
Asterisk 1.4

The Professional's Guide

Implementing, administering, and consulting on
commercial IP telephony solutions

Colman Carpenter

David Duffett

Nik Middleton

Ian Plain

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Asterisk 1.4
The Professional's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009

Production Reference: 1030809

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-38-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Credits

Authors
Colman Carpenter

David Duffett

Nik Middleton

Ian Plain

Reviewers
Ian Plain

Jared Smith

Philippe Lindheimer

Acquisition Editor
James Lumsden

Technical Editors
Gagandeep Singh

Charumathi Sankaran

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Neelkanth Mehta

Proofreader
Laura Booth

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Foreword

Watching Asterisk move from being a personal coding project to a community of
tens of thousands of programmers and millions of users has been quite the ride
so far! Asterisk is only now hitting its prime, and there are so many more things
that creative people are going to do with the code. The growth of the project over
the years has stunned and pleased me, and it's amazing that well-written and
comprehensive books like this now exist to help more advanced users navigate the
waters of larger and more complex Asterisk installations. Asterisk installations are
now huge, both in numbers of locations and the unimaginably large size of many of
those locations—thousands or tens of thousands of users! Asterisk implementations
are rarely limited by the capability of the software but more often by not knowing
how to utilize it. Books like this play an important role in getting the experience of
those who have already done in the hands of those who want to do.

Hopefully the knowledge here allows you to continue your adventure with Asterisk,
moving from the basics of PBX construction to having the ability to quickly implement
advanced call logic processes and work with the more exotic telephony and VoIP
interfaces. The motto of "There's more than one way to do it!" is almost always true
with Asterisk—this book seems to contain an excellent cross-section of at least one
of those ways to do "it" (whatever "it" happens to be for your application) and you'll
quickly think of many other ways once you've mastered the methods shown.

The authors here have really shown some excellent detailed explanations of how
to use Asterisk, and I hope this provides the incentive for you, the reader, to
experiment in more wide-ranging ways with Asterisk once you've understood the
basics. Most of the Asterisk community has learned with hands-on experimentation,
and it's great to see more encouragement of this type of learning as is contained in
these pages. Kudos to the authors, especially David Duffett, who has been involved
with Asterisk for so long and has taught so many people their first dialplan routines
(and hopefully has left them uninjured from his famous habit of throwing candy at
people who give correct answers in class or in his talks).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Soon you'll be doing least-cost-routing, integrating your instant messenger system
with your mobile phone calls, controlling robots with voice commands via your
phone, or dreaming up a new company based on some voice-based service that
nobody has tapped into yet. And the best thing about Asterisk is that it remains
open source—if you come up with a feature or enhancement that you think must be
in Asterisk, then the good news is that it can be! Become a member of the Asterisk
community, and your contributed code could be included. We all anxiously await
your book, your product, or just your involvement with the Asterisk community.

Mark Spencer
Chairman and CTO of Digium

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

About the Authors

Colman Carpenter is the MD of Voicespan, a Kent-based company that offers
Asterisk-based systems to the SME market across the UK. He is an IT professional
of over 20 years standing, with experience in diverse areas such as IBM mid-range
software development, Lotus Notes and Domino consultancy, Data Management,
E-marketing consultancy, IT Management, Project Management, Wordpress Website
Design, and lately, Asterisk consultancy. He is a qualified PRINCE2 practitioner.

Voicespan (http://www.voicespan.co.uk) offers Asterisk-based systems as the
cornerstone of a holistic VoIP-telephony service for SMEs. They offer companies a
one-stop shop for implementing a VoIP-capable system, encompassing Asterisk-based
systems, endpoints, trunks, telephony interfaces and network equipment, and the
consultancy necessary to bring it all together into a coherent whole. This is his
first book.

I would like to thank my wife, Hazel, and daughters, Caiti and Fay,
for their support during the writing of this book. At times it seemed
like you believed more than I in my ability to do so!

David Duffett delivers Asterisk training and consultancy around the world
through his own company (TeleSpeak Limited, www.telespeak.co.uk), in
addition to designing and delivering training for a number of companies,
including Digium, Inc.

A keen Asterisk enthusiast, David also enjoys podcasting, radio presenting, and
teaching public-speaking skills. He is a Chartered Engineer with experience in
fields including Air Traffic Control communications, Wireless Local Loop, Mobile
Networks, VoIP, and Asterisk. David has been in the telecoms sector for nearly
20 years and has had a number of computer telephony, VoIP, and Asterisk articles
published through various industry publications and web sites.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Nik Middleton has been in wide-area communications since the mid-eighties.
He spent most of the nineties working in the US, where he developed a shareware
Microsoft mail to SMTP/POP3 connector that sold some 287,000 copies. He spent six
years working for DuPont in VA, developing remote monitoring systems for their
global Lycra business. In late 2000, he returned to the UK where he held various
senior positions in British Telecom, LogicaCMG, and Computer Science Corp.

In 2005, tired of working in London, he set up his own company (Noble Solutions)
providing VoIP solutions in rural Devon, where he now lives with his wife Georgina
and three children, Mathew, Vicky, and Isabel. A keen amateur pilot, his favorite
place when not in the office is flying over the beautiful Devon countryside.

Ian Plain has worked in the telecoms industry since 1981 and has designed some of
the largest PBX networks in the UK. Since the late 1990s, he has been involved with
VoIP initially for links between systems, and with IP PBX systems since 1999. Since
2003, he has been running a telecoms consultancy based near Bath in the UK, working
primarily on high-availability Asterisk-based solutions for corporate customers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

About the Reviewers

Ian Plain: Please see the entry in About the Authors.

Jared Smith is the Training Manager for Digium, Inc. As a long time Asterisk user,
contributor, and evangelist, he has spent the last several years helping the Asterisk
community. Jared is a dynamic and knowledgeable instructor with several years of
experience in leading various Asterisk training classes.

He is also co-author of Asterisk: The Future of Telephony, O'Reilly Media and regularly
writes other Asterisk documentation as well.

Jared holds a Bachelors of Science degree in Computer Engineering from the Utah
State University and currently lives in Virginia with his wife and two children.

Philippe Lindheimer is the project leader and primary developer of FreePBX and
serves as the Open Source Community Director at Bandwidth.com, the corporate
sponsor of the FreePBX project (the most widely deployed Asterisk-based PBX/
GUI open-source application in the world). He cofounded and runs the Open
Telephony Training Seminar providing FreePBX/Asterisk technical and marketing
training to resellers and end users. Originally with Hewlett Packard, he has been
in the engineering industry for over two decades, working on a range of technical
consulting roles with many Fortune 500 Companies.

He has a BS (Hons) in EE/CS from the University of Colorado, Boulder. He now
lives in the Seattle, WA area.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents
Preface	 1
Chapter 1: The Dialplan	 9

Dialplan location	 10
Extensions and contexts	 10

Pattern matching	 10
Why use contexts?	 13
Call barring made simple	 13
Time and day call routing	 16

Variables	 18
Inheritance of channel variables through the dialplan	 19

Using the AstDB	 21
Dialplan features and additions	 22

func_devstate	 22
What can we use the DEVSTATE() function for?	 23

Using multiple broadband lines	 26
Configuration overview	 26

System() application	 29
Summary	 31

Chapter 2: Network Considerations when Implementing Asterisk	 33
Centralized and distributed installations 	 34

Centralized installations	 34
Distributed solutions	 34
Latency and jitter	 35
Jitterbuffer	 39
Echo	 40

Do your homework	 40
SLAs are for everyone	 42
Achieving the goal	 42

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[ii]

Backups	 44
To share or not to share	 44
Ensuring quality	 47
When things go wrong	 49

Red	 50
Amber	 50
Green	 50

Increasing resilience	 50
Summary	 51

Chapter 3: Call Routing with Asterisk	 53
Routing methods	 53
Where to start	 55
Internal calls	 56
Local calls	 58
National calls	 59
International calls	 60
Alternative options	 61

ENUM	 62
DUNDi	 64

Types of routing	 66
Routing techniques	 67
Summary	 70

Chapter 4: Call Centers—Queues and Recording	 71
Asterisk queues	 71

Queue gotchas	 72
A practical queue	 72
Using queues to cascade calls	 73

Call recording—the issues	 74
Show-stoppers	 74

VoIP recording approaches	 75
Impact of VoIP on recording systems	 75

Hardware convergence	 75
Distributed call centers	 76

Home working	 76
VoIP recording challenges	 76

Routing	 76
Bandwidth	 77
Encryption	 77
Solutions	 77

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[iii]

Asterisk call center solutions	 79
How VICIDIAL works	 79

Handling inbound calls	 84
Installation	 85
Timing sources	 86
Scalability	 86

Summary	 86
Chapter 5: Asterisk and Speech Technology	 87

Why speech-enable?	 88
Types of speech technologies	 89

Automatic Speech Recognition (ASR)	 89
Isolated Word Recognition 	 89
Connected Word Recognition 	 89
Natural Language Recognition 	 90

Text-to-Speech (TTS)	 91
Speaker Verification and Identification (SVI)	 91

MRCP	 92
Implementation considerations	 92

ASR and Asterisk	 93
Installing LumenVox speech recognition with Asterisk	 93
Checking that things are working	 99
Grammar files	 100
Implementation advice for ASR	 101

TTS with Asterisk	 103
Implementation advice for TTS	 106

Summary	 106
Chapter 6: Call Accounting and Billing	 107

Call Data Records (CDRs)	 107
CDR frontends	 110

Call accounting	 111
Providing termination billing	 112

Every little helps	 112
Selecting a billing platform	 113
Introducing A2Billing	 113

Reasons to consider A2Billing	 113
A2Billing requirements	 114
Monitoring usage	 114
Coding for A2Billing	 116

Billing gotcha!	 116
High call volumes	 117

Other high-call-volume solutions	 117
Summary	 118

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[iv]

Chapter 7: Resilience and Stability	 119
Increasing availability	 120
Stability	 121

Network	 121
Cables	 122
Switches and routers	 122

Endpoints	 122
Telephony switches and gateways	 123
Server	 123
Environment	 124

Dealing with failure	 125
Network resilience	 125
Server	 127

High availability	 127
Telephony switches/gateways	 129

Redfone foneBRIDGE2	 129
Junghanns ISDNguard	 130
Endpoints	 130

Round robin DNS	 131
Say hello to Rsync	 132

Limiting the number of calls per server	 134
Summary	 135

Chapter 8: Localization and Practical Security	 137
Tones	 138
Time and date and localization	 142
Changing the language of system prompts	 146
Local telephony interfaces	 147

Analog	 148
Digital	 149

Localizing caller ID signaling on Digium analog interfaces	 150
Checklist	 152
Practical security	 152

Out of hours	 156
Summary	 157

Chapter 9: Interfacing with Traditional Analog and
Digital Telephony	 159

Analog	 159
Digital	 161

ISDN BRI (Basic Rate Interface)	 162
ISDN PRI (Primary Rate Interface)	 163

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[�]

Choices, choices	 166
Using external adaptors	 167
Using cards	 169

Installing a Digium card	 170
Troubleshooting with Digium cards	 187

Summary	 188
Chapter 10: Integrating Asterisk with Wireless Technologies	 189

Why integrate Asterisk with wireless technologies?	 190
Wireless technology overview	 191

Wi-Fi (only) phones	 191
SIP desk phones with a wireless link	 192
Dual-mode (GSM and SIP) phones and PDA/smart phones	 193
SIP/DECT phones	 195

Connecting Asterisk to mobile networks	 197
Why connect to mobile networks?	 197
The GSM gateway (box)	 198
The GSM card	 199

Configuring wireless devices	 200
Configuring Asterisk to work with wireless technologies	 204
Deployment choices	 206
Neat money saving tricks	 206

Calling a mobile phone	 207
Avoiding those nasty roaming charges that arise from receiving calls	 207

Summary	 208
Chapter 11: Graphical User Interfaces	 209

Reasons for going GUI	 209
Good to GUI	 210

Ease of administration	 210
Access to enhanced features	 211
Easier upgrade process	 212
Standardized code	 212

GUI, phooey!	 213
Performance	 213
Stability	 215
Restricted functions	 216

FreePBX	 217
How it works	 217
Installation	 218

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[vi]

Configuration	 219
Extensions	 220
Inbound routes	 221
Outbound routes	 222
Trunks	 223
Other records	 224

Summary	 225
Appendix A: Selling Your Solution	 227

In the beginning ...	 228
Drivers for changing phone systems	 228
A word on cost	 229

Generating interest	 231
Alliances	 232
Advertising	 232

Search engines	 232
Become an expert	 233

Relationship marketing	 234
Email as a marketing tool	 234

Tracking prospects	 235
Converting the prospect into a sale	 236

Determining your customer's hardware requirements	 236
Choosing the right phones	 237

Remote support	 238
Make it secure	 239

Do's and don'ts	 239
The do's	 239

First impressions	 239
Get brochures printed	 239
Take notes	 239
Send the quote in a timely manner	 240
Follow up the quote	 240
Target the decision makers, but don't ignore IT	 240

The don'ts 	 240
You don't need a fancy office	 240
Don't cut corners on the solution	 241
Don't under price	 241
Don't have a huge margin on handsets	 242
Don't supply a PC as the phone server	 242

Summary	 243

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Table of Contents

[vii]

Appendix B: Sample Email Content	 245
What is VoIP? 	 245
Why should I consider VoIP?	 246

Cost savings	 246
Call costs	 246
Line rental costs	 246
Wiring costs	 246
Reduced infrastructure costs	 247

Centralized management	 247
System integration	 247
Unified messaging	 247

Reliability	 247
Closed and open systems	 248
Superior sound	 248
Fallback solutions	 248
Broadcasting calls	 248
A number for life	 248
Number porting	 248
Local numbers	 249

About XYZ	 249
Our philosophy	 249
Our passion	 249

Appendix C: Sample Appointment Sheet	 251
Index	 255

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface
This book is a sequel to Building Telephony Systems with Asterisk, which started you
on a journey to the summit of Asterisk knowledge, taking you from base camp to
camp two, from being a complete Asterisk newbie to a competent telephony system
builder and manager. Now it's time to push to the top, to take your telephony
knowledge to a point where you can build high-performance, resilient, and
professional PBXs using the most popular open source telephony software in
the world—Asterisk.

In that book, the focus was very much on installing and configuring Asterisk for a
number of common scenarios, including both home and office use. This it achieved
admirably, so you may now wonder why another book is needed. Well, there are
three main reasons for writing this book. Firstly, Asterisk is such a highly-capable
and configurable telephony engine that the 150-odd pages in the book necessarily
had to exclude discussion of some of the more advanced features, which we now
have the opportunity to explore. Secondly, Asterisk is invariably implemented
as part of an IP network, and further examination of network considerations is
warranted. Finally, like all popular open source software, Asterisk is constantly
being updated, and while this book still assumes the version 1.4 of Asterisk is in use,
we do point out any differences in version 1.6 where relevant, such as the change
from Zaptel to DAHDI.

Therefore, the goal of this book is to give you enough knowledge to build and
install a telephony system with Asterisk at its core, which will stand comparison
with the market-leading commercial IP-enabled systems. Whether you are building
such a system as a result of an internal company requirement, or you plan to offer
it as an element of a commercial package to customers, this book will take you
through all the areas that require consideration. On reading this book you will also
be in a position to understand the real-life issues you are likely to experience when
deploying such a system, both technical and otherwise.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

By its very nature, Asterisk demands that much of the focus of this book be on the
technical aspects of building your professional system. However, as with most IT
implementations, success will also rely on "soft" issues such as managing expectations,
understanding and meeting the customer's particular needs, and ensuring delivery is
on time and up to the budget. Hence, where appropriate, we make mention of the
non-technical aspects that may make a difference to your deployment.

To achieve our goal, this book will build on knowledge already gained by reinforcing
that learning and adding extra skills covering:

Security
Networks
Large-scale considerations
Resilience
Scalability
Integration with complementary products
Commercial aspects

Reviewing the basics
If you have not already done so, it is recommended that you read Building Telephony
Systems with Asterisk, or achieve a good degree of competence in building basic
Asterisk PBXs through other means. These could include commercial training
courses (see www.digium.com/en/training for further details) or openly available
internet resources such as the excellent VoIP wiki at http://www.voip-info.org.

While most people with a day-to-day exposure to Asterisk systems should stand
to gain much from this book, it has been written in the expectation that you will
possess the following Asterisk skills and experience, ideally gained through text
file configuration:

Connecting Asterisk to analogue and digital PSTN lines, and VoIP services
Configuring different types of terminal equipment (phones, communication
devices, other PBXs)
Installing Asterisk, Zaptel and LibPRI
Configuring features (Voicemail, Music On Hold, Queues, Conference
Rooms, and so on)

•

•

•

•

•

•

•

•
•

•
•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

Creating a dialplan, including call distribution
CDRs, call monitoring and recording
Backups and restores
Basic security and load balancing

Once equipped with this knowledge you stand to gain the maximum from the topics
covered in this book, enabling you to build professional Asterisk systems to be
deployed internally, or to form the cornerstone of a commercial offering.

No compromise
In this book you will, hopefully, learn many new things. At its conclusion you will
have the knowledge to build and successfully implement systems that combine great
performance, resilience and stability. In order to do so, we will mainly consider
"pure" Asterisk systems that require a deep understanding of the dialplan and
configuration files without the safety-net of a GUI in between. Think of it as learning
to become a great car mechanic. You can certainly be a good mechanic earning a
good living by learning how to use a laptop plugged into an engine management
system. But if you want to take that extra step to being a true master of the trade
then you need to understand at a very deep level just how the internal combustion
engine works. So it is with Asterisk. It is perfectly feasible to put very good solutions
together using GUI-based systems such as the Digium-owned Switchvox, Trixbox
(formerly Asterisk@Home) or PBX in a Flash, but to construct the best systems you
will need to understand what is happening "under the hood" so that you can tweak
them appropriately to achieve or exceed the customers' expectations.

One advantage of eschewing the GUI approach is a potential increase in performance
and scalability through the use of a highly-optimized dialplan and a reduction in
applications running on the server. However, there are many situations where a GUI
is at least as appropriate, particularly if the customer wishes to carry out day-to-day
management tasks. Therefore, in Chapter 12 we look at the implications of choosing
a GUI-based solution over a "vanilla" system.

To follow the "trusted network" of Asterisk developers please visit:
www.asteriskpro.co.uk

•
•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

What this book covers
As a result of reading this book, you can expect to build on existing knowledge
and gain new skills. Each chapter covers a particular topic, but throughout there
is a focus on building an Asterisk system that can form the cornerstone of a serious
commercial product, capable of matching or even exceeding the performance of
well-known licensed products.

Chapter 1 talks about dialplan techniques including modular implementations
by using macros, contexts, and so on to both refine the dialplan and improve the
security of the system. It also discusses the use of the devstate() function.

Chapter 2 discusses customer network requirements and offers some good advice
about potential issues within the customer network and how to resolve them,
including the use of VLANs and Quality of Service.

Chapter 3 looks at routing in general, including Least Cost Routing (local, national,
and international GSM gateways), fall-back routing, alternate routing, and so on.
ENUM and DUNDi are also explained within this context.

Chapter 4 considers call center requirements, including queues, agents, call
distribution strategies, performance monitoring and call recording issues. An
Asterisk-based call center solution, VICIDIAL, is also discussed in some detail.

Chapter 5 introduces speech technology in the form of ASR, TTS, and SVI; followed
by implementation advice and examples. Both Lumenvox and Cepstral packages are
explored in detail.

Chapter 6 looks at methods that can be used to implement call accounting and billing
solutions for Asterisk. In particular, Asterisk-stat and A2Billing are explored.

Chapter 7 discusses resilience and stability, giving you a guide to implementing
highly-available Asterisk solutions for mission-critical applications. Use of failover
and load-balancing techniques are explored.

Chapter 8 explores the comprehensive localization options within Asterisk, and also
suggests some easily deployed security measures.

Chapter 9 considers interfaces with traditional analogue and digital telephony, giving
more in-depth explanations of Libpri and DAHDI (formerly Zaptel), and discussing
implementation considerations.

Chapter 10 tackles the good and bad points of using wireless technologies with
Asterisk, covering Wi-Fi, dual-mode and DECT handsets. Some suggestions on
routing via cell/mobile networks are also offered.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

Chapter 11 looks at the good and bad points of Asterisk Graphical User Interfaces
(GUIs), focusing on one of the most popular incarnations, FreePBX.

In Appendix A we also explore some of the softer skills required when selling
Asterisk-based solutions, suggesting some sales strategies that can help you in a
commercial environment.

In Appendix B you will find information you might want to include in sample emails
when pitching.

In Appendix C you will find a sample appointment sheet which can be used
as a template.

Onwards
So now our campsite has been packed away and it is time for the next part of our
journey to begin, for those first purposeful steps to be taken towards the summit. We
will start in Chapter 1 by looking at the heart of any Asterisk system, the dialplan.
You will already have significant knowledge in this area, but we are about to show
you some of the techniques that are used in systems with thousands of extensions
that handle many tens of thousands of calls per day. Without these techniques, a
dialplan can become an unholy mess as system size increases. However, using these
techniques will ensure that complexity is avoided and performance is maintained.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

exten => s,1,Dial(Zap/1,30)
exten => s,n,Goto(s-${DIALSTATUS},1)
exten => s,n,Hangup()
exten => s-NOANSWER,1,Voicemail(100,u)
exten => s-BUSY,1,Voicemail(100,b)
exten => i,1,Voicemail(0,s)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Preface

[�]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4381_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan
The dialplan is the routing core of an Asterisk server. Its sole role is to look at what is
dialed, and route the call to its destination. This is the core of any telephony system
and Asterisk is no different.

The dialplan is made up of three elements—extensions, contexts, and priorities. An
extension is number or pattern that the dialed number is to be matched against and
a context is a collection of extensions (and possibly other included contexts too). Each
extension will have one or more priorities, each of which appear on a separate line,
and the priority sequence always starts with the priority "1".

If you have read Building Telephony Systems with Asterisk, you will know how to
use extensions, priorities, contexts, and included contexts to handle incoming and
outgoing calls as well as to set up features such as:

Call Queues
Call Parking
Direct Inward Dialling
Voicemail
Automated Phone Directory
Conference Rooms

In this chapter, we will build on this knowledge by looking at:

Significant updates since Asterisk 1.2
Pattern ordering within and between contexts
Extending the dialplan with variables
The DEVSTATE() function
The SYSTEM application

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[10]

We will then use this knowledge to provide examples of:

Advanced call routing with the DEVSTATE() function
Call routing based on the time of the day
Using multiple ADSL lines within Asterisk to boost call capacity

Dialplan location
The dialplan is primarily defined in the extensions.conf file. This can also
include additional files that are added into it using the #include directive. For
instance, systems using the FreePBX GUI will have extensions_additional.conf,
extensions_custom.conf, and extensions_override_freepbx.conf as standard
files, which have been added using #include into the extensions.conf file. We
must also remain aware of files such as the features.conf file, as they also include
numbers that can be dialed such as codes for Pickup and Call Parking, and so form
part of the dialplan.

A list of standard and optional Asterisk configuration files can be found at
http://www.voip-info.org/wiki/view/Asterisk+config+files.

Extensions and contexts
Being familiar with Asterisk, you will have a good working understanding of
extensions and contexts already. They are, of course, the very heartbeat of Asterisk,
and as such they are probably subject to the most change from version to version, as
Asterisk evolves to cater for new hardware, software, and more complex working
practices. So let's have a quick review of extensions and contexts, pointing out
significant changes in versions 1.4 and 1.6, before we proceed to the more advanced
techniques and uses.

Pattern matching
Within the dialplan, matching can be either direct or partial against a pattern.
Normally in a PBX, these patterns are numeric. But with Asterisk, they can also
be alphanumeric or even just alpha. For example 2000, DID01234123456, and
Main_number are all valid extensions. As very few phones contain alphabetic keys,
the last two are typically only used for incoming DID channels. For the majority of
this chapter, we will stick to numeric patterns.

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[11]

Let's start to explore pattern matching by looking at an extremely simple dialplan:

[context_1]
exten => 123,1,Answer()
exten => 123,n,SayDigits(999${CALLERID(num)})
exten => 123,n,Hangup()

In this dialplan, when a user with a context of context_1 dials 123, they will hear
999 and their caller ID will be read back to them.

Now let's look at a slightly more complex context:

[context_1]
exten => _1X.,1,Answer()
exten => _1X.,n,SayDigits(${EXTEN}${CALLERID(num)})
exten => _1X.,n,Hangup()
exten => 123,1,Answer()
exten => 123,n,SayDigits(123${CALLERID(num)})
exten => 123,n,Hangup()

You might expect that 123 would match against the _1X. extension, as that appears
first in the context. However, the way Asterisk orders the dialplan when loading
means that exact matches are checked for before pattern matches. Hence if you dial
123, it matches against the 123 pattern first and not the _1X. pattern. This pattern
would only route the call if an exact match did not exist in the context.

It is sensible not to use the pattern _. as a catch-all pattern, as this will
catch the Asterisk special extensions like i, t, h as well. It is far better to
use the _X pattern.

Once understood, pattern matching is pretty straightforward and does what we
expect. However, if you introduce included contexts into the mix, things may work
in a way you did not expect and the order needs to be thought through carefully. In
particular, it's crucial to understand that Asterisk only checks included contexts after
checking for exact matches and pattern matches in the local context. The following
example illustrates this:

[context_1]
include => context_2
exten => _1X.,1,Answer()
exten => _1X.,n,SayDigits(${EXTEN}${CALLERID(num)})
exten => _1X.,n,Hangup()
include => context_3
exten => 123,1,Answer()
exten => 123,n,SayDigits(123${CALLERID(num)})
exten => 123,n,Hangup()

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[12]

The above dialplan is sorted internally by Asterisk shown as follows, and you can
see that though the included contexts are at the top and in the middle, the local
context is read first, then the included contexts are read in the order that they were
added. Hence, in this case, a dial string of 122 would be matched by the _1X. pattern
before the included contexts are searched.

'123' => 1. Answer()
 2. SayDigits(123${CALLERID(num)})
 3. Hangup()
'_1X.' => 1. Answer()
 2. SayDigits(${EXTEN}${CALLERID(num)})
 3. Hangup()

Include => 'context_2'
Include => 'context_3'

If you have a catch-all pattern in your dialplan, consider putting it into
a separate context. You can then use the include directive to append
that context to the end of the active context, thus ensuring that all of
the other pattern matching is attempted first.

One of the most powerful tools you will use on the Asterisk command line is
dialplan show <exten>@<context>. For example:

dialplan show 122@context_1

This will show you the matching order that Asterisk will use for the given extension
in the specified context, and if there are matches in any included contexts, those
contexts will be explicitly identified.

Finally, in a context you may have a switch statement, which includes the dialplan
of an external system into the local dialplan. In essence, it's an include for remote
systems. Though typing dialplan show will always show the switch statement
at the bottom, the defined context on the remote system is searched after the local
context on your system and before any local included contexts! So again, you have to
be very careful as to what is the context on the remote system as this will be searched
before your included contexts.

The syntax of the switch state is as follows:

switch =>IAX2/user:[key]@server/context

The user and key are defined in the called server's iax.conf file, and the context is,
of course, in the server's dialplan.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[13]

Why use contexts?
In our examples so far we could have achieved the desired results very easily
without the use of multiple contexts. The simple functionality we have looked at
could be carried out in a single, all-encompassing context. In practice, this approach
could be applicable for systems with a very limited number of users and trunks, and
with very restricted functionality, as there may not be a need to restrict the calling
habits of a subset of users.

Use of contexts becomes desirable when we need to offer different options to
different users. This is likely to be most applicable in medium and large companies,
where you may have "users" ranging from the CEO down to an emergency phone
in a lift. However, it can also be the case in smaller companies, where you might
want to restrict home workers from making international calls for instance.
When you get many different types of users, writing a distinct dialplan for each
becomes problematic. The sheer size and complexity of the dialplan will make code
management very complicated.

To simplify things, we first need to think about what makes the dialplan for each
extension different. Then we need to think about what remains the same for each
extension, as this needs to be made to work as well. What we often find is that most
of these differences can be stored and called in two main ways:

The user's context
Variables linked to that user

We will come to variables shortly, but the grouping of extensions into contexts
allows us to separate concise and distinct functions from each other. In doing so, we
can control very tightly which contexts are used in each scenario, and also implement
one "master" copy of each distinct function, aiding maintenance of the code.

Call barring made simple
To illustrate, let's expand our context a bit and use call barring as an example. We
will initially have three levels for this example—local, national, and international.

These are defined as follows:

Any number starting with a 1-9 is local
Anything starting with a 00 is international.
Anything else starting with a 0 is national or a mobile number.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[14]

This is a simplified example, and uses the UK format of dial prefixes.

We have in this example three contexts—local_num, national_num and
international_num. These would correspond to the levels of access we have
decided on for our users. For example, an executive phone would be allowed access
to all numbers whereas a phone on the shop floor may only be allowed access to
local numbers.

We will create the three contexts shown as follows. All we are doing in our example
is reading back 1, 2, or 3 to indicate the pattern that has been matched followed by
the number dialed—${EXTEN}.

[local_num]
Exten => _Z.,1,Answer()
Exten => _Z.,n,SayDigits(1${EXTEN})
Exten => _Z.,n,Hangup()
;
[national_num]
Exten => _0Z.,1,Answer()
Exten => _0Z.,n,SayDigits(2${EXTEN})
Exten => _0Z.,n,Hangup()
;
[international_num]
Exten => _00X.,1,Answer()
Exten => _00X.,n,SayDigits(3${EXTEN})
Exten => _00X.,n,Hangup()

For each context we could write an ordered list to cover all patterns, but it is much
neater to create a master context for each user. For example:

[local]
Include => local_num

[national]
Include => national_num
Include => local_num

[international]
Include => international_num
Include => national_num
Include => local_num

Therefore, in the previous example, a user with the national context can dial
a normal national number, but not an international number. A user with the
international context has the ability to dial both numbers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[15]

This is a pretty simple example with just three level of access, but the modular
nature due to the use of contexts allows us to expand it very quickly and easily. For
example, we have a user 1000 (our CEO) and he can dial internationally. We also
have 1098 and 1099, which are users on the shop floor, and can dial reception and
the emergency services.

In this example, we give our CEO a context of [supauser],while the shop floor has a
context of [emergencyuser].

The [supauser] context has to be able to dial everything, so it looks like this:

[supauser]
include => premium_num ; allows dialing to premium rate numbers
include => international_num ; allows international dialing
include => national_num ; allows national calls
include => mobile_num ; allows calls to mobile phones
include => local_num ; allows local rate calls
include => free_num ; allows free calls such as 800 or
operator services
include => internal_num ; allows the calling of extensions
include => emergency ; allows calls to the emergency services
include => default ; allows access to system features

The shop floor just has the following context:

[emergencyuser]
include => emergency ; allows calls to emergency services reception.

As you can see, we can mix and match these contexts to cover many different types
of extensions. Although you may be asking, "Will this really save me time?" well, let's
look at two examples. Firstly, our supplier reduces the cost of UK 0870 numbers to
free in the evenings as has happened in the UK with BT(British Telecom). Secondly,
we also want the shop floor phone (1099) to be able to dial extensions and toll free
calls, but not change the dialplan for 1098.

We will deal with the simplest of these extensions (1099) first. All we need to do is
change the context associated with this user to a new context called [freeuser]:

[freeuser]
include => free_num ; allows calls to free numbers
include => internal_num ; allows the calling of extensions
include => emergency ; allows calls to the emergency services
include => default ; allows access to system features .

This is a fast and easy change, which will have no effect on other shop floor users.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[16]

And to the change to 0870 numbers, this once again can be put into effect very
simply. The only change is that evening and weekend calls are now free. Therefore,
we could put it into a [free] context. Although, it isn't always free. It is free only
at weekends which would not be suitable. Hence, for this we use the GotoIfTime
application, which sets the context, extension, and priority in the channel based on
the system time, day, date, and month supplied by the OS.

By adding the following to the free context, users can now dial 0870 numbers at the
defined times.

exten => _0870XXXXXXX,1,GotoIfTime(17:59-08:00,mon-fri,*,*?national,
${EXTEN},1)
exten => _0870XXXXXXX,1,GotoIfTime(*,sat-sun,*,*?national,${EXTEN},1)

In this case, we have made a change for all users who also have a context allowing
both local and free calls (as their context includes the free context).

Time and day call routing
The GotoIfTime() application can introduce some powerful functionality into
your dialplan if used properly. An example that follows is for a support company
where calls are routed to the call centre or staff member on call at a specific time. The
customer had centers round the globe and we routed the calls to whichever center
was open at that time of day.

[folthesun]
;
;This section sets the constants and variables for numbers and times
;Nine timezones are defined to allow for 4 a day and sat and sun
working
;At present there are 6 destinations for NA AU and EMEA
;
exten => s,1,set(__tzone1=00:00-07:59)
exten => s,n,set(__tzone2=08:00-17:30)
exten => s,n,set(__tzone3=17:31-23:59)
exten => s,n,set(__tzone4=17:31-23:59)
exten => s,n,set(__tzone5=00:00-23:59)
exten => s,n,set(__tzone6=00:00-23:59)
exten => s,n,set(__tzone7=00:00-23:59)
exten => s,n,set(__tzone8=00:00-23:59)
exten => s,n,set(__tzone9=00:00-23:59)
;
exten => s,n,set(_dest1=01234123456) ;dest1 emea_pager
exten => s,n,set(_dest2=001765412345) ;dest2 na_pager
exten => s,n,set(_dest3=006165453457) ;dest3 au_pager

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[17]

exten => s,n,set(_dest4=08441231234) ;dest4 uk_no
exten => s,n,set(_dest5=001744519651) ;dest5 na_no
exten => s,n,set(_dest6=006118954654) ;dest6 au_no
;
exten => s,n,set(dialpre=9) ;dialing prefix
;
exten => s,n,set(dialcon=international) ;dialing context
;
exten => s,n,Goto(ftstimeing,s,1)
;
[ftstimeing]
;
;This sections runs though the days of the week and checks the time
;against DOW and time
;
exten => s,1,GotoIfTime(${tzone1}|mon|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone2}|mon|*|*?dest4,1)
exten => s,n,GotoIfTime(${tzone3}|mon|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone4}|mon|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone1}|tue|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone2}|tue|*|*?dest4,1)
exten => s,n,GotoIfTime(${tzone3}|tue|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone4}|tue|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone1}|wed|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone2}|wed|*|*?dest4,1)
exten => s,n,GotoIfTime(${tzone3}|wed|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone4}|wed|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone1}|thu|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone2}|thu|*|*?dest4,1)
exten => s,n,GotoIfTime(${tzone3}|thu|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone4}|thu|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone1}|fri|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone2}|fri|*|*?dest4,1)
exten => s,n,GotoIfTime(${tzone3}|fri|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone4}|fri|*|*?dest5,1)
exten => s,n,GotoIfTime(${tzone5}|sat|*|*?dest1,1)
exten => s,n,GotoIfTime(${tzone6}|sun|*|*?dest1,1)
;
;Fall through point
exten => s,n,Goto(dest1,1)
;
;Dialed using the Local channel so call handling is observered
;
exten => dest1,1,Noop(Calling ${dest1})

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[18]

exten => dest1,n,Dial(Local/${dialpre}${dest1}@${dialcon})
exten => dest1,n,Hangup()

exten => dest2,1,Noop(Calling ${dest2})
exten => dest2,n,Dial(Local/${dialpre}${dest2}@${dialcon})
exten => dest2,n,Hangup()

exten => dest3,1,Noop(Calling ${dest3})
exten => dest3,n,Dial(Local/${dialpre}${dest3}@${dialcon})
exten => dest3,n,Hangup()

exten => dest4,1,Noop(Calling ${dest4})
exten => dest4,n,Dial(Local/${dialpre}${dest4}@${dialcon})
exten => dest4,n,Hangup()

exten => dest5,1,Noop(Calling ${dest5})
exten => dest5,n,Dial(Local/${dialpre}${dest5}@${dialcon})
exten => dest5,n,Hangup()

exten => dest6,1,Noop(Calling ${dest6})
exten => dest6,n,Dial(Local/${dialpre}${dest6}@${dialcon})
exten => dest6,n,Hangup()

exten => i,1,Hangup()
exten => t,1,Hangup()
exten => h,1,Hangup()

This can be expanded to include public holidays, if required. It can be possible to
handle many years' public holidays in one line. For example, between the years 2009
and 2016, the UK's summer public holiday falls on the dates between the 25th and
31st of August and is always a Monday. Therefore, we have something like this:

GotoIfTime(*,Mon,25-31,Aug?dest1,1)

This will catch all UK summer public holidays, and as there are no other Mondays
in August clashing with these dates, it's a set-and-forget for many years (just don't
forget to change it after 2016!). The same goes for the majority of other public
holidays except for Easter.

For these variable dates, we can resort back to the internal database to store the
details and then use the GotoIf() application to check if the date is a holiday.

Variables
Variables are key to making the dialplan and system work in a manner that a user
expects. ��� The user would expect the system to know everything they have set on their
extension, and not have to enter codes or dial special access numbers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[19]

There are a number of places in which variables can be stored including the dialplan,
sip.conf, iax.conf, chan_DAHDI.conf (in version1.6), and the Asterisk database
(AstDB). For example, if we have a number of static dial strings we wish to store for
each type of call and carrier we use, and then use them in a number of sections, the
[globals] section of the extensions.conf file is the obvious place to declare them.
If we wish to set a variable when a call is initiated from a SIP device, external caller
ID or account codes are a good example, the setvar command in the sip.conf file is
ideal for that purpose. Just remember that it won't work for calls sent to that device
just when the calls are made. Finally, the AstDB is great for variables that are more
transient in nature, such as call counts.

Inheritance of channel variables through
the dialplan
On occasion, when using complicated dialplans you may wish for a variable's
value to be kept as the call progresses. This is achieved by adding a _ [underscore]
or a __ [double underscore] before the variable name.

A single _ will cause that variable to be inherited into the channel that started from
the original channel, for example:

Set(_name1=value1)

If you want the variable to be inherited to all child channels indefinitely, then
add __ before the variable name. For example:

Set(__name2=value2)

This should not be confused with setting the variable with the g option, as this sets it
as a global variable. Doing so makes the variable available to all channels globally.

So, you may ask "why might we store dial strings as a variable?" The simple reason
is that it allows a minimal amount of code for dialing all numbers, but still allows for
different classes of restriction, by which we mean allowing different users to have
different restrictions in what they can and cannot dial.

To pass these variables we will use a macro. Macros are like a template that we
can use for repeated tasks, and they allow the passing of variables in an ordered
fashion to the macro context. The call will jump to the s extension. The calling
extension, context, and priority are stored in ${MACRO_EXTEN}, ${MACRO_CONTEXT},
and ${MACRO_PRIORITY} respectively. Arguments passed are accessed as ${ARG1},
${ARG2}, and so on within the Macro. While a Macro is being executed, it becomes
the context, so you must be able to handle the h, i, and t extensions if required
within that context.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[20]

Let's build our small macro dialplan. We have a variable defined in the globals
section of the extensions.conf file as follows:

[globals]
INT_CALL=IAX2/username@peer_out/
INT_CALL_ID=01234123456 ; default international callerID
INT_CALL_LIMIT=5 ; Limit on the number of calls

In the context that we use for dialing, we have:

; International long distance through trunk
exten => _90.,1,Macro(outdial,${INT_CALL})

Here, we have defined the macro we are going to pass the call to, along with a single
variable we defined in the globals section (the value of the calling extension can be
retrieved within the macro by using ${MACRO_EXTEN}).

The macro context looks like this:

[macro-outdial]
exten => s,4,Dial(${ARG1}${MACRO_EXTEN:1},180)

This is the same as the dial string:

exten => s,4,Dial(IAX2/username@peer_out/01234123456,180)

We have seen that we can pass one dial string, but let's now pass other variables to
the Dial() application, such as a backup route for outgoing calls, and the caller ID
we want to use for the call.

exten => _90.,1,Macro(outdial,${INTCALL},${INT_CALL_ID},${INT_CALL_
LIMIT})
 [macro-outdial]
exten => s,1,Set(GROUP()=OUTBOUND_GROUP) ;Set Group
exten => s,2,GotoIf($[${GROUP_COUNT(OUTBOUND_GROUP)} > ${ARG3}]?103)
;Exceeded?
exten => s,3,Set(CALLERID(num)=${ARG2})
exten => s,4,Dial(${ARG1}${MACRO_EXTEN:1},180)

Now it's time to bring some .conf file variables into the mix. Using the setvar
facility in the sip.conf, iax.conf and chan_dahdi.conf files, we can set variables
specific for every user such as unique caller ID, call limits, whether we want to
record the call, account codes. Basically, anything that will help you handle calls
more efficiently.

setvar=account_code=2206
setvar=callidnum=01234123456
setvar=tenantID=2

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[21]

One problem using .conf files is that the relevant channel module needs
to be reloaded after a change, and in the case of DAHDI, Asterisk would
need to be restarted. This isn't too much of an issue but the need can be
removed by using the AstDB for storing commonly changed settings,
such as caller ID and recordings.

You may think that all this variable use is over-complicated, but consider a system
that supports multiple tenants. Using these techniques, you will only need one
dialplan for multiple tenants instead of one per tenant. Simply set the tenantID in
the relevant .conf file and then store the tenants' features in the globals section
of the dialplan and in the AstDB, and all calls will go out as that tenant group. The
concept is the same for other scenarios, such as departments that require cross
charging of telephone costs.

Using the AstDB
Setting and retrieving variables in the AstDB is very simple and achieved through
the use of the Set() application. Variables can exist in splendid isolation or be
grouped into families. The syntax for setting a variable is:

Set(DB(family/variable)=value)

Retrieving the variable's value is equally as simple:

Set(result=${DB(family/variable)})

So, let's have a look at how we can implement a simple multi-tenant dialplan using
multiple variable stores:

INT_CALL1=IAX2/username@peer_out_1/
INT_CALL2=IAX2/username@peer_out_1/
INT_CALL_LIMIT1=5 ; Limit on the number of calls
INT_CALL_LIMIT2=5 ; Limit on the number of calls
exten => _90[1-2]XXXXXXXXX,1,Set(INTCALL=INTCALL${tenantID})
exten => _90[1-2]XXXXXXXXX,n,Set(INT_CALL_LIMIT=INT_CALL_
LIMIT${tenantID})
exten => _90[1-2]XXXXXXXXX,n,Macro(outdial,${INTCALL},
${callidnum},${INT_CALL_LIMIT})

As we can see, we have been able to cut down the amount of code and make it
universal for different types of users and systems. Using a macro lets us pass an
ordered list of arguments. It is easiest to think of macro arguments as a list of
variables since they are handled the same way.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[22]

Due to the way macro is implemented, it executes the priorities
contained within it via a sub-engine, and a fixed per-thread memory
stack allowance. Macros are limited to seven levels of nesting. It can
be possible that stack-intensive applications in deeply-nested macros
could cause Asterisk to crash. Take this into account and be very careful
when nesting macros.

Dialplan features and additions
In this section, we are going to look at the DEVSTATE() function and the System()
application. We will see how we can check and change the "status" of devices with
the DEVSTATE() function and use the system application to cause scripts on the
server to be run.

func_devstate
The func_devstate application allows the status of a peer to be known before you
dial it. This is very useful in many applications. We will cover a few of them here
but you will be able to find many more.

The func_devstate application is part of Asterisk 1.6, but Russell Bryant
(of Digium) has a back-ported version for Asterisk 1.4. This can now be found at:

http://svn.digium.com/community/russell/asterisk-1.4/func_devstate-
1.4/func_devstate.c

For most Linux distributions, installing the function is pretty simple:

cd /usr/src/asterisk/funcs

wget http://svn.digium.com/community/russell/asterisk-1.4/func_devstate-
1.4/func_devstate.c

cd ..

make clean

./configure

make menuselect

Choose option -> 6. Dialplan Functions

Then make sure that you have an entry like 8.func_devstate

make

make install

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[23]

If under Dialplan Functions, the DEVSTATE() function does not
show up, you will need to edit the menuselect-tree to add it.
<member name="func_devstate" displayname="Gets or sets
a device state in the dialplan" remove_on_change="funcs/
func_devstate.o funcs/func_devstate.so">
Then compile Asterisk as shown previously.

What can we use the DEVSTATE() function for?
The DEVSTATE() function is versatile, allowing us to check and/or set the status of
a device, as its name suggests. One very common use is to activate phone lamps,
showing users if they have set a feature such as DND or call forwarding. In the
following examples, we will look at both setting and checking methods:

The function reports on, or can set, the following states:

NOT_INUSE
INUSE
BUSY
INVALID
UNAVAILABLE
RINGING
RINGINUSE
ONHOLD

Outgoing trunk selection
The application can be used here to check that an outgoing peer is "available" and
not "down", before you send a call to it. This is useful if you have peers or remote
systems that are on variable quality connections.

exten => _90.,1,Macro(outdial,${PRIDIAL},${INT_CALL_ID},${INT_CALL_LIM
IT},${BAKDIAL},${PRIPEER})
[macro-outdial]
exten => s,1, Set(GROUP()=OUTBOUND_GROUP) ;Set Group
exten => s,2,GotoIf($["${DEVSTATE(${ARG5})}"="UNAVALIABLE"]?s,7)
exten => s,3, GotoIf($[${GROUP_COUNT(OUTBOUND_GROUP)} > ${ARG3}]?103)
exten => s,4, Set(CALLERID(num)=${ARG2})
exten => s,5, Dial(${ARG1}${MACRO_EXTEN:1},180)
exten => s,6, Hangup()
exten => s,7, Dial(${ARG4}${MACRO_EXTEN:1},180)
exten => s,8, Hangup()
exten => s,n, Noop(call Limit exceeded)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[24]

This example is an expansion of our previously used macro and has a couple of
extra arguments passed to it. This makes it very flexible, as the backup peer can
be different for each dialed number.

Calling extensions
The application lets you see if extensions are busy or "out of service" before calling
them. This can be useful for handsets that support call waiting, but you don't want
to fully disable it for all calls. Before calling the extension, you can check to see if
the extension has call waiting enabled and then, depending on the result, check the
device status as follows:

exten => 2XXX,1,Macro(dialext)

[Macro-dialext]
exten => s,1,NoOp(SIP/${MACRO_EXTEN} has state ${DEVSTATE(SIP/$
{MACRO_EXTEN})})
exten => s,n,Set(CW=${DB(CW/${MACRO_EXTEN})})
exten => s,n,GotoIf($["${CW}"="YES"]?dial)
exten => s,n,GotoIf($["${DEVSTATE(SIP/${MACRO_EXTEN})}"!="NOT_INUSE"]?
s-BUSY,1)
exten => s,n(dial),Dial(SIP/${MACRO_EXTEN},35)
exten => s,n,Goto(s-BUSY,1)
exten => s-BUSY,1,Voicemail(${MACRO_EXTEN},b)
exten => s-BUSY,n,Hangup()

In the previous example, we have used the internal database to set the flag to say if
call waiting is enabled or not. If call waiting is anything other than YES, the status
of the extension will be checked, otherwise the DEVSTATE isn't checked and the
extension is just called. As we will see next, we can expand this to light a BLF (Busy
Lamp Field) key as well, to give a visual indication to users of the device status.

Setting lights
We can also use the DEVSTATE() function to set BLF lights on and off, a very simple
but highly effective feature. This is particularly helpful if you are using the dialplan
for setting call forwards or DND. It can also show if a call center agent is logged in
or not, on their phone.

To illustrate this functionality, we have a very simple example showing how to turn
the light on and off. It uses one number to toggle the light status and is not specific
for the particular phone—all phones dial the same number and it is the CHANNEL
variable, which is used to set it for a specific phone. In this example, we have two
hints—4078 and 4071, and these are linked to extensions 5078 and 5071.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[25]

Using this code and adding additional code to set the database key for call waiting
(as we have already covered) would give the phone user a visual indication as to
whether call waiting is set or not.

exten => 4071,hint,Custom:light5071
exten => 4078,hint,Custom:light5078
exten => 1236,1,Goto(1236-${DEVSTATE(Custom:light${CHANNEL:4:4})}|1)
exten => 1236-UNKNOWN,1,Goto(1236-NOT_INUSE|1)
exten => 1236-NOT_INUSE,1,Noop(Turn ${CHANNEL:4:4} light on)
exten => 1236-NOT_INUSE,n,Set(DEVSTATE(Custom:light${CHANNEL:4:4})=
INUSE)
exten => 1236-INUSE,1,Noop(Turn ${CHANNEL:4:4} light off)
exten => 1236-INUSE,n,Set(DEVSTATE(Custom:light{CHANNEL:4:4})=
NOT_INUSE)

By using userevent, you can also send out manager events to update the Flash
Operator Panel. The following would set the CW flag for the Flash Operator Panel
for our extension and change the icon to reflect the status.

exten => 1236-NOT_INUSE,2,UserEvent(ASTDB|Channel: ${CHANNEL}^Family:
CW^Value: SET ^)

There is also a version of DEVSTATE() called EXTSTATE(). It is a
modified version of the DEVSTATE() function that returns the state of
an extension, rather than the state of a device. This means you can write
dialplan logic based on the state of an extension (in use, ringing, on hold,
and so on). The extension just needs to have a hint so we can determine
which devices to check.

Boosting outgoing call capacity
We're going to have a look at how DEVSTATE() has been used to address an unusual
situation. A call-centre customer wished to temporarily increase their outgoing call
capacity, in this case by 20 concurrent calls, to cater for a particular project. However,
in their location, with their budget and given the temporary need for extra capacity,
the only effective means of boosting bandwidth is to utilize multiple ADSL circuits.
In other words, SDSL and leased line circuits were too costly for consideration.
Therefore, there was a need to bond multiple ADSL circuits together within
Asterisk, in order to provide a single high-bandwidth circuit for outbound calls.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[26]

It may seem obvious, but when calculating call capacity with ADSL circuits, the
figure we're interested in is the lower of the upload/download speeds. It doesn't
matter if you have a superfast 20 MB DSL circuit, chances are that you only have an
uplink speed of 800 kbps or less. It must also be remembered that once traffic exceeds
50% of the link speed, collisions and latency are likely to become an issue and must
be addressed. This gives you a theoretical limit of up to 10 uncompressed calls per
circuit if you're really lucky. Of course, with the GSM codec you can get a lot more,
but at the cost of audio quality, which your customer is unlikely to accept. They
expect PSTN quality and nothing less. If bandwidth utilization is on the borderline
with an uncompressed codec, it can be advantageous to use a commercial (non-free)
codec such as G729, which is obtainable from Digium.

Using multiple broadband lines
Using the criteria already discussed and assuming a 500 kbps uplink speed, it was
determined that four broadband circuits were needed. This may sound expensive,
but in reality it's not, when you consider that the alternative was 20 channels of a PRI
(ISDN 30), which worked out at twice the cost of four PSTN lines with broadband.
As we'll see later in the sales appendix, a major benefit of VoIP is that the customer
is paying much less for line rental. This solution only reinforces that benefit.

We are going to describe a solution that used four broadband circuits, but another
advantage of this approach is that it is very scalable. To illustrate, a system has been
set up for a charity in the UK that had 75 agents placing thousands of calls a day on
just eight broadband circuits.

This example was tested and proven using Asterisk 1.4.19.2, and should
work with releases up to 1.4.19.2 - it’s operation cannot be guaranteed in
other versions.

Configuration overview
Once the circuits are delivered, you will end up with four routers connected to the
broadband service of your choice. Each router will have a unique IP address. In our
case, we shall assume they are as follows:

192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.4

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[27]

We will also assume that the VoIP ITSP has multiple IP addresses that you can
connect to, though if not, you can probably do some clever address translation
in the routers.

Setting up the routing in Linux
Let's assume our VoIP ISP has provided us with the following external IP addresses:

88.88.88.81
88.88.88.82
88.88.88.83
88.88.88.84

Within Linux, you can easily set up different gateway addresses for a given
destination. The file that manages the gateways is normally called ifup-routes
in the /etc/sysconfig/network-scripts directory.

To configure the gateways, we append the following to the ifip-routes file:

/sbin/route add 88.88.88.81 gw 192.168.1.1

/sbin/route add 88.88.88.82 gw 192.168.1.2

/sbin/route add 88.88.88.83 gw 192.168.1.3

/sbin/route add 88.88.88.84 gw 192.168.1.4

Taking the last entry, what we're saying is that for all traffic to 88.88.88.84, route it
via the router at 192.168.1.4.

If you reboot and run the command route –n in a terminal session, you'll see these
routes in place.

Configuring Asterisk
We now turn our attention to the Asterisk configuration. When we make a call, we're
going to keep count of how many calls we have on a broadband line, so that when
the circuit is "full", we can move on to the next available one.

Firstly, in the extensions.conf file, we need to declare a variable that sets the
maximum concurrent calls we will allow through any one router.

MAXVOIPCALLS=5 ; Maximum Calls we allow over IP (outbound)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[28]

We've previously set up four entries in the iax.conf file called iaxline1 through
to iaxline4. They have identical entries, with the exception on the host= line. Here
we assign the appropriate external IP address, that is, 88.88.88.81 for iaxline1
and so on.

Now, we need to declare the IAX channels as follows:

AIXVOIPOUT = IAX2/iaxline1
AIXVOIPOUT1 = IAX2/iaxline2

As expected, we use a macro to manage the call routing. The example below only
shows two lines for the sake of brevity.

[macro-voiptrunk]
exten => s,1,Noop(Number of Broadband calls)
;Use devstate to test the availability of the trunks. You could put
some code in, to use an alternative if they are off line
exten => s,2,Noop(Trunk 1 ${DEVSTATE(${AIXVOIPOUT})} -> ${GROUP_
COUNT(VOIPTRUNKS@list1)})
exten => s,3,Noop(Trunk 2 ${DEVSTATE(${AIXVOIPOUT1})} -> ${GROUP_
COUNT(VOIPTRUNKS@list2)})
exten => s,4,GoToIf($[${GROUP_COUNT(VOIPTRUNKS@list1)} <
${MAXVOIPCALLS}]?10:20)
;Have we exceeded the max calls per trunk? If so, jump to Extension
20 and use second trunk
exten => s,10,gotoif($[${DEVSTATE(${AIXVOIPOUT})} =
UNAVAILABLE]?20:11)
;Here we test to see if the trunk is available, if it's gone off-line,
we use the second trunk
exten => s,11,Set(GROUP(list1)=VOIPTRUNKS) ;increment the usage count.
exten => s,12,noop(${DEVSTATE(${AIXVOIPOUT})})
exten => s,13,Noop(Trunk 1-> ${GROUP_COUNT(VOIPTRUNKS@list1)})
exten => s,14,Dial(${AIXVOIPOUT}/${MACRO_EXTEN})
exten => s,15,Goto(s-${DIALSTATUS},1)

exten => s,20,GoToIf($[${GROUP_COUNT(VOIPTRUNKS@list2)} <
${MAXVOIPCALLS}]?21:40)
exten => s,21,Set(GROUP(list2)=VOIPTRUNKS)
exten => s,22,Noop(Number of Broadband calls)
exten => s,23,Noop(Trunk 2-> ${GROUP_COUNT(VOIPTRUNKS@list2)})
exten => s,24,Dial(${AIXVOIPOUT1}/${MACRO_EXTEN})
exten => s,25,Goto(s-${DIALSTATUS},1)

exten => s,40,Congestion(15) ; No more lines left

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[29]

Explanation of the macro
Priorities "2" and "3" use the DEVSTATE() function to test the availability of the
broadband lines. If a line is down, UNAVAILABLE will be returned. At "4", we look
to see if we've exceeded max calls on this line. If we haven't, we'll place a call on the
first router, otherwise go to the next. "11" records the in-use count and increments
it for the given router (list1).

What happens, overall, is that the first 5 calls (set by the global MAXVOIPCALLS) will
go via router 1, the sixth will go via router 2. If in the meantime a call is dropped
from router 1, the next call placed will go back to router 1, even if other calls are
ongoing on router 2.

Finally, we need to add a call to the macro in our dialplan:

[outbound-national]
exten => _0Z.,1,NoOp(national call)
exten => _0Z.,2,Macro(voiptrunk)

The above technique is scalable. You can add as many broadband lines as you need.
The end result is that you can say to your customer, "want more outgoing capacity?
Just add another DSL line". However, it must not be forgotten that there may be
more stable solutions such as SDSL and leased lines, depending on location.

Downsides
The above example works really well for outbound calling, but not so well for
inbound. If you own the server the customer is connecting to, then you can reverse
the logic at your end. If you don't, then all you can do is allocate one router for
inbound (register via an inbound router) and the rest for outbound.

System() application
The System() application allows Asterisk to run Linux commands and shell scripts.
What we will look at here is a simple hotdesking deployment script for asterisk.
This type of deployment method is used by all commercial PBXs and is needed for
any enterprise deployment of Asterisk. Hand editing filenames or even configuring
phones via their web GUI will not be accepted by a customer or end user.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

The Dialplan

[30]

The dialplan is very simple. The user dials a code from his/her handset and is
asked to enter a four-digit number (their hotdesk ID). The dialplan then stores this
as a variable. It also sets the caller ID and the IP address for the set and passes these
to the script.

[hotdesk_in]
exten => s,1,Answer
exten => s,n,Playback(privacy-thankyou)
exten => s,n,Read(MY_EXTEN,access-code,4)
exten => h,1,Set(MY_IP=${SIPPEER(${CALLERID(num)}:ip)})
exten => h,2,system(/usr/local/sbin/exten_in ${MY_EXTEN}
${CALLERID(num)} ${MY_IP})

With these three variables, the script then knows the handset's existing number,
IP address, and the number it wants to be.

In addition, the script then performs an Address Resolution Protocol (ARP) lookup
on the IP address to find the phone's MAC address. It needs this because, as in the
example, we are using the phones config file in the format of <MAC-ADDRESS>.cfg,
and we configure the sets via TFTP (Trivial File Transfer Protocol). Hence, as we
know the MAC address we can copy the config files to the correct name.

Firstly, we will copy the old <MAC-ADDRESS>.cfg to a different file name. Then
we copy the config file for the extension number we wish the phone to be
using the MY_EXTEN variable we have passed to the script to define it to our new
<MAC-ADDRESS>.cfg. Now when the set reboots, it will pick up the new file.
However, we want this to be automatic and with as many handsets as it can have.
The sip notify command does so when configured in the sip_notify.conf file,
in the case of Aastra handsets, as follows:

[aastra-check-cfg]
Event=>check-sync
Content-Length=>0

The following command will cause the phone to check the config file for changes
and reboot if any change is found:

/usr/sbin/asterisk -rx "sip notify aastra-check-cfg ${CALLERID}"

When it reboots, it will pick up its new configuration. By using scripts such as the
previous one, you can speed up "moves, adds, and changes" and cut out the need
for engineers to put out or replace handsets. It can also be used to provide a form of
hotdesking with the user dialing a code to set the handset as theirs, and then log out
when they leave (copying back the previous config), thus returning the phone to its
previous state.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 1

[31]

Summary
In summary, we have looked at how to break down your dialplan into small,
manageable contexts or objects. These can then be included into the dialplan to
create a system with the flexibility to match any commercial PBX. We also looked
at improving the security of the dialplan such that it is easy to manage who can dial
where in an understandable way.

We looked at the many different ways that variables can be stored in the system and
called upon when required, as well as seeing how they can interact with macros to
make the dialplan more streamlined. Here we used one macro for many extensions.

We looked at the DEVSTATE() function and the uses that it can be put to. These are
not just (as it initially seems) for checking the status, but also a way to set the status
and light a BLF key to show a feature is set.

We looked at time and day call routing, and how it can be used to route calls based
on time and day. We also looked at the clever use of date ranges, so that we can
future-proof our dialplans for holidays for many years to come.

And finally we looked at the System() application and how this can be used for
easing the deployment of handsets in an enterprise solution. In the next chapter,
we shall focus on exploring network considerations.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations
when Implementing Asterisk

The reasons for choosing a Voice over IP (VoIP) telephone system in preference to a
traditional PBX are many, as evidenced by the growth of IP-capable PBXs in larger
businesses for some years now. One of the reasons is the opportunity it affords a
business to maximize the investment it has made in its IT infrastructure. Rather than
create and maintain one mechanism for transporting computer communications
traffic, and another for transporting voice communications traffic, a company can
simplify matters by carrying all communication traffic on a single, IP-based network.

However, putting all such traffic through one channel means that it is more important
than ever to ensure it is up to the task. The irony is that, should you have to choose
between an IP data network and an analog voice network based on stability, then
the likely choice would be the voice channel. After all, most people have higher
expectations of telephone infrastructure than of computer networks—they expect the
phone to work, every time. Therefore, over time, pure voice communication transport
mechanisms (initially analog but for some time now digital in nature) have developed
with the emphasis very much on stability and availability above all else. This has
meant that simplicity is preferable, and change is slow to occur. Of course, when
designing a network with stability as the prime goal, having only one type of traffic
to carry helps enormously.

But the voice channel is not suitable for network traffic, unless you hanker for a
return to modems on every desk. The IP-based Ethernet network, on the other
hand, is now eminently capable of being used for voice traffic. Indeed, some of the
features of IP networks, such as the ability to choose between multiple routes on the
fly, introduce elements of redundancy that have previously been difficult and/or
expensive to add to voice networks.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[34]

In this chapter, we will look at the considerations you need to bear in mind when
introducing a Voice over IP system to a company. We will discover what makes
the difference between giving your customer a telephone setup that rivals a good
circuit switched system for call clarity and uptime, while improving the features
and capabilities many fold. After all, most people will not judge your shiny new
phone system a success if they cannot simply pick up the phone, dial a number,
and have a conversation.

Centralized and distributed installations
Let's start with a brief definition of centralized and distributed installations. A
centralized installation (sometimes called a "System" installation) is where there is
a physical installation of Asterisk onsite, and by that we mean connections from the
phone are on a high speed network (Cat5 and so on) where bandwidth and latency
should not be an issue. A distributed, or hosted installation, is where the end user is
using a remote server to handle the PBX functions. Typically, such installations have
a small number of IP phones/adapters onsite, for instance where a small remote
office is required to connect to the company's centralized PBX installation. This term
is also used to describe situations where the customer doesn't have a PBX of their
own, and rents PBX services from someone else.

Centralized installations
With the local PBX setup, which is a centralized installation, unless you have
major problems with your LAN there should be no issue with communication
between endpoints, such as handsets, and the PBX. If you find that handsets are
losing connectivity, then you need to start investigating why this is the case before
you proceed any further with implementing or enhancing the system. Otherwise
inefficiency of the network is going to cause you a multitude of issues further
down the line.

Distributed solutions
We're assuming here that you're going to be running an Asterisk installation at
some central site and servicing the remote phone's requests. This may be a billable
service you are supplying or a centralized system at your customer's premises that
is servicing multiple locations.

With such a setup, a major concern is bandwidth, particularly if you have quite
a large number of extensions on a site with no PBX. The reason for this is simple,
each call in a hosted environment, whether internal or external, will be required to
traverse the WAN to the central PBX. Indeed, internal calls in a remote office are a

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[35]

double whammy, as they are routed via the WAN to the PBX, and then routed back
to the same office! As a rule of thumb, it is worth seriously considering moving away
from a hosted setup if an office contains more than 50 or so extensions. Although this
can come down significantly if available bandwidth is quite limited or internal calls
are higher than one would normally expect for an office of that size. The good news
is that, for a smaller office, the hardware specification required to run an Asterisk
server capable of handling the lower call volumes is modest indeed.

Latency and jitter
With any telephony system, bandwidth will determine the maximum number of
concurrent internal and external calls that can be made. However, bandwidth is
far from being the only consideration, irrespective of whether your installation is
centralized or distributed. The latency characteristics of the circuits, LAN, and
WAN, will dictate how well those calls get carried, and how the quality of those
calls is perceived.

Latency is the amount of time a message takes to traverse a system.

There are many factors that can influence latency including processor speed,
available memory, disk spindle speed, and so on. However, in virtually all hosted
installations communication circuits is the defining factor. When there is a limited
amount of latency that a commercial system can bear, choosing the most appropriate
circuit provider is vital. In fact, choosing a circuit with low latency is arguably
even more important than reliability, as it is easier to introduce redundancy to
communications circuits based on availability (if circuit A is down switch to circuit
B) than it is based on latency (if circuit A is showing high latency switch to circuit B).

Asterisk as a PBX also copes much better than phones with high latency, and has
mechanisms to help, such as the qualify= and qualifysmoothing= entries in
sip.conf and iax.conf, which ensure that endpoints are pinged by the server
periodically to check that they are still available.

In larger organizations, care should be taken with the use of
qualify=yes as it tends to ping all the endpoints at the same time,
generating a temporary packet "storm". If endpoints de-registering
is an ongoing issue, and your endpoints have the facility to generate
their own registration "keep-alive" traffic, then that is a better solution.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[36]

As a result of these measures you should only have audio delay and/or echo to
worry about, and the latency mentioned above will be the likely cause of that.

You can perform a quick audible echo check by using the Echo()
dialplan application in Asterisk like this:

exten => *77,1,Echo()

This will allow anyone that dials *77 to hear any echo, as their audio
is fed straight back to them.

It is also worth mentioning jitter in relation to circuit quality. Whereas latency is the
delay between a message being sent from one side of a circuit and received at the
other, jitter refers to how consistent this delay is.

Jitter is the variation in the time between packets arriving, and can
be caused by network congestion or changes to the route traversed
by concurrent packets.

So while you can measure latency in terms of a single packet traversing a circuit,
you need to measure jitter over time, to see just how consistent that delay is. A
low-jitter circuit will tend to deliver packets in pretty much the same order they
are transmitted. If jitter is high then packets will start to arrive out of order, with
the result that the audio will start to distort.

To illustrate latency and jitter, have a look at the sample graph that follows:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[37]

As you can see, the latency over time is consistently between 15 and 25 ms, which
for a WAN is not at all excessive. However, it is far from being a smooth graph, and
in real life such "jitter" on a circuit would result in a significant deterioration in the
quality of the transmitted audio as many packets would be delivered out of order
to the endpoint.

Bearing latency and jitter across a WAN in mind, many companies choose to forego
the opportunity to save a few pennies by ignoring domestic-grade circuit options
(predominately Asymmetric Digital Subscriber Line [ADSL]). The major commercial
circuit providers in the UK, such as BT, Tiscali, and the likes are capable of providing
circuit SLAs that not just guarantee a certain level of availability but also provide
guarantees about latency. As always, it is worth doing your homework before
committing to a choice that can make such a huge difference to end-user perception
of the system.

There is an Asterisk dialplan called MilliWatt() which, when run,
produces a continuous tone of 1004 Hz:

exten => *78,1,MilliWatt()

When listening to this tone, distortions or breaks can be an indication that
jitter is present and should be investigated. The likely cause will be the
LAN/WAN infrastructure between the PBX and endpoint.

Unfortunately, in any call that terminates outside your company, you only have
control over part of the picture. Once the call traffic leaves your system you are
at the mercy of the Internet, and the other party's system. If they are still stuck in
traditional analog telephony land, then latency and jitter at their end is likely to
be low and any problems are probably yours. If they are enlightened VoIP users,
then excessive latency or jitter may be down to their LAN/WAN, the Internet, or
your LAN/WAN. So you need to make sure your house is in order before you start
pointing fingers. However, if you have set up your system with low latency and
jitter as a priority, and you run regular checks to make sure that those latency targets
are being met, then you should be able to sleep easily. Indeed, having carried out
the necessary investigations, research and tuning to ensure yours is a low-latency,
low-jitter Asterisk installation, this could be an opportunity for you to share your
knowledge, for an appropriate fee of course!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[38]

So how do you identify and address these issues? On an Asterisk server, you can get
a good idea of the latency between hosts and peers by running the cli commands
iax2 show peers or sip show peers—as long as you have qualify=yes in the
peer profile. On the PBX CLI type:

iax2 show peers

Name/Username Host Mask Port Status
IAXTrunk1 217.14.138.130 (S) 255.255.255.255 4569 Unmonitored
201 192.168.10.201 (D) 255.255.255.255 4569 OK (4 ms)
IAXTrunk2 (Unspecified) (S) 0.0.0.0 4569 Unmonitored

3 iax2 peers [1 online, 0 offline, 2 unmonitored]

iax2 show peers (above) lists a number of iax2 trunks (status Unmonitored) and
an iax2 extension. The extension is showing a delay of 4 ms, which is indicative of
an extension on the local LAN (which this is). On the PBX CLI type:

sip show peers

Name/username Host Dyn Nat ACL Port Status
SIPTrunk1 217.10.79.23 N 5060 OK (79 ms)
SIPTrunk1 217.10.79.23 5060 OK (79 ms)
251/251 192.168.10.201 D N 5060 OK (54 ms)

sip show peers (shown above) also shows registrations of both trunks and
extensions. In this case, we can see that the local extension 251 is showing a delay
of 54 ms, which is high for a device on the same LAN and should be investigated.

The SIP delay time is actually the time taken by the device to respond to a
notify command rather than just a ping response, so can be affected by
processing time on the device.

If all devices on the network support ICMP, and I would certainly recommend that
you allow ICMP internally, then ping can also be used on the server to verify this
information. If the ping delay is similar to the delay shown in the commands above,
then you have a latency issue on your LAN/WAN. If the ping command is much
lower, then the problem is likely to be with the device itself.

Tracking the cause of latency issues, particularly in a distributed environment, can
be greatly assisted by the use of the tracert and tracepath commands. If a packet
has to pass through a number of routers and switches to get from server to device,
these commands will give you an indication of how long each step takes. It can
even reveal that unexpected routes are being traversed. The commands are virtually
synonymous, so use whichever you prefer.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[39]

Jitterbuffer
If you wish to look at the latency and jitter information for an active IAX2
(Inter-Asterisk Exchange) call then you can use the iax2 show netstats command,
which shows the latency, jitter, and lost packets for all active IAX2 calls. This
command assumes that you have enabled the Asterisk jitterbuffer on the IAX2
channel. The jitterbuffer is a mechanism for dealing with excessive jitter on a
channel. Up to version 1.4 of Asterisk, the jitterbuffer only worked on IAX2 and ZAP
channels, but from 1.4 onwards, it will also work with RTP channels such as SIP
and H.323. The jitterbuffer works by buffering incoming packets, examining their
timestamps and, where possible, re-ordering them so that they are delivered to the
endpoint in the right sequence.

Jitterbuffers work best as near to endpoints as possible. If an
endpoint has its own jitterbuffer capability then that is usually
preferable to it being carried out on the PBX.

To enable the Asterisk jitterbuffer for a SIP channel, for example, you should add the
following lines to the [General] section of your sip.conf file:

jbenable = yes|no (Enables the use of a jitterbuffer on the receiving
side of a SIP channel.)
jbforce = yes|no (Forces the use of a jitterbuffer on the receive side
of a SIP channel. Defaults to "no".)
jbmaxsize = Number (Max length of the jitterbuffer in milliseconds.)
jbresyncthreshold = Number (Jump in the frame timestamps over which
the jitterbuffer is resynchronized. Useful to improve the quality of
the voice, with big jumps in/broken timestamps, usually sent from
exotic devices and programs. Defaults to 1000.)
jbimpl = fixed|adaptive (Jitterbuffer implementation, used on the
receiving side of a SIP channel. Two implementations are currently
available - "fixed" (with size always equals to jbmaxsize) and
"adaptive" (with variable size, actually the new jb of IAX2). Defaults
to fixed.)
jblog = no|yes (Enables jitterbuffer frame logging. Defaults to "no".)

Care should be taken in using jbforce, as it will introduce a delay for all inbound
traffic, whether it has excessive jitter or not. Indeed, for this reason, you should
only consider the use of a jitterbuffer at all if you are finding that jitter is adversely
affecting the quality of a significant percentage of calls. If your circuit latency is
marginal, then adding a jitterbuffer into the mix could introduce enough latency
to make echo detectable on calls.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[40]

Echo
These commands should provide you with enough information in most cases to
at least give you a head start on the likely causes of any latency issues. Thereafter
you can use commands such as sip set debug or iax2 set debug to gather more
detailed information on the fly which can then be examined in the log.

So what level of latency in a system can be deemed to be acceptable? It's well
documented that the human ear can detect delays in audio above 300 ms, so if there
is latency greater than 300 ms, the user will hear an audible delay or even an echo.
Why? Back in days of yore, telephone engineers found that they needed to feed what
you were saying back into the ear piece, a feature known as sidetone. If they didn't,
then the user would think they'd been disconnected. Of course, traditional PSTN
systems, with their inherent low latency, only had an issue when large distances
were involved. In other words, national calls tended to be fine, but international
and intercontinental calls suffered to a greater or lesser degree from echo as well
as significant delay between the transmission and reception of the voice signal. Bad
echo makes it very difficult to concentrate on a conversation.

Another downside of high latency is that not all IP phones cope well with it,
although some do better than others. For example, experience has shown Linksys
phones to be good in distributed installations. Others will fail to register overtime
and therefore go off-line. This isn't always immediately obvious, either leading to the
potential for important calls to go straight to voicemail, or even be lost altogether.

Do your homework
Coming back to the customer's network, how do we ensure that it will carry
the expected voice traffic without excessive latency or jitter, and with adequate
availability? It's difficult to guarantee a high level of network availability to a
customer without knowing what you have in the first place. While not usually
being up to the standard of voice networks in terms of reliability and call quality,
Ethernet-based IP network are so prevalent these days that many SMEs (Small and
Medium Enterprises) follow the well-worn adage that if it ain't broke then don't fix it,
even if the stability of the network is not ideal. Remember, though, that we are now
planning to introduce a system that demands the highest levels of availability. The
99.5% uptime figure that the customer might have deemed perfectly adequate in the
context of their data network, is nowhere near high enough for a telephone system,
equating as it does to 18 seconds of silence in an average hour. Even worse is the fact
that any active calls will be dropped unceremoniously.

Don't forget also that your Asterisk system is going to place new demands on the
bandwidth of your customer's network, both internally and on the route(s) to the
Internet. It is true to say that decisions on such things as the choice of codec used for

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[41]

the voice traffic will determine your overall bandwidth requirements, and it is quite
typical for these decisions to be informed by the currently available bandwidth, and
of course the cost of improving either its capacity and/or quality if required. The
work to determine exactly where this improvement is needed can actually be quite
an easy 'sell', particularly if the customer is experiencing difficult-to-trace network
performance issues. It is not unusual to unearth, say, a domestic 10 Mbps hub hidden
away under a desk, causing all sorts of network performance issues. Removing such
obvious no-no's could probably reduce, maybe even completely negate, the need for
a network upgrade.

Therefore, your first task should be to carry out an audit of the customer's network.
The extent of this audit is reliant on such factors as the customer's existing network
documentation, their budget for the new VoIP system, and their commitment
to doing whatever is needed to ensure the success of the new system. The form
of the audit can be anything from a perusal of their documentation, or a quick
visual inspection (looking for those errant hubs), through to a complete 'sniff'
of the network measuring traffic throughout. It is not unusual for more detailed
audits to be outsourced to specialist IP Networking companies that have in-depth
skills and the right equipment for the job. For this decision, there is a cost/benefit
calculation to be made that will undoubtedly vary with each customer. However, it
is perfectly possible to get adequate information that will allow you to gain a good
understanding of the customer's network throughput without outsourcing the work.
If the customer uses managed switches, then the job will be pretty easy, as virtually
all will allow you to see real-time traffic information and download that data for later
analysis. This is also true for the majority of routers, although that does rely on the
customer having access to the router interface. If the router is managed externally
then there will be a need to request the data from the service provider.

Should the customer not have a means of extracting the data from switches and/or
routers, then you will need to consider the use of network monitoring software. In the
open source world, ntop or, at a pinch, Wireshark (formerly Ethereal) can be used to
monitor bandwidth usage. In the commercial sphere, companies such as Solarwinds
and PacketTrap are just two that have established and very capable products.

While it's not essential to have the software and skills to carry out an effective audit of
a customer's network, if you're planning to offer the "complete package" then it would
be wise to develop your competency in this area to a point where you can deal with the
simpler situations. After all, if you can give an immediate overview assessment of the
quality of the network then you can only impress prospective customers. Once signed
up, ongoing network monitoring would be a useful service to offer too, as it allows you
to be more proactive. Most customers are impressed when you tell them they have an
impending problem that they were not aware of themselves.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[42]

SLAs are for everyone
The audit should be aimed at providing the customer with a roadmap to improving
their network up to agreed levels of quality, stability, and resilience. As already stated,
voice networks have an availability and quality expectation that is far in excess of the
typical SME computer network. It is not unusual for availability expectations to be
five nines (99.999%), and for the supplier (yes, that's you) to provide a Service Level
Agreement (SLA) with penalties if that figure is not achieved.

Some suppliers fight tooth and nail to reduce that SLA figure, but there is no reason
to do so as long as you realize they can be a means to gain agreement on who
is responsible for which part of the overall system up front, and might possibly
differentiate you from the competition if you are in a commercial situation. As long
as both you and your customer, whether they are internal or external, are being
realistic, there is no reason why you cannot specify that certain preconditions are
met before such an SLA can be offered, such as a certain level of bandwidth and
latency across the network. You would also need to agree on the line of demarcation
between "your" part of the system (such as the server, phones) and the customer's
part (such as the underlying network) once any initial implementation work
has finished and the enhanced network has been handed over to the customer's
operations and maintenance team. But all such discussions should be approached
with a view to the ultimate objective. After all, the goal for both sides should be to
end up with a great phone system.

Achieving the goal
By now, you've probably agreed with the customer that their network needs work
to achieve the agreed service levels. Let's have a look in a little more detail at how
that network should look, bearing in mind all the time that the final product will
be unique for each customer, given their different needs. Almost always, though,
the emphasis will be on making improvements to achieve higher levels of quality,
stability and resilience. Here we will look at what is required to achieve the required
quality standards. Chapter 7 will explore the topics of stability and resilience in
more detail.

In IP networks, quality is usually synonymous with dropped packets, or more
accurately with the lack of dropped packets. Traffic across an IP network is not
sent in a continuous stream, as in an analog voice network, but rather packaged
up into discrete units and sent out into the network with a destination address as
part of the package. As suggested by the terminology used, it is not dissimilar to
sending packages by post, although in the network each package is pretty much the
same size, so larger items are broken up before being sent and reassembled at the
destination. It's a bit like getting your flat-pack furniture piece by piece.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[43]

Many things can cause these packets to go astray, but the IP protocol has a
built-in mechanism (TCP or Transmission Control Protocol) for recognizing this
has happened and requesting a resend of the package. This is achieved by including
a checksum with each package to ensure that its data is received intact, and by
acknowledgement of each package being sent back to the transmitting node. TCP
is used for quality-sensitive data, that is, data that requires all the packages to be
reassembled if it is to make sense. This is because there is no significant "storage
area" for packets on a network, they travel at a certain speed and if they can't be
dealt with inside a predefined time, then they are dropped.

For most types of traffic re-sending is usually very effective. After all if your 20 MB
file download is delayed by a fraction of a second while a package is re-sent then you
probably won't even notice. However, there is an appreciable amount of extra data
and traffic generated, which can cause problems in networks that have a time-critical
quality requirement, such as voice networks. Therefore, an alternative protocol (UDP
or User Datagram Protocol) is used for voice and other "streamed" traffic, as there is
no significant loss of perceived quality if small numbers of packets go astray between
source and destination. The problems, such as latency and jitter, arise when larger
amounts go missing in action.

Within company IP networks, dropped packets typically start occurring when
traffic levels get too high. An analog voice network works by setting up a channel
with more-than-adequate "bandwidth" between the two parties that is not used by
anyone else. Think back to the old switchboard operator moving plugs around on a
board, this is exactly what she was doing. An IP network, on the other hand, works
on a similar basis to a sorting office, where everything posted converges on a central
place (the router on a network) where the address is read and it is sent along the
correct path towards its ultimate destination. However, if there are lots of letters and
packages in the system, then post boxes can overflow, pickups can be missed, sorting
equipment and people overloaded and the whole system would struggle to cope. So
it is with a computer network.

Dropped packets in a computer network can frequently be traced to mismatched
components, such as the aforementioned hub being used to allow a number of desks
to utilize a single network floor port. It's all very well specifying that your comms
cabinet be stuffed with Gigabit switches, and that all your PCs have 100 Mbps
capability, but stick a 4-port 10 Mbps hub in the middle and the PCs plugged into
it will be throttled to 2.5 Mbps or less. Then start adding IP phones on to each desk,
or using softphone software on each PC, and you can see how it all gets messy
very quickly.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[44]

At this point it is worth saying that, for a network carrying voice traffic, using
network switches instead of hubs is a no-brainer. Switches go much of the way
towards setting up dedicated channels between one port on the network and
another, and are much more effective than hubs. The price difference between hubs
and switches has reduced significantly in the recent past, removing the greatest
barrier to their adoption. If your customer insists on an SLA, you should only agree
if their network is fully switched. In fact, being realistic, you should only ever
implement a VoIP solution over a fully-switched network as using hubs will cause
you problems sooner or later by undermining any other steps you may take to
ensure high quality voice traffic.

Furthermore, at the time of writing, Gigabit switches have reduced in price to the
extent that serious consideration can be given to using them instead of 100 Mbps
switches throughout the network. After all, many new PCs these days come with
Gigabit network cards as standard, so putting 100 Mbps switches in your network
will, again, artificially throttle speeds. Be aware, though, that there can be a
significant difference between a cheaper Gigabit edge switch and a top-end Gigabit
core switch, particularly in processing speed. In most cases it's better to have a good
quality 100 Mbps core switch than a cheap Gigabit core.

It can be a big task to bring Gigabit ethernet to the desk, though, if the current
wiring is not up to scratch. Hence, should the introduction of Gigabit throughout the
network be out of scope then there is no serious need for concern. A well designed
and implemented 100 Mbps network has plenty of bandwidth for voice traffic, even
if it is not as future-proof as it might be.

Backups
One area that can cause problems is if data backups are run across the network
during working hours. You'd be surprised how many companies run their backup
routines at times when high call volumes can be expected, even during the
lunch hour. Such activities have the potential of sucking up 99% of the available
bandwidth. For this reason, it is not unusual for larger companies to route server
backup traffic over a physically separate network to guarantee that it will not
adversely affect front-office activities. For smaller companies this may be too costly
an option, so a backup "window" needs to be identified that will occur during low
call volume times.

To share or not to share
When designing your voice-capable network, one important consideration is
whether or not to carry voice and data traffic on the same network infrastructure.
In other words, should you implement a completely separate IP network for your

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[45]

phones, PBX, and Internet circuit? While there are significant benefits to doing so,
particularly in terms of assuring bandwidth for voice traffic, in general it's probably
not sensible for a couple of reasons.

The first reason covers practicality, particularly around the availability of floor or
wall network ports. As many offices were designed around the desire to have one
port per desk, it is usually a pretty disruptive exercise to increase that to two ports
per desk, as you will need to do if you are to physically separate the voice and data
traffic. The customer may also find the increased cost of switches and so on to be
quite impractical. The "two ports per desk" impracticality can be assuaged somewhat
through the use of VLANs (Virtual LANs), whereby logically separate LANs run
side-by-side on the same physical equipment. Often VLANs are implemented by
assigning switch ports into groups that allow them to communicate with each other
but not with ports in other groups.

EE

S M

C A

1 2 4 5 6 7 8

Computer

Computer

Computer

Computer

Computer

Computer

Computer

Computer

E E

Computer

Computer

Computer

Computer

Computer

Computer

Computer

Computer

3

In the preceding diagram, we can see that PCs connected to ports 1, 3, 6, and 8 on
the switch are on the same VLAN, thus they can communicate with each other
but not with any of the PCs connected to other switch ports. Be careful, though,
as port-based VLANs will ensure that each port switch will only carry one type of
traffic (VoIP or data), which will not remove the need to have two ports per desk if
complete traffic segmentation is a "must have" requirement.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[46]

There are alternative mechanisms for implementing VLANs, such as tagging traffic
based on subnet, protocol, or MAC address. All serve the purpose of separating
LAN traffic into logically separate networks on a single physical network, but as
the segmentation is not based on a physical connector (that is, the switch port) they
will allow for a desk's VoIP and data traffic to be routed over a single network port.
Most business-grade IP phones now come with a two-port switch as standard,
which allows you to plug the phone into the existing network port, and then plug
the PC into the phone. A MAC, subnet, or protocol-based VLAN will then allow
you to logically segment the VoIP traffic. The downside of this setup is that if the
phone needs to be restarted, there will be a temporary interruption of the network
connection to the PC. Make sure the customer is aware of this.

VLANs have the advantage of reserving bandwidth solely for voice traffic, while
not necessarily needing to incur the extra cost of multiple switches. This does
assume that you have an adequate number of ports free on your current switches if
you decide to use port-based VLANs. However, the cost savings are greater when
volumes are higher, as you can replace many smaller switches with fewer larger
ones. As we will see later, using VLANs can also bring some advantage in increasing
resilience to switch failure.

One interesting way around the issue of floor port availability is to use wireless
technology for desk phones. Both Wi-Fi (802.11 in its various flavors) and DECT are
gaining ground in the VoIP handset market, partly because they neatly sidestep this
concern. They also allow for mobility within the workplace in situations where that
is desirable, warehouses for instance. In a world where mobile telephony is firmly
ensconced, they do not look out of place, although moving from desk phones to
mobile handsets in some companies can still be too much of a culture change. It is
fair to point out, too, that wireless technology has its downsides, such as:

The cost of a wireless-based system will probably be greater than the one
based on desk phones.
Wi-Fi phones are currently notorious for having poor battery life.

The Wi-Fi or DECT network of repeaters needs careful design to ensure there are no
poor signal areas in and around the buildings and to ensure that seamless handover
from one base-station to another can occur. Be aware also that the choice of VoIP
codec and Wi-Fi protocol can limit the number of simultaneous calls per base station.

You can get more information on this at: http://www.oreillynet.com/
etel/blog/2005/06/maximum_number_of_voip_telepho.html

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[47]

For now, DECT technology is mature enough to warrant serious consideration,
but Wi-Fi solutions seem to retain too many issues still, although it is a rapidly
maturing marketplace.

Another area that is often overlooked is power. Perhaps it's a hangover from analog
phone days, but it's not unusual for customers to be unaware that an IP phone is
a powered device. As it is frequently the case that there are too few power sockets
for each desk in an office, use of Power over Ethernet (PoE) capable phones and
switches is worthy of very serious consideration in all roll-outs. The added cost is
only significant in systems with a small number of extensions, and even in these
cases it may well be that only certain key phones need to be powered in the event
of an outage, reducing the number of PoE switches required. By providing battery
backup for the PoE switch and other critical devices, service can be maintained for
short periods.

The other downside of completely separating voice and data network traffic is that
Computer Telephony Integration (CTI) becomes more difficult to implement. Many
IP phones these days have bundled with them software that allows for computer
integration, such as selecting a contact from your address book and clicking a
button on screen to initiate a call, or having a contact's details pop up on screen
automatically when they call you. If, for instance, a company relies heavily on its
CRM software, then such integration can save employees a lot of time and thus
provide better service to customers. Where CTI is implemented server-side, there
is less of an issue as it is relatively easy to add a network interface to the server that
bridges the two VLANs/LANs. However, you may have network security engineers
up in arms if you implement such a bridge!

Ensuring quality
Should you decide, for whatever reason, to carry voice and data traffic on the same
network, then there is one network service you should implement if you are to avoid
voice performance issues. We are assuming that you have already ensured that the
network is at least 100 Mbps end-to-end, and preferably Gigabit. However, this alone
is not enough, particularly if you are working to an SLA. Fortunately, this issue has
been recognized and addressed through the Quality of Service (QoS) protocols.

Quality of Service is simply, as its name suggests, a means of ensuring quality on an
IP network. A typical IP network will carry traffic for many different services, whether
they be very much in the background (NTP or Network Time Protocol might be a good
example of this) or quite obvious to the end user (HTTP for instance).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[48]

While most of these services can tolerate some delay as packets are re-sent,
occasionally a network may run a service that is time-critical, such as voice traffic
or streaming video. Using QoS on managed switches or routers, time critical traffic
can be given a relatively high priority so that, if bandwidth is limited, such traffic is
delivered before lower priority packets. There may also be mechanisms for allocating
a portion of the available bandwidth solely to certain services.

If you are required to offer your customer an SLA on a network that shares voice and
data traffic, then you should insist on QoS being implemented. Otherwise, the first
time a user downloads a large file from the Internet, voice quality will plummet. It
is also worth remembering that, to be truly effective, QoS needs to be implemented
throughout the extent of the route that is bearing shared traffic. In other words, there
is little point in having QoS on your LAN if, once the traffic is passed on to your
ISP, there is no QoS for the rest of the route. The easiest means of addressing this
problem is to have a dedicated voice circuit outside the LAN. For a small business
this may mean one ADSL line for voice traffic and another for other Internet traffic,
for instance.

There are two approaches to QoS—IntServ and DiffServ. IntServ allows a very fine
level of control of QoS parameters, where you can determine the quality levels for
each individual flow of traffic. IntServ requires that all routers that could potentially
carry traffic between the nodes on a network are compliant and store all the
configuration information for each traffic flow on the network. There is a significant
overhead involved with this approach as the number of nodes grows, which
obviously does not scale well to a network the size of the Internet, and so is not a
common approach for VoIP installations.

The more common QoS implementation—DiffServ—does not offer quite the same
level of control, but will scale much better. It requires all traffic to be categorized into
a number of classes, which then have the quality rules applied to them. Usually, the
classes are rated from 0 (lowest quality) to 7 (highest quality). In a router, packets
are examined to determine which class they are in, and held in one of a number of
queues until their 'turn' has come to be transmitted. This can actually result in an
increase in network traffic if too many low-priority packets are being held in queues
until they expire, resulting in the need for re-transmission.

A successful end-to-end QoS implementation requires that all routers in the path are
configured to treat each class of service in the same way. Therein lies the problem
with most commercial VoIP implementations, as it is usual for the customer to have
little or no say in what happens to traffic, regardless of which class of service it is
tagged with, once it leaves the LAN and starts traversing the ISP's network and the
Internet. It is also possible that an ISP's customers would try to gain an advantage by
categorizing all their traffic as highest quality. Therefore, most ISPs will apply their
own rules to traffic traversing their network, a technique known as traffic shaping.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[49]

As a maintenance task, it is wise to review all the classes each time you
make a significant change as the addition of another stream of traffic
into the VoIP class can have a hugely detrimental effect on call quality.

Bearing all this in mind, is it still worth implementing QoS within a LAN? I would
have to say that if you are carrying voice and data traffic on the same LAN then it
is, mainly because it will prioritize voice traffic between the PBX and the phones,
and also ensure that outbound voice traffic is presented to the ISP before less time-
sensitive traffic. In particular, it will ensure that a user downloading a large file will
not suddenly grab all the available bandwidth. But you, and your customer, should
be aware that it does not guarantee high quality external calls, it merely mitigates
some of the risks. As previously stated, a dedicated voice circuit is the easiest means
of addressing this problem (outside the LAN). For a small business, this may mean
one ADSL line for voice traffic and another for other Internet traffic, for instance.

When things go wrong
However well a network is designed, and regardless of the quality of the components,
one certainty is that somewhere along the line something will go wrong. Good design
and components may push that point back in time somewhat, but it will happen. It
might be a device on the network that breaks, it might be a cable that works loose
or gets bent, or it might be a switch port (or even a whole switch) that fails. At this
point, the time and effort you spend on developing plans to deal with such issues will
determine how badly the business is affected by the network issue. If you have no plan
then you will be launched into a frenzy of high priority activity every time an issue
occurs, however small. If you have foolishly agreed to an SLA with no provision for
dealing with such issues, then you are bound to end up breaching it.

All is not lost, however, as putting a provision plan together is basically about
applying common sense. Firstly, you should consider where you might experience
problems; the answer is everywhere, but break it down into logical areas such as
phones, cables, switches, routers, Internet circuits, PBX, and so on. Then look at
the impact to the business of a failure of a device in one of these areas, categorizing
devices into logical groups if necessary (such as reception phones, helpdesk phones,
admin phones). At this point you should have a manageable number of scenarios
that you can consider for likelihood and impact to the business.

Don't make the mistake of focusing on potential issues, rather
than looking at effects. For instance, have a plan for dealing
with the failure of a desktop phone, and then worry about what
caused the failure after the service has been restored.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Network Considerations when Implementing Asterisk

[50]

For each scenario you should then be able to discuss contingency plans with the
customer. Simple Red/Amber/Green (RAG) charts can be useful at this point to
visually demonstrate the risks that can be accepted and those that need addressing,
either to reduce the likelihood or to improve the speed of response thus limiting the
impact to the business. In general, the response to different scenarios fits well
with RAG categorization.

Red
Normally, it has a high business impact and high or moderate likelihood. Any such
scenarios should be addressed before implementation by improving the resilience of
the system through the use of failover devices or similar measures.

Amber
Typically, it has a moderate impact/likelihood, or low impact/high likelihood.
Often the best plan for these situations is to ensure the ability exists to restore service
quickly. This might involve keeping a store of replacement devices (phones, cables,
even a switch or two) or having an appropriate SLA with a service provider
(for example a 1 hour response/ 4 hour fix for Internet outage).

Green
Usually, it has a low impact and moderate to low likelihood. Rather than invest
money up front in dealing with such scenarios, customers usually prefer to deal with
them as they occur. For instance, an admin person's phone failure could be dealt with
by diverting calls to their mobile while a replacement phone is ordered, or the failure
of a switch port could be dealt with during working hours by moving the cable to a
free port, allowing you to wait until a low-usage time to swap out the switch.

Increasing resilience
Should your risk assessment highlight any "Red" risk areas, the most likely action
required to deal with that risk is to increase the resilience of your system. Usually
that means introducing redundant equipment or components to the network with
the purpose of "stepping in" in case of failure. Approaches that can be used to
increase resilience of the network and the telephone system are discussed in
Chapter 7.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 2

[51]

Summary
The success or failure of a Voice-over-IP implementation frequently relies on the
quality of the network carrying the voice traffic. That quality is usually measured
in terms of bandwidth, latency, and jitter. When implementing a new VoIP system,
it is important that the existing network infrastructure is understood, and that
any changes that need to be made to ensure the success of the implementation are
communicated and agreed early on, particularly if there is a requirement to provide
an SLA to the customer. The network is required to carry voice traffic, frequently
alongside other traffic, in a timely manner if call quality is to be acceptable.
Implementing Quality of Service throughout the network may be crucial to effective
prioritization of voice traffic. It may also be required, should the customer deem
it important, to deal with loss of components without a break in service, known
as failover. This is essentially achieved through the use of redundant equipment
running alongside the active devices. Planning and agreeing all this work up front
with the customer is essential to the ongoing success of the system.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk
In the last two chapters, we have looked at some advanced dialplan techniques, and
the means of ensuring that your customer's IP network is VoIP-ready. Spending time
and effort on this, however, is wasted if you do not consider what happens once
the call traffic leaves the customer's network. Unless you are routing calls within
the LAN or WAN, normally meaning internal calls or inter-office calls, the call will
be required to leave your control and pass to a service provider. This needs careful
consideration up front as which type of service you use, and when, will affect the
cost and quality of each call.

Using an IP-capable telephone system opens up a raft of call routing possibilities that
can easily appear quite bewildering, even to someone who has already implemented
an Asterisk-based system. However, by breaking your requirements down into
bite-sized chunks it is possible to navigate this potential minefield and ensure you
are routing all your calls effectively. This chapter explains the options available
for call routing, and suggests some techniques that can be used to improve the
performance of your Asterisk system, both in terms of cost efficiency and call quality.

Routing methods
Until the 1980s, telephony service providers were difficult to tell apart. After all,
telephony traffic was all carried the same way, using copper cables, so there was no
real need for any niche operators. Therefore, the telephony world was populated
with a number of monoliths, such as AT&T in the USA, BT in the UK, and many
others around the globe. In many countries, these providers were nationalized and
thus were pure monopolies. In countries where this was not the case, competition
was not strong and markets tended to be carved up so that monopolies or cosy
cartels were the order of the day. In the US, this was evidenced by the antitrust
case "United States versus AT&T", which in 1982 led to the breakup of AT&T into
a smaller core company and seven regional Bell companies.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[54]

Mobile telephony, introduced in the 1980s but not widespread until the following
decade, shook things up slightly. However, the massive investment required to
provide an effective service worked against independent start-ups gaining significant
market share, and the net result was that the same monoliths simply diversified into
another route to market.

IP telephony is now changing the market significantly. Suddenly it is possible to
make a phone call without touching the traditional telecoms network, although it
is true to say that the old telephone companies are still at the forefront of Internet
circuit provision services. However, newcomers do not require quite the same level
of investment to gain a foothold, so the customer is offered more choice and market
forces drive prices down and the standard of services up. There is still some way
to go, particularly as the majority of calls are required to break out of the Internet
and on to the PSTN or mobile infrastructure at some point. It should be pointed out,
though, that this is not necessarily a bad thing. The PSTN, in particular, is still a
low-cost, high-availability network.

Out of the box, so to speak, Asterisk is designed to work with IP-telephony protocols
such as SIP and IAX2. The only routing requirement once it is installed is to have a
connection to an IP network, often the Internet but not necessarily so. It is perfectly
feasible to have your Asterisk box hooked up to a private WAN with no external
routes. Your call destination options would be limited to the extent of the network,
but you'd have great functionality and call quality!

In the real world, though, people like to make phone calls outside their LAN/WAN.
One option is to set up an account with an Internet Telephony Service Provider
(ITSP), pass all outbound calls through that trunk, and let the ITSP worry about how
to route your calls. This has advantages in that it is a very simple setup (in all systems
simple is a good thing) and it is usually the cheapest means of making international
or long-distance calls. The ITSP will route the call over the Internet to a point near the
call destination, where it will break-out onto the PSTN or mobile infrastructure. In
this chapter, we want to look at adding a bit more complexity, controlled using some
of the techniques discussed in Chapter 1, so that we increase our routing options with
a view to reducing call costs, increasing resilience and ensuring quality. This means
adding the ability to route calls from our Asterisk system through to different service
providers, typically PSTN and mobile networks.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[55]

Where to start
Before you start adding new routes to your customer's Asterisk system you should,
of course, sit down and take stock of what your customer's call profile is like at the
moment. How many calls are made in a typical month? How many of them are local,
national, international? What are the destinations of the international calls (and the
national calls too if this makes a difference to the call cost)? What hours of the day,
and days of the week, experience the call volume peaks and troughs? How long does
the typical local call, national call, and international call last for? In other words, you
need to understand what is happening to the calls within your company, or your
customer's company if you are a consultant.

You should also try to gain an understanding of the costs and options available to
you from telephony suppliers. For instance, at the time of writing, a major telephony
provider was offering the following call package to small businesses with an annual
spend of over $500:

Local and National calls charged at 7c per minute
Local and National calls up to 60 minutes capped at 20c
Calls to national mobiles/cell phones up to 60 minutes capped at 50c

Of course these are headline figures and don't show such items as the per-minute
rate to mobiles/cells or any international call charges. There is also a line rental
charge to factor into the equation. However, these figures do give a flavor of the
type of deal that is available. When carrying out this exercise for real you should,
of course, see what deals are available from a number of suppliers.

Taking the example above, we can see that a customer that makes lots of local or
national calls with an average duration of 40 minutes might very well spend less
than a customer of an ITSP who offers such calls on a flat rate of 1c per minute. In
fact, until recently, it hasn't been unusual for the cost comparison between PSTN
and VoIP providers for local or national calls to come down in favor of the PSTN
provider, a fact recognized by VoIP providers who now offer similar bundles of calls
at low prices in an attempt to grab a share of that particular market sector. Offers of
unlimited national and international calls (to a restricted list of countries) for about
$20 per month can currently be found.

When carrying out these exercises, there is always a temptation to get drawn into
a "what if" discussion. "What if" the company doubles in size over the next three
years. "What if" the company's customers prefer calls to mobiles more and more.
In truth, there are any number of "what if" questions. However, it is difficult to
make an informed decision when enough detail is not known. Bear in mind that
altering the profile of your call routes in Asterisk is not an onerous task, so changing
circumstances can be catered for as they occur.

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[56]

Thus, by now you should have a good idea of how many calls the company makes,
the main destinations and the times of the day, or night, at which they are made.
With this information you can decide what external routes you need to consider.
Usually they will be a combination of the following:

Internal same site
Internal other site
Local land line
National land line
International land line
National mobile/cell
International mobile/cell

Internal calls
These calls are by far the easiest to route. For internal calls in the same office it is
simply a case of using the LAN and we have already discussed how to ensure your
LAN is up to the task in Chapter 2.

If you are making inter-office calls, then the best route depends on the quality of
the company WAN, if there is one. A WAN with good bandwidth between offices
can have a single central Asterisk server handling all the extensions. It's a simple
setup, and all resilience efforts can be focussed on a core server. However, losing
connectivity to an office will mean that all telephone services at that office are lost.
This risk can be alleviated by introducing resilience into the WAN links too, a
measure which increases ongoing circuit costs.

Single Central PBX

Branch

Branch

Branch

Branch

Branch

WAN

Head Office PBX

Internet

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[57]

As we can see from this diagram, traffic from the branch office traverses the WAN to
reach the PBX at the head office where it will be routed via the Internet if appropriate
(for example if the call is external and to be routed via an ITSP).

Alternatively, a multi-server setup can be implemented where each office has a local
Asterisk server, which can route all outbound calls via the Internet and/or PSTN if
connectivity to the central Asterisk server is lost.

One PBX per office

Branch

Branch

Branch

Branch

Branch

WAN

Head Office PBX

Internet

In this diagram we can see that each branch office now has a PBX. Calls can now be
made internally in each office whether or not the WAN link is available. Call traffic
can be routed from PBX to PBX, or as shown with the bottom-right branch, directly
from their PBX to the Internet if needed or desired. For internal calls, this can be
used as a failover route if the WAN circuit is lost. For the sake of clarity the link to
the Internet for each branch has been omitted, but it can be assumed that each office
could, and probably would, have an Internet circuit in addition to a WAN circuit. Of
course, the WAN link can utilize the Internet circuit, with WAN traffic traversing a
VPN tunnel.

So far we have assumed that the customer will have a robust WAN in place. A
company with a poor or non-existent WAN will be best served either by routing call
traffic through the Internet to a central Asterisk server, or by installing an Asterisk
server at each site. A consideration as to which solution suits the company's needs
best is the route that incoming calls take. If there is a central DDI for all offices then
a central Asterisk server is an obvious solution. If each office has its own number(s),
then there may be an argument for having servers on site. Either way, to secure
traffic, a site-to-site VPN service should be considered.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[58]

Companies with a high number of internal calls across offices may also need to
increase the bandwidth at each office, or install circuits dedicated solely to voice
traffic. As discussed in the last chapter, this is also a good way of ensuring other
Internet traffic does not steal bandwidth from the voice traffic.

The best solution really depends on the customer's needs and budget, and quite
often is a mixture of both, whereby large branches may have their own PBX and
small ones utilize a PBX that resides in another office.

Local calls
It's not unusual for VoIP providers to struggle to provide value for money over
a traditional PSTN service for local calls. In many markets there has been keen
competition in this area that has resulted in a reduction of charges to the point
where many very competitive deals can be found. For customers implementing an
Asterisk-based system making many calls to local landlines, the answer frequently
is to break out on to the local PSTN immediately rather than route via an ITSP. Of
course, the calculation should be made in each case, as at lower volumes the cost of
line rental can become significant. For instance, a company that tends to make many
local calls during a short period of time (either a small part of every day or during a
short period of each week or month) may end up needing a high number of landlines
for a relatively small overall number of calls.

For customers where using PSTN for local calls makes sense, there are a couple
of options. Probably simplest is to fit one or more PCI cards with either analog
or digital interfaces into your Asterisk server(s). Conversion from IP to analog or
digital is carried out by the server, increasing the use of its processing resources but
removing such traffic from the LAN. Alternatively, PSTN gateway devices exist that
sit on the network and interface with analog and/or digital PSTN lines, presenting
the traffic to the Asterisk server, usually in the form of SIP trunks. They carry the
advantage that they will not fail should the server do so. In this fashion, they can
form an important part of resilient solutions.

Integrating Asterisk with analog and digital PSTN lines is discussed in detail in
Chapter 9.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[59]

National calls
The solution for national calls to landlines follows the same decision process as for
local calls to landlines, although of course the numbers will be quite different. Whilst
PSTN providers will tend to charge more for these calls, ITSPs are more likely to
have a flat rate for local and national calls, or indeed bundle them into an attractive
package. Therefore, you may find that routing via your ITSP becomes a more
attractive option in this case. This should have the knock-on effect of reducing the
number of PSTN lines required as a whole, saving online rental charges.

An area not yet considered is that of calls to mobile telephones (cell phones). ITSPs
and PSTN providers have tended to exclude these calls from bundles, although as
we can see from the earlier example, this situation is changing. However, for the
best deals on calls to mobiles you frequently have to look at the mobile providers
themselves. It is typical for a mobile provider to offer a large amount of included
call-time for a relatively modest monthly fee, bringing the cost per minute down
to 2 or 3 times the cost of a landline call.

With cost differentials like that, it frequently makes sense for customers to consider
routing calls to mobiles directly onto the mobile network. For smaller companies,
the means of achieving this is through the use of GSM gateways. Companies with
high volumes of calls to mobiles have other options, such as a direct circuit to the
mobile provider. There are many different types of GSM gateway, some designed to
integrate with traditional analog PBXs, and others that are aimed solely at the VoIP
age, presenting the GSM channels as SIP trunks. They also vary in size from those
that will accept a single SIM card to rack-mounted devices that will take dozens or
even hundreds.

For an even smaller implementation, it is possible to avoid the cost of a GSM
gateway by use of the chan_mobile channel driver (see: http://www.chan-
mobile.org/ for more information), which is a third party add-on to the standard
Asterisk package. The channel driver allows the use of mobile phones as FXO
devices, connecting to the Asterisk server through the use of Bluetooth. This driver
also allows a Bluetooth headset to act as an FXS device. It is difficult to recommend
this solution for use in a commercial environment, though, reliant as it is on the
proximity of a mobile phone to the server and Bluetooth as the communication
medium. This is especially so given that the one-off cost of a dedicated gateway
device can be under $100.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[60]

International calls
Traditionally, international calls are where VoIP has provided significant and
obvious cost savings over PSTN and mobile telephony. The continued popularity
of Skype in a domestic environment, and in many commercial environments too,
as a low-cost option for international phone calls is testament to the acceptance of
VoIP as a mature solution in this area. Indeed, it can be said that Skype has done
more to promote the use of VoIP across the board than any other product. As an
Asterisk enthusiast or professional, it will no doubt have changed many of your
initial conversations with potential VoIP users from an argument about the virtue
of VoIP in general to a comparison of Asterisk with Skype. As a result, you are
almost certainly au fait with the reasons for choosing a standards-based system over
a proprietary one, and for giving options over choosing the most appropriate route
in the background against making that choice overtly.

Back, though, to routing international calls—the choice when configuring your
Asterisk server tends to be between different ITSPs, depending on which country
you are calling. For many customers there is quite a limited list of countries to which
they place significant volumes of calls. Sometimes you can find an ITSP that gives
competitive rates for all these countries, in which case your international routing
is relatively simple. In other cases you may find that using two or more ITSPs are
necessary to gain the maximum call savings. From a routing perspective, this is
obviously more complex. However, it can make it easier to increase resiliency,
allowing you to failover to another ITSP if your preferred option is not available for
calls to a certain country.

Occasionally, if many calls are made to a less than popular destination for VoIP
traffic, it can be more cost-effective to use the PSTN in combination with calling card
providers. This usually requires that an account be set up with the provider, then a
prefix be placed before the dial string to inform the PSTN provider to route the call
appropriately. All this can, of course, be carried out relatively easily on your Asterisk
server, although in a commercial environment it is strongly recommended that some
measure of confidence in the long-term viability of the service provider be sought.

Routing international calls to mobiles/cellphones is, at the time of writing, almost
invariably cheaper through an ITSP due to the relatively high charges placed on
international calls by mobile providers. In Europe, these charges have come to
the attention of the EU and the providers have been obliged to reduce the charges
somewhat. However, compared to landlines and VoIP, mobile telephony remains
a much higher cost option outside of the call time bundled into contracts, and
international calls are invariably excluded from those attractive bundles. Hence, it is
often cheaper to route these calls over the Internet or the company WAN, and then
break out into the local mobile network. If the company has a local office then it can
be effective to install a local GSM gateway, depending on such considerations as
network bundles, cross-network charges, and so on.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[61]

Alternative options
Of course, as more and more companies and individuals utilize VoIP telephony,
an alternative to breaking out onto PSTN evolves. To illustrate, consider this
hypothetical example. Company A, in the UK, has invested in an Asterisk PBX
in order to reduce call charges and introduce functionality beyond their previous
telephony system. They have a supplier in the US, Corporation B, who also has an
Asterisk system for pretty much the same reason. They both use ITSP's to route their
international traffic, although they do not use the same ITSP.

Most often, calls between A and B would be routed as follows:

A → ITSP → PSTN → ITSP → B

But the break out to PSTN somewhere near B only results in the call being routed
to B's ITSP before hitting B's Asterisk server. Far more sensible, and effectively free,
would be to route as follows:

A → Internet → B

No call charges, and a minimum of conversion—one means of achieving this would
be to trunk the Asterisk servers together, and for companies that have a close
working relationship, this is very viable. A, knowing the extension number of a
contact at B, can simply dial a prefix that uniquely identifies the call as being for a
contact at B, followed by the extension number, and the call is routed over the trunk
without touching an ITSP or the PSTN. For a more detailed look at how to set this
scenario up, have a look at the following article on the voip-info.org web site:

http://www.voip-info.org/wiki/view/Asterisk+-+dual+servers

The problem, of course, is in scaling this solution up. As company A grows, it will
have close relationships with more and more suppliers and customers, and so
will want to route calls to them without incurring call costs too. From an Asterisk
setup point of view, this is manageable for a while, but there is also a need for
the companies involved to share internal extension lists and so on. Additionally,
this works best if both companies are using an Asterisk PBX, which is a laudable
ambition but unfortunately does not reflect the reality. However, any PBX that
allows you to set up a SIP trunk (or even better an IAX2 trunk) should be able to
connect over the Internet to an Asterisk PBX.

Luckily there are a couple of other options for routing inter-company calls via the
Internet alone that do not require them both to be Asterisk systems, or even for either
to explicitly define the other in their configuration.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[62]

ENUM
ENUM is a means of translating a phone number into an IP address that your
Asterisk server will recognize and can use to route calls directly over the Internet
to another VoIP-capable PBX. It works using the same technology that translates a
URL typed into your web browser into an IP address that identifies the location on
the Internet of the web server. That service is, of course, the Domain Name System
(DNS). For ENUM to work, a company needs to define its public phone numbers
as it would a URL, linking them to the public IP address of its PBX. You can, and
should, also define the protocols accepted by the PBX (for example SIP, IAX2).

DNS registration can be carried out internally or with an external registration
authority such as e164.org or e164.arpa (ENUM DNS zones are usually referred
to using the e164 prefix as e164 defines how and by whom telephone numbers are
assigned). The roll-out of ENUM across the globe is progressing, albeit quite slowly,
so there may be a local ENUM registrar for your region or not. If your intention is
to use ENUM as a central store of outbound routes to external PBXs, and you are
not concerned about allowing others to connect to your PBX through the Internet,
then internal DNS makes sense. However, enlightened suppliers and customers will
appreciate a public listing.

Asterisk allows you to define multiple ENUM lookups, so you can check internal
DNS zone(s), followed by one or more external ENUM DNS zones. Although
there is an argument for doing a local ENUM lookup last, just in case you define a
catch-all local entry which will cause the ENUM lookup to fail before reaching the
public zones.

Public DNS

NAPTR Record

2

3

1.2.3.4.5.6.7.9.4.3.e164.arpa

1 +34 987654321

Subscriber A PABX PABX

4

Subscriber B

P zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ociaP zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ocia

P zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ociaP zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ocia

P zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ociaP zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ocia

P zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ociaP zuctrat uanoaagoiendogaujdfleripqjnaoinkrjoabncnojebaes qwnfjbhaqnqikACVbc iaiuhi vi auifiHIDGIjn ocia

ll
ll

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[63]

The preceding diagram illustrates how ENUM works by giving an example:
Subscriber A sets out to call Subscriber B.

1.	 The User Agent of an ENUM-enabled subscriber terminal device, or a PBX,
or a Gateway, translates the request for the number +34 98 765 4321 in
accordance with the rule described in RFC 3761 into the ENUM domain 1.2.
3.4.5.6.7.8.9.4.3.e164.arpa.

2.	 A request is sent to the Domain Name System (DNS) asking it to look up the
ENUM domain 1.2.3.4.5.6.7.8.9.4.3.e164.arpa.

3.	 The query returns a result in the form of so called Naming Authority Pointer
Resource (NAPTR) records, as per RFC 3403. In the previous example, the
response is an address that can be reached in the Internet using the VoIP
protocol, SIP per RFC 3261.

4.	 The terminal application now sets up a communication link, and the call is
routed via the Internet.

Basic ENUM Lookup: See http://en.wikipedia.org/
wiki/Telephone_Number_Mapping

RFC 3761: See http://tools.ietf.org/html/rfc3761
RFC 3403: See http://tools.ietf.org/html/rfc3403
RFC 3261: See http://tools.ietf.org/html/rfc3261

To use ENUM for routing calls from your Asterisk server, ENUM simply needs to
be defined as a trunk. As routing calls via ENUM is effectively free, you may want
to set this up as the first route tried for all calls to landlines. When Asterisk attempts
to route calls via ENUM, a DNS lookup of the phone number is made, and if that
returns an IP address and protocol, then an attempt is made to place the call via that
route. If the lookup fails then the call should failover to the next route.

exten => S,1,Set(enumresult=${EnumLookup(${EXTEN})})
exten => S,2,Dial(${enumresult}) ;; lookup was successful
exten => S,3,Congestion
exten => S,52,Goto(${enumresult}|1) ;; got a TEL record, so forward
exten => S,102,Congestion ;; lookup failed

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[64]

Within the ENUM DNS records, it is possible to have multiple destinations, as is the
case with MX records for emails. Therefore, if the first destination fails, then the next
can be tried, and so on. This is quite an elegant means of implementing a simple call
forwarding solution.

2. Request the DNS to lookup
records to:
1.2.3.4.5.6.7.8.9.4.3.e164.arpa

User offline

Dialed subscriber unobtainable

Voicemail message5. The user terminal devices
are polled sequentially one
after the other

1. VoIP user dials:
+34 98 765 4321

3. Response:
NAPTR for VoIP
NAPTR for telephony
NAPTR for email

4. Selection of the appropriate
NAPTR records according
to:
- Order
- Preference

DNS

This figure graphically represents call forwarding using ENUM.

DUNDi
DUNDi (Distributed Universal Number Directory), devised by Mark Spencer
of Digium, avoids the use of a centralized DNS registry for ENUM records by
employing peer relationships in order to share dialplan information. In order to
get over the lack of a single (or at least a very small number) point of reference for
addressing information, DUNDi allows a PBX to query peers to see if they have the
address information of the server hosting the required telephone number. Should
the peers not have the information, they can query their peers, and so on until either
the information is retrieved or the process fails. That failure can be due to running
out of peers or by hitting the TTL, which is the number of iterations of the whole
process (for example, a TTL of 2 for a particular query allows the peers of peers to be
queried, but no further).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[65]

Using DUNDi in preference to ENUM has been compared to asking friends and
colleagues for information instead of looking up a central information repository
such as a directory. The first time you ask a question, you may get a quicker response
from a directory (ENUM), as your friends/colleagues (DUNDi) have to ask their
peers if they don't know the answer themselves, and those peers may have to ask
others. However, the advantage of this approach is that once a question has been
asked and the answer found, it is then "remembered" so that subsequent requests
for the same information can be answered directly.

DUNDi-capable servers cannot do very much in isolation, so an explicit peering
relationship with at least one other DUNDi server is needed. Public/private keys are
used in the peering process, generated using the ASTGENKEY command. Each DUNDi
server can choose which context(s) it advertises, allowing it to share all or a subset
of its numbers with other DUNDi peers. A detailed description of how to set up a
DUNDi peering arrangement between two boxes can be found at the following URL:

http://www.voip-info.org/wiki/view/Asterisk+DUNDi+Call+Routing

Once you have your peering arrangement in place, you can test it using the following
CLI commands:

DUNDi show peers

DUNDiLookup number@context bypass

The first command will show the status of the peer(s) you have set up. The second
will attempt to locate the specified number in the specified context (bypass ignores
the cache, allowing you to determine if the number is currently available). If a route
is found, you will get a response similar to this:

1. 0 IAX2/priv:ByWFbOGKgGmZbM43BJHSZw@192.168.1.2/301 (EXISTS)
 from 00:0c:29:d2:d8:ec, expires in 3600 s
DUNDi lookup completed in 113 ms

The response consists of 6 parts:

1.	 IAX2: The communication protocol.
2.	 priv: The context.
3.	 ByW[...]HSZw: The secret key of the PBX, used to redirect you to ext 301.

This key changes on a regular basis to aid security.
4.	 192.168.1.2: The PBX's IP address. Normally this will either be a domain

name or a public IP address.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[66]

5.	 301: The extension, which may differ from what you requested as the other
party may translate an external extension number to a different internal one.

6.	 EXISTS: This number is being advertised by the PBX. This should not be
taken as a guarantee that the extension is available as the PBX could advertise
more extensions than are actually reachable.

More information on DUNDi, including white papers and best practices, can be
found at the DUNDi home page:

http://www.dundi.com/

It is worth remembering that DUNDi and ENUM can easily co-exist side-by-side, as
they are different mechanisms for achieving the same goal, which is to place a call
to another organization across the Internet. For most external PSTN or VoIP calls
you will probably want to interrogate DUNDi and ENUM for possible routes before
using trunks that will incur a cost to the customer. This brings us nicely to the subject
of how to implement such a routing strategy.

Types of routing
Once you have worked out the call profile, done the calculations to determine
the best route for each type of call, purchased relevant gateways, installed and
configured them, then you then need to set up the routing within Asterisk. With
routing beyond the simple "take all outbound calls and send them through this
trunk" it can be easy to tie yourself in knots. Where you have identified different
routes, and therefore different trunks, for the types of calls already mentioned,
perhaps with a different route being used depending on the time of day, then it's
all too easy to end up with a hugely complex pile of virtual spaghetti.

It is recommended that, before any work is done on the Asterisk server, a lot of
planning is carried out in close conjunction with the people who will end up using
the server. As always, every implementation is unique, but certain rules of thumb
should help keep the routing relatively clear and concise while still achieving the
goal of minimizing call costs. Bear in mind, though, that it is more important for the
system to place a call first time, every time, than to save a fraction of a penny, cent,
zloty, and so on. If in doubt, keep it simple to begin with, prove that it all works, and
increase complexity in manageable steps.

The general principles that should apply regardless of complexity are:

Never have a single route for any one type of call. If a particular trunk is not
available then you should always be able to failover to another one.

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[67]

Mix communication channels within your failover routes. Assume that any
one type of route can fail, in particular, you should always assume that
it is possible to lose Internet access and thus, connection to your ITSP(s).
Therefore, failover to PSTN or mobile should be built-in.
The 80/20 rule applies to cost/complexity ratio too. You will get 80% of your
cost savings for 20% complexity and effort. Really think about whether the
extra 20% of cost savings is worth the extra complexity, with its increased
maintenance effort and likelihood of failure.
Standardize as much as possible. If you have a lot of potential outbound
routes, then it is worth considering having one or two primary routes for each
type of call, and using one or two standardized failover routes. For instance,
you might decide that whichever route is preferred for a particular type
of call, if that is not available then you will execute a standard subroutine
that will, in turn, try to route the call via an ITSP with reasonable charges to
national and international destinations, then PSTN. This gives you one place
to go to maintain your failover routes.

Routing techniques
Within Asterisk, as we saw in Chapter 1, call routing is achieved by matching the
destination number against a mask. This relatively simple process can, with a bit
of thought, achieve quite complex routing results. In general, the best principle to
follow when setting up routing masks is to start with the obvious, simple rules, and
gradually work through to the more complex rules. For example, you may decide
that you want to set up the following routes:

1.	 All emergency numbers (such as 911, 999, 112, and so on) via PSTN.
2.	 All local calls (dial code starting 0207 or 0208, or numbers without dial code)

via PSTN.
3.	 All national calls via ITSP A.
4.	 International calls to USA/Canada (dial code starting 001) via ITSP B.
5.	 International calls to other countries via ITSP C.
6.	 National mobile calls (dial code starting 07) via GSM gateway.

Logically approached, the routing could be achieved thus:

1.	 If number is 911, 999, or 112 then route via PSTN.
2.	 If number starts 07, route via GSM gateway.
3.	 If number starts 001, route via ITSP B.
4.	 If number starts 00, route via ITSP C.

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[68]

5.	 If number starts 0207, route via PSTN.
6.	 If number starts 0208, route via PSTN.
7.	 If number starts 0, route via ITSP A.
8.	 Otherwise, route via PSTN.

As local numbers without a dial code are the most difficult to match against a mask,
it is easiest to match everything else first and leave the local numbers without a dial
code to be rounded up in the "catch-all" at the end.

Hence, in order to implement the rules described above, using macros for
code clarity, we should end up with something along the following lines in
the extensions.conf file:

;
; Send emergency numbers to PSTN
exten => _999,1,Macro(out-PSTN,${EXTEN})
exten => _911,1,Macro(out-PSTN,${EXTEN})
exten => _112,1,Macro(out-PSTN,${EXTEN})
;
; Send numbers starting 07 to mobile
exten => _07.,1,Macro(out-GSM,${EXTEN})
;
; Send numbers starting 001 to Provider B
exten => _001.,1,Macro(out-prov-b,${EXTEN})
;
; Send numbers starting 00 to Provider C
exten => _00.,1,Macro(out-prov-c,${EXTEN})
;
; Send numbers starting 0207 or 0208 to PSTN
exten => _0207.,1,Macro(out-PSTN,${EXTEN})
exten => _0208.,1,Macro(out-PSTN,${EXTEN})
;
; Send numbers starting 0 to Provider A
exten => _0.,1,Macro(out-prov-a,${EXTEN})
;
; Send anything else to PSTN
exten => _X.,1,Macro(out-PSTN,${EXTEN})
;

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 3

[69]

Note that in the final "catch all" line, we don't simply use the pattern "_." as it
matches everything, even the Asterisk special extensions like s, t, i, h, and so on.
It is better to use the pattern _X. that will match on any two (or more) character
dial-string, so long as the first character is a number between 0 and 9.

You can, of course, implement more intelligent pattern matching for this code
if so required. The use of standard macros to handle each outbound route is
recommended, though, so that you do not have to duplicate code for each rule.

The process for failing over to another channel is to use the DIALSTATUS variable, as
per the example below, which shows the possible contents of the out-PSTN macro
mentioned above. A return value of CHANUNAVAIL indicates that the channel cannot
process the call and so you should failover to another channel.

exten => s,1,Dial(${ZAP/1/${ARG1},,T)
exten => s,n,NoOp(Dial Status: ${DIALSTATUS})
exten => s,n,Goto(s-${DIALSTATUS},1)

exten => s-NOANSWER,1,Hangup
exten => s-CONGESTION,1,Congestion
exten => s-CANCEL,1,Hangup
exten => s-BUSY,1,Busy
exten => s-CHANUNAVAIL,1,SetCallerId(${CALLERIDNUM})
exten => s-CHANUNAVAIL,2,Dial(SIP/sippeer/${LOCALAREACODE}${ARG1},,T)

In this code, the call is attempted via the PSTN initially, but if that channel is
unavailable then the call is routed through a SIP channel instead. As we can see it is
a relatively simple process, but as already intimated, proper use can result in a very
resilient and frugal call routing strategy.

You could, of course, implement the failover strategy as a standard macro in its
own right if your customer is happy to have all failovers handled in the same way.
For example, regardless of which channel is tried first, failover to ITSP Provider A,
followed by ITSP Provider B, followed by PSTN, followed by GSM gateway. It is
easier to maintain than a separate failover section for each outbound route, but could
potentially cost the customer a little extra over time. However, having a separate
failover strategy for each outbound route is not very onerous to maintain and usually
makes sense for the customer.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Routing with Asterisk

[70]

Summary
Devising a routing strategy for your customer first requires that you understand in
some depth their current call patterns (local, national, international, mobile/cell, and
so on), and the options available in the local market for PSTN, mobile/cell, and VoIP
traffic. Only then can you devise a plan for an Asterisk-based system that will ensure
quality and value-for-money. It may also be that a customer with multiple sites
needs to implement or upgrade the WAN as part of the implementation, as well
as consider carefully whether they should have a single central PBX, or multiple
smaller ones.

Once all this information is known, strategies should be devised for local calls,
national calls, international calls, and calls to mobiles/cell-phones. A primary route
for each should be chosen, with failover to alternative routes in place to ensure that
calls can always be made. This can be implemented in a clear and effective manner
through the use of macros in the dialplan. Use of ENUM and/or DUNDi should also
be considered as a means of routing external calls via the Internet to avoid charges
from telephony providers (including VoIP providers). Both ENUM and DUNDi are
means of advertising Internet-enabled telephone numbers so that other subscribers
can set up a direct link between PBXs.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues
and Recording

Asterisk as a product is amazingly rich in features. If you can think of the telephony
problem, nine times out of ten you can provide a solution with Asterisk, but there a
few areas where Asterisk is less than perfect. To be fair, no product can excel in all
areas. All of them have their weak spots, and Asterisk is no different. The good news
is that there are often acceptable workarounds.

This chapter explores the call center environment. Believe it or not, using Asterisk
as a base, you can deploy a system using open source software for a fraction of the
cost of some of the commercial offerings out there with equivalent capabilities. One
Asterisk-based system that does exactly this is VICIDIAL, and we shall have a look
at it over the coming pages.

First, though, we'll examine some of the issues particular to call centers with "vanilla"
Asterisk, and then we'll explore the solutions.

Asterisk queues
Asterisk has rudimentary call queuing capabilities built into the system which
work well to a certain extent, in the fact that they are functional, albeit with limited
capabilities. If you simply want to ring a whole bunch of phones then that is what
happens. There are also the following ring strategies (from the queues.conf file):

ringall: ring all available channels until one answers (default)
roundrobin: take turns ringing each available interface
leastrecent: ring interface which was least recently called by this queue
fewestcalls: ring the one with fewest completed calls from this queue

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[72]

random: ring random interface
rrmemory: round robin with memory, remember where we left off last
ring pass

Queue gotchas
The problem is that apart from the first option, the system will only ring one phone
or agent when it encounters the others. If that phone is busy or goes unanswered,
you would have to exit the queue and do something else. You can of course use
cascading queues, but they can get messy very quickly.

Another gotcha is that if you don't set the call limit equal to one for each device,
you're going to get call waiting tones played to the agents potentially on active calls,
which is not good. And then of course you might have issues with call transfers as
you only have one channel to work with, this is also not good. On Snom phones,
you change the call waiting indication to visual only, which still allows call waiting
functionality, but doesn't beep in the agent's ear.

The final point to consider is how queue timeouts work. One might expect that if
you pass a timeout value when you call the queue function, it would exit when the
timeout expired. This appears not to be the case. The passed timeout value is only
checked once the timeout value within the queue's definition has expired. Confused?
Let's explore the issue a little deeper.

Once a call is in a queue, it only cares about timeouts set in queues.conf. Therefore,
you need to set a timeout value in each queue definition. So, if we set a value of
timeout=60, the queue application will only resurface to check the passed timeout
every 60 seconds.

The bottom line is—if you passed 30 seconds as the timeout when you called the
queue, it won't exit until one minute has expired.

A practical queue
Reading the above, you may well feel that queues are pretty constrained in their
application, however, consider this scenario—a busy executive wants any call hitting
his desk phone to ring his desk phone, and at the same time call his mobile/cell. You
might think it's easy ... we'll simply ring both the numbers:

Dial(SIP/200&IAX2/${mytrunk}/07749000001)

There is no problem if the mobile is switched on and has a signal, but if it's switched
off, guess what? It's going to go to voicemail straight away and perhaps ring the desk
phone once or twice.

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[73]

Using queues to cascade calls
In order to resolve the above situation, what we need to do is ring the desk phone
and delay the call to the mobile so as to give the executive a chance to answer the
phone on his desk (if he's there).

You could of course do this:

Exten => s,1,Dial(SIP/200,10)
Exten => s,2,Dial(SIP/200&IAX2/${mytrunk}/07749000001)

The problem with the above is that you'll get a break in the ringing, so that if the
desk phone is picked up (just as it's going to the second priority), it will result in
a dead call.

A neater solution is to use the queue application to kickoff multiple calls for
you with delays where required. Look at the following example of queues in
extensions.conf:

; Call Sales
exten => 1,1,NoOp(calling sales)
exten => 1,2,Queue(salesQ)

[Queues.conf]
[salesQ]
joinempty = yes
member => Local/*35@call_nik_mobile
member => Local/1@call_sales/n
member => Local/1@call_200/n

[..extensions.conf]

[call_sales]
exten => 1,1,Dial(${SALES},30,ortT)
exten => 1,2,VoiceMail(200@default,su)

[call_200]
exten => 1,1,wait(5)
exten => 1,2,Dial(SIP/200&SIP/201,30,ortT)

[call_nik_mobile]
exten => *35,1,wait(10)
exten => *35,2,Dial(SIP/${mytrunk}/07749600000)
exten => *35,3,Hangup()

In this example, an inbound call is routed to [salesQ].

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[74]

Within [Queues.conf], we've defined three static members to call. The queue
application executes all three of them at the same time. In essence, now we have
three independent threads running for a single inbound call.

The net result is that the phones defined in the ${Sales} ring group are called, and
ten seconds later, the extension 200 starts to ring. In the meantime, the sales phones
continue to ring uninterrupted. Finally, the mobile starts to ring.

The above shows how you can stagger calls to devices without interrupting the
ring process.

Call recording—the issues
These days when call recording is becoming a mandatory requirement for many
business verticals, Asterisk falls at the second fence. There have been some
improvements in the major version releases, but for anything over ten agents,
there are major problems.

Although there is a patch available in Asterisk 1.6, recording data is currently written
in 44-byte chunks. This is inefficient and has the following implications:

File fragmentation: Writing such small amounts of data causes
fragmentation, PC load issues, and hard drive stress. In .wav format, you're
looking at 1MB per minute, so it's easy to imagine how many disk I/Os are
going on.
Files written concurrently will be extremely fragmented.
Drive failure: Regular IDE and SATA drives are highly likely to fail with
regular call recording use due to the sheer number of head movements.

So what are the solutions? Well for a start, if you record to a RAM drive, you'll
relieve stress on the drive, and no longer suffer from fragmentation issues. You
could also use SCSI or SATA-ES drives (which offer fast rates of throughput).

Show-stoppers
Even if you resolve the above, there is still a major problem. Using the generic call
recording functions in Asterisk, recording will stop if you transfer a call! Why?
That's because Asterisk uses local channels for call transfers. These are optimized
to be destroyed when the call is transferred. When these temporary channels go
away, so does the information that monitor/MixMonitor relies on, thereby the
application terminates.

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[75]

At the time of writing, there appears no way to surmount this issue, unless you use
the native Asterisk method of transferring calls. This is done by hitting the transfer
key (normally #) as defined in features.conf, which is pretty awful as you lose the
nice transfer functionality of most SIP phones. More to the point, how do you ensure
that the operator always uses native transfers? This is pretty impossible.

Ultimately, the most efficient way to ensure reliable recording is to relieve Asterisk
of this responsibility completely. In other words, offload the recording functionality.
Unless you have a low number of recordings going on concurrently (less than 10-15),
the load on your Asterisk machine will start affecting the call quality.

VoIP recording approaches
With a packet-switched network, in other words Ethernet, the route that the voice
traffic will pass through can be very difficult to predict, especially where routers are
involved. This can cause a headache in developing a suitable solution.

Two basic approaches can be taken for recording calls in an IP environment:
passive: Here the recording solution "sniffs" for appropriate data to record.
You may have used Wireshark (Ethereal) to analyze SIP traffic. This product
passively listens for traffic on a node of the network.
active: This could be simply having a recording device in the handset wiring.
In other words, you are actively forcing traffic via a recorder.

Impact of VoIP on recording systems
Let's take a moment to look at VoIP and recording systems.

Hardware convergence
Traditionally, voice and data have had separate sets of wiring. However, more and
more commercial products now utilize CAT5 Ethernet connectivity. It's still common
to have two separate networks where two providers are involved, but it makes sense
to just have one. This is mainly because of the availability of switches with VLAN
capability, which segregates the bandwidth and ensures that an appropriate level of
bandwidth is reserved for voice traffic.

There are significant cost savings to be made by using the same connectivity
standards. Although people may baulk at the thought of wiring telephone extensions
using traditional telephony connections, running a length of Ethernet cable for a new
phone can normally be handled with existing in-house expertise, thereby eliminating
expensive phone engineer call-out charges.

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[76]

Distributed call centers
A significant advantage of building a distributed call center is that it's easy to have
personnel located in diverse physical locations, and yet be a part of the same logical
call center. VoIP releases the shackles of being tied to a monolithic system.

Apart from the obvious reduction in costs of not having to house people in a large
building with all the attendant travel, it's a fairly simple matter to make use of lightly
utilized staff as overflow call center staff, such as those that might deal with back
office matters. In these cases, recording nodes can be located in the remote offices,
and managed centrally if they are not a part of the same physical LAN.

Home working
The ideal distributed call center is the one where individual Customer Service
Representatives work from home with nothing more than a good broadband
connection. This will allow them to view the client's data on screen as well as take
the phone call, thereby removing the requirement of separate phone and data lines.

Recording could be achieved by using the local PC, but it would be even better at
the central site that allocates the calls. VICIDIAL is a good example of a system that
simply treats remote workers as long-wire extensions, and therefore captures the
complete conversation.

VoIP recording challenges
As with all new technologies, there are some technical challenges to overcome:

Routing
In order to passively capture the voice traffic, the data must be reachable. It's no
good that the recording system is listening on subnet 192.168.3.x, when all the calls
are traversing 192.168.10.x!

Therefore, you need to ensure that your recording solution can see the traffic across
all of the subnets you want to monitor. Sounds like an obvious statement, but you
need to be careful—it actually happens if you have routers and switches connecting
your subnets.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[77]

Bandwidth
Bandwidth is a valuable resource, with 100 megabit as the norm these days for
internal cabling. So, as one might expect, internal calls are run using G.711. In other
words, at full PSTN quality, ensuring excellent quality from a recording perspective.

However, what do you do about remote offices/workers that might be using
compressed codecs? You're going to have full quality on one side, but degraded on
the other.

Encryption
You can bet encryption is going to become a bigger and bigger issue, not only from a
network security issue, but also for "finger printing" recordings to ensure they can't
be tampered with. This opens up a whole can of worms that is yet to be resolved.

Solutions
While there are a number of commercial applications out there, Asterisk is all about
open source and to that end, we'll look at an open source recording solution as well.

Central site
PSTN Gateway

Call Manager

E1s/T1s

Remote site

System architecture diagram

Voice recording server

Database server

Voice recording server

SPAN
monitoring

SPAN
monitoring

PSTN Gateway

E1s/T1s

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[78]

In the above figure, you'll notice that SPAN monitoring is a key element. What is it?

A few years ago, most office devices were connected using a hub. Any traffic sent
to a port on the hub was broadcast to all of the connected devices. This would cause
congestion issues on medium to high-level usage, as you would often get collisions.
This means that the traffic would need to be resent.

The solution was the "switch". When a switch is powered on, and starts receiving
traffic, it begins to build a Layer 2 forwarding table. It stores the MAC address of the
sending device and the port that it is on, such that when traffic is received for that
device, it knows which port to pass the traffic to. This means that once the table is
built, traffic only passes between two ports and is not broadcast to all ports.

This means that traffic is sent a lot more efficiently, to the extent that hubs are pretty
much obsolete these days. The downside is that if our recording solution is plugged
into another port, it's not going to see the traffic! Enter SPAN.

In essence, a SPAN port is where all traffic is copied or reflected to a given port.
Think of the ChanSpy application in Asterisk. The conversation is going on between
two parties, but the spy application is SPANNING the traffic.

SPAN technology is now available in more and more switches, not just the high-end
Cisco devices. If you're looking to do passive call recording, you need to look at your
current switching devices.

OrecX (www.orecx.com) has been developing call recording solutions for some time.
Their solution is of a passive nature, because it literally sniffs out conversations on
the network and records them. The beauty of this approach is that there is no load on
the Asterisk server. The open source element provides the backend functionality, but
it's up to you to provide a frontend. Of course, OrecX can sell you a fully-featured
frontend, and that's how they generate revenue to continue development. You will
need to determine if the development costs of putting together a frontend outweigh
the costs of buying the commercial solution. The choice is yours. That said, if you
search for open source call recording, there's not a lot out there.

Call recording solutions sell for big numbers, and to date, it's been a fairly niche
market. However, with more regulation on the way, requiring that voice recording
becomes mandatory, you can expect to see more solutions being developed. But
don't forget that you'll need to deploy SPAN-capable switches.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[79]

Asterisk call center solutions
There are a number of solutions out there, but the most complete one we've seen is
VICIDIAL. This has been in development for a number of years now and continues
to thrive.

In an interview with us, Matt Florell, the author, was asked what drove him to write
this mammoth solution.

I started first working on astGUIclient during the summer of 2003. It was only
an end-user interface at that point to facilitate click-to-record, call transfers, call
logging, conference call handling and display of voicemail.
It was originally built so that I could get used to working with Asterisk and
the Asterisk Manager API as well as for use at a couple of client sites. Then the
astGUIclient project was soon started on Sourceforge and the code was released as
open source (GPL).
Later in the year a one-lead-at-a-time dialer component (called VICIDIAL) was
added for call center usage. This was done because a client had need for a dialer and
was very surprised by the extremely high price of dialer systems on the market and
only needed limited outbound functionality.
In 2004, VICIDIAL became the focus of the project and basic multi-line auto-dial
functionality was added. In 2005 the user interface changed from Perl/TK client-
server to PHP/AJAX web-based to allow for easier use on agent workstations.
In 2006 the predictive algorithm was added to the mix and from then on VICIDIAL
development has added more and more advanced features to the program.
Currently, there are over 1,000 installations of VICIDIAL that we know of in over
70 countries around the world and the agent user-interface has been translated into
10 languages.

This product works very well, though it's not for the faint hearted. But let's not put
you off just yet.

How VICIDIAL works
As you might expect, the system is based around a campaign. Within the campaign,
you can set various parameters such as where this is an outbound, inbound, or
blended (that is both outbound and inbound) campaign, how you want to recycle
leads, and so on. The campaign is fed by leads which are read from the database and
loaded into the virtual "hopper". A script processes this list and instructs Asterisk to
dial the number. Once the call is answered, it is passed to an available agent along
with additional data regarding the call, such as name, address, and so on.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[80]

VICIDIAL makes extensive use of Asterisk's conferencing module MeetMe. When
an agent signs on, they are joined into a conference. Similarly, when the dialer gets
through to a live customer, they are simply joined to the conference with the agent.
As MeetMe sessions can be recorded, this gets around the whole issue of losing the
recording on a call transfer as there isn't one.

The screenshot above shows part of the administrator interface. As you can see,
there are a number of agents in calls with one paused. As time goes by, the color
changes, so you can instantly see who's been on a call for a long time. The screen also
shows that there are three calls actively being dialed and one caller is waiting for a
free agent. That's not good, because after a predetermined timeout, the call will be
considered DROPPED. The regulatory authorities take a dim view of any operation
that has a high-dropped call percentage, as they are considered nuisance calls. I'm
sure you've experienced silent calls in the past, and these are caused by this type
of a situation. Fortunately, VICIDIAL is FTC-compliant and has the appropriate
mechanisms to cater for this eventuality. In this example, the dropped percentage is
2.98%. Once 3% is reached, it goes red to alert the admin that the dial rate is probably
too high.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[81]

The screen above shows a typical agent's screen on a live call. When a call is
connected to an agent, the form is populated with all of the information of the
customer. Of special note in this example are the Disposition Hot Keys. They
allow the agent to disposition a call with a single key press.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[82]

Apart from the standard screen shown previously, VICIDIAL has the ability to either
launch a web form or a script on call connect. In the above example, a script has been
launched. This can use variable substitution (also known as mail merge) to populate
the script with real time information.

Lists are the heart of the system. They are allocated to a given campaign. In the
previous screenshot, we're looking at the settings for a given list. We're shown the
totals for each disposition, how many have yet to be called, and so on. Within a

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[83]

campaign, you can set lead-recycling parameters, such that if a given number is
busy, then it can be redialed after a given preset period.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[84]

As with any system, there are a number of reports available. The previous one
shows the statistics on a particular campaign. Along with the call statistics, you
can see which agent had the most calls, and so on.

Handling inbound calls
So far, we've mainly looked at outbound call handling. One of the bug bears of
running a call center is return call backs. In the UK, those called have the tendency,
out of curiosity, to dial 1471 to call back a missed call. If you're regulation compliant,
you should be presenting caller ID on your outbound calls to allow this. The problem
is that your call center could be overwhelmed by these callers. You can take two
views on this, namely:

We don't want to be bothered by these calls
We see this as an opportunity

Either way, VICIDIAL has a solution for this. In the first instance, you can route the
inbound call to a message stating the reason for the call. In the second, you can inject
the call to the live agents.

The next screenshot shows a real snapshot of a working call center. As it's just started
up, the dropped percentage is high, but remember that the figure to aim for (3%)
is over the day. What this screen shows is that we have two agents on outbound
calls (denoted by the A) and one handling an inbound call (I), one paused, and two
waiting for calls.

The first call denotes an inbound call yet to be answered. Within a split second, this
call will be passed to one of the two waiting agents.

This example shows call handling for inbound/outbound using the same set of
agents, but you could equally have separate campaigns for in/out with different sets
of agents. The choice is yours.

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 4

[85]

Installation
As mentioned at the beginning of the section, installing VICIDIAL is not for the faint
hearted. One of the key recommendations is to build a custom kernel. One of the
primary reasons for this is to optimize Linux as a server. In other words, we don't
want to use it as a desktop machine, so processor preemption needs to be turned off,
Most distributions out of the box have the kernel built to handle both desktop and
server mode, which is a compromise. There's a whole bunch of other optimizations
listed as well, timing being absolutely essential, as we're running the Asterisk MeetMe
application which relies on a good timing source. The VICIDIAL scratch install is a
useful guide to the installation, but it needs to be read carefully. Don't try to install
the application on a remote machine unless you really know what you're doing.
Make your first installation on the machine you can lay your hands on quickly. If
you're not careful, you're likely to lock yourself out with a dead kernel. That said
there's an excellent, if lengthy, "Scratch install" document online, which will take
you through the steps one line at a time.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Centers—Queues and Recording

[86]

Timing sources
The Asterisk MeetMe application is highly dependent on a reliable timing source.
Until recently, the only viable option was to provision a Digium TDM card. Setting
aside the cost of the card, a "real" issue was the availability of a suitable slot to plug
it into. Bearing in mind that you need a server as opposed to a PC to run VICIDIAL
under any sensible load, you can find yourself restricted to using ztdummy which is
far from ideal. For whatever reason, when a Digium card cannot be used, there are
now devices specifically manufactured to supply robust timing through a USB port,
which are pretty ubiquitous on servers these days.

Scalability
VICIDIAL can be separated into three basic components—the database, the web
server, and the dialer. Smaller setups, those having less than 20 seats, can all be
run on one server. Start moving beyond that and you need to start separating those
components. As a rule of thumb, it's a ratio of 1:2:4— one database server, two web
servers and four dialers. With each dialer capable of handling 25 agents, you now
have capacity for 100 agents. Working on an expenditure of $1,500 per server, the
total hardware solution comes in at less than $10,000. That may seem a lot, but try
getting a quote anywhere near that from any of the larger commercial vendors.

Summary
This chapter has discussed an Asterisk-based call center solution (VICIDIAL)
and shown how you can build a scalable and cost-effective solution for your
customers. We also discussed some of the shortcomings of recording with Asterisk
and solutions to work around them. In addition, we also looked at the inbuilt call
queuing application, its pitfalls and limitations, as well as demonstrating how to
use queries to provide delayed/cascading ring functionality.

In conclusion, while "vanilla" Asterisk can struggle to deal with call center
environments, in a highly-tuned system such as VICIDIAL, coupled with an external
call recording solution, Asterisk can form the cornerstone of a compelling solution.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech
Technology

Telephone systems that can speak and recognize what the caller says may seem
like technology gone mad, but there are a number of compelling reasons why
such implementations may make sense. After flirting with speech technology for a
number of years, the telephony industry is now at a point where the "name dialer" is
a fairly common application. Until recently, things like automatic speech recognition
(or ASR) were the preserve of those vendors with very large R&D budgets and those
users with similarly deep pockets to buy the systems.

Once again, Asterisk has served to democratize this technology, along with many
other telephony applications, by drastically lowering the barriers to entry.

First we will consider why speech-enabling telephony applications which currently
work with DTMF might be a good idea. Following that we will identify and briefly
discuss the three main types of speech technology in abstract, before looking at what
kinds of integration are possible with Asterisk, and walking through some detailed
installation and implementation examples.

In this chapter you will learn the following:

Good reasons for speech-enabling your telephony applications
The three types of speech technology that are used in the telephony world
What to consider when speech-enabling your solution
How to painlessly add speech recognition to Asterisk
How to easily add text to speech to Asterisk
Implementation advice and tips

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[88]

Why speech-enable?
Telephony applications such as the auto attendant (or IVR) have been around for a
long time and obtaining user input through the DTMF keypad has proved successful
enough—so why go to the trouble of enabling users to say what they want rather
than "Press 1 for ..."?

Speech is one of our natural interfaces. We get a lot of training in using speech from
a very early age and, it is argued, telephony systems with a speech interface are more
customer-centric because of this. People, while conscious that they are interacting
with "a system", feel more at home having that interaction in one of their natural
modes as opposed to being conformed to the way the machine wants them to do it.

Although "warm and fuzzy" feelings for the user are important, there are also
a number of very practical reasons why deploying a speech interface with your
solution could be a wise proposition, depending on your target market in terms
of types of customer and geography.

Allowing a user to speak to a system removes the need to use a keypad, so it is much
safer for applications that may be used when people are mobile. When someone
rings to check their voicemail while driving, it is best to allow the process to be
as "hands-free" as possible. Systems like this have been in use for some time in a
number of safety-critical environments. For example, some up-market cars allow the
driver to issue basic commands by voice like "lights on". The aviation industry is also
a user of speech technology, here cockpit warnings and alerts are "spoken" to the
pilot by a speech synthesis system.

There are still countries where DTMF is not widely deployed. Some South American
countries have a large population of loop-disconnect dialing phones—and while it
is possible to detect loop-disconnect dialing, it takes a lot more resources to do that
than it does to detect DTMF, and that can make scaling an issue. In such geographies
it may be best to implement a speech-enabled system from the outset.

Speech recognition is also of great benefit to users who, for one reason or another
(visual impairment, unable to use fingers, and so on), are not able to use the
telephone keypad.

Perhaps the most compelling and practical reason to speech-enable certain types
of telephony application is the fact that you can dispense with long, multi-level
menus—"Press 1 for ..., 2 for ..., 3 for ...", then "Now press 1 for ..., 2 for ..." Hooray!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[89]

Types of speech technologies
There are three main types of speech technologies. These are Automatic Speech
Recognition (ASR), Text-to-Speech (TTS), and Speaker Verification and
Identification (SVI).

Automatic Speech Recognition (ASR)
ASR is the process of a system listening to the user speak, and then (hopefully)
coming up with the words that were spoken. There will also be a confidence score
returned from the recognition engine that indicates the degree to which the system
is sure of its guess.

Let's have a look at various flavors of ASR that are available.

Isolated Word Recognition
This is where users can only speak a single word at a time, such as "sales" or
"support" or "play" or "stop"—this type of recognition is sometimes known as DTMF
replacement, as it does not really add anything that did not exist before—it just
changes the interface by which commands are given.

Connected Word Recognition
This allows the user to speak a collection of words (usually two or three) to be
recognized. The recognizer will then analyze the utterance in order to establish
what it thinks those words were. A process known as directed dialogue is used to
help the recognizer by telling the user (through the prompt) what sort of thing they
are expected to say. An example would be <prompt> "Say the first name and the
last name of the person you wish to speak to". The user then knows the type
of thing to say. The recognizer is programmed to be looking for two words, say,
and will compare what it "hears" with a list of first names and last names, such as
David Duffett or Jared Smith. The collection of words that a recognizer is trying
to "listen out" for is called the grammar. Naturally—the smaller the grammar, the
greater the chance of an accurate recognition.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[90]

Natural Language Recognition
This describes a scenario where a user is greeted with a prompt that says something
like, "How can I help you today?" Obviously, there is no real way of knowing how
a user might respond and so the job of the recognizer is to "understand" every
word uttered and, by the use of a sophisticated algorithm, come up with an idea of
what the request is. Natural language recognition systems have been successfully
deployed but, as you would imagine, they tend to take a huge amount of time to
refine and can still be somewhat fragile.

You may have come across speech recognition software for use on desktop
computers. Let's consider, for a moment, the differences between the desktop
"dictation" scenario and the one we are really interested in, on the end of a telephone
connection, as this will help us to understand some of the challenges that we will
experience during implementation.

Desktop Speech Recognition (dictation) Telephony Speech Recognition (IVR)
Requires a period of training where the
user reads out known sentences in order to
optimize the recognition process.

Must make a "guess" the first time it is fed
an utterance—users would not expect to
have to train the recognizer.

A separate profile is created (including the
"training" process) for each speaker.

Must be speaker-independent.

Usual input would be a reasonably good
multi-media PC mic.

Usual input would be the microphone
within a phone.

Between the microphone and the
recognition software is a short cable and a
sound card.

Between the microphone and the
recognition software is the phone circuitry,
a telephone network and the interface from
that into the host machine.

The user can instantly see what the
recognizer thinks has been said (on the
screen of the PC).

The user has no way of knowing what the
recognizer thinks has been said, unless
this feature has been designed as a part
of the application. The desired result (for
example, the call being directed to "sales")
is achieved, or not.

Language coverage in ASR is absolutely essential as it is a language-dependent
technology. It must be ensured that the language of the users is covered by the ASR
provider chosen for a project. The only exception is for local variations of a language.
For instance, if your market is Australia, but your ASR provider only has US English
or UK English, you will probably be able to tune one of those to do a good job for
Australian English.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[91]

Text-to-Speech (TTS)
The ability for a system to "speak" given text has been around in one form or another
for many decades. You may remember being able to have your early home computer
"say" things, or the Texas Instruments children's toy "Speak & Spell". As with ASR,
the exponential rise in processing power available and the developments in TTS
methodologies have meant that it can now be part of telephony systems.

While a recording will always have the edge in sounding natural, TTS is more
than acceptable for giving information over the phone, which is subject to rapid
change—making recording impractical. Actually, most telephony TTS is the
playback of lots of small recordings. These sounds include diphones (the transition
between one sound and another, like the a-v in David), and by concatenating lots
of these little chunks of sound, full words can be made. Depending on the specific
application, whole words and phrases will be recorded too, enabling the things that
will be said most often to sound natural.

For example, reading out stock or weather reports will involve heavy use of certain
words such as (in the case of the weather report) "rain", "sunny", "wind", "coming
in from the", "north", "east", "south", "west". In these cases the range of things to
be synthesized from small chunks of sound is reduced because whole words and
phrases can be used for a lot of the time. This makes the process faster, and the
output sound more natural. In telephony applications things can be a lot more
general—for example, reading out emails. In the case of reading out emails, some of
the content of an email is not straight text. The header of an email will need special
treatment, for which the TTS system will use its text pre-processor.

TTS is also, of course, language dependent and so careful attention must be paid to
the language coverage of the TTS provider chosen for a solution.

Speaker Verification and Identification (SVI)
Speaker Verification and Identification is the speech technology that allows the
system to tell whether you are who you say you are! Do not fall into the trap of
confusing this with speech recognition (where the system is interested in what
is said), this is all about speaker recognition (who is saying the words, not the
words themselves).

Speaker verification is the process of validating an identity claim—someone claims
they are David Duffett, so the system will compare their voiceprint with that of
David Duffett to see if there is a match. Please note that the term voiceprint can be
somewhat misleading—in the vast majority of systems this is not a recording but a
mathematical analysis of the voice constructed during the users' enrollment to
the system.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[92]

Of course, speaker identification is a more difficult proposition because it is no
longer a case of testing whether someone is who they say they are—it is about
establishing identity. This means going through all the voiceprints on the system,
possibly thousands, and coming up with the best match(es).

For this reason, applications today are much more about speaker verification.
A prime example of this type of application is the password reset package. Did
you know that in a company with thousands or tens of thousands of staff, the IT
helpdesk spends many months every year resetting passwords (to a known default)
for users who have forgotten them? By integrating a speaker verification application
with their back office software, enrolled users can ring up, voice-verify, and then get
back into their system to choose a new password. The payback time on such systems
is claimed to be in terms of months.

Before you rush out to sell your customers an SVI password reset system, it should
be pointed out that, at the time of writing, there are no known SVI packages that
work with Asterisk, but it has the potential to be quite a cool money-making
application. Maybe you are the person to write an SVI package, or integrate an
existing package, with Asterisk? SVI is language-independent, so the same SVI
package will work in any geography.

MRCP
The Media Resource Control Protocol (or MRCP) is not a speech technology in
its own right, but a standard interface through which speech technologies can be
controlled. Most ASR, TTS, or SVI companies will have (or be able to point to) an
MRCP "wrapper" for their products. Asterisk does not currently have an MRCP
capability and so only ASR and TTS engines that have been specifically integrated
with Asterisk will work at the moment. MRCP is just mentioned here, as anyone
looking into speech technology will come across the term.

Implementation considerations
So now you know we are going to home in on ASR and TTS for use with Asterisk.
Both of these can be quite hungry in terms of processing power and memory
usage—be sure to use some reasonable horse-power if you are serious about
implementing speech technology. At least 2GB RAM with a 2GHz CPU would
be a good start.

For this reason, most providers of speech engines use a client/server architecture to
allow speech processing to occur on other (perhaps more powerful) machines than
that on which the telephony application is running—although this will not always
prove necessary.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[93]

ASR and Asterisk
There are a number of options for adding speech recognition to Asterisk and these
include Sphinx and LumenVox. For our example, we will go with LumenVox as it
makes use of the native speech recognition API (application programming interface)
that has been part of Asterisk since version 1.4 was released.

This API allows providers of speech engines to hook their software into Asterisk in
a way that means it can be controlled by a standard set of speech-related dialplan
applications. Thus, those developing Asterisk speech applications need only to
learn one set of dialplan applications, regardless of which (compliant) speech
engine is doing the work behind the scene. We will go through these dialplan
applications later.

LumenVox do provide a lot of support for Asterisk users and we would like to thank
them for making a lot of resources available through their website www.lumenvox.com.

Installing LumenVox speech recognition with
Asterisk
There are few pre-requisites for installing LumenVox speech recognition
with Asterisk:

1.	 A PC with the processing power and RAM to handle doing the speech
recognition in addition to doing the other work it has to do (in this
case running Asterisk, as we will be adding LumenVox to an existing
Asterisk machine).

2.	 A Linux distribution supported by LumenVox. Currently Fedora Core,
Red Hat Enterprise Linux, CentOS (through Red Hat support) and rPath
(Pound Key/Asterisk Now).

3.	 Asterisk 1.4.11 or newer (and all dependencies) installed and running
properly—this example is based on Asterisk 1.6.0.3.

4.	 If using Red Hat ES or CentOS, LumenVox also requires 'libjs' (the Mozilla
implementation of JavaScript) which, if not already on the machine, can be
obtained as source from the official Mozilla website. A number of sites offer
a compiled RPM of the library – and although not certified or supported by
LumenVox there are more details on the LumenVox website. One such site
that hosts the packages (at the time of writing) is http://dag.wieers.com/
rpm/packages/js/.

5.	 An internet connection—the more bandwidth the better as you will be
downloading about 150 MB!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[94]

Once these pre-requisites are in place we can begin. We will use CentOS 5.x as our
example—other distributions will follow a similar pattern (Red Hat will be identical).

We need to obtain the LumenVox software (there are several components) and to
get started with Asterisk a single channel "starter kit" is available from both the
LumenVox and Digium web sites. At the time of writing it costs $50 which, to add
sophisticated speech recognition to your Asterisk server, is a complete bargain!
Implementing LumenVox on a production system will cost more, but is still excellent
value compared to other offerings in the telephony space. You will need one license
for each concurrent channel of speech recognition you wish to run.

The LumenVox software comprises of the recognizer itself (LumenVox SRE),
the licensing server, the Asterisk connector (res_speech_lumenvox.so) and the
Grammar Editor tuning utility.

So, with our starter kit purchased, let's go:

Log on to your machine as root—you must be root to install LumenVox. We are
going to use yum to do our package management, so we need to get the gpg key,
in order to build a repository from the appropriate packages.

cd /etc/pki/rpm-gpg (this is the directory we want to download it into)
wget http://www.lumenvox.com/packages/EL5/i386/RPM-GPG-KEY-
LumenVox.gpg

Now we are going to set up a LumenVox repository in the correct directory. This will
tell yum where to go on the LumenVox web site for the packages.

cd /etc/yum.repos.d
vi LumenVox.repo

Here are the contents for this new file:

[LumenVox]
name=LumenVox Products $basearch
baseurl=http://www.LumenVox.com/packages/EL5/i386/
enabled=1
gpgcheck=0
###

Write the file and quit the editor.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[95]

We are now ready to install LumenVox. There are number of components that we
will require. The available packages are:

LumenVoxCore that contains core files shared across all packages. This
is required.
LumenVoxClient that contains the speech client.
LumenVoxSRE that contains the speech server.
LumenVoxLicenseServer that contains the License Server.

Typical installations will require everything to be installed. To download and install
everything, you could run the following command:

yum install LumenVoxCore LumenVoxClient LumenVoxSRE
 LumenVoxLicenseServer

The products we install will register themselves as services in /etc/init.d/ called
lvsred (the speech server) and lvlicensed (the License Server). By default, they
will be started automatically when you login. They are not started by default after
installation—you must either start them using the service name start command or
by logging out and back in after installation.

Now we need to log out and then log back in (as root) to update the environment
variables, among others.

It is possible to install LumenVox without using yum (although this is
probably the easiest way). More information is on the LumenVox web site.

Our next task is to set up the licensing to enable the speech recognition engine to run.
The license will be tied to the MAC address of the host PC, and LumenVox supplies
a utility to generate a file which must be uploaded to the LumenVox web site. This
in turn generates a file that we can then download to our machine—completing the
licensing process.

First we need to be sure that the Licensing Server is running:

ps –e | grep lv

It should show the following two services:

lv_sre_server

lv_licence_server

If you cannot see the licence server, try:

service lvlicensed start

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[96]

Next we will use the command: /usr/bin/lv_license_manager with the –g
<path/Info.bts> which tells the licence server to store the hardware information
for the machine on which it is running into the <path/file> specified. For example,
if we wanted to create the server ID file in the root directory, we would type:
/usr/bin/lv_license_manager -g /Info.bts

This will generate a file called Info.bts in the root directory. Log into your account
on the LumenVox web site, and click on the View Licenses link in the My Licenses
box. In the Tools part of the deployments section, you will see an Upload License
link. Clicking on this will let you choose a name to identify the computer on which
you are running LumenVox and it will prompt you to browse to the Info.bts you
just created.

Once you have uploaded the Info.bts file, you will find that the link that used to
say Upload License has magically changed to, guess what—Download License—
because some smart software on the LumenVox web site has now generated a license
file for your machine. When you click on Download License you will be prompted
to review and agree to the license terms and conditions and, if you click agree, you
can then download your license file to your chosen location. The file will be called
something like licensexxxx_xx.bts where xxxx_xx will be some numbers with a
letter near the end of the sequence.

Now type /usr/bin/lv_license_manager -m Licensefile where Licensefile is
the path to the license file you just downloaded. The license manager will then install
the license file, such as:

usr/bin/lv_license_manager -m /root/Desktop/License2344_r2.bts

The –m option means merge.

You should see a message letting you know that the operation was successful.
Hence, LumenVox is installed and the license server is enabled. We can check
that both processes are running like this:

ps el | grep license

ps el | grep LV

Both of these should show that the appropriate process is running.

If you would like to check that the speech engine is running before going on to
integrate it with Asterisk, LumenVox supply some sample code (called example.cpp),
which needs to be compiled, and so on similar to the following:

cd /usr/share/doc/lumenvox/client/examples
make

./example 127.0.0.1

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[97]

This will run example which passes an audio file of someone speaking the number
8587070707 to the speech recognition engine. It outputs what has been recognized
which, of course, should be 8587070707! The output will look similar to the following:

count=0, decode returns 10
Interpretation 1:
8587070707

If it does, then the speech engine is working and we can move on to integrating with
Asterisk. This program loops, so you will need to Ctrl+C to get out of it.

To connect LumenVox to Asterisk, a connector bridge is used. This module hooks
LumenVox up to Asterisk's native speech API and is downloaded as a tarball from
the (My Downloads part of the) LumenVox web site. It could be downloaded to
/usr/src/ or anywhere you choose to use. Our first step is to "untar" it:

tar –zxvf asterisk-1.6.x-lumenvox-support-linux-i686-32bit-b23-
engine8.6.tar.gz

This will expand the files zipped inside the tarball into a sub-directory of the current
directory named after the file—so we need to cd into that new subdirectory:

cd asterisk-1.6.x-lumenvox-support-linux-i686-32bit-b23-engine8.6
ls

This will show four files, two of which we are particularly interested in—the
connector bridge itself and lumenvox.conf.

mv res_speech_lumenvox.so /usr/lib/asterisk/modules
mv lumenvox.conf /etc/asterisk

This first mv moves the connector module into the directory where all Asterisk
modules are stored. The second cp puts the lumenvox.conf file into the directory
where all Asterisk configuration files reside.

To get Asterisk to load its generic speech module and the res_speech_lumenvox.so
module we must edit /etc/asterisk.modules.conf —inside this file we will find
(a good few lines down) the line:

;preload => res_speech.so

It must be uncommented (by removing the ";") and we must add a line to load the
LumenVox module—it should look like this:

preload => res_speech.so
load => res_speech_lumenvox.so

Save the changes and quit the file. We can use the defaults set in lumenvox.conf, so
there is no need to edit this file right now.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[98]

All we need to do now is to restart Asterisk (if it was already running) and we're
ready to go. We can then go into the Asterisk CLI and check the presence of the
relevant modules by:

CLI> module show like speech

We should see:

res_speech.so			 Asterisk generic speech module

res_speech_lumenvox.so	 LumenVox speech module

app_speech_utils.so		 Asterisk speech-related dialplan applications

If all three are present, we're in business. To check that things are working from
within the dialplan, LumenVox have some "quick to add" lines for the Asterisk
dialplan on their web site—here is one set:

[lumenvox-test]

exten => s,1,Answer()

exten => s,n,Wait(1)

exten => s,n,SpeechCreate()

exten =>
 s,n,SpeechLoadGrammar(yesno,/etc/lumenvox/Lang/BuiltinGrammars/
 ABNFBoolean.gram)

exten => s,n,SpeechActivateGrammar(yesno)

exten => s,n,SpeechBackground(beep)

exten => s,n,Verbose(1,Result was ${SPEECH_TEXT(0)})

exten => s,n,Verbose(1,Confidence was ${SPEECH_SCORE(0)})

exten => s,n, SpeechDeactivateGrammar(yesno)

exten => s,n, SpeechDestroy()

All that is needed is to add these lines in and then add a line at an appropriate place
in your dialplan to direct a call to the lumenvox-test context, for example:

exten => 3333,1,Goto(lumenvox-test,s,1)

The above example uses a very simple grammar file to look for the words yes or
no. The recognized word is displayed on the CLI along with a confidence score
(out of 1,000).

If the safe_asterisk script is being used, some environment variables must be
added to the script—full details can be found at www.lumenvox.com/asterisk.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[99]

This set of steps will get us to the point that LumenVox is installed and working with
Asterisk, but we still need to design our own dialplan to do what we want to do! To
that end, we will now go through the example in step 12 (above) to find out more
about each of the speech-related dialplan applications.

Checking that things are working
After we have answered the call and waited for one second:

SpeechCreate()
This application starts any speech session, and is mandatory as it creates the
information that will be used by all following speech-related applications. It can
take the speech engine name as a parameter, but if it is omitted it will use the
default speech engine.

SpeechLoadGrammar (yesno,/etc/lumenvox/Lang/
BuiltinGrammars/ABNFBoolean.gram)
This application loads the grammar file for the channel (it is only operative for the
life of the channel), which includes the actual words to be recognized, the order in
which they might be spoken, and the result to return when a recognition occurs. The
two parameters are a "label" and the path to the grammar file.

SpeechActivateGrammar(yesno)
This application activates the grammar identified by the "label", which is passed as a
parameter (in this case yesno).

SpeechBackground(beep)
Similar to the dialplan application Background(), this application plays a sound
file (the name of which is passed as a parameter) and tells the recognizer to start
"listening" on the audio feed in.

Verbose(1,Result was ${SPEECH_TEXT(0)})
This line uses the Verbose() application to output the result of function
SPEECH_TEXT with the argument 0 to the Asterisk CLI. The SPEECH_TEXT(n)
function return contains the text (or semantic interpretation, if applicable) that
a caller said. Here, n represents the number of results in case there are multiple
returns from the Engine. The first result is number 0.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[100]

Verbose(1,Confidence was ${SPEECH_SCORE(0)})
This line uses the Verbose() application to output the result of function
SPEECH_SCORE with the argument 0 to the Asterisk CLI. The SPEECH_SCORE(n)
contains the confidence score for result n.

There are a number of other speech-related dialplan applications and a function, not
used in the example above, which we need to be aware of.

SpeechStart()
This application tells the recogniser to start "listening" on the audio feed in, but
unlike the SpeechBackground() application it will not play a prompt.

SpeechDeactivateGrammar(label)
This application deactivates the specified grammar.

SpeechUnloadGrammar(label)
After the recognition has taken place, one of the last priorities in the extension should
be to call this application in order to avoid potential memory leak.

SpeechDestroy()
This application destroys the speech resources for the channel and therefore frees
up the license.

${SPEECH(results)}
This function/argument will return the number of results.

Grammar files
In the small example above, the grammar file used—ABNFBoolean.gram—was
supplied by LumenVox in the directory /etc/lumenvox/Lang/BuiltinGrammars.

For our own speech recognition applications, we may need to create our own
grammars, so let's look at an example file:

#ABNF 1.0;
language en-US;
mode voice;
tag-format <semantics/1.0.2006>;
root $company_directory;

$mark = (Mark [Spencer]) {out = "200";};
$jared = (Jared [Smith]) {out = "201";};

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[101]

$david = ((David | Dave) [Duffett]) {out = "202";};
$operator = (operator) {out = "0";};
$company_directory = ($mark | $jared | $david | $operator)
 {out = rules.latest()};

The above grammar file is written according to the Speech Recognition Grammar
Specification, a W3C-defined standard for writing grammars. The file itself is in
Augmented Backus—Naur Form (ABNF). It is an Internet technical specification
format that is described in detail by the RFC 2234. The grammar is built on "rules".

All the lines in the file are necessary. The first four lines are a header, and you
will notice that the kind of thing to be recognized is specified—it is "voice" and
the language is "en-US"—be sure to use the most appropriate language for you
target market. The next line (after the four-line header) is the root rule—it tells the
recognizer which rule to begin with.

In this case the root rule is $company_directory, so the recognizer will start with
this line:

$company_directory = ($mark | $jared | $david | $operator)
 { out = rules.latest() };

This rule is called company_directory and the rule expansion (which follows
the first "=" sign) tells us that the recognizer is to "listen out" for $mark or $jared
or $david or $operator. The { out = rules.latest() } tells the recognizer
to return the "interpretation" instead of the actual word recognized. Hence, the
$company_directory rule is, in turn, making use of four other rules.

Taking the rule $david as our example, the rule expansion means that the
recognizer will understand that if the caller says David or Dave or David Duffett
or Dave Duffett then the rule $david has been matched, and it will return the
"interpretation", which occurs after the ":"—in this case 202.

Hence, when the caller says David or any of the other matches for the $david rule,
they really mean 202 (David's extension number). The Dial() application can then
be used to call the number returned by the recognizer.

Implementation advice for ASR
The first thing to mention is that the parser that goes through the grammar file for
LumenVox is extremely "picky"—syntax, case, and space errors can result in all
manner of different symptoms from a straight "grammar file not found" message
(even though you have used the right grammar file name and directory, if the
content is not up to scratch—you will be chastised!) all the way through to Asterisk
restarting (if using the safe_asterisk script).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[102]

If you know LumenVox is running properly (from the previous tests described), the
chances are that any errors you come across (other than "run-time" mis-recognition
errors) will be connected to a problem with the grammar file.

The key to a great ASR implementation is to understand that making the system
work is just the first 40-45% of the task. The ultimate success of the project will
come by the tuning and optimization once the system has been deployed with your
customer (your customer should be advised of this approach early on in the project).
You should, of course, perform testing of your system in the lab before delivering it
to your customer – but the tuning and optimization must be done in the customer
scenario. To this end, LumenVox supply a tuning tool called the Grammar Editor
(currently only available on Windows) so that you can tune and optimize the system
based on real-life voice input from your customer's callers. It allows you to:

import call data
transcribe the audio data
make adjustments
test the changes and measure the results

It is an iterative process—tune, test, tune, test, and so on. You will need to agree
upon a measure by which you and your customer can concur that the system does
the job.

Keeping the number of words to be recognized (the grammar) to a minimum will
increase the chance of an accurate recognition. The use of good prompts cannot be
minimized when considering factors that can help ensure the success of an ASR
implementation, for at least two reasons:

1.	 The friendliness, enthusiasm, intonation, and enunciation of the prompts
will have a direct effect on the response of the caller and the clearer their
response, the better the chance of a successful recognition.

2.	 The phrasing of the prompts is also a key factor, as directing the dialogue
well will allow a smaller grammar to be used—again improving the chances
of a successful recognition.

Remember the confidence score that the recognizer returns? We can use this to
determine how well the recognizer thinks it has done and, if the score falls below
a certain level (say 700 out of 1,000), we can use a confirmation to ensure the
recognizer is correct or go back to the beginning of the recognition process. It is also
possible to use 'weights' to help the recognizer know which words are more likely to
be said by callers—more details on the LumenVox website.

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[103]

One last thing–there is so much great information at www.lumenvox.com that it's a
'must visit' site. On top of that, the LumenVox people are very nice and helpful – and
your starter kit includes free support to get it successfully installed (all for $50!).

TTS with Asterisk
As with ASR, there are a number of options for TTS with Asterisk. These include
Festival, Cepstral, and Flite engines (all of which are available thanks to the initial
academic research carried out at CMU). Our example will be based on Cepstral for a
number of reasons, not the least of which is that with Cepstral, you can use the voice
of Allison Smith—the voice of Asterisk. Since the job of a TTS engine is to "read out"
the text it is presented with, integration with Asterisk is somewhat more straight-
forward than integration with ASR.

Having said that, the actual task of reading out the text in a way that is understandable
and acceptable is very complex, and maximum respect should go to Cepstral for what
they have achieved.

The Cepstral web site has a great online demo facility which allows you to type
text into a box and hear the various available voices speak it out. This way, you
(or your customer) can choose the voice most fitting for a given application and
geography. Remember to choose the 8 kHz version of the voice as these versions are
specially adapted for telephony applications (other versions are dedicated to other
applications such as desktop use). Assuming that Cepstral will be running on your
Asterisk machine, the Linux flavor should be chosen.

With those choices made, a price will be displayed. At the time of writing, the
price is less than $30 per channel! It is possible to download Cepstral TTS free
for experimenting, but a license will be required for each concurrent channel in
a deployment situation.

There are two ways of using Cepstral TTS—one method is to create the spoken
text in a wav file that can be played in the Asterisk dialplan using Playback() or
Background(). The other introduces a new dialplan application called Swift(),
which speaks the text you pass as a parameter on the fly without intermediate steps.
We will be using the second method.

Just in case you are wondering, Swift is the name of Cepstral's TTS engine.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[104]

Assuming that you have the Cepstral voice which you would like on your machine,
let's go:

The file presented for download will be a tarball. Save it into an appropriate
directory—/usr/src would be fine. Ensure that you're logged in as root, and then
untar the tarball, now the contents will be expanded into a new sub-directory named
after the file:

tar –zxvf Cepstral_Allison_i386-linux_5.1.0.tar.gz

Change the directory into the newly created sub-directory and install the "voice":

cd Cepstral_Allison_i386-linux_5.1.0

./install.sh

You will be prompted to agree to the license's terms and conditions and to the
location of the installation, which is /opt/swift by default.

Continue further by typing the following three commands:

echo echo /opt/swift/lib > /etc/ld.so.conf.d/cepstral.conf

ldconfig

swift "Hello World"

The first command creates a cepstral.conf file in the /etc/ls.so.conf.d/
directory from the contents of /opt/swift/lib.

The second command configures dynamic linker run time bindings.

After entering the last command, you should hear some real-life text to speech. If
your Cepstral "voice" is not yet licensed, you will hear a meassge saying so, prior to
the "Hello World" message.

The following command will show you the voice that you have installed:

swift –-voices

The resulting output will also show whether it is licensed.

Now we can add Asterisk dialplan support for Cepstral's TTS engine Swift by
downloading an application called app_swift, created and maintained by Darren
Sessions (to whom respect is due).

It can be obtained like this:

cd /usr/src

wget http://www.darrensessions.com/pub/app_swift/app_swift
1.6.2.tar.gz

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 5

[105]

Untar the tarball and the contents will be expanded into a new sub-directory named
after the file:
tar –zxvf app_swift-1.6.2.tar.gz

Change the directory into the newly created sub-directory, compile the code, and
install it:
cd app_swift-1.6.2

make

make install

At this stage, check for the presence of a swift.conf file in /etc/asterisk/. If it's
there, great. If not, you can copy a file that was created when you "untarred" the
tarball above:

cp swift.conf.sample /etc/asterisk/swift.conf

Once you have a swift.conf file in /etc/asterisk/, you need to edit it in order to
let Swift know which voice you have chosen—you will see the voice= line right at
the end of the file, the default is voice=David-8kHz, change this to the voice you
are using.

Your last job before getting back to Asterisk is to set up a link in your search path for
Cepstral like this:

ln -s /opt/swift/bin/swift /usr/bin/swift

At this point, you should restart Asterisk. You are now ready to test the presence of
Swift in Asterisk and then edit your dialplan, adding a line to speak some text. On
the Asterisk CLI, use this command:

core show application swift

If you get some information about the Swift application, all is well. Now you can add
a line in your dialplan to speak some text, like this:

exten => 1000,1,Swift(your text here!)

You can register your Cepstral license by typing:

swift –-register

That's it—you're all done! You can now go ahead and implement many different TTS
applications, a lot of which (these days) are based on pulling information from web
pages or databases, and then reading it out. Some examples of such applications are:

Weather reports
Train or flight timings
Tele-banking

•
•
•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk and Speech Technology

[106]

Implementation advice for TTS
Here, you can do lots of testing prior to customer deployment. Try all the different
things that the TTS engine might be expected to say to check for incorrect
pronunciations. If these occur, it may be possible to misspell words in the text that
you are using to make the pronunciation better. If the TTS engine will be reading
out emails, try a few to see how headers are handled and so on.

Summary
Adding speech technology to Asterisk is relatively easy. However, you must be
prepared for an extended development cycle that includes customer deployment
in the case of ASR. Both ASR and TTS will demand reasonable processing power
and memory, so specify these into the platform at the outset. Including speech
technology could prove to be a key differentiator for you when it comes to your
solutions, so become great at deploying it!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing
A VoIP business built solely on installations will struggle to be viable, reliant as it
is on the constant feed of new business to generate income. If you plan on growing
your business, you need to provide (as far as is practical) an end-to-end solution.
Then, when installations are hard to come by, you still have the regular income
from call charges to sustain the business.

Billing is an essential element of that solution. This chapter discusses open source
solutions to the billing dilemma as well as internal call accounting, allowing you
to monitor your call activities as well as those of your customer's.

Call Data Records (CDRs)
Asterisk can store Call Data Records (CDRs) in a variety of formats. By default, call
records are stored as .csv files. You could use an external program to process these
files on a daily basis for analysis and they are great for a backup. Although, you'll
probably store these in a database ultimately, but wouldn't it be great if Asterisk did
it for you? Well you've guessed it—it can store them by way of the add-on modules.

Asterisk supports the following external databases for recording CDR data:

SQLite
PostgreSQL
Any database that the Unix ODBC supports
MySQL
MS SQL or Sybase database through FreeTDS drivers
Yada

We'll look at the MySQL implementation for this exercise.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[108]

Assuming that you've downloaded and unpacked the Asterisk add-ons package, the
installation is similar to an Asterisk build-from source.

 /configure
Make menuselect
Make; make install

Let's look at menuselect:

**
Asterisk-addons Module Selection
**

Press 'h' for help.

1. Applications
 --->
2. Call Detail Recording
3. Channel Drivers
4. Format Interpreters
5. Resource Modules

**
Asterisk-addons Module Selection
**

Press 'h' for help.

[*] 1. cdr_addon_mysql

MySQL CDR Backend
Depends on: mysqlclient(E)

Note the Depends line at the bottom of the screen. If you have the following entry,
you haven't installed the required dependencies:

[XXX] 1. cdr_addon_mysql

Make sure you have MySQL installed (client and mysql-devel).

Before compilation, you will also need to edit the cdr_addon_mysql.c file and
add the following to the top of the file so that a unique ID for the call is stored in
the database:

#define MYSQL_LOGUNIQUEID

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 6

[109]

After you've installed the MySQL module, you'll need to create the appropriate table
in MySQL.

At the command line, enter the MySQL client, that is, the username and the password:

mysql --user=root --password=mypassword
CREATE DATABASE asterisk;
GRANT INSERT
 ON asterisk.*
 TO asterisk@localhost
 IDENTIFIED BY 'mypassword';
USE asterisk;
CREATE TABLE `cdr` (
`calldate` datetime NOT NULL default '0000-00-00 00:00:00',
`clid` varchar(80) NOT NULL default '',
`src` varchar(80) NOT NULL default '',
`dst` varchar(80) NOT NULL default '',
`dcontext` varchar(80) NOT NULL default '',
`channel` varchar(80) NOT NULL default '',
`dstchannel` varchar(80) NOT NULL default '',
`lastapp` varchar(80) NOT NULL default '',
`lastdata` varchar(80) NOT NULL default '',
`duration` int(11) NOT NULL default '0',
`billsec` int(11) NOT NULL default '0',
`disposition` varchar(45) NOT NULL default '',
`amaflags` int(11) NOT NULL default '0',
`accountcode` varchar(20) NOT NULL default '',
`userfield` varchar(255) NOT NULL default '');

ALTER TABLE `cdr` ADD `uniqueid` VARCHAR(32) NOT NULL default '';
ALTER TABLE `cdr` ADD INDEX (`calldate`);
ALTER TABLE `cdr` ADD INDEX (`dst`);
ALTER TABLE `cdr` ADD INDEX (`accountcode`);
QUIT;

Now that you've created the table, you'll need to edit the cdr_mysql.conf file.
The following sample can be found in the config directory placed inside the
addons directory:

; Note - if the database server is hosted on the same machine as the
; asterisk server, you can achieve a local Unix socket connection by
; setting hostname=localhost
;

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[110]

; port and sock are both optional parameters. If hostname is
specified
; and is not "localhost", then cdr_mysql will attempt to connect to
the
; port specified or use the default port. If hostname is not
specified
; or if hostname is "localhost", then cdr_mysql will attempt to
connect
; to the socket file specified by sock or otherwise use the default
socket
; file.
;
;[global]
;hostname=database.host.name
;dbname=asteriskcdrdb
;table=cdr
;password=password
;user=asteriskcdruser
;port=3306
;sock=/tmp/mysql.sock
;userfield=1

So for our example, we configure the following:

[global]
hostname=localhost
dbname=asterisk
table=cdr
password=mypassword
user=asterisk
userfield=1

In order to load the module, restart Asterisk and make a test call. If all is well, you
should now have an entry in your database.

CDR frontends
There are various web frontends out there, but the one that stands out is
Asterisk-Stat. This is a simple-to-install, web frontend that supports MySQL as well
as PostgreSQL. Full installation instructions are available at the following URL:

http://www.areski.net/areski/index.php?option=com_content&task=view&i
d=22&Itemid=54

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 6

[111]

Call accounting
You (or indeed your customers) may not necessarily require call billing on your
Asterisk platform, but you may very well have a requirement for call accounting.
Using a product like Asterisk-Stat provides many useful functions that not only
highlight abuses of the system, but also provide useful information of how the
system is utilized, such as:

Who called who, when, and for how long?
Who's making outbound calls and wasting time hearing the other end
ring endlessly?
If a customer claims they called you on a particular date, you can prove that
they might be mistaken
Which extension took a call from a customer?
Which extension made a call to a customer?
Who's making calls to inappropriate destinations or spending too long on
a call?
Are calls going unanswered because you don't have enough staff?
Are you busier this month compared to last?
To show the timings when you're busy

The graph above (Asterisk-Stat) shows the daily load on a system by the hour.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[112]

The next graph shows the call load on the system:

As we can see, the maximum load is three. In other words, in this 24-hour period,
there was a maximum of three calls at any one period of time. How is this helpful?
Let's look at a real life example:

For one client, we identified that on a Saturday morning, the maximum load was
seven calls, but they only had five staff members. But in the afternoon, the load
was four calls. The company was missing out on business in the morning and was
overstaffed in the afternoon. By rearranging the staff roster, the company was able
to increase sales, but their costs remained the same. The result—more profit!

Providing termination billing
This section covers areas that you are most likely to encounter if you intend to
provide call termination for your customers.

Every little helps
You might think that providing usage and billing for it is too much of a hill to climb,
but call revenue is what will make your business valuable.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 6

[113]

Call revenue is measurable. As you add more customers, clearly your revenue will
grow. And guess what, the more the calls that get placed, the better the "per-minute
wholesale rate" you'll get. You may well feel that you'd rather pass on the hassle to
another existing provider, and that's a fair point of view. However, if you do that,
you'll lose control of the last leg of the call. If you point your customer at another SIP
or IAX provider, and that provider has problems, who's the customer going to call
first? You of course! You may or may not be able to help, but ultimately, you become
a third party in resolving the issue and you're not even being paid for it.

Selecting a billing platform
As any web search for "Asterisk and billing" will prove, there are a number of
solutions out there. So how do you choose? Good question. AstBill is the great
looking package that it seems to be, but when choosing a solution, support is a
major issue. Logon to the forum for AstBill, and you'll see pleas for help that go
unanswered for weeks with posts that are months old. The open source community
has many well-meaning projects that the original authors put their heart and soul
into for months, sometimes years, before their will to carry on waned. Don't
get me wrong, this is a fantastic effort. However, the development/support is no
longer there.

Introducing A2Billing
A2Billing has been around for a number of years now, it's actively supported and
a quick look at its forum (http://forum.asterisk2billing.org) shows posts
everyday. At the time of writing, the current version of A2Billing is 1.3. The 1.4
version is in Beta and due for release in July 2009. The development team is open
to new ideas and requests, and A2Billing 1.4 goes a long way to making this a
carrier-grade product.

Reasons to consider A2Billing
Support: It's well supported with lots of long-time contributors.
Easy to install: The installation document is extremely well written
and complete.
Easy integration: Unlike a number of other solutions, it doesn't mess too
much with your existing dialplan. You simply need to add a few lines of
code and that's it.
Scalable: You can point lots of Asterisk servers to a single instance of
the database.

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[114]

Reporting: Clear concise reports showing call costs and profits are available.
Invoicing: It enables sending invoices to your customers via email.

And the list goes on, but as mentioned previously, it's well supported!

A2Billing requirements
Asterisk 1.2.24+ or Asterisk 1.4.0+
Apache 2
PostgreSQL 8.0 or MySQL 5.0
PHP 5
Suhosin security patch for PHP is strongly recommended
PHP-PGSQL or PHP-MySQL
php-pcntl
php-gettext
PHPAGI (included with A2Billing)

Monitoring usage
Monitoring your profit margin is essential, and the sample report below shows how
easy it is with A2Billing:

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 6

[115]

The following table shows the number of calls across the day and the daily costs:

TOTAL

DATE

2009-01-02

2009-01-03

2009-01-04 443:28

1636:47

2333:09 3139

1805

467

00:44

00:54

00:56 11.046
GBP

42.472
GBP

88.758
GBP

45.262
GBP

43.496
GBP

14.376
GBP

28.096
GBP

5.257
GBP

5.789
GBP

TOTAL

ASTERISK MINUTES

DURATION GRAPHIC
TOTAL
SELL

TOTAL
BUY

TOTAL
PROFIT

CALLS ACT

4413:24 5411 142.275
GBP

64.895
GBP

77.381
GBP

00.48

Do you think A2Billing is only capable of handling light volumes? Have a look at the
following statistics:

These are "real" calls and not "test" ones, I should add!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[116]

Coding for A2Billing
Once you've entered all of your customers, you're reminded that you need to
update the config file. Click on update and the customer details for SIP or IAX are
written out. It'll even reload the configs for you. Adding the functionality is pretty
straightforward. In your extensions.conf file, simply add:

[a2billing]
exten => _X.,1,noop(---------------- ${EXTEN} --------)
exten => _X.,2,Wait(1)
exten => _X.,3,DeadAGI,a2billing.php
exten => _X.,4,Wait,2
exten => _X.,5,Hangup

It's really that simple—A2Billing allows you to create SIP and IAX entries which
are stored as flat files, and, the account code is set to the main account for that
customer. When a call is placed, that account code is passed to the PHP script and it
bills accordingly. The installation instructions are very comprehensive and lead you
through the steps one by one.

Billing gotcha!
There are occasions when Asterisk does not account for calls as one might expect
it to.

Consider this scenario—you're hosting a customer that simply has IP phones
attached to your server. They discover (on reading the manual) that they can divert
calls after a given number of rings. When an inbound call hits the phone, it will
send back a "temporary moved message" and then initiate a call which cannot be
accounted for.

The culprit is the local channel driver. A local channel is created on a transfer, and
then deleted once the call is bridged.

To overcome this, we use the "i" option in the Dial() command, which disables
the feature. Asterisk will ignore any forwarding requests it may receive on this dial
attempt (new in version 1.4). It is useful if you are ringing a group of people and one
person has set their phone to something (for example, forwarded direct to voicemail)
that normally prevents any of the other phones from ringing.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 6

[117]

High call volumes
A2Billing is reported to be able to handle call volumes of 2.5 million minutes a
month and may well scale beyond that, but what about high-call setups? Well
there's another project out there called GnuGk (click on http://www.gnugk.org
to know more).

This solution uses the H.323 protocol (Asterisk supports H.323 in the addons
package). Reports are that this solution is able to handle at least 30 call setups/
second. You might think that's not a lot, but it truly is. It works out to be over a
million calls an hour—big, unless you're a major telco.

What's this H.323? Isn't SIP supposed to be the way to go? Well, not always. Many
traditional systems still use H.323 for a number of reasons, not in the least efficiency.
The SIP protocol has a large overhead in passing messages compared to H.323.

All these extra messages that get passed to and fro delay call processing as they add
extra code to decode them, not to mention all the extra bandwidth. Let's not forget
that the messages (as well as the response numeric codes) also transmit rather wordy
text explanations as well. If you've ever turned on SIP DEBUG in Asterisk, you'll no
doubt see huge volumes of text on the console even when your system is quiet.

On a personal note, I fail to see why there's so much bandwidth wasted when no
human is likely to read the text. Surely, binary responses would be much more
efficient? I'm sure there's a valid historical reason for this (in the early days of the
Internet, most data was in the 7-bit format).

Good as this product (GnuGk) appears to be, it's quite clear from the documentation
that there is little or no GUI interface. You're going to have to roll one of your own,
but that's not always a bad thing.

Other high-call-volume solutions
Are there any other solutions out there? Well, discounting Asterisk-based solutions,
there are a couple of solutions that stand out.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Call Accounting and Billing

[118]

SER/OpenSER
For the sake of brevity, we'll refer to the above as SER. OpenSER is a mature fork of
SER, which at the time of writing has split into a further fork, but you can read all
about that on the net. SER has been around a number of years now and has a large
installed base. It can handle large numbers of call setups and registrations. For this
reason, many larger setups use SER to frontend multiple Asterisk servers. Why can't
you just use SER? Well, SER does not have a Backend User Agent (BUA). Yes, it can
handle NAT and message routing extremely well, but if you want to do Interactive
Voice Response (IVR), music on hold, and so on, you need a BUA. Asterisk is such
a beast. Joining the two together provides a very powerful platform that can scale
to thousands of users. However, SER is not for the novice. In order to avoid many
hours/days of frustration, it's essential that you gain a good understanding of the
SIP protocol. You can always read the RFC #3261 (at http://www.faqs.org/rfcs/
rfc3261.html.), or you can get books on the subject. If you're looking for a
step-by-step guide, we recommend having a look at "Building Telephony Systems
with OpenSER", Flavio E. Goncalves, Packt Publishing.

FreeSWITCH
What about a high-volume solution that combines the efficiency of OpenSER with
many of the features of Asterisk? Is there such a product? Well, actually there is,
and it's called FreeSWITCH. One might think of this product as sitting in between
OpenSER and Asterisk. Discussion of FreeSWITCH is outside the scope of this
book, but it suffices to say that if you are having trouble scaling Asterisk up to very
large call volumes, then it may be a viable alternative. Although, care is needed, as
FreeSWITCH being a relatively "young" product does not have the same breadth of
functionality as Asterisk. As always, you should do your homework first.

Summary
This chapter covers call accounting and how it can be a useful tool in analyzing
system utilizations. We examined two billing solutions, which one you decide to
implement is up to you. We also looked at high-call-volume solutions. Yes, there
are a number of other solutions out there, but the two we explored are known
to work. By implementing either of these solutions, you will be able to reliably
perform call accounting and bill your customers. But beware—there are many, many
"consultants" out there who will try to charge you for a billing solution which will
cost you thousands. Be a little bit careful, many will sell you consultancy on these
very same projects, which is something you could easily do yourself.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability
In Chapter 2, we touched on one of the issues facing Asterisk in commercial
situations, namely, that when implementing Asterisk solutions, you're up against the
proven reliability of traditional telephone systems. The big names in the market have
invested huge amounts for research and development in perfecting their products,
because the first and over-riding expectation of anyone using a telephony system
is that each and every time they pick up the phone, they should be able to make or
receive a call. As reliability is such an important feature of telephony systems, the
tradition has been to tightly control development and release new versions rarely,
and after extensive testing. These commercial products are carefully managed, with
only a small number of employed developers having access to the source code and
developing that code with specific, commercially-oriented goals in mind. Asterisk,
meanwhile, is constantly evolving, adding new features, and refining existing
ones with both functionality and reliability foremost. It is an open-source product,
albeit one "owned" by Digium, where anyone is free to look at the source code and
contribute enhancements which they think will improve the product. While this is a
well-proven model now, with Linux itself as its shining beacon, it is more difficult to
focus the efforts of all potential contributors in specific areas.

Digium's approach has been to concentrate their efforts on a core Asterisk "engine",
leaving the myriad of Asterisk contributors around the world to focus on extending
that core functionality through add-on modules or products. This is not unlike the
approach to Linux itself, where development of the kernel is controlled relatively
tightly, but there is plenty of scope for enhancing that pretty basic core, which is the
reason for the preponderance of Linux distributions and applications.

The fact that it runs as an application on a wide range of Linux distributions is one of
its strengths as well as a weakness. There is no single standard Asterisk install used
by one and all, instead there are any number of Asterisk flavors. Some are designed
for ease of installation and ongoing maintenance through the use of graphical
interfaces, such as the excellent FreePBX frontend. Others eschew the prettiness of
a GUI in the name of speed, requiring that all changes be made directly to the text
configuration files. Some are set up with scalability in mind, or as billing platforms
(which may use A2Billing as the frontend).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[120]

In short, whatever be your telephony need, it's highly likely that there is an Asterisk
"distro" out there that will cater for it. If there isn't, then you can always create one of
your own.

Whichever Asterisk implementation you choose, it's easy to come to the righteous
belief that you're going to change the world with it, using its wondrous features and
low cost. But if the customer can't reliably make calls, then all the features in the
world aren't going to placate them.

This chapter will endeavor to give you some techniques on how to make your
Asterisk implementations both resilient and highly stable. While some of the
techniques require you to edit the configuration files directly, you will have no
trouble doing this even if you have implemented a version of Asterisk with a GUI
frontend, such as FreePBX.

Increasing availability
Making a system more resilient requires a two-pronged approach. Before examining
this, it is worth remembering that the goal of this exercise, as always, should be
considered from the customer's point of view. In this case, the goal is to maintain the
customer's telephony operations. Obviously each customer will have constraints,
usually budgetary, which restrict the extent of the measures that can be taken to
achieve this goal. But transparency and an inclusive decision making process will
avoid much recrimination later if, or rather, when, something goes wrong. Because,
if you wait long enough, something will always go wrong.

With any operational system, the ideal is to have 100% uptime. However, achieving
this ideal is likely to be beyond the budget of many organizations, as it relies on the
use of an extensively tested and completely unchanging hardware and software
combination. In such a combination, each component has been constructed for a
precise purpose, and to hugely-exacting standards. Given that every Asterisk system
has, at its heart, standard PC architecture, the 100% uptime condition clearly isn't
going to happen even with the best will in the world.

Mentioning standard PC architecture to the average customer runs the risk that
the PC under their desk that crashes on a regular basis will spring to mind, so it's
a phrase best used with caution. Of course, much of the world's IT infrastructure
now runs on standard PC architecture, including the systems that keep hospitals
operational and governments running. It is how these server infrastructures are
constructed that provides the lessons which our relatively speaking, modest
telephony system can use to keep the customer's phones ringing.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[121]

This brings us back to our two-pronged approach. In attempting to maximize
uptime of any system, it is sensible to do all that is reasonable to make the system as
reliable as possible. But you should also assume that the odds are against achieving
100% uptime indefinitely. Therefore, it is also sensible for critical systems to have a
contingency plan in place—a means of maintaining operations if a part of the system
fails. This type of resilience is called failover. Let's look at means of boosting both
stability and resilience in turn.

Stability
A telephony system consists of a number of parts, each of which needs to be looked
at when considering stability. A typical installation will have most or all of the
following components:

Network (cables, routers, switches, and so on)
Endpoints (telephones)
Telecom switches or gateways (PRI/BRI/Zaptel[or DAHDI]/GSM)
Server (PBX)
Environment

Any IT system, like a chain, is only as stable as its weakest link. If you wish to boost
the stability of your system as a whole, then you need to consider how you can
improve each aspect of the system.

Network
In all likelihood, some or all of the network components used by the new telephony
system will be shared with the data network. Because of this, it's possible that
the elements of resilience have already been introduced to boost stability. If not,
implementing a new PBX over the existing network infrastructure is the ideal
opportunity to ensure that both voice and data traffic traverse a path which is "fit
for purpose". Usually that means introducing redundant equipment, or components
to the network with the purpose of "stepping in" in case of failure. However, there
are ways in which you can improve the individual aspects of your network, such as
cables, switches and routers, so that they are likely to be the most stable parts of your
telephone system.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[122]

Cables
 Cabling is the simplest component. But with a large installation, you may need to
purchase significant quantities for both patching in the communications room/area,
and for connecting the endpoint devices to network points in the workplace, making
it tempting to shave pennies off the cost per meter. They tend to be very reliable,
although opting for the cheapest available is likely to be a false economy. It is not
unusual for cabling to be outsourced to a specialist company. If you're comfortable
making your own cables, then there is a lot to be said for that approach too. Investing
in CAT-5e, or even CAT-6 cables is sensible, particularly if gigabit switches are
planned to be used. It is also sensible to ensure that a color scheme is agreed with
your customer so that telephony cables can be easily differentiated from data cables.

Switches and routers
 Looking at switches and routers, it is usually in the customer's long-term interests to
purchase a named brand, as the vendor will have carried out appropriate testing and
development to ensure that their products are likely to work without fault for many
years, and will provide warranties to cover failure in that time. Leading enterprise
providers include Cisco, Foundry, Extreme, and Juniper, with the likes of HP and
Dell also having some share at this end of the market. For smaller installations, a
good cost/feature balance can be achieved with HP, Dell, 3Com, and even top-end
consumer equipment from Netgear and D-Link.

It can be tempting for the customer to save money by specifying Layer 2 switches,
but if there is any prospect of using VLANs and/or QoS in the future, then you
should strongly recommend that Layer 3 switches are used from the start. It is also
worth having a conversation with the customer about Power over Ethernet (PoE), at
least for the endpoints that would be expected to work in the event of a power cut.

Endpoints
Similar cost/benefit principles also apply for the choice of endpoints. It is preferable
to spend an extra 10% or 20% on devices that have a good quality reputation rather
than trying to save some pennies now, only for your customer's business to be
adversely affected some time later. This may mean choosing the likes of Polycom,
Aastra, Snom, or even Cisco, now that they support SIP, over a cheap, no-name
brand. Indeed, the choice of endpoint is even more significant as it is likely to be the
only physical contact most users have with your system, and perceived quality will
be an important factor in the ongoing acceptance of the system.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[123]

Telephony switches and gateways
A telephony switch will merely guide the telephony traffic within your network,
usually on the basis of either a destination IP address or MAC address. By definition,
this needs to be separate from the terminating device(s), so figuratively speaking, it
will normally appear in your installation as a little black box. It is usual for telecoms
switches to be used in conjunction with PBXs containing internal termination cards.

Telephony gateways convert telephony traffic from one form to another. This can
happen either within the PBX, in the form of a plugin PCI card that passes the
telephony voice and data to Asterisk running on the host processor, or it can happen
in an external device. Using a separate telephony gateway device, while important
for failover scenarios as we will explore shortly, is also preferable purely from a
system resilience point of view. Keeping our server as simple as possible is always
a laudable goal, so putting a termination card in there is going to increase the risk
of failure. Having the termination happen in its own purpose-built chassis, with a
well-matched power supply, and appropriate cooling measures, will also maximize
its likelihood of achieving the required uptime.

Deciding which approach is more appropriate for your installation is normally only
a decision that is relevant for smaller systems, as terminating multiple PRI lines in a
single, large PBX is a tough decision to justify from a stability/resilience viewpoint.
However, for a small installation with either a BRI or even a couple of analog lines,
keeping as much as possible in a single, wall-mounted box may be preferable to
finding some floor space in a busy office, for a half-height cabinet. As long as the
customer understands the compromises involved, it's a valid decision to take.

Asterisk-friendly switch and gateway vendors include Xorcom, Redfone, Junghanns,
and Rhino.

Server
With the server, we will be using standard PC architecture. However, this doesn't
mean that any old PC off the shelf should be considered. Most telephony systems are
required to be working 24/7/365, so you should approach your choice of hardware
with that in mind. In all honesty, the easiest solution is to purchase a purpose-built
server from one of the established vendors in this arena, namely the likes of HP, Dell,
and IBM. Their 1U and 2U server offerings are usually powerful enough for all but
the largest installations. They are very cost-effective and in our experience, are highly
stable too. In scenarios where a rack-mounting is not viable, typically for the smaller
installation, there is usually a smaller floor-standing option from these vendors that
contains essentially the same components.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[124]

When choosing an appropriate server, you should seriously consider the
following features:

Dual power supply
Mirrored system HDDs (RAID 1)
Striped data drives (RAID 5)
Dual network cards
>1 memory module
Dual processors

Implementing all of the above can push the price up considerably over a basic server,
so this should be discussed with the customer. Certainly, processors tend to be
the most stable of the components we listed, so any compromise there is unlikely
to seriously increase the risk of failure.

If a highly-resilient single server is required, then the HP DL360 range, as shown,
provides a good price/performance ratio.

Environment
Of course, spending money on good quality, highly-resilient components can be
undermined if they are not used properly or are located in an environment likely
to cause failure. For instance, a server or switch is more likely to fail if placed
unprotected in a frequently used broom cupboard. Most cables will stop working
pretty quickly if left unprotected on the floor for people to walk on and chairs to roll
over. If your customer does not already have a secure and ventilated area for their
servers and communications equipment, then your proposal must recommend that
one be provided. Even a wall-mounted small communications cabinet is adequate
and inexpensive.

In addition, if any telephony is likely to be required if the power fails, then a UPS is
absolutely essential. As already mentioned, not all endpoints need to be connected to
a PoE switch, just the ones that are deemed necessary during a blackout. In addition,
you should make sure that all the other elements of the telephony system are also
protected, including the server, PoE switches, backbone switches, and gateways.
Bear in mind that you may need an extra UPS if the telephone lines enter the
building at a point other than the server/communications room.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[125]

Dealing with failure
 When specifying the hardware for a new Asterisk installation, it's tempting to
buy top of the range fully-loaded servers. However, when considering ways of
maximizing uptime, lots of lower-spec servers are better than one big one. It doesn't
matter how many redundant components you have in a well-specified server, there's
always a single point of failure somewhere. To illustrate, a couple of years ago, a
customer insisted on the most powerful/redundant server available. The server had
dual processors, dual power supplies, lots of fans, and a big RAID array. However,
despite that wonderful spec, it went offline for two days recently. The cause of the
failure? A dry joint in the power button circuit.

The commonly accepted approach to maximizing system availability is to assume
that, at some stage, you are virtually guaranteed to experience the failure of a
component. In order to cope with that failure, you need to be able to recognize it has
happened, and use an alternative component to ensure that no system downtime is
experienced, that is to say, to "failover". The problem is that in telephony systems
and data networks, there are probably hundreds, if not thousands, of components
to consider. The ultimate goal is to have no single point of failure (a component
with no backup). But usually, the elements of the system least likely to fail are left
unprotected, as it is not cost-effective to introduce redundancy. To start with, let's
look at how to make a data network more resilient.

Network resilience
Network design takes the standard approach to resilience, namely to assume that
certain components may fail, and to allow for that fact by running two or more
components in parallel. Resilient routers and switches, for example, will utilize dual
power supplies just in case one of them fails, and may also have dual processors for
the same reason. Such devices cost more than non-resilient ones, but will provide
seamless operation if covered components fail, if that is important to your customer.

Usually, a calculation of the potential disruption and lost revenue
makes a compelling case for a slight increase in spend on resilient
network equipment.

While using devices with an appropriate level of resilience is important, a truly
resilient network will assume that devices will eventually fail no matter how resilient
you make them. The usual mechanism for implementing such a failover situation is
to have primary and secondary devices connected together, with the devices sending
regular signals to each other to let them know that all is well. For obvious reasons,
this is known as a heartbeat.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[126]

The two devices should also synchronize their configuration constantly. If the
heartbeat fails, the secondary device assumes responsibility for the traffic. It is not
unusual for some user notification mechanism (for example, an email) to be triggered
when this occurs, as the failover should be so seamless that it is not humanly
detectable. Of course, not all devices are capable of failing-over in this fashion, so
you need to know what facilities you require when you make your initial purchase.

Improving network resilience, or its ability to deal with failure of nodes, can often
mean compromising the lean approach that is taken when designing a network with
speed in mind. In order to make the improvement, alternative routes need to be in
place when the primary route fails, whether that failure is due to faulty devices or
cables. Those alternative routes need to span both the LAN and the WAN, as the
most resilient internal network in the world is no good if there is a single internet
circuit that fails. It is worth bearing in mind that the circuit failure may be due to
an issue at an ISP, or due to something physical that is much closer to home, such
as a digger going through a cable. Utilizing both logical and physical separation in
redundant circuits is wise. However, once multiple circuits are in place, there is no
reason why any circuit should remain idle waiting for a failure elsewhere. Rather
it makes sense to ensure that adequate bandwidth is allocated to voice traffic when
recovering from a fault, probably through the use of QoS.

The failure of a switch can be catered for in a slightly different way, assuming that
you have three or more switches in use. Instead of having switches paired up,
so that you need twice the number that a "lean" configuration demands, you can
simply connect each switch to two others, such that, if one uplink cable or even a
switch fails, there is always a route through to the other active switches. The devices
connected to the failed switch will require re-cabling to an active device. However,
traffic up and down the backbone will not be stopped. Critical servers, of course, will
have at least two network cards that should be cabled to different switches, to ensure
that a switch failure does not cause a loss of service. The following illustration shows
a backbone switch cabling strategy:

The potential problem with cabling switches in this way is that routing loops may be
introduced. But this has been catered for by the use of the Spanning Tree Protocol
(STP), which creates a map of possible routes from one node to another and weighs
them according to criteria such as number of hops and connection speed. Not all
switch equipment is Spanning-Tree capable, so the old adage of "let the buyer
beware" applies. It is also recommended by Microsoft that switch ports with clients
connected to them should have spanning tree disabled to avoid potential issues with
DHCP, as stated at: http://support.microsoft.com/kb/q168455/

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[127]

Re-routing traffic, somewhat surprisingly, can be more difficult to achieve effectively,
if you wish to cater for cable issues anywhere on the network. However, while the loss
of communications on your network backbone (between two switches, or between a
switch and a router) can affect many people, the loss of a cable between a phone and
floor port should only affect one. Therefore, in most cases it is appropriate to have
different strategies for these different situations, most likely accepting that a cable issue
that disables a phone, can be quickly and easily dealt with by replacing the cable.

Server
 As we have already seen, it's fair to assume that there is a single point of failure
somewhere even in the best-specified server. Bearing this in mind, the means of
assuring continuity of service is to have another server ready to take over. As
Asterisk is Linux-based, one means of achieving this is to use a Linux project
called Linux-HA.

High availability
The Linux-HA project, in its own words, aims to:

Provide a high availability (clustering) solution for Linux which promotes
reliability, availability, and serviceability (RAS) through a community
development effort.

In Asterisk systems, the most widely used product based on Linux-HA is Ultra
Monkey, which is often used in conjunction with commercial hardware that allows
communications circuits to be switched between PBXs. For medium to large
installations, both Redfone and Junghanns produce fault-tolerant PRI gateway/
switch products specifically aimed at Asterisk. This setup will normally be used
within an active-passive failover scenario, although there is no reason it cannot be
used for an active-active scenario to introduce some load distribution.

Ultra Monkey
Ultra Monkey is an open source project that provides software for Linux
installations to enable them to be configured in a high availability cluster. The
software sets up a virtual IP address for two or more Linux servers. It also sets up
the service (as discussed earlier) known as a "heartbeat"—a means of determining
if a server in the cluster is still active. The heartbeat requires that the servers have a
means of communicating separate from the main LAN. This is normally achieved
through use of a second NIC in each server connected to a separate switch, or
to a separate VLAN. Installation instructions vary depending on which Linux
distribution your Asterisk system is built on, but some popular distributions are
covered at http://www.ultramonkey.org/3/installation.html.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[128]

In the next figure, we see a typical use of Ultra Monkey to provide a highly-
available-active/passive Asterisk system. There are two Asterisk servers, primary
and secondary. There is one main LAN carrying all the voice traffic and a secondary
LAN for heartbeat traffic, which could also be used to carry the mirroring/
synchronization traffic. There is a failover device on the network interfacing with the
ISDN circuits, allowing this function to be physically separated from the Asterisk
servers. In normal use, the primary server handles all call traffic, which can be a
combination of VoIP and PSTN calls. The main LAN uses addresses in the range
10.1.x.x and the heartbeat LAN/VLAN uses addresses in the range 10.2.x.x.

An alternative to the dual-LAN mechanism is simply to connect the servers together
using a serial cable, which works perfectly well if you only have two servers.

Phones Phones
LAN

10.1.x.xfor example

Asterisk PBXs

ISDN adapter

ISDN
Heartbeat network

for example 10.2.x.x

PSTN

Let's assume the primary server above has the static IP address 10.1.0.1 on the main
LAN and the secondary server has the address 10.1.0.2. A floating IP address, say
10.1.0.3, is associated with one of these servers by Ultra Monkey. The heartbeat
travels around the 10.2.x.x VLAN, ensuring that all nodes are available, in which
case the floating IP is associated with the primary server. If the primary server is lost,
then the software can run predetermined scripts and then switch the floating IP to
the secondary server. All other devices, such as phones, can register with the floating
IP in preference to the static IP.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[129]

Telephony switches/gateways
In the previous illustration, within our high availability system, the external
telephony circuits are terminated by a gateway device. This then directs the traffic
at the currently active Asterisk server. An alternative would be to have a PCI card in
each PBX, and a telephony switch directing the ISDN traffic at either the primary or
secondary PBX. Without a switch or gateway, the failure of the primary PBX would
either require the termination card to be transferred as a whole to the backup PBX,
or at least to have the cable moved from one PBX to the other if both had identical
cards. Either way, the time taken to recover from a failure situation has suddenly
risen from seconds to minutes, or even hours.

The manufacturers of the two devices we are going to look at have made a point of
targeting the Asterisk market, and their products can fairly be described as being
mid-range. Even though they work in slightly different ways, much of the call
handling is still carried out by the PBX. This means that registration needs to be with
a physical server rather than a floating IP address, adding a little extra complexity to
the failover process. However, they provide a very cost-effective means of building a
high availability system.

An alternative approach would be to use a true ISDN-SIP gateway which presents
ISDN channels as SIP trunks to the Asterisk PBX. With this setup, the SIP trunks
are registered to the floating IP, and at failover, the secondary server would simply
re-register them. This approach is easier, but much more expensive as the gateway
carries out the line terminations.

Redfone foneBRIDGE2
 The Redfone foneBRIDGE is a device that will actually terminate a telephony
circuit (for example, a PRI), and direct the traffic to a PBX using TDMoE (Time
Division Multiplexing over Ethernet). Thus, the Asterisk servers do not require
ISDN termination cards, and can simply use zaptel (or DAHDI) to deal with the
incoming call traffic.

It is recommended that you have a physical zaptel (DAHDI) interface
somewhere on the network, or use the ztdummy (dahdi_dummy) kernel
module, to provide the appropriate timing information.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[130]

With a very simple script, the device can be reconfigured on the fly to direct traffic
to a different server. Therefore, in a failover situation, heartbeat can run a script to
register the foneBRIDGE to the secondary server, another script to start Asterisk on
the same server, and your failover is complete, all within thirty seconds.

As the device pumps out TDMoE, which can be routed over a LAN (but not
the Internet), the foneBRIDGE2 can be used to manage failover between many
Asterisk servers.

Junghanns ISDNguard
 The Junghanns ISDNguard is an ISDN switch, and thus requires any of the
connected Asterisk servers to be able to terminate the ISDN traffic themselves.
It has its own means of determining if the primary Asterisk server has failed, by
using a serial cable connection. If it loses communication with the primary server,
it switches the ISDN line(s) over to the secondary server. Although this device can
be used in an active-passive failover scenario, it would also require the use of Ultra
Monkey or other Linux-HA software to manage the provisioning of the passive
server. However, it is ideally suited to an active-active failover scenario, where the
secondary server is ready and waiting for the switch. As there needs to be a direct
connection to the termination cards in the servers, this device will only work in a
two-server failover scenario.

The ISDNguard is a simpler device as compared to the foneBRIDGE2, and that is
reflected in the relative cost. However, in order to implement a failover system with
the ISDNguard, two interface cards are also required. Using Digium TE210P dual
T1/E1 cards will bring the total cost to around the same as the foneBRIDGE2.

Endpoints
 One issue with failover, even in an active-active setup, is how to manage calls that
are active at the time of failure. In principle, it should be possible for SIP calls to
carry on regardless. This is because the Asterisk server is, in theory, only required
to set up the call in the first place and to manage such features as music on hold,
or call recording if they are required during the course of the call. This behavior is
controlled using the canreinvite = yes|no option in sip.conf, and is described
in good detail at the following URL:

http://www.voip-info.org/wiki/view/Asterisk+sip+canreinvite

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[131]

In a nutshell, SIP devices set up a communication channel between themselves if,
and only if, both devices are capable of supporting this type of call and of allowing
Asterisk to reinsert itself into the call channel, if any of the server side features we
saw just now are required. In SIP terms, this is called a re-invite. Obviously, the
choice of endpoint, both on your side and the call recipient, is crucial. So even if
you have everything configured just right in your system to allow for calls to persist
during a failover, you may find that some still drop because the other side isn't quite
there yet.

Of course, another major barrier that tends to make persistent calls difficult to
achieve is the use of NAT. If either or both ends of a call are behind NAT firewalls,
then setting up a dedicated communication channel is only possible if a SIP proxy
is used, which adds a whole new layer of complexity into the mix.

Another issue with endpoints during failover, is the need for them to re-register with
the secondary server. As we saw in Chapter 2, especially in large installations, it is
usually better for endpoints to ping the server to maintain registration, and if this is
possible, then pinging the floating IP address should cause the endpoint to register
with the secondary server. Of course, if your endpoints only do this every sixty
seconds, then it could be that long before re-registration occurs.

It can take an awful lot of work to achieve the nirvana of persistent calls during a
failover, which your customer may baulk at funding, given that the risk of failover
occurring in the first place should be quite miniscule.

Round robin DNS
So how do you manage the load on your servers? One option is to use round robin
DNS, which is a feature of many DNS servers (open source and commercial). Instead
of constantly giving the same IP address out for a domain name request, the device
holds a list of IP addresses. As each request comes in, either the address at the top
of the list is handed out, or more frequently, the complete list is offered. Then the
address at the top is moved to the bottom of the list. The next request results in the
next IP address being handed out, either by itself, or at the top of the list, and so on.
Eventually, the first address comes back to the top of the list.

Strictly speaking, round robin DNS is not a load balancing technique, but rather
a load distribution technique. There are other techniques available that more
accurately divide calls, based on how heavily individual servers in a cluster are
loaded. Quite often, these require that a specialized router intercepts inbound traffic,
and distributes call load appropriately.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[132]

Round robin DNS is typically used for geographically distributed servers, where you
want to ensure that there is a relatively equal spread of load and that, if one location
becomes unavailable, the others can still service requests (the device that passes out IP
addresses should be constantly checking that the service at each address is available,
and should remove it from the list for those not available). There are a couple of
potential issues with this technique, such as:

1.	 Most ISPs set this to twenty four hours, although, there are a number of DNS
service providers that will allow it down to five minutes. If the TTL (Time
To Live) is too high, then the next request from the same external device will
have the previous results cached, so it will not pull the new IP address(es)
from the DNS server.

2.	 There is an assumption that all requests will result in a similar amount of work
for each server. However, this may not be the case for Asterisk installations,
where one incoming call may last for twenty seconds, and another could last
for two hours. If one server receives a disproportionate amount of the longer
calls, then it could have a much higher load than the other servers.
This technique will not work for outbound calls, if the phones in use have
the ability to register only with a single Asterisk server. Therefore, for this,
as with most Asterisk failover techniques, it is wise to use phones that can
register with more than one server, ideally failing over to a second server if
the first is unavailable. The good news is that this functionality is a standard
feature of most business IP phones.

Say hello to Rsync
Assuming you have successfully implemented load balancing/distribution using
round robin DNS, or a failover setup, perhaps using Ultra Monkey, the next issue is
to synchronize the server dial plans and iax/sip.conf entries across your servers.
After all, you really want to make changes only on one server (master), and have
it propagate to the others. There are products that will do this for you. In the open
source world, DRBD is quite popular as a byte level mirroring tool, but there are
simpler solutions too.

To synchronize the various .conf files, you can use the excellent Rsync program,
included by default in most Linux distributions. Rsync is a program that
synchronizes files between systems. What makes it special is that rather than copying
an entire file each time it changes, instead, it copies the "changes" from the source
system to the destination. If no change occurs then nothing is copied across. Rsync
can keep individual files, directories, or even whole file systems synchronized, and
can optionally preserve symbolic links, hard links, file ownership, permissions,
devices, and times. It can pipeline changes to multiple files to increase speed, and
use rsh, ssh, or direct sockets as the transport mechanism between trusted servers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[133]

As Rsync only copies changes that have occurred since the last synchronization,
there is little overhead in having many syncs per day rather than very few. From a
failover perspective, of course, it's better to have the changes passed round the estate
as soon as possible, as failure is rarely so accommodating as to occur immediately
after your once-a-day synchronization job.

In essence, what we're going to do is set up a cron job to copy any changes in the
master to all the slaves. So, do we just need to copy all the Asterisk directory files?
Well, not quite. Some files, or at least sections of some files, are going to be machine
specific, such as iax.conf and sip.conf. What we need to do here is create stub
files, and #include the main configuration files. We then use the exclude option
in Rsync to exclude the stub files, which contain the machine specific code. The
following code snippet shows a stub sip.conf:

[general]
bindport=5060; UDP Port to bind to (SIP standard port is 5060)
localnet=192.168.10.0/255.255.255.0; All RFC 1918 addresses are local
networks
#include sip_additional.conf

This file, being machine specific, will be in the exclude list, but sip_additional.
conf will be propagated across the network. If you are planning to run more than
one secondary server, then it is wise to ensure that all the secondary servers do not
pull their configuration from the primary server. The reason being that in the case of
primary server failure, your secondary servers will run the risk of gradually going
out of sync until the primary server is returned to service (they will have no "source"
for the sync job). Instead, it makes more sense to sync each server with two others,
being a sync job, it will push changes both ways.

Running this as a cron job every five minutes won't put an undue load on your
servers and will ensure they are synchronized. Reloading Asterisk's config completes
the picture.

The first cron job syncs the /etc/asterisk directory with an Asterisk server at the
IP address—192.168.10.138, but excludes five files which contain machine specific
information. This first cron job involves the following code:

/usr/bin/rsync -v -t --exclude=sip.conf
--exclude=a2billing.conf --exclude=manager.conf
--exclude=iax.conf --exclude=extensions.conf
--progress --partial rsync://asterisk@192.168.10.138
/asterisk/* /etc/asterisk >/dev/null 2>&1

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Resilience and Stability

[134]

The next cron job duplicates the voicemail directory with the same remote server,
applying the code:

/usr/bin/rsync -aPvt --progress rsync://asterisk@192.168.10.138/ast_
VM/./var
/spool/asterisk/voicemail/default >/dev/null 2>&1

The final cron job reloads the Asterisk's config with the code:

/usr/sbin/asterisk -rx 'reload' > /dev/null 2> /dev/null

With multiple secondary servers, a little care should be taken over the timing of
the cron jobs to ensure that a logical sequence is preserved. For example, with a
six-minute cycle between a primary and two secondary servers, you might sequence
the servers as follows:

0 minute: Sync primary and secondary 1
2 minutes: Sync primary and secondary 2
4 minutes: Sync secondary 1 and secondary 2

Thus, all servers are synchronized with each other, and there will be plenty of time
for each job to be completed. In fact, as already stated, the jobs could be run closer
together and, as only changes are pushed across, there should still be no problems.
However, as the time between the jobs gets shorter, it becomes even more important
that the server clocks are also in sync. So if you have not done so already, now is the
time to use NTP to set the server clock accurately, either with an internal NTP server
or with external ones such as the ntp.org servers, making sure that you use servers
local to you.

Limiting the number of calls per server
When looking to balance the load over a number of Asterisk servers, there are
several little publicized options in asterisk.conf as shown in the following code
snippet, which are very useful:

[options]
maxload = 0.9 ; The The maximum load average we accept calls for per
processor core (if dual core, set value to 1.8)
maxcalls = 140 ; The maximum number of concurrent calls you want
; to allow
timestamp = yes

The options are self-explanatory, but you should be aware that the maxload and
maxcalls options will reject calls if the values set are exceeded.

The timestamp option is also useful as it timestamps the command line interface,
which is great for debugging.

•
•
•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 7

[135]

Summary
Reliability, in Asterisk terms, refers to the reliability of the telephony system,
including the physical server, interface devices, and the network. Individual servers
can improve reliability through the use of redundant parts, however, it is difficult to
remove all single points of failure. A more reliable setup is to have multiple, smaller
servers working together to spread the load and take over if one of them fails.

An effective, high availability solution can be implemented using Ultra Monkey and
failover telephony switches or gateways. Multiple servers can easily be kept in sync
using the Rsync program included in most Linux distributions. One technique for
spreading the load of inbound calls is to use round robin DNS, which works without
much intelligence, simply allocating each call to the next server regardless of load.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and
Practical Security

Have you ever considered the changes that would need to be made if you wanted to
put your telephone system in a different country? If you have, you either have too
much time on your hands (and you need to chill out a bit more!), or you are a system
manufacturer thinking about supplying your product outside of your home market.

Although it is easy to tell that Asterisk was born in the USA, both Mark Spencer and
the numerous contributors to Asterisk have kept internationalization (to them) or
localization (to us) in mind, as can be seen in their designs.

If your customers are used to hearing a certain dial tone when they pick up a
phone, anything other than that tone will be unsettling to them, and that goes for
a multiplicity of other characteristics of a telephony system too.

All sorts of things need to be considered, from local numbering plans, to the call
progress tones, which are recognized and generated by the system, to the language
(and accent) of the prompts, to the way numbers are formatted and spoken, to the
physical and electrical characteristics of the telephony interfaces, and some stuff
in between.

If you want to implement Asterisk-based solutions outside of North America, then
you will need to do some localization my friend!

In addition to localization, we will take a quick look at some practical steps which
you can take to improve the security of your Asterisk-based solutions. Needless to
say, the main security shield for any given installation will be at the "whole network"
level. However, if we are going to allow callers to get "into" our Asterisk, then we
would be wise to enhance the level of security where possible.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[138]

In this chapter, we will cover the following:

How to change the tones generated and recognized by Asterisk
Where and how to affect the way times, dates, and so on are announced
How to change the language of system prompts
What needs to be changed in terms of telephony interfaces
Where to change the method of caller ID signaling used
A checklist to ensure you have localized everything you should
Some ways to secure your Asterisk against unauthorized use by internal
and external callers

Tones
Let's work from the inside out. The types of call progress tones played to the callers
once they are within Asterisk are set in indications.conf, which is, of course, one
of the many .conf files to be found in the /etc/asterisk directory.

On opening indications.conf, you will find that the default set of tones to be used
(by the pbx_indications module) is specified in the [general] section with a two
letter country code.

The next example, shows the way the first few lines of the file look on a fresh
installation, prior to any changes:

; indications.conf
; Configuration file for location specific tone indications
; used by the pbx_indications module.
;
; NOTE:
; When adding countries to this file, please keep them in
alphabetical
; order according to the 2-character country codes!
;
; The [general] category is for certain global variables.
; All other categories are interpreted as location specific
indications
;
;
[general]
country=us		 ; default location

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[139]

The highlighted code shows the country specified by the two letter country code. If
indications.conf is missing, Asterisk will assume that you want to use the US
tone set.

There are a number of separate sections further down in the files, each headed with
a two letter country code in square brackets, which describe the actual tones for that
country in terms of frequencies and cadences, along with the odd explanation or
cryptic note left there by the compiler of the tones for a given country.

Here we see the entry for the UK:

[uk]
description = United Kingdom
ringcadence = 400,200,400,2000
; These are the official tones taken from BT SIN350. The actual tones
; used by BT include some volume differences so sound slightly
; different from Asterisk-generated ones.
dial = 350+440
; Special dial is the intermittent dial tone heard when, for example,
; you have a divert active on the line
specialdial = 350+440/750,440/750
; Busy is also called "Engaged"
busy = 400/375,0/375
; "Congestion" is the Beep-bip engaged tone
congestion = 400/400,0/350,400/225,0/525
; "Special Congestion" is not used by BT very often if at all
specialcongestion = 400/200,1004/300
unobtainable = 400
ring = 400+450/400,0/200,400+450/400,0/2000
callwaiting = 400/100,0/4000
; BT seem to use "Special Call Waiting" rather than just "Call
Waiting" tones
specialcallwaiting = 400/250,0/250,400/250,0/250,400/250,0/5000
; "Pips" used by BT on payphones. (Sounds wrong, but this is what BT
; claim it
; is and I've not used a payphone for years)
creditexpired = 400/125,0/125
; These two are used to confirm/reject service requests on exchanges
; that don't do voice announcements.
confirm = 1400
switching = 400/200,0/400,400/2000,0/400
; This is the three rising tones Doo-dah-dee "Special Information
; Tone",

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[140]

; usually followed by the BT woman saying an appropriate message.
info = 950/330,0/15,1400/330,0/15,1800/330,0/1000
; Not listed in SIN350
record = 1400/500,0/60000
stutter = 350+440/750,440/750

So, once you have chosen your country by changing (if necessary) the two letter
country code, you just need to save the file and reload.

You will now hear those tones when a call is being handled inside Asterisk. The
word "inside" has been stressed as all calls are initiated outside of Asterisk, and will
come in from SIP, IAX2, or analog phones, or trunks of one description or another.
The nature of the tones you hear through these devices is not the responsibility of
Asterisk, although Asterisk will dictate the type (busy, ringing, and so on) that you
hear. Therefore, now we need to step outside of Asterisk and deal with those tones.

SIP and IAX phones are easy to deal with, as these devices generate the tones
themselves. So, when you lift the handset on say, an SIP phone, you will hear a dial
tone whether the device is connected to an IP telephony network or not.

Contrast this scenario to the original reason for the dial tone. The clue is in the name
"dial tone". It was originally a "confidence tone" to signal to the users that they were
indeed connected to a telephone exchange, and that they could now dial a number.
Of course, this is still the case with traditional telephony connections. How things
changed in the world of IP—all a dial tone in the earpiece of an IP phone will tell you
is that your IP phone is alive, and the curly cord to the handset works.

In order to change the nature of the tones you hear from your SIP or IAX phones,
you will need to change parameters on the phones themselves, usually, via their
web interfaces. Asterisk only tells these telephones which tones to play (through
the protocol being used for call control). It is on the phones themselves that you will
need to change the tones.

We have now seen how to change the tones that Asterisk provides to calls which it
is terminating, and we have seen that the tones heard through SIP and IAX phones
(prior to the call being terminated by Asterisk) must be changed on the devices
themselves.

Let us now consider the tones that will be used (both recognized and generated)
for analog telephony. If analog devices are connected through ATAs (Analog
Telephony Adaptor), then the tones will again be changed on the ATA devices
themselves, as tone generation and recognition is part of their job.

However, if we connect our analog devices to Asterisk through a Digium card, we
will need to configure these tones as part of the DAHDI (formerly Zaptel) setup.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[141]

In the /etc/dahdi/ directory a file called system.conf (formerly etc/zaptel.conf)
will be found with the code:

loadzone=us
loadzone=uk
loadzone=nl
defaultzone=us

We are interested in two parts of the configuration in this file—loadzone that loads
a set of tones to be used with the analog card(s), you can load as many sets as you
want (details of the actual tones are found in zonedata.c), and, defaultzone that
defines the tone set you will use as standard when handling calls.

Remember, we are only talking about the tones that will be recognized or generated
on analog channels here.

If you want to employ some tones which are loaded, but not default, this is easily
done within the dialplan using the Playtones() application.

That was about the tones. Tones that will be heard once a call is inside Asterisk, such
as the following, are chosen and specified in indications.conf.

Tones heard on SIP or IAX phones (prior to the call being answered by
Asterisk) are set on the devices themselves

Tones to be generated or recognized on analog channels through Digium
cards are loaded (and defaults set) in etc/dahdi.conf.

Take a look at the next figure to reinforce this:

Where to set the tones

etc/dahdi/system.conf

etc/asterisk/indications.conf

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[142]

Time and date and localization
Although the actual system time and date for your Asterisk machine will only be
affected by the setting in Linux, it is quite possible to make Asterisk aware of as
many time zones as necessary, and to alter the way time and date are set out and
spoken within Asterisk.

When you think about the need to manifest different time zones and spoken
localization (other than the language itself—we'll come to that), it really occurs
only in voicemail transactions.

When you are being told at what time and on which date a message was left, you
will want to hear it in your local time zone, regardless of where the Asterisk server
is located. Moreover, you will want to hear the time and date spoken in a way that
you naturally understand, rather than having to struggle to interpret the information
while it is given to you in some alien form.

Fortunately, Asterisk recognizes this fact and allows different "voicemail zones"
to be set, which dictate the time zone and the way in which the time and date
are announced. These settings are created in the [zonemessages] section of
voicemail.conf, and further down the file, the voicemail zone for each voicemail
box can be specified as an option (if required) where voicemail boxes are specified.

Here is a look inside voicemail.conf to see what we have been talking about.
This example starts with comments (identified by a leading semicolon—";"), which
explain each of the options that could be used to construct a voicemail zone. This is
followed by the [zonemessages] section where each of the zones is set, and finally
we see the use of two of the defined zones (Eastern and European), by being set as
options, in the mailbox definitions at the end of the file in the following example:

; Users may be located in different timezones, or may have different
; message announcements for their introductory message when they enter
; the voicemail system. Set the message and the timezone each user
; hears here. Set the user into one of these zones with the tz=
; attribute in the options field of the mailbox. Of course, language
; substitution still applies here so you may have several directory
; trees that have alternate language choices.
;
; Look in /usr/share/zoneinfo/ for names of timezones.
; Look at the manual page for strftime for a quick tutorial on how the
; variable substitution is done on the values below.
;
; Supported values:
; 'filename' filename of a soundfile (single ticks around the
; filename required)
; ${VAR} variable substitution

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[143]

; A or a Day of week (Saturday, Sunday, ...)
; B or b or h Month name (January, February, ...)
; d or e numeric day of month (first, second, ...,
; thirty-first)
; Y Year
; I or l Hour, 12 hour clock
; H Hour, 24 hour clock (single digit hours preceded by
; "oh")
; k Hour, 24 hour clock (single digit hours NOT preceded
; by "oh")
; M Minute, with 00 pronounced as "o'clock"
; N Minute, with 00 pronounced as "hundred" (US military
; time)
; P or p AM or PM
; Q "today", "yesterday" or ABdY
; (*note: not standard strftime value)
; q "" (for today), "yesterday", weekday, or ABdY
; (*note: not standard strftime value)
; R 24 hour time, including minute
;
;
;
; Each mailbox is listed in the form <mailbox>=<password>,<name>,
; <email>,<pager_email>,<options> if the e-mail is specified, a
; message will be sent when a message is received, to the given
; mailbox. If pager is specified, a message will be sent there as
; well. If the password is prefixed by '-', then it is considered to
; be unchangeable.
;
; Advanced options example is extension 4069
; NOTE: All options can be expressed globally in the general section,
; and overridden in the per-mailbox settings, unless listed otherwise.
;
; tz=central Timezone from zonemessages below. Irrelevant if
; envelope=no.
; attach=yes 		 ; Attach the voicemail to the notification
; email *NOT* the pager email
; attachfmt=wav49	 ; Which format to attach to the email.
; Normally this is the
; first format specified in the format parameter above, but this
; option lets you customize the format sent to particular mailboxes.
; Useful if Windows users want wav49, but Linux users want gsm.
; [per-mailbox only]
; saycid=yes 		 ; Say the caller id information before the
; message. If not described, or set to no, it will be in the
 envelope

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[144]

; cidinternalcontexts=intern	 ; Internal Context for Name Playback
; instead of extension digits when saying caller id.
; sayduration=no ; Turn on/off the duration information before
; the message. [ON by default]
; saydurationm=2 ; Specify the minimum duration to say. Default
; is 2 minutes
; dialout=fromvm 	 ; Context to dial out from [option 4 from
; mailbox's advanced menu].
; If not specified, option 4 will not be listed and dialing out
; from within VoiceMailMain() will not be permitted.
sendvoicemail=yes 	 ; Allow the user to compose and send a
; voicemail while inside VoiceMailMain()
; [option 5 from mailbox's advanced menu].
; If set to 'no', option 5 will not be listed.
; searchcontexts=yes	 ; Current default behavior is to search only
; the default context
; if one is not specified. The older behavior was to search all
; contexts.
; This option restores the old behavior [DEFAULT=no]
; callback=fromvm 	 ; Context to call back from
; if not listed, calling the sender back will not be permitted
; exitcontext=fromvm ; Context to go to on user exit such as * or 0
 ; The default is the current context.
; review=yes 		 ; Allow sender to review/rerecord their
; message before saving it [OFF by default
; operator=yes 		 ; Allow sender to hit 0 before/after/during
; leaving a voicemail to
; reach an operator [OFF by default]
; envelope=no 		 ; Turn on/off envelope playback before message
; playback. [ON by default]
; This does NOT affect option 3,3 from the advanced options menu
; delete=yes		 ; After notification, the voicemail is deleted
; from the server. [per-mailbox only]
; This is intended for use with users who wish to receive their
; voicemail ONLY by email. Note: "deletevoicemail" is provided as
; an equivalent option for Realtime configuration.
; volgain=0.0		 ; Emails bearing the voicemail may arrive in
; a volume too quiet to be heard. This parameter allows you to
; specify how much gain to add to the message when sending a
; voicemail.
; NOTE: sox must be installed for this option to work.
; nextaftercmd=yes	 ; Skips to the next message after hitting 7 or
; 9 to delete/save current message.
; [global option only at this time]

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[145]

; forcename=yes		 ; Forces a new user to record their name. A
; new user is determined by the password being the same as the
; mailbox number. The default is "no".
; forcegreetings=no	 ; This is the same as forcename, except for
; recording
; greetings. The default is "no".
; hidefromdir=yes	 ; Hide this mailbox from the directory
; produced by app_directory
; The default is "no".
; tempgreetwarn=yes	 ; Remind the user that their temporary
; greeting is set
; vm-password=custom_sound
; Customize which sound file is used instead of the default
; prompt that says: "password"
; vm-newpassword=custom_sound
; Customize which sound file is used instead of the default
; prompt that says: "Please enter your new password followed by
; the pound key."
; vm-passchanged=custom_sound
; Customize which sound file is used instead of the default
; prompt that says: "Your password has been changed."
; vm-reenterpassword=custom_sound
; Customize which sound file is used instead of the default
; prompt that says: "Please re-enter your password followed by
; the pound key"
; vm-mismatch=custom_sound
; Customize which sound file is used instead of the default
; prompt that says: "The passwords you entered and re-entered
; did not match. Please try again."
; listen-control-forward-key=#	 ; Customize the key that fast-
; forwards message playback
; listen-control-reverse-key=*	 ; Customize the key that rewinds
; message playback
; listen-control-pause-key=0	 ; Customize the key that pauses/unpauses
; message playback
; listen-control-restart-key=2	 ; Customize the key that restarts
; message playback
; listen-control-stop-key=13456789	 ; Customize the keys that
; interrupt message playback, probably all keys not set above

; Maximum number of messages allowed in the 'Deleted' folder. If set
; to 0
; or no then no deleted messages will be moved. If non-zero (max 9999)
; then up
; to this number of messages will be automagically saved when they are
; 'deleted' on a FIFO basis.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[146]

; defaults to being off
; backupdeleted=100
[zonemessages]
eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM
[default]
; Define maximum number of messages per folder for partcular context.
;maxmsg=50
1234 => 4242,Example Mailbox,root@localhost
6001 => 9999,David Duffett,dduffett@packt.com,,tz=european
6002 => 9999,Jared Smith,jsmith@packt.com,,tz=eastern

Changing the language of system
prompts
Asterisk users know that sound files are usually kept in the /var/lib/asterisk/
sounds directory. If you look into this directory on an Asterisk 1.6.x.x installation,
you will find that it does not have any sounds in it at all. It actually has three
subdirectories called en, es, and fr.

As you can guess, each of these subdirectories represents a language, en (English)
being the default. In fact, neither es (Spanish) nor fr (French) have any prompts on
installation, but are put there to show the way things are done.

You can create as many other directories as you need, such as de, nl, it, and so on
for the storage of prompts in whatever language(s) you need.

/var/lib/asterisk/sounds/en/
/var/lib/asterisk/sounds/es/
/var/lib/asterisk/sounds/fr/
/var/lib/asterisk/sounds/it/
/var/lib/asterisk/sounds/nl/

Within these directories, the system prompts must be in the file names known to
Asterisk. So, the file called /var/lib/asterisk/sounds/en/hello.gsm will contain
"Hello" whereas the file called /var/lib/asterisk/sounds/fr/hello.gsm will
contain "Bonjour".

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[147]

You may have already seen this principal at work—some prompt companies offer
a standard package of Asterisk sounds in a given language or accent, which are all
recorded in the standard filenames. Thus, they can be dropped into the appropriate
directory, and you are ready to go.

The way you select the prompts to be used during a call is by specifying it in the
concerned channel configuration file.

In sip.conf and iax.conf, you can set the language in the [general] section of
the files:

[general]
language=en	 ;default language
Or you can set the language for a given user:
[203]
type=friend
language=fr	 ;user-specific language

Thus you can have a default language (as identified in the [general] section)
and/or select a language for each specific user, and as a call comes in through
that channel, the language will be set.

The same is true for DAHDI channels. You can set the default language
channel-specific languages in the [channels] section of chan_dahdi.conf:

[channels]
language=en	 ;default language
...
channels=>1-23
...
language=fr
channels=>24	 ;channel-specific language

There you have it, a very short section, because changing the language of your
prompts or using multiple language prompts in Asterisk is very easy.

Local telephony interfaces
Having set the tones, announcements, and language so that your users feel at home,
the next task is to physically connect our Asterisk to the outside (telephony) world.

Fortunately, the RJ-45 is ubiquitous as far as Ethernet connectivity is concerned, so
attention can be focused on traditional telephony connections.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[148]

Analog
It is a fairly safe bet that whatever equipment you choose to connect your analog lines
and phones to Asterisk, whether you have gone with an ATA or a Digium card, the
termination will be with an RJ-11 socket (with the middle two pins used for the pair).

This means that the lead that plugs into that RJ-11 socket becomes a mission-critical
accessory, which, in a number of cases, is not shipped with your equipment.

You need to be absolutely sure that the lead you use has the right pin to pin
connections as well as the right connectors at each end.

This may seem like stating the obvious, but it is included as a result of a Digium
support case where a customer in the UK reported that the analog card they were
using was faulty. The case got to the stage where the support team remotely accessed
the machine in the UK and established that there appeared to be an unexpected
voltage on one of the legs of the telephone line. When someone questioned the patch
lead connecting the card to the PSTN, only then was it established that the customer
had just picked up a lead that had the right ends and plugged it in, without worrying
about whether the electrical connections were right. It turned out that the lead was
probably for some old modem and it cross-connected some of the pins.

Of course, physical connectivity is essential, so is ensuring that the pinouts are
correct. In the left part of the following figure, we can see the type of lead in
question. It has an RJ-11 at one end, and a BT (British Telecom, the main telco in the
UK) plug at the other. To the right is a picture of the two ends of the lead that would
be required to connect to an analog telephone line in Korea. This has been included
to give an idea about the diversity of connectors that are used around the world.

From a regulatory standpoint, it should be pointed out that only analog telephony
cards and ATAs with the appropriate approvals should be connected to the
telephone network in a given country.

The main learning point here is to ensure that you consider physical connectivity as
part of your localization planning.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[149]

Digital
Digital telephony interfaces will be in two groups—basic rate access (otherwise
known as BRI or ISDN2), and primary rate access (otherwise known as PRI, E1, T1,
or ISDN, and sometimes ISDN30 in countries where 30 voice channels are used).

BRI is almost universally connected using an RJ-45 patch lead, which will look like a
standard Ethernet patch, but if more closely inspected, it becomes apparent that only
four wires are connected.

PRI connectivity started being implemented using two BNC connectors (one
for transmit and one for receive), but is more commonly connected using RJ-45s
these days.

Note that a PRI patch lead with RJ-45s at each end will be different
from a BRI patch cable, which as mentioned, is different from an
Ethernet patch. So, label your cables!

In countries such as the UK, you would not expect to find signaling systems with
telco presentation on co-axial connections, but many countries (for example, those
found in South America) still utilize R2 signaling, which may well be presented
using co-ax.

Most PRI apparatus (including telephony cards) will use RJ-45 sockets these days.
Therefore, it may be possible that in some countries you are presented with a
situation where the telco is giving you two BNC connectors, but your equipment
wants an RJ-45 plug. This is simply remedied by using a balun (so named because it
is connecting a balanced interface, the RJ-45 end, to an unbalanced interface, the BNC
end). Here is a figure to illustrate it:

When I say "simply remedied", that is as long as you have thought of it in advance,
and ordered these inexpensive, yet very useful adapters. If you have not thought of it
prior to implementation and find yourself in need of a balun, be prepared to wait to
get them shipped. These are not items you will find at the corner store.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[150]

Localizing caller ID signaling on Digium
analog interfaces
Given the work we have already identified in this chapter to localize your Asterisk
telephony solution, it will not come as a complete surprise to learn that the method
used to send caller ID information over analog lines varies from country to country.

Fortunately, Asterisk is capable of recognizing many different types of caller ID
signaling. This should not be a problem as long as you remember to set up the
correct type for the country where the system will be connected.

All caller ID settings are made in chan_dahdi.conf (formerly zapata.conf), which
is found in the /etc/asterisk/ directory.

When you look into this file, the only lines you see concerning caller ID are:

usecallerid=yes
hidecallerid=no

Asterisk will be using its default type of caller ID signaling, which is North
American. You may not even see these lines, as this is the default position.

In order to change things, you will need to add some extra lines to the file. The
number of lines you add will depend on the type of signaling you want to work
with, and whether you are connecting to analog phones, or lines, or both.

Shown next, is the kind of entry you would expect to see for a connection to an analog
telephone line, with the entries that change the caller ID signaling highlighted.

context=from_outside
signalling=fxs_ks
usecallerid=yes
hidecallerid=no
cidsignalling=v23 ;BT CallerID presentation signalling method
cidstart=polarity ;Indication of CallerID data starting
callerid=asreceived
callwaiting=no
channel => 4

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[151]

The two highlighted lines are equipping Asterisk to recognize the caller ID as it is
sent in the UK over BT (British Telecom) analog lines. The callerid=asreceived
line is not part of the change and serves to propagate the caller ID information
through Asterisk. Therefore, it will show up on connected extensions when they
are called.

What we saw just now covers the case where we want to interpret incoming caller ID
data. However, we also need to look at the sending of caller ID to any analog phone
that we have connected to our Asterisk. If the analog phones are connected using
ATAs, it is those devices that will handle the caller ID. If the phones are connected
to a Digium card, then we are back in chan_dahdi.conf.

context=users
signalling=fxo_ks
callerid="David Duffett" <5001>
cidsignalling=v23 ;BT CallerID presentation signalling method
cidstart=polarity ;Indication of CallerID data starting
sendcalleridafter=2;The number of rings before sending data
mailbox="5001"
callwaiting=yes
threewaycalling=yes
transfer=yes
channel => 1

In the code that we saw just now, the third highlighted line is particular to only a
few caller ID signaling systems, and instructs Asterisk to send the caller ID data after
(in this case) two rings. This is for systems where the data is sent between rings. It is
the kind of system used in the UK.

A final note on caller ID: Do make sure that your customer actually has caller ID
enabled on their telephone line before you run around worrying that Asterisk is
not recognizing it. There was a guy (who may or may not be one of the authors)
who spent a good amount of time analyzing why the caller ID was not showing up
in Asterisk by changing settings, changing them back, and so on before asking the
customers if they actually had caller ID on their line. The response was: "No, we
never use it". Needless to say, it's the kind of mistake you make only once or twice.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[152]

Checklist
So, that's the end of our localization journey together. We hope you gain as much
enjoyment from reading it as was gained from writing it. In closing this part of the
chapter, a checklist is included so that you can be systematic in your approach to
applying localizations to your Asterisk-based solutions.

Check What to change Where to change it
Tones (recognized and generated)
internal to Asterisk

etc/asterisk/indications.
conf

Tones (recognized and generated) for
telephony interfaces through Digium
hardware

etc/dahdi/system.conf

Tones heard on SIP/IAX phones, or
through ATAs

On the devices themselves

Time and date formatting, and
announcement

etc/asterisk/voicemail.conf

Language of announcements The appropriate channel, for example,.
etc/asterisk/sip.conf

etc/asterisk/iax.conf

Physical interfaces Be sure to get lead with the right ends
and connections.
Get baluns if required.

Caller ID signaling (if used) etc/asterisk/chan_dahdi.conf

for Digium cards or on the ATA

Practical security
As mentioned previously, this part of the chapter must be seen as containing security
measures below the headline security, which will be within your network as a
whole—stuff such as firewalls.

The assumption is that your network is as secure as you want it to be. The measures
identified in this section are some ideas on how to prevent abuse of your system by
those coming into it on telephony channels of one sort or another.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[153]

The first thing to look at is how to stop unauthorized users hooking up to a channel
on your Asterisk server. This can be done by allowing only given IP addresses or
address ranges to connect with your Asterisk through, say, the SIP channel. It is
easily implemented in sip.conf like this:

[my-sip-profile]
type=friend
deny=0.0.0.0/0
permit=192.168.2.200/255.255.255.255
context=internal

The example above would only allow a device with the IP address of 192.168.2.200
to connect to that SIP profile. Notice that we first deny "all", before permitting the
authorized address.

To allow the 192.168.2.XXX range of addresses, the entry should look like this:

deny=0.0.0.0/0
permit=192.168.2.0/255.255.255.0

In addition to restricting the IP address of devices hooking up to your system, you
also need to pay very close attention to the [general] section of sip.conf and
iax.conf, because this section may contain a line that directs unknown callers to
a specific context in the dialplan.

A context in the dialplan is actually a mini dialplan
in its own right.

In the sample configurations that come with Asterisk (which should not be used for a
production system), the line looks like this:

context=default

This line may also appear in your chan_dahdi.conf (formerly zapata.conf).

This means that any of the calls that come in on those channels that do not match
with one of the profiles specified lower down in the file, will be passed into the
dialplan in the [default] context. Therefore, it is vital that you ensure—if you have
a context called [default] in your dialplan, you don't allow callers that end up in
that context to make calls that could cost you money, or waste the time of those with
extensions on the system.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[154]

If you've checked your configuration and determined that you don't have a
context=default line, don't think that you're safe from this particular feature. Even if
there isn't a context=default line in the [general] section, Asterisk will still direct
any of the unknown calls to a context called [default] in your dialplan, if you have
such a context. So, it might be wise "not" to have a [default] context in your dialplan,
or to ensure that if the context is present, it just plays an "unauthorized call" message.

To make things explicitly clear, you may wish to have a [incoming_untrusted]
context to which all unknown IP calls are directed by the line context=
(in the [general] section of sip.conf or iax.conf), instead of the [default]
context. Now, a special message can be played to the calls which end up in the
[incoming_untrusted] context.

Talking of contexts, these are our first line of defense against misuse by those who
are allowed on the system. Once a call comes into a given context in the dialplan,
there is no way for it to leave that context unless you allow it with a conditional or
unconditional branch (GotoIf or Goto), or unless you have included some other
context. In this case, the call will try to find a match in the included context only if
no match is found in the first context it came into.

Knowing this enables us to use contexts to deny external callers the ability to make
outbound calls, or to build a class of access model where certain internal users
can make only locals calls. However, other, more privileged users, can make long
distance and international calls too.

We direct a call coming into Asterisk by the line context= for that particular profile
in the channel configuration file. Here is an example for a SIP phone:

[worker-sip-shone]
type=friend
host=dynamic
secret=thepassword
context=local

The highlighted line in this profile, sends any call that comes in through that profile to
the [local] context in the dialplan. The calls sent into that context might be allowed
to call local numbers, free numbers, and other extensions on the PBX. (In some time,
we'll see them as four digit numbers that always begin with a "2" in an example.)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[155]

If we look at the profile for a manager's phone on the PBX, it will look like this:

[manager-sip-shone]
type=friend
host=dynamic
secret=thepassword
context=ld-and-international

The highlighted line signifies that we can make long distance and international calls.

To see how this affects their respective abilities to make outside calls, we will need to
look at the dialplan in extensions.conf:

[ld-and-international]
exten => _1NXXNXXXXXX,1,Dial(SIP/ld-provider/${EXTEN}
exten => _011.,1,Dial(SIP/international-provide/${EXTEN})
include = > local
[local]
exten => _NXXNXXXXXX,1,Dial(SIP/local-provider/${EXTEN})
exten => _NXXXXXX,1,Dial(SIP/local-provider/${EXTEN})
exten => _18XX.,1,Dial(SIP/local-provider/${EXTEN})
exten => _2XXX,1.Dial(SIP/${EXTEN})

As you can see from the previous dialplan excerpt, the calls dropped into the
[local] context can only dial local, free, and internal calls. If the dialed number
does not match one of the four patterns shown, the call will be rejected as "extension
not found".

Calls dropped into the [ld-and-international] context can call long distance and
international destinations. Also, by virtue of the include => local part, they can
make local, free, and internal calls too.

Please note that the aim here is to demonstrate the principal of restricting access, or
creating classes of service, using contexts and includes. You will need to create a set
of contexts that match the market you are in. For example, you may wish to limit
access to mobile calls in places like the UK (where making calls to mobile phones
from a landline is relatively expensive), however, this would be unnecessary in
places like the US (here, the cost of making calls to mobile phones is exactly the
same as that for calls made to a landline).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[156]

Another method of securing access to expensive calls is the Authenticate()
dialplan application, which gives the user three tries to enter the specified PIN, and
if unsuccessful, Asterisk hangs up the call. Successful PIN entry enables the next
priority in the dialplan. Implementing this security method, for international calls
made out of the US is as simple as:

exten => _011.,1,Authenticate(1357)
Exten => _011.,1,Dial(SIP/international-provider/${EXTEN})

When users dial a number starting with "011", they will be prompted for a PIN.
Unless they enter "1357" within three tries, they cannot make an international call.
You can use the ${} referencing to set the PIN, rather than hardcoding it, as I have
done in the previous example

There is also an application called VMAuthenticate(), which does the same as the
Authenticate() application that we saw just now. However, it uses mailbox PIN
codes to authenticate the users, so each of them can have their own unique PIN
(as long as they have a voicemail box).

This security measure is great for hotel house phones or phones on the reception
desks of businesses. Here, it would be good to have the convenience of the staff
being able to use them for say, international calls, but you don't want anyone who
wanders in off the street being able to do the same.

There are, of course, a good number of more elegant or sophisticated ways to
implement user authentication within Asterisk (perhaps including the use of
the AstDB database). However, here the aim has been to highlight a couple of
ready-made applications within Asterisk.

Out of hours
The last practical security measure we are going to look at is out of hours calling.
Let's assume you, or your customer, want to implement a mechanism to secure office
phones, which can currently make unlimited calls at any time of the day or night.
To achieve this, you will require authentication for all calls placed between 6.00 pm
and 7.30 am during the working week, and for all weekend calls. This prevents
the friendly cleaning staff, or anyone else, from making expensive calls during
this timeframe.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 8

[157]

The next example, would allow a given phone to make outside calls (identified by
the prefix "9", which we strip away from the front of the number before calling it)
during the working day, but outside of those hours, a PIN (of 1357) will be required
to give access to outside calls:

exten => _9.,1,GotoIfTime(07:30-18:00,mon-fri,*,*?allowed)
exten => _9.,n,Authenticate(1357)
exten => _9.,n(allowed),Dial(SIP/my-sip-trunk/${EXTEN:1})

Therefore, when a call is placed (with a leading "9") between the hours of 07:30 and
18:00, Monday to Friday, we jump to the priority label "allowed", which makes
the call.

Outside of these hours, the call just drops down to the next priority, which prompts
the user to enter a PIN before allowing the call to be made. Two extra lines in our
dialplan could easily save the company a lot of money!

Summary
The most important thing to do concerning the localization of the telephony systems
you implement, is to walk in your customer's (and their customers') shoes. This
means that you go through every contact and scenario that they would go through
with the system (making a call, retrieving a voicemail, and so on) to ensure that
everything sounds and appears normal to them.

A point that is made well in the other chapters of this book is that customers will
have certain expectations when they pick up a phone. If that phone is on your
system, then it's your job to meet those expectations such as familiar dial tone,
local language/accent announcements, and so on.

If you're reading this book, you will be the type of person who wants to exceed
expectations, and that's great, but these are not the places to do it, people don't want
surprises on stuff like this.

The great news is that with the unparalleled (almost infinite) flexibility of Asterisk,
you're sure to be able to impress your customers with the added functionality,
the seamless fit in to their business, and the overall elegance of the solutions you
implement for them.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Localization and Practical Security

[158]

Having covered a good number of areas, such as tones, physical interfaces, and
announcements, it is reassuring to know that, although Asterisk was born in
the USA, with a few minor changes to some configuration files and the right
connectors in place, "you're all set" (as they say in the US) for successful
international deployments.

On security, however, Asterisk must be handled at a network level. There is also
scope to implement some security measures within Asterisk—both regarding who
is allowed to connect to Asterisk, and which calls they are allowed to make once an
authorized user is connected.

With these measures being so simple to implement, please put them in as a
precaution at the creation of your solution. Don't let them be a reaction to an
"issue" that was allowed to occur.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional
Analog and Digital Telephony

As a well-known book tells us, Asterisk is the future of telephony. In addition to
being an open-source project that uses open standards to enable any number of IP
telephony applications, one of the things that ensures Asterisk's future is its ability
to connect with the telephony interfaces of the past, which are still very much in
use today.

Before we discuss the options that exist to connect Asterisk to the traditional
telephony interfaces, let's take a quick (overview-level) look at each of those which
you might come across.

If you already know the basics of how analog and digital telephony work, feel free
to skip ahead to the Choices, choices section of this chapter.

Analog
This is the simplest interface you will encounter. It is ubiquitous as there are
not many places you will go to that do not support analog telephony. Indeed,
you probably have at least one of these connections in your home or office. It is
sometimes known as Plain Old Telephone Service (POTS), denoting its simplicity.
I once heard Voice over Internet Protocol (VoIP) described as Pretty Amazing New
Stuff, you may smile at the corresponding acronym.

With this interface, we connect a standard analog telephone (cheap, easy to obtain
and use) to a standard line, which generally arrives on a twisted pair. The capability
is easy to understand. You can make one phone call and then the line is busy. If you
want to run two calls at once, you need to get another line.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[160]

The phone is known as a Foreign eXchange Subscriber (FXS) device and in the
absence of a PBX, it plugs into the phone line from your friendly telco. In this
nomenclature, the telco local exchange that you connect to is known as a Foreign
eXchange Office (FXO).

This diagram should make things clear:

Subscriber

FXO
Port

FXS
Port

POINTS
to the Office

POINTS
to the Subscriber

(Phone)

POTS Circuit

Telco Central Office

Wall plate
Jack

Analog lines and phones are commonly used in both domestic and business
situations. These lines are not what one would call feature-rich, but they can support
a number of services like call waiting, three-way calling, and caller ID presentation
(caller ID transmission methods vary around the world—Asterisk supports many
formats, for more details, see Chapter 8 on localization).

There are two main methods used by analog lines to signal to the exchange that the
phone has gone off-hook, and therefore, that a dial tone is required. One of these
methods is called ground start (or Earth calling), which simply grounds one leg of
the twisted pair. The other is called loop start, which simply loops the pair. Loop
start signaling is also used by an enhanced system which boasts far end disconnect
supervision and this system is known (in Asterisk, at least) as Kewl Start.

It is important that you know which system is in use on the lines you plan to connect
to Asterisk.

Once the dial tone is on the line, the user can dial the desired number. In the old days
(think rotary phones), the number was transmitted to the exchange by a method
called loop disconnect (or pulse dialing)—the pair of wires is temporarily shorted
together at a speed of 10 times per second to each digit. One pulse represented the
number "1" all the way through to nine pulses for "9", and ten pulses for "0".

These days most analog lines use DTMF for dialing. Here, a unique combination of
two pure tones is used to represent each digit, as shown in the following diagram:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[161]

1209Hz 1336Hz 1447Hz

1 2 3

4 5 6

7 8 9

* 0 #

697Hz

770Hz

852Hz

941Hz

One small but important note is that in the usual run of things, there is no way for
Asterisk to determine which number was dialed when an analog line rings, as there
is for IP telephony, BRI, or PRI lines. This means that when a call is received from
an analog line into Asterisk, there is no extension number that we could match it
against. Hence, we use the "s" (or start) extension, for example:

[from-analog-line]
exten => s,1,Background(welcome-menu)

Businesses with a need for a number of lines can either use a collection of analog
lines, or they may choose to go for a digital connection (described next) which can
provide a number of concurrent calls together, along with some additional services.

Digital
This kind of interface provides a number of channels for conveying digitized voice
information (these are known as bearers). The voice is sampled 8,000 times a second,
and each time it is sampled, an 8-bit representation of the amplitude of the voice
is made. With eight bits of information being generated 8,000 times a second, we
get 64,000 bps (bits per second), and this process is known as PCM (Pulse Code
Modulation). Thus the standard way of digitizing the voice in telephony is
called PCM64.

If you are wondering why the voice is sampled at the rate of 8,000 times per second,
it was one Harry Nyquist who devised the sampling theorem that took his name.
It states that, in order to faithfully recreate an analog waveform at the far end of a
digital transmission, it must be sampled at a rate which is at least twice as fast as
the highest frequency being sampled.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[162]

To put some practical numbers on this, most analog telephone lines are guaranteed
to transmit signals up to 3,400 Hz (or 3.4 kHz), so to faithfully recreate these signals,
they need to be sampled at least twice as fast as 3,400 times per second, which is
6,800 times per second. We then add some magical fiddle factor, which no one seems
to fully understand to get the deemed standard of 8,000 times per second.

There are two ways of arriving at the 8-bit samples that are in use at the time of
writing of this book. One is called a-law, and is used in Europe and many other parts
of the world. The other is called µ-law, and is dominantly used in the US, Canada,
and Japan. Both are variants of the G.711 codec.

Once we have the voice in the digital form, we have the opportunity to multiplex a
number of "digital voices" onto a single transmission line, and this is exactly what
we do by a process known as time-division multiplexing (TDM). A simple way of
understanding this is to think of carriages on a train. We put a single one of those voice
samples (the 8-bit sample described just now) into each carriage, and, provided the far
end knows which carriage is which, the samples can be taken out of the carriages and
reconstructed into the individual telephone conversations involved.

There are two main types of digital telephony interface that you will come
across—one is called the Basic Rate Interface (or BRI) and the other is called the
Primary Rate Interface (or PRI). Both are ISDN (Integrated Services Digital
Network) links.

ISDN BRI (Basic Rate Interface)
BRI provides a digital connection with two 64 kbps bearer channels and one 16 kbps
bearer channel, so the data rate of this type of a connection is 14,400 kbps.

BRI arrives at the customer premises from the telco on two wires (this is known as
the U bus), and the network termination and test equipment supplied by the telco
(the box that you plug your equipment into) turns it into a four-wire system—a
transmit pair and a receive pair, usually known as the S/T bus. In addition to
supporting two concurrent calls, BRI also provides some other services, including
conveying the number that was dialed by the caller, the caller's number (caller ID).
BRI also has a facility to host a number of individual telephone numbers, which
will arrive on that single BRI connection. The numbers may be known as direct
inward dialing (DID), direct dial-in (DDI), or multi-subscriber numbering (MSN),
depending on where you are in the world and the way the scheme is implemented.

The equipment connected to the BRI is able to see which number was dialed by the
caller, and so it is possible to route the call based on the dialed number.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[163]

BRI is very popular in a number of European countries like Germany and the
Netherlands. Its popularity is limited in some countries, where the service providers
do not facilitate broadband connections over it, as is the case with ADSL over analog
lines. It is not at all popular in the US. Here is a diagram of a BRI.

B = Bearer
D = Data

B1 B2 D

If you would like more detailed information on the BRI interface, there is a great
resource at http://ckp.made-it.com/isdn.html.

ISDN PRI (Primary Rate Interface)
A PRI connection will provide a large number of voice channels, namely, 23 in the
US and Japan where the link is called a T1, and 30 in Europe and many other regions
where the link is called an E1. Both types have a data channel, which is 64 kbps as in
the case of voice channels. When all the information regarding all of the calls on the
23 or 30 voice channels is exclusively conveyed in the data channel, it is what we call
a Common Channel Signaling (CCS) protocol.

It is possible to get 24 channels on a T1 using what is called a robbed bit
protocol, sometimes known as T1RB, where the data that would have
been transmitted in the data channel is instead transmitted over a number
of frames, using the least significant bit of the samples in the voice
channels. Thus, what was the data channel can be used for voice too.

Older systems will transmit the call set-up, the tear-down messaging, and so on as
tones within the individual voice channels. These systems are said to use a Channel
Associated Signaling (CAS) protocol.

You will remember the brief mention of G.711 a-law and µ-law audio encoding. Well,
a-law is traditionally used on an E1 link, and µ-law is traditionally used on a T1 link.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[164]

Shown next are pictures of a T1 (both standard and robbed bit can be seen) and an E1
link, together with some example protocols that may be used on them.

T1

T1 1 frame = 125µs x 24 time slots + 1 fb = 1.544 Mbps

1 framing
bit (fb)

1 framing
bit

CCS - NI2, AT&T

1 frame = 125µs x 24 time slots + 1 fb = 1.544 Mbps

CAS - T1 robbed bit

20

20

21

21

22

22

23

23

24

24

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

1

1

2

2

3

3

4

4

5

5

framing
octet

CCS - Euro ISDN, QSIG
CAS - MFC R2, E1LS

1 frame = 125µs x 32 time slots = 2.048 Mbps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2831 0

signalling
octet

E1

29 30 31 0

You will see from the diagrams shown just now that each primary interface runs at a
speed dictated by the number of channels.

With both BRI and PRI trunks, there are a number of aspects of the connection,
which will need to match up with parameters set on the equipment to which
they will connect. First is the fact that both systems work on the principal two
complementary ends connecting to the circuit—in the case of PRI, the ends are
variously known as Master and Slave, Network and User, Ax and By, and so on
depending on what flavor of protocol is in use. In the case of BRI, the ends are
usually known as NT for the network end, and Terminating Equipment (TE) for
the user end.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[165]

When using interface cards that work within the DAHDI framework, Asterisk uses
the terms net (for network end) and cpe (or Customer Premises Equipment, for the
user end) in combination with the type of interface, to specify the type of signaling
in /etc/asterisk/chan_dahdi.conf. For example, one of the following would be
used to describe a given interface:

signalling=pri_cpe
signalling=pri_net
signalling=bri_cpe
signalling=bri_net

Without complimentary ends being configured on the circuit (that is, if you are
connecting to the telco, your equipment must be set up to be the user end), your
link will not work.

Another important thing to consider is timing—since both these are time-division
multiplexed systems, it is crucial to ensure that timing is set up correctly.

One end must give the synchronization and the other end must receive the
synchronization. The organization of this (synchronization) is usually implied when
you set whether you are the network end or the user end. If you are connecting to a
telco interface, then it is normal for you to be considered the "user", and therefore,
you will receive the synchronization.

You would choose to generate the synchronization locally (and supply it to the
other end), if you were connecting your solution to the telco interface of some other
equipment (which means your solution was "pretending to be the telco").

If both ends are trying to give synchronization, or if both ends are trying to receive
synchronization, your link will not work.

With these two parameters correctly set, the physical link should be fine, and your
next job is to ensure that the signaling system, framing, and encoding match with
the other end.

If you choose to use an external gateway with Asterisk to connect to PRI or BRI
interfaces, all of the parameters stated previously will need to be set through the
user interface of that equipment.

If you're using interface cards that work through the DAHDI framework, some of
these parameters will be set in /etc/dahdi/system.conf and the rest will be set in
etc/asterisk/chan_dahdi.conf. Further details are in the Installing a Digium card
section of this chapter.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[166]

Choices, choices
The fundamental choice that we have to make when looking to connect any of the
above traditional telephony interfaces, is whether we are going to use an external
adaptor (best known as a gateway) or an internal card.

There are pros and cons with both options, so this table has been included to
compare them:

Considerations External adaptor Internal card
Density A good number of sizing

options available from single or
multiple FXSs to a number of
BRIs and PRIs.

A good number of sizing options
available from single or multiple
FXSs to a number of BRIs and PRIs.

Power supply Almost always a separate
module like a plug-top adaptor.

It usually takes power from the
host platform from the bus and
(in the case of FXS ports which
need to supply line and ringing
voltages to the phone) the other
voltages available. External PSU
will be used for high density FXS
implementations.

Form factor External, so no issue. The card must be perfectly
compatible with the interface
offered by the platform. For
example, PCI, PCI-X, PCIe, or
cPCI in a PC, or maybe a bespoke
interface in an embedded platform.

Points of failure PSU, the adaptor. The card and compatibility with the
host platform (bus voltage, IRQ).

Neatness Lots of leads, for example, an
ATA (which might convert a
single FXS device to SIP) will
require the power lead, the lead
to the device, and the Ethernet
lead to the Asterisk host PC.

It's very neat. The device or
connection plugs straight into the
socket on the card (high density
FXS/FXO solutions may use an
external breakout box).

Convenience It's very convenient, no
tools required—just hook up
the cables.

Need to power down and open the
PC or embedded platform to install
the card.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[167]

Considerations External adaptor Internal card
Ease of
installation

Very easy—the adaptor
(usually) turns the traditional
connection into SIP or IAX,
which is well supported by
Asterisk, and easily configured.

Will require a driver to make the
card work under the operating
system, and also some editing of the
appropriate .conf file to link the
channels to Asterisk.

Portability (in
terms of moving
the device to
another host)

Very easy. Must ensure the new host is totally
compatible with the old. This
presents an issue— for example,
if you have been using a PCI card,
you must find a new host with a
compatible PCI slot.

Putting some thought into the way to go for a given project is time well spent. There
are some implementations where cards will be the best option and other scenarios
where an external adaptor will be the way to go.

Using external adaptors
If you choose to go with external adaptors, you will need to configure both the
adaptor and Asterisk, to hook up with the adaptor (usually, as already mentioned,
in sip.conf or iax.conf).

Here is a diagram to show an FXS adaptor, known as an ATA (Analog Telephony
Adaptor) within the context of a network diagram, so that you can see how it fits in:

SIP phone

Analog phone

PC SoftPhone

PSTN line
Phone

company

Asterisk server

SwitchATA

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[168]

In the example shown, you can see the ATA has the FXS connection on one side and
an Ethernet LAN connection (going to the switch) on the other side.

Of course, these adaptors are also available for FXO, BRI, and PRI connections
in many different levels of density. See the end of this section for some names of
companies that manufacture external adaptors that can be used with Asterisk.

External adaptors are virtually always configured through a web interface, which
means we need to know the default IP address of the adaptor to get into it in the
first place and access the configuration menu. We will also need to reset the static
IP address to one which fits with our network, or set it to be a DHCP client.

Hint: If setting the device to a static IP address, it's a great idea to get your
labeling machine out and print out a label with that IP address and the
username and password for the web interface, and stick it on the device
BEFORE you do anything else. This avoids having to guess the IP address
at a later date, along with the frustration of forgotten credentials after you
have eventually found the IP address. Of course, this does assume your
device is located in a physically secure area.

Some (which are not specifically designed to work with Asterisk) may have a WAN
connection so that they can act as the Internet router, this allows them to impose a
QoS (Quality of Service) scheme in favor of the IP telephony traffic.

There will be a number of settings, or pages of settings, of which the majority can
probably be left untouched. It is not proposed to go through all the conceivable
options, but there are several very important settings that you will need to configure.

For the traditional connection, whether FXS, FXO, BRI, or PRI, you will need to
set the device to match what you are hooking it up with. Stuff like line impedances
and caller ID presentation for analog connections will usually be set up in a
specific section.

The other settings that are a must are the IP telephony settings, so that you can hook
the unit up with the appropriate SIP or IAX profile on your Asterisk.

There follows a (far from comprehensive) table listing companies along with their
web sites, which make adaptors of one sort or another:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[169]

Company Web site
VegaStream (gateways supporting FXS, FXO,
BRI, or PRI)

http://www.vegastream.com

Redfone (TDMoE bridges/PRI gateways) http://www.red-fone.com

Patton (very comprehensive range of
gateways)

http://www.patton.com

Digium (creator, sponsor, and primary
developer of Asterisk)

http://www.digium.com

Xorcom (a very flexible range of USB2.0
connected gateways)

http://www.xorcom.com

Two of the companies get a special mention:

Digium, the primary sponsors of Asterisk, manufacture an excellent range
of interface telephony cards. Each time a Digium card is purchased, revenue
goes back into the development of open source Asterisk.
Xorcom have created a very interesting range of adaptors for FXS, FXO, BRI,
and PRI connections that connect to Asterisk using USB2.0. The channels
show up as DAHDI channels in Asterisk.

Using cards
Some people are put off cards because they fear the installation (and possible
troubleshooting) requirements within Linux. There is no need for this fear. Once you
understand the way things hang together, the installation, configuration, and use of
these channels within Asterisk is a fairly simple matter.

Another aspect is the fact that gateways lend themselves to redundant solutions so
readily. Cards can be used in redundant systems, but only with the introduction of
some kind of external switch-over apparatus.

There are lots of different companies who make cards that work with Asterisk,
ranging from those who have been in the industry for years prior to the arrival
of Asterisk (like Pika Technologies from Ottawa), to Digium (the natural fit for
Asterisk) and a host of similar offerings from various locations in the Far East.

The Digium range of cards will cover all your needs, from one FXS or FXO
connection all the way up to quad PRI (120 channels if used as E1s), and they are
available in the PCI (3.3V or 5V) or PCIe form factors. There is also a quad BRI
(or ISDN2) card.

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[170]

Installing a Digium card
The following section may seem simplistic for a book aimed at those with Asterisk
experience. It is included for two reasons:

1.	 In the author's experience, many people who use Asterisk and are familiar
with constructing dialplans and the like, are less familiar with the way/etc/
dahdi/system.conf (formerly /etc/zaptel.conf) and/etc/asterisk/
chan_dahdi.conf (formerly /etc/asterisk/zapata.conf) work together
to enable the hardware within the Linux-based PC and support the channels
within Asterisk. This can lead to difficulty when troubleshooting, so one of
the aims of the book is to acquaint the reader with knowledge that will serve
to accelerate the troubleshooting process.

2.	 It provides an opportunity to explain the new DAHDI framework, and to
demonstrate the way the Linux drivers are now in a separate package to the
tools needed to configure and monitor the operation of the cards.

Bearing these two points in mind, let's have a look at how to install a Digium
interface card.

When any card is installed in a PC, a driver will be needed to enable the card to work
under the operating system in use (you will have seen graphics cards that come with
various drivers for Windows flavors, Linux, MAC OS X, and so on).

The first thing to understand is that this driver has nothing to do with Asterisk, as
its job is purely to get the card working within the operating system—in our case,
a Linux distribution of one sort or another.

Although Digium cards have been successfully installed under many operating
systems, Digium only support their use under Linux distributions and will, in fact,
give free support to anyone who buys a Digium card, to the point of getting the card
functioning correctly in the platform. The drivers for Digium cards are now part of a
package called DAHDI (Digium Asterisk Hardware Device Interface). In fact, we
think that this is the very first book published that covers DAHDI.

Until recently, the package was called Zaptel, but the name has been changed due to
copyright issues. DAHDI is the only option to use with Asterisk 1.6, and it can also
be used with Asterisk 1.4, although 1.4 also supports the legacy Zaptel framework.
At the same time as changing the name, Digium have cleverly separated the two
parts that form the package. One is the actual Linux kernel driver, and the other is
a set of tools and utilities that allow you to configure and test the cards.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[171]

DAHDI Linux (at version 2.1.x at the time of writing) is the package that contains
the drivers. DAHDI tools (also at version 2.1.x) is, as its name suggests, the package
that contains the tools we will use to configure and test the card(s). In addition to
DAHDI, we will also need Libpri, a library covering the PRI specification, if we
are going to install any T1/E1 cards. All of these packages are freely available at
www.asterisk.org.

When you become familiar with the installation process for these two
DAHDI packages and with the way they work together, you may wish to
install both at the same time. This can be achieved by using an integrated
package called dahdi-linux-complete-2.1.x.x+2.1.x.x.tar.
gz, which is available at: http://downloads.digium.com/pub/
telephony/dahdi-linux-complete/

For those needing detailed information covering the upgrade from Zaptel
to DAHDI, there is a file called Zaptel-to-DAHDI.txt inside the
Asterisk-1.6.x.x install directory created when the Asterisk tarball
is untarred.

Card installation—physical

Digium TDM4xyB (x=FXS, y=FXO)

FXS (green) modules
in positions 3 and 4

Port
Connections

FXO (red) modules in positions

1

2
1

2

3

4

PCI bus connector
both keys present

3.3V and 5.0V

Molex connector (standard PC HDD type
for connecting power is using FXS modules)

Optional echo cancellation module
sited just above the bus connector

Here is the first example card we will cover, the Digium TDM422B (FXS port "2"
indicates that the card has two FXS connections, the red modules FXO "2" indicates
that it also has two FXO connections). This card can accommodate up to four
modules, in any combination of FXS and FXO.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[172]

When installing a card, remember to power down the PC first and to take the
necessary anti-static precautions. After gaining access to the appropriate slots, insert
the card and, if you are using FXS modules, be sure to attach an HDD power cable
from the PC to the Molex connector on the Digium card. (If you forget this, your FXS
ports will not work and your card may even deny that it has any FXS modules on it.)

When installing the B410P BRI card, do remember to set the NT/TE (which changes
the physical pinouts of the port to be either the Network end or Terminating
Equipment end), jumpers, and the termination switches (used to add a terminating
resistance to the circuit, required for long cable runs) to the desired positions.

You will set a given port to NT if you want to connect equipment (like phones) to it,
and you would set the port to TE if you want to connect it to the telephone network.
In other words, it has to be set to the opposite of what you will be connecting to it.

The next diagram shows Digium B410P:

NT Mode

TE Mode

Termination switches set to OFF for TE mode,
and to ON if 100R termination is required in NT mode

This diagram illustrates the jumpers that
control NT an TE modes for the B410Ps ports.

JUMPER

NO JUMPER

Digium B410P

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[173]

If it is a TE122P PRI card (see the next screenshot) that you want to install, the only
physical thing that can be changed on the card is the jumper that sets the interface
to be either an E1 (Europe and a lot of places in the world) or a T1 (North America
and Japan).

Digium TE122P

P3: E1/T1 Jumper
E1=ON, T1=OFF

Installing the DAHDI software
Now reassemble and power up the PC, and if you have not already installed
DAHDI, get to the Linux command line to do the following:

[If you have already installed DAHDI, skip down to the section called Configuring the
DAHDI files to enable the card.]

Type the command lspci (which means list the PCI cards) and you should see the
Digium card in the list, the following screenshot shows the list:

If the card appears in the list, great! If not, check the seating of the card in the slot.

Next, download the Libpri, DAHDI Linux, and DAHDI tools packages into the
/usr/src directory, if you have not already done so.

You may ask, "Why install Libpri when this is an analog card?", great question; we
tend to install Libpri along with the DAHDI software in case we do install a PRI
(T1/E1) card in the future.

All these files are available as "tarballs" from www.asterisk.org.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[174]

To extract them, simply type the following at the command line (substituting the
version number for the x.x):

tar –zxvf libpri-1.x.x.tar.gz

tar –zxvf dahdi-linux-2.x.x.tar.gz

tar –zxvf dahdi-tools-2.x.x.tar.gz

This process will extract the contents of these gzipped tarballs into the new
subdirectories of /usr/src named after each file. So, now to build and install
the software type:

cd libpri-1.x.x

Once inside the directory, type the following command:

make clean (cleans up any unnecessary files)

make install (installs the software on your system)

It is all that is needed here, so now we can continue further by typing (make sure
your machine is connected to the Internet, as some files will be downloaded as part
of this next process):

cd ../dahdi-linux-2.x.x

make (builds the source files)

make install (installs the software on your system)

This process will terminate when you see the following on your screen:

And the dahdi-linux kernel modules are now built and installed on your system, so
you can now type:

cd../dahdi-tools-2.x.x

./configure (this checks that all necessary dependencies are installed)

make menuselect (this invokes a simple menu [below] where you can
choose the tools to install)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[175]

Use the right arrow key to move from the word Utilities to the list and then the up/
down arrows to traverse the list. Enter toggles the selection on (indicated with a "*")
or off.

Use F12 to save and exit.

You can use the default selections here, so you do not have to change anything
unless you really need to.

Once you have exited this screen, back at the Linux command line you type:

make (builds the source files)

make install (installs the software on your system)

You will then be prompted (see the next screenshot) to:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[176]

Continue further by typing:

make config (which starts DAHDI when the machine boots)

When you perform this step, you will see a confirmation that DAHDI has been
configured, and if you have any hardware installed, you will also see a message
indicating what has been detected, as shown in the following screenshot:

Asterisk uses DAHDI-enabled hardware to provide a timing source for
applications that mix audio such as the MeetMe() and MusicOnHold().
Even if no cards have been installed, DAHDI will still supply timing
using the dahdi_dummy driver, so this will be automatically installed in
the absence of any cards.

You can now either reboot the machine or (as long as you did the make config) type:

service dahdi start

This will invoke the drivers for your Digium cards. At this point, you should see the
drivers start.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[177]

The above list shows which kernel driver modules have been loaded. Each module
serves one or more cards in the Digium portfolio. By default, all driver modules load,
but for production systems it is recommended that /etc/dahdi/modules is edited
so that only the driver modules required for the actual DAHDI hardware installed
are loaded.

If you had installed Asterisk prior to going to the above steps to install
the DAHDI packages, you will now need to re-install Asterisk in order for
Asterisk to recognize that DAHDI is now present and install the files that
will have been skipped due to the previous lack of a timing source.

Configuring the DAHDI files to enable the card
To enable the TDM422 analog card we just installed, we need to edit /etc/dahdi/
system.conf—this file configures the hardware for correct operation under
the Linux OS, and is NOT connected with Asterisk. Thus it resides in its own
directory structure.

Inside this file, we need to specify the type of interface for each channel number. In
the case of the TDM422 card, channels 1 and 2 are FXS ports and so, as mentioned
previously, we need to load FXO firmware to them, because in order to work with
the connected telephone, they must appear like a telephone exchange. By the same
token, the channels 3 and 4, which are FXO ports, will use FXS firmware as they
must appear like telephones in order to interact correctly with the local exchange.

fxo=1-2
fxs=3-4
loadzone=us
defaultzone=us

In system.conf, we can also configure the tones that will be played to and recognized
from all the hardware channels (with the "zone" lines included as seen in the previous
code), see the chapter on localization for details on this.

Now we are ready to use dahdi_cfg to apply the newly edited /etc/dahdi/
system.conf to the hardware with the command:

#dahdi_cfg –vvv

We apply the three v's to give increased verbosity during the operation. This means
that we get more information, so if things don't work out as we planned, we will
have more diagnostic information.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[178]

If all is well, you should see something like this:

Our next job is to test the installed hardware for successful operation within Linux,
before we even think about Asterisk.

For this very purpose, the easy-to-use utility, dahdi-tool, was created. To run it, just
type dahdi-tool at the command line:

dahdi-tool

You should now see a simple screen appear that will show you the installed
hardware and its status.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[179]

This simple tool is used only with the keyboard, so you can just use the up/down
arrows and the Tab key to get to the thing you want and hit the Enter key.

When you have highlighted the analog card (which will be automatically highlighted
if it is the only card in the system), tab to Select and hit Enter. Dahdi-tool will display
some useful information about the card. The Total/Conf/Act line is of particular
interest to us:

Test by lifting the handset of one of the connected phones to ensure the "active"
number increments by one.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[180]

So, now we have proved the card is functioning correctly within Linux, we can now
edit /etc/asterisk/chan_dahdi.conf to enable Asterisk to use those channels.

All we need to do to enable those channels is add the following lines inside the
[channels] section:

[channels]
...
...
group=1
signalling=fxo_ks
context=users
channels=>1-2
group=2
signalling=fxs_ks
context=from_outside
callerid=asreceived
channels=>3-4

The group= lines allow us to use a single identifier (the group number) to address
the specified selection of DAHDI channels as a single entity from the dialplan.
For example:

exten => _9.,1,Dial(DAHDI/g2/${EXTEN:1})

This line would direct all calls dialed with a leading 9 (which would be removed
before the number was dialed) out over the DAHDI channels identified a group 2,
which in our case are channels 3-4.

Note that the g does not mean "group", it declares the strategy to use on the group.
The following strategies are recognized:

g: Use lowest available channel
G: Use highest available channel
r: Use round-robin ascending
R: Use round-robin descending

So, the line above would try to send the call over DAHDI channel 3 (the lowest
available in group 2). If channel 3 was in use, the call would be directed over channel
4 (the next available channel in group 2). We only use "group" when we have multiple
channels that we want to treat as a single entity from the dialplan. This is very useful
for situations where you have a number of outgoing analog lines or PRI channels.

Even if we have specified groups, we can still address an individual channel:

exten => 6001,1,Dial(DAHDI/1,20)

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[181]

What about the other cards?
The procedure for editing /etc/dahdi/system.conf and /etc/asterisk/chan_
dahdi.conf is the same when enabling the BRI (B410P) and PRI (TE122P) cards,
although the actual entries differ.

In common with the analog example just seen, we use the entries in /etc/dahdi/
system.conf to specify the attributes of each interface and which channel numbers
are going to be used (because we are now configuring a digital interface, we will
need to identify the data channel in addition to those that will be used for voice) and
the type of echo cancellation to be used. It is in /etc/asterisk/chan_dahdi.conf
that we specify the kind of signaling system in use, and which end of the circuit each
physical interface is going to be.

In /etc/dahdi/system.conf the following formula is used:

span=,<timing source>,<line build
 out(LBO)>,<framing>,<coding>[,yellow]

The (span number) parameter is simply the numeric identifier for
the individual port, starting with "1" for the first port on the first card. If you have
two 4 port cards, the first port on the second card would be "5" and so on.

The following text is taken from /etc/dahdi/system.conf and is included as it
explains the remaining span parameters so well:

##

All T1/E1/BRI spans generate a clock signal on their transmit side. The <timing
source> parameter determines whether the clock signal from the far end of the
T1/E1/BRI is used as the master source of clock timing. If it is, our own clock will
synchronize to it. T1/E1/BRI connected directly or indirectly to a PSTN provider
(telco) should generally be the first choice to sync to. The PSTN will never be a slave
to you. You must be a slave to it.

Choose 1 to make the equipment at the far end of the E1/T1/BRI link the preferred
source of the master clock. Choose 2 to make it the second choice for the master
clock, if the first choice port fails (the far end dies, a cable breaks, or whatever).
Choose 3 to make a port the third choice, and so on. If you have, say, 2 ports
connected to the PSTN, mark those as 1 and 2. The number used for each port
should be different.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[182]

If you choose 0, the port will never be used as a source of timing. This is appropriate
when you know the far end should always be a slave to you. If the port is connected to
a channel bank, for example, you should always be its master. Likewise, BRI TE ports
should always be configured as a slave. Any number of ports can be marked as 0.

Incorrect timing sync may cause clicks/noise in the audio, poor quality or failed
faxes, unreliable modem operation, and is a general all-round bad thing.

The line build-out (or LBO) is an integer, from the following table:

 0: 0 db (CSU) / 0-133 feet (DSX-1)
 1: 133-266 feet (DSX-1)
 2: 266-399 feet (DSX-1)
 3: 399-533 feet (DSX-1)
 4: 533-655 feet (DSX-1)
 5: -7.5db (CSU)
 6: -15db (CSU)
 7: -22.5db (CSU)

If the span is a BRI port, the line build-out is not used and should be set to 0.

framing
 one of d4 or esf for T1, or cas or ccs for E1 should be used. Use ccs for BRI. d4
could be referred to as sf or superframe.

coding
 one of ami or b8zs for T1, or ami or hdb3 for E1 should be used. Use ami for BRI.

For E1, there is the optional keyword crc4 to enable CRC4 checking.
If the keyword yellow follows, the yellow alarm is transmitted when no
channel is open.

#span=1,0,0,esf,b8zs
#span=2,1,0,esf,b8zs
#span=3,0,0,ccs,hdb3,crc4

##

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[183]

Here is what the basic entries look like for the B410P card to set ports 1
and 2 to TE mode and ports 3 and 4 to NT mode (remember, each BRI port
supports two voice channels).

Take a look at /etc/dahdi/system.conf (each line starting with a "#" is a comment):

Span 1: B4/0/1 "B4XXP (PCI) Card 0 Span 1" (MASTER) AMI/CCS
span=1,1,0,ccs,ami
termtype: te
bchan=1-2
hardhdlc=3
echocanceller=mg2,1-2
Span 2: B4/0/2 "B4XXP (PCI) Card 0 Span 2" AMI/CCS
span=2,1,0,ccs,ami
termtype: te
bchan=4-5
hardhdlc=6
echocanceller=mg2,4-5
Span 3: B4/0/3 "B4XXP (PCI) Card 0 Span 3" AMI/CCS
span=3,0,0,ccs,ami
termtype: nt
bchan=7-8
hardhdlc=9
echocanceller=mg2,7-8
Span 4: B4/0/4 "B4XXP (PCI) Card 0 Span 4" AMI/CCS
span=4,0,0,ccs,ami
termtype: nt
bchan=10-11
hardhdlc=12
echocanceller=mg2,10-11
Global data
loadzone	 = uk
defaultzone	 = uk

In the above example, the hardhdlc=x lines are identifying the data channels on each
BRI port.

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[184]

With these entries in /etc/dahdi/system.conf, when we do a # dahdi_cfg –vvv
(command), this is what we should see:

This has enabled the card in Linux (not Asterisk) and we can check this by running
the dahdi_tool:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[185]

To enable the channels on the card in Asterisk, we need to add some entries in
/etc/asterisk/chan_dahdi.conf:

[channels]

switchtype=euroisdn	 ;identifies the actual signalling system
context=from_outside
signalling=bri_cpe	 ;identifies that the following ports are
;acting as the 'user' end of the circuit
group=1
channels=>1-2

group=2
channels=>4-5

context=phones
signalling=bri_net	 ;identifies that the following ports are
;acting as the 'network' end
group=3
channels=>7-8
group=4
channels=>10-11

In common with the analog channels (because they are all DAHDI), we can dial out
over these by addressing an individual channel or a group of channels.

exten => _9.,1,Dial(DAHDI/4/${EXTEN:1}) or
exten => _9.,1,Dial(DAHDI/g1/${EXTEN:1})

Lastly, let's look at the corresponding entries for the PRI (Digium TE122P) card.

Here are the entries for /etc/dahdi/system.conf, when we want to set up an
E1 PRI:

span=1,1,0,ccs,hdb3,crc4
bchan=1-15
dchan=16
bchan=17-31

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[186]

When we have done this, we can do a dahdi_cfg –vvv and this is the result we
should see:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 9

[187]

A quick look at the dahdi_tool should show something like this:

If all is well, you can add the appropriate entries into /etc/asterisk/chan_dahdi.
conf to make these PRI channels available in Asterisk. There are lots of lines we
could put in, but this minimal configuration will get us up and running.

[channels]
switchtype=euroisdn
signalling=pri_cpe
context=from_outside
group=1
channels => 1-15
channels => 17-31

Again, using the channels within the dialplan is the same as seen in the previous
examples—with the PRI channels being treated just like all the others through
DAHDI. However, with PRI, groups (and the strategies outlined to use them)
are much more useful.

Troubleshooting with Digium cards
Armed with all this information, troubleshooting becomes a fairly binary process.

Assuming the correct driver modules are loaded, if you are encountering problems
with lines coming in through a card and you are sure that all physical connections
are good, the next step would be a dahdi_cfg –vvv command.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Interfacing with Traditional Analog and Digital Telephony

[188]

If this returns any errors, the issue will be with the card or the configuration in
/etc/dahdi/system.conf. The lspci command will reveal whether the host is
seeing the card.

If dahdi_cfg –vvv reveals a clean bill of health, the problem is almost undoubtedly
in /etc/asterisk/chan_dahdi.conf. Common errors here are mainly typos,
but it is also worth checking that the channel numbering matches with that set in
/etc/dahdi/system.conf.

Summary
This chapter has covered traditional telephony interfaces to which you may need
to connect Asterisk. Analog, BRI (really only in Europe), and PRI connections are all
still alive and well, although the number of new installations of these connections
is very much on the decline, as VoIP connectivity begins to take hold.

We have discussed the options that exist to connect Asterisk with these traditional
interfaces, which are gateways, external adaptors, or internal cards.

Gateways are usually easier to implement, but do come at the cost of a number
of extra physical connections to manage (and therefore potential failure points to
consider). However, gateways do provide great building blocks for the creation
of redundant and more resilient systems.

Internal cards are generally a neater solution, but require not only their physical
installation into the Asterisk PC, but also the installation of Linux kernel drivers
before we can connect the channels they provide to Asterisk.

We finished with some example installation using the Digium TDM422 analog
card, the Digium B410P BRI (ISDN2) card, and the Digium TE122P PRI card to,
respectively, give two FXS (telephone) and two FXO (analog line) connections,
four BRI connections, or one PRI connection to Asterisk.

May all your dealings with traditional telephony connections be happy ones.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with
Wireless Technologies

Of all the chapters in this book, this one is probably the one that will mention
Asterisk the least! And yet, there is good reason for its inclusion—over a number
of years of meeting people who create and deploy Asterisk-based solutions, I have
found that they do not seem to be aware of the different options for hooking up
Asterisk to the wireless world.

Most people have played with one or two of the options, but do not seem to have
been exposed to the many ways that exist. Furthermore, the majority of those I meet
that have attempted to connect Asterisk with a wireless device (usually a Nokia
dual-mode GSM/Wi-Fi SIP phone), have given up after a number of attempts to
find the right settings, both on the device and in Asterisk, that achieve a workable
hook-up.

Therefore, the idea of this chapter is to give an introduction to the area of wireless
technologies by asking, "Why integrate Asterisk with wireless technologies?"

After answering that question, we will look at the wireless device and wireless
network options that exist, and consider the advantages and disadvantages for each.
We will also look at some configurations for one or two devices and the settings
we need to make in Asterisk, before rounding off the chapter with some example
deployment scenarios, for which we will choose the best wireless options.

How does that sound for this chapter? Good? So sit back, relax, and enjoy
the ride!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[190]

Why integrate Asterisk with wireless
technologies?
This is a good question, and is worthy of consideration at the outset of the chapter.
As an open-standards (never mind open source) telephony platform, Asterisk is
ideally positioned to connect with all manner of devices, and this is excellent news
for those that are involved in designing and deploying Asterisk-based solutions, as
we are able to choose the best options rather than being restricted by proprietary
compatibility issues.

Getting back to the question, or rather the answer to the question, mobility is one
of the main reasons people want to hook Asterisk up to the wireless world—both
mobility within the office environment and the requirements of a mobile workforce
outside the office. Even in this day and age, many international travelers are plagued
by heavy roaming costs for their mobile phones. Ironically, a good proportion of
them probably carry devices with Wi-Fi and VoIP capabilities, some even staying
in hotels with free Wi-Fi, if only they knew!

Other reasons that people and corporations may be looking for wireless solutions
include rapid deployments, cost reductions (in implementation costs, running costs,
or both), or it may be that they need a portable PBX solution that can be moved
around with them without the hassle of running cables and so on, every time they
arrive at a new location.

The following table shows business drivers and technology enablers involved:

Business drivers Technology enablers (and issues)

Mobility within the office
Work anywhere in or
around the building

Mobile workforce
International travel
Field staff
Multi-site enterprises

Rapid implementations
New office
installations*
Fast office installation

•
°

•
°
°
°

•
°

°

Wireless access points are already
very common, both within offices
and in public locations
Wi-Fi and WiMAX technology
(may suffer with NAT and
firewall issues)
Wireless routing means phones
(and PCs) can now be rolled out
very quickly
SIP and IAX2 trunks are usually
much more cost effective that
traditional trunks

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[191]

Business drivers Technology enablers (and issues)
Cost reductions

Reduced "hard"
infrastructure (cabling,
switches, and so on)
Reduced real-estate
needed

Temporary deployments
Hot desking
Business continuity*
Disaster recovery*

•
°

°

•
•
•
•

IP PBXs can be physically much
smaller, meaning less rack/floor
space is used
The power consumption of an
IP PBX can be a lot less than a
traditional PBX.

•

•

*These reasons in particular are a great sell for VoIP, not just wireless.

Wireless technology overview
With this weight of reasons to think about wireless, our next job is to look at the
options available so that we can deploy the best technology in each given application.
To help us consider the options, I have split the next section into two parts—one that
considers wireless handsets and one that considers wireless networks.

There are many types of wireless handsets on the market today, some have been
around for quite some time while others are relatively new. Most are aimed at the
consumer, a few are definite enterprise plays, and there is even an "industrial strength"
offering. Let's outline each type and home in on their advantages and disadvantages.

Wi-Fi (only) phones
Wi-Fi (only) phones have probably been around the longest, but in most cases, the
vendors do not seem to have refined their offerings following the experience of their
first products. Rather, Wi-Fi (only) handsets seem to be disappearing in favor of
dual-mode cell phones. These devices started out as a piece of Wi-Fi kit that someone
attached to a SIP stack and added on a microphone, speaker, and some basic
audio-processing apparatus—and it shows.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[192]

These phones are usually not excellent. Their issues often include poor battery life
and less than perfect audio. Also, something that could be a big issue depending on
your specific application, is the ability to roam from one Wi-Fi hotspot to another,
which has now been addressed in specification 802.11n. But I have not yet seen many
phones which implement this advance.

Advantages Disadvantages
Truly mobile

Inside the office or
home
Other hotspots
worldwide

Allows PBX extension to travel
Small and portable

•
°

°

•
•

Configuration is difficult
Battery life is generally short
Voice quality can be poor
Not a wide choice of phones
If the phone does not have a web
browser, you may not be able to
connect to hotspots that require a login

•
•
•
•
•

One notable exception to majority of Wi-Fi (only) handsets is the Polycom range. As
you would expect, these phones are very well constructed—there is even a rough use
version for demanding environments, and they work well too.

For more information, look up UT Starcomm, Hitachi, or Linksys Wi-Fi phone.

SIP desk phones with a wireless link
Imagine all the positive attributes of a good SIP "normal" desk phone—great looks,
familiar feel, excellent functionality, high speech quality, and sturdy construction.

Now make it wireless!

This is exactly the idea that Linksys (and others like Mitel) have implemented by
bringing out a wireless Ethernet bridge (a device that connects into a standard
Ethernet socket on any device and gives it Wi-Fi connectivity), which is specifically
designed to fit into the void in the base of their phones.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[193]

This brings together the standard-looking office phone (the sort that seems familiar
to users and will not scare them) with the convenience of wireless. The intention is
not to go wandering around with this phone, as it still needs mains power, but to be
able to locate it wherever you want in the office without needing a cabled Ethernet
connection, nice!

Advantages Disadvantages
Very user friendly
Great for office use
Comprehensive features
Good for temporary and
flexible deployments

•
•
•
•

Additional work of configuring
and connecting the wireless
Ethernet bridge
The devices still need power, and
so are not truly wireless
Adds significant extra cost per
extension

•

•

•

Of course, any wireless Ethernet bridge and any SIP desk phone could be used,
as these are standard interfaces that we are talking about. You could just have a
wireless Ethernet bridge for a whole room going into a switch and then run cables
to a number of phones (if you needed a few), but the elegance and simplicity of the
Linksys solution does make it stand out.

Dual-mode (GSM and SIP) phones and
PDA/smart phones
Within the last two to three years, these devices have really taken off. There are
offerings from UT Starcomm (who also make Wi-Fi [only] handsets) and Pirelli
Communications, but it is the Nokia handsets that have set the standard.

Any high end "E" (business) or "N" (multimedia) series Nokia handset will have
both Wi-Fi and SIP connectivity, and a SIP client is available for the iPhone, and
for Windows mobile phones and PDA devices too. Great news for those wishing
to integrate with Asterisk!

These handsets (putting call costs to one side for a moment) provide the ultimate
mobility, as they will enable calling through Wi-Fi access points or over the regular
mobile network.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[194]

Often held up as examples of FMC (Fixed Mobile Convergence), GSM/SIP phones
are not really that—they are really two phones in one case, a GSM (or 3G) phone and
a SIP phone. The only converged thing about them is that they share a microphone,
an earpiece, and the contacts list. These devices cannot currently be configured to
intelligently route calls over GSM or IP, depending on, say, cost. You have to choose
your preferred method of communication, and all calls will go that way unless
you choose the alternative (with an inconvenient two key-press method) on a
per-call basis.

This is something of an issue in countries like the UK, where it is usually
cheapest to call a mobile from a mobile, and most business customers will have
their mobile device on a monthly plan that includes minutes—so they will want
calls to mobiles routed over the mobile network, and calls to landlines routed over
the SIP (Wi-Fi) network.

Having said that, two things have emerged to make things a little more user-friendly.

Firstly, the UT Starcomm phones have two "place call" buttons—one that directs the
call over the GSM (or 3G) network and one that directs the call over the SIP (Wi-Fi)
network. Secondly, some third-party companies have developed small applications
which run on the Nokia handsets (which use the Symbian S60 operating system) to
do Least Cost Routing, which to my mind is an excellent development.

Those little gripes aside, can you see the power of a single handset which is both a
standard mobile phone AND an extension of your Asterisk PBX, by virtue of its SIP
and Wi-Fi capabilities? To give you an idea of the potential benefits, co-author David
Duffett describes his experiences:

As someone who travels regularly, I continue to be impressed when my Nokia
phone rings while I am in, say, Johannesburg, South Africa because someone back
in the UK called my office number! It freaks them out when they find out you are
not really in the office, and they are also impressed when you tell them that the call
between your telephone system (Asterisk) and your mobile phone is FREE! It is
heart-warming to find yourself in a hotel that offers free WiFi, able to make calls
back to other extensions in the office at zero cost. And, as the internet (in general)
and WiFi access points improve, I am finding that there is no noticeable difference
in quality between a regular mobile call and a call placed over the internet.

I have recently been experimenting with placing SIP calls over the 3G network (as
opposed to using WiFi internet access) and, where the 3G network is good (mainly
town and city centers at present), call quality has been acceptable. This means that
if you are on an unlimited data plan as part of your mobile package, you could be
calling your office (and any locations peering with it) free.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[195]

Advantages Disadvantages
Typically better voice quality than
Wi-Fi (only) phones
User interface is generally better
than Wi-Fi (only) alternatives
Great mobility
Always on-net, just variable costs
VoIP is an "application"
Respected vendors

•

•

•

•

•

•

Battery life is reduced by having
Wi-Fi on, in addition to the
regular phone
Complex hotspot attachment
processes in some environments
(not a problem with the phone,
just the Wi-Fi hook up)
Sometimes frustrating steps to
choose call route

•

•

•

For more information, look at Nokia, Pirelli, or UT Starcomm dual-mode VoIP
phone, or Windows mobile SIP.

SIP/DECT phones
A world away from the poor speech quality and short battery life that plagues most
Wi-Fi (only) phones are good old DECT cordless phones. They have been around for
years and are an optimized technology.

A healthy DECT handset will usually last for days (not hours) on a single charge
and the speech quality is excellent, unless you venture to the very edge of its range,
which incidentally, is much greater than that of a Wi-Fi (only) phone.

Some clever people thought—Why don't we harness the excellence of the DECT air
interface (or radio link) with the ubiquity of SIP for IP telephony, by putting a SIP
stack in the DECT base station? So they did, and the results are amazing.

Now, don't expect to take your DECT handset to the airport and make calls from
there. This won't work—if you want that kind of functionality, it has to be the
Wi-Fi (only) or dual-mode phone for you. But, for in-office mobility, these
SIP/DECT phones really are fantastic.

Integration with Asterisk is very easy, it's just a SIP connection. Do note that some
of these are consumer offerings, and as such, they have an analog connection on
the base station in addition to the LAN connector—the idea being that you connect
both and choose which way to route calls by pressing the appropriate buttons on
the phone.

Since we are interested in Asterisk installation, we will not use the analog connection
and all calls will be routed to Asterisk via SIP.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[196]

It is usual to find that multiple handsets can be attached to a base station, and each
base station can handle a number of SIP accounts, but beware that each base station
will have a restriction on the number of concurrent calls that it can handle, which
may be as low as two!

Make sure that you know the limitations of the base stations you are using, and that
you deploy the number of base stations you need in order to facilitate the volume of
concurrent calls you want. Each handset is linked with a SIP account (or accounts)
by checking boxes on the web interface for the base station.

It should also be noted that there are several enterprise-grade SIP/DECT solutions
(notably Aastra and Polycom), which offer further facilities including better
capacities per base station and much better roaming abilities; some even allow
multi-site roaming.

Advantages Disadvantages
Excellent range when compared
with Wi-Fi
Great battery life
Very good speech quality
Intuitive use (as in the case of a
standard cordless phone)
Standard SIP configuration

•

•

•

•

•

Only mobile within the office
Linking handsets with SIP
accounts on the base station web
interface can be a little confusing
the first time you do it

•

•

The preceding four sections represent the different types of wireless handsets that
can be connected to Asterisk. Any wireless solution you propose is going to be made
up of one or more of these options.

To conclude this section of the chapter, here is a table comparing the four handsets:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[197]

Connecting Asterisk to mobile networks
There are times when you will want to connect to Asterisk to a wireless network.
This can range from the simplicity of adding a standard wireless access point to the
Ethernet network (so that wireless devices can connect to the network, and therefore
to Asterisk), to the somewhat more esoteric area of giving Asterisk a direct connection
to a mobile network. As the addition of a wireless access point is really standard
networking practice, and not specific to VoIP, it will not be covered in this chapter.

Why connect to mobile networks?
Before we look at the two options for connecting Asterisk directly to mobile
networks, let's examine the reason for doing it, which is usually "cost".

In a lot of countries, it is fixed landline to mobile calls which are the most expensive
and this is due to the interconnect charges made by the mobile operators to the
landline telco, and the profit margin of that telco. The following diagram depicts
this situation:

Mobile Users

GSM CellGSM Cell

Mobile Telephone
Switching Office

PBX

FXO/ISDN
PSTN

This high-cost situation is in sharp contrast to rates of mobile to mobile calls, which
are often included in mobile charging plans (for example, 500 minutes per month),
or are sometimes totally free between SIMs on the same mobile network.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[198]

This fact has not been left unnoticed by the creative telephony community, and for
some time now, devices called GSM gateways have been available. These devices
usually have an external aerial and a cut down mobile phone circuit into which you
install a SIM for access to a given mobile network. Until recently, the connection to
the PBX was an analog line, which would work with Asterisk, but would need the
introduction of an analog interface in addition to the GSM gateway.

More recently, not only have these GSM gateways been enhanced to give direct SIP
connectivity, but another hardware option has emerged in the form of GSM cards
that are installed in the PC. Here is a revised version of that previous diagram,
showing the most cost-effective way of calling mobiles from the PBX. Although
this diagram shows a GSM gateway box, the principle applies to the GSM card
implementation too.

Mobile users

GSM cellGSM cell

PBX

FXO/ISDN
PSTN

SIP/H.323

VoIP GSM
gateway

IP phones

Having looked at the concept, we can now evaluate the two types of implementation.

The GSM gateway (box)
Although the concept of the GSM gateway box has been explained previously, the
actual equipment available varies from single SIM to multiple SIMs, connecting via an
FXO line, PRI connections, or SIP (there may even by some H.323 models out there).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[199]

Here are some examples:

Single SIM FXO Single SIM SIP Multiple SIM PRI

Because these units are designed to use up the "free" minutes included within the
monthly plan for the SIMs, it is common to find more SIMs than radio circuits. The
presence of this situation means that there is undoubtedly embedded software
somewhere that allows the user to enter the number of included minutes for each
SIM, and then, when the unit determines that the 500 minutes, say, from SIM "A"
have been used up, it will seamlessly switch over to SIM "B".

Of course, to get a reasonable return on investments for such (multi SIM) systems
really requires that your customer currently has quite a heavy fixed-to-mobile
call volume.

Even at the single user end of the market, money can be saved, and not only by
routing outbound fixed-to-mobile calls straight into the mobile network using one
of these (single SIM) devices. Keep an eye out for my "neat money saving tricks"
further in this chapter.

Advantages Disadvantages

Not platform dependent
Connect via FXO, SIP, or PRI for
large scale deployments
Easily scalable—just add more
boxes
No special drivers required

•
•

•

•

Lots of wires
Antenna
Power
Connection to
Asterisk

Care needed to ensure inclusive
minutes are used effectively

•
°
°
°

•

The GSM card
The alternative to a GSM gateway box is a GSM card. PCI cards are still the dominant
type available, but there are sure to be PCIe versions around too, which will become
dominant as the PCs of today have either one or no PCI slots.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[200]

Even when installing a PCI card into a PCI slot in a PC, there can be issues such as
minor bus incompatibilities (which can have a major effect on functionality), IRQ
issues, and so on. Fortunately, most cards are compatible with both the 5.0V and
3.3V PCI slots found in PCs, so that is one less issue to worry about.

Although a number of cards have the same number of SIM slots as radio circuits
(as indicated by the number of antenna sockets on the cards), it is possible to get
cards with more SIM slots than radio circuits, for the reasons outlined in the section.

Cards are the "neater" solution, as the only cable involved is the antenna cable, there
are no power supplies or Asterisk connections (usually FXO, PRI, or SIP) that you
need to deal with, as all of that is looked after by the host PC platform.

Of course, these card solutions do come with the need to install drivers to get
working within the Linux environment before you can make use of them within
Asterisk. So do make sure that any cards you purchase have a good reputation for
ease of installation.

Advantages Disadvantages

Neat solution, card is inside
the PBX platform
Less interconnecting cables,
just the antenna

•

•

Platform compatibility is essential
Expansion may prove difficult, as slots
for further cards are required
Setup and configuration can be difficult
Routing coaxial antenna cables (when
necessary) could prove problematic

•
•

•
•

Configuring wireless devices
Each device will have its own user interface—either through the display on the
device (if it's a phone) or through a web interface that you can browse to (some
Wi-Fi phones will have both).

The actual entries used for setting up the device to work with Asterisk are standard
SIP parameters like username, password, host, and so on, and therefore, I have
included the next screenshot (taken from the Siemens S460IP phone) as an example:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[201]

What is worth looking into in more detail are the Nokia dual-mode phones, as there
are a couple of parameters necessary for successful connection with Asterisk, which
are not as widely known as they should be. These "lesser known" parameters are
responsible for many people giving up on connecting their devices to Asterisk.

I will use the Nokia E90 as an example:

Most of the parameters are self explanatory, but the two parameters we pay special
attention to are the Public user name in the SIP profile itself, and the Realm in the
submenus for both the Proxy server and the Registrar server. Further in this section,
I have included screenshots of each of the screens you will need to go through to set
up your Nokia phone as an extension on your Asterisk PBX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[202]

Start by selecting the Connection in the Settings screen:

Then select SIP settings:

Select or create the relevant SIP profile from the submenu:

Inside the SIP profile, complete the settings—the Public user name must be the SIP
profile name (from sip.conf)@<the IP address of your Asterisk box>:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[203]

Now move down to the Proxy server and Registrar server sections:

It is here that the all-important Realm must be entered—Asterisk sets this as
"asterisk" by default, but you can change it in the [general] section of sip.conf.

The Registrar server screen needs to be the same as the previous one:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[204]

Although the IP address used (see preceding screenshot) is internal, it could equally
be an Internet IP address such as 80.229.203.112

Note that the Realm is defined in the [general] section of sip.conf by the
realm= line. If this line is missing, then the realm will default to "asterisk".

Configuring Asterisk to work with
wireless technologies
This is going to be quite a short section. It is very easy to configure Asterisk to
integrate with most wireless devices because they are just standard SIP devices;
you don't need to learn any new stuff!

If you plan to use any devices (including wireless) outside of your own network
domain, which will be true for a lot of cases, you will need to tell the Asterisk
SIP channel about this—in terms of the NAT (Network address translation)
arrangement and your external IP address.

Before we do that, here is a diagram to show why this is necessary.

NAT NAT

192.168.1.X 80.223.45.60 202.156.33.9 192.168.2.X

INTERNET

FirewallFirewall

Hotel, Airport
or other
hotspot

Taking the Asterisk side of the diagram, the internal domain is 192.168.1.X, but the
address our broadband router (or whatever) uses on the outside (the Internet) is
different. This address is provided by our ISP.

We need to tell Asterisk about this, so that it recognizes both the internal addresses
and the external address in the transactions it handles.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[205]

Here is how this is done in sip.conf

[general]
context = default
realm = asterisk
externip = 80.229.109.204
localnet = 192.168.2.0/255.255.255.0
bindport=5060
srvlookup=yes
disallow=all
allow=ulaw
allow=gsm
language=en

The key lines are the externip line (telling Asterisk the Internet IP address) and the
localnet line (telling Asterisk the internal address range).

If you have a resolvable URL and access to DNS, then you can use externhost
instead, for example,

externhost=david.dyndns.org

Once you have let Asterisk know this information in the [general] section, then you
just need to identify the individual endpoint(s) that will be used on the other side of
the NAT on the right (which is your mobile or remote devices) by using the nat= line
in their SIP profiles.

[my_mobile_device]
type=friend
host=dynamic
secret=1234
context=default
...
...
nat=yes
qualify=yes

The nat=yes line tells Asterisk to disregard the internal (192.168.2.x) address the
remote device will give during SIP interactions in favor of the external (202.156.33.9)
address by which the device will be recognized on the Internet. You will notice that,
in addition to the nat=yes line, I have also included a qualify=yes line. This line
tells Asterisk to periodically check with the device to ensure it is on the network. By
using a figure (for example, qualify=200) instead of yes, we can instruct Asterisk
not only to check on the device, but also to treat it as unavailable if the latency
between it and Asterisk goes above 200 ms (in this case).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[206]

Deployment choices
The type of devices or combination of devices you choose for a particular
implementation will depend on a number of factors and each job will be different,
but I thought it would be useful to look at a few deployment scenarios together with
the kind of device which may be best suited for them.

Office only
SIP/DECT (range, battery life, speech quality)

Mobile
Wi-Fi (only) if no 3G/GSM requirement
Dual-mode (for example, SIP client on all Nokia E phones)
PDA with SIP or IAX soft client

Remote
Laptop with SIP or IAX soft client

Least Cost Routing (mobile calls over the mobile network)
Gateway box

Easy SIP integration
No worries about "slot" compatibility
A range of boxes, easy to scale

Gateway card
Neat—no other boxes or PSUs
up to four SIMs per card

Redundancy (successfully routing calls in the event of a landline failure)
Gateway box

Neat money saving tricks
Just before we end this chapter with a summary, I thought it would be useful to
show you a couple of money saving tricks, which all fall under the category of
least cost routing (or LCR), but are perhaps a little more creative.

•

°

•

°

°

°

•

°

•

°

°

°

°

°

°

°

•

°

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 10

[207]

Calling a mobile phone
If you have a dual-mode phone as an extension of Asterisk, always try to route the
call over SIP first (in case the handset is within Wi-Fi coverage), even if the caller
dials the standard mobile number. Then, if you do need to route the call to the
mobile network, do it directly with a GSM gateway. When that fails, if you must go
via the fixed network, can you route the call via an alternative carrier to reduce the
cost of the call? Only after you have tried those, would you look to route the call in
the "normal" way.

In the UK-based example that follows, the number starting with "077" is the standard
mobile number, and there is a carrier called "18185" (www.18185.co.uk), which,
at the time of writing, provided the cheapest way to call a UK mobile phone from
a UK fixed line. This dual-mode phone is also set up as endpoint 2001 of your
Asterisk PBX.

Here is what your dialplan might look like:

exten => 07711223344,1,Dial(SIP/2001,30)
exten => 07711223344,n(gsm-gateway),Dial(SIP/gsm-gateway/${EXTEN})
exten => 07711223344,n(alternative),Dial(DAHDI/1/18185${EXTEN})
exten => 07711223344,n(pstn),Dial(DAHDI/1/${EXTEN})

Avoiding those nasty roaming charges that
arise from receiving calls
One of the worst kinds of roaming charges (other than mobile data roaming, which
seems to attract the mother of all sky-high rates), are the charges you incur when
receiving calls while you are travelling out of your home country.

Different countries have different mobile charging plans, so the following example
may not directly apply to your scenario, but you will see the principle, and you may
be able to use it in some other way.

In the UK, there is no charge for receiving a voice call on your mobile phone in your
home network, but the high level of the charges for receiving a call while abroad
(when you pay for the international leg of the call) can only be described as wicked!
Let's take a situation where someone from the UK is going on a two-week business
trip to the US. They either have a dual-mode phone or soft client (on a laptop or
PDA), which is set up as SIP endpoint 2005. Knowing that receiving calls over GSM
is going to be very expensive, they take the SIM out of their phone and put it into a
GSM gateway connected to their Asterisk PBX in the UK. Now, all they have to do is
try to call their SIP extension when a call comes in on their mobile SIM, and, wonder
of wonders, NO roaming charges!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Integrating Asterisk with Wireless Technologies

[208]

Of course, this system does rely on them being in a Wi-Fi hotspot, with their
dual-mode phone or soft client ready to take the call. If they are not, we could
send the call to voicemail so that they can collect it later. Or we could also call the
US number that they are available on (their hotel or office, or a US pay-as-you-go
mobile)—as calls to the US from the UK are pretty cheap, especially over a SIP trunk
provider. Here is the example dialplan (assuming that the SIP call coming in from
the GSM gateway gets dropped into the [from-my-sim] context with extension s):

[from-my-sim]
exten => s,1,Dial(SIP/2005&SIP/my-trunk/0012564286000,20)
exten => s,n,VoiceMail(2005@default)

Summary
The main thrust of this chapter was to acquaint you with the many options that exist
to connect Asterisk with the wireless world.

The main options for handsets are Wi-Fi (only), wireless-enabled desk phones,
dual-mode phones, and SIP/DECT setups.

We can connect Asterisk to wireless networks like the GSM network by using a
gateway box or a GSM card installed in the Asterisk platform itself, similar options
may be available for CDMA networks and others.

Armed with this knowledge, and the power and flexibility of the Asterisk dialplan,
you can now be very creative—not just in terms of least cost routing, but in tailoring
the perfect solution for your customer for any scenario. The limitations are few and
the possibilities are great, so go for it!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces
This chapter explores the use of Graphical User Interface(s) (GUIs) for Asterisk.
We look at why you might want to consider an Asterisk system with a GUI, and
what the good and bad points of such systems are. We also look at a popular,
completely open-source GUI—FreePBX, in a bit more depth. As a result, you should
be equipped with the knowledge to decide if a GUI-based system is appropriate for
your needs or those of your customer.

Reasons for going GUI
One of the major developments in the evolution of computer systems is the
introduction of relatively complex user interfaces. These developments were driven
by the desire to input information and output feedback in as effective a way as
possible through the development of a relatively friendly interface. The wide range
of sizes of computer systems found in the present day, from embedded chips to
room-filling supercomputers, has resulted in quite a disparity in the forms of human
interfaces that have been developed. Those with human interaction as a primary
raison d'etre tend to have highly advanced graphical interfaces—PCs, laptops, and
mobile phones are obvious examples. Those, where immediate human-oriented
input and/or output is less important or very restricted in nature, such as simplistic
embedded chips or large number crunchers, tend to have less evolved interfaces.

A number of systems have ended up with multiple human interfaces, most
usually those where human interaction is a prime concern. Personal computers
are a prime example, where initially all input and output was via a keyboard and
screen respectively, but now a whole plethora of channels exist for the transfer of
information, including input devices such as mice, microphones, scanners, touch
screens, and gaming devices (joysticks and others). The output devices include
speakers, printers, and the gaming devices mentioned previously, or at least those
with force-feedback capabilities.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[210]

Where does an Asterisk PBX sit in the range of systems? Well, it's true to say that
its primary function is human interaction, but it is equally true to say that the
mechanism for enabling that interaction is predominantly the telephone handset.
In common with all PBXs, Asterisk allows relatively complex operations to be
carried out through the keypad and handset of a common phone. However, there
is scope for some of those operations to be carried out using other devices, a
common example being listening to voicemail using the speakers on a PC. There
are also administrative and maintenance operations that require manipulation of
the configuration files on the Asterisk server, from something as simple as adding a
new extension to something more complex such as prioritizing calls in a range of call
queues. Again, the usual mechanism for this is either directly on the server or via a
PC on the LAN.

GUIs for Asterisk almost exclusively work to ease the burden of administration
and enhance the options available to the end user, and exist in a number of forms.
For instance, there is a software package ARI (Asterisk Recording Interface), that
you can install on an Asterisk server to allow users to access their voicemail using
their PC. In this chapter, we will focus on graphical interfaces that have "server
administration" as their primary goal. While other GUIs are pretty much accepted
across the board, the choice of whether or not to administer your server in this
fashion is one that generates much discussion, and can potentially have the biggest
impact on your system.

Good to GUI
Depending on your needs or your customer's particular needs, there can be
significant advantages to choosing an Asterisk system that has an administration
GUI. In practice, these boil down to:

Ease of administration
Access to enhanced features
Easier upgrade process
Standardized code

Ease of administration
The most obvious reason for a company choosing an Asterisk system with a
graphical interface over a system without one, is ease of administration. As a result,
all major PBXs on the market now come with graphical administration interfaces.
With a "vanilla" Asterisk system, a simple administrative task such as adding an
extension is not onerous, involving, as it does, the addition of a few lines of text
to extensions.conf, voicemail.conf, and sip.conf (or iax.conf if you have

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[211]

IAX-capable phones), but it is a task that should really be carried out by someone
familiar with Asterisk configuration in general, who is also comfortable with the
Linux command line interface. Let someone without those competencies loose on
your Asterisk box, and you run the risk that, in extreme circumstances, a typo could
incapacitate the system until a third party gains physical access to fix the problem.
It's a significant risk, given that one of the primary goals of a PBX is to "just work".
Frequently, that risk is mitigated through the use of a support contract with a
third party that burdens them with the responsibility for making all those minor
amendments. Such a contract obviously involves an ongoing support cost, but also
requires the implementation of a secure mechanism to give the third party access
to the PBX, but ideally not the whole network. There is also the need to introduce an
effective process for requesting changes internally. You certainly don't want every
user having the authority to call the third party directly and request any change
they fancy.

With a GUI, it is less of a risk for day-to-day admin tasks to be carried out in-house.
Indeed, many GUI-based frontend Asterisk systems are managed on a day-to-day
basis by office administrators rather than IT specialists, as they can add, move, or
delete extensions and manage ring groups without the prospect of typos and with
restricted access to the overall system. The better GUIs offer a granular level of
access too, so that the simple day-to-day tasks are the only options available to the
people with those responsibilities, and the more complex but occasional changes in
configuration can only be carried out by a named administrator.

Access to enhanced features
For someone completely new to Asterisk, there is quite a short but steep learning
curve to negotiate before they gain the necessary skills and knowledge to set up even
the simplest PBX. Progressing to more complex systems can require a significant
amount of further investment in the person or people tasked with enabling and
maintaining the new functions.

Many Asterisk GUIs do this work for you, and present you with an interface where
you have to do little more than make the relevant choices from drop-down menus.
Indeed, FreePBX (we'll look at it in more detail later in the chapter) enables advanced
features in a modular fashion. You have to choose to install a module for call queues,
for example, before you can use this function in your system. This has the advantage
of keeping the administration interface as simple and clean as possible. You also end
up with well structured and commented code in your dialplan, albeit rather a lot of it.

Of course, this can lead to situations where new functions are implemented because
they can be, and not because there is a real need. But this is not the fault of the GUI
and the risk can be reduced through the use of robust change control processes.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[212]

Easier upgrade process
Upgrading your Asterisk PBX is a topic that can generate very strong opinions on
either side of the imaginary fence. It is certainly difficult to justify upgrading the core
Asterisk engine just for the sake of keeping up with the latest version. Telephone
systems, even those based on PC architecture, follow their own rules in this respect,
and right at the head of that rules list is the mantra, "If it ain't broke, then don't
fix it". However, there are occasions when it makes sense to upgrade. Maybe you
have fallen foul of a bug, or there is a new feature that will allow you to implement
much needed functionality. Maybe a vulnerability in the version of Asterisk you
are running has been discovered, and there is no prospect of a patch being issued.
Whatever the reason, once you've decided to upgrade, you will be faced with
ensuring that not only will the new/updated features work as desired, but also that
the myriad of features you have already implemented and constantly use in the
current release will work.

Like most systems, Asterisk tries to maintain backwards compatibility, meaning that
code in one release will work in exactly the same way in a later release. Although, in
common with most systems, this is not always achieved. There have been occasions
where functions in Asterisk change from one release to the next, usually in the syntax
of the code, but sometimes functions are completely deprecated and replaced
with an alternative. This necessitates a round of code checking, amendment, and
stringent testing.

Using a GUI-frontend system can ease some of that burden. Rather than needing to
understand exactly what has changed from one release to the next, and what code
needs to be targeted to ensure it still works, the GUI developer will have already
gone through that process. They will understand which features available through
the GUI will be affected, what code changes are required to maintain functionality,
and should have a mechanism for automating those changes. Thus, you will be left
to update any custom code you have inserted, and then carry out all the tests you
would have done on a "vanilla" system. It's still a significant exercise, but at least
some of the pain will have been removed.

Standardized code
Asterisk dialplans, in common with other programming environments, require
careful management of code if you are not going to end up with an unholy mess.
Liberal use of comments and structured programming techniques (such as using
#include for standard "subroutines") are highly recommended, particularly if more
than one person will be maintaining the dialplan.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[213]

However, using a GUI ensures that the majority of the code produced will be very
structured, and having been tested by many developers, beta testers, and end users,
there is a high degree of confidence that it will do what is expected of it without
any "gotchas".

GUI, phooey!
For all the positive reasons for using a GUI, there are also a number of arguments
against going down that route. In general, they relate to the added complexity of a
system running a graphical interface and fall under the following headings:

Performance
Stability
Restricted functions

Performance
In order to run a graphical interface, the Linux server at the core of each Asterisk
system is required to install and run a number of extra packages. Many GUI
implementations are based on a so called LAMPA architecture, standing for Linux,
Apache, MySQL, PHP, Asterisk. Of these packages, only the Linux core and Asterisk
are absolutely needed to implement the telephony functionality, the rest is needed to
enable the GUI. This requires extra memory, disk and processing power of the host
PC/server, which is not a huge concern if you are implementing a standalone PBX
for a relatively small office, but if you are rolling out a system for thousands of users
over dozens of sites, then all those costs start adding up. Although, in the real world,
many Asterisk boxes without a GUI will still run Apache, MySQL, and PHP to allow
them to store call data effectively and use AGI (Asterisk Gateway Interface). This
obviously narrows the performance gap between GUI and non-GUI.

Even in a single-site scenario, if the number of users and call throughput is high,
then, by choosing a GUI-based system in preference to one without a GUI, you can
end up with a more complex and expensive system. For instance, in a call centre, a
"vanilla" PBX with reasonable hardware spec will cater for most requirements, as it
is not unusual for such a setup to be capable of handling well over 100 concurrent
calls. With a GUI-based system, you may need to implement two or more servers to
achieve the same goal. You then need to consider which server(s) handle inbound
calls, how calls are handed off between servers, and how to cater for the failure of a
server. In short, you will probably need to implement server clusters earlier with a
GUI-based setup.

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[214]

Another performance hit of GUI-based systems comes from the use of rather
complex code in the dialplan. Let's look at the code produced by FreePBX for
initiating an outbound call as an example.

[macro-dialout-trunk]
include => macro-dialout-trunk-custom
exten => s,1,Set(DIAL_TRUNK=${ARG1})
exten => s,n,ExecIf($[$["${ARG3}" != ""] & $["${DB(AMPUSER/${AMPUSER}/
pinless)}" != "NOPASSWD"]],Authenticate,${ARG3})
exten => s,n,GotoIf($["x${OUTDISABLE_${DIAL_TRUNK}}" =
"xon"]?disabletrunk,1)
exten => s,n,Set(DIAL_NUMBER=${ARG2})
exten => s,n,Set(DIAL_TRUNK_OPTIONS=${DIAL_OPTIONS})
exten => s,n,Set(GROUP()=OUT_${DIAL_TRUNK})
exten => s,n,GotoIf($["${OUTMAXCHANS_${DIAL_TRUNK}}foo" =
"foo"]?nomax)
exten => s,n,GotoIf($[${GROUP_COUNT(OUT_${DIAL_TRUNK})} >
${OUTMAXCHANS_${DIAL_TRUNK}}]?chanfull)
exten => s,n(nomax),GotoIf($["${INTRACOMPANYROUTE}" =
"YES"]?skipoutcid)
exten => s,n,Set(DIAL_TRUNK_OPTIONS=${TRUNK_OPTIONS})
exten => s,n,Macro(outbound-callerid,${DIAL_TRUNK})
exten => s,n(skipoutcid),AGI(fixlocalprefix)
exten => s,n,Set(OUTNUM=${OUTPREFIX_${DIAL_TRUNK}}${DIAL_NUMBER})
exten => s,n,Set(custom=${CUT(OUT_${DIAL_TRUNK},:,1)})
exten => s,n,GotoIf($[$["${MOHCLASS}" = "default"] |
$["foo${MOHCLASS}" = "foo"]]?gocall)
exten => s,n,Set(DIAL_TRUNK_OPTIONS=M(setmusic^${MOHCLASS})${DIAL_
TRUNK_OPTIONS})
exten => s,n(gocall),Macro(dialout-trunk-predial-hook,)
exten => s,n,GotoIf($["${PREDIAL_HOOK_RET}" = "BYPASS"]?bypass,1)
exten => s,n,GotoIf($["${custom}" = "AMP"]?customtrunk)
exten => s,n,Dial(${OUT_${DIAL_TRUNK}}/${OUTNUM},300,${DIAL_TRUNK_
OPTIONS})
exten => s,n,Goto(s-${DIALSTATUS},1)
exten => s,n(customtrunk),Set(pre_num=${CUT(OUT_${DIAL_TRUNK},$,1)})
exten => s,n,Set(the_num=${CUT(OUT_${DIAL_TRUNK},$,2)})
exten => s,n,Set(post_num=${CUT(OUT_${DIAL_TRUNK},$,3)})
exten => s,n,GotoIf($["${the_num}" = "OUTNUM"]?outnum:skipoutnum)
exten => s,n(outnum),Set(the_num=${OUTNUM})
exten => s,n(skipoutnum),Dial(${pre_num:4}${the_num}${post_
num},300,${DIAL_TRUNK_OPTIONS})
exten => s,n,Goto(s-${DIALSTATUS},1)
exten => s,n(chanfull),Noop(max channels used up)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[215]

exten => s-BUSY,1,Noop(Dial failed due to trunk reporting BUSY -
giving up)
exten => s-BUSY,n,Playtones(busy)
exten => s-BUSY,n,Busy(20)
exten => s-NOANSWER,1,Noop(Dial failed due to trunk reporting NOANSWER
- giving up)
exten => s-NOANSWER,n,Playtones(congestion)
exten => s-NOANSWER,n,Congestion(20)
exten => s-CANCEL,1,Noop(Dial failed due to trunk reporting CANCEL -
giving up)
exten => s-CANCEL,n,Playtones(congestion)
exten => s-CANCEL,n,Congestion(20)
exten => _s-.,1,GotoIf($["x${OUTFAIL_${ARG1}}" = "x"]?noreport)
exten => _s-.,n,AGI(${OUTFAIL_${ARG1}})
exten => _s-.,n(noreport),Noop(TRUNK Dial failed due to ${DIALSTATUS}
- failing through to other trunks)
exten => disabletrunk,1,Noop(TRUNK: ${OUT_${DIAL_TRUNK}} DISABLED -
falling through to next trunk)
exten => bypass,1,Noop(TRUNK: ${OUT_${DIAL_TRUNK}} BYPASSING because
dialout-trunk-predial-hook)
exten => h,1,Macro(hangupcall,)
; end of [macro-dialout-trunk]

As you can see, there is a lot of code here just to make a simple trunk call. However,
for a coding novice, this will implement all the checks and error handling that you
are ever likely to need.

It is impossible to say how much of a performance hit a GUI-based system will incur
over a "vanilla" system, as all systems and requirements are unique. However, when
planning your system, the extra resources required for a GUI, however small, should
be factored into the equation.

Stability
Linux is inherently a very stable operating system, and as a result, many systems
with a Linux base, Asterisk included, achieve levels of stability and reliability
that would require an awful lot of work and in depth knowledge to achieve in a
Windows-based system. However, GUI-frontend Asterisk systems do tend to require
more scheduled downtime than non-GUI systems for the simple reason that there
is more code running on the server. So whether it is for a patch of Apache, PHP, or
MySQL, or a bug is found in the code of one of the FreePBX modules that you have
implemented, you are likely to find that over time, a GUI-based system could spend
more time offline that a non-GUI one. Although, it is worth emphasizing that in a
well set up GUI-frontend, system downtime should still only be measured as a small
number of minutes per month, or even per year.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[216]

It should also be pointed out that some GUI-frontends, including FreePBX, which
we will look at in more detail shortly, separate the maintenance of the GUI from
the maintenance of Asterisk, meaning that such updates rarely require a restart
of Asterisk.

In addition to planned downtime, there is also the risk of unplanned outages to
consider. While a GUI-frontend Asterisk system may be the model of consistency
compared to other applications, ultimately it consists of a "vanilla" Asterisk system
with some extra applications in the mix. Adding extra applications to any system
will usually increase the risk that something will eventually go wrong somewhere.

In order to reduce that risk to acceptable levels, there is an increased need to ensure
that appropriate and robust change control processes are in place. These will require
that adequate testing of the system, in a separate test environment, is carried out
every time a significant change is made. Of course, this should happen regardless of
whether or not a GUI is used for administrative purposes, but it's likely that more
testing will be required with a GUI-frontend system simply because there are more
applications in the mix. This extra testing will cost more over time, but could be
mitigated by the fact that the standard code produced by the GUI is likely to reduce
the initial development time of dialplan changes. In the end, either your own testing
or some independent testing of system stability should ideally be used to inform
your discussions of this subject with potential customers.

Restricted functions
It may seem paradoxical to have restricted functions as a downside of GUI-based
systems, but that is not the case. Most GUIs, as previously described, enable the
use of pretty sophisticated features within Asterisk. For instance, FreePBX contains
modules that allow the Asterisk administrator to easily enable call groups, call
queues, conference call functionality, and many other features. However, the
framework provided by FreePBX and other GUIs can tie you into their way of
implementing a particular function, and make it difficult to insert custom code
to implement your own functions. Typically, custom code has to be entered into
predefined .conf files or into the predefined areas of certain .conf files, or else there
is the risk of it being overwritten by the next application of a change in the GUI. So,
occasionally you will find that inserting some highly-tuned code is impossible, or at
least it has to be done in a far from ideal fashion.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[217]

FreePBX
FreePBX is a GUI for Asterisk, the development of which has been led by Philippe
Lindheimer. It is far from being the only GUI and may not even be the best GUI, but
that it is not a commercial product makes it quite unusual in the range of Asterisk
GUIs. It is not a commercial product in this range. Many of the other products in this
field are not covered by the GPL and have been developed, among other reasons, to
allow businesses to charge for an Asterisk-based system. ScopServ is a good example
of a commercial Asterisk GUI. Other commercial products have an open source
version that provides restricted functionality and an upgrade path to the paid-for
version. Druid from Voiceroute is a good example of this. There is absolutely no
problem with commercial approaches, as they should give the purchaser some
confidence in the continued development and stability of the GUI, and by
association of the whole system.

However, this book has Asterisk as its focus, so it seems logical to consider other
open source solutions in conjunction with Asterisk where they exist as a viable
option. In the field of open source GUI-frontends for Asterisk, FreePBX stands
proud, particularly now that Digium themselves have committed to using FreePBX
within their AsteriskNOW offering from release 1.5 onwards.

How it works
FreePBX presents a graphical interface to the system administrators that allows them
to configure a wide range of functionality. The functions are separated into modules,
each of which represents a distinct function, and most of which can be enabled or
disabled so that only the desired functionality is active at any time.

FreePBX does not directly represent the contents of the configuration files on screen.
Rather, it maintains its own database in MySQL or sqlite, which is then used to
generate certain configuration files afresh every time changes are "applied" to it.
This scenario is enabled through the use of #include statements. For instance, when
changes are applied in FreePBX, the sip_additional.conf file will be overwritten,
but the sip_custom.conf file will remain as is. Both sip_additional.conf and
sip_custom.conf are referenced from sip.conf by means of a #include statement.
In this way, any custom code written to sip_custom.conf will remain without the
danger that changes in the GUI will overwrite them.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[218]

Installation
Typically, FreePBX will come as part of a complete Asterisk package, such as
AsteriskNOW from Digium, Elastix from PaloSanto Solutions, or the freely-available
PBX in a Flash from Nerd Vittels, and others. There is a very strong argument for
implementing an Asterisk GUI in this way—someone else will have gone through
the pain of choosing the best Linux distro, choosing the right flavors of Apache,
MySQL, and PHP, enabled the relevant options within all those packages, and then
installed FreePBX on top. However, it is worth looking at the steps required to install
FreePBX should you decide to implement it on a "vanilla" Asterisk system, if only to
gain a better understanding of how much extra code is needed to implement it.

At the time of writing, FreePBX development was carried out in the main on CentOS
5.1, so that is their recommendation for a base operating system. Full instructions for
the installation of Apache, MySQL, PHP, Asterisk, and FreePBX from this base can
be found at the following URL:

http://www.freepbx.org/support/documentation/installation/install-
process-for-centos-5-1

During this installation, the following packages are installed:

CentOS 5.1
DNS
Apache 2.2 (HTTP)
Sendmail (SMTP)
MySQL 5

Asterisk 1.4
Zaptel 1.4
Libpri 1.4

FreePBX 2.5

•

°

°

°

°

•

°

°

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[219]

FreePBX will run on a number of other Linux distributions too, many of which
have documented installation processes at the FreePBX web site. You may also
find that, over time, the included packages change to keep pace with developments.
For instance, at the time of writing, Asterisk 1.6 has reached the release candidate
stage and will undoubtedly form the core of a FreePBX installation once it is
finally released.

Configuration
FreePBX requires that a number of basic steps be followed to achieve the minimum
working system. They are the addition of:

An extension
An inbound route
An outbound route
A trunk

Extensions define endpoints, normally handsets, but potentially fax machines or
other devices. While not their sole purpose, outbound routes are often used to
implement Least Cost Routing (LCR), as they identify which route a call should take
based on certain criteria, such as the dialed number. On the other hand, inbound
routes tell the system what to do with incoming calls, again typically using call
metadata such as the DID or CID. Trunks define the interface with the outside world,
and for outbound calls, they may be referenced by one or more outbound routes.

These definitions will allow a telephone on the system to make and receive calls.
Any of the other options will implement more complex functionality, but are not
essential. However, it is a simple implementation indeed which will require just the
options described previously. Let's look at these four definitions in a bit more detail
to see how FreePBX implements them.

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[220]

Extensions
An extension normally defines an internal telephone, either hardware or software,
although it can also define other endpoints such as fax machines. The protocol
used for extensions is usually SIP, although IAX2 is also used, and Cisco devices
have historically had their own proprietary protocol (SCCP, colloquially known as
Skinny). However, since SIP is by far the most popular one, let's have a look at how
an SIP extension is defined in FreePBX.

There are a lot of options on this screen, and the use of drop-down lists and radio
buttons is made to ensure accuracy.

FreePBX assumes that voicemail will be a desirable function in any Asterisk/
FreePBX system. Therefore, it installs voicemail by default, and includes voicemail
functions within the extension definition. Simply check the appropriate box and
voicemail is enabled with the minimum of fuss. However, if you wish your system
to do without voicemail, then the appropriate module can easily be removed.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[221]

One impact of defining an extension in FreePBX is that the appropriate dialplan
entries for routing calls between internal extensions are automatically added.
Therefore, your only routing concern is with calls originating or terminating outside
your system, as we will now explore.

Inbound routes
Within FreePBX, the part of the dialplan that handles incoming calls is defined by
means of one or more inbound route records. Essentially, this record tells Asterisk
what to do with an incoming call. It provides the link between the trunk and the
extension. The record can define the actions for a particular DID, a particular CID,
or a combination of both. Pattern matching can also be used for DIDs or CIDs so that
each possible number doesn't need a separate record. This can be a good way of, for
instance, directing calls from a particular region to a local office. Finally, there is a
facility to have a "catch-all" record that determines what to do with any inbound call.
Let's have a look at an inbound route record, which will transfer all calls through to
extension 251.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[222]

Instead of transferring every inbound call to extension 251, we can also use other
appropriate destinations, but only destinations that have already been defined will
appear on the list. In other words, you cannot choose to route calls through to a voice
menu, for instance, if you have not already set up that facility. You may notice that
there is a Day Night Mode option in the example. This is used to toggle between
alternative destinations depending on the time of day. You might decide that the
calls should go to a receptionist during the day, and to a voice menu system outside
normal working hours. Or there may be two separate voice menus—one to handle
calls during working hours and one for calls outside working hours. The switch from
"day" mode to "night" mode can be time-based, or manual.

Outbound routes
Outbound routes, as their name suggests, define what to do with outgoing calls. If
the goal of your PBX installation is to reduce call costs through the implementation
of LCR rules, then this is where those rules will be defined. In its simplest form, an
outbound route record will determine what happens to calls as they traverse from
extensions to trunks. It can be defined for all extensions or a subset based either on
an extension number or, more typically, based on the profile of the number being
dialed. In our very basic system, an outbound route will look like this:

Outbound routes have dial patterns, which are used to match and manipulate
numbers. Typically in an outbound route, the dial pattern(s) will be used to identify
groups of numbers that you wish to send to a particular trunk. Maybe, for instance,
you would set up one dial pattern to match all mobile telephone numbers (which
start with "07" in the UK), and then direct them to the trunk you've set up for your
GSM gateway.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[223]

You may also have noticed that there is room for multiple trunks for a single route.
This allows for failover if the primary trunk is unavailable. This is particularly useful
if you wish to use a service such as ENUM or DUNDi to attempt to locate a route to a
destination before using another route that will incur a cost.

If you wish to start implementing LCR, you will need multiple outbound route
records. While relative priority is a consideration with these if more than one route
applies to a particular call profile, normally the choice of route is determined by
the dialing rules. Therefore, while one route would send all mobile calls via a GSM
gateway, another may send all international calls to Asia via an ITSP that offers
particularly good rates to that market. However, both routes might have an ITSP
with good overall rates as a fall back just in case the preferred option is unavailable.

Trunks
Trunks define the interface to the outside world, and can include DAHDI (Zaptel),
SIP, IAX2, ENUM, and DUNDi protocols natively, and other protocols such as H323
or mISDN as "custom" trunks. The trunk definition describes the contents of the
relevant .conf file with a very obvious relationship between the options in FreePBX
and the possible parameters in the .conf file. It's typical for a very basic installation
to have a SIP trunk to a VoIP provider, so let's see how that might look in FreePBX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Graphical User Interfaces

[224]

As you can see, there are a few options to consider. While in general, efforts have
been made to move away from offering the user a text box where parameters have
to be typed, the nature of trunk definitions makes this a little more difficult, so text
boxes have been retained for the outgoing and incoming settings. From here they are
written to sip_additional.conf, which is included in the sip.conf file by means
of a #include statement. The sip_additional.conf file is overwritten by FreePBX.

The interesting part of this definition is the Dial Rules section. Here, numbers can
be manipulated before a call is placed. For instance, in the preceding example, the
only dial rule is 0+X. The X matches any digit, so it essentially means "use this rule
for any number not previously matched". The 0+ then adds a 0 to the beginning of
the number, and the period at the end is short-hand for saying "leave the rest of the
number as is". Therefore, the rule as a whole says "add a 0 to the start and place the
call". It is also usual to add any calling card prefixes for specific trunks within the
dial rules.

You may wonder why we are stripping a zero out of the number early on in the
process if it is going to be added back later. However, different service providers
can require numbers to be presented in different formats. One may wish the full
international format with no leading zeroes (such as 442075555555 for a number in
London, UK), whereas another may accept numbers without the international code
for UK numbers, but with a leading zero (for example, 02085555555). If you use
multiple providers with different requirements, any process prior to the trunk can
get very complex unless you strip everything down to a standard format, and just
add the provider-specific digits in the trunk definition.

Other records
This is not the place to explore in detail all the options available to you within
FreePBX. There are online resources that cover the detail of what each FreePBX
record does, such as the FreePBX web site at http://www.freepbx.org, and there is
also a forthcoming Packt publication on the subject. It would suffice to say that once
installed, a system utilizing FreePBX can be very quickly configured to the point
where basic functionality is possible. Once that point has been reached, slightly more
advanced functions can be easily enabled, such as IVR (digital receptionist), Queues
or hunt groups, Follow Me, Day/Night Control, and many more.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Chapter 11

[225]

Summary
Strong opinions abound on the advantages and disadvantages of graphical user
interfaces for Asterisk systems. Those who, with some justification, believe that a
phone system should sit in a corner and "just work", have concerns over the increased
risk of system downtime and the impact on system performance. However, such
views tend to be prevalent among those who have come from a traditional telephony
background, or are "old school" Linux devotees. The problem is, the world of
telephony no longer sits proudly on its own, but rather is converging rapidly with the
world of computing, enabling voice traffic to be carried over computer networks, and
telephone systems to interact with the desktop. In this brave new world, having the
ability to interact with your telephone system from your PC is increasingly desirable.

While adding complexity to your Asterisk system carries a corresponding increase in
the risk of unscheduled downtime, the extent of that risk depends on the processes
that you put in place to deal with the downtime. In particular, a robust change
control environment is needed to ensure system stability, regardless of whether
or not a GUI is fronting your Asterisk system. As Asterisk sits on standard PC
hardware, standard failover and clustering techniques can also be applied to mitigate
the risk. In spite of taking this into consideration, the budget for a traditional PBX or
a commercial VoIP system can still be hugely undercut, even if one is not pushing
the Asterisk box to its limit.

Ultimately, Asterisk is a hugely-versatile telephony engine. In certain circumstances,
such as large installations or high-volume environments, it makes a lot of sense to
keep the installation as clean as possible. For such customers, a managed service
is quite often the very solution they prefer rather than having to train internal staff
to a high level. For other customers, such as the SMEs who make up the majority
of businesses, having the ability to carry out day-to-day configuration changes
themselves while using a third party for more complex tasks is quite usual. For these
customers, who will typically have lower call volumes and require fewer system
resources, the performance impact of a GUI is normally acceptable given that it
simplifies the administration process.

There is a myriad of options if you decide you wish to implement an Asterisk system
with a GUI, although the majority of system configuration and administration
GUIs are commercial products. In the open source field, FreePBX is a successful
product that is widely used in many Asterisk "distributions", including the latest
version of AsteriskNOW from Digium themselves. Like most GUIs, FreePBX does
introduce some intricate code into the dialplan, which has the potential to reduce the
performance of the server. However, it does allow for a relatively complex Asterisk
setup to be created quickly and easily, and is modular in nature so that only the
essential features are implemented.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution
Your background prior to becoming an Asterisk consultant may or may not have
been technical. Given the nature of the Asterisk software, particularly the fact that it
can be freely downloaded, installed, and used with no license charges, it's not that
unusual for technical people to progress from "having a tinker" to a position where
they have a coherent system that they wish to use as the basis for a commercial
offering (of course, remembering that while you are allowed to charge for Asterisk,
‘there isn’t much point as it can easily be downloaded for free. It's a bit like charging
someone for tap water while standing next to a public faucet). Reading this book and
absorbing the information and suggestions it contains, coupled with your existing
knowledge and expertise, will give you the tools to create an Asterisk system that
is a viable commercial proposition—one that can fit into most organizations, large
or small. It is certainly the case that there are a great many Asterisk-based systems
in wide-ranging environments today, from one-man bands to university campuses.
However, creating a system capable of doing a great job for your potential customer
is only half the battle, you also have to sell it to them.

In this appendix, we will look at some of the challenges you may face as an Asterisk
consultant attempting to make sales to small, medium, and large enterprises.
The focus will be on selling to small and medium enterprises (SMEs) as sales to
large organizations would normally require the vendor to demonstrate significant
turnover, stability, market experience, and support capabilities. It seems fair to
assume that a vendor with those capabilities will already have a dedicated sales
function. However, many of the principles mentioned will apply across the board.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[228]

In the beginning ...
Before you even think of hitting the market, there are a few questions you need to
ask yourself. Top of that list is the most important one—Do you truly "believe" in
your product? In other words, are you absolutely certain that when you install your
system, not only will it do everything the customer's previous system did, but also
actually offer them extra functionality and a commercial advantage over competitors
who do not have your telephony system? If you do not have this belief, then you
need to understand the fine detail of what your system can do in order to give it to
you, because if you go to a potential customer and the questions start getting tough,
only this absolute belief based on demonstrable facts will see you through.

However, you have just learned how to construct a high-quality, extremely-stable
telephony platform with excellent functionality, and through its open source nature,
the ability to seriously undercut the price of commercial offerings and still make you
a profit, so why wouldn't you be confident?

So now you're fired up about Asterisk and its capabilities and possibilities, but how
do you go about selling it to potential customers? Again, before you hit the market,
you need to accept that in order to be successful, not only do you have to provide
one or more Asterisk servers and a bunch of handsets, but you also need to ensure
that the ancillary aspects to any telephony system meet certain required standards if
the installation must achieve the customer's goals. Items such as the LAN, WAN, and
Internet connectivity need to be of a certain standard, possibly using VLANs and/or
QoS to ensure voice quality. The environment the server will reside in should be
secure, clean, and air-conditioned, with power failover in many cases. The customer
may wish to implement some or all of these aspects themselves, but you will need
a mechanism for determining the minimum standard of each, and of allocating
responsibility fairly once the system and maintenance agreement is in place. You
should also be prepared to provide any or all of the prerequisites if you are asked to
do so, which may mean having agreements in place with companies who can do a
job to the required standard, if you do not wish to do it yourself.

Drivers for changing phone systems
Now you're ready to hit the market, so let's have a look at why potential customers
may consider a new telephone system. For 99% of the time that you speak to a
customer, the main reason that they are considering a change is that they've heard
VoIP will save them money on their calls. However, a little probing will often reveal
that this is not the sole reason. Looking at the SME market primarily, you may well
find secondary drivers such as:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[229]

Issues with the current telco's service: These include issues such as taking
hours or even days to sort out any problem no matter how small.
Cost of adding new phones: With traditional twisted pair telephony, adding
a new phone or moving an existing one can be expensive. While people have
become used to running CAT5 cable, twisted pair cables seems like black
magic still.
Number portability: The customer is moving to a new location and wants
to retain their number.
Maintenance costs: A lot of telephone companies derive a huge amount of
their income from maintenance fees. These can be considerable and are often
overlooked by the customer.
Flexibility: Most traditional systems "can" be quite flexible, but often a
specialist engineer is required to access the system remotely, or even
physically, and enter obscure codes, simply to change something as simple
as ring patterns. The charges made for this often deter the customer from
requesting changes that would benefit their business.

These drivers cover most of the reasons that most customers consider changing
their phone system. However, there may well be other reasons a change is being
considered—for instance, an office move often prompts consideration of telephony
requirements. The relative priority of the drivers will vary depending on other
factors, an obvious example being the financial climate at that point in time. If you
want to be successful in targeting your product accurately, it is important that you
understand which drivers are most important to your target market when you are
contacting them.

A word on cost
If you were to have a discussion with some people about the USP (Unique Selling
Point) of modern IP-capable PBX’s, the majority are likely to mention that it is the
ability to make cheap calls. But, often this is not the case. It is becoming more usual
for telcos to offer bundles or even flat-rate pricing for PSTN calls, along the lines
of the charging strategies in the mobile/cell market. As a result the cost difference
between PSTN and VoIP calls is diminishing, sometimes to the point where huge
volumes of calls are needed to make a compelling case for change when only call
costs are considered.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[230]

However, in the SME market, significant cost savings can be made simply by
reducing the number of PSTN lines on which a company needs to pay rental.
Remember, line rental is paid whether or not any calls are made over the line. In
addition, it's not unusual for customers to be locked into minimum contract terms,
some as long as seven years! This may save some money on installation charges,
but that saving is completely outweighed by the cost of line rental over that period,
particularly if one or two years into the contract a means of reducing the number of
lines required is found. If you have a potential customer in that situation, they will
need to have a frank discussion with their line provider about early exit from the
contract, and the cost of that will need to be factored into the ROI calculations.

To illustrate the potential line rental savings, consider a hypothetical dispatch
company. They have five lines so that they can deal with multiple calls at certain
times of the day. These lines are really busy from 7 am to 9 am while they deal with
deliveries, and busy again from 3 pm to 5 pm while they deal with pickups. The rest
of the time, there's probably hardly a call, but they're paying for the five lines 24/7.
If you can approach that company and say, "Guess what, you can do away with four
lines permanently, do you think they're going to be interested?" Of course they are,
because by eliminating line rental, you're disposing of a significant fixed cost.

So you can see that, when selling the potential to save money to a prospective
customer, it's not as simple as telling them that they'll save a certain amount on all
their calls. Depending on the company's call volumes, it's possible that the ongoing
line rental savings will be the major cost benefit, and to quantify that you will need
to know how many lines they have now and how those lines are used. You can
then put together a proposal illustrating how many lines the new system will need,
with associated reduction in line rental charges, and how their call profile will be
represented using VoIP where appropriate. If this also results in significant cost
savings, then it's even better.

A word of caution, though—all of the major telcos are reducing their call charges.
It's becoming a downward spiral. You, or your chosen ITSP, cannot hope to compete
on a cost per minute with a telco with millions in the war chest. Indeed, it is the
current consensus that call charges will disappear completely in the next few years
to be replaced by bundled minutes. It would not be wise to make long-term call cost
savings the cornerstone of any proposal you put forward.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[231]

Generating interest
So now you have your core product, and you have the confidence that it can bring
significant benefits to customers. The next step is to make people aware of that, to
get this message out to potential customers. Make no mistake, though, marketing
your shiny new Asterisk system is hard. This is regardless of how good it is, how
cheap it is as compared to competitors, how easy to install and maintain it is, and
how wonderful the benefits to the customer are. It's hard because you have to get
that message out to the right people, at the right time. Unfortunately, there's no
sure-fire way to make it work either. However, we have a couple of pointers that
will hopefully get you started on the right lines.

With any telephony system, including Asterisk, the important thing to recognize
is that they are not changed very often. We've seen already some of the common
drivers for changing a phone system, but it's also worth having a look at a couple
of other factors considered by companies making that decision.

Change: Changing a phone system has the potential to cause huge disruption
to a busy office environment. Staff will probably need to gain familiarity with
new handsets, new processes (for example, for setting up conference calls),
new functionality, and maybe even new extension numbers.
Risk: Phone systems continue to be a core part of every company's
communications strategy, and the disruption of that service even for a
short amount of time has the potential to cause serious loss of income
and goodwill.

As a result of these factors, messages along the lines of "Simply install this new
phone system to realize savings in line rental charges" are unlikely to work unless
you happen to catch a decision maker at just the right time. In order to persuade
a company to even consider changing their phone system, you need to be able
to demonstrate that the change is worthwhile and will be completely stress free.
Customer testimonials are great here, but when starting out, you may need to take
a different tack, such as demonstrating that you use a formal methodology for
managing the implementation, such as PRINCE2 or PMP.

But to start with, you need a flow of hot leads into the business. It's very sensible not
to have all your marketing eggs in one basket. A strategy that combines alliances,
advertising, and more targeted contact over a range of media is more likely to bear
fruit than a single mailshot to all the businesses in a particular area. So how do you
go about it?

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[232]

Alliances
Forging an alliance (formal or otherwise) with another company is a strategy for
generating leads that, with a little luck, can be very successful. For instance, you may
already have an arrangement with a cabling company, through which you can utilize
their services if customers need their LAN upgraded. However, in the normal course
of their business elsewhere (for example, outfitting new or refurbished premises),
they may have customers who would welcome the details of a company that can
provide an affordable, high-quality phone system.

An even better association would be with a commercial property agency, as they are
involved with businesses at precisely the time that most consider their telephony
options. The benefit for them may merely be the chance to offer a better "package"
to their customers, or possibly you would need to negotiate a finder's fee for every
customer they bring to you.

Advertising
Advertising is about getting your "name" out into the marketplace, preferably as a
provider of high quality yet affordable systems. Traditionally, advertising has been
seen in terms of television, radio, newspaper, and magazine ads. While adverts in
select trade magazines can be an effective strategy for marketing an Asterisk system,
some online tools are likely to be of more use, and it is into this area where much of
the marketing effort goes these days. The great thing for you is that online marketing
can be carried out without huge cost, and yet achieves far better results than "old
school" methods.

Search engines
A good exercise when designing any part of your marketing strategy is to put
yourself in a potential customer's position. For whatever reason, they have made
the decision that they want to consider changing their phone system. So what will
they do to investigate their options? To start with, they are likely to use one or more
of the popular search engines. Therefore, having your details come up on the first
page of results, or in the first lot of paid links, is likely to generate a steady stream of
very hot prospects.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[233]

However, taking a step backwards, in order to be included on search engines, you
need to have a presence on the Web. Having a web site does not have to be costly,
and if done well, it can project exactly the professional image that is required.
Although, in order to feature highly in search engine results, your web site not only
has to have the right content, but must also be designed in such a way that it will
feature highly in search results. Additionally, it is hugely beneficial if your web site
is linked-to from many other places. There are a number of ways of achieving this,
one being the use of blogging as a business tool.

Advertising on search engines is slightly different, in the sense that the emphasis is
very much on choosing appropriate keywords to associate with your advertisement.
The skill here is in choosing keywords that are likely to be used by prospective
customers, but haven't been chosen by rival phone system providers for their
adverts. This increases the likelihood that your advertisement will appear more
often when one or more of your keywords are entered. The pricing structure for such
advertising is based on the number of times your advert is clicked, hence the term
Pay Per Click (PPC).

Putting everything together into a coherent whole requires a good deal of expertise,
so this is one area where using the skills of a company that specializes in Search
Engine Optimization (SEO) is usually money well spent.

You can go to the following web sites for further reading:
www.searchengineguide.com

www.searchenginewatch.com

www.sitepoint.com/kits/sem2/

Become an expert
Another means of raising your profile in the marketplace is to position yourself as an
expert in the field of Asterisk-based systems. After all, if you have a product that is
commercially viable, then you've progressed to a point where you have knowledge
that is relatively rare. One means of publicizing that expertise is to write, possibly
in the form of magazine articles, press releases, or even a book. Alternatively, you
could offer tidbits of information via your blog, which has the added benefit of
bringing people to your web site and generating external links. You could also use
this strategy to initiate an email marketing strategy, through which you ask web site
visitors to subscribe to a regular newsletter.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[234]

Relationship marketing
By acquiring information about your audience, you have reached a stage when you
are no longer using a scatter-gun approach to marketing, that is putting a message
out to a large audience in the hope that some of them could use your product. Now
you can target your message based on the information you have about individual
subscribers. At this point, tradition suggests that you start reeling in your potential
customers, and try to convince them to change their phone system. Please resist
this urge! By all means, inform your captive audience of the benefits of Asterisk in
general and your wonderful system in particular, but this strategy works best if you
are perceived as an expert in your field, and not as a sneaky sales person (apologies
to all sneaky sales people reading this!). In other words, they need to trust you.

Email as a marketing tool
Now, the fact that your prospective customers are interested in your opinions
indicates that it's likely they are considering a new system anyway. So let that itch
continue to irritate, and when they finally decide to scratch it, they will come to you
for advice, precisely because you've worked hard to build up that trust. Of course,
since you are communicating directly with them through the use of personalized
emails (at least that's the impression you are trying to give them), there is an
opportunity to foster that relationship. An effective email marketing campaign
can track what each recipient does with the email you send them. Do they open
it at all, how many times do they open it, and which links do they click on? The
last in particular is very pertinent, as it can allow you to understand where your
subscriber's interest is in a better way. Do they click through to a list of handsets?
Are they looking at how to improve their LAN? All this is useful data that can help
you build up a picture of subscribers and tailor the message you send them.

You may be worried that doing all this writing rather than actively selling to
customers will simply take up too much time. It is certainly likely that you will
spend a few evenings updating your blog, composing marketing emails, and
understanding the results of previous campaigns. However, selling is not possible
if you are not generating leads in the first place, and it is far better to be feeding
hot leads into the sales funnel rather than a load of dross. In addition, the research
needed to generate content for your blog/emails will keep you up-to-date with
what's happening in the marketplace, which you should be doing regardless.

Perry Marshall is a guru of Google advertising and email
marketing techniques and shares much of his knowledge
on his web site www.perrymarshall.com.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[235]

Tracking prospects
In doing all of this high-quality online marketing, it's extremely easy to lose track
of where you are with it all. It is highly recommended that you implement a system
that will allow you not only to record what has been done (preferably as easily and
automatically as possible), but also to drive the marketing effort. Although, the
important aspect of whatever system you implement is that it is relatively easy to
use and that it doesn't get in the way of getting the message out.

Many people starting out in business use Outlook in the first instance, as it allows
them to record prospect details, and, with the addition of Business Contact Manager,
run email campaigns and track some results. However, Outlook with Business
Contact Manager is not a fully-fledged CRM solution, so we would recommend
looking at an alternative. Throughout the book, we have championed the use of open
source software, and in that arena, one of the best CRM solutions is SugarCRM. In
fact, some Asterisk-based systems have SugarCRM bundled as an optional part of
the installation. Of course, there are other open source solutions too, such as vtiger,
Compiere, Concursive, and others.

While SugarCRM may take a bit longer to configure for your particular purposes
in the first place, it is more likely to cope with a high degree of growth over
time, saving you the disruption of switching from one system to another. Within
SugarCRM, you can define marketing campaigns over varied media with or without
prospect lists. So whether you're running a magazine ad or a highly-targeted email
campaign, you can record the information in SugarCRM and track what happens
after the campaign runs. For campaigns with prospect lists, you can record relevant
activity manually (useful for phone calls or inbound emails). However, it also has the
capability to run an email campaign for you, from sending personalized emails to
tracking all activity, including clickthroughs. Of course, all this activity is recorded
automatically, and available in future if the prospect calls up. This can really add an
element of professionalism to even the smallest Asterisk consultancy.

For further reading, see Implementing SugarCRM, Michael J.R. Whitehead,
Packt Publishing.

Of course, once a prospect becomes a customer, SugarCRM has all the functionality
needed to track activities with that customer, including support tickets.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[236]

Converting the prospect into a sale
So, you have implemented an effective marketing strategy that feeds hot prospects
into your lap. They have a need for a new phone system and think that you may
be able to provide it. You've arranged to meet them, but how do you go about
converting that hot prospect into a customer more often than not? The best
marketing in the world will be undone if you make a bad impression in person.

Determining your customer's hardware
requirements
When you go to your customer's site, your desire might be to impart knowledge,
but in a sales situation it's far more important that you listen. Remember, you've
already built up a degree of trust through your marketing efforts, and as a result, the
customer has brought you in to use your expertise to solve a problem, "not" to be a
sales person. Leave that to the cold callers whose conversion rate is probably in the
region of one lukewarm lead per 100 calls, requiring 5 to 10 site visits before you get
a sniff of a sale. Whereas, when you are asked to share your expertise as a consultant,
you will have the hottest lead possible and your conversion rate will be nearer 1 in
2! So your main goal is to determine the customer's needs and wants by listening
attentively to what they are saying.

Of course, during your visit there is certain information that you will need to get if
you are to provide an accurate proposal, but you will usually find that the majority
of that information comes out naturally anyway, with little or no prompting.
However, designing a requirements form makes a lot of sense and adds to your
professional image. In addition, it means you have all the information you need
written down, and are not relying on your memory once you get back to the office.
On your form, you need to discover certain items, including:

How many lines do the customers have, and more importantly how
many do they need?
How many extensions?
How many calls are internal and how many external?
Do they need voice recording?
Do they need CDR?
What are their cabling needs? Is CAT5 already there?
Do you need a switch, does it need to be PoE(Power over Ethernet)?
Where are you going to site the PBX?

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[237]

The key to providing a proposal is in the first three items. You need to do
your homework.

Is their existing Internet access sufficient?
If not, what is required to carry their potential IP call traffic?
If appropriate, how good is the broadband in their area?
How powerful a processor will you need?

The number of extensions will affect your costs. Remember you will need to
program each phone, and every phone adds to the complexity of the dialplan
if you are providing a system without a GUI.

Choosing the right phones
Which phones you use depends on so many factors, such as your customer's budget,
your experience with particular makes and models, the intended usage, ease of
provisioning, and so on. We are not going to tell you what phones to use and what
phones to avoid—for a start, trashing a manufacturer's phone might land us in a
whole heap of legal issues! However, we can say that, in general, you get what you
pay for.

Tales of woe
In 2005, we had a chance to run a pilot install consisting of four incoming lines and
four extensions. A Digium card was chosen to handle the four analog lines. We
selected budget-priced phones which looked to have the features we needed.

Within days, the users were complaining of echo issues. Typically, these kinds of
problems lie with the card, so we ran all sorts of diagnostics, playing with the gain,
and so on. After much fruitless tweaking and head-scratching, it turned out that the
microphone sensitivity on the handsets was way too high and was causing feedback
loops. We very nearly lost the contract until we opted for more expensive phones.
Interestingly enough, some four years later, there is a current wiki discussing the
same issues.

Rather than a lengthy discussion on all of the phones out there, here is a selection
of some that have worked well for us. You may like other phones, which is fine,
the choice is up to you. Of course, you should make sure you are familiar with
the idiosyncrasies of each phone before you add it to your "approved" list.

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[238]

Aastra
The new 5 series Aastra phones are simply the best we've come across from a
price/functionality point of view. In the past, they have had issues staying connected
to remote-hosted PBXs, but Aastra claim to have addressed this shortcoming.

Linksys
Linksys SPA-942s are great hosted phones (connecting to a remote PBX), but their
lack of BLF (Busy Lamp Field) capabilities on Asterisk as well as speed dials, is an
issue. As with most phones, the firmware is updated quite regularly, so it is worth
keeping an eye out to see if its shortcomings are addressed in the future.

Siemens Gigaset IP DECT phones
A well priced phone that works well as a "walk about" phone (either internal or
hosted). Earlier systems, such as the Siemens C460 IP, didn't like to handle more
than one SIP provider or one handset per base station. However, most of the current
range will cater for six handsets per base station. The station itself will handle three
simultaneous calls (two VoIP and one fixed).

Snom M3
Also suited to small office requirements is the Snom M3, a relatively new entry to
the business of DECT market. This phone comprises of a base station and up to eight
handsets. The handset, although quite small, has good voice quality and a usable
speakerphone. Each base station can handle up to three simultaneous calls, so this
is not a suitable solution for an office with high call volumes. The base station has a
good range, although the claimed 50 m indoors/300 m outdoors is likely to be slightly
fanciful. However, it is possible to add DECT repeaters into the mix to extend the
range if it is inadequate. Each handset is tied into a single base station, meaning that
roaming between base stations is not possible. Such functionality tends to be the
preserve of significantly more expensive systems.

Remote support
One area of high cost in the traditional PBX market is the need for providers to
employ lots of engineers to go out and fix, or reconfigure phone systems for the
customer. If you are pitching to replace one of these ancient systems, a significant
part of your proposal should be around the remote monitoring and maintenance
services you can offer, as this is relatively easy to achieve with an Asterisk-based
system. As virtually any support or maintenance task not involving the need
to physically move equipment or components can be carried out remotely,
highly-responsive SLAs should be possible.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[239]

Make it secure
When specifying the remote support channel for customers, make sure you can
secure the access with a tunnel, whether it's SSH or some other method. Remember,
you might also need web access to reconfigure individual phones.

Do's and don'ts
Over the years, we have accumulated some tidbits of good and bad practice when
selling Asterisk-based systems. They are presented here for your consideration, but,
as always, you should only use what is applicable to your situation and needs.

The do's
The practices you should use while selling Asterisk-based systems are as follows.

First impressions
It goes without saying that you need to look smart (but not too smart as you are a
consultant and not a sales person, remember!). Got an old car? Maybe you should
consider parking it away from the customer and walk. Get there early, you can hang
around the reception for 15 minutes and gather your thoughts.

Get brochures printed
It doesn't matter if you wowed the customer at the meeting, they're going to take
time to think over your proposal. Nothing beats a nice brochure to look over later,
which they can pass to colleagues.

Get some good quality folders printed that take inserts. This way,
if you get new products, you only need to reprint the inserts and
not the whole pack. The copy for the inserts can also be used on
your web site.

Take notes
Design a questionnaire sheet that you can fill out during the meeting. Customers
like to think you're listening to them. It will also form the basis of your quote.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[240]

Send the quote in a timely manner
The customers like to think that their potential business is important to you. Make
a habit of doing the quote as soon as you get back to the office while the information
is still fresh. Have a standard email detailing the benefits, but unless it's really
urgent, don't send it the same day unless requested. (Don't want to sound too
desperate, do we?)

Follow up the quote
You might think that you've done such a superb pitch that the customer won't
go anywhere else, but guess what... they're fickle. If your competition walks in a
few days later, you may very well be forgotten. So you should call the customer
three days later to confirm they got the quote and ask them if they have any more
questions. Agree to call them back in a week if they're still not sure. Use your CRM
system to put the calls in your diary and ensure you make them. That one follow-up
call can make the difference between closing the deal and losing it.

Target the decision makers, but don't ignore IT
Your initial contact at a company may be the IT department, which is fine, as at
the very least it gives you the opportunity to alleviate any technical concerns up
front and gives you the opportunity to gain their "buy in" to your system as a great
solution. But you quickly need to establish if they have the authority to make a
decision, and if not, who does. In smaller companies, this will probably be either
the Managing Director or the Finance Director. It is to them that you will sell the
operational benefits, and/or the cost savings.

If IT is not involved from the start, then you need to talk to them as early as possible
in the process, as they will be heavily involved in the implementation of the solution
and probably the ongoing management of it too.

The don'ts
Of course, there are some pitfalls that you should try to avoid too.

You don't need a fancy office
Asterisk-based systems are frequently installed, in part, to allow companies to more
easily enable remote working practices. In other words, one of their switchboard
operators could very easily be fielding calls from home. If you are starting out as an
Asterisk consultant, wouldn't you use that same principle to allow you to work from
a modest rented office? For a small monthly, fee you can rent one or more hosted
servers that can run your PBX, web site, and CRM so that you can access them
wherever you have Internet access.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[241]

Most of the time you will travel to customer sites, but if you need to host a meeting,
there are many places where you can rent a meeting room by the hour.

You may not wish to divulge this setup to a prospective customer on your first
visit—old prejudices can die just as hard as old habits. However, if further down the
line it becomes apparent, then there is no reason to deny it or even apologize for it.
After all, you have proven that your system enables remote working in a means that
is transparent to the caller.

Don't cut corners on the solution
Customers are happy to get a system at the lowest possible price, but when it stops
working and they can't do business, everything goes out the window. A small
monthly saving on line rental and call costs pales into insignificance if their phones
are down for a day. Make sure you carefully point this out as tactfully as you can.

One example is with Internet circuit bandwidth. You might find that the customers
don't want to separate voice and data traffic, as they claim to be light users who
never approach their bandwidth limit. If that is the case, all well and good, but you
need to make them aware of the consequences of their decision so that there is no
comeback. Express your concern, and say "OK, but if the sound quality suffers, you'll
need more bandwidth or VLANs, or QoS". Put your recommendations in writing;
this way you're covered and the customer can't blame you.

Don't under price
There is an old saying:

 turnover is vanity, profit is sanity, but cash flow is king!

The simple fact is that, good as Asterisk is, it still needs some level of TLC. You
need to factor in your ongoing support, so don't price yourself too low. To quote
another cliché:

the most expensive isn't always the best, but the cheapest is nearly often the worst

If your quote is too low, a customer will think it's too good to be true and you'll be
unlikely to win the deal. More often than not, they'll go for the quote in the middle.
That's where you want to be. However, you can alleviate some concerns about a
low quote by being totally transparent about your pricing. If the customer sees that
certain aspects of your system are considerably cheaper, such as the lack of software
maintenance charges for instance, then they can be reassured that your installation
and support services are not "cheap and nasty". Although, be careful as this requires
your competitors to be similarly transparent, which may not be the case.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Selling Your Solution

[242]

Don't have a huge margin on handsets
It's worth remembering that your customer can quite easily source handsets
themselves, so stay aware of retail prices and resist the urge to boost your margin
by overcharging for them. However, it is perfectly acceptable to add a transparent
charge for assembly, and, if you are not auto-provisioning, a charge for installation
as well, which will apply regardless of whether you supply the handsets.

Don't supply a PC as the phone server
In smaller companies, the traditional PBX has tended to be a plain metal box with a
few vents, attached to the wall. Now you and I know that Asterisk runs on standard
PC hardware, but it does not mean that you should turn up on a customer site with
a PC under your arm to install as their new phone server. To your customer, a PC
is something that sits on or under their desk, and every so often, causes them a lot
of grief and frustration. You are not going to give them a "warm, fuzzy feeling" by
sticking one in their server room (which so happens to double as a broom cupboard).

If you're selling to a range of customers, you need a range of server products. It
is perfectly feasible to construct a rock-solid Asterisk box using server-quality
components, and put it into a wall-mountable case with your logo on it. If you're
smart, the same components will fit in a 1U or 2U rack-mount case too, and into a
solid, floor-standing server case. Then you have three product lines where the only
difference is the case. You can then introduce more options by changing the innards,
so you may have entry-level, mid-range, and large systems aimed at different sizes
of customer.

The reality, though, is that all but the smallest customer will require and expect a
rack-mount chassis for their PBX. For these customers, it is usually better to utilize
existing server lines from well-known providers such as IBM, HP, or Dell. Attempting
to construct such a server yourself will not save you much money (if any), and you
will not have a manufacturer's warranty for the system as a whole to fall back on.

If you decide you wish to construct your own PBX servers, in the long run, it is
worth your while using good quality components, that is server-grade hardware.
It is likely to increase significantly the MTBF (Mean Time Between Failures) of
the PBX as a whole (of course, this will be the same as the shortest MTBF of the
components making up the system), and will also tend to give you longer warranties
on the components. For instance, a typical consumer motherboard has a 12-month
warranty, but the server-grade version of the same motherboard has a five-year
warranty! Although, you may be constrained by the availability of server-grade
motherboards in the right form-factor for systems aimed at very small businesses.
In truth, this is a compromise that you will have to decide upon carefully.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix A

[243]

For some installations, a simple wall-mountable case that holds a mini-ITX
motherboard is appropriate. It's the size of a ream of A4 paper and, with the addition
of a logo, certainly looks the part. Installing something like the VIA CN 1000 1
GHz Fanless (less moving parts, less likely to break) motherboard makes it an ideal
Asterisk platform for up to 15 simultaneous calls.

Summary
This chapter introduces some effective marketing and selling techniques for
Asterisk-based systems. It's not intended to make you into the hardnosed
salesperson, but it hopefully gives you some insight as to what is likely to work
with regards to selling your solution. It doesn't matter how technically competent
you are, if you can't sell your product, the only way is down.

Modern telephony solutions present an opportunity for organizations to cut costs
while still maintaining or improving efficiency. At the time of writing, the world
economies are in a tail spin, but remember this—in a downturn, there are always a
few who benefit. You could be one of those few, as there has never been a better time
for promoting the cost benefits of an Asterisk-based system.

In Appendices B and C, you will find information you might want to include in
sample emails when pitching, as well as a sample appointment sheet. These are
only a couple of the many pieces of the jigsaw that will need to be in place before
you have a highly-effective marketing, sales, and implementation process. Some
hard work is needed to put it all in place, but once there, it will keep on generating
satisfied customers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Sample Email Content

What is VoIP?
VoIP stands for Voice over Internet Protocol. It's simply a means of sending voice
over the Internet via a broadband connection, or an internal network. It uses the
same cable standards used to connect your computers. In much the same way as
an MP3 player digitizes music, VoIP does the same for voice. Once converted, it's
simply data that can be transmitted around the world, literally!

Because it's based on the Internet, VoIP is incredibly reliable, so much so that BT
(British Telecom) is in the process of converting all of their exchanges to the same
technology. Buying a legacy phone system using landlines today is like buying
an analog TV set just before the whole country goes digital. Yes, it will work with
various adapters, but you're missing out on many of the new features.

The big monopolistic telephone companies have been around for a hundred years
now, and in that time, the way phones are used hasn't changed much. Why should
these companies innovate when they can simply sit back and rake in the money?
Much the same goes for the traditional phone supplier. They've been quite happy
selling line rentals for years and making a margin on every line rental that's installed.

But all that is changing and the phone companies know it. It is not uncommon to
hear of seven-year line rental contracts! While these seem to save the customer
money, the real reason these packages are being sold is to lock the customer in, so
that when that same customer realizes he can have 10+ calls on one broadband line,
there's nothing they can do about it. Do you really know where your business will be
in two years, never mind seven?

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Sample Email Content

[246]

Why should I consider VoIP?
VoIP is considered to be futuristic technology, more so than the mobile revolution
was back in the eighties. Why? Because it's set to completely change the way you
think about your telephone calls. No longer are you constrained about what your
local telephone exchange can do—you can make the phones work the way you run
your business, and not make your business run around how the phones work.

It's all about convergence. No longer should you consider your phone and data
traffic separate. Now they can interoperate with one another. It is now perfectly
possible to prioritize calls coming into a company based on information that the
company holds about the caller.

Ultimately, moving to VoIP is not just about cost savings, but having the ability
to significantly improve the way you run your business.

Cost savings
The payback time on a VoIP system could be a matter of months depending upon
the system employed. With a traditional phone system, there is no payback! How
is this achieved?

Call costs
Many destinations around the world are 1p/min and significant cost savings are to
be made to mobiles. However, it is our belief that this saving, while great, will be
short term. Before long, paying for a phone call will be as alien as paying for email.

Line rental costs
Here, significant ongoing costs savings can be made. Given that even today a single
broadband line can support up to eight calls with full PSTN quality, or fifteen calls
using the compressed GSM codec, many fixed line rentals become redundant.

Wiring costs
Because VoIP runs on CAT5 network cabling, separate phone cabling is not required.
In addition, if a phone is required in a new location, moving it is simply a case of
unplugging it and taking it to the new location. You won't need a telecoms engineer
to run a new cable and reprogram the phone system.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix B

[247]

Reduced infrastructure costs
VoIP is not location specific, therefore remote satellite offices can be part of a central
telephone system. In smaller branches, a local phone system is not required, as they
simply become a remote extension of the main site. Remote/home workers simply
need an IP telephone, and using their broadband connection, they become part of the
same system with completely free "internal" calls, even if calls are made to the other
side of the world.

Centralized management
If you're reducing costs, it doesn't mean that you have to give anything up. In fact,
you gain in many significant ways. Just as you can control your data network from
your servers, now you can do the same with your voice network.

High granularity reporting and analysis of system usage is now yours in real-time.
This means you can see traffic patterns, abuse, and employee performance at a glance.

System integration
Once the preserve of companies with deep pockets, many VoIP systems run using
open standards, which means you can efficiently integrate the system with many
business applications and databases. Such uses could include the ability to:

Pop up customer details before you answer a call
Click to dial from the desktop
Record calls
Store contact lists in company directories accessible from the phone

Unified messaging
This holy grail for the major telcos that was never successfully achieved, is now
possible at the company level. Email, voicemail, fax, and presence can now be
accessed from one location.

Reliability
In the year 2006, for the first time, VoIP systems outsold traditional phone systems.
It is highly unlikely that this would be the case if there were concerns about
reliability, and let's face it, BT are spending some eight billion pounds converting
their exchanges to IP. Reports of poor quality are invariably down to improperly
configured and specified systems.

•

•

•

•

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Sample Email Content

[248]

Closed and open systems
VoIP is relatively new, in the sense that it's been around for approximately ten
years. As ever, there were many competing standards, and one primarily open
standard—SIP (Session Initiation Protocol). The last eighteen months (at the time
of writing) have seen many companies moving over to SIP and abandoning their
proprietary protocols. As a result, there has been an explosion in the number of
high-quality handsets available.

Superior sound
Traditional phones are restricted to a given bandwidth, and apart from greater
clarity, this bandwidth hasn't changed for a hundred years. On the other hand, VoIP
is able to take advantage of the advances in digital processing and wideband codecs
are now available, which are the equivalent of HD voice.

Fallback solutions
With a traditional system, if builders inadvertently dig up the phone lines outside
your office, you could be without phones for days. With a VoIP system, your
connection can be monitored 24/7 automatically. In the event that communications
fail, a prearranged fallback solution may be engaged. This could range from
broadcasting all calls to predefined mobile numbers and/or alternative fixed line
numbers, or diverting calls to another office. All of this can happen within seconds
with no manual intervention.

Broadcasting calls
A unique feature of VoIP is the ability to broadcast calls. This means that any
inbound call can be sent to multiple destinations (for example, office extension
and mobile/cell phone) at the "same" time.

A number for life
We're all used to keeping our mobile number even if we change mobile operators,
but with fixed line numbers, move the location of the office half a mile from where
you are now, and in all probability, you would have to get new numbers because
your new location happens to be served by a different exchange.

Number porting
Most telephone numbers can now be ported to IP. This means that even if you
relocate to another part of the country, you take your numbers with you!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix B

[249]

Local numbers
Recent surveys show that most customers prefer to deal with local companies, and
some even refuse to answer out of area calls. With 90% of all area codes in the UK
now available for VoIP number allocation, you can present a local number even if
you're not physically located in that area.

About XYZ
Below is a sample email you might want to draw inspiration from:

Our philosophy
At XYZ Solutions, we specialize in all aspects of IT systems, telephony, and
networks—whether it is designing and implementing your company network,
or simply maintaining your network for you.

As a one-stop shop for business computer systems, we can address all of the IT
needs of your company—from system design and analysis, security, networking,
virus protection, disaster recovery, through to supplying hardware and software.
We supply and install the Asterisk VoIP PBX system.

Our passion
Our passion is to improve your business performance by providing a combination
of sound IT advice gained from 20 years of experience with "hands-on" technological
expertise. Our focus is on increasing your productivity and business efficiency.
Along with pioneering work with VoIP technology, we can provide you with
the additional benefits of enhanced customer service, whether for businesses or
consumers, and significantly reduced telephone call charges.

We have a "can do" attitude and take pride in our work, offering the most
cost-effective solutions to your business needs, but above all, ensuring that
they're right for you and that they actually work.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Sample Appointment Sheet
DATE: _________________

COMPANY: ______________________ CONTACT NAME: ______________________

TELEPHONE NO: _________________

EMAIL ADDRESS: _________________________

Q 1.	 What business need is driving this change?

__

__

__

__

Q 2. 	 How many phone lines do you currently rent? (phone, fax, broadband,
 and others—analog or ISDN?)

__

__

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Sample Appointment Sheet

[252]

Q 3.	 Who is your current Internet circuit provider?

Q 4.	 What is your Internet circuit bandwidth?

Q 5.	 How many locations are involved?

Q 6.	 How many extensions do you have?

Q 7.	 How many extensions per location do you have?

Q 8.	 Do you have any free network sockets and is there power at
 each phone point?

__

__

__

Q 9.	 How many home workers do you have?

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Appendix C

[253]

OTHER:

__

__

__

__

__

__

__

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Index
Symbols
${SPEECH(results)} 100
.conf files

limitation 21
/usr/bin/lv_license_manager command

using 96
/var/lib/asterisk/sounds directory

en (English) subdirectory 146
es (Spanish) subdirectory 146
fr (French) subdirectory 146
system prompts 146
system prompts language, changing 147

_. pattern 11
_1X. pattern

using 12
_X pattern

using 11

A
A2Billing

coding 116
features 113, 114
high call volumes, solutions 117
requirements 114
usage, monitoring 114, 115
versions 113

Aastra phones 238
Address Resolution Protocol. See ARP
Asterisk Gateway Interface. See AGI
AGI 213
analog telephony

about 159-161
DTMF used 160
ground start 160

loop disconnect 160
loop start 160
pulse dialing 160
using 160

Analog Telephony Adapter. See ATA
Asterisk Recording Interface. See ARI
ARI 210
ARP 30
ASR

ABNFBoolean.gram, using 100
about 89
and Asterisk 93
connected word recognition 89
desktop speech recognition and IVR,

differentiating 90
grammar files 100
grammar files, creating 100, 101
implementation advice 101, 102
isolated word recognition 89
LumenVox speech recognition with

Asterisk, installing 93-98
natural language recognition 90

Asterisk
and ASR 93
and TTS 103
call centre, solutions 79
call routing 53
CDRs, storing 107
checklist 152
configuring, to work with wireless

technologies 204, 205
connecting, to mobile networks 197
connecting to outside telephony world 147
DAHDI 176
dialplan 9
distro 120

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[256]

external databases 107
func_devstate application 22
high call volume, solutions 117
integrating, with wireless technologies 190
jitterbuffer 39
MeetMe application 85, 86
MilliWatt () 37
mobility 190
queues 71
sample appointment sheet 251, 252
secondary drivers 228, 229
speech recognition, adding 93
strengths 119, 120
SugarCRM 235
tones 138
voicemail zones 142

Asterisk, connecting to mobile networks
GSM cards 199
GSM cards, advantages 200
GSM cards, disadvantages 200
GSM gateway box 198, 199
GSM gateway box, advantages 199
GSM gateway box, disadvantages 199
need for 197, 198

Asterisk, implementing
Amber chart 50
backups 44
Computer Telephony Integration (CTI) 47
goal, achieving 42, 43
Green chart 50
issues, handling 49
PoE, using 47
QoS 47
Red chart 50
SLA 42
system resilience, increaing 50
VLAN, advantage 46
VLAN, implementing 46
VLAN, using 45

Asterisk-Stat
about 110
graph 112

Asterisk based systems, selling
do’s 239, 240
don’ts 241-243

AsteriskNOW 218

Asterisk, queues
about 71
fewestcalls 71
gotchas 72
leastrecent 71
practical queue 72
random 72
ringall 71
roundrobin 71
using, to cascade calls 73, 74

ATA 140, 167, 168
Automatic Speech Recognition. See ASR

B
Backend User Response. See BUA
balun 149
Basic Rate Interface. See BRI
billing 107
BRI

about 162, 163
components 162
DDI (direct dial-in) 162
DID (direct inward dialing) 162
four-wire system 162
MSN (multi-subscriber numbering) 162

BUA 118
Busy Lamp Field 238

C
call accounting

information, providing 111, 112
call barring example

[free] context 16
[supauser] context 15
international_num 14, 15
levels 13
local_num 14, 15
national_num 14, 15

call centre solutions, Asterisk
VICIDIAL 79
VICIDIAL, working 79-84

Call Data Records. See CDRs
caller ID, localizing

on Digium analog interfaces 150, 151
call recording

issues 74

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[257]

call routing
alternative options 61
ENUM 62
IP telephony 54
ISTP 54
mobile telephony 54
starting with 55
techniques 67-69
types 66

call termination, providing
A2Billing 113
platform, selecting 113

CDRs
external database 107
frontends 110
MySQL implementation 108-110

Centralised installlation
about 34
defining 34

Channel Associated Signaling (CAS)
protocol 163

Common Channel Signaling (CCS)
protocol 163

context
about 9
call barring, example 13
calls, routing based on time and day 16-18
GotoIfTime() application, using 16-18
switches statement 12
user’s conntext 13
using 13
variables, linked to user 13

cron job 133

D
DAHDI 170
dahdi_tool 187
deployment choices

least cost routing 206
mobile 206
office 206
redundancy 206
remote 206

DEVSTATE() function, using
BLF lights, setting 24
extension status, checking 24

EXTSTATE() version 25
outgoing call capacity, boosting 25
outgoing peer, checking 23

Dial () command 116
dialplan

components, context 9
components, extension 9
components, priorities 9
defining 10
DEVSTATE() function 22
func_devstate application 22
location 10
multiple broadband lines, using 26
pattern matching, exploring 11
System() application 22-30
variables 18

digital telephony
a-law 162
about 161
BRI 162
PCM (Pulse Code Modulation). used 161
PCM64 161
PRI 162, 163
time-division multiplexing (TDM) 162
µ-law 162

Digium 119-169
Digium Asterisk Hardware Device

Interface. See DAHDI
diphones 91
distributed call centre

building 76
distributed installation

defining 34
Distributed Universal Number Directory.

See DUNDi
DNS 62
do’s

brochures, printing 240
decision makers, targeting 240
notes, preparing 239
quote, following up 240
quote, sending in timely manner 240

Domain Name System. See DNS
don’ts

cut corners 241
fancy office 240
handset margin 242

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[258]

PC as phone server 242, 243
underprice 241

dropped packets 43
DTMF 88
DUNDi

about 65, 66
ASTGENKEY command 65
using 65

E
echo 40
Elastix 218
ENUM

about 62
call forwarding 64
example working 63

extension 9
external adaptor

cons 166
pros 166
using 167, 168

F
failover 51
failure, dealing with

about 125
cause 125
endpoints 130
gateways 129
Junghanns ISDNguard 130
Linux-HA project 127
network resilience 125, 126
Redfone foneBRIDGE2 129
round-robin DNS 132
Rsync program 133, 134
server 127
switches 129

Fixed Mobile Convergence. See FMC
FMC 194
Foreign eXchange Office. See FXO
Foreign eXchange Station. See FXS
FreePBX

about 217
configuring 219
installing 218, 219

installing, packages 218
working 217

FreePBX configuration
about 219
extension 220
extension, Cisco devices 220
extension, defining 221
extension, IAX2 protocol 220
extension, SIP protocol 220
inbound routes 221, 222
other records 225
outbound routes 222, 223
trunks 223, 224
trunks, components 223
trunks, Dial Rules section 224

FreeSWITCH 118
func_devstate application, dialplan

about 22, 23
DEVSTATE() function, using 23

FXO 160
FXS 160

G
GnuGk 117
Graphical User Interface. See GUI
GUI

advantages 210
disadvantages 213
Druid 217
FreePBX 217
need for 209
ScopServ 217

GUI, advantages
administration ease 210, 211
easier upgrade process 212
enhanced features, accessing 211
standardized code 212

GUI, disadvantages
performance 213, 215
restricted functions 216
stability 216

H
H.323 117
high call volume solutions, A2Billing

FreeSWITCH 118

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[259]

OpenSER 118
SER 117, 118

hotdesking 29

I
iax2 set debug command 40
installing

FreePBX 218, 219
LumenVox speech recognition with

Asterisk 93-98
Integrated Services Digital Network. See

ISDN
Interactive Voice Response. See IVR
interest, generating

advertising, expert position 232, 233
advertising, search engines used 232
alliances 232
relationship marketing 234
relationship marketing, email used 234

internal calls 56-58
internal cards

about 169
B410P BRI card, installing 172
cons 166
DAHDI files, configuring 177-187
DAHDI software, installing 173-177
Digium B410P 172
Digium card 169
Digium card, installing 170
Digium cards, troubleshooting 188
Digium TDM422B 171
other cards 181, 182
pros 166
TE122P PRI card,installing 173

international calls
about 60
routing 60

Internet Telephony Service Provider. See
ISTP, advantage

ISDN 162
ISDN BRI. See BRI
ISDNguard 130
ISDN PRI. See PRI
ISTP, advantage 54
IVR 118

J
jitter

about 36
iax2 show netstats command, using 39
illustrating 36, 37

jitterbuffer
about 39
enabling 39

Junghanns ISDNguard 130

K
Kewl Start 160

L
latency

about 35, 36
iax2 show netstats command, using 39
illustrating 36, 37
influencing factors 35
issues, tracking 38

Least Cost Routing (LCR) 219
Libpri 171
Linksys SPA-942s phones 238
local calls 58
localization 142-146
local telephony interfaces

about 147
analog 148
digital 149
digital, BRI 149
digital, PRI 149

LumenVox speech recognition
with Asterisk

installing 93-98
packages 95

M
Media Resource Control Protocol. See

MRCP, SVI
money saving tricks

mobile phone calls 207
roaming charges, avoiding 207, 208

MRCP, SVI 92

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[260]

Mean Time Between Failures. See MTBF
MTBF 243
multiple broadband lines, using

Asterisk, configuring 27, 28
configuration overview 26
downsides 29
macro 29
routing, setting up in Linux 27

N
Naming Authority Pointer Resource. See

NAPTR
NAPTR 63
national calls 59

O
OpenSER 118
OrecX 78

P
Pay Per Click (PPC) 233
PBX in a Flash 218
PCM (Pulse Code Modulation) 161
POTS (Plain Old Telephone Service) 159
Power over Ethernet. See PoE
PoE 122, 236
practical security

ensuring 152-156
PRI

about 163-165
interface cards, using 165
synchronization 165
timing 165

Primary Rate Interface. See PRI
prospect

converting, into sale 236
customer’s hardware requirements,

determining 236, 237
tracking 235

Q
QoS

about 47
DiffServ approach 48

implementing, within LAN 49
IntServ approach 48
traffic shapping 49

QoS scheme 168
Quality of Service. See QoS
queues, Asterisk

about 71
fewestcalls 71
gotchas 72
leastrecent 71
practical queue 72
random 72
ringall 71
roundrobin 71
using, to cascade calls 73, 74

R
re-invite 131
Redfone foneBRIDGE 129
remote support

about 239
securing 239

robbed bit protocol (T1RB) 163
round-robin DNS

potential issues 132
using 132

routing. See call routing

S
Search Engine Optimization (SEO) 233
SER

about 118
avoiding, reasons 118

Service Level Agreement. See SLA
setvar command 19
Siemens Gigaset IP DECT phones 238
SIP (Session Initiation Protocol) 248
sip set debug command 40
SLA 42
small and medium enterprises (SMEs) 227
Snom M3 phone 239
Spanning Tree Protocol (STP) 126
Speaker Verification and Identification. See

SVI
speech-enable

need for 88

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[261]

SpeechActivateGrammar 99
SpeechBackground 99
SpeechCreate() application 99
SpeechDeactivateGrammar 100
SpeechDestroy() 100
SpeechLoadGrammar application 99
SpeechStart() 100
speech technologies

ASR 89
SVI 89, 91
TTS 89, 91
types 89, 91

SpeechUnloadGrammar 100
stability, telephony system

about 121
endpoints 122
environment 124
gateway 123
network 121
network, cables 122
network, routers 122
network, switches 122
network, components 122
server 123
server, selecting features 124
switch 123

SVI
about 91, 92
MRCP 92

T
TCP 43
TDMoE (Time Division Multiplexing over

Ethernet). 129
telephony system

availability, increasing 120, 121
change factor 231
changing, secondary drivers used 228
installation, components 121
options 166
practical security, ensuring 152-156
risk factor 231
stability 121

telephony system, option
external adaptor, cons 166
external adaptor, pros 166

external adaptor, using 167, 168
internal card, cons 166
internal card, pros 166
internal cards, using 169

Text-to-speech. See TTS
TFTP 30
time-division multiplexing (TDM) 162
timestamp option 134
tones

about 139-141
dealing with 140
dial tone 140
hearing, inside Asterisk 140
nature, changing 140
setting, in indications.conf 138
system.conf file 141
using, for analog telephony 140

Transmission Control Protocol. See TCP
Trivial File Transfer Protocol. See TFTP
TTS

about 91
and Asterisk 103
and Asterisk, Cepstral example 103, 105
and Asterisk, options 103
implementation advice 106

U
Ultra Monkey

about 127
heartbeat 127
using 128

Unique Selling Point See USP
User Datagram Protocol (UDP) 43
USP 229

V
variables

channel variables, inheriting 19
macro, using 19
macro dialplan, building 20
multi-tenant dialplan, implementing 21
retrieving 21
setting 21
storing 19

Verbose 100

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

[262]

VICIDIAL, working
about 79-84
components 86
inbound calls, handling 84
installation 85
scalability 86
timing sources 86

VMAuthenticate() application 156
voicemail.conf

[zonemessages] section 143
about 142-146
example 142

Voice over Internet Protocol. See VoIP
voiceprint 91
VoIP

about 159, 245
features 245, 246
impact 75
need for 246
recording approaches, active 75
recording approaches, passive 75
recording challenges 76
recording challenges, bandwidth 77
recording challenges, encryption 77
recording challenges, routing 76
recording challenges, solutions 77, 78

VoIP, features
centralized management 247
centralized management, system

integration 247
centralized management, unified

management 247
cost saving 246
cost saving, on call costs 246
cost saving, on infrastructure costs 247
cost saving, on line rental costs 246
cost saving, on wiring costs 246
reliability 247
reliability, on broadcasting calls 248
reliability, on closed and open systems 248
reliability, on fallback sound 248
reliability, on lifetime number 248
reliability, on local numbers 249
reliability, on number porting 248
reliability, on superior sound 248

W
wireless devices

configuring 200
Nokia E90 example 201-204

wireless technology
business drivers 191
dual mode (GSM and SIP) 194
dual mode (GSM and SIP), advantages 195
dual mode (GSM and SIP),

disadvantages 195
enablers (and issues) 191
features 190
need for, in Asterisk 190
overview 191
SIP/DECT phones 195
SIP/DECT phones, advantages 196
SIP/DECT phones,disadvantages 196
SIP desk phones(wireless links) 192
SIP desk phones(wireless links),

advantages 193
SIP desk phones(wireless links),

disadvantages 193
UT Starcomm phones 194
Wi-Fi (only) phones 191
Wi-Fi (only) phones, advantages 192
Wi-Fi (only) phones, disadvantages 192

X
Xorcom 169
XYZ solution 249

Y
yesno. See SpeechActivate Grammar
yes/no option 39

Z
Zaptel, using 121, 129, 140, 171
Zaptel 1.4 218
zloty 66
ztdummy, using 86, 129

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Thank you for buying
Asterisk 1.4

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Asterisk 1.4, Packt will have given some of the money
received to the Asterisk project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Building Telephony Systems
With Asterisk
ISBN: 978-1-904811-15-2 Paperback: 180 pages

An easy introduction to using and configuring
Asterisk to build feature-rich telephony systems for
small and medium businesses.

1.	 Install, configure, deploy, secure, and maintain
Asterisk

2.	 # Build a fully-featured telephony system and
create a dial plan that suits your needs

3.	 Learn from example configurations for different
requirements

AsteriskNOW
ISBN: 978-1-847192-88-2 Paperback: 204 pages

A practical guide for deploying and managing
an Asterisk-based telephony system using the
AsteriskNOW Beta 6 software appliance

1.	 Install an Asterisk-based telephony system fast

2.	 Build an office PBX using AsteriskNOW

3.	 Learn the AsteriskGUI web management
interface

4.	 Configure IP phones and connections

5.	 Configure and use the conferencing system

6.	 Write your own applications for Asterisk

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

Asterisk Gateway Interface 1.4 and
1.6 Programming
ISBN: 978-1-847194-46-6 Paperback: 200 pages

Design and develop Asterisk-based VoIP telephony
platforms and services using PHP and PHPAGI

1.	 Develop voice-enabled applications utilizing
the collective power of Asterisk, PHP, and the
PHPAGI class library

2.	 Learn basic elements of a FastAGI server
utilizing PHP and PHPAGI

3.	 Develop new Voice 2.0 mash ups using the
Asterisk Manager

TrixBox Made Easy
ISBN: 978-1-904811-93-0 Paperback: 168 pages

A step-by-step guide to installing and running your
home and office VoIP system

1.	 Plan and configure your own VoIP and
telephony systems

2.	 Setup voicemail, conferencing, and call
recording

3.	 Clear and practical tutorial with case study
format

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Download at Boykma.Com

	Cover
	Table of Contents
	Preface
	Chapter 1: The Dialplan
	Dialplan location
	Extensions and contexts
	Pattern matching
	Why use contexts?
	Call barring made simple
	Time and day call routing

	Variables
	Inheritance of channel variables through the dialplan
	Using the AstDB

	Dialplan features and additions
	func_devstate
	What can we use the DEVSTATE() function for?

	Using multiple broadband lines
	Configuration overview

	System() application

	Summary

	Chapter 2: Network Considerations when Implementing Asterisk
	Centralized and distributed installations
	Centralized installations
	Distributed solutions
	Latency and jitter
	Jitterbuffer
	Echo

	Do your homework
	SLAs are for everyone
	Achieving the goal
	Backups
	To share or not to share
	Ensuring quality
	When things go wrong
	Red
	Amber
	Green

	Increasing resilience

	Summary

	Chapter 3: Call Routing with Asterisk
	Routing methods
	Where to start
	Internal calls
	Local calls
	National calls
	International calls
	Alternative options
	ENUM
	DUNDi

	Types of routing
	Routing techniques
	Summary

	Chapter 4: Call Centers—Queues and Recording
	Asterisk queues
	Queue gotchas
	A practical queue
	Using queues to cascade calls

	Call recording—the issues
	Show-stoppers

	VoIP recording approaches
	Impact of VoIP on recording systems
	Hardware convergence

	Distributed call centers
	Home working

	VoIP recording challenges
	Routing
	Bandwidth
	Encryption
	Solutions

	Asterisk call center solutions
	How VICIDIAL works
	Handling inbound calls
	Installation
	Timing sources
	Scalability

	Summary

	Chapter 5: Asterisk and Speech Technology
	Why speech-enable?
	Types of speech technologies
	Automatic Speech Recognition (ASR)
	Isolated Word Recognition
	Connected Word Recognition
	Natural Language Recognition

	Text-to-Speech (TTS)
	Speaker Verification and Identification (SVI)
	MRCP

	Implementation considerations
	ASR and Asterisk
	Installing LumenVox speech recognition with Asterisk
	Checking that things are working
	Grammar files
	Implementation advice for ASR

	TTS with Asterisk
	Implementation advice for TTS

	Summary

	Chapter 6: Call Accounting and Billing
	Call Data Records (CDRs)
	CDR frontends

	Call accounting
	Providing termination billing
	Every little helps
	Selecting a billing platform
	Introducing A2Billing
	Reasons to consider A2Billing
	A2Billing requirements
	Monitoring usage
	Coding for A2Billing

	Billing gotcha!
	High call volumes
	Other high-call-volume solutions

	Summary

	Chapter 7: Resilience and Stability
	Increasing availability
	Stability
	Network
	Cables
	Switches and routers

	Endpoints
	Telephony switches and gateways
	Server
	Environment

	Dealing with failure
	Network resilience
	Server
	High availability

	Telephony switches/gateways
	Redfone foneBRIDGE2
	Junghanns ISDNguard
	Endpoints

	Round robin DNS
	Say hello to Rsync
	Limiting the number of calls per server

	Summary

	Chapter 8: Localization and Practical Security
	Tones
	Time and date and localization
	Changing the language of system prompts
	Local telephony interfaces
	Analog
	Digital

	Localizing caller ID signaling on Digium analog interfaces
	Checklist
	Practical security
	Out of hours

	Summary

	Chapter 9: Interfacing with Traditional Analog and Digital Telephony
	Analog
	Digital
	ISDN BRI (Basic Rate Interface)
	ISDN PRI (Primary Rate Interface)

	Choices, choices
	Using external adaptors
	Using cards
	Installing a Digium card
	Troubleshooting with Digium cards

	Summary

	Chapter 10: Integrating Asterisk with Wireless Technologies
	Why integrate Asterisk with wireless technologies?
	Wireless technology overview
	Wi-Fi (only) phones
	SIP desk phones with a wireless link
	Dual-mode (GSM and SIP) phones and PDA/smart phones
	SIP/DECT phones

	Connecting Asterisk to mobile networks
	Why connect to mobile networks?
	The GSM gateway (box)
	The GSM card

	Configuring wireless devices
	Configuring Asterisk to work with wireless technologies
	Deployment choices
	Neat money saving tricks
	Calling a mobile phone
	Avoiding those nasty roaming charges that arise from receiving calls

	Summary

	Chapter 11: Graphical User Interfaces
	Reasons for going GUI
	Good to GUI
	Ease of administration
	Access to enhanced features
	Easier upgrade process
	Standardized code

	GUI, phooey!
	Performance
	Stability
	Restricted functions

	FreePBX
	How it works
	Installation
	Configuration
	Extensions
	Inbound routes
	Outbound routes
	Trunks
	Other records

	Summary

	Appendix A: Selling Your Solution
	In the beginning ...
	Drivers for changing phone systems
	A word on cost

	Generating interest
	Alliances
	Advertising
	Search engines
	Become an expert

	Relationship marketing
	Email as a marketing tool

	Tracking prospects
	Converting the prospect into a sale
	Determining your customer's hardware requirements
	Choosing the right phones

	Remote support
	Make it secure

	Do's and don'ts
	The do's
	First impressions
	Get brochures printed
	Take notes
	Send the quote in a timely manner
	Follow up the quote
	Target the decision makers, but don't ignore IT

	The don'ts
	You don't need a fancy office
	Don't cut corners on the solution
	Don't under price
	Don't have a huge margin on handsets
	Don't supply a PC as the phone server

	Summary

	Appendix B: Sample Email Content
	What is VoIP?
	Why should I consider VoIP?
	Cost savings
	Call costs
	Line rental costs
	Wiring costs
	Reduced infrastructure costs

	Centralized management
	System integration
	Unified messaging

	Reliability
	Closed and open systems
	Superior sound
	Fallback solutions
	Broadcasting calls
	A number for life
	Number porting
	Local numbers

	About XYZ
	Our philosophy
	Our passion

	Appendix C: Sample Appointment Sheet
	Index

