards UM-25
system tasks UM-144
TF routines UM-179
to SystemC, channel and port type mapping UM-

217
XL compatible compiler options UM-113
XL compatible routines UM-181
XL compatible system tasks UM-147

verilog .ini file variable UM-618
Verilog 2001

disabling support CR-352, UM-618
Verilog PLI/VPI ??–UM-185

64-bit support in the PLI UM-182
compiling and linking PLI/VPI C applications UM-

159
compiling and linking PLI/VPI C++ applications

UM-164
debugging PLI/VPI code UM-183
PLI callback reason argument UM-171
PLI support for VHDL objects UM-176
registering PLI applications UM-155
registering VPI applications UM-157
specifying the PLI/VPI file to load UM-168

Verilog-XL
compatibility with UM-105, UM-153

Veriuser .ini file variable UM-156, UM-626
Veriuser, specifying PLI applications UM-156
veriuser.c file UM-175
verror command CR-317
version

obtaining with vsim command CR-364
obtaining with vsim<info> commands CR-373

vgencomp command CR-318
VHDL

compiling design units UM-73
creating a design library UM-73
delay file opening UM-630
dependency checking UM-73
field naming syntax CR-13
file opening delay UM-630
foreign language interface UM-98
hardware model interface UM-586
instantiation criteria in SystemC design UM-235
instantiation from Verilog UM-229
instantiation of Verilog UM-213
language templates UM-397
language versions UM-74
library clause UM-61
mixed designs with SystemC UM-209
ModelSim SE Command Reference

CR-428 Index

Model
mixed designs with Verilog UM-209
object support in PLI UM-176
port direction UM-222
port type mapping UM-221
sc_signal data type mapping UM-221
simulating UM-77
SmartModel interface UM-576
source code viewing UM-325
standards UM-25
timing check disabling UM-77
VITAL package UM-62

VHDL utilities UM-94, UM-95, UM-528, UM-537
get_resolution() UM-94
to_real() UM-96
to_time() UM-97

VHDL-1987, compilation problems UM-74
VHDL-1993, enabling support for CR-303, UM-620
VHDL-2002, enabling support for CR-303, UM-620
VHDL93 .ini file variable UM-620
view command CR-320
view_profile command UM-411
view_profile_ranked command UM-411
viewing

design hierarchy UM-261
library contents UM-57
waveforms CR-364, UM-239

virtual count commands CR-322
virtual define command CR-323
virtual delete command CR-324
virtual describe command CR-325
virtual expand commands CR-326
virtual function command CR-327
virtual functions in SystemC UM-200
virtual hide command CR-330, UM-249
virtual log command CR-331
virtual nohide command CR-333
virtual nolog command CR-334
virtual objects UM-248

virtual functions UM-249
virtual regions UM-250
virtual signals UM-248
virtual types UM-250

virtual region command CR-336, UM-250
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-250

virtual save command CR-337, UM-249
virtual show command CR-338
virtual signal command CR-339, UM-248
virtual signals

reconstruct RTL-level design busses UM-249

reconstruct the original RTL hierarchy UM-249
virtual hide command UM-249

virtual type command CR-342
VITAL

compiling and simulating with accelerated VITAL
packages UM-93

compliance warnings UM-92
disabling optimizations for debugging UM-93
specification and source code UM-91
VITAL packages UM-91

vital95 .ini file variable UM-618
vlib command CR-344
vlog

enabling code coverage UM-423
vlog command CR-345
vlog.opt file UM-374
vlog95compat .ini file variable UM-618
vmake command CR-355
vmap command CR-356
VPI, registering applications UM-157
VPI/PLI UM-154

compiling and linking C applications UM-159
compiling and linking C++ applications UM-164

vsim build date and version CR-373
vsim command CR-357
VSIM license lost UM-653
vsim, differences with OSCI simulator UM-204
VSOUT temp file UM-616

W

WARNING[8], -lint argument to vlog CR-349
warnings

disabling at time 0 UM-629
empty port name UM-650
exit codes UM-648
getting more information UM-646
messages, long description UM-646
metavalue detected UM-650
suppressing VCOM warning messages CR-307,

UM-647
suppressing VLOG warning messages CR-350,

UM-647
suppressing VSIM warning messages CR-369, UM-

647
Tcl initialization error 2 UM-651
too few port connections UM-652
turning off warnings from arithmetic packages UM-

629
waiting for lock UM-650
Sim SE Command Reference

 CR-429
Wave Log Format (WLF) file UM-239
wave log format (WLF) file CR-364

of binary signal values CR-187
see also WLF files

wave viewer, Dataflow window UM-275
Wave window UM-337

adding items to CR-64
compare waveforms UM-466
in the Dataflow window UM-275
saving layout UM-340
toggling waveform popup on/off UM-353, UM-467
values column UM-467
see also windows, Wave window

.wave.tree interrupt command CR-45

.wave.tree zoomfull command CR-46

.wave.tree zoomin command CR-47

.wave.tree zoomlast command CR-48

.wave.tree zoomout command CR-49

.wave.tree zoomrange command CR-50
WaveActivateNextPane command CR-390
Waveform Comparison CR-100, UM-455

add region UM-462
adding signals UM-461
clear differences UM-469
clocked comparison UM-457, UM-463
compare by region UM-462
compare by signal UM-461
compare commands UM-471
compare menu UM-468
compare options UM-465
compare tab UM-460
comparing at a signal edge UM-457
comparison method tab UM-463
comparison modes UM-457
comparison wizard UM-468
continuous comparison UM-457, UM-464
dataset UM-456
dataset, specifying UM-459
difference markers UM-467
end UM-468
features UM-456
flattened designs UM-458
graphic interface UM-459
hierarchical designs UM-458
icons UM-468
introduction UM-456
leading edge tolerance UM-464
limit count UM-465
List window display UM-470
pathnames UM-466
printing differences UM-470

reference dataset UM-459
reference region UM-462
reload UM-469
rules UM-469
run comparison UM-468
save differences UM-469
show differences UM-469
specify when expression UM-463, UM-464
start UM-468
Tcl preference variables UM-472
test dataset UM-459
test region UM-462
timing differences UM-467
tolerances UM-457
trailing edge tolerance UM-464
values column UM-467
Verilog matching UM-465
VHDL matching UM-465
Wave window display UM-466
when statement UM-463
write report UM-469

waveform logfile
log command CR-187
overview UM-239
see also WLF files

waveform popup UM-353, UM-467
waveforms UM-239

halting drawing CR-45
optimize viewing of UM-626
optimizing viewing of CR-365
saving and viewing CR-187, UM-240
viewing UM-337

WaveRestoreCursors command CR-390
WaveRestoreZoom command CR-390
WaveSignalNameWidth .ini file variable UM-626
Welcome dialog, turning on/off UM-612
when command CR-375
when statement

setting signal breakpoints UM-323
specifying for waveform comparison UM-463
time-based breakpoints CR-379

where command CR-380
wildcard characters

for pattern matching in simulator commands CR-17
Windows

Main window
text editing UM-639

Source window
text editing UM-639

windows
buttons, adding to UM-400
ModelSim SE Command Reference

CR-430 Index

Model
code coverage statistics UM-426
Dataflow window UM-270

zooming UM-276
finding HDL item names in UM-259
List window UM-286

adding HDL items UM-287
adding signals with a WLF file UM-322
display properties of UM-293
formatting HDL items UM-290
output file CR-391
saving data to a file UM-301
saving the format of CR-389
setting triggers UM-294, UM-296
time markers UM-259

Main window UM-262
adding user-defined buttons CR-52
status bar UM-269
time and delta display UM-269

Memory window UM-302
initializing interactively UM-311
initializing memories UM-309
modifying display UM-305
navigating to memory locations UM-307
saving data to a file UM-312
selecting memory instances UM-304
viewing contents UM-304
viewing multiple instances UM-304

opening
from command line CR-320
multiple copies UM-259
with the GUI UM-265

Process window UM-314
displaying active processes UM-314
specifying next process to be executed UM-314
viewing processing in the region UM-314

saving position and size UM-259
searching for HDL item values in UM-259
Signals window UM-316

VHDL and Verilog items viewed in UM-316
Source window UM-325

setting tab stops UM-330
viewing HDL source code UM-325

Structure window UM-331
selecting items to view in Signals window UM-

316
VHDL and Verilog items viewed in UM-331
viewing design hierarchy UM-331

title, changing UM-255
Variables window UM-334

VHDL and Verilog items viewed in UM-334
Wave window UM-337

adding HDL items to UM-339
adding signals with a WLF file UM-322
cursor measurements UM-359
display properties UM-352
display range (zoom), changing UM-360
format file, saving UM-340
path elements, changing CR-131, UM-626
searching for HDL item values UM-356
time cursors UM-358
zooming UM-360

WLF files
adding items to UM-322
comparing UM-456
converting to VCD CR-383
creating from VCD CR-302
filtering, combining CR-384
limiting size CR-365
log command CR-187
optimizing waveform viewing CR-365, UM-626
overview UM-240
repairing CR-387
saving CR-148, CR-149, UM-241
saving at intervals UM-246
specifying name CR-364

wlf2log command CR-381
wlf2vcd command CR-383
wlfman command CR-384
wlfrecover command CR-387
work library UM-54
workspace UM-263

code coverage UM-427
context menu UM-429
Files tab UM-427

write cell_report command CR-388
write format command CR-389
write list command CR-391
write preferences command CR-392
WRITE procedure, problems with UM-88
write report command CR-393
write transcript command CR-394
write tssi command CR-395
write wave command CR-397
write, waveform comparison report UM-469

X

X
tracing unknowns UM-278

.Xdefaults file, controlling fonts UM-260
Sim SE Command Reference

 CR-431
X propagation
disabling for entire design CR-361
disabling X generation on specific instances CR-

267
X-session

controlling fonts UM-260

Y

-y CR-352

Z

zero delay elements UM-78
zero delay mode UM-143
zero-delay loop, infinite UM-79
zero-delay oscillation UM-79
zero-delay race condition UM-119
zoom

Dataflow window UM-276
from Wave toolbar buttons UM-360
saving range with bookmarks UM-361
with the mouse UM-361
ModelSim SE Command Reference

CR-432

Model
Sim SE Command Reference

	Bookcase
	Command Reference
	Technical support and updates
	Where to find our documentation

	Table of Contents
	Syntax and conventions
	Documentation conventions
	File and directory pathnames
	HDL and SystemC item names
	Item name syntax
	SystemC class/structure/union member specification
	Specifying names
	Escaping brackets and spaces in array slices
	Environment variables and pathnames
	Name case sensitivity
	Extended identifiers

	Wildcard characters
	ModelSim variables
	Simulation time units
	Comments in argument files
	Command shortcuts
	Command history shortcuts
	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	GUI_expression_format
	Expression typing
	Expression syntax
	Signal and subelement naming conventions
	Grouping and precedence
	Concatenation of signals or subelements
	Record field and SystemC class/structure/union members
	Searching for binary signal values in the GUI

	Commands
	Command reference table
	.main clear
	.wave.tree interrupt
	.wave.tree zoomfull
	.wave.tree zoomin
	.wave.tree zoomlast
	.wave.tree zoomout
	.wave.tree zoomrange
	abort
	add button
	add dataflow
	add list
	add_menu
	add_menucb
	add_menuitem
	add_separator
	add_submenu
	add wave
	alias
	assertion fail
	assertion pass
	assertion report
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	cdbg
	change
	change_menu_cmd
	check contention add
	check contention config
	check contention off
	check float add
	check float config
	check float off
	check stable off
	check stable on
	checkpoint
	compare add
	compare annotate
	compare clock
	compare configure
	compare continue
	compare delete
	compare end
	compare info
	compare list
	compare options
	compare reload
	compare reset
	compare run
	compare savediffs
	compare saverules
	compare see
	compare start
	compare stop
	compare update
	configure
	context
	coverage clear
	coverage exclude
	coverage reload
	coverage report
	coverage save
	dataset alias
	dataset clear
	dataset close
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	disable_menu
	disable_menuitem
	do
	down
	drivers
	dumplog64
	echo
	edit
	enablebp
	enable_menu
	enable_menuitem
	environment
	examine
	exit
	find
	force
	gdb dir
	getactivecursortime
	getactivemarkertime
	help
	history
	lecho
	left
	log
	lshift
	lsublist
	macro_option
	mem display
	mem list
	mem load
	See also

	mem save
	Examples
	See also

	mem search
	modelsim
	next
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	play
	pop
	power add
	power report
	power reset
	precision
	printenv
	profile clear
	profile interval
	profile off
	profile on
	profile option
	profile report
	project
	property list
	property wave
	push
	pwd
	quietly
	quit
	radix
	readers
	record
	report
	restart
	restore
	resume
	right
	run
	sccom
	scgenmod
	search
	searchlog
	seetime
	setenv
	shift
	show
	simstats
	splitio
	status
	step
	stop
	tb
	tcheck_set
	tcheck_status
	toggle add
	toggle disable
	toggle enable
	toggle report
	toggle reset
	transcribe
	transcript
	transcript file
	tssi2mti
	unsetenv
	up
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vcover convert
	vcover merge
	vcover stats
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write cell_report
	write format
	write list
	write preferences
	write report
	write transcript
	write tssi
	write wave

	Licensing Agreement
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

