

How to build and configure a PBX with Open Source Software

Featuring release 1.4

Flavio E. Gonçalves
Third Generation

2nd Edition/March/2007
rev. 8.3

By Flavio E. Goncalves

iii

Asterisk PBX Configuration Guide

Flavio E. Gonçalves
Revision: Luis F. Gonçalves

Copyright © 2006 V.Office Networks Ltda., All rights reserved

Printing History

First Edition: November 2006,
File Date: Thursday, March 15, 2007
ISBN: 978-85-906904-2-9

Some manufacturers claim trademarks for several designations that
distinguish their products. Wherever those designations appear in this book
and we are aware of them, the designation is printed in CAPS or the initials
are capitalized.

Although a great degree of care was used in writing this book, the author
assumes no responsibility for errors and omissions, or damages resulting
from the use of the information contained in this book.

Asterisk, Digium, IAX and DUNDI trademarks are property of Digium Inc.

 iv

Preface

This book is for anyone who wants to learn how to install and configure a
PBX (Private Branch eXchange) based on Asterisk PBX. Asterisk is an open
source telephony platform capable to use VoIP and TDM channels.

This is the third generation of the e-Book Asterisk Configuration Guide. The
e-Book is also available in Spanish and Portuguese. The material that I
present in this book helped to prepare for the dCAP certification from Digium
last May 2006 and to pass it in the first try. Originally, this e-Book was
written for version 1.0. The second generation was updated to version 1.2
and this one is based on version 1.4. However, you may still find examples
that were based in the older version. Wherever possible, those examples
have been suppressed or changed.

I have always been a fan of e-Books. They are easy to carry around,
ecologically correct and simpler to publish. Piracy is the major drawback of
this strategy. We will use any possible means to restrict piracy.
Unfortunately, it will happen, but I sincerely hope you buy this e-Book
legally.

The Asterisk Open Source PBX is revolutionary. Telephony will never be the
same after this program. For many years, telephony has been dominated by
huge companies with proprietary systems. Finally, users can recover their
buying power by having access to an open telephony platform. Thus, things
that were not possible before because they were not economically viable are
likely to start happening. Examples include resources like CTI (computer
telephony integration, IVR (interactive voice response), ACD (automatic call
distribution), and voicemail, that are now available to everybody.

This book was not designed to teach every single detail of Asterisk. In fact,
you will probably not become a guru simply by reading this e-Book.
However, you will be able to build and configure a PBX with advanced
features like voicemail, IVR an ACD by the end of reading. I hope you enjoy
as much learning about Asterisk as I have enjoyed writing about it.

GonçalvesFlavio E. Gonçalves
CEO
V.Office Networks
flavio@asteriskguide.com

v

Audience

This book is intended for those who are new to Asterisk. We assume your
are familiar with Linux, Linux shell commands and Linux text editors. You
could test Asterisk using a Linux system with a graphical interface which
may be easier for Linux newbies. Some users will try to execute Asterisk
using VMWare and this is really not a problem, except for poorer voice
quality. For production systems we do not encourage VMware or Linux with a
graphical user interface.

It is also desirable that the reader has some knowledge of IP networks, voice
over IP (VoIP) and telephony concepts.

Acknowledgments

I have to thank my family for the patience to see me work at late hours and
during the weekends for several months. A special thanks to my sister Ana
Cristina Gama for her help with publishing and my brother Luis F. Gonçalves
who made the English revision of this e-Book.

Mistakes and errors in the e-Book

We always try to find and eliminate errors and mistakes. Please, if you find
something wrong, give us feedback and we will act on it immediately. You
will receive a revised copy of the book in case your feedback results in a
change (the beauty of e-publishing!).

E-mail address for feedback: oops@voffice.com.br

 vi

Summary

ASTERISK INTRODUCTION..12

1.1 OBJECTIVES ... 12

1.2 WHAT IS ASTERISK? .. 12

1.3 WHY ASTERISK? ... 14

1.4 ASTERISK ARCHITECTURE .. 17

1.5 OVERVIEW ... 21

1.6 DIFFERENCES BETWEEN THE OLD AND THE NEW WORLD. 22

1.7 BUILDING A TEST SYSTEM .. 24

1.8 ASTERISK SCENARIOS ... 25

1.9 FINDING INFORMATION AND HELP ... 30

1.10 SUMMARY .. 31

1.11 QUESTIONS .. 31

DOWNLOADING AND INSTALLING ASTERISK ..34

2.1 OBJECTIVES ... 34

2.2 INTRODUCTION ... 34

2.3 MINIMUM HARDWARE... 34

2.4 CHOOSING AN OPERATING SYSTEM... 36

2.5 INSTALLING LINUX PREPARED FOR ASTERISK 37

2.6 PREPARING THE DEBIAN SYSTEM FOR ASTERISK 50

2.7 OBTAINING AND COMPILING ASTERISK ... 53

2.8 STARTING AND STOPPING ASTERISK .. 55

2.9 INSTALLATION DIRECTORIES.. 56

2.10 LOG FILES AND LOG ROTATION .. 57

2.11 STARTING ASTERISK WITH A NON-ROOT USER 59

2.12 ASTERISK INSTALLATION NOTES.. 59

2.13 SUMMARY .. 60

2.14 QUESTIONS .. 60

FIRST STEPS ..62

3.1 OBJECTIVES ... 62

3.2 UNDERSTANDING THE CONFIGURATION FILES 62

3.3 GRAMMARS .. 63

3.4 CONFIGURING A PSTN INTERFACE .. 65

3.5 SIP IP PHONES CONFIGURATION .. 66

3.6 DIAL PLAN INTRODUCTION... 68

vii

3.7 CREATING A BASIC DIAL PLAN... 73

3.8 LABS .. 76

3.9 SUMMARY .. 78

3.10 QUESTIONS .. 78

ANALOG AND DIGITAL CHANNELS ..82

4.1 OBJECTIVES ... 82

4.2 TELEPHONY BASICS .. 82

4.3 PSTN INTERFACES... 84

4.4 ANALOG FXS, FXO AND E&M INTERFACES.. 85

4.5 E1/T1 DIGITAL LINES .. 87

4.6. ASTERISK TELEPHONY CHANNELS SETUP ... 90

4.7 ZAPATA.CONF CONFIGURATION OPTIONS ..102

4.8 MFC/R2 CONFIGURATION..107

4.9 ZAP CHANNEL FORMAT. ...120

4.10 UNICALL CHANNEL FORMAT ...121

4.11 QUESTIONS ...121

VOICE OVER IP WITH ASTERISK ... 124

5.1 OBJECTIVES ..124

5.2 INTRODUCTION ..124

5.3 VOIP BENEFITS..125

5.4 ASTERISK VOIP ARCHITECTURE ...125

5.5 HOW TO CHOOSE A PROTOCOL..127

5.6 PEERS, USERS AND FRIENDS ...129

5.7 CODECS AND CODEC TRANSLATION ..130

5.8 HOW TO CHOOSE A CODEC ..131

5.9 OVERHEAD CAUSED BY PROTOCOL HEADERS...132

5.10 TRAFFIC ENGINEERING ..133

5.11 REDUCING THE BANDWIDTH REQUIRED FOR VOIP136

5.12 SUMMARY ...140

5.13 QUESTIONS ...140

THE IAX PROTOCOL... 142

6.1 OBJECTIVES ..142

6.2 INTRODUCTION ..142

6.3 HOW IT WORKS? ..143

6.4 BANDWIDTH USAGE...144

6.5 CHANNEL NAMING...146

6.6 USING IAX...147

 viii

6.7 IAX AUTHENTICATION ...156

6.8 THE IAX.CONF FILE CONFIGURATION ...161

6.9 IAX2 DEBUG COMMANDS..163

6.10 SUMMARY ...166

6.11 QUESTIONS ...167

THE SIP PROTOCOL ... 170

7.1 OBJECTIVES ..170

7.2 OVERVIEW ..170

7.3 SIP ADVANCED SCENARIOS ...177

7.4 ADVANCED CONFIGURATIONS ..183

7.5 SIP NAT TRAVERSAL ..187

7.6 SIP LIMITATIONS...192

7.7 SIP DIAL STRINGS..192

7.8 SIP CLI COMMANDS ...192

7.9 QUESTIONS ...193

INTRODUCTION TO THE DIAL PLAN .. 196

8.1 OBJECTIVES ..196

8.2 EXTENSIONS.CONF FILE STRUCTURE ..197

8.3 CONTEXTS...199

8.4 EXTENSIONS..200

8.5 VARIABLES..203

8.6 EXPRESSIONS ..207

8.7 FUNCTIONS ...209

8.8 APPLICATIONS ...210

8.9 BUILDING A DIALPLAN...217

8.10 BUILDING A SIMPLE DIAL PLAN ...219

8.11 ADDING SOME LOGIC TO YOUR DIAL PLAN ...221

8.12 SUMMARY ...222

8.13 QUESTIONS ...223

DIAL PLAN ADVANCED FEATURES .. 226

9.1 OBJECTIVES ..226

9.2 RECEIVING CALLS USING AN IVR MENU. ..226

9.3 CONTEXT INCLUSION ...235

9.4 USING THE SWITCH STATEMENT ...236

9.5 DIAL PLAN PROCESSING ORDER ..237

9.6 THE #INCLUDE STATEMENT ..237

9.7 MACROS ...238

ix

9.8 IMPLEMENTING CALL FORWARD, BLACK LISTS AND DND.......................239

9.9 USING A BLACKLIST...242

9.10 TIME BASED CONTEXTS...243

9.11 TO GET A NEW DIAL TONE USE DISA ...244

9.12 LIMIT SIMULTANEOUS CALLS ...245

9.13 LAB - PUTTING IT ALL TOGETHER ...246

9.14 SUMMARY ...250

9.15 QUESTIONS ...250

USING PBX FEATURES .. 254

10.1 OBJECTIVES ..254

10.2 PBX FEATURES SUPPORT ..254

10.3 CALL TRANSFER ...258

10.4 CALL PARKING ...258

10.5 CALL PICKUP ...260

10.6 CALL CONFERENCE (MEETME)..261

10.7 CALL RECORDING ...265

10.8 MUSIC ON HOLD ...267

10.9 APPLICATION MAPS ..270

10.10 QUESTIONS ...271

ACD AUTOMATIC CALL DISTRIBUTION ... 274

11.1 OBJECTIVES ..274

11.2 INTRODUCTION ..274

11.3 ACD ARCHITECTURE..276

11.4 QUEUES..276

11.5 AGENTS ..278

11.6 ACD RELATED APPLICATIONS ..279

11.7 CONFIGURATION TASKS..283

11.8 QUEUE OPERATION..286

11.9 ADVANCED RESOURCES ..287

11.10 QUESTIONS ...288

VOICEMAIL.. 290

12.1 OBJECTIVES ..290

12.2 INTRODUCTION ..290

12.3 CONFIGURATION TASK LIST...291

12.4 SENDING VOICEMAIL TO E-MAIL ...295

12.5 VOICEMAIL WEB INTERFACE..296

12.6 VOICEMAIL NOTIFICATION ..297

 x

12.7 USING THE DIRECTORY APPLICATION...298

12.8 SUMMARY ...299

12.9 QUESTIONS ...300

ASTERISK CALL DETAIL RECORDS .. 302

13.1 INTRODUCTION ..302

13.2 OBJECTIVES ..302

13.3 ASTERISK CDR FORMAT...302

13.4 ACCOUNT CODES AND AUTOMATED MESSAGE ACCOUNTING303

13.5 CHANGING THE CDR FORMAT. ...304

13.6 CDR STORAGE ...304

13.6 APPLICATIONS AND FUNCTIONS ...306

13.7 USER AUTHENTICATION..307

13.8 USING PASSWORDS FROM VOICEMAIL. ...308

13.9 SUMMARY ...308

13.10 QUESTIONS ...310

EXTENDING ASTERISK WITH AMI AND AGI... 312

14.1 INTRODUCTION ..312

14.2 OBJECTIVES ..312

14.3 MAJOR WAYS TO EXTEND ASTERISK...312

14.4 EXTENDING ASTERISK WITH CONSOLE CLI313

14.5 EXTENDING ASTERISK USING THE SYSTEM() APPLICATION313

14.6 WHAT IS AMI?..314

14.7 CONFIGURING USERS AND PERMISSIONS ..315

14.8 ASTERISK MANAGER PROXY ..319

14.9 ASTERISK GATEWAY INTERFACE...321

14.10 CHANGING THE SOURCE CODE ..327

14.11 SUMMARY ...327

14.12 QUESTIONS ...328

ASTERISK REAL-TIME ... 330

15.1 INTRODUCTION ..330

15.2 OBJECTIVES ..330

15.3 HOW DOES ASTERISK REAL TIME WORK?..331

15.4 LAB 1 INSTALLING ASTERISK REAL/TIME331

15.5 CONFIGURING ASTERISK REAL TIME ...332

15.6 DATABASE CONFIGURATION ..334

15.7 LAB 2 – INSTALLING AND CREATING THE DATABASE TABLES..................336

15.8 LAB 3 – CONFIGURING AND TESTING ARA339

xi

15.9 SUMMARY ...341

15.10 QUESTIONS ...341

QUESTION’S RESPONSES ... 344

CHAPTER 1 ...344

CHAPTER 2 ...346

CHAPTER 3 ...348

CHAPTER 4 ...350

CHAPTER 5 ...352

CHAPTER 6 ...354

CHAPTER 7 ...355

CHAPTER 8 ...357

CHAPTER 9 ...359

CHAPTER 10 ...361

CHAPTER 11 ...363

CHAPTER 12 ...365

CHAPTER 13 ...367

CHAPTER 14 ...369

CHAPTER 15 ...370

Asterisk Introduction

In the current chapter, we will learn what Asterisk is, its architecture, and
how it can be used.

1.1 OBJECTIVES

 Figure 1.1 Objectives

1.2 WHAT IS ASTERISK?

Asterisk is an “Open Source PBX software” that once installed in a PC
hardware along with the correct interfaces, can be used as a full featured
PBX for home users, enterprises, VoIP service providers and telecoms.
Asterisk is also both an Open Source Community and a commercial product
from Digium. You are free to use and modify Asterisk to suit your needs.

Asterisk allows real time connectivity between PSTN and VoIP networks.
Since Asterisk is much more than a PBX, you have not only an exceptional
upgrade to your existing PBX, but you can do new things in telephony, such
as:

Chapter 1

13 | Chapter 1 – Asterisk Introduction

• Connect employees working from home to an Office PBX over
broadband Internet.

• Connect several offices in different places over an IP network,
private network, or even through the Internet itself.

• Give your employees web and e-mail integrated voicemail.

• Build applications like IVRs that allow connections to your
ordering system or other applications.

• Give traveling users access to the company PBX from anywhere
with a simple broadband or VPN connection

• And much more....

Asterisk includes several advanced resources, only found before in high-end
systems, for example:

• Music on hold for costumers waiting in call queues, supporting media
streaming and MP3 files.

• Call queues, where a team of agents can answer calls and monitor
queues.

• Integration with text-to-speech and voice recognition.
• Detailed records transferred to both text files and SQL databases.
• PSTN connectivity through both digital and analog lines.

1.2.1 Digium’s role in Asterisk

Digium, a company located in Huntsville, Alabama, is the creator and
primary developer of Asterisk. Besides being the primary sponsor of Asterisk
development, Digium also produces telephony interface cards and other
hardware for the Asterisk’s PBX.

Digium offers Asterisk under three different types of license agreement:

• General Public License (GPL) Asterisk. This is the most used
version. It includes all features and is free to be used and
modified according to the terms of the GPL license.

• Asterisk Business Edition is a recent version of Asterisk. It
doesn’t have some of the extra features found in the GPL version,
such as ??? The business edition is used by some companies that
don’t want or can’t use the GPL license, mostly because they don’t
want to release their source code together with Asterisk. The GPL
license requires that any further code development to a GPL
licensed code must be released to the source code.

 1.3 Why Asterisk? | 14

• Asterisk OEM. Mostly used by PBX manufacturers who do not
want to reveal to the public that their software is based on
Asterisk.

1.2.2 The Zapata project and its relationship with Asterisk

The Zapata project was developed by Jim Dixon, who was also responsible
for the development of a revolutionary hardware that is used with Asterisk.
Note that the hardware is Open Source too and, therefore, it can be used by
any company. Digium, Sangoma and Varion are some of the main telephony
card manufacturers of the Asterisk PBX. The Zapata project can be seen at:

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10)

The main feature of the Asterisk hardware is the use of the PC CPU to
process media streaming, echo cancellation and transcoding. In contrast,
most of the existing cards use DSP (Digital Signal Processors) to perform
these tasks. The decision to use the PC CPU reduced the board’s price
dramatically. Thus, Digium boards are several times cheaper then previously
available boards from, for example, Dialogic, Aculab and others, since they
don’t require expensive DSPs. The drawback is that these boards need a lot
of CPU and a misuse of the PC CPU can have a major impact in voice quality.

1.3 WHY ASTERISK?

I remember my first contact with Asterisk. The first reaction to something
new, moreover one that competes with something you already know, is to
reject it!

It happened in 2003. Asterisk was competing with a solution that I was
selling to a costumer (4 E1 VoIP Gateway) and it costed ten times less than
the price I was charging for the solution I already knew. Due to the
disproportionate price, I started studying Asterisk in order to identify
potential pitfalls or drawbacks. I found, for example, that the PC CPU at that
time would not support 120 g.729 simultaneous sections and, at the end of
the day, I won the proposal with my gateway solution. However, this
exercise led me to the discovery that Asterisk could solve a variety of very
expensive problems for my costumer base. We were in trouble with
expensive quotes for IVR, unified messaging, call recording, and dialers. I
found that with appropriate dimensioning, the CPU problems could be
worked around and, indeed, Asterisk became the flagship product of my
company in just three years (I actually decided to open another company
just for the Asterisk business). In my opinion, Asterisk is a revolution in

15 | Chapter 1 – Asterisk Introduction

telecommunication and it represents to IP telephony what Apache represents
to web services.

1.3.1 Extreme cost reduction

If you compare a traditional PBX with Asterisk with digital interfaces and
phones, Asterisk is a little cheaper than those PBXs. However, Asterisk really
pays off when you add advanced features like voicemail, ACD, IVR and CTI.
With these advanced features, Asterisk is several times less expensive than
traditional PBXs. Indeed, comparing Asterisk PBXs with low-end analog PBXs
is unfair because it has a lot of features that are not available in low-end
analog systems.

1.3.2 Telephony system control and independence

One of the most often quoted benefits from the costumer’s point of view is
the independence that Asterisk provides. Some of today manufacturers do
not even give the costumer the system’s password or the configuration
documentation. With Asterisk’s “do it yourself” approach, the user achieves
total freedom and, as a bonus, has access to a standard interface.

1.3.3 Easy and rapid development environment

Asterisk can be extended using scripting languages like PHP and Perl with
AMI and AGI interfaces. Asterisk is Open Source and its source code can be
modified by the user. The source code is written mostly in ANSI C
programming language.

1.3.4 Feature rich

Asterisk has several features that are either not found or optional in
traditional PBXs (e.g. voicemail, CTI, ACD, IVR, built in music on hold, and
recording). The costs of these features in some platforms supersede the
price of the platform itself.

1.3.5 Dynamic content on the phone

Asterisk is programmed using C language and other languages common in
today’s development environment. The possibility to provide dynamic
content is almost limitless.

1.3.6 Flexible and powerful dial plan

 1.3 Why Asterisk? | 16

One more Asterisk breakthrough. If you look at traditional PBXs, even simple
things like LCR (Least Cost Routing) are either not feasible or optional. With
Asterisk, choosing the best route is easy and clean.

1.3.7 Open source running on top of Linux

One of the greatest features of Asterisk is it’s community. When I access
Wiki (www.voip-info.org), e-mail distribution lists, and forums, I see that the
adoption of Asterisk has been fast with patches quickly provided to any bugs
eventually found. Asterisk is probably the most tested PBX software in the
world. From versions 1.0 to 1.2, more than 3000 changes and bugs in the
source code were corrected. This process ensures a code that is both stable
and almost error free.

1.3.8 Asterisk architecture limitations

Some limitations in Asterisk come from the use of the Zapata telephony
design. In this design, Asterisk uses the PC CPU to process voice channels
instead of dedicated DSPs (Digital Signal Processors) which are common in
other platforms. Although this allows for a huge cost reduction in hardware
interface, the system becomes dependent on the PC CPU. My
recommendation is to run Asterisk in a dedicated machine and to be
conservative about hardware dimensioning. It is also interesting to use
Asterisk in a separate VLAN to avoid excessive broadcasts that consume the
CPU (broadcast storms caused by loops or viruses). Some newer interface
cards from several vendors are now including DSPs to process echo
cancellation, codecs and other features. This will make Asterisk even better.

17 | Chapter 1 – Asterisk Introduction

1.4 ASTERISK ARCHITECTURE

F
il
e
 f
o
rm
a
t
A
P
I

C
o
d
e
c
 T
ra
n
s
la
ti
o
n
 A
P
I

G
s
m
,
A
L
a
w
,
U
la
w
,
G
.7
2
3
,

G
7
2
9
,
A
D
P
C
M
,
M
P
3
,

S
p
e
e
x
,
L
P
C
1
0

G
S
M
,
W
A
V
,
G
7
2
3
a
f,
 M
P
3

 Figure 1.1 - Asterisk Architecture.

The figure above shows the basic Asterisk architecture. Next, we will explain
concepts related to the architecture like channels, codecs and applications.

1.4.1 Channels

A channel is the equivalent of a telephone line, but in digital format. It
usually consists of an analogic or digital (TDM) signaling system or a
combination of codec and signaling protocol (e.g. SIP-GSM, IAX-uLaw). In
the beginning, all telephony connections were analog and susceptible to
echo and noise. Later, most systems were converted to digital systems, with
the analogic sound converted into digital format by PCM (Pulse Code
Modulation) in most cases. This format allows voice transmission in 64
kilobits/second without compression.

TDM hardware supported:

Zaptel Cards (usually Digium produced)

• Wildcard T410P –Four E1/T1 interfaces (PCI 3.3 volts only)

• Wildcard T405P – Four E1/T1 interfaces (PCI 5.0 volts only)

 1.4 Asterisk Architecture | 18

• TE110P – One port E1/T1 interface

• TDM400P – Four analog interfaces FXO or FXS

• TDM2400 – Twenty-four ports FXS or FXO

These boards use chan_zap channel drivers

• Linux Cards

• Quicknet Phonejack and linejack can be used

• ISDN Cards and drivers

• ISDN4Linux – Old driver, don’t even try to use it. I have tried with
a ISDN BRI Eicon Diva Card. The result is bad voice quality and
instability. It was removed from compilation in version 1.2 and
deleted in version 1.4. These boards use chan_modem channel
drivers

• ISDN CAPI – It is a third party Linux ISDN driver. It is used with
junghanns boards (www.junghanns.net) and integrates with
hylafax. These boards use chan_capi channel drivers

• There are other channel drivers for BRI stuff like chan_misdn,
which are considered experimental. These drivers were created by
Beronet, Europe. vISDN can be also used with HFC ISDN chips.

• Voicetronix (www.voicetronix.com.au): Produces high density
analog boards, 4, 8 and 16 ports. Now they produce E1/T1 cards
too. These boards use chan_vbp channel drivers

• Other manufacturers include Dialogic and Aculab. Most of them do
not release the source code.

Asterisk channels supported:

1. chan_console: supports a sound card (OSS or ALSA) - dial string:
console/dsp)

2. chan_sip: supports voice over IP using SIP protocol. – dial string:

sip/channel

3. chan_iax: supports voice over IP using IAX2 protocol, - dial string:

iax2/channel

4. chan_h323: H.323 is one of the oldest and most implemented voice

over IP protocols. It’s useful when one attempts to connect to existing
H.323 networks. There are different flavors of H.323 in Asterisk:
chan_h323 and chan_oh323. A third implementation is being
developed by Digium: the first version in asterisk-add-ons subversion.
Chan_h323 can be used in Asterisk as a gateway. Asterisk can point to

19 | Chapter 1 – Asterisk Introduction

a gatekeeper, but can’t work as one. Dial string h323/hostname if
using a gatekeeper, h323/extension@hostname if going directly to the
gateway.

5. chan_mgcp: supports the voice over IP protocol using MGCP. Currently

Asterisk supports MGCP phones, but it cannot connect to a VoIP
provider using MGCP. Dial string: MGCP/aaln/1@hostname

6. chan_sccp: Supports Cisco voice over IP skinny protocol. There are

two versions: chan_skinny and chan_sccp2 (http://chan-
sccp.berlios.de). Supports most Cisco phones. More information can be
found in http://www.voip-info.org/wiki/view/SCCP-HOWTO2. Dial
String: SCCP/channel.

7. chan_unicall: Implements MFC/R2 as a signaling protocol for E1s used

in China, Latin America and several other countries. It is supported by
a third party channel driver called Unicall. In chapter 4, we will detail
how to implement it. It uses the chan_unicall channel driver. Dial
string: Unicall/channel

•
8. chan_agent: Used for ACD (Automatic Call Distribution). It is not

related to a specific hardware or protocol. It can also be used for
mobility, allowing any person to use any phone just by logging in to
the agent.

9. chan_local: Is a pseudo channel, it simply loops back into the dialplan

in a different context. Useful for recursive routing. Dial string:
Local/extension@context

1.4.2 Codecs and codec translation

We usually try to put as many voice connections as possible in a data
network. Codecs enable new features in digital voice. Compression is one of
the most important ones, since it allows compression rates larger than 8 to
1. Other features include voice activity detection, packet loss concealment
and comfort noise generation. There are several codecs available for Asterisk
and these codecs can be transparently translated from one to another.
Internally, Asterisk uses slinear as the stream format when it needs to
convert from one codec to another. Some codecs in Asterisk are supported
only in pass-through mode, and these codecs can’t be translated.

The following codecs are supported:

• G.711 ulaw (USA) – (64 Kbps).

 1.4 Asterisk Architecture | 20

• G.711 alaw (Europe) – (64 Kbps).

• G.723.1 – Only pass-through mode

• G.726 – (16/24/32/40kbps)

• G.729 – Needs licensing (8Kbps)

• GSM – (12-13 Kbps)

• iLBC – (15 Kbps)

• LPC10 - (2.5 Kbps)

• Speex - (2.15-44.2 Kbps)

1.4.3 Protocols

Sending data from one phone to another should be easy provided that the
data find a path to the other phone by themselves. Unfortunately, it doesn’t
happen this way, and a signaling protocol is necessary in order to establish
connections between phones, discover end devices and implement telephony
signaling. Recently, it has become very common to use of SIP as a signaling
protocol. H.323 is largely implemented in voice over IP networks and most
legacy implementations use this protocol. IAX is another option that is
becoming popular because it works well with NAT traversal and some
bandwidth can be saved as well.

Asterisk supports:

• SIP
• H323
• IAXv1 e v2
• MGCP
• SCCP (Cisco Skinny)
• Nortel unistim

1.4.4 Applications

To bridge calls from one phone to another an application named Dial() is
used. Most Asterisk features like voicemail and conferencing are
implemented as applications. You can see available Asterisk applications by
using the “core show applications” console command. You can add
applications from asterisk-addons, from third-party providers or even
develop some applications yourself.

21 | Chapter 1 – Asterisk Introduction

1.5 OVERVIEW

CISCO IP PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

P QRS

*

CISCO IP PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

P QRS

*

CISCO IP PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6

M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

P QRS

*

 Figure 1.2-Asterisk overview

Asterisk is an open source PBX that acts like a hybrid PBX, integrating
technologies such as TDM1 and IP telephony. Asterisk is ready for IVR
(Interactive Voice Response) functionality and ACD (Automatic call
distribution) and, as mentioned in previous sections of this book, is open to
the development of new applications. In the above figure, you can see that
Asterisk connects to telcos and existing PBXs using analog and digital
interfaces and also supports analog and IP phones. It can act as a
softswitch, media gateway, voicemail, audio conference, and has built in
music on hold.

1 TDM – Time division multiplexing. Today most of digital telephony is based on this

concept. With TDM you can use 23 to 30 voice circuits in a single T1 or E1 connection
respectively. T1 is mostly used in the USA while E1 is common in Europe.

 1.6 Differences between the old and the new world. | 22

1.6 DIFFERENCES BETWEEN THE OLD AND THE NEW WORLD.

1.6.1 Telephony using the old PBX/Softswitch model

Softswitch

PSTN Gateway

Voicemail

Music on hold

Analog telephony
Adapter

CISCO I P PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

CISCO I P PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

CISCO I P PHONE

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

Telco or PBX

IP Phones

 Figure 1.4- Conventional softswitch or legacy PBX model

In the old softswitch model, all components were sold separately. Therefore,
you had to purchase each component and then integrate to the PBX or
softwitch environment. The costs and risks were high and most of the
equipment were proprietary.

23 | Chapter 1 – Asterisk Introduction

1.6.2 Telephony using Asterisk

CI SCO IP PHONE

7905 SERI ES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

CI SCO IP PHONE

7905 SERI ES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

CI SCO IP PHONE

7905 SERI ES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

 Figure 1.5 –Telephony in the Asterisk way.

All functions are integrated in the Asterisk platform in the same or in
different boxes according to dimensioning, and are licensed according to the
GPL agreement.

 1.7 Building a test system | 24

1.7 BUILDING A TEST SYSTEM

C ISCO IP PHON E

7905 SERIES

1 2
A B C

3
D E F

4 5
J K L

6
M N OG H I

7 8
T U V

9
W X Y ZP Q R S

* 0 #

4

7

PQ RS

*

SIP phone

FX
O

int
erf
ac
e

FX
S
in
te
rfa
ce

In
te
rn
e
t

C
o
n
n
e
c
ti
o
n

 Figure 1.6 – The 1x1 PBX

When implementing an Asterisk solution, our first step is generally to build a
test machine. The easiest test machine is the 1x1 PBX with at least one
phone and one line. There are several ways to do it. Let’s examine some of
them.

1.7.1 One FXO, one FXS

The first and simplest way to build a test machine is to purchase a Digium
TDM400 board with one FXO and one FXS interface. Connect the FXO port to
an existing line and one FXS to an analog phone. There you have: a 1x1
PBX.

1.7.2 VoIP Service Provider, ATA

This is the VoIP option. In this case you would sign up with a voice service
provider to have the SIP trunks and will have to purchase a SIP analog
telephony adapter. You will probably spend less than US$100.00 if you
already have the PC.

1.7.3 Inexpensive FXO board, ATA

25 | Chapter 1 – Asterisk Introduction

This is the way I started. There are some V.90 fax/modems that work with
Asterisk as an FXO board. Some of the first Digium boards were created
using those (X100P and X101P). These boards are old V.90 fax/modems
based on Motorola and Intel chipsets (Motorola 68202-51, Intel 537PU, Intel
537PG, Intel Ambient MD3200 are known to work). They are not easy to find
since they are not produced anymore; however, some are sold as X100P
clones. I found ten of these boards in a PC recycling company. For the FXS
you can use an Analog Telephony Adapter. Once again you could spend less
than US$100.00 to start if you already have the PC.

1.8 ASTERISK SCENARIOS

There are several different scenarios where Asterisk can be used. We will list
some of them and explain the advantages and possible limitations of each.

1.8.1 IP PBX

The most common scenario is the installation of a new or the replacement
of an existing PBX. If you compare Asterisk with some other alternatives,
you will find it to be cheaper and richer in features then most available PBXs
in the market. Several companies are now changing their specifications to
Asterisk instead of other brand named PBXs.

 Figure 1.7 IP PBX

 1.8 Asterisk scenarios | 26

1.8.2 IP enabling legacy PBXs

The image below illustrates one of the most commonly used setups. Large
companies usually don’t want to take a high risk when investing in new
technologies and, at the same time, wish to preserve their investments in
legacy equipment. IP enabling a legacy PBX can be very expensive and,
thus, connecting an Asterisk PBX using T1/E1 lines can be a good alternative
to cost conscious costumers. Another benefit is to the possibility of
connecting to a VoIP service provider with better telephony rates.

 Figure 1.8 Integration with legacy PBX

1.8.3 Toll-Bypass

A very useful application for VoIP is connecting branch offices over the
Internet or a WAN. Using an existing data connection allows you to bypass
toll charges incurred in telecommunication connections between
headquarters and branch offices.

27 | Chapter 1 – Asterisk Introduction

 Figure 1.9 Toll Bypass

1.8.4 Application Server (IVR, Conference, Voice Mail)

Asterisk can also be used as an application server for the existing PBX or it
can be directly connected to PSTN. Asterisk can do services like voicemail,
fax reception, call recording, IVR connected to a database, and audio
conferencing server. If you integrate voicemail and fax to existing e-mail you
will end up having a unified messaging system, which is usuallyan expensive
solution. Using Asterisk as an application server provides extreme cost
reduction compared to most other solutions.

 1.8 Asterisk scenarios | 28

 Figure 1.10 Asterisk as an application server

1.8.5 Media Gateway

Most voice over IP service providers use a SIP proxy to host all registering,
location and authentication of SIP users. Anyway, they have to send the call
to the PSTN directly or route it through a wholesale call termination provider
using SIP or H.323 voice over IP connection. Asterisk can act as a B2BUA
(back to back user agent) or Media Gateway, substituting very expensive
soft switches or media gateways. Compare the price of a four E1/T1 gateway
from the main market manufacturers with Asterisk. The Asterisk solution can
cost several times less than other solutions and is capable to translate
signaling protocols (H.323, SIP, IAX…) and codecs (G.711, G.729…).

29 | Chapter 1 – Asterisk Introduction

 Figure 1.11 Asterisk as a media gateway

1.8.6 Contact Center Platform

A contact center is a very complex solution. It combines several technologies
like ACD (automatic call distribution), IVR (interactive voice response), call
supervision, and others. Basically, there are three types of contact centers:
inbound, outbound, and blended. Inbound contact centers are very
sophisticated. Usually they need ACD, IVR, CTI, recording, supervision, and
reports. Asterisk has a built in ACD to queue the calls. IVR can be done
using AGI (Asterisk Gateway Interface) or internal mechanisms like the
application background. CTI (Computer telephony integration) is done using
AMI (Asterisk Manager Interface); recording and reporting are built into
Asterisk. For an outbound contact center, a predictive or power dialer is one
of the main components. Although several dialers are available from the
Asterisk open source, it is not hard to build your own for the platform if you
so desire. A blended contact center permits simultaneous inbound and
outbound operation, saving money by better usage of the agent’s time. It’s
possible to use Asterisk and it’s ACD mechanism to implement a blended
solution.

 1.9 Finding information and help | 30

 Figure 1-12 Asterisk as a Contact Center Platform

1.9 FINDING INFORMATION AND HELP

Some of the best places to find information about Asterisk are:

1.9.1 The official page about Asterisk

http://www.asterisk.org
http://www.asterisk.org/support/get-started
http://forums.digium.com/

1.9.2 Asterisk wikipedia

http://www.voip-info.org
 www.voip-info.org/wiki-Asterisk

1.9.3 Asterisk mailing lists

http://www.asterisk.org/support/mailing-lists

31 | Chapter 1 – Asterisk Introduction

1.9.4 Interesing sites

www.asteriskguru.com (Several tutorials)
www.sineapps.com (News about Asterisk)

1.10 SUMMARY

Asterisk is an Open Source software licensed according to the GPL that
enables an ordinary PC to act as a powerful IP PBX platform. It was created
by Mark Spencer from Digium, who sells the interface cards for Asterisk.
Hardware is open source too andoriginated in the Zapata project developed
by Jim Dixon. The Asterisk architecture has the following main components:

• CHANNELS: Analog, digital, or voice over IP.

• PROTOCOLS: Communications protocol can be SIP, H323, MGCP and

IAX and they are responsible for signaling the calls.

• CODECs: Translate digital formats of voice allowing compressions,

packet loss concealment, silence suppression and comfort noise
generation. Asterisk does not support silence suppression.

• APPLICATIONS: Responsible for the Asterisk PBX functionality.

Conference, voicemail, and fax are examples of Asterisk applications.

Asterisk can be used in several scenarios: from a small IP PBX to a
sophisticated contact center.

1.11 QUESTIONS

1. Mark the correct answers. Asterisk has four basic architectural
components.

a) Channels
b) Protocols
c) Agents
d) Phones
e) Codecs
f) Applications

2. If necessary, you can create an Asterisk PBX with four trunks and eight
phones using three TDM400 cards. The first one with four FXO channels and
the other two with four FXS channels each. This affirmative is:

 1.11 Questions | 32

a) False
b) True

3. A FXS channel generates a dialing tone, while a FXO channel receives a
dialing tone from the PSTN or another PBX. The affirmative is:

a) False
b) True

4. Mark the correct answers. Asterisk allows the use of the following
features:

a) IVR (Interactive Voice Response)
b) ACD (Automatic Call Distribution)
c) IP Phones
d) Analog phones
e) Digital phones from any vendor

5. To play music on hold, Asterisk needs an external player like a MP3 or CD
player. The affirmative is:

a) False
b) True

6. This technology is responsible for automatic answering of costumers.
Usually plays a “prompt” and wait an option dialed by the user. In some
cases can be integrated with a database to provide information by the
telephone using text-to-speech technology. It is named _____.

a) CTI
b) IVR
c) DAC
d) Unified Messaging

7 – An E1 trunk supports ___ voice channels while a T1 trunk supports ___
voice channels.

a) 12, 24
b) 30, 24
c) 12, 12
d) 30, 23

33 | Chapter 1 – Asterisk Introduction

8 – In traditional PBXs, usually ACD, IVR and voicemail are included in the
PBX together with their respective licensing. This affirmative is:

a) False
b) True

9 – It is possible to connect several branches using voice over IP, thereby
reducing long distance toll rates imposed by telephony companies. Asterisk
can act at a branch as:

a) The PBX for all users
b) The media gateway connection to an existing PBX
c) The only thing possible is to use IP phones or ATAs connected to a

centralized Asterisk.
d) Resilience and robustness are not important when you connect IP

phones.

10 – Asterisk can be used as a contact center platform. What are the three
main types of contact centers?

a) External
b) Internal
c) Inbound
d) Outbound
e) Blended

Downloading and installing Asterisk

In this Chapter, we will cover downloading, installation and configuration of
Asterisk.

2.1 OBJECTIVES

 Figure 2.1 Objectives

2.2 INTRODUCTION

Now you will learn how to prepare your system for an Asterisk installation.
Asterisk runs in multiple operating systems, but we chose to keep things
simple and start with a single operating system: Linux. We chose the Debian
distribution because the dependencies are easy to install, this distribution is
stable, and has a low footprint. Other distributions can be used as well.

2.3 MINIMUM HARDWARE

Asterisk is CPU intensive because it uses the PC processor to process voice
instead of dedicated DSPs. The most important parameter for CPU
dimensioning is the number of simultaneous calls. If you are building a

Chapter 2

35 | Chapter 2 – Downloading and installing Asterisk

complex system with high load, it is important to keep these concepts in
mind. To build a simple system, a Pentium class processor with more than
300 Mhz and 256 Mbytes of RAM memory is fine. Asterisk does not require
too much space on disk (around 100 Mbytes of code, including compiled and
source). This should allow enough space for voice-mail and custom prompts.

If you are using VoIP, no other hardware is necessary. You can use free
softphones from counterpath or SJLABS to connect to VoIP providers. A good
list of providers can be found in http://www.voipcharges.com.

Caution:
Some Asterisk applications, like meet-me and music on hold, require

a clock source. Usually, the clock source of Asterisk is the TDM
interface card. If your system does not use a TDM interface card, you

will have to load ztdummy to provide a clock.

2.3.1 Hardware Assembling

The asterisk hardware does not need to be sophisticated. You don’t need an
expensive video board or too many peripherals. USB, serial and parallel
ports should be disabled to avoid consuming unnecessary interrupts. A good
network interface card is important. Take special care if you are using TDM
interface cards. Some cards use a 3.3 volts PCI bus and it is not easy to find
mother boards for them.

2.3.2 IRQ sharing

Telephony interface cards like X100P can generate large quantities of
interruptions. Serving these interruptions takes processor time. The drivers
can’t do this processing if you have another device using the same
interruption. In a single CPU system, you should avoid IRQ sharing between
devices. We recommend the use of a dedicated hardware for running
Asterisk. Don’t forget to disable any foreign or unnecessary hardware. Some
hardware can be disabled in the motherboard bios setup.

Once you have started your computer, see your assigned interrupts in
/proc/interrupts.

cat /proc/interrupts
CPU0
0: 41353058 XT-PIC timer
1: 1988 XT-PIC keyboard
2: 0 XT-PIC cascade
3: 413437739 XT-PIC wctdm <-- TDM400
4: 5721494 XT-PIC eth0

 2.4 Choosing an operating system | 36

7: 413453581 XT-PIC wcfxo <-- X100P
8: 1 XT-PIC rtc
9: 413445182 XT-PIC wcfxo <-- X100P
12: 0 XT-PIC PS/2 Mouse
14: 179578 XT-PIC ide0
15: 3 XT-PIC ide1
NMI: 0
ERR: 0

Above, you can see three Digium boards, each in their own IRQ. If this is
your case, go ahead and install the hardware drivers. If this is not your case,
go back and try something else to avoid IRQ sharing.

2.4 CHOOSING AN OPERATING SYSTEM

Asterisk was initially developed to run on Linux. However, it can also run on
BSD Unix or Mac OS X. If you are new to Asterisk, try using Linux first since
it is much easier. If you were to try BSD Linux or Mac OS X, I forewarn you
that you this operating system presents many challenges to run Digium
hardware.

2.4.1 Linux distribution

Several Linux distributions were successfully tested with Asterisk (e.g.
Fedora, Redhat, SuSe, Debian, Gentoo, and others). Choose yours. We have
chosen Debian Sarge 3.1 and this distribution can be downloaded from
http://www.us.debian.org/CD/netinst/#netinst-stable.

2.4.2 Necessary packages

Required by Asterisk:

• readline, readline-devel (required before 1.2)
• bison (Required before 1.2)
• openssl, openssl-dev
• termcap
• ncurses-devel
• zlib-devel

Required by zaptel

• Kernel sources

Caution: The zaptel packages are necessary to compile some
Asterisk applications like meetme(). If you compiled Asterisk before

37 | Chapter 2 – Downloading and installing Asterisk

zaptel, you will have to recompile Asterisk to compile meetme() and

other dependent applications.

2.5 INSTALLING LINUX PREPARED FOR ASTERISK

We used Debian with Kernel 2.6 to install Asterisk. We have chosen this
distribution because it’s popular, easy to work with, and it is supported by
Digium. The installation steps are described below. You can download
Debian Sarge version 3.1 from www.debian.org.

Caution: This installation will format your PC. All your disk data will
be erased. Please make sure to backup all your data before you

start.

Step 1: Put the CD in the CD-ROM drive and boot your PC. Use the option
linux26 to boot with linux kernel version 2.6.

 2.5 Installing Linux prepared for Asterisk | 38

Step 2: Select the language

Step 3: Select the country

39 | Chapter 2 – Downloading and installing Asterisk

Step 4: Choose the keyboard layout.

Step 5: Type the host name (e.g. asterisk)

 2.5 Installing Linux prepared for Asterisk | 40

Step 6: Type the domain for this equipment (e.g. astersikguide.com).

Step 7: Now you will partition the disks. Please confirm that you erased the
entire disk.

Caution!
All your data will be erased. Backup your data before proceeding.

41 | Chapter 2 – Downloading and installing Asterisk

Step 8: Choose “all files in one partition”

Step 9: Choose “finish partitioning and write changes to disk”

 2.5 Installing Linux prepared for Asterisk | 42

Step 10: Confirm again.

Step 11: Accept GRUB boot loader installation

43 | Chapter 2 – Downloading and installing Asterisk

Step 12: Finish the installation

Step 13: Remove the CD, reboot the PC and click OK when the screen
depicted below appears.

 2.5 Installing Linux prepared for Asterisk | 44

Step 14: Select “No” just in case the hardware clock is not set to GMT.

Step 15: Select the appropriated Time zone

45 | Chapter 2 – Downloading and installing Asterisk

Step 16: Type “asterisk” as the root password.

Step 17: Re-enter for confirmation

 2.5 Installing Linux prepared for Asterisk | 46

Step 18: Create a user named “asterisk”.

Step 19: Enter the username “asterisk” again

47 | Chapter 2 – Downloading and installing Asterisk

Step 20: Type “asterisk” as the password for user “asterisk”

Step 21: Re-enter password for verification

 2.5 Installing Linux prepared for Asterisk | 48

Step 22: Answer “no” for the question “scan another CD?”

Step 23: We will use this server just for Asterisk. Leave all options blank.

49 | Chapter 2 – Downloading and installing Asterisk

Step 24: Choose internet site; mail is sent and received using SMTP. This is
necessary for integration of voice-mail and e-mail.

Step 25: Use the asterisk account for the mail server

 2.6 Preparing the Debian system for Asterisk | 50

Step 26: End

2.6 PREPARING THE DEBIAN SYSTEM FOR ASTERISK

The Debian installation is now complete. Let’s now install the packages
necessary for the subsequent compilation of Asterisk and Zaptel drivers. We
will first indicate to Debian where the packages are going to be downloaded
from. This is done by using the apt-setup utility.

Step 1: Log in as root

Step 2: Add a source to download the packages (/etc/apt/sources.list)

#apt-setup

Step 3: Select FTP.

51 | Chapter 2 – Downloading and installing Asterisk

Step 4: Select the appropriate country

 2.6 Preparing the Debian system for Asterisk | 52

Step 5: Choose the appropriate mirror

Step 6: Select <no> to another apt source.

Step 7: To install the kernel headers for zaptel compilation, type:

#apt-get install kernel-headers-`uname –r`
#ln -s /usr/src/kernel-headers-`uname -r` /usr/src/linux

53 | Chapter 2 – Downloading and installing Asterisk

Step 8: To install the necessary packages, type:

#apt-get install bison openssl libssl-dev libasound2-dev libc6-dev libnewt-dev libncurses5-
dev zlib1g-dev gcc g++ make

2.7 OBTAINING AND COMPILING ASTERISK
Linux is now installed. The next step is the Asterisk installation.

2.7.1 Obtaining Asterisk sources

To obtain Asterisk sources and zaptel drivers you should download them
from Digium.com. We will use the wget utility to download them. Create a
directory /usr/src to receive the files. You should consult www.asterisk.org
to verify which are the latest versions.

Where ´x´ is the latest software revision, type:

cd /usr/src
#wget http://ftp.digium.com/pub/zaptel/zaptel-1.4.x.tar.gz
#wget http://ftp.digium.com/pub/libpri/libpri-1.4.x.tar.gz
#wget http://ftp.digium.com/pub/asterisk/asterisk-addons-1.4.x.tar.gz
#wget http://ftp.digium.com/pub/asterisk/asterisk-1.4.x.tar.gz

Uncompress the files using:

tar –xzvf asterisk-1.4.x.tar.gz
tar –xzvf libpri-1.4.x.tar.gz
tar –xzvf asterisk-addons-1.4.x.tar.gz
tar –xzvf zaptel-1.4.x.tar.gz

2.7.2 Compiling Zaptel drivers

You will need to compile the Zaptel modules. The commands ‘./configure’
and ‘make menuselect’ were added on version 1.4. The last one allows you
to select which utilities and modules to build.

The following commands will do it:

cd /usr/src/zaptel-1.4.x/
make clean
./configure
make menuselect
make install
make install-udev ;Use to create zaptel devices using udev daemon
make config ;Use to start zaptel at boot time
update-rc.d zaptel defaults 99 ;Use to start zaptel at boot time

 2.7 Obtaining and compiling Asterisk | 54

Use make menuselect to install only the necessary modules.

‘make menuselect’ screenshot

2.7.3 Compiling Asterisk

If you have compiled software before, compiling Asterisk will be an easy
task. Run the following commands to compile and install Asterisk. Once
again you can choose which applications and modules to build using ‘make
menuselect’.

cd /usr/src/libpri-1.4.x
make clean
make
make install

cd /usr/src/asterisk-1.4.x
make clean
./configure
make menuselect
make
make install
make samples ;use to create sample configuration files
make config ;to start asterisk at boot time

Use make menuselect to install only the necessary modules.

55 | Chapter 2 – Downloading and installing Asterisk

‘make menuselect’ screenshot:

2.8 STARTING AND STOPPING ASTERISK

With this minimal configuration, it’s possible to start Asterisk successfully.

/usr/sbin/asterisk –vvvgc

Use the CLI command stop now to shutdown Asterisk.

CLI>stop now

2.8.1 Asterisk runtime options

The Asterisk starting process is very simple. If Asterisk is run without any
parameters, it is launched as a daemon.

/sbin/asterisk

You can access Asterisk console by executing the command below. Please
note that more than one console process can be run at the same time.

/sbin/asterisk -r

2.8.2 Available runtime options for Asterisk

You can show the available runtime options using ‘asterisk –h’

 2.9 Installation Directories | 56

debian:/usr/src/asterisk-1.4.1# asterisk -h
Asterisk 1.4.1, Copyright (C) 1999 - 2006, Digium, Inc. and others.
Usage: asterisk [OPTIONS]
Valid Options:
 -V Display version number and exit
 -C <configfile> Use an alternate configuration file
 -G <group> Run as a group other than the caller
 -U <user> Run as a user other than the caller
 -c Provide console CLI
 -d Enable extra debugging
 -f Do not fork
 -F Always fork
 -g Dump core in case of a crash
 -h This help screen
 -i Initialize crypto keys at startup
 -I Enable internal timing if Zaptel timer is available
 -L <load> Limit the maximum load average before rejecting new calls
 -M <value> Limit the maximum number of calls to the specified value
 -m Mute the console from debugging and verbose output
 -n Disable console colorization
 -p Run as pseudo-realtime thread
 -q Quiet mode (suppress output)
 -r Connect to Asterisk on this machine
 -R Connect to Asterisk, and attempt to reconnect if disconnected
 -t Record soundfiles in /var/tmp and move them where they belong after
they are done.
 -T Display the time in [Mmm dd hh:mm:ss] format for each line of output
to the CLI.
 -v Increase verbosity (multiple v's = more verbose)
 -x <cmd> Execute command <cmd> (only valid with -r)

2.9 INSTALLATION DIRECTORIES

Asterisk is installed on several directories. These directories can be modified
in the asterisk.conf file.

asterisk.conf
[directories]
astetcdir => /etc/asterisk
astmoddir => /usr/lib/asterisk/modules
astvarlibdir => /var/lib/asterisk
astdatadir => /var/lib/asterisk
astagidir => /var/lib/asterisk/agi-bin
astspooldir => /var/spool/asterisk
astrundir => /var/run
astlogdir => /var/log/asterisk

; Changing the following lines may compromise your security.
;[files]
;astctlpermissions = 0660
;astctlowner = root

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

57 | Chapter 2 – Downloading and installing Asterisk

;astctlgroup = apache
;astctl = asterisk.ctl
;[options]
;internal_timing = yes

2.10 LOG FILES AND LOG ROTATION

Asterisk PBX logs their messages on the /var/og/asterisk directory. The file
that controls the logs is the logger.conf.

; Logging Configuration
;
; In this file, you configure logging to files or to
; the syslog system.
;
; "logger reload" at the CLI will reload configuration
; of the logging system.

[general]
; Customize the display of debug message time stamps
; this example is the ISO 8601 date format (yyyy-mm-dd HH:MM:SS)
; see strftime(3) Linux manual for format specifiers
;dateformat=%F %T
;
; This appends the hostname to the name of the log files.
;appendhostname = yes
;
; This determines whether or not we log queue events to a file
; (defaults to yes).
;queue_log = no
;
; This determines whether or not we log generic events to a file
; (defaults to yes).
;event_log = no
;
;
; For each file, specify what to log.
;
; For console logging, you set options at start of
; Asterisk with -v for verbose and -d for debug
; See 'asterisk -h' for more information.
;
; Directory for log files is configures in asterisk.conf
; option astlogdir
;
[logfiles]
;
; Format is "filename" and then "levels" of debugging to be included:
; debug
; notice
; warning
; error
; verbose
; dtmf
;

 2.10 Log files and log rotation | 58

; Special filename "console" represents the system console
;
; We highly recommend that you DO NOT turn on debug mode if you are simply
; running a production system. Debug mode turns on a LOT of extra messages,
; most of which you are unlikely to understand without an understanding of
; the underlying code. Do NOT report debug messages as code issues, unless
; you have a specific issue that you are attempting to debug. They are
; messages for just that -- debugging -- and do not rise to the level of
; something that merit your attention as an Asterisk administrator. Debug
; messages are also very verbose and can and do fill up logfiles quickly;
; this is another reason not to have debug mode on a production system unless
; you are in the process of debugging a specific issue.
;
;debug => debug
console => notice,warning,error
;console => notice,warning,error,debug
messages => notice,warning,error
;full => notice,warning,error,debug,verbose

;syslog keyword : This special keyword logs to syslog facility
;
;syslog.local0 => notice,warning,error
;

There are some console commands associated to the logger process.

CLI> logger list channels

Channel Type Status Configuration

------- ---- ------ -------------

/var/log/asterisk/messages File Enabled - Warning Notice Error

 Console Enabled - Warning Notice Error

CLI> logger rotate

 == Parsing '/etc/asterisk/logger.conf': Found

Asterisk Event Logger restarted

Asterisk Queue Logger restarted

You can control the log rotation using the logrotate daemon. Edit the file
/etc/logrotate.d and include the content below to start rotating the log files.

/etc/logrotate.d/asterisk.
/var/log/asterisk/messages /var/log/asterisk/*log {
 missingok
 rotate 5
 weekly
 create 0640 asterisk asterisk
 postrotate
 /usr/sbin/asterisk -rx 'logger reload'
 endscript
}

More information about logrotate can be obtained using:

#man logrotate

59 | Chapter 2 – Downloading and installing Asterisk

2.11 STARTING ASTERISK WITH A NON-ROOT USER

It is safer to execute Asterisk with a non-root user. In case of a security
failure or a buffer overflow attack, running Asterisk within an environment
with less privileges to the user limits the possible actions from an intruder.

To change Asterisk running user:

1) Edit the file: vi /etc/init.d/asterisk

2) Uncomment the following lines:

AST_USER="asterisk"
AST_GROUP="asterisk"

3) To change user rights in Asterisk folders type:

cd /
chown --recursive asterisk:asterisk /etc/asterisk
chmod --recursive u=rwX,g=rX,o= /etc/asterisk
chown --recursive asterisk:asterisk /var/lib/asterisk
chown --recursive asterisk:asterisk /var/log/asterisk
chown --recursive asterisk:asterisk /var/run/asterisk
chown --recursive asterisk:asterisk /var/spool/asterisk
chown --recursive asterisk:asterisk /dev/zap
chmod --recursive u=rwX,g=rX,o= /var/lib/asterisk
chmod --recursive u=rwX,g=rX,o= /var/log/asterisk
chmod --recursive u=rwX,g=rX,o= /var/run/asterisk
chmod --recursive u=rwX,g=rX,o= /var/spool/asterisk
chmod --recursive u=rwX,g=rX,o= /dev/zap

4) Test changes with /etc/init.d/asterisk

2.12 ASTERISK INSTALLATION NOTES

2.12.1 Production Systems

If Asterisk is installed in a production environment, you should pay attention
to the system design. A server has to be optimized in such a way that
telephony systems have priority over other system processes. Asterisk
should not run together with processor intensive software like X-Windows for
example. If you need to run CPU intensive processes like, for example, a
huge database, use a separate server. Generally speaking, Asterisk is
sensible to hardware performance variations. Thus, try using Asterisk in a
hardware environment that does not require more than 40% of CPU
utilization.

 2.13 Summary | 60

2.12.2 Network tips

If you plan to use IP phones, it is important that you pay attention to your
network. Voice protocols are very good and resistant to latency and even
jitter. However, if you use a poorly configured local area network, the voice
quality will suffer. It is only possible to guarantee a good voice quality using
QoS (Quality of Service) in switches and routers. If you use voice over the
Internet (Without QoS), voice quality can be defined as best effort. Voice in
a local area network tends to be good, but even in a LAN environment, if you
have 10 Mbps hubs with too many collisions, you will end up having
distorted or crappy voice. Follow these recommendations to ensure the best
possible voice quality:

• Use QoS end-to-end if possible or economically feasible. With QoS
end-to-end, the voice quality is perfect. No excuses!

• Avoid using 10/100 Mbps hubs for voice in a production environment.
Collisions can impose jitter to the network. Full duplex 10/100 Mbps
are preferred because there are no collisions.

• Use VLANs to separate unnecessary broadcasts of the voice network.
You don’t want a virus destroying you voice network with ARP
broadcasts.

• Educate users about expectations in a voice network. Without QoS,
don’t state that the voice will be perfect since in most cases it won’t.
Cell phone voice quality is what is expect for most cases in this
scenario.

2.13 SUMMARY

In this chapter you learned the minimum hardware requirements, how to
download, how to install, and how to compile Asterisk. Asterisk should be
executed with a non-root user for security reasons. You should check your
network environment before starting a production environment.

2.14 QUESTIONS

1. What’s the minimal Asterisk hardware configuration?

2. Telephony interface cards for Asterisk usually have some DSPs (Digital
Signal Processors) built in and do not need a lot of CPU resources from the
PC.

61 | Chapter 2 – Downloading and installing Asterisk

a) True
b) False

3. If you want perfect voice quality, you need to implement end-to-end QoS
(Quality of Service).

a) True
b) False

4. It’s possible to have good voice quality with 100 Mbps switches in a non
congested local area network.

a) True
b) False

5. List the necessary packages for Asterisk and the Zaptel compilation.

6. If you don’t have a TDM interface card, you will end up needing a clock
source for synchronization. The ztdummy driver is responsible for this role
by using USB as a clock source (Kernel 2.4). This is necessary because some
applications like _______ and ________ require a time reference.

7. When you install Asterisk, it’s better to leave GUIs uninstalled because
Asterisk is sensible to performance variations. GUIs stole a lot of CPU cycles.

a) True
b) False

8. Asterisk configuration files are located in the ____________________
directory.

9. To install Asterisk sample files you need to type the following command:

10. Why is it important to start Asterisk with a non-root user?

First Steps

In this chapter you will learn how to perform a basic Asterisk configuration.
The main objective here is for you to see the PBX running, to be able to dial
between extensions, to dial to a message being played, and to dial to a
single analog or SIP trunk. The idea behind this chapter is to make sure that
your Asterisk is up and running as soon as possible. After working in this
chapter, you will have enough background to prepare for the subsequent
chapters, where we will get into configuration details.

3.1 OBJECTIVES

 Figure 3.1 Objectives

3.2 UNDERSTANDING THE CONFIGURATION FILES

Asterisk is controlled by text configuration files located in /etc/asterisk. The
file format is similar to the Windows “.ini” files. A semicolon is used as a
remark character, the signs “=” and “=>” are equivalent and the spaces are
ignored.

;
; The first line without a comment should be the session title.

Chapter 3

63 | Chapter 3 – First Steps

;
[Session]
Key = value; Variable designation
[Session 2]
Key => value; Object declaration

Asterisk interprets “=” and “=>” in the same way. Differences in syntax are
used to distinguish between objects and variables. Prefer “=” when you want
to declare a variable and “=>” to designate an object. The syntax is the
same between all files but there are three types of grammar, as discussed
below.

3.3 GRAMMARS

Grammar Object is created: Conf. File Example
Simple Group All in the same line

extensions.conf exten=>4000,1,Dial(SIP/4000)

Option Inheritance Options are defined first,
object inherit the options

zapata.conf [channels]
context=default
signalling=fxs_ks
group=1
channel => 1

Complex Entity Each entity receives a
context

sip.conf,
iax.conf

[cisco]
type=friend
secret=mysecret
host=10.1.30.50
context=trusted
[xlite]
type=friend
secret=xlite
host=dynamic

3.3.1 Simple Group

The simple group format used in extensions.conf, meetme.conf and
voicemail.conf is the most basic grammar. Each object is declared with
options in the same line.

Example:

[Session]
Object 1 => op1,op2,op3
Object 2=> op1b,op2b,op3b

In this example, object 1 is created with options op1, op2, op3 while object
2 is created with options op1, op2 and op3.

 3.3 Grammars | 64

3.3.2 Object options inheritance grammar

This format is used by zapata.conf and agents.conf where a lot of options
are available and most interfaces and objects share the same options.
Typically there are one or more sections with objects and channels
declarations. Options to the object are declared above the object and can
be changed to another object. Although this concept is hard to understand, it
is very easy to use.

Example:

[Session]
op1 = bas
op2 = adv
object=>1
op1 = int
object => 2

The first two lines configure the value of option op1 and op2 to “bas” and
“adv” respectively. When the object 1 is instanced, it is created using option
1 as “bas” and option 2 as “adv”. After defining object 1 we have changed
the option 1 to “int”. Then we create object 2 with option 1 as “int” and
option 2 as “adv”.

3.3.3 Complex entity object

This format is used by iax.conf, sip.conf as well as other configuration files
where there are numerous entities with many options. Typically, this format
does not share a large volume of common configurations. Each entity
receives a context. Sometimes there are reserved contexts like [general] for
global configurations. Options are declared in the context declarations.

Example:

[entity1]
op1=value1
op2=value2
[entity2]
op1=value3
op2=value4

The entity [entity1] has values “value1” and “value2” for options op1 and
op2, respectively. The entity [entity2] has values “value3” and “value4” for
options op1 and op2.

65 | Chapter 3 – First Steps

3.4 CONFIGURING A PSTN INTERFACE

To connect to the PSTN you will need an interface FXO (Foreign Exchange
Office) and a telephone line. You can use an existing PBX extension too. You
can obtain a telephony interface card with a FXO interface from several
manufacturers. In this example we will show you how to install a zaptel
board.

 Figure 3.1 FXO end FXS Interfaces

Tip: There are other FXO interfaces available. A X100P clone can be
found in the market for a very small price. These boards are old 56K

fax/modems based on Motorola and Intel chipsets. The chipsets
known to work are:

- Motorola 68202-51
- Intel 537PU

- Intel 537 PG

- Intel Ambient MD3200

There are no guaranties that this board will work. Use at your own risk.
Some present eco problems and low sound volume. If you don’t want to take
risks, Digium boards are a very good choice.

3.4.1 Installing a X100P

 3.5 SIP IP phones configuration | 66

Before installing a X100P in your computer, disable all unnecessary or
unused hardware from your motherboard. This will help to avoid problems
with shared interrupts. In order to properly install the X100P, you will have
to plug the card into a PCI slot and edit two configuration files:

• “zaptel.conf“ in the /etc directory - the board configuration.
• “zapata.conf” in the /etc/asterisk directory - this configures the

Zapata channel driver.

Don’t be concerned at this point to understand all the details of the
configuration files. We will have an entire chapter about Zapata channels. At
this moment we will show an excerpt of the file. Save a copy of the file
/etc/zaptel.conf to /etc/zaptel.conf.old before you begin editing.

zaptel.conf

fxsks=1
loadzone = br
defaultzone=br
channels=1

zapata.conf

[channels]
context=default
signalling=fxs_ks
group=1
channel => 1

After finishing editing the files, load the zaptel drivers as shown below.

modprobe zaptel
modprobe wcfxo
ztcfg –vvvvvv
asterisk -vvvvvgc

3.5 SIP IP PHONES CONFIGURATION

Let’s now configure the SIP phones. The idea is to configure a simple PBX. In
subsequent chapters you will have an entire SIP session with all the details.
SIP is configured in the /etc/asterisk/sip.conf directory and has all the
parameters related to SIP phones and VoIP providers. SIP clients have to be
configured before you can make and receive calls.

3.5.1 General section

67 | Chapter 3 – First Steps

The SIP file is read from top down. The first section contains the global
parameters [general]. The main options are:

• allow/disallow: Defines which codecs can be used.

• bindaddr: Address to be bond to Asterisk SIP listener. If you set it
up as 0.0.0.0 (default) it will bind to all interfaces.

• context: Sets the default context for all clients unless changed in
the client section.

• bindport: SIP UDP port to listen.

• maxexpirey: Maximum time to register (seconds)

• defaultexpirey: Default time to register (seconds)

• register: Registers Asterisk to another Host.

Example:

[general]
bindport = 5060
bindaddr = 10.1.30.45
context = default
disallow = all
allow = ulaw
maxexpirey = 120
defaultexpirey = 80

3.5.2 Clients section

After finishing the general sections, it is time to set up the SIP clients. I
would like to remind the reader, again, that we will have an entire SIP
chapter later in the book. For now, let’s concentrate on the basics and leave
the details for later.

• [name]: When a SIP device connects to Asterisk, it uses the
username part of the SIP URI to find the peer/user.

• type: Configures the connection class. Options are peer, user, and
friend.

• peer: Asterisk sends calls to a peer.

• user: Asterisk receives calls from a user.

• friend: Both at same time.

• host: IP address or host name. The most common option is
“dynamic”, used when the host registers to Asterisk.

• secret: Password to authenticate peers and users.

Example:

 3.6 Dial plan introduction | 68

[cisco]
type=friend
secret=mysecret
host=10.1.30.50
context=trusted

[xlite]
type=friend
secret=xlite
host=dynamic
defaultip=10.1.30.17

3.6 DIAL PLAN INTRODUCTION

Dial plan is Asterisk’s heart. It defines how Asterisk handles each and every
call to the PBX. It consists of extensions that make an instruction list for
Asterisk to follow. Instructions are fired by digits received from the channel
or application. In order to configure Asterisk successfully, it is crucial to
understand the dial plan.

Most of the dial plan is contained in the extensions.conf file at the
/etc/asterisk directory. This file uses the simple group grammar and has four
major concepts:

•

• Extensions

• Priorities

• Applications

• Contexts

Let’s now create a basic dial plan. In subsequent sections of this book I will
devote two full chapters exclusively to dial plan. If you installed the sample
files (make samples), the extensions.conf already exists. Save it with
another name and start with a blank file.

3.6.1 Extensions

The dial plan is a set of defined extensions. An extension is a string that will
trigger an event when a call is made. Extensions can be either literal or
pattern.

69 | Chapter 3 – First Steps

 Figure 3.2 Extensions format

Example:

exten=>8580,1,Dial(SIP/8580,20)
exten=>8580,2,hangup()

The instruction “exten” describes the next step for the call. 8580 is the set of
digits received (called number). The numbers “1” and “2” are priorities that
define the execution order. Dialing “8580” will ring the SIP IP phone
registered as “8580”. If the call is unanswered in 20 seconds it will hang-up.

Extension Syntax:

exten=> number (name), {priority|label{+|-}offset}[(alias)],application

The extension command “exten=” is followed by an extension number or
name, a comma, a priority, another comma and, finally, the application.
Extension is the matching address of the call (the phone number). Priorities
are used to execute the steps in order of priority. Application is the action to
be taken (dial, playback, hangup). Each action has a different application.

3.6.2 Priorities

Priorities are numbered steps for execution in each dialed extension. Each
priority calls a specific application. Usually, the numbers start with “1” and
increment by 1 to each line in the extension definition. In version 1.2, it is

 3.6 Dial plan introduction | 70

common to use the “n” priority as next, instead of manually assigning the
numbers. If numbers are not sequential, execution is aborted. After version
1.2 it became possible to use labels and aliases. We will see more about this
under the topic ‘Advanced examples’ in Chapter 8.

3.6.3 Applications

Applications play an important role in Asterisk. They handle voice channels,
playing tones, the acceptance of digits called to the PBX, as well as call
hang-up. Applications can be called with options that affect their behavior.
You can use ‘core show applications’ in the Asterisk’s command line
interface to show available applications. When you build your first dial plan
you will start to understand what applications are appropriated.

CLI>core show applications

3.6.4 Contexts

 Figure 3.3 Asterisk call flow

Contexts play an important role in Asterisk’s dial plan configuration and
security. Contexts define a scope, which allows separation of the dial plan
into different parts. It is important to understand that contexts are
intimately bond to channels. When a Asterisk receives a phone call, the call
is processed within its incoming context section. The incoming context is
always defined by the channel configuration file (iax.conf, sip.conf,
zap.conf…).

71 | Chapter 3 – First Steps

Let’s suppose, for example, that you have two classes of users: “managers”
and “guests”. Suppose now that want to play different messages for “guests”
and “managers” when they dial “9000”. You can accomplish this by defining
the incoming context in the channel files (sip.conf, iax.conf, zap.conf).

Example:

In the example below, when Mary dials 9000, she receives the message
“youareaguest”. When John dials the same number, he receives a different
message: “youareamanager”.

sip.conf
[john]
context=managers
host=dynamic
…
[mary]
context=guests
host=dynamic
…

extensions.conf
[managers]
exten=>9000,1,Playback(youareamanager)
[guests]
exten=>9000,1,Playback(youareaguest)

By understanding this concept you can create several features in Asterisk.
Different contexts can be used to serve different companies and different
classes of users within the same Asterisk configuration. Contexts may
determine, for example, who can call long distance and who cannot.

Contexts receive a name inside brackets ([]). All instructions after the
definition are part of the context. To start a new context, simply insert the
new context. A context ends when another starts.

There are two special contexts in the extensions.conf file. The context
[globals] is used to define variables whereas the context [general] is used to
define some general options. We will look into these special contexts in
chapter 8.

3.6.5 Creating a testing environment

 3.6 Dial plan introduction | 72

FX
O

 Figur3.4 VoIP Lab

For this lab we recommend that you use a FXO interface card. To create a
lab like the one above, you may use a Pentium class PC with 256MB RAM for
Asterisk and two other computers for the soft phone. You may use virtual
machines (VMWare, VirtualPC) if you wish to use a single computer.
Although voice quality will be poor, this is acceptable for testing purposes.
We also recommend using the X-Lite softphone from counterpath
(www.counterpath.com), although other free soft phones (e.g. SJPhone -
www.sjlabs.com) may be used as well. It’s possible that the X-Lite softphone
does not exist anymore by the time you read this material; you will certainly
be able to find others by searching the Internet. You may also use a SIP
Analog Telephony Adapter or even an SIP IP Phone. Really, it all depends on
your budget.

Step 1: Edit the sip.conf file and add the extension 2000 configuration.

[general]
bindport=5060
bindaddr=10.1.30.45 ; put here the IP address of your server
context=default
allow=all

[2000]
type=friend
secret=2000
host=dynamic
canreinvite=no

73 | Chapter 3 – First Steps

Step 2: Repeat step 1 for extension 2001.

Step 3: Configure the softphone for extension 2000.

a) Run the installation program.
b) Press “next” in the first screen.
c) Accept the licensing agreement.
d) Accept the next screens. In other words NEXT->NEXT->FINISH.
e) Get into the X-LITE menu by pressing the icon illustrated below.

f) In the next screen, select “system settings”.

g) Choose “sip proxy”.

h) Choose Default.

i) Complete the following fields.

Display Name: 2000
Username: 2000
Authorization User: 2000
Password: 2000
Domain/Realm: Asterisk IP Address
SIP Proxy: Asterisk IP Address

j) Close X-LITE and open again.

k) Confirm that the phone was registered to Asterisk with the sip show
peers command.

Step 4: Repeat the configuration for extension 2001 in the other softphone.

3.7 CREATING A BASIC DIAL PLAN

Now we are ready to start creating our first dial plan. We will use examples
to explain the dial plan. Let’s move on step-by-step.

3.7.1 Basic example

In this example, Asterisk will receive a call, play a sound and hang-up.

 3.7 Creating a basic dial plan | 74

Edit the extensions.conf file to include these entries:

[incoming]
exten=>s,1,answer()
exten=>s,2,playback(goodbye)
exten=>s,3,hangup()

Priority 1 calls the answer() application. Asterisk handles the line and sets
up the call. After answering the line, it goes to the next priority.

Priority 2 calls the playback application() to play a sound from
goodbye.gsm file.

Finally, priority 3 hangs up the call.

Example explanation:

A call received by a FXO interface is sent to the incoming context, defined in
the channel configuration file (zapata.conf). When an incoming call arrives it
is processed in the “s” extension of the incoming context. We have three
priorities, each priority calling an application.

The special extension “s” is used to start processing the incoming call
when the number that dialed to Asterisk is not known (e.g. incoming call by
an analog line).

If we are to answer a call, it is better to know the application that will do it.
The answer() application is used to answer a channel in the ringing state.
Some applications require the answer() application before processing the
call.

The playback() application is used to play a message from a sound file
previously recorded. When the application playback() is being executed, any
digits pressed are ignored. The syntax is playback(filename). It plays the file
with .gsm or .wav extension from the default sounds directory
(/var/lib/asterisk/sounds).

The hangup() application does exactly what the name says. It disconnects
the active channel. You should use it at the end of the call.

3.7.2 A more thorough example

Let’s improve upon our first example by introducing two new applications:
background() and goto(). The key for interactive systems based on Asterisk

75 | Chapter 3 – First Steps

is the background() application. It allows you to play a sound file while
waiting for digits to be pressed. When this occurs, the sound that is playing
stops and the execution goes to the digits pressed. We will look at the
background application in depth in subsequent chapters.

Syntax for Background() application:

exten=>extension, priority, background(filename)

Other useful application is goto(). As the name implies, it jumps from the
current context, extension and priority to a specific context, extension and
priority.

Syntax for Goto() application:

exten=>extension, priority,goto(context,extension, priority)

Valid syntaxes for goto() are:

Goto(context,extension,priority)
Goto(extension,priority)
Goto(priority)

This is an example of a small company with three departments: tech
support, sales, and training. Let’s create an interactive system that allows
the user to select the department called. Firstly, we will play a greeting like,
“press 1 for tech support, 2 for training, and 3 for sales”. In this simple
example we won’t treat invalid digits. After you select a department, the
system will play a message like “you were directed to … department” and
transfer the execution to the related context.

[incoming]
exten=>s,1,Answer()
exten=>s,2,Background(greeting)
exten=>s,3,hangup()
exten=>1,1,playback(support)
exten=>1,2,goto(support,s,1)
exten=>2,1,playback(training)
exten=>2,2,goto(training,s,1)
exten=>3,1,playback(sales)
exten=>3,2,goto(sales,s,1)

Step by step explanation:

When someone calls the telephone line connected to Asterisk via the FXO
interface card (configured to [incoming] context in zapata.conf), the
extension “s” in the [incoming] context is triggered. The extension “s”

 3.8 Labs | 76

answers the call using the background application and plays a greeting
message, waiting for digits to be pressed. If the user presses “1”, the
system goes to extension “1” and plays a message “You were directed to
tech support”. Next, extension “2” sends the execution to [support] context
for further processing.

3.7.3 Bridging channels using Dial() application

We can improve our example by adding the dial() command. Instead of
sending the execution to another context, we will transfer the call to an
extension, directly using the dial() application

[incoming]
exten=>s,1,Answer()
exten=>s,2,Background(greeting)
exten=>s,3,hangup()
exten=>1,1,playback(support)
exten=>1,2,Dial(SIP/8000)
exten=>2,1,playback(training)
exten=>2,2,Dial(ZAP/1)
exten=>3,1,playback(sales)
exten=>3,2,Dial(IAX2/8002)

By comparing with the first example, we’ve just created a shortcut. Instead
of sending the call to another context, we are now sending the call to the
final channel destination. For “support”, we will direct the call to a SIP phone
identified by the “8000” number. For “training” we will send the call directly
to TDM (analog or digital) to the channel identified as “1”. Finally, for sales
we will send the call to an IAX2 phone identified by the number “8002”.

At this point you should have a clear understanding of the use of several
applications like answer(), background(), goto(), hangup() and playback().
If this is not clear, please read again until you feel comfortable with the
content. You will need this background from now on.

Once you understand the basics of extensions, priorities and applications, it
will be easy to create a simple dial plan. These concepts will be explored in
greater depth later in the book, and you will see that the dial plan will
become more powerful.

3.8 LABS

These labs will create a small PBX capable to dial between extensions, to the
PSTN, or to a VoIP provider. We will configure call reception using auto
attendant.

77 | Chapter 3 – First Steps

Lab instructions:

• Extensions will range from 2000 to 2100

• To dial the PSTN you will need to dial 9 first

• To dial external call via VoIP provider you will need to dial 1 first

• 8000 should be used to record the message for the auto-
attendant.

3.8.1 Calling between phones

Step 1: Edit the extensions.conf file inside the [default] section with the
following commands.

[default]
exten=>2000,1,Dial(SIP/2000)
exten=>2001,1,Dial(SIP/2001)

Step 2: Reload the asterisk extensions

CLI>dialplan reload

Step 3: Test dialing between 2000 and 2001 softphones.

3.8.2 Calling PSTN using the zaptel interface card (FXO)

Step 1: Edit extensions.conf

[default]
exten=>0,1,Dial(ZAP/1,20,r)

Step 2: Reload Asterisk extensions

CLI>dialplan reload

Step 3: Test dialing 0. You will receive an external dial tone, then dial the
destination number.

3.8.3 Auto-attendant

Step 1: Edit the extensions.conf to include an interface to record the
message for the auto-attendant.

[default]
exten=>8000,1,Wait(2)
exten=>8000,2,Record(menu:gsm)

 3.9 Summary | 78

exten=>8000,3,Wait(2)
exten=>8000,4,Playback(menu)
exten=>8000,5,Hangup()

Step 2: Reload the extensions and dial 8000. Record a message like
“Welcome to the XYZ company, dial the extension number”. Press “#” at the
end to finish recording. You will hear the recorded message when playback is
executed.

Step 3: Edit the extensions.conf to include the receiving menu.

[default]
exten=>s,1,Background(menu)
exten=>s,2,Dial(SIP/2000)
exten=>2000,1,Dial(SIP/2000)
exten=>2001,1,Dial(SIP/2001)

Step 4: Dial from your cell phone (or another external phone) to the line
connected to Asterisk. You will hear an auto-attendant message. Dial 2000
to be transferred to the 2000 extension.

3.9 SUMMARY

In this chapter you learned that configuration files are stored in the
/etc/asterisk directory. To use Asterisk, it is necessary, in the first place, to
configure the channels (e.g. sip, zapata, iax). There are three different
grammars for configuration files, simple group, object inheritance, and
complex entity. The dial plan is created in the extensions.conf file and is a
set of contexts and extensions. In the dial plan each extension triggers an
application and you learned to use playback, background, dial, goto, hangup
and answer applications.

3.10 QUESTIONS

1. These are channel configuration files

a) zaptel.conf
b) zapata.conf
c) sip.conf
d) iax.conf

2. It is important to define a context in the channel configuration file,
because this will define the incoming context for a call. In the extensions
configuration file (extensions.conf) a call from this channel will be processed
in the matching incoming context.

79 | Chapter 3 – First Steps

a) True
b) False

3. The main differences between the playback() and background()
applications are (choose two):

a) Playback simply plays a prompt, but does not wait for digits.
b) Background simply plays a prompt, but does not wait for digits.
c) Background plays a message and waits for digits to be pressed
d) Playback plays message and waits for digits to be pressed

4. When a call gets into Asterisk using a telephony interface card (FXO) this
call is handled in the special extension:

a) ‘0’
b) ‘9’
c) ‘s’
d) ‘i’

5. Valid formats for the goto() application are (choose three):

a) Goto(context,extension, priority)
b) Goto(priority, context, extension)
c) Goto(extension,priority)
d) Goto(priority)

6. An extension cannot be defined as (choose all correct answers):

a) An alphanumeric literal
b) A numeric literal
c) A pattern beginning with a “_” (dot) character
d) A pattern starting with a “_” (underscore) character

7. A pattern _7[1-5]XX matches (choose all correct answers):

a) 7100
b) 7600
c) 7630
d) 7230

8. An incoming context for a zaptel compatible telephony interface is defined
in the _________ configuration file:

 3.10 Questions | 80

a) zaptel.conf
b) zapata.conf
c) asterisk.conf
d) modules.conf

9. In the Options Inheritance grammar used by zapata.conf you:

a) Define the object in a single line
b) Define options first and declare the objects below the defined options
c) Define a context for each object

10. Priorities must be consecutive!

a) False
b) True

81 | Chapter 3 – First Steps

Page intentionally left empty

Analog and digital channels

In this section, we will show you how to configure zapata and unicall
channels for connecting to the PSTN. Starting with a revision of telephony
concepts, you will learn the general principles to understand and configure
analog, E1, and T1 lines.

4.1 OBJECTIVES

 Figure 4.1 Objectives

4.2 TELEPHONY BASICS

Most analog implementations use a pair of cooper lines named tip and ring.
When a loop is closed, the phone receives the dial tone from the telecom
switch (or the private PBX). The most frequently used signaling is loop-
start. There are other, less common kinds of signaling such as ground start,
which is used in several countries.

There are three types of signaling:

• Supervision signaling

• Address signaling

Chapter 4

83 | Chapter 4 – Analog and Digital Channels

• Information signaling

4.2.1 Supervision signaling

The main supervision signaling are on-hook, off-hook, and ringing.

On-Hook – When a user puts the phone on-hook, the PBX interrupts and
does not allow the electric current to pass. In this state, the circuit is named
on-hook. In this position, only the ringer is active.

Off-Hook – Before starting a phone call, the phone needs to pass to the off-
hook state. Removing the handset from the hook closes the loop and
indicates to the PBX that the user intends to make a call. Upon receiving this
indication, the PBX generates a dial tone, indicating to the user that it is
ready to accept the destination address (phone number).

Ringing – When a user calls another phone it generates a voltage to the
ringer that warns the other user about a call reception.

Signaling varies by country, with different tones for different countries. You
can personalize Asterisk tones to your country by modifying the
indications.conf file.

[br]
description=Brazil
ringcadance=1000,4000
dial=425
busy=425/250,0/250
ring=425/1000,0/4000
congestion=425/250,0/250,425/750,0/250
callwaiting=425/50,0/1000

4.2.2 Address Signaling

You can use two kinds of signaling for dialing. The first and most common is
dtmf (dual tone multi-frequency) and the other is pulse dialing (used in old
rotary dial phones). Phones have a keypad for dialing. Associated with each
button are two frequencies: one high and one low. In the case of dtmf
signaling, the combination of these tones indicates what digit is being
pressed. MFC/R2 uses a multi-frequency tone different from DTMF.

4.2.3 Information signaling

Information signaling shows the call progress and their different events.

• Dial tone

 4.3 PSTN interfaces | 84

• Busy Tone

• Ringback

• Congestion

• Invalid number

• Confirmation tone

4.3 PSTN INTERFACES

As in the case of old PBXs, it is often required to connect the Asterisk PBX to
the PSTN. Let us show you how to do it.

There are usually three options for telephone lines.

• Analog: The most common form for home and small business, usually
delivered with a metallic pair of cooper lines.

• Digital: Used when many lines are necessary. A digital line is usually
delivered by a CSU/DSU or a Fiber multiplexer. The end user connector
is usually a RJ45. In some countries, E1 lines are delivered using two
coaxial BNC connectors; in this case you will need a balloon to connect
to the Rj45 jack in the telephony board.

• SIP: This option is recent and the telephone line is delivered using a
data connection with SIP signaling (VoIP). This is a good option to use
with Asterisk since you will not need to buy a telephony card. Phone
calls will be delivered directly to the Ethernet port. Another advantage
is that you may be able to free resources from your CPU by avoiding
codec transcoding.

85 | Chapter 4 – Analog and Digital Channels

4.4 ANALOG FXS, FXO AND E&M INTERFACES

 Figure 4.2 FXS and FXO interfaces

4.4.1 FX Interfaces (Foreign eXchange)

FX interfaces are analog. The term “Foreign eXchange” is applied to access
trunks to a PSTN central office (CO).

FXO (Foreign eXchange Office)

The FXO interface is used to connect to a CO (Central Office) or another
PBX’s extension. It communicates directly with a telephone line coming from
the PSTN. Another option is to connect the FXO interface to an existing PBX,
allowing communication between Asterisk and the legacy PBX. When you
connect Asterisk to a PBX port and deliver a remote extension using VoIP,
this is often referred as an off-promises extension (OPX). A FXO interface
receives a dial tone.

FXS (Foreign eXchange Station)

The FXS interface feeds an analog phone, modem or fax. The FXS provides
the dial tone and power for a phone.

 4.4 Analog FXS, FXO and E&M interfaces | 86

 Figure 4.3 Asterisk operating as a VoIP gateway

4.4.2 Trunk signaling

• Loop-Start
• Ground-Start
• Kewlstart

The use of kewlstart signaling in Asterisk is almost default. Kewlstart is not a
signaling itself, but it adds intelligence to the circuit by monitoring what is
happening at the other side. Kewlstart is based in loop-start. Most switches
do not support this feature, which is used to get the hang-up notification.

• Loopstart: Used in most analog lines. It allows the telephone to
indicate “on-hook” and “off-hook” and the switch to indicate “ring”
and “no-ring”. Probably is what you have at home. The name
comes from the fact that the line is always open. When you close
the loop, the switch provides to you the dial tone. An incoming
call is signaled by a 100V ringing voltage over the open pair.

• Groundstart: Similar to Loopstart. When you want to make a

call, one side of the line is short-circuited. When the switch
identifies this state, it reverses the voltage through the open pair,
and then the loop is closed. This way the line first becomes
occupied before being offered to the caller.

87 | Chapter 4 – Analog and Digital Channels

• Kewlstart: Adds intelligence to the circuits, allowing monitoring

of the other side. Kewlstart incorporates many advantages from
loop-start.

4.5 E1/T1 DIGITAL LINES

4.5.1 from analog to digital lines

 Figure 4.4 from analog to digital voice

The analog signal is sampled 8000 times per second to create a digital
version of the analog voice. This encoding is known as PCM (pulse code
modulation). In the USAUSA and Japan, the signal is encoded using µlaw
(referred in Asterisk as ulaw). In the rest of the world, the encoding is alaw.

 4.5 E1/T1 digital lines | 88

4.5.2 Time Division Multiplexing

 Figure 4.5 T1/E1 Digital Trunks

Analog lines make sense when you need just a few channels. When you
want a large number of circuits, the phone company will usually provide you
with a digital trunk.

Using TDM (time division multiplexing), it is possible to stuff multiple
channels into a single data connection. A digital trunk is actually a data
circuit and the voice is transported in digital format using PCM. Each
timeslot uses 64 Kbps of bandwidth to transport a single voice channel.

In USAthe USA, the most common digital trunk is T1 with 24 available lines,
whereas in Europe and Latin America E1 trunks have 30 lines. Some
companies provide fractional T1/E1 with fewer channels.

Robbed bit signaling

Sometimes a T1 trunk uses a robbed bit scheme where one bit is borrowed
for signaling. In T1 trunks, the data or voice channel is transmitted with 56
Kbps on each timeslot. As you can see, using the robbed bit, T1 does not
loose two slots for synchronizing and signaling.

4.5.3 T1/E1 Line code

89 | Chapter 4 – Analog and Digital Channels

T1 and E1 are actually data circuits and have a data coding. This coding
determines the way the bits are interpreted.

For T1s the most common line code is B8ZS for layer 1 (physical layer), and
ESF (extended super frame) in layer 2 (datalink layer).

For E1s, the most common line code is HDB3 for layer 1 and CCS for layer 2.

The easiest way to know how your digital trunk is configured is to ask this
information to the Telco. You will need this information to configure the
zaptel.conf file.

4.5.4 T1/E1 Signaling

It is important to understand that T1/E1 lines can be delivered using
different kinds of signaling like:

• T1 with robbed bit signaling
• T1 with ISDN signaling
• E1 with MFC/R2 (CAS - Channel Associated Signaling)
• E1 with ISDN signaling

ISDN (integrated services digital network) is becoming very common. . It is
a digital voice network standardized by the ITU (International
Telecommunications Union) in 1984. With ISDN, you have two kinds of
channels:

• Bearer channels
o Voice
o Data

• Data channels
o Out of band signaling
o LAPD signaling
o Q.931

Usually, an ISDN line is provided using two physical means:

• BRI (basic rate interface)
o Known as 2B+D
o Two bearer (64K) channels and a data (16K) channel
o BRI uses a pair of cooper wires with 148Kbps.

• PRI (primary rate interface)
o Delivered using a T1/E1 trunk
o 23B+D for T1s

 4.6. Asterisk telephony channels setup | 90

o 30B+D for E1s

Sometimes, E1 lines use a CAS signaling scheme named MFC/R2. It was
defined by the ITU as Q.421/Q441. It is very popular in Latin America and
Asia. Several telephony companies in these countries customized MFC/R2 to
their needs. Hence, you will need to know the correct country variation in
order to make it work.

4.6. ASTERISK TELEPHONY CHANNELS SETUP

To configure a telephony interface card, several steps are necessary. In this
chapter, we will show three of the most common scenarios:

• Analog connection using FXS and FXO
• Digital connection using ISDN
• Digital connection using MFC/R2

4.6.1 Example #1 – One FXO, one FXS installation.

In this example, we will use a Digium TDM400 telephony interface card with
one FXS and one FXO module. The eequired steps ate listed below:

1. Install the TDM400 board
2. Configure the Zaptel.conf file
3. Load the interface driver
4. Execute zttest to verify interrupts
5. Execute ztcfg to configure the driver
6. Configure the channel ZAP in zapata.conf file
7. Load Asterisk

91 | Chapter 4 – Analog and Digital Channels

Step 1: Install the TDM 400 Board

12
 V

 F
XS
 o
 F
XO

P
h
o
to
s
 b
y
 K
a
rl
a
 B
ra
g
a

 Figure 4.6 TDM400 card

The TDM400P contains FXS and FXO modules. Connect the modules FXS
(S100M – green) and FXO (X100M – red) to the TDM400 if it is not already
connected. FXS modules need additional power to provide ringing voltages.
If you are using FXS, it will be necessary to connect the card directly to the
power supply using the 12-volt connector (similar to the hard disk). Use
static electricity protection equipment to handle the card to avoid damage.

 4.6. Asterisk telephony channels setup | 92

 Figure 4.7 FXS Module (X100M - green), FXO module (S100M – red)

Step 2: zaptel.cfg configuration

Zaptel.cfg has to be edited to configure the zaptel driver. The file,
zaptel.conf is in the /etc directory.

fxsks=1 # FXO port, certify that the red modules is in position 1.
fxoks=2 # FXS port
defaultzone=us
loadzone=us

Note: Analog signaling is a bit confusing, it is always the inverse of
the card. FXS cards are signaled with FXO whereas FXO cards are
signaled with FXS. Asterisk talks to these devices as if it was on the
opposite side.

Step 3: Loading kernel drivers

Now you have to load the zaptel module and the related card kernel driver.

Digium drivers table

Card Driver Description

TE410P wct4xxp 4xE1/T1-3.3V PCI
TE405P wct4xxp 4xE1/T1-5V PCI
TDM400P wctdm 4 FXS/FXO
T100P wct1xxp 1 T1

93 | Chapter 4 – Analog and Digital Channels

E100P wctlxxp 1 E1
X100P wcfxo 1 FXO

modprobe zaptel
modprobe wctdm

Step 4: Using the zttest utility

An important utility is zttest. It is used to verify interrupt misses in the
zaptel card. Audio quality problems are often related to interrupt conflicts.

To verify that your zaptel card is not sharing an interrupt with other cards
you can use the below command:

#cat /proc/interrupts

You can verify the number of interrupt misses using the zttest utility
compiled with the zaptel cards. A number below 99.987% indicates possible
problems.

Step 5: Using the ztcfg utility to configure the driver

Zaptel has an unusual system to load the drivers. You first configure the
zaptel.conf, and then you apply those configurations to the zaptel driver
using ztcfg.

In this case, ztcfg is used to configure the signaling for the FX interfaces. To
see the results you can append “-vvvvv” to the command for verbose.

/sbin/ztcfg -vv
Zaptel Configuration
======================
Channel map:
Channel 01: FXS Kewlstart (Default) (Slaves: 01)
Channel 02: FXO Kewlstart (Default) (Slaves: 02)
2 channels configured.

If the channels were loaded successfully, you will see an output similar to
the one shown above. Users often wrongly configure zaptel.conf with
inverted signaling between channels. If this happens, you will see a message
like the one shown below:

ZT_CHANCONFIG failed on channel 1: Invalid argument (22)
Did you forget that FXS interfaces are configured with FXO signalling
and that FXO interfaces use FXS signalling?

 4.6. Asterisk telephony channels setup | 94

After successfully configuring the hardware, you can proceed to Asterisk
configuration.

Step 6: zapata.conf configuration file

It sounds strange, but after configuring the zaptel card, you just configured
the card itself. Zaptel can be used for other purposes like routing and SS7.
To use it with Asterisk it is time to configure Asterisk Zapata channels.
Every channel in Asterisk has to be defined, SIP channels are defined in
sip.conf, TDM channels are defined in zapata.conf. It will create the logical
TDM channels to be used in your dial plan.

signalling=fxs_ks;
group=1; channel group
context=incoming ; context
channel => 1; channel number
signalling=fxo_ks; FXO signaling for FXS interfaces
group=2; channel group
context=extensions; context
channel=> 2 channel number

4.6.2 Example #2 – Two T1 or E1 channels using ISDN

Required steps:

1. TE205P or TE210P installation
2. zaptel.conf file configuration
3. zaptel driver loading
4. zttest utility
5. ztcfg utility
6. zapata.conf file configuration
7. Asterisk load and testing

95 | Chapter 4 – Analog and Digital Channels

Step 1: TE205P installation

P
h
o
to
s
 b
y
 K
a
rl
a
 B
ra
g
a

 Figure 4.8 TE205P Card

To begin with, it is important to understand the differences between the
TE205P and TE210P cards. The TE210P card uses a 64 bits bus powered by
3.3 volts found almost only in server’s motherboards. Be careful if you
specify this board; make sure your hardware supports the 64 bit, 3.3V bus.
The TE205P card uses a 5V PCI which is common in desktop computers. We
have chosen the TE205P interface card with two spans for this example
because it is easier to reduce it to one span card or to expand it to the four
spans card.

Step 2: zaptel configuration file

The configuration of TDM digital cards is a little bit different from the the
configuration of their analog counterparts. First, we will need to configure
the board spans and then the channels. Spans are numbered sequentially
depending on the recognizing order of the boards. In other words when you
have more than one interface card, it is hard to know what span belongs to
each board.

TIP: Configure this normally. After Asterisk loads, take the cable out
of the board and put it back. You will see a message that would look
like “primary span X UP”. I believe this is the simplest procedure to

determine which span belongs to which interface.

 4.6. Asterisk telephony channels setup | 96

Example #1 (2xT1)
span=1,1,0,esf,b8zs
span=2,0,0,esf,b8zs
bchan=1-23
dchan=24
bchan=25-47
dchan=48
defaultzone=us
loadzone=us

Example #2 (2xE1)
span=1,1,0,ccs,hdb3,crc4 # not always necessary, consult Telco.
span=2,0,0,ccs,hdb3,crc4
bchan=1-15, 17-31
dchan=16
bchan=33-47, 49-63
dchan=48
defaultzone=br
loadzone=br

Step 3: Loading kernel drivers

Digium drivers table

Card Driver Description

TE410P wct4xxp 4xE1/T1-3.3V PCI
TE405P wct4xxp 4xE1/T1-5V PCI
TE210P wct2xxp 2XE1/T1-3.3V PCI
TE205P wct2xxp 2xE1/T1-5V PCI
TDM400P Wctdm 4 FXS/FXO
T100P wct1xxp 1 T1
E100P Wctlxxp 1 E1
X100P Wcfxo 1 FXO

modprobe zaptel
modprobe wct2xxp

Step 4: Using zttest to check missing interrupts

You can verify the number of interrupt misses using the zttest utility
compiled with the zaptel cards. A number below 99.987% indicates possible
problems. You will find zttest in /usr/src/asterisk.

#./zttest
Opened pseudo zap interface, measuring accuracy...
99.987793% 100.000000% 100.000000% 100.000000% 100.000000% 100.000000%
100.000000%
100.000000% 100.000000% 100.000000% 100.000000% 100.000000% 100.000000%
100.000000% 100.000000%
100.000000% 100.000000% 100.000000% 100.000000% 99.987793% 100.000000%
100.000000% 100.000000%

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

97 | Chapter 4 – Analog and Digital Channels

100.000000% 100.000000% 100.000000%
--- Results after 26 passes ---
Best: 100.000000 -- Worst: 99.987793 -- Average: 99.999061

Step 5: Using the ztcfg utility

This is the correct output for ztcfg for one fractional E1 (15 ports) span and
two FXO ports.

#./ztcfg –vvvv

Zaptel Configuration
======================

SPAN 1: CCS/HDB3 Build-out: 0 db (CSU)/0-133 feet (DSX-1)

Channel map:

Channel 01: Clear channel (Default) (Slaves: 01)
Channel 02: Clear channel (Default) (Slaves: 02)
Channel 03: Clear channel (Default) (Slaves: 03)
Channel 04: Clear channel (Default) (Slaves: 04)
Channel 05: Clear channel (Default) (Slaves: 05)
Channel 06: Clear channel (Default) (Slaves: 06)
Channel 07: Clear channel (Default) (Slaves: 07)
Channel 08: Clear channel (Default) (Slaves: 08)
Channel 09: Clear channel (Default) (Slaves: 09)
Channel 10: Clear channel (Default) (Slaves: 10)
Channel 11: Clear channel (Default) (Slaves: 11)
Channel 12: Clear channel (Default) (Slaves: 12)
Channel 13: Clear channel (Default) (Slaves: 13)
Channel 14: Clear channel (Default) (Slaves: 14)
Channel 15: Clear channel (Default) (Slaves: 15)
Channel 16: D-channel (Default) (Slaves: 16)
Channel 32: FXS Kewlstart (Default) (Slaves: 32)
Channel 33: FXS Kewlstart (Default) (Slaves: 33)

18 channels configured.

Step 5: zapata.conf channels configuration

Example #1 (2xT1)

callerid=”John Mac Enroe”<(555)555-1111>
switchtype=national
signalling =pri_cpe
group = 1
channel => 1-23
group =2
channel => 25-47

 4.6. Asterisk telephony channels setup | 98

Example #2 (2xE1)

callerid=”Flavio Eduardo” <4830258580>
switchtype=euroisdn
signalling = pri_cpe
group = 1
channel => 1-15;17-31
group =2
channel => 32-46;48-62

4.6.3 Useful commands to verify the channels

zap show status:

vtsvoffice*CLI> zap show status
Description Alarms IRQ bpviol CRC4
Digium Wildcard E100P E1/PRA Card 0 OK 0 0 0
Wildcard X100P Board 1 OK 0 0 0
Wildcard X100P Board 2 RED 0 0 0

pri show span:

vtsvoffice*CLI> pri show span 1
Primary D-channel: 16
Status: Provisioned, Up, Active
Switchtype: EuroISDN
Type: CPE
Window Length: 0/7
Sentrej: 0
SolicitFbit: 0
Retrans: 0
Busy: 0
Overlap Dial: 0
T200 Timer: 1000
T203 Timer: 10000
T305 Timer: 30000
T308 Timer: 4000
T313 Timer: 4000
N200 Counter: 3

zap show channels:

vtsvoffice*CLI> zap show channels
 Chan Extension Context Language MusicOnHold
 pseudo fax en default
 1 entrada en default
 2 entrada en default
 3 entrada en default
 4 entrada en default
 5 entrada en default
 6 entrada en default
 7 entrada en default
 8 entrada en default

99 | Chapter 4 – Analog and Digital Channels

 9 entrada en default
 10 entrada en default
 11 entrada en default
 12 entrada en default
 13 entrada en default
 14 entrada en default
 15 entrada en default
 32 default en default
 33 fax en default

zap show channel x:

vtsvoffice*CLI> zap show channel 1
Channel: 1*CLI>
File Descriptor: 21
Span: 1
Extension:
Dialing: no
Context: entrada
Caller ID: 4832341689
Calling TON: 33
Caller ID name:
Destroy: 0
InAlarm: 0
Signalling Type: PRI Signalling
Radio: 0
Owner: <None>
Real: <None>
Callwait: <None>
Threeway: <None>
Confno: -1
Propagated Conference: -1
Real in conference: 0
DSP: no
Relax DTMF: no
Dialing/CallwaitCAS: 0/0
Default law: alaw

debug pri span x: This command enables a detailed debugging of ISDN
calls. It is a very important command when you think that something is not
correct. You can detect digits being misdialed and other problems. Below we
present the example of a debugging procedure for a successful call. Refer to
this example if you need to compare to a call with problems. One tip is using
core set verbose=0 to receive just the ISDN q.931 messages.

-- Making new call for cr 32833
> Protocol Discriminator: Q.931 (8) len=57
> Call Ref: len= 2 (reference 65/0x41) (Originator)
> Message type: SETUP (5)
> [04 03 80 90 a3]
> Bearer Capability (len= 5) [Ext: 1 Q.931 Std: 0 Info transfer capability:
Speech (0)
> Ext: 1 Trans mode/rate: 64kbps, circuit-mode
(16)

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 4.6. Asterisk telephony channels setup | 100

> Ext: 1 User information layer 1: A-Law (35)
> [18 03 a9 83 81]
> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive
Dchan: 0
> ChanSel: Reserved
> Ext: 1 Coding: 0 Number Specified Channel Type: 3
> Ext: 1 Channel: 1]
> [28 0e 46 6c 61 76 69 6f 20 45 64 75 61 72 64 6f]
> Display (len=14) @h@>[Flavio Eduardo]
> [6c 0c 21 80 34 38 33 30 32 35 38 35 39 30]
> Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI: Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI: Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI: Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI:
ISDN/Telephony Numbering Plan (E.164/E.163) (1)ISDN/Telephony Numbering Plan (E.164/E.163) (1)ISDN/Telephony Numbering Plan (E.164/E.163) (1)ISDN/Telephony Numbering Plan (E.164/E.163) (1)
> Presentation: Presentation permitted, user number > Presentation: Presentation permitted, user number > Presentation: Presentation permitted, user number > Presentation: Presentation permitted, user number
not screened (0) '4830258590']not screened (0) '4830258590']not screened (0) '4830258590']not screened (0) '4830258590']
> [70 09 a1 33 32 32 34 38 35 38 30]
> Called Number (len=11) [Ext: 1 TON: National Number (2) NPI: Called Number (len=11) [Ext: 1 TON: National Number (2) NPI: Called Number (len=11) [Ext: 1 TON: National Number (2) NPI: Called Number (len=11) [Ext: 1 TON: National Number (2) NPI:
ISDN/Telephony Numbering Plan (E.164/E.163) (1) '32248580']ISDN/Telephony Numbering Plan (E.164/E.163) (1) '32248580']ISDN/Telephony Numbering Plan (E.164/E.163) (1) '32248580']ISDN/Telephony Numbering Plan (E.164/E.163) (1) '32248580']
> [a1]fice*CLI>
> Sending Complete (len= 1)
< Protocol Discriminator: Q.931 (8) len=10
< Call Ref: len= 2 (reference 65/0x41) (Terminator)
< Message type: CALL PROCEEDING (2)
< [18 03 a9 83 81]
< Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive
Dchan: 0
< ChanSel: Reserved
< Ext: 1 Coding: 0 Number Specified Channel Type: 3
< Ext: 1 Channel: 1]
-- Processing IE 24 (cs0, Channel Identification)
< Protocol Discriminator: Q.931 (8) len=9
< Call Ref: len= 2 (reference 65/0x41) (Terminator)
< Message type: ALERTING (1)
< [1e 02 84 88]
< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0
Location: Public network serving the remote user (4)
< Ext: 1 Progress Description: Inband
information or appropriate pattern now available. (8)]
-- Processing IE 30 (cs0, Progress Indicator)
< Protocol Discriminator: Q.931 (8) len=64
< Call Ref: len= 2 (reference 5720/0x1658) (Originator)
< Message type: SETUP (5)
< [04 03 80 90 a3]
< Bearer Capability (len= 5) [Ext: 1 Q.931 Std: 0 Info transfer capability:
Speech (0)
< Ext: 1 Trans mode/rate: 64kbps, circuit-mode
(16)
< Ext: 1 User information layer 1: A-Law (35)
< [18 03 a1 83 82]
< Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Preferred
Dchan: 0
< ChanSel: Reserved
< Ext: 1 Coding: 0 Number Specified Channel Type: 3
< Ext: 1 Channel: 2]
< [1c 15 91 a1 12 02 01 bc 02 01 0f 30 0a 02 01 01 0a 01 00 a1 02 82 00]
< Facility (len=23, codeset=0) [0x91, 0xa1, 0x12, 0x02, 0x01, 0xbc, 0x02,
0x01, 0x0f, '0', 0x0a, 0x02, 0x01, 0x01, 0x0a, 0x01, 0x00, 0xa1, 0x02, 0x82,
0x00]
< [1e 02 82 83]

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

101 | Chapter 4 – Analog and Digital Channels

< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0
Location: Public network serving the local user (2)
< Ext: 1 Progress Description: Calling
equipment is non-ISDN. (3)]
< [6c 0c 21 83 34 38 33 32 32 34 38 35 38 30]
< Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI:
ISDN/Telephony Numbering Plan (E.164/E.163) (1)
< Presentation: Presentation allowed of network
provided number (3) '4832248580']
< [70 05 c1 38 35 38 30]
< Called Number (len= 7) [Ext: 1 TON: Subscriber Number (4) NPI:
ISDN/Telephony Numbering Plan (E.164/E.163) (1) '8580']
< [a1]
< Sending Complete (len= 1)
-- Making new call for cr 5720
-- Processing Q.931 Call Setup
-- Processing IE 4 (cs0, Bearer Capability)
-- Processing IE 24 (cs0, Channel Identification)
-- Processing IE 28 (cs0, Facility)
Handle Q.932 ROSE Invoke component
-- Processing IE 30 (cs0, Progress Indicator)
-- Processing IE 108 (cs0, Calling Party Number)
-- Processing IE 112 (cs0, Called Party Number)
-- Processing IE 161 (cs0, Sending Complete)
> Protocol Discriminator: Q.931 (8) len=10
> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)
> Message type: CALL PROCEEDING (2)
> [18 03 a9 83 82]
> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive
Dchan: 0
> ChanSel: Reserved
> Ext: 1 Coding: 0 Number Specified Channel Type: 3
> Ext: 1 Channel: 2]
> Protocol Discriminator: Q.931 (8) len=14
> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)
> Message type: CONNECT (7)
> [18 03 a9 83 82]
> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive
Dchan: 0
> ChanSel: Reserved
> Ext: 1 Coding: 0 Number Specified Channel Type: 3
> Ext: 1 Channel: 2]
> [1e 02 81 82]
> Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0
Location: Private network serving the local user (1)
> Ext: 1 Progress Description: Called equipment
is non-ISDN. (2)]
< Protocol Discriminator: Q.931 (8) len=5
< Call Ref: len= 2 (reference 5720/0x1658) (Originator)
< Message type: CONNECT ACKNOWLEDGE (15)
< Protocol Discriminator: Q.931 (8) len=9
< Call Ref: len= 2 (reference 65/0x41) (Terminator)
< Message type: PROGRESS (3)
< [1e 02 84 82]
< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0
Location: Public network serving the remote user (4)
< Ext: 1 Progress Description: Called equipment
is non-ISDN. (2)]
-- Processing IE 30 (cs0, Progress Indicator)

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 4.7 Zapata.conf configuration options | 102

< Protocol Discriminator: Q.931 (8) len=5
< Call Ref: len= 2 (reference 65/0x41) (Terminator)
< Message type: CONNECT (7)
> Protocol Discriminator: Q.931 (8) len=5
> Call Ref: len= 2 (reference 65/0x41) (Originator)
> Message type: CONNECT ACKNOWLEDGE (15)
NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Active, peerstate Connect
Request
> Protocol Discriminator: Q.931 (8) len=9
> Call Ref: len= 2 (reference 65/0x41) (Originator)
> Message type: DISCONNECT (69)
> [08 02 81 90]
> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:
Private network serving the local user (1)
> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]
< Protocol Discriminator: Q.931 (8) len=5
< Call Ref: len= 2 (reference 65/0x41) (Terminator)
< Message type: RELEASE (77)
NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Release
Request
> Protocol Discriminator: Q.931 (8) len=9
> Call Ref: len= 2 (reference 65/0x41) (Originator)
> Message type: RELEASE COMPLETE (90)
> [08 02 81 90]
> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:
Private network serving the local user (1)
> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]
NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Null
NEW_HANGUP DEBUG: Destroying the call, ourstate Null, peerstate Null
< Protocol Discriminator: Q.931 (8) len=9
< Call Ref: len= 2 (reference 5720/0x1658) (Originator)
< Message type: DISCONNECT (69)
< [08 02 82 90]
< Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:
Public network serving the local user (2)
< Ext: 1 Cause: Unknown (16), class = Normal Event (1)]
-- Processing IE 8 (cs0, Cause)
NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Disconnect Indication,
peerstate Disconnect Request
> Protocol Discriminator: Q.931 (8) len=9
> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)
> Message type: RELEASE (77)
> [08 02 81 90]
> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:
Private network serving the local user (1)
> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]
< Protocol Discriminator: Q.931 (8) len=5
< Call Ref: len= 2 (reference 5720/0x1658) (Originator)
< Message type: RELEASE COMPLETE (90)
NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Null
NEW_HANGUP DEBUG: Destroying the call, ourstate Null, peerstate Null

4.7 ZAPATA.CONF CONFIGURATION OPTIONS

103 | Chapter 4 – Analog and Digital Channels

There are several options in the zapata.conf file. A description of all options
would be boring and counterproductive. Let us detail the main option groups
available for easy understanding.

4.7.1 General options (channel independent)

context: Defines the incoming context.

context=default

channel: Defines channel or channel range. Each channel definition will
inherit options defined before the declaration. Channels can be identified
individually or in the same line with comma separation. Ranges can be
defined using “-“.

Channel=>1-15
Channel=>16
Channel=>17,18

group: Allows channels to be treated as a group. If you dial a group number
instead of channel number, the first channel available is used. If channels
are phones, when you call a group all phones will ring simultaneously. With
commas, you can specify more than one group for the same channel.

group=1
group=3,5

language: Turns on the internationalization and configures a language. This
feature will configure system messages for a specific language. English is
the only language with complete prompts available from the standard
installation.

musiconhold: Select music on hold class

4.7.2 ISDN options

switchtype: Is dependent on the PBX or switch used. In Europe and Latin
America, EuroISDN is common. In the USA the most commonly used is
National or manufacturer-dependent PBX.

5ess: Lucent 5ESS
euroisdn: EuroISDN
national: National ISDN
dms100: Nortel DMS100

 4.7 Zapata.conf configuration options | 104

4ess: AT&T 4ESS
Qsig: Q.SIG

switchtype = EuroISDN

pridialplan: Necessary for some switches that require a dialplan
specification. This option is ignored for most equipment. Valid options are
private, national, international, and unknown.

pridialplan = unknown

prilocaldialplan: Necessary for some switches, usually EuroISDN.

prilocaldialplan = unknown

overlapdial: Overlap dialing is used when you pass digits after the
connection is established, usually block mode numbering (overlapdial=no) or
digit mode (overlapdial=yes). Block mode is commonly used by operators.

signaling: Configures signaling type for the subsequentchannels. These
parameters should correspond to the ones in the zaptel.conf file. Correct
choices are based on the available channel. For ISDN you could choose two
types.

• pri_cpe: Used when the device is a CPE (Customer Promises
Equipment) and usually referred as cpe, client, user or slave. This is
the simplest and most used form of signaling. Sometimes, when you
try to connect to a private PBX, it is common practice that the PBX be
configured as a cpe too. In this case, use pri_net signaling in Asterisk.

• pri_net: Used when Asterisk connects to a private PBX configured as

CPE. The signaling is often referred as Host, Master or Network.

4.7.3 CallerID options

There are many CallerID options. Some can be disabled although most are
enabled by default.

usecallerid: Enables or disables the CallerID transmission for the
subsequent channels (Yes/No).

Note: If your system needs two rings before answering, try disabling
this feature. It should answer immediately.

105 | Chapter 4 – Analog and Digital Channels

hidecallerid: It hides the CallerID. (Yes/No)

calleridcallwaiting: enables CallerID receiving during a call waiting
indication. (Yes/No)

callerid: Configures a CallerID string for a specific channel. The caller can
be configured with “asreceived” in trunk interfaces to pass the CallerID
forward.

callerid = "Flavio Eduardo Gonçalves" <48 30258500>

Note: Only PRI lines can transmit callerID. Most Telcos mandate that
you configure your correct callerID. If you do not pass the CallerID
often, you should not be able to dial out over the Telco. You will

receive calls even with an incorrect CallerID.

4.7.4 Audio quality options

These options adjust certain Asterisk parameters that affect audio quality in
the Zapata channels.

echocancel: Disables or enables echo cancellation. You should keep this
feature enabled. It accepts “yes” or the number of taps.

Explanation: How echo canceling works?

Most echo canceling algorithms operate by generating multiple copies of a
received signal, each delayed by a small interval. This little flow is named
“tap”. The number of taps determines the echo delay that can be cancelled.
These copies are delayed, adjusted and subtracted from the original signal.
The trick is to adjust the delayed signal exactly to what is necessary to
remove echo.
echocancelwhenbridged: Enables or disables the echo canceller during a
pure TDM call. This is usually not necessary.

rxgain: Adjusts the audio reception gain to either increase or decrease
reception volume (-100% to 100%).

txgain: Adjusts audio transmission gain to either increase or decrease the
transmission volume (-100% to 100%).

Example:

echocancel=yes

 4.7 Zapata.conf configuration options | 106

echocancelwhenbridged=yes
txgain=-10%
rxgain=10%

4.7.5 Billing options

These options change the way call information is recorded in the CDR (call
detail records) database.

amaflags: Configures the AMA flags affecting categorization of CDR. It
accepts these values:

• billing
• documentation
• omit
• default

accountcode: Configures an account code for a specific channel. It can
contain any alphanumeric value, usuallyI the department or user name.

accountcode=finance
amaflags=billing

4.7.6 Call progress options

These items are used to emulate an existing signaling in digital lines to
monitor call progress. Since analog channels do not pass these options, they
need to be emulated for them.

busydetect: Asterisk analyzes the audio coming through the line during a
call or a dial attempt in order to recognize busy signals in analog lines like
FXO, FXS e E+M.

callprogress: Enable this feature if you want Asterisk to monitor the call
state and detect busy, ring and active line.

callprogress=no
busydetect=yes

4.7.7 Options for phones connected to FXS interfaces

Adsi (Analog Display Services Interface): It is a set of telecom standards. It
was used by some telcos to offer services such as ticket buying, for
example.

107 | Chapter 4 – Analog and Digital Channels

cancallforward: Enables or disables call forwarding (*72 to enable and *73
to disable).

immediate: In immediate mode, instead of providing adial tone, the
channel jumps immediately to the “s” extension in the defined context. It is
used to create hotlines.

threewaycalling: Enables or disables three-way conferencing.

transfer: Enables or disables transfers using the flash key. To use this
option, threewaycalling has to be set as “yes”.

mailbox: Warns the user about voicemail messages available for him/her. It
can be an audible sign or a visual indicator (in case the telephone supports
this feature). The argument is the mailbox number.

4.7.8 Options for FXO trunks.

cidsignalling: CallerID signaling for analog lines

• bell = bell202 as used in the USA

• v23 = v23 as used in the United Kingdom

• dtmf = DTMF as used in Denmark, the Netherlands, and Brazil

cidsignalling=bell

cidstart: It defines what starts the CallerID, polarity reversal, or ring.

• ring
• polarity

cidstart=ring

4.8 MFC/R2 CONFIGURATION

MFC/R2 is used in several countries in Latin America, China, Africa, and
some European countries. ISDN is superior and preferred if you have it
available in your area.

4.8.1 Understanding the problem

The board used to signal MFC/R2 is the same used to signal ISDN. Digium
has an incomplete implementation of R2 signaling inside the Zapata channel.

 4.8 MFC/R2 configuration | 108

Unfortunately according to Mark Spencer, R2 in zapata is far from being
implemented. To use MFC/R2 signaling you will have to use the driver
developed by Steve Underwood and available at www.soft-switch.org.
Recently, some manufacturers released telephony interface cards with R2
support in DSPs (in the USA, Aculab; in Brazil, khomp and digivoice can be
used). In this chapter, we will describe how to implement MFC/R2 using the
unicall channel driver.

4.8.2 Understanding the MFC/R2 protocol

The MFC/R2 protocol combines in-band signaling. Address signaling is
forwarded using a set of tones and out-of-band signaling and channel
signaling is transmitted in the timeslot 16.

Line Signaling (ITU-T Q.421)

In timeslot 16, each voice channel uses four ABCD bits to signal their states
and call controlling. Bits C and D are rarely used. In some countries, they
can be used for metering (pulse metering for billing). In a normal
conversation, we have the two sides operating, the caller side and the called
side. Signaling from the caller side is referred as forward signaling. The
called side uses backward signaling. We will designate Af and Bf for
forwarding signaling and Ab and Bb for backward signaling.

State ABCD forward ABCD backward
Idle/Released 1001 1001
Seized 0001 1001
Seize Ack 0001 1101
Answered 0001 0101
ClearBack 0001 1101
ClearFwd (Before clear-back) 1001 0101
ClearFwd (disconnection confirmation) 1001 1001
Blocked 1001 1101

MFC/R2 was defined by the ITU. Unfortunately, several countries customized
the standard to their own needs. Therefore, there are variations in standard
between countries.

Inter-register signals (ITU-T Q.441)

MFC/R2 signaling uses a combination of two tones. The table below shows
the ITU standard.

Signal group I (Forward)

Signal Description Forward signal

109 | Chapter 4 – Analog and Digital Channels

1 Digit 1 I-1
2 Digit 2 I-2
3 Digit 3 I-3
4 Digit 4 I-4
5 Digit 5 I-5
6 Digit 6 I-6
7 Digit 7 I-7
8 Digit 8 I-8
9 Digit 9 I-9
10 Digit 0 I-10
11 Country code indicator, outgoing half-echo suppressor required I-11
12 Country code indicator, no echo suppressor required I-12
13 Test call indicator I-13
14 Country code indicator, outgoing half-echo suppressor inserted I-14
15 Not used I-15

Signal group II (Forward)

Signal Description Forward signal

1 Subscriber without priority II-1
2 Subscriber with priority II-2
3 Maintanance equipment II-3
4 Spare II-4
5 Operator II-5
6 Data Transmission II-6
7 Subscriber or operator without forward transfer facility II-7
8 Data transmission II-8
9 Subscriber with priority II-9
10 Operator with forward transfer facility II-10
11 Spare II-11
12 Spare II-12
13 Spare II-13
14 Spare II-14
15 Spare II-15

Signal group A (backwards)

Signal Description Backwards signal
1 Send next digit (n+1) A-1
2 Send last but one digit (n-1) A-2
3 Address complete, changeover to reception of Group B signals A-3
4 Congestion in the national network A4
5 Send calling party’s category A5
6 Address complete, charge, set-up speech conditions A6
7 Send last but two digit (n-2) A7
8 Send last but three digit (n-3) A8
9 Spare A9
10 Spare A10
11 Send country code indicator A11
12 Send language or discrimination digit A12
13 Send nature of circuit A13
14 Request information on use of echo suppressor A14
15 Congestion in an international exchange or at its output A15

 4.8 MFC/R2 configuration | 110

Signal group B (backwards)

Signal Description Signal

backwards
1 Spare B1
2 Send special information tone B2
3 Subscriber’s line busy B3
4 Congestion (after changeover group A to B) B4
5 Unallocated number B5
6 Subscriber’s line free, charge B6
7 Subscriber’s line free, no charge B7
8 Subscriber’s line out of order B8
9 Spare B9
10 Spare B10
11 Spare B11
12 Spare B12
13 Spare B13
14 Spare B14
15 Spare B15

111 | Chapter 4 – Analog and Digital Channels

4.8.3 MFC/R2 sequence

Extension

Asterisk Telco

Telco
Extension

Off-Hook

Dial Tone

Digit sent

Silence

10 Idle 10

10 Idle 10

10 Idle 10

10 Idle 10

00 Seized

 Seize Ack 11

Dialing first digit (I-X)

Send next digit (A-1)

Dialing second digit (I-X)

send next digit (A-1)
...

Discado last digit (I-X)

Address complete (A-3)

no priority subscriber (II-1)1

Retorno da Campainha

Ring

Off-Hook

Free user, meter (B-6)2

Answer 01

Conversation

On-hook

Clearback 11

Silence 10 Clear Forward

On-hook

In-band signaling 16th channel signaling Audible signaling

The sequence above illustrates a call originating from an Asterisk’s extension
to a terminal in the PSTN. The PSTN drops the call and ends the
communication.

4.8.4 The unicall driver

The unicall driver was developed by Steve Underwood and has a GPL license
agreement. It is not part of Asterisk, is not supported by Digium, and is very
similar to zaptel channel.

The resources used by a Zapata channel are:

PSTN->ZAPTEL Card>ZAPTEL Driver->LIBPRI->CHAN_ZAP->ASTERISK

 4.8 MFC/R2 configuration | 112

In the unicall driver, the sequence is a little bit different.

PSTN->PLACA ZAPTEL->DRIVER ZAPTEL->LIMFCR2->LIBUNICALL->CHAN_UNICALL->ASTERISK

4.8.5 MFC/R2 configuration

Assuming now that the installation and configuration of the zaptel driver is
already complete, let us start with the zaptel.conf configuration. The digits
after the channels put the channel in blocked mode (verify what are the
digits for blocked mode in your country the most common are 1101 and
1001).

MFC/R2 usually does not use CRC4
span=1,1,0,cas,hdb3
cas=1-15:1101 ;Depends on the R2 variant (ABCD bits of blocked mode)
dchan=16
cas=17-31:1101
span-2,0,0,cas,hdb3
cas=33-47:1101
dchan=48
cas=49-63:1101
loadzone=br
defaultzone=br

To put bits in blocked mode, it is important to signal to the operator that the
server is not ready. The card is connected, but not ready to receive calls.

Execute ZTCFG.

bash# ztcfg -v

Zaptel Configuration
==================

SPAN 1: CAS/HDB3 Build-out: 0 db (CSU)/0-133 feet (DSX-1)
SPAN 2: CAS/HDB3 Build-out: 0 db (CSU)/0-133 feet (DSX-1)

62 channels configured.

4.8.6 Libraries installation and configuration

To install R2, it is necessary to download and compile the following libraries:
spandsp, libmfcr2, and libunicall, available at ftp.soft-switch.org.

spandsp

113 | Chapter 4 – Analog and Digital Channels

#cd /usr/src
#wget http://www.soft-switch.org/downloads/spandsp/spandsp-0.0.2pre25/spandsp-
0.0.2pre25.tar.gz
#tar –xzvf spandsp-0.0.2pre25.tar.gz
#cd spandsp-0.0.2
./configure --prefix=/usr
#make
#make install

libmfcr2

#cd /usr/src
#wget http://www.soft-switch.org/downloads/unicall/unicall-0.0.3pre9/libmfcr2-
0.0.3.tar.gz
#tar –xzvf libmfcr2-0.0.3.tar.gz
#cd libmfcr2-0.0.3.tar.gz
./configure --prefix=/usr
#make
#make install

libsupertone

#cd /usr/src
#wget http://www.soft-switch.org/downloads/unicall/unicall-
0.0.3pre9/libsupertone-0.0.2.tar.gz
#tar –xzvf libsupertone-0.0.2.tar.gz
#cd libsupertone-0.0.2
./configure --prefix=/usr
#make
#make install

libunicall

#cd /usr/src
#wget http://www.soft-switch.org/downloads/unicall/unicall-
0.0.3pre9/libunicall-0.0.3.tar.gz
#tar –xzvf libunicall-0.0.3.tar.gz
#cd libunicall-0.0.3.tar.gz
./configure --prefix=/usr
#make
#make install

4.8.7 Integrating Unicall to Asterisk

Download chan_unicall related files.

#wget http://www.soft-switch.org/downloads/unicall/unicall-0.0.3pre9/asterisk-
1.1.x/chan_unicall.c
#wget http://www.soft-switch.org/downloads/unicall/unicall-0.0.3pre9/asterisk-
1.1.x/channels_Makefile.patch
#wget http://www.soft-switch.org/downloads/unicall/unicall-0.0.3pre9/asterisk-
1.1.x/unicall.conf.sample

 4.8 MFC/R2 configuration | 114

Copy the following file to Asterisk’s compilation structure.

cp chan_unicall.c channels_makefile.patch /usr/src/asterisk/channels

Apply the patch to the Asterisk channels.

#cd /usr/src/asterisk/channels
#patch < channels_makefile.patch

Next, recompile Asterisk.

cd /usr/src/asterisk/
make clean
make
make install

4.8.8 Unicall channel configuration

You need to configure the unicall channels in the same way you had to do it
with the Zapata channels. Edit the unicall.conf file, syntax and attributes are
very similar to zapata.conf.

;
; Unicall telephony channel driver
;
; Sample configuration file
;
; $Id: unicall.conf.sample,v 1.1 2005/05/28 11:17:02 steveu Exp $
;
[channels]
;
; Default language
;
language=br
;
; Default context
;
context=default
;
; Whether or not to use caller ID
;
usecallerid=yes
;
; Whether or not to hide outgoing caller ID
;
hidecallerid=no
;
; Whether or not restrict outgoing caller ID (will be sent as ANI only, not available for the
user)
; Mostly use with FXS ports
;
;restrictcid=no
;
; Support Caller*ID on Call Waiting
;
callwaitingcallerid=yes
;
; Support three-way calling

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

115 | Chapter 4 – Analog and Digital Channels

;
threewaycalling=yes
;
; Support flash-hook call transfer (requires three way calling)
;
transfer=yes
;
; Support call forward variable
;
cancallforward=yes
;
; Whether or not to support Call Return (*69)
;
callreturn=yes
;
; Enable echo cancellation
; Use either "yes", "no", or a power of two from 32 to 256 if you wish
; to actually set the number of taps of cancellation.
;
echocancel=yes
;
; Generally, it is not necessary (and in fact undesirable) to echo cancel
; when the circuit path is entirely TDM. You may, however, reverse this
; behavior by enabling the echo cancel during pure TDM bridging below.
;
echocancelwhenbridged=yes
;
; In some cases, the echo canceller doesn't train quickly enough and there
; is echo at the beginning of the call. Enabling echo training will cause
; asterisk to briefly mute the channel, send an impulse, and use the impulse
; response to pre-train the echo canceller so it can start out with a much
; closer idea of the actual echo. Value may be "yes", "no", or a number of
; milliseconds to delay before training (default = 400)
;
;echotraining=yes
;echotraining=800
;
; If you are having trouble with DTMF detection, you can relax the
; DTMF detection parameters. Relaxing them may make the DTMF detector
; more likely to have "talkoff" where DTMF is detected when it
; shouldn't be.
;
;relaxdtmf=yes
;
; You may also set the default receive and transmit gains (in dB)
;
rxgain=0.0
txgain=0.0
;
; Logical groups can be assigned to allow outgoing rollover. Groups
; range from 0 to 31, and multiple groups can be specified.
;
group=1
;
; Ring groups (a.k.a. call groups) and pickup groups. If a phone is ringing
; and it is a member of a group which is one of your pickup groups, then
; you can answer it by picking up and dialing *8#. For simple offices, just
; make these both the same
;
callgroup=1
pickupgroup=1
;
; Specify whether the channel should be answered immediately or
; if the simple switch should provide dialtone, read digits, etc.
;
immediate=no
;
; CallerID can be set to "asreceived" or a specific number
; if you want to override it. Note that "asreceived" only
; applies to trunk interfaces.
;
callerid=asreceived

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 4.8 MFC/R2 configuration | 116

;
; AMA flags affects the recording of Call Detail Records. If specified
; it may be 'default', 'omit', 'billing', or 'documentation'.
;
;amaflags=default
;
; Channels may be associated with an account code to ease
; billing
;
;accountcode=lss0101
;
; For fax detection, uncomment one of the following lines. The default is *OFF*
;
;faxdetect=both
;faxdetect=incoming
;faxdetect=outgoing
;faxdetect=no
;
; Select which class of music to use for music on hold. If not specified
; then the default will be used.
;
;musiconhold=default
;
;protocolclass=fx
;protocolvariant=ls,hk
;protocolend=co
;group = 3
;channel => 280-283

;protocolclass=fx
;protocolvariant=ls,hk
;protocolend=cpe
;group = 4
;channel => 284

;
; Set up E1s 2 and 3 to work in China MFC/R2 mode. A maximum of 20 ANI digits
; will be accepted. 7 DNIS digits are expected. MFC/R2 uses the E1s in CAS mode,
; so time slot 16 of each E1 must be skipped when allocating the channels.
;
;loglevel=255
protocolclass=mfcr2
; For MFC/R2 an optional fourth parameter for the variant is composed of bits,
; which must be OR'ed together, as follows:
;
; 1: Play progress tones. These are usually handled by the far end switch, but
; may need to be sent as audio through the channel on some systems.
; 2: Play disconnect tone. The disconnect tone is usually handled by the far end
; switch, but may need to be sent as audio through the channel on some systems.
; 4: Play ringback tone. The ringback tone is usually generated by something
; downstream of the MFC/R2 software, but may need to be generated here on some
; systems.
; 8: Get ANI after DNIS. The usual behaviour for incoming calls is to get the
; calling party category and the ANI as soon as possible, and to get the DNIS
; afterwards. This doesn't work on all systems, so the option to reverse the
; behaviour is provided.
; 16: Use immediate accept. Most variants of MFC/R2 offer a way to go directly to
; the call accepted state, bypassing the use of group B and II tones. This option
; enables the use of that feature for incoming calls.
;
protocolvariant=br,20,4
protocolend=cpe
group = 1
channel => 1-15
;skip time slot 16
channel => 17-31
channel => 33-47
;skip time slot 48
channel => 49-63

117 | Chapter 4 – Analog and Digital Channels

Let us take a closer look at the configurations described above:

protocolvariant=country,ANI-digits,DNIS-digits

Country codes table:

Argentina "ar"
Bahrain "bh"
Bolivia "bo"
Brazil "br"
Chile "cl"
China "cn"
Colombia landlines "co-land"
Colombia cellular "co-cell"
Czech "cz"
Honduras "hn"
India "in"
Indonesia "id"
Korea "kr"
Malaysia "my"
Mexico "mx"
Panama "pa"
Philipinnes "ph"
Singapore "sg"
Thailand "th"

ANI and DNIS

ANI or Automatic Number Identification is the caller’s number. DNIS or
Dialed Number Identification Service is the number called or, in other words,
the number dialed.

When a call is received, usually the last four numbers are passed to the PBX
in a process named DID (direct inward dial). The ANI number is actually the
CallerID.

ANI will have the caller’s extension when dialing. DNIS in this case will
contain the call destination.

It is important that these parameters be configured correctly. Some switches
send just the last four digits while others send the complete number.

In the example below we will use DNIS=4 and ANI=20. In other words, we
will receive just the last four digits identifying the extension. The CallerID
may have 20 digits.

protocolvariant=br,20,4

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 4.8 MFC/R2 configuration | 118

4.8.9 Unicall Troubleshooting

Start Asterisk with verbose 15.

asterisk –vvvvvvvvvvvvvvv&
asterisk – r

While Asterisk is loading, you will see messages similar to the ones shown
below:

Apr 11 06:45:07 WARNING[24876]: Unicall/1 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: Asterisk Ready.
 -- Unicall/1 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/1 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/1 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/2 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/2 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/2 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/2 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/3 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/3 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/3 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/3 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/4 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/4 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/4 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/4 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/5 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/5 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/5 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/5 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/6 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/6 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/6 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/6 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/7 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/7 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/7 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/7 local unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/8 event Far end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/8 far unblocked
Apr 11 06:45:07 WARNING[24876]: Unicall/8 event Local end unblocked
Apr 11 06:45:07 VERBOSE[24876]: -- Unicall/8 local unblocked

This message indicates that channels passed from the blocked state (11) to
the idle state (10). Local end unblocked means that the Asterisk R2 channel
is unblocked and ready to work. Far end unblocked means that the Telco is
ready to work. If one side remains blocked, the line can be not activated.

UC show channels: You can show channel states using:

vtsvoffice*CLI>UC show channels
Channel Extension Context Status Language MusicOnHold
 1 e1-incoming Idle default
 2 e1-incoming Idle default
 3 e1-incoming Idle default
 4 e1-incoming Idle default
 5 e1-incoming Idle default
 6 e1-incoming Idle default

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

119 | Chapter 4 – Analog and Digital Channels

All channels should be in the “idle” state. If the console command did not
appear, check unicall installation.

To debug a call using MFC/R2 you will need to edit unicall.conf file and take
off the “;” before “loglevel=255” line and restart Asterisk. Use verbose “0” to
have just the unicall debugging without other messages. Below is an
example that you can use to compare to your call. The call below was
completed and released normally. The callerID (ANI) is 1149295000 and the
dialed number (DNIS) is 0154830258576.

Apr 12 08:33:49 WARNING[4417]: MFC/R2 UniCall/1 Call control(1)
Apr 12 08:33:49 WARNING[4417]: MFC/R2 UniCall/1 Make call
Apr 12 08:33:49 WARNING[4417]: MFC/R2 UniCall/1 Making a new call with CRN 32769
Apr 12 08:33:49 WARNING[4417]: MFC/R2 UniCall/1 0001 -> [1/ 1/Idle /Idle]
Apr 12 08:33:49 WARNING[4417]: Unicall/1 event Dialing
Apr 12 08:33:50 WARNING[4417]: MFC/R2 UniCall/1 <- 1101 [1/ 40/Seize /Idle]
Apr 12 08:33:50 WARNING[4417]: MFC/R2 UniCall/1 0 on -> [2/ 40/Group I /Idle]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 0 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 1 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 1 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:51 WARNING[4417]: MFC/R2 UniCall/1 5 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 5 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 4 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 4 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 Calling party category 0x0
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 1 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /Category]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 1 off -> [2/ 40/Group I /Category]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /Category]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 1 on -> [2/ 40/Group I /Category]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:52 WARNING[4417]: MFC/R2 UniCall/1 1 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 1 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 1 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 4 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 4 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 9 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 9 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:53 WARNING[4417]: MFC/R2 UniCall/1 2 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 2 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 9 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 9 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 5 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 5 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:54 WARNING[4417]: MFC/R2 UniCall/1 0 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 0 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 0 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 4.9 ZAP channel format. | 120

Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 0 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 0 on -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 0 off -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 E on -> [2/ 40/Group I /ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /End of ANI]
Apr 12 08:33:55 WARNING[4417]: MFC/R2 UniCall/1 E off -> [2/ 40/Group I /End of ANI]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /End of ANI]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 8 on -> [2/ 40/Group I /End of ANI]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 8 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 3 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 3 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 0 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 0 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:56 WARNING[4417]: MFC/R2 UniCall/1 2 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 2 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 5 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 5 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 8 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 8 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:57 WARNING[4417]: MFC/R2 UniCall/1 5 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 5 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 7 on -> [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 <- 1 on [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 7 off -> [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 <- 1 off [2/ 40/Group I /DNIS]
Apr 12 08:33:58 WARNING[4417]: MFC/R2 UniCall/1 6 on -> [2/ 40/Group I /DNIS]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 <- 3 on [2/ 40/Group I /DNIS]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 6 off -> [2/ 40/Group I /DNIS]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 <- 3 off [2/ 40/Group I /DNIS]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 1 on -> [2/ 40/Group I /DNIS]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 <- 5 on [2/ 40/Group II /Category]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 1 off -> [2/ 40/Group II /Category]
Apr 12 08:34:01 WARNING[4417]: MFC/R2 UniCall/1 <- 5 off [2/ 40/Group II /Category]
Apr 12 08:34:01 WARNING[4417]: Unicall/1 event Alerting
Apr 12 08:34:04 WARNING[4417]: MFC/R2 UniCall/1 <- 0101 [1/ 200/Await answer /Category]
Apr 12 08:34:04 WARNING[4417]: Unicall/1 event Connected
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 <- 1101 [1/ 400/Answered /Category]
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 Far end disconnected(cause=Normal Clearing [16]) - state
0x400
Apr 12 08:34:25 WARNING[4417]: Unicall/1 event Far end disconnected
Apr 12 08:34:25 WARNING[4417]: CRN 32769 - far disconnected cause=Normal Clearing [16]
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 Call control(6)
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 Drop call(cause=Normal Clearing [16])
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 Clearing fwd
Apr 12 08:34:25 WARNING[4417]: MFC/R2 UniCall/1 1001 -> [1/ 800/Clear back /Category]
Apr 12 08:34:28 NOTICE[4417]: Peer '2222' is now TOO LAGGED!
Apr 12 08:34:30 WARNING[4417]: MFC/R2 UniCall/1 <- 1001 [1/ 800/Clear fwd D /Idle]
Apr 12 08:34:30 WARNING[4417]: MFC/R2 UniCall/1 Call disconnected(cause=Normal Clearing [16]) - state 0x800
Apr 12 08:34:30 WARNING[4417]: Unicall/1 event Drop call
Apr 12 08:34:30 WARNING[4417]: MFC/R2 UniCall/1 Call control(7)
Apr 12 08:34:30 WARNING[4417]: MFC/R2 UniCall/1 Release call
Apr 12 08:34:30 WARNING[4417]: MFC/R2 UniCall/1 Destroying call with CRN 32769
Apr 12 08:34:30 WARNING[4417]: Unicall/1 event Release call

4.9 ZAP CHANNEL FORMAT.

ZAP channels use the following format in the dial plan:

121 | Chapter 4 – Analog and Digital Channels

Zap/[g]<identifier>[c][r<cadence>]

<identifier>- Physical channel numeric identifier
[g] – Group identifier
[c] – Answer confirmation. A number is not considered until the callee press
“#”
[r] – customized ringing
[cadence] Integer from 1 to 4

Examples:

zap/2 - channel 2
zap/g1 - First available channel in group 1

4.10 UNICALL CHANNEL FORMAT

Unicall channels use the following format in the dial plan:

Unicall/[g]<identifier>[c][r<cadence>]

<identifier>- Physical channel numeric identifier
[g] – Group identifier
[c] – Answer confirmation; A number is not considered until the callee press
“#”
[r] – customized ringing
[cadence] Integer from 1 to 4

Example:

Unicall/2 - Channel 2
Unicall/g1 - First available channel in group 1

4.11 QUESTIONS

1 – Supervision signaling includes:

a) On-hook
b) Off-hook
c) Ringing
d) Dtmf

2 – Information signaling includes:

a) Dtmf
b) Dial tone
c) Invalid number
d) Ringback

 4.11 Questions | 122

e) Congestion
f) Busy
g) Pulse

3 – There are two types of analog interfaces available for Asterisk, FXS and
FXO. Mark the correct answers.

a) FXS – Foreign Exchange Station can be connected directly to the
company PBX extension port.

b) FXO – Foreign Exchange Office can be connected to the public
switched telephony network.

c) FXS – Foreign Exchange Station provides dial tone and can be
connected to a standard analog phone.

4 – About T1 and E1 signaling, mark the correct affirmations.

a) E1 is a digital signaling that use 1.544 Mbits/s bandwidth
b) T1 is often used in Latin America and Europe
c) It is possible to use 30 channels for an E1 trunk and 23 channels for a

T1 trunk in an ISDN PRI configuration.
d) ISDN is an example of CCS signaling while MFC/R2 is an example of

CAS signaling.

5 – MFC/R2 signaling is supported by a third-party driver developed by
Steve Underwood available in www.soft-switch.org.

a) False
b) True

6 – To configure zaptel hardware you should first edit the ______ file:

a) zaptel.conf
b) zapata.conf
c) unicall.conf
d) serial.conf

7 – The zaptel hardware is independent of Asterisk. In the zapata.conf, you
configure Asterisk channels and not the hardware itself.

a) False
b) True

123 | Chapter 4 – Analog and Digital Channels

8 – When using a TDM400 with a ___ port is necessary to connect the PC
power source to the card using a specific connector (similar to the used to
power the hard disk).

a) FXO
b) FXS
c) E+M
d) ISDN

9 – Echo, pops and noise in a zaptel card are often related to the:

a) Asterisk compilation
b) Cable problems
c) PCI Interrupt conflicts
d) Electromagnetic interference

10 – R2 signaling defined by ITU is standardized in the whole world and
there are no variations to the standard county dependent.

a) True
b) False

Voice over IP with Asterisk

In this chapter, we will learn the basics of VoIP applied to the Asterisk
scenario.

5.1 OBJECTIVES

 Figure 5.1 Objectives

5.2 INTRODUCTION

Voice over IP is growing quickly in the telephony market. The convergence
paradigm is changing the way we communicate, reducing costs and
enhancing the way we trade information. Voice is just the beginning of the
full multimedia communication era including voice, video, and presence.
Fiber optics will be one of the best substitutes for gasoline. In the future, we
won’t transport people to the work, we will transport work to people,
because it is cleaner, faster, and cheaper. VoIP is just the beginning of this
revolution. Right now, the VoIP concept is being extended to IMS (Internet
Multimedia Systems), and you will hear much more about IMS in the near
future.

Chapter 5

125 | Chapter 5 – Voice over IP with Asterisk

5.3 VOIP BENEFITS

5.3.1 Convergence

The main benefit of VoIP is the combination of data and voice networks to
reduce costs (convergence). However, analyzing just voice minute costs may
not be enough to justify the adoption of VoIP. Minute costs sold by telcos are
quickly becoming cheaper and is important to consider this before adopting
VoIP.

5.3.2 Infrastructure costs

On the other hand, the use of a single network infrastructure reduces the
costs associated with additions, removals, and changes. The pervasive IP
brings VoIP technology to several new devices like cell phones, PDAs,
embedded systems, and laptops.

5.3.3 Open Standards

Finally, the open standards upon which VoIP is built are bringing freedom to
choose from different vendors and this single benefit makes the costumer a
king instead of a subordinate of telcos and pbx manufacturers.

5.3.4 Computer Telephony Integration

Telephony is a lot older than computing. Telephony PBXs are circuit switch
based. Sometimes a computer makes a supervision of the switch. With VoIP,
telephony is from the ground up created based in computer standards. This
makes the use of Computer Telephony applications a lot cheaper and easier
than in the old model. You can quickly create a long list of telephony
applications based on Asterisk. You can develop IVRs, ACDs, CTI, Dialers,
screen popups, and other applications in a fraction of time required for
traditional PBXs.

5.4 ASTERISK VOIP ARCHITECTURE

Asterisk’s architecture is shown below. Asterisk treats all VoIP protocols as
channels. You can use any codec or any protocol. The most important
concept is that Asterisk bridges any channel one to another. Then, you can
translate signaling protocols like H.323, SIP and IAX, one to another and
even with different codecs. As an example, you can translate a call from a
SIP phone in the local area network using the G.711 codec to a H323
connection to you VoIP provider using the G.729 codec.

 5.4 Asterisk VoIP architecture | 126

 Figure 5-2 Asterisk architecture

In the next chapters, we will explain details of the SIP and IAX architecture.
H.323 is not part of Asterisk, but it is available as an add-on. We will not
cover H.323 in this book.

5.5 VoIP protocols and the OSI (ISO Open Systems Interconnect) model

127 | Chapter 5 – Voice over IP with Asterisk

 Figure 5.3 VoIP in the OSI model.

As you can see above, VoIP corresponds to a set of different protocols
working together. Different OSI layers are present in VoIP communication.
The figure above will help you to understand the role of each protocol and
their relationship to one another.

is the first four layers represent just a data network like the Internet you
have in your business or home. You can use some QoS protocols like
“diffserv” or “cbwfq” to prioritize voice packets and enhance voice quality.
Most VoIP protocols use RTP (real time protocol) as the transport protocol of
choice.

In the session layer, protocols are responsible for setting up and closing the
calls. H.323 is one of the oldest and mature protocols in this area. SIP in
now pervasive in the VoIP provider market, putting aside the H.323.
Signaling protocols use TCP or UDP to transport the packets.

In the presentation layer, we have the codecs transforming the multimedia
stream from one format to another with different characteristics.

Example:

SIP:

SIP uses UDP or TCP in port 5060 to transport signaling. RTP transports the
audio stream using ports 1000 to 2000 in Asterisk (as defined in rtp.conf).
A call can be, for example coded in g.711. A softphone in the application
layer will use the lower layers to communicate.

H.323 uses TCP in ports 1720 and 1719 to transport signaling. RTP
transports audio usually in UDP ports 16383 to 32768. A call can be coded in
g.729 for example.

5.5 HOW TO CHOOSE A PROTOCOL

5.5.1 SIP - Session Initiated Protocol

SIP is an IETF (Internet Engineering Task Force) open standard, largely
defined in RFC 3261. Most modern VoIP providers use SIP and it is
becoming the most popular VoIP standard. The strength of SIP is to be an
IETF based standard. SIP is light, if compared to older H.323. The main
weakness of SIP is NAT traversal, a challenge to most SIP VoIP providers.
IETF did not create SIP with billing in mind, but for open communications
between peers. Billing is usually a concern for VoIP providers.

 5.5 How to choose a protocol | 128

5.5.2 IAX – Inter Asterisk eXchange

IAX is an open protocol defined by Digium and it is currently a draft. You can
download it from www.ietf.org/internet-drafts/drafts-guy-iax00.txt. IAX is an
all-in one protocol since it transports signaling and media through the same
UDP port (4569). Mark Spencer developed IAX as a binary protocol for
reduced bandwidth. The main strengths of IAX are reduced bandwidth usage
(it does not use RTP) while at the same time being very easy for NAT and
firewall traversal since it uses only one UDP port (4569). If a traditional PBX
manufacturer were to have created IAX it would probably have marketed the
protocol as the “best thing since ice cream”; in some situations IAX in trunk
mode can reduce voice bandwidth use by one third. This protocol was in its
version 2 when I wrote this book.

5.5.3 MGCP – Media Gateway Control Protocol

MGCP is a protocol used in conjunction with H.323, SIP and IAX. Its greatest
advantage is scalability. It is configured in the call agent instead of the
gateways. This simplifies the configuration process and permits centralized
management. The asterisk implementation is not complete and it seems
that not many people use it.

5.5.4 H.323

H.323 is largely being used in VoIP. It is one of the first VoIP protocols and
is essential for connecting older VoIP infrastructures based in gateways.
H.323 is still the standard in the gateway market, although the market is
slowly migrating to SIP. H.323’s strengths includes large market adoption
and maturity. H.323’s weaknesses are related to the complexity of
implementation and standard bodies associated costs.

129 | Chapter 5 – Voice over IP with Asterisk

5.5.5 Protocol comparison table

Protocol Standard body It is used for:
IAX2 IETF draft Asterisk trunks

IAX2 phones
Connection to IAX service providers

SIP IETF standard SIP Phones
Connection to SIP service providers

MGCP IETF/ITU standard MGCP Phones
Currently does not support connecting to a
MGCP gateway or service provider

H.323 ITU standard H.323 Phones
H.323 gateways
Currently does not support being a
gatekeeper, but can connect to an external
gatekeeper.

SCCP Cisco Proprietary Cisco Phones

5.6 PEERS, USERS AND FRIENDS

 Figure 5-4 Users, Peers and Friends

There are three kinds of SIP and IAX clients. The first one is “user”. Users
can make calls to an Asterisk server, but they cannot connect to receive calls
from this server. The second one is a “peer”. You can make calls to a peer,
but you will not receive calls from them. Usually a server or a device will
require both concepts at the same time. A “friend” is a shortcut to a “user” +

 5.7 Codecs and codec translation | 130

“peer”. A phone would probably fall into this category, since it needs to
make and receive calls.

5.7 CODECS AND CODEC TRANSLATION

 Figure 5-5 Digital voice processing

You will use a codec to convert voice from analog to digital signal. Codecs
differ from one another in aspects like sound quality, compression rate,
bandwidth, and computing requirements. Services, phones, and gateways
usually support several of them. G.729, a very popular codec, requires
licensing.

Asterisk supports the following codecs:

• GSM: 13 Kbps

• iLBC: 13.3 Kbps

• ITU G.711: 64 Kbps

• ITU G.723.1: 5.3/6.3 Kbps

• ITU G.726: 16/24/32/40 Kbps

• ITU G.729: 8 Kbps

131 | Chapter 5 – Voice over IP with Asterisk

• Speex - 2.15 to 44.2 Kbps

• LPC10 - 2.5 Kbps

Asterisk permits translation between codecs. There are cases where this is
not possible, such as the case of g.723, which is supported only in pass-thru
mode. Translating from one codec to another consumes many resources
from the CPU. Thus, avoid this altogether whenever possible.

5.8 HOW TO CHOOSE A CODEC

Codec selection depends in several aspects like:

• Sound quality
• Licensing costs
• CPU processing consumption
• Bandwidth requirements
• Packet loss concealment
• Availability for Asterisk and phone devices

A table comparing the most popular codecs is shown below: The quality of
these codecs is considered “toll”, or in other words, similar to PSTN.

Codec g.711 g.729A

(20 ms)

iLBC

(30 ms)

GSM 06.10

RTE/LTP

bandwidth
(Kbps)

64 8 13.33 13

Costs Free US$10.00
(per channel)

Free Free

Resistance to
Frame Erasure1

No
mechanism

3% 5% 3%

Complexity
MIPS 2

~0.35 ~13 ~18 ~5

1 Resistance to packet loss refers to the rate when MOS is next to 0.5 worst from peak quality for the
specific codec.
2 Complexity refers to quantities in millions of instructions per second spent to code and decode the
codec using a reference design in a Texas Instruments DSP (TMS320C54x). There is a direct
relationship between the processor frequency and MIPS, but it is not possible to draw a precise
relationship between hardware platforms that are so different. Use this table just for comparison.

 5.9 Overhead caused by protocol headers | 132

5.9 OVERHEAD CAUSED BY PROTOCOL HEADERS

E
th
e
rn
e
t
D
e
st
in
a
tio
n

A
d
d
re
ss
 (
6
)

E
th
e
rn
e
t
S
o
u
rc
e

A
d
d
re
s
s
(6
)

E
th
e
rn
e
t
T
yp
e
 (
2
)

IP
 H
e
a
d
e
r
(2
0
)

U
D
P
 H
e
a
d
e
r
(8
)

R
T
P
 H
e
a
d
e
r
(1
2
)

V
o
ic
e
 P
a
yl
o
a
d

G
.7
2
9
 c
o
d
e
d
 (
2
0
)

E
th
e
rn
e
t
C
h
e
c
ks
u
m
 (
4
)

 Figure 5.6 overhead caused by network headers.

In spite of codecs making little use of bandwidth, we have to take into
consideration the overhead caused by protocol headers like Ethernet, IP,
UDP and RTP. Observing this, we could say that bandwidth depends on
headers used. If we are in an Ethernet network, the bandwidth requirement
is higher then in a PPP Network because the PPP header is shorter than the
Ethernet one. Let us look through some examples:

Codec g.711 (64 Kbps)

• Ethernet (Ethernet+IP+UDP+RTP+G.711) = 95.2 Kbps
• PPP (PPP+IP+UDP+RTP+G.711) = 82.4 Kbps
• Frame-Relay (FR+IP+UDP+RTP+G.711) = 82.8 Kbps

Codec G.729 (8 Kbps)

• Ethernet (Ethernet+IP+UDP+RTP+G.729) = 31.2 Kbps
• PPP (PPP+IP+UDP+RTP+G.729) = 26.4 Kbps
• Frame-Relay (FR+IP+UDP+RTP+G.729) = 26.8 Kbps

You can easily calculate other bandwidth requirements using the following
website’s calculator.

http://www.packetizer.com/voip/diagnostics/bandcalc.html

133 | Chapter 5 – Voice over IP with Asterisk

5.10 TRAFFIC ENGINEERING

A main issue in the design of voice over IP networks is dimensioning the
number of lines and required bandwidth to a specific destination like a
remote office or a service provider. It is also important to dimension the
number of Asterisk’s simultaneous calls (main parameter for Asterisk’s
dimensioning).

5.10.1 Simplifications

The first and widely used simplification is to estimate the number of calls by
user type. Example:

Business PBXs (one simultaneous call for each five extensions)
Residential users (one simultaneous call for each sixteen users)

Example #1

 Figure 5.7 VoIP design example

The company has a headquarter with 120 extensions and two branches, the
first one with 30 extensions and the second one with 15 extensions. Our
objective is to dimension the number of E1 trunks in the headquarters and
the bandwidth required for the Frame-Relay network.

1.a Number of T1 lines
Total number of extensions using T1 lines: 120+30+15=165 lines

 5.10 Traffic Engineering | 134

Using one trunk for each five extensions for business use

Total number lines = 33 or approximately 2xT1 lines

1.b Bandwidth requirements

We choose the g.729 codec because of bandwidth requirements, sound
quality and medium CPU consumption.

 Figure 5.8 VoIP bandwidth requirement (g.729, Frame-relay)

With one trunk for each five extensions:

Required bandwidth for branch #1 (Frame-relay): 26.8*6=160.8 Kbps
Required bandwidth for branch #2 (Frame-relay): 26.8*3= 80.4 Kbps

5.10.2 Erlang B method

1.a Number of VoIP simultaneous calls

Sometimes, simplifications are not the best methods to use. When you have
previous data, you can adopt a more scientific approach. Agner Karup Erlang
(Copenhagen Telephone Company, 1909) has developed a formula to
calculate lines in a trunk group between two cities. We will use his formula.

135 | Chapter 5 – Voice over IP with Asterisk

Erlang is a traffic measurement unit commonly used in telecom. It is used to
describe a traffic volume of one hour.

Example: 20 calls in an hour with 5 minutes of conversation average.

You calculate the number of Erlangs as below:

Traffic minutes in the hour: 20 x 5 = 100 minutes
Hour of traffic inside one hour: 100/60 = 1.66 Erlangs

You can get these measures from a call logger and use it to design your
network to calculate the number of lines required. Once the number of lines
is known, it is possible to calculate the bandwidth requirements.

Erlang B is the most used method to calculate the number of lines in a trunk
group. It assumes that calls arrive randomly (Poisson distribution) and
blocked calls are immediately cleared. This method requires that you know
the Busy Hour Traffic (BHT). You can obtain the BHT from a call logger or by
a simplification:

BHT=17% of the call minutes of one day.

Another important variable is GoS (Grade of Service). GoS defines the
probability of blocking calls by line shortage. You can arbitrate this
parameter. It is usually 0.05 (5% calls lost) or 0.01 (1% calls lost).

Example#1:

Using the same example from 5.10.1 let us give you some data about traffic
patterns. From the call logger we discovered these data.

Data from call logger (Call minutes and BHT):

• Headquarters to Branch#1 = 2000 minutes, BHT = 300 minutes
• Headquarters to Branch#2 = 1000 minutes, BHT = 170 minutes
• Branch#1 to Branch#2 = 0, BHT=0

Let’s arbitrate GoS=0.01

Headquarters to branch#1 - BHT=300 minutes/60 = 5 Erlangs
Headquarters to branch#2 – BHT=170 minutes/60 = 2.83 Erlangs

Using an Erlang Calculator (www.erlang.com)

 5.11 Reducing the bandwidth required for VoIP | 136

 Figure 5.9 Using ErlangB calculator

For the Headquarters to branch#1, 11 lines are required.
For the Headquarters to branch#2, 8 lines are required
1.b Bandwidth Required

We are using a WAN where packet loss is rare. We will choose the g.729
codec because of its good sound quality and data compression (8 Kbps).

Selected codec: g.729
Datalink layer: Frame-Relay

Estimated voice bandwidth for Branch#1: 26.8x11 =294.8 Kbps
Estimated voice bandwidth for Branch#2: 26.8x8 =214.40 Kbps

5.11 REDUCING THE BANDWIDTH REQUIRED FOR VOIP

There are three methods to reduce the bandwidth required for VoIP calls:

• RTP header compression
• IAX Trunked
• VoIP payload

5.11.1 RTP Header Compression

In Frame-Relay and PPP networks, you can use RTP header compression.
RTP header compression was defined in RFC 2508. It is an IETF standard

137 | Chapter 5 – Voice over IP with Asterisk

available in several routers. Be cautious, however, as some routers require a
different feature set for this resource to be available.

The impact of using RTP header compression is fabulous. It reduces the
bandwidth required in our example from 26.8 Kbps per voice conversation to
11.2 Kbps: a 58.2% reduction!

 Figure 5.10 VoIP bandwidth using cRTP

 5.11 Reducing the bandwidth required for VoIP | 138

5.11.2 IAX2 trunk mode

Example: one voice packets coded in g.729 20 ms sampling rate.
20 Bytes Payload/58 Bytes headers - Using simple proportion, if

20 bytes is 8 Kbps, 78 Bytes is 31.2 Kbps

Example: two voice packets coded in g.729 20 ms sampling rate.
40 Bytes Payload/58 Bytes headers - Using simple proportion, if 20

bytes is 8 Kbps, 106 Bytes is 42.4 Kbps
Average 21.2 kbps per call or 9.6 Kbps of additional bandwidth per call

 Figure 5.11 IAX2 trunk mode bandwidth reduction

If you are connecting two Asterisk servers, you can use the IAX2 protocol in
the trunk mode. This revolutionary technology does not need any special
routers and it can be applied to any kind of data link. IAX2 trunk mode
reuses the same headers from the second call and over. Using g.729 and a
PPP link, the first call will consume 30 Kbps of bandwidth, but the second call
will use the same header as the first and reduce the necessary bandwidth for
the additional call to 9.6 Kbps. A study from John Todd from Loligo can be
seen in http://www.voip-info.org/wiki-Asterisk+bandwidth+iax2.

We can calculate the required bandwidth in trunk mode as follows:

Branch#1 (11 calls)

Bandwidth = 31.2 + (11-1)* 9.6 Kbps = 127.2 Kbps.

Branch#2 (8 calls)
Bandwidth = 31.2 + (8-1)* 9.6 Kbps = 98.4 Kbps.

The first call uses 31.2 Kbps and the next 9.6 and so on.

5.11.3 Increasing the Voice Payload

139 | Chapter 5 – Voice over IP with Asterisk

Example: Voice packet coded in g.729 20 ms sampling rate.
60 Bytes Payload/58 Bytes headers

Using simple proportion, if 60 bytes is 8 Kbps, 138 Bytes is 16.05 Kbps

A g.729 conversation in na Ethernet Network consumes 16.05 Kbps

 Figure 5.11 increasing the voice payload to reduce bandwidth

It was a commonly used scheme in gateways over the Internet. Using a
bigger payload, you sacrifice latency in favor of reduced bandwidth. Now in
the Asterisk version 1.4 you can change the RTP Packetization appending the
frame size to the codec in the allow instruction.

Example:

allow=ulaw:30

The permitted values are:

Name Min Max Default Increment
g723 30 300 30 30
gsm 20 300 20 20
ulaw 10 150 20 10
alaw 10 150 20 10
g726 10 300 20 10
ADPCM 10 300 20 10
SLIN 10 70 20 10
lpc10 20 20 20 20
g729 10 230 20 10
speex 10 60 20 10
ilbc 30 30 30 30

 5.12 Summary | 140

5.12 SUMMARY

In this chapter, you have learned that Asterisk treats voice over IP using
channels. It supports SIP, IAX, H.323, MGCP and Skinny protocols. You
compared and learned how to choose a signaling protocol and a codec for
VoIP channels. IAX2 is more bandwidth efficient and can traverse NAT
easily. SIP is the most supported protocol by third-party phone and
gateways vendors. The H.323 protocol is the oldest one and it should be
used to connect to legacy VoIP infrastructure. In section 5.11 we have
learned how to design and dimension a VoIP network.

5.13 QUESTIONS

1. Please, list at least four benefits of voice over IP.

2. Convergence is the integrations of voice, data and video in a single
network and their main benefit is the cost reduction in the implementation
and maintenance of separate networks.

a) False
b) True

3. Asterisk cannot use simultaneously resources from PSTN and VoIP
because the codecs are not compatible.

a) False
b) True

4. Asterisk is a SIP proxy with integration to other protocols

a) False
b) True

5. Using the OSI reference model, SIP, H.323 and IAX2 are in the
____________ layer.

a) Presentation
b) Application

141 | Chapter 5 – Voice over IP with Asterisk

c) Physical
d) Session
e) Datalink

6. SIP is the most adopted protocol for IP phones and is an open standard
ratified by IETF.

a) False
b) True

7. H.323 is an inexpressive protocol with very few applications, abandoned
by the market, which is moving to SIP.

a) False
b) True

8. IAX is a proprietary Digium protocol. In spite of its small adoption by
phone vendors, IAX is excellent when you need:

a) Reduce bandwidth usage
b) Video media format
c) NAT traversal
d) Protocols standardized by IETF or ITU.

9. “Users” can receive calls from Asterisk.

a) False
b) True

10. Mark true affirmations concerning codecs.

a) G711 is the equivalent to PCM it uses 64 Kbps of bandwidth.
b) G.729 is free for commercial use and it uses 8 Kbps of bandwidth
c) GSM is growing because it uses approximately 13 Kbps and does not

need a license.
d) G711 u-law is common in US while a-law is common in Europe and

Latin America.
e) G.729 is light and uses very few CPU resources in their

coding/decoding process.

The IAX Protocol

In this chapter, we will learn a few things about the IAX protocol, its
strengths and weaknesses. Details like trunk mode and the interconnection
of two Asterisk servers will also be covered.

6.1 OBJECTIVES

Objectives

By the end of this chapter you should be able to:

Identify strengths and weaknesses of IAX protocol

Describe scenarios for IAX protocol use

Describe the advantages of trunk mode

Configure iax.conf for phones

Configure iax.conf for connection to a VoIP provider

Configure iax.conf for Asterisk interconnection

Debug IAX connections

Understand IAX authentication

 Figure 6.1 Objectives

6.2 INTRODUCTION

All references in this document correspond to IAX version 2. The Inter-
Asterisk eXchange Protocol provides media transport and signaling for voice
and video. It was created primarily for voice, but it can also accommodate
video and other multimedia streams. IAX was inspired in other VoIP
protocols like SIP and MGCP. IAX, instead of using two separate protocols for
signaling and media, unified them to make an unique protocol. IAX does not
use RTP for media transport. Instead, it embeds the media within itself. The
main objectives of IAX design were:

Chapter 6

143 | Chapter 6 – The IAX Protocol

• Reduce the bandwidth required for media transport and signaling

• Provide NAT transparency

• Be able to transmit the dial plan information

• Support efficient use of paging and intercom.

6.3 HOW IT WORKS?

IAX is a peer-to-peer signaling and media protocol. The signaling protocol is
similar to SIP, but it does not use RTP.

The IAX basic approach is to multiplex the multimedia streams over a single
UDP connection between two hosts. The greatest benefit of this approach is
that it becomes simple to traverse connections over NAT, generally present
in ADSL devices (this is an important feature for VoIP providers). IAX uses a
single port, UDP 4569 by default, and then uses a 15 bit call number to
multiplex all streams.

Figure 6.2: Multiple calls over a single UDP connection

The IAX protocol uses registration and authentication processes similar to
the SIP protocol. A description of the protocol can be found in
http://www.ietf.org/internet-drafts/draft-guy-iax-01.txt

 6.4 Bandwidth usage | 144

6.4 BANDWIDTH USAGE

Two IAX calls, One Packet
40 bytes Payload, 66 bytes overhead

Two SIP Calls – Two packets
(40 bytes payload, 116 bytes overhead)

Comparing IAX and SIP overhead

 Figure 6.3 – Comparing IAX and SIP headers overhead

The bandwidth used in a VoIP network is affected by several factors. Codecs
and headers are the most important factors. The IAX protocol has an
astonishing feature called trunk mode, whereby it multiplexes several calls
using single header. A bandwidth study was published by John Todd from
loligo inc. and it can be found in http://www.voip-info.org/wiki-
Asterisk+bandwidth+iax2. It is reproduced below for convenience.

Testing results:

G.711 (ulaw) G.711 (ulaw) G.711 (ulaw) G.711 (ulaw)
 one call: 164333.75 bps/94.26 pps (82.1 kbps)
 two calls: 296171.60 bps/101.46 pps (148.0 kbps)

Thus:
For every additional call: 131837 bps (65.9 kbps)
Est. IP/IAX2 overhead (1 call): 32495 bps (16.0 kbps)
Raw number of calls per megabit: 15

ILBC:ILBC:ILBC:ILBC: see note below
 one call: 56134.91 bps/67.45 pps (28.0 kbps)
 two calls: 98679.11 bps/102.41 pps (49.3 kbps)

Thus:
For every additional call: 42544 bps (21.2 kbps)
Est. IP/IAX2 overhead (1 call): 13590 bps (6.7 kbps)
Raw number of calls per megabit: 47

145 | Chapter 6 – The IAX Protocol

G.729 G.729 G.729 G.729
 one call: 60124.33 bps/101.26 pps (30.0 kbps)
 two calls: 79496.23 bps/102.85 pps (39.7 kbps)

Thus:
For every additional call: 19372 bps (9.6 kbps)
Est. IP/IAX2 overhead (1 call): 40752 bps (20.3 kbps)
Raw number of calls per megabit: 103

GSM GSM GSM GSM
 one call: 70958.16 bps/102.13 pps (35.4 kbps)
 two calls: 100455.23 bps/102.63 pps (50.2 kbps)

Thus:
For every additional call: 29497 bps (14.7 kbps)
Est. IP/IAX2 overhead (1 call): 41461 bps (20.7 kbps)
Raw number of calls per megabit: 68

LPC10 LPC10 LPC10 LPC10
 one call: 43855.44 bps/89.94 pps (21.9 kbps)
 two calls: 56059.18 bps/100.81 pps (28.0 kbps)

 Thus:
 For every additional call: 12203 bps (6.1 kbps)
 Est. IP/IAX2 overhead (1 call): 31561 bps (15.8 kbps)
 Raw number of calls per megabit: 164

(SPEEX): (SPEEX): (SPEEX): (SPEEX):
 one call: 74817.18 bps/101.06 pps (37.4 kbps)
 two calls: 109692.68 bps/102.18 pps (54.8 kbps)

Thus:
For every additional call: 34875 bps (17.4 kbps)
Est. IP/IAX2 overhead (1 call): 39941 bps (19.9 kbps)
Raw number of calls per megabit: 57

Conclusions:

• Bandwidth usage is influenced by factors such as simultaneous calls,
layer 2 protocol, full, or half duplex network.

• A measurement of 75 Kbps is reported as 37.5 Kbps because the

network is full duplex, but the stat is taken in the server interface
driver that accounts all packets received and transmitted.

• The data on ILBC protocol is incorrect because ILBC sends 30 ms

frames and the trunk mode uses 20 ms timing. You have to change
trunk timing to get better ILBC results.

 6.5 Channel naming | 146

6.5 CHANNEL NAMING

6.5.1 The format of an IAX channel name used for outbound channels
is:

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][/<options>]

<user> UserID on remote peer, or name of client configured in
iax.conf

<secret> The password. Alternatively it can be the filename for an
RSA key without the trailing extension (.key or .pub), and
enclosed in square brackets

<peer> Name of server to connect to
<portno> Port number for connection
<exten> Extension in the remote Asterisk server
<context> Context in the remote Asterisk server
<options> The only option available is ‘a’ meaning ‘request

autoanswer’

6.5.2 Outbound channels example:

IAX2/8590:secret@myserver/8590@default Call the 8590 extension
in myserver. It uses
8590:secret as the
name/password pair

IAX2/iaxphone Call "iaxphone"
IAX2/judy:[judyrsa]@somewhere.com Call somewhere.com

using judy as the
username and a RSA key
for authentication

6.5.3 The format of an incoming IAX channel is:

IAX2/[<username>@]<host>]-<callno>

<username> Username if known
<host> Host connecting
<callno> Local call number

6.5.4 Incoming channel example:

IAX2[flavio@8.8.30.34]/10 It is a call number 10 from IP address
8.8.30.34 using flavio as user.

147 | Chapter 6 – The IAX Protocol

IAX2[8.8.30.50]/11 It is a call number 11 from IP address
8.8.30.50.

6.6 USING IAX

You can use IAX in several ways. In this section, we will show you how to
configure IAX for several scenarios like:

• Connecting a soft-phone using IAX
• Connecting IAX to a VoIP provider using IAX
• Connecting two servers using IAX
• Connecting two servers using IAX in trunk mode
• Debugging an IAX connection
• Using RSA pair keys for authentication

6.6.1 Connecting a soft-phone using IAX

Asterisk supports IP phones based on IAX like snom and IAXy, as well as
soft-phones like idefisk. The process for soft-phones, ATAs, and hard-phones
is very similar. To configure an IAX device, you need to edit the iax.conf file
in /etc/asterisk directory.

We will use as an example the IDEFISK software (www.asteriskguru.com); it
is full-featured. and free

Step 1: Make a backup of the original iax.conf file using:

#cd /etc/asterisk
#mv iax.conf iax.conf.backup

Step 2: Start editing a new iax.conf file:

[general]
bindport=4569
bindaddr=8.8.1.4
bandwidth=high ; Very important parameter, it changes the codecs
available
disallow=all
allow=ulaw
jitterbuffer=no
forcejitterbuffer=no
tos=lowdelay
autokill=yes

[guest]
type=user
context=guest
callerid="Guest IAX User"

 6.6 Using IAX | 148

; Trust Caller*ID Coming from iaxtel.com
;
[iaxtel]
type=user
context=default
auth=rsa
inkeys=iaxtel

;
; Trust Caller*ID Coming from iax.fwdnet.net
;
[iaxfwd]
type=user
context=default
auth=rsa
inkeys=freeworlddialup

;
; Trust callerid delivered over DUNDi/e164
;
;
;[dundi]
;type=user
;dbsecret=dundi/secret
;context=dundi-e164-local

[2003]
type=friend
context=default
secret=senha
host=dynamic

In the edition below, I have preserved default (non-commented) lines of the
sample file. The following parameters were modified:

bandwidth=high

This line affects codec selection. Using the “high” setting allows the selection
of a high bandwidth and a high quality codec such as g.711 defined by the
“ulaw” keyword. If you keep the default parameter, you will not be able to
choose “ulaw”. In this case, Asterisk will give you the message “no codec is
available” for the configuration below.

disallow=all
allow=ulaw

In the commands described above, we have disabled all codecs and enabled
just ulaw. In LANs, I am confident that you will prefer to use ulaw, because
it is not processor-intensive and saves CPU cycles. Even using more
bandwidth, this codec is preferable because in LANs you usually have a
hundred megabits Ethernet or even a Gigabit. A voice call using ulaw uses

149 | Chapter 6 – The IAX Protocol

100 kilobits per second of bandwidth from your network and it is a very light
use for today’s high-speed LANs. In WAN or Internet networks you will
usually not enable “ulaw”, trading some available CPU cycles of voice
compression for better bandwidth use. The codecs GSM, g.729, and iLBC
provide a good compression factor.

[2003]
type=friend
context=default
secret=senha
host=dynamic

In the above commands, we have defined a friend named [2003]. The
context is the default (in the first labs we always use the default context to
avoid confusion; this context will be fully explained in chapter 9). The line
“host=dynamic” provides for a dynamic registration of the phone’s IP
address.

Step 3: Download and install idefisk software from the following URL:

http://www.asteriskguru.com/tools/idefisk/idefisk133_installer.exe

Note: URLs frequently change. Please resort to “googling” if you
cannot find the file in this specific URL. You can choose other soft-

phones for the lab as well.

Step 4:

Configure an Asterisk account by clicking the right button over the idefisk’s
task bar icon, or use ALT+A.

You should see a screen similar to the one below:

 6.6 Using IAX | 150

 Figure 6.4 Idefisk account options

Step 5: Configure the extensions.conf file to test your IAX device.

[default]
exten=>2000,1,Dial(SIP/2000)
exten=>2001,1,Dial(SIP/2001)
exten=>2003,1,Dial(IAX2/2003)

Now, you can dial between the SIP phones created in chapter 3 and the IAX
phone created in the lab.

6.6.2 Connecting to a VoIP provider using IAX

151 | Chapter 6 – The IAX Protocol

IA
X
Tr
un
k

IA
X
Tr
un
k

 Figure 6.5 Connecting to a VoIP Provider

There are a few VoIP providers that support IAX. You can test a connection
using FWD (www.freeworlddialup.com) or iaxtel (www.iaxtel.com). In my
opinion, there is a lot of sense in using an IAX provider; IAX can save a lot
of bandwidth, is easy to traverse NAT and can authenticate using RSA key
pairs.

6.6.3 Connecting to freeworlddialup using IAX

Step 1: Open an account in your favorite provider. If you do not know any
provider, use freeworlddialup for this example - it is free.

Step 2: In the services area, enable IAX for your account. Check with your
provider for the procedures.

In freeworlddialup you can go to “extra features” and select IAX as shown
below.

 6.6 Using IAX | 152

 Figure 6-6 Enabling IAX in freeworlddialup

Notes: Screens and URLs change frequently, please double-check the
procedures with your provider.

Step 3: Configure the iax.conf file to register your Asterisk with your
provider. Add the following lines to the [general] section of the file.

[general]
register=>621538:password@iax2.fwdnet.net/2003

In the instructions described above, you registered with your provider using
your account and password. In the moment you receive a call, it will be
forwarded to the 2003 extension.

[621538] ; Your account number
type=peer
secret=senha ; Your password
host=iax2.fwdnet.net

In the instructions described above, we are created a peer that corresponds
to the provider for dialing purposes.

[iaxfwd]
type=user
context=default
auth=rsa
inkeys=freeworlddialup

Remove the remark of [iaxfwd] section in the iax.conf file. This is necessary
for RSA authentication. Using the public key provided by FWD allows you to
be sure that the call is being received from the true provider. If anyone else

153 | Chapter 6 – The IAX Protocol

tries to use the same path, they cannot authenticate because they do not
have the corresponding private key.

Step 4: Trying the connection.

To test the connection, let’s use the Time service, number 612, from FWD.
When you dial 612 in the provider, you will be answered by an IVR with the
current time. To accomplish this, it is necessary to edit the extensions.conf
file.

[default]
exten=>612,1,Dial(IAX2/621538:senha@iax2.fwdnet.net/612,20,r)

Go to the Asterisk CLI and issue a reload. To verify if Asterisk is registered
with the provider, use the next command.

CLI>reload
CLI>iax2 show register

Now simply dial 612 in Asterisk.

 6.6 Using IAX | 154

6.6.4 Connecting two Asterisk servers through an IAX trunk.

 Figure 6-7 Connecting two Asterisk servers using IAX

It is very easy to connect one server to another. You will not need to register
because the IP addresses are known. You will just have to create the peers
and users in the iax.conf file. All extensions in the HQ site start with 20
followed by two digits (e.g. 2000). In the Branch, all extensions start with
22 followed by two digits (e.g. 2200). We will use trunk and you will need a
zaptel timing source to enable this feature.

Step 1: Edit the iax.conf file in the Branch server.

[general]
bindport=4569 ; bindport and bindaddr may be specified
bindaddr=0.0.0.0 ; more than once to bind to multiple
disallow=all
allow=ulaw
;allow=gsm

[Branch]
type=user
context=default
secret=password
host=192.168.2.10
trunk=yes
notransfer=yes

[HQ]
type=peer

155 | Chapter 6 – The IAX Protocol

context=default
username=HQ
secret=password
host=192.168.2.10
callerID='HQ'
trunk=yes
notransfer=yes

[2200]
type=friend
auth=md5
context=default
secret=password
host=dynamic
callerid='2000'

[2201]
type=friend
auth=md5
context=default
secret=password
host=dynamic
callerid='2001'

Step 2: Configure the extensions.conf file in Branch server

[general]
static=yes
writeprotect=no
autofallthrough=yes
clearglobalvars=no
priorityjumping=no

[globals]

[default]
exten=>_20XX,1,dial(IAX2/HQ/${EXTEN},20)
exten=>_20XX,2,hangup

exten=>_22XX,1,dial(IAX2/${EXTEN},20)
exten=>_22XX,2,hangup

Step 3: Configure the iax.conf file in the HQ Server

[general]
bindaddr=0.0.0.0
bindport=4569
disallow=all
allow=ulaw
allow=gsm

[Branch]
type=peer
context=default
username=Branch
secret=password

 6.7 IAX authentication | 156

host=192.168.2.9
callerid="Branch"
trunk=yes
notransfer=yes

[HQ]
type=user
secret=password
context=default
host=192.168.2.9
callerid="HQ"
trunk=yes
notransfer=yes

[2000]
type=friend
auth=md5
context=default
secret=password
callerid="2200"
host=dynamic

[2001]
type=friend
auth=md5
context=default
secret=password
callerid="2201"
host=dynamic

Step 4: Configure the extensions.conf file in the HQ server.

[general]
static=yes
writeprotect=no
autofallthrough=yes
clearglobalvars=no
priorityjumping=no

[globals]

[default]
exten=>_22XX,1,Dial(IAX2/Branch/${EXTEN})
exten=>_22XX,2,hangup

exten=>_20XX,1,Dial(IAX2/${EXTEN})
exten=>_20XX,2,hangup

Step 5: Test a call from the 2000 phone in the HQ server to the 2200 phone
in the Branch server.

6.7 IAX AUTHENTICATION

157 | Chapter 6 – The IAX Protocol

Let’s analyze now the IAX authentication process from the practical
standpoint and help you to choose the best method for each specific
requirement.

6.7.1 Incoming connections

When Asterisk receives an incoming connection, the initial information can
include a user name (from the field “username=”) or not. The incoming
connection has an IP address too and Asterisk uses it for authentication as
well.

IAX CALL
MATCH

ANY SECTION?
IP ALLOWED?

SECRET

MATCHES?

YES

NO NO

YES

CALL ACCEPTED.

USE CONTEXT FROM

THE SECTION

MATCHED.

USE PEER OPTIONS.

YES
USERNAME

PROVIDED?

YES

DENY

 CALL

SECRET

PROVIDED?

NO

ANY USER WITH

THIS SECRET?

YES

NODENY

CALL

NOYES

USUARIO

ENCONTRADO

 SEM SENHA ?

DENY

CALL

NO

NO

CALL ACCEPTED.

USE CONTEXT FROM

THE SECTION

MATCHED.

USE PEER OPTIONS

YES

GUEST

USER EXISTS

NO

YES
ALLOW THE

USER AS GUEST

IAX authentication process

 Figure 6.9 IAX authentication process

If a user is provided, Asterisk does the following:

1. Searches the iax.conf for an entry with “type=user” (or
“type=friend” with a section name matching the username. If it
did not find it, Asterisk refuses the connection.

2. If the entry found has deny/allow configurations, it compares the

IP address from the caller to decide whether to accept the call or
not depending on the deny/allow clauses.

3. It checks the password (secret) using plaintext, md5, or RSA.

4. It accepts the connection and sends the call to the context

specified in the line “context=” from the iax.conf file.

 6.7 IAX authentication | 158

If a username is not provided, Asterisk does the following:

1. Searches for an entry containing “type=user” (or type=”friend”)
in the iax.conf file without a specified secret. It checks deny/allow
clauses as well. If an entry is found, the connection is accepted
and the section name is used as the user’s name.

2. Searches for an entry containing “type=user” (or “type=friend”)

in the iax.conf file with a secret or RSA key specified. It checks
deny/allow clauses. If an entry is found it tries to authenticate the
caller using the specified secret if it matches, it accepts the
connection. Section name is the user’s name.

Let’s suppose your iax.conf file has the following entries

[guest]
type=user
context=guest

[iaxtel]
type=user
context=incoming
auth=rsa
inkeys=iaxtel

[iax-gateway]
type=friend
allow=192.168.0.1
context=incoming
host=192.168.0.1

[iax-friend]
type=user
secret=this_is_secret
auth=md5
context=incoming

If a call has a specified username like:

• guest

• iaxtel

• iax-gateway

• iax-friend

159 | Chapter 6 – The IAX Protocol

Asterisk will try to authenticate the call using only the corresponding entry in
the iax.conf file. If any other names were specified the call would be
rejected.

If no user is specified, Asterisk will try to authenticate the connection as
guest. However, if guest does not exist, it will try any other connections with
a matching secret. In other words, if you don’t have a guest section in your
iax.conf file, a malicious user could try to guess any matching secret by not
specifying the user name. IP addresses deny/allow restrictions apply too.

A good way to avoid secret guessing is to use RSA authentication. Another
method is to restrict the IP addresses allowed to call in.

6.7.2 IP address restrictions

permit =
<ipaddr>/<netmask>
deny = <ipaddr>/<netmask>

Rules are interpreted in sequence and
all are evaluated (this concept is
different from ACLs usually found in
routers and firewalls).

Example#1
permit=0.0.0.0/0.0.0.0
deny=192.168.0.0/255.255.255.0
Will deny any packet from
192.168.0.0/24 network

Example#2
deny=192.168.0.0/255.255.255.0
permit=0.0.0.0/0.0.0.0
It will permit any packet. The last
instruction supersedes the first.

6.7.3 Outbound connections

Outbound connections take authentication information through the following
methods:

• IAX2 channel description passed by the dial() application.

• An entry with “type=peer” or type=”friend” in the iax.conf file.

• A combination of both methods.

6.7.4 Connecting two Asterisk servers (simplified)

 6.7 IAX authentication | 160

Step 1: Edit the iax.conf file in the Branch server.

[general]
bindport=4569 ; bindport and bindaddr may be specified
bindaddr=0.0.0.0 ; more than once to bind to multiple
disallow=all
allow=ulaw

[Branch]
type=user
context=default
secret=password
host=192.168.2.10
trunk=yes
notransfer=yes

[2200]
type=friend
auth=md5
context=default
secret=password
host=dynamic
callerid='2000'

[2201]
type=friend
auth=md5
context=default
secret=password
host=dynamic
callerid='2001'

Step 2: Configure the extensions.conf file in Branch server

[general]
static=yes
writeprotect=no
autofallthrough=yes
clearglobalvars=no
priorityjumping=no

[globals]

[default]
exten=>_20XX,1,dial(IAX2/HQ:password@192.168.2.10/${EXTEN},20)
exten=>_20XX,2,hangup
exten=>_22XX,1,dial(IAX2/${EXTEN},20)
exten=>_22XX,2,hangup

Step 3: Configure the iax.conf file in HQ Server

[general]
bindaddr=0.0.0.0
bindport=4569
disallow=all

161 | Chapter 6 – The IAX Protocol

allow=ulaw
allow=gsm

[HQ]
type=user
secret=password
context=default
host=192.168.2.9
callerid="HQ"
trunk=yes
notransfer=yes

[2000]
type=friend
auth=md5
context=default
secret=password
callerid="2200"
host=dynamic

[2001]
type=friend
auth=md5
context=default
secret=password
callerid="2201"
host=dynamic

Step 4: Configure the extensions.conf file in HQ server.

[general]
static=yes
writeprotect=no
autofallthrough=yes
clearglobalvars=no
priorityjumping=no

[globals]

[default]
exten=>_22XX,1,Dial(IAX2/Branch:password@192.168.2.9/${EXTEN})
exten=>_22XX,2,hangup

exten=>_20XX,1,Dial(IAX2/${EXTEN})
exten=>_20XX,2,hangup

Step 5: Test a call from the 2000 phone in the HQ server to the 2200 phone
in the Branch server.

6.8 THE IAX.CONF FILE CONFIGURATION

The iax.conf file has several parameters and to discuss each parameter one-
by-one would be boring and counterproductive. All parameters can be found
in the sample file along with a description. In wiki www.voip-info.org you will

 6.8 The iax.conf file configuration | 162

find detailed information about each one. We will show here some of the
most important configurations in the general, peers, and users sections.

6.8.1 [General] Section

Server Addresses

bindport = <portnum> Configures the IAX UDP port. Default is

4569.
bindaddr = <ipaddr> Use 0.0.0.0 to bind Asterisk to all

interfaces or specify the IP address of a
specific interface.

Codec selection

bandwidth = [low|medium|high] High =all codecs

Medium=all codecs except ulaw and alaw
Low= low bandwidth codecs

allow/disallow =
[alaw|ulaw|gsm|g.729| etc.]

Codec selection fine tuning

6.8.2 Jitter buffer

Ji
tt
e
r
B
u
ff
e
r
S
iz
e
 in
 m
s

E
x
ce
ss
 B
u
ff
e
r

 Figure 6.10 Jitter Buffer

163 | Chapter 6 – The IAX Protocol

Jitter is the delay variation between packets. It is the most important factor
that affects voice quality. A Jitter buffer is used to compensate for the delay
variation. It sacrifices latency in favor of lower jitter. You can make an
analogy between the jitter buffer and a water tank. Both can receive packets
or water at irregular intervals, but will deliver in the bottom a regular flow.

A small jitter below 20 ms is usually unperceivable. However, jitter above
this level is annoying. The latency or delay should be kept below 150 ms. By
creating a jitter buffer, we will sacrifice some delay for a lower jitter. This
concept is known as “delay-budget”.

You can affect the jitter buffer with these parameters:

• Jitterbuffer=<yes/no> – Enables or disables

• Dropcount=<number> - Maximum amount of frames that should be

delayed in the last two seconds. The recommended setting is 3 (1,5%
of dropped frames)

• Maxjitterbuffer=<ms> - Usually below 100 ms

• Maxexcessbuffer=<ms> - If the network delay improves, the jitter

buffer could be oversized. Then Asterisk will try to reduce it.

• Minexcessbuffer=<ms> - if the excess buffer decreases until this
value, Asterisk starts to increase the buffer size.

6.8.3 Frame tagging

The parameter below marks the IP packet in the type of service field.
Routers can read this tag, thereby prioritizing traffic. In the version 1.4,
Asterisk is now using DSCP codes for this field (RFC2474).

Allowed values are CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7, AF11, AF12,
AF13,AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43 and ef
(expedited forwarding)

 tos=ef

6.9 IAX2 DEBUG COMMANDS

iax2 show netstats

 6.9 IAX2 debug commands | 164

vtsvoffice*CLI> iax2 show netstats
 -------- LOCAL --------------------- -------- REMOTE --------------------
Channel RTT Jit Del Lost % Drop OOO Kpkts Jit Del Lost % Drop OOO Kpkts
IAX2/8590-1 16 -1 0 -1 -1 0 -1 1 60 110 3 0 0 0 0

iax2 show channels

vtsvoffice*CLI> iax2 show channels
Channel Peer Username ID (Lo/Rem) Seq (Tx/Rx) Lag Jitter JitBuf Format
IAX2/8590-2 8.8.30.43 8590 00002/26968 00004/00003 00000ms -0001ms 0000ms unknow

iax2 show peers

vtsvoffice*CLI> iax2 show peers
Name/Username Host Mask Port Status
8584 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8564 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8576 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8572 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8571 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8585 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8589 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
8590 8.8.30.43 (D) 255.255.255.255 4569 OK (16 ms)
3232 (Unspecified) (D) 255.255.255.255 0 UNKNOWN
9 iax2 peers [1 online, 8 offline, 0 unmonitored]

iax2 debug

Look into this output and identify the beginning and the end of the call.
Observe the delay and jitter information obtained using poke and pong
packets. Theses packets help to create the output of “iax2 show netstats”
command.

vtsvoffice*CLI> iax2 debug
IAX2 Debugging Enabled

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: REGREQ
 Timestamp: 00003ms SCall: 26975 DCall: 00000 [8.8.30.43:4569]
 USERNAME : 8590
 REFRESH : 60

Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: REGAUTH
 Timestamp: 00009ms SCall: 00003 DCall: 26975 [8.8.30.43:4569]
 AUTHMETHODS : 2
 CHALLENGE : 137472844
 USERNAME : 8590

Rx-Frame Retry[No] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: REGREQ
 Timestamp: 00016ms SCall: 26975 DCall: 00003 [8.8.30.43:4569]
 USERNAME : 8590
 REFRESH : 60
 MD5 RESULT : f772b6512e77fa4a44c2f74ef709e873

Tx-Frame Retry[000] -- OSeqno: 001 ISeqno: 002 Type: IAX Subclass: REGACK
 Timestamp: 00025ms SCall: 00003 DCall: 26975 [8.8.30.43:4569]
 USERNAME : 8590
 DATE TIME : 2006-04-17 16:03:00
 REFRESH : 60
 APPARENT ADDRES : IPV4 8.8.30.43:4569
 CALLING NUMBER : 4830258590
 CALLING NAME : Flavio

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 002 Type: IAX Subclass: ACK

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

165 | Chapter 6 – The IAX Protocol

 Timestamp: 00025ms SCall: 26975 DCall: 00003 [8.8.30.43:4569]
Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: POKE
 Timestamp: 00003ms SCall: 00006 DCall: 00000 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: ACK
 Timestamp: 00003ms SCall: 26976 DCall: 00006 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: PONG
 Timestamp: 00003ms SCall: 26976 DCall: 00006 [8.8.30.43:4569]
 RR_JITTER : 0
 RR_LOSS : 0
 RR_PKTS : 1
 RR_DELAY : 40
 RR_DROPPED : 0
 RR_OUTOFORDER : 0
Tx-Frame Retry[-01] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: ACK
 Timestamp: 00003ms SCall: 00006 DCall: 26976 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: NEW
 Timestamp: 00003ms SCall: 26977 DCall: 00000 [8.8.30.43:4569]
 VERSION : 2
 CALLING NUMBER : 8590
 CALLING NAME : 4830258590
 FORMAT : 2
 CAPABILITY : 1550
 USERNAME : 8590
 CALLED NUMBER : 8580
 DNID : 8580

Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: AUTHREQ
 Timestamp: 00007ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
 AUTHMETHODS : 2
 CHALLENGE : 190271661
 USERNAME : 8590

Rx-Frame Retry[Yes] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: NEW
 Timestamp: 00003ms SCall: 26977 DCall: 00000 [8.8.30.43:4569]
 VERSION : 2
 CALLING NUMBER : 8590
 CALLING NAME : 4830258590
 FORMAT : 2
 CAPABILITY : 1550
 USERNAME : 8590
 CALLED NUMBER : 8580
 DNID : 8580

Tx-Frame Retry[-01] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: ACK
 Timestamp: 00003ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: AUTHREP
 Timestamp: 00063ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
 MD5 RESULT : 57cc5c48affba14106c29439944413a1

Tx-Frame Retry[000] -- OSeqno: 001 ISeqno: 002 Type: IAX Subclass: ACCEPT
 Timestamp: 00054ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
 FORMAT : 1024

Tx-Frame Retry[000] -- OSeqno: 002 ISeqno: 002 Type: CONTROL Subclass: ANSWER
 Timestamp: 00057ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
Tx-Frame Retry[000] -- OSeqno: 003 ISeqno: 002 Type: VOICE Subclass: 138
 Timestamp: 00090ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 002 Type: IAX Subclass: ACK
 Timestamp: 00054ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 003 Type: IAX Subclass: ACK
 Timestamp: 00057ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 004 Type: IAX Subclass: ACK
 Timestamp: 00090ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 004 Type: VOICE Subclass: 138
 Timestamp: 00210ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Tx-Frame Retry[-01] -- OSeqno: 004 ISeqno: 003 Type: IAX Subclass: ACK
 Timestamp: 00210ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 003 ISeqno: 004 Type: IAX Subclass: PING
 Timestamp: 02083ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Tx-Frame Retry[000] -- OSeqno: 004 ISeqno: 004 Type: IAX Subclass: PONG
 Timestamp: 02083ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

 6.10 Summary | 166

 RR_JITTER : 0
 RR_LOSS : 0
 RR_PKTS : 1
 RR_DELAY : 40
 RR_DROPPED : 0
 RR_OUTOFORDER : 0

Rx-Frame Retry[No] -- OSeqno: 004 ISeqno: 005 Type: IAX Subclass: ACK
 Timestamp: 02083ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
Rx-Frame Retry[No] -- OSeqno: 004 ISeqno: 005 Type: IAX Subclass: HANGUP
 Timestamp: 08693ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]
 CAUSE : Dumped Call

To turn off debugging, use:

vtsvoffice*CLI>iax2 no debug

6.10 SUMMARY

In this chapter, we have learned the strengths and weaknesses of the IAX
protocol. We demonstrated IAX working in several scenarios, such as soft-
phones as well as a trunk between two Asterisk servers. Trunk mode allows
you to save bandwidth by carrying more then one call in a single packet. At
the end, you learned console commands to check the status and debug the
protocol.

167 | Chapter 6 – The IAX Protocol

6.11 QUESTIONS

1. Two of the main benefits of IAX are bandwidth savings and easier NAT
traversal.

a) False
b) True

2. IAX protocols use different UDP ports for signaling and media.

a) False
b) True

3. The bandwidth used by the IAX protocol is the voice payload and the
following headers (Mark all that apply):

a) IP
b) UDP
c) IAX
d) RTP
e) cRTP

4. It is important to match the codec payload (20 to 30 ms) with frame
synchronization (20ms default) when using trunk mode.

a) False
b) True

5. When IAX is used in trunk mode, just one header is used for multiple
calls.

a) False
b) True

6. IAX is the most used protocol to connect to service providers, because it
is easier for Nat traversal.

a) False
b) True

7. In an IAX channel as shown below, the option <secret> can be a
password or a ____________________.

 6.11 Questions | 168

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][/<options>]]

8. The IAX2 show registry shows information about:

a) Registered users
b) Providers to which Asterisk is connected

9. Jitter buffer sacrifices latency to have a steady flow of voice.

a) True
b) False

10. RSA keys can be used for IAX authentication. You have to keep the
___________ key secret and give to your costumers and partners the
matching ___________ key.

a) public, private
b) private, public
c) shared, private
d) public, shared

169 | Chapter 6 – The IAX Protocol

Paga left intentionally empty

The SIP Protocol

7.1 OBJECTIVES

By the end of this chapter, you will be able to:

 Figure 7.1 Objectives

7.2 OVERVIEW

SIP or Sessions Initiated Protocol is a text-based protocol similar to HTTP
and SMTP. It was designed to initialize, keep and terminate interactive
communication sessions between users. These sessions may include voice,
video, chat, interactive games, and others. It was define by the IETF and is
becoming a de facto standard for voice communications.

7.2.1 Theory of Operation

SIP is a signaling protocol and it has the following components:

Chapter 7

171 | Chapter 7 – The SIP Protocol

 Figure 7.2 SIP Main Components

• UAC (user agent client) - The client or terminal that initializes SIP

signaling.

• UAS (user agent server) – The server that responds to a SIP

signaling coming from an UAC.

• UA (user agent) – The SIP terminal (phones or gateways that
contain both UAC and UAS).

• Proxy Server – Receives requests from an UA and transfers to other

SIP Proxies if the particular station is not under their administration.

• Redirect Server – Receives requests and sends them back to the UA,
including destination data, instead of directly forwarding to the
destination.

• Location Server – Receives requests from an UA and updates the

location database with this information.

Generally, the Proxy, Redirect, and Location servers are hosted within the
same hardware and use the same piece of software that we call SIP Proxy.
The SIP Proxy is responsible for location database maintenance, connection
establishment, and session termination.

 7.2 Overview | 172

7.2.2 SIP Register process

 8
5
0
0
@
2
0
0
.1
8
0
.1
.1

 Figure 7.3 SIP Register Process

Before a phone can receive calls, it needs to register to a location database.
In the location database, the IP address will be bond to the name. In the
example above, extension 8500 will be bound to IP address 200.180.1.1. In
the SIP architecture, the registered extension could be
flavio@asteriskguide.com as well. You do not need, necessarily, to use
phone numbers.

173 | Chapter 7 – The SIP Protocol

7.2.3 Proxy operation

Proxy

Location e
Registrar
Server

INVITE
sip:8500@voffice.com.br
From: sip:2400@sip.com
To: sip:8500@voffice.com.br
Call-ID 2400@sip.com

 INVITE
sip:8500@200.180.4.168
From: sip:2400@sip.com
To: sip:8500@voffice.com.br
Call-ID 2400@sip.com

OK 200
From: sip:2400@sip.com
To: sip:8500@voffice.com.br
Call-ID 2400@sip.com

 OK 200
From: sip:2400@sip.com
To: sip:8500@voffice.com.br
Call-ID 2400@sip.com

Media flow
(RTP)

sip:8500@200.180.4.168sip:2400@sip.com

 Figure 7.4 SIP proxy Operation

7.2.4 Redirect operation

Redirect

Location e
Registrar
Server

INVITE
sip:8500@voffice.com.br
From: sip:2400@sip.com
To: sip:8500@voffice.com.br
Call-ID 2400@sip.com

OK 302 moved temporarily
Contact sip:8500@200.180.4.168

Media Flow
(RTP)

sip:8500@200.180.4.168

 INVITE 8500@200.180.4.168

OK 200

 ACK 8500@200.180.4.168

sip:2400@sip.com

 Figure 7.5 SIP Redirect Operation

 7.2 Overview | 174

7.2.5 How Asterisk treats SIP

It is important to understand that Asterisk is not a SIP Proxy neither a SIP
redirector. Asterisk can make the role of the registrar and location server,
but it connects two UACs to itself. Therefore, Asterisk is considered a Back-
to-Back user agent (B2BUA). In other words, it connects two SIP channels,
bridging them together. Asterisk has a re-invite mechanism that can make
the SIP channels talk to each other directly instead of passing through
Asterisk can be used together with a SIP proxy like SER (Sip Express Router,
www.iptel.org).

SI
P

(s
ig
na
lin
g) S

IP

(signaling)

 Figure 7.6 Asterisk with canreinvite option set

175 | Chapter 7 – The SIP Protocol

SI
P

(s
ig
na
lin
g) SIP

(signaling)

SIP operation with canreinvite=no

RT
P

(A
ud
io
) R

TP
(Audio)

 Figure 7.7 Asterisk without canreinvite option

7.2.6 Sip Messages

The basic SIP messages are:

• INVITE – connection establishment

• ACK – Acknowledge

• BYE – connection termination

• CANCEL – connection termination for a non established call

• REGISTER – Register an UAC to a SIP PROXY

• OPTIONS – Can be used to check availability

• REFER – Transfer a SIP call to someone else

• SUBSCRIBE – Subscribe to notification events

• NOTIFY – Send out channel information

• INFO – Send various messages (i.e. DTMF)

 7.2 Overview | 176

• MESSAGE – Send instant messages

The SIP responses are in text format and are easily readable (similar to http
messages). The most important responses are:

• 1XX – Information messages (100–trying, 180–ringing, 183–
progress)

• 2XX – Successful request complete (200 – OK)

• 3XX – Call redirect, request has to be directed to other place

(302 – moved temporarily, 305 use proxy)

• 4XX – Error (403 – Forbidden)

• 5XX – Server Error (500 – Internal Server Error; 501 – Not
implemented)

• 6XX – Global Failure (606 – Not acceptable)

Example:

INVITE sip:2000@192.168.1.133 SIP/2.0
Via: SIP/2.0/UDP
192.168.1.116;rport;branch=z9hG4bKc0a8017400000063452fafbb00006967000000d2
From: "unknown"<sip:2001@192.168.1.133>;tag=1556140623845
To: <sip:2000@192.168.1.133>
Contact: <sip:2001@192.168.1.116>
Call-ID: 64B4C8EC-FCFC-49E9-98B1-90982EEEBED3@192.168.1.116
CSeq: 2 INVITE
Max-Forwards: 70
User-Agent: SJphone/1.61.312b (SJ Labs)
Content-Length: 335
Content-Type: application/sdp
Proxy-Authorization: Digest
username="2001",realm="asterisk",nonce="6c55905e",uri="sip:2000@192.168.1.133",resp
onse="983c0099eea125d8cdfe93b0ec99f3ec",algorithm=MD5

7.2.7 SDP (Session description protocol)

SDP is defined in IETF RFC2327. It is intended for describing multimedia
sessions for the purpose of session announcement, session invitation, and
other forms of multimedia session initiation. The SDP includes:

• Transport protocol (RTP/UDP/IP)
• Type of media (text, audio, video)
• Media format or codec (H.261 video, g.711 audio, etc.)

177 | Chapter 7 – The SIP Protocol

• Information needed to receive these media (addresses, ports, etc.)

The example below is the transcription of a SDP describing a call between
two phones.

v=0
o=- 3369741883 3369741883 IN IP4 192.168.1.116
s=SJphone
c=IN IP4 192.168.1.116
t=0 0
a=setup:active
m=audio 49160 RTP/AVP 3 97 98 8 0 101
a=rtpmap:3 GSM/8000
a=rtpmap:97 iLBC/8000
a=rtpmap:98 iLBC/8000
a=fmtp:98 mode=20
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-11,16

7.3 SIP ADVANCED SCENARIOS

In chapter three, we have discussed the basic options to connect a SIP
Phone to Asterisk. Now let’s move on to more advanced configurations. In
the next sections you will learn how to configure Asterisk to connect to a SIP
provider, how to connect two Asterisks together using SIP and how to place
a call to a SIP provider. All SIP configurations are done in the file
“/etc/asterisk/sip.conf”

7.3.1 Connecting Asterisk to a SIP provider

Asterisk is often used to connect to a SIP VoIP provider. VoIP providers
usually have better rates for phone call than traditional providers. Another
interesting attractive of VoIP providers is the possibility of buying DID
numbers in other cities and even foreign countries. These are good reasons
to use VoIP for telecommunications. In this section, you will learn how to
connect Asterisk to a VoIP provider.

 7.3 SIP advanced scenarios | 178

 Figure 7.8 Asterisk connected to a VoIP service provider

Three steps are required to connect Asterisk to a SIP provider. Tests can be
carried on by establishing an account in your favorite provider.

Step 1: Registering to a SIP provider (sip.conf)

This configuration will allow your provider to locate Asterisk’s IP address. In
the statement below, we are telling Asterisk to register to a SIP provider
www.freeworlddialup.com, and inform the provider Asterisk’s IP address.
The statement says that you want to receive calls in the extension 4100.

In the [general] section of the sip.conf file enter the line below:

register=>621538:password@fwd.fwdnet.net/4100

Step 2: Configure the [peer] (sip.conf)

Create an entry of type peer to the desired provider to simplify the asterisk
dialing.

[fwd]
context=incoming
type=friend
dtmfmode=rfc2833
canreinvite=no
username=621538
secret=secret
host=fwd.pulver.com

179 | Chapter 7 – The SIP Protocol

fromuser=621538
fromdomain=fwd.pulver.com
insecure=very
disallow=all
allow=ulaw

Step 3: Create a route to the FWD in the dial plan

We will choose the digits 010 as the destination route to FWD. To dial
#610000 inside the FWD simply dial 010610000.

exten=>_010.,1,Set(CALLERID(num)=621538)
exten=>_010.,n,Set(CALLERID(Name)=”Flavio Gonçalves”)
exten=>_010.,n,Dial(SIP/${EXTEN:3}@fwd)
exten=>_010.,n,Hangup

VoIP provider specific options

Below we will go into the details of the options set in sip.conf file for
connection to a VoIP provider.

register=>621538:password@fwd.fwdnet.net/4100

The instruction register in the sip.conf file is used to register to a provider.
The register transaction is authenticated with name and secret. You can use
a slash (“/”) to provide an extension for incoming calls. Technically
speaking, the extension will be placed in the “Contact” header field of the
SIP request.

The registering behavior can be controlled by some parameters:

registertimeout=20
registerattempts=10

To check if register occurred successfully, you can use the console command
below:

CLI>sip show registry

The parameter “username” is used in the authentication digest. The digest is
computed using username, secret and realm:

username=ip1140623535

Host defines the VoIP provider address or name:

 7.3 SIP advanced scenarios | 180

host=fwd.pulver.com

The parameters “Fromuser” and “Fromdomain” are sometimes required to
authenticate. Those parameters are used in the SIP “From” header field:

fromuser=621538
fromdomain=fwd.pulver.com

When you connect to a VoIP provider, credentials are required. After the
initial invite, the provider sends to you a message called “407 Proxy
Authentication Required” and you provide the credentials in the next INVITE
message. For incoming calls, your Asterisk asks for the provider credentials.
Obviously, the provider does not have a valid credential to your Asterisk
server. When you use “insecure=very”, you are telling Asterisk to not send
the “407 Proxy Authentication Required” to the provider and to make accept
incoming calls.

insecure=very

7.3.2 Connecting two Asterisk servers together through SIP

4400 4401 4500 4501

SIP
(signaling)

Connecting two Asterisk Servers
Using SIP

A B

 Figure 7.9 Connecting two asterisk server together using SIP

You can use SIP to interconnect two Asterisk boxes. It is important to pay
attention to the dial plan before moving on with this configuration. Users
usually want to connect other PBXs with minimal effort. The idea now is to
use an extension number only to connect to the other PBX.

181 | Chapter 7 – The SIP Protocol

Step 1: Edit the sip.conf file in server A:

[B]
type=user
secret=B
host=A
disallow=all
allow=ulaw
canreinvite=no

[B-out]
type=peer
fromuser=A
username=A
secret=A
host=B
disallow=all
allow=ulaw
canreinvite=no

Step 2: Edit the sip.conf file in server B:

[A]
type=user
host=B
secret=A
disallow=all
allow=ulaw
canreinvite=no

[A-out]
type=peer
host=A
fromuser=B
username=B
secret=B
disallow=all
allow=ulaw
canreinvite=no

Step 3: Edit the extensions.conf file in server A:

[default]
exten=_44XX,1,dial(SIP/${EXTEN},20)
exten=_44XX,2,hangup()
exten=_45XX,1,dial(SIP/B-out/${EXTEN})
exten=_45XX,2,hangup()

Step 4: Edit the extensions.conf file in server B:

[default]
exten=_44XX,1,dial(SIP/A-out/${EXTEN})
exten=_44XX,2,hangup()

 7.3 SIP advanced scenarios | 182

exten=_45XX,1,dial(SIP/${EXTEN})
exten=_45XX,2,hangup()

7.3.3 Asterisk domain support

 Figure 7.10 connecting other users using a SIP URI.

The SIP protocol follows the Internet architecture. The first thing to do
before configuring SIP is to correctly set the DNS Servers. In a SIP
environment, you can call a user located in any SIP proxy and other users
can call you as well, using your SIP Uniform Resource Identifier (URI). To set
a DNS Server for SIP you have to add SRV records to your DNS Server.

; SIP server/proxy and its backup server/proxy
sip1.yourdomain.com 21600 IN A 200.180.4.169
sip2.yourdomain.com 21600 IN A 200.175.61.150
;
; DNS SRV records for SIP
_sip._udp.yourdomain.com 21600 IN SRV 10 0 5060 sip1.asteriskguide.com.
_sip._udp.yourdomain.com 21600 IN SRV 20 0 5060 sip2.asteriskguide.com.

After configuring the DNS, you can use the URI, which points to a SIP user,
SIP phone or telephone extension. A SIP URI looks similar to an email
address, for example sip:chuck@yourpartnerdomain.com. Using SIP URI’s,
no telephone number is needed to make a call from one SIP phone to
another. To dial an external user, simply use a statement as the one shown
below.

exten=4000,1,dial(SIP/chuck@yourpartnerdomain.com)

183 | Chapter 7 – The SIP Protocol

There are some parameters to control domain behavior.

srvlookup=yes

This parameter enables DNS SRV lookups on outbound calls. Without this
parameter, it is no possible to dial calls using sip names based on domain.

allowguest=yes

The above parameter allows an external invite to be processed without
authentication. It processes the call within the context defined in the general
section or in the domain statement.

Warning: If you define a context in the general section with access
to PSTN, an external user can dial the PSTN over your PBX. casein
this case, you will incur any charges. Allow only your own extensions

in the context defined in the general section.

domain=acme.com,default

The domain command allows you to handle more than one domain inside
Asterisk. If a call comes from one specific domain, it is directed to a specific
context.

;autodomain=yes

It includes the local IP and hostname in the allowed domains.

;allowexternaldomains=no

The default is yes. Uncomment the line to disallow calls to outside domains.

7.4 ADVANCED CONFIGURATIONS

7.4.1 Codec configuration

Codec configuration is simple and straightforward. You can set the words
“allow” and “disallow” in the [general] section or peer/user section. The best
practice is to standardize the codec to avoid transcoding, which is processor
intensive. Use the same codec for messages and prompts.

[general]
disallow=all
allow=g729

 7.4 Advanced configurations | 184

7.4.2 DTMF options

In several occasions, you will need to pass digits as if you were operating
the voicemail or IVR (interactive voice response) prompts. It is very
important to pass DTMF correctly.

The simplest method to pass DTMF is called “inband”. It is set in the
[general] or peer/user section of the sip.conf file. When you set
dtmfmode=inband, DTMF tones will be generated as sounds in the audio
channel. The main issue with this method is that when you compress the
audio channel using a codec such as g.729, sounds are distorted and DTMF
tones are not recognized correctly. If you plan to use dtmfmode=inband, use
the g.711 codec (ulaw and alaw).

dtmfmode=inband

Another way is to use RFC2833. It allows you to pass DTMF tones as named
events in the RTP packets. A table of events corresponding to tones is shown
below.

Event Codification

0—-9 0--9

* 10

11

A—D 15

Flash 16
 Table 7.1 – DTMF named Events

dtmfmode=rfc2833

Finally, you can pass DTMF digits inside SIP packets, instead of RTP packets.
This method is defined in the RFC3265 (signaling events) and RFC2976.

dtmfmode=info

Following the the release of version 1.2, it is now possible to use:

dtmfmode=auto

It tries to use the RFC2833 and if it is not possible use inband tones.

7.4.3 QoS (quality of service) marking configuration

QoS (quality of service) is a set of techniques responsible for voice quality.
QoS is implemented in such a way as to reduce bandwidth, latency, and
jitter. The main QoS functions are packet scheduling, fragmentation, and

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

185 | Chapter 7 – The SIP Protocol

header compression. QoS is implemented in switches and routers, not by
Asterisk itself. However, Asterisk can help routers and switches by marking
packets for express delivery. Marking is done using DSCP (differentiated
services code point) defined in RFCs 2474 and RFC2475.

tos_sip=cs3
tos_audio=ef
tos_video=af41

In the 1.4 version 1.4 you can specify different codes for signaling (SIP),
audio (RTP), and video (RTP).

7.4.4 SIP authentication

 Figure 7.11 SIP authentication

When Asterisk receives a SIP call, it follows the rules described above.

Three parameters play an important role in SIP authentication:

allowguest=yes/no

This parameter controls if a “user” without a corresponding “peer” can
authenticate without a name and secret. We have discussed this parameter
before in the domain support section.

insecure=invite;port

 7.4 Advanced configurations | 186

When we use insecure=invite or insecure=very, Asterisk does not generate a
message “407 Proxy Authentication Required”. Without this message, the
user can make a call without authentication. This is often used to connect to
VoIP service providers. The calls coming from the VoIP service provider
usually are not authenticated.

autocreatepeer=yes/no

The command above is used when Asterisk is connected to a SIP proxy. It
creates a peer dynamically to each call. When this option is enabled, any
UAC can connect to the Asterisk Server. It is important to limit the IP
connection to the SIP proxy. The SIP proxy, in turn, takes care of access
control. Peer configuration is based on the general options as well as the
“Contact” header field of the SIP packet.

Warning: Use this with extreme caution as it completely opens
Asterisk.

secret=senha

This parameter configures the secret for authentication. If you do not want
to present the secrets in text files, you can use md5secret to put a hash
instead of the secret.

To generate the MD5 secret you can use:

#echo –n “username:realm:secret” |md5sum

Then use the statement below.

md5secret=0b0e5d467890....

Warning: Do not forget to use the –n parameter; the carriage return
will be used in the md5 computation.

deny=0.0.0.0/0.0.0.0
permit=192.168.1.0/255.255.255.0

The statements above will deny all IP addresses and allow UAC only from the
local network (192.168.1.0/24).

7.4.5 RTP options

187 | Chapter 7 – The SIP Protocol

It is possible to control some RTP parameters.

rtptimeout=60

Terminate calls without RTP activity for more the 60 seconds when not in
hold.

rtpholdtimeout=120

Terminate calls without RTP activity even on hold (should be bigger then
rtptimeout).

7.5 SIP NAT TRAVERSAL

Network Address Translation (NAT) is a feature used by most networks to
save Internet IP addresses. Usually, a company receives a small block if IP
addresses and end users receive one IP address dynamically when
connected to the Internet. NAT solves the addressing problem by mapping
internal addresses to external addresses. It keeps in the memory a mapping
of internal to external addresses. This mapping is valid for a specific length
of time after which the mapping is discarded. The mapping uses IP:port
pairs for the internal and external addresses.

There are four kinds of NAT:

• Full Cone

• Restricted Cone

• Port Restricted Cone

• Symmetric

7.5.1 Full Cone

The first NAT, “Full Cone”, represents a static mapping from an external
IP:port pair to an internal IP:port pair. Any external computer can connect to
it using the external IP:port pair. This is the case in non-stateful firewalls
implemented with the use of filters.

 7.5 SIP NAT Traversal | 188

 Figure 7.12 NAT Full Cone

7.5.2 Restricted Cone

In the restricted cone scenario, the external ip:port pair is opened only when
the internal computer sends data to an outside address. However, the
restricted cone NAT blocks any incoming packets from a different address. In
other words, the internal computer has to send data to an external computer
before it can send data back.

7.5.3 Port Restricted Cone

The port restricted cone firewall is almost identical to the restricted cone.
The only difference is that, now, the incoming packet has to come from
exactly the same IP and port of the sent packet.

7.5.4 Symmetric

189 | Chapter 7 – The SIP Protocol

 Figure 7.13 NAT Symmetric

The last type of Nat is called symmetric. It is different from the first three in
that a specific mapping is done to each external address. Only specific
external addresses are allowed to come back by the NAT mapping. It is not
possible to predict the external IP:port pair that will be used by the NAT
device. With the other three types of NAT, it was possible to use an external
server to discover the external IP address to use for communication. With
symmetric Nat, even if you can connect to an external server, the discovered
address cannot be used for any other device except for this server.

7.5.5 NAT firewall table

 Need to send

data before
receiving

It is possible to

determine the
IP:port pair for
returning packets

It restricts the

incoming packets
to the destination
IP:port

Full Cone No Yes No

Restricted Cone Yes Yes Only IP

Port Restricted Cone Yes Yes Yes

Symmetric Yes No Yes

7.5.6 SIP signaling and RTP over NAT

Some of the biggest issues in NAT traversal are that you have to solve two
problems. The first one is SIP signaling and the second one is audio (RTP).
Most problems of one-way audio are NAT related.

 7.5 SIP NAT Traversal | 190

An interesting thing about SIP is that when an UAC sends a packet, it
embeds the IP address in the SIP “Contact” header field. Usually this is an
internal (RFC1918) address and responses to this packet cannot be routed
over the internet back to the UAC. When you put the statement “nat=yes” in
the sip.conf file you are telling Asterisk to ignore the address contained in
the “Contact” header field of the SIP header and use the source IP address
and port in the packet’s IP header.

nat=yes

Now, it is necessary to keep the NAT mapping open. If NAT times out,
Asterisk could not send an invite to the UAC. The UAC could send calls but
could not receive. We can use the statement below to keep NAT open.

qualify=yes

Qualify will send a SIP packet using the OPTIONS method regularly. This will
help to keep NAT open.

Even with SIP signaling resolved, now we have a challenge to pass RTP from
one phone to another. If the user’s NAT is of the symmetric type, it is not
possible to send packets from one UAC to another directly. In this case, we
have to force the RTP thru Asterisk using:

Qualify sends an OPTION each 60 seconds and every 10th second when the
host is not reachable. You can use “sip show peers” to see the latency for
the peers.

canreinvite=no

These configurations are appropriate for most cases. However, it is possible
to optimize the traffic using advanced techniques like STUN (Simple
Traversal of UDP over Nat), which is useful with full cone, restricted cone,
port restricted cone, and ALG (Application Layer Gateway). Using these
techniques, you do not need to do anything in Asterisk for Nat traversal.
Sorry to say but, most firewalls today, even home DSL/Cable routers, are
symmetric, making STUN unusable. ALG could solve the problem but it is not
supported, not implemented, or buggy in most cases.

191 | Chapter 7 – The SIP Protocol

7.5.7 Asterisk behind NAT

Asterisk behind NAT

192.168.1.100

Asterisk

200.180.4.168

SIP (UDP 5060)

RTP (UDP 10000->20000)
defined in rtp.conf

 Figure 7.14 Asterisk behind NAT

All scenarios above assume that the Asterisk server have an external (valid)
Internet address. Sometimes the Asterisk server is implemented behind a
Firewall with NAT. In this case, it is necessary to do some extra
configurations.

Step 1: Configure the firewall to redirect statically the UDP port 5060 to the
Asterisk server.

Step 2: Configure the firewall to redirect statically the UDP ports from
10000 to 20000. If you want to restrict the number of opened ports, you can
edit the rtp.conf file to change the rtp port range. Another way is to use an
intelligent firewall that supports the SIP protocol to open dynamically the
RTP ports.

; RTP Configuration
;
[general]
;
; RTP start and RTP end configure start and end addresses
;
rtpstart=10000
rtpend=20000

 7.6 SIP limitations | 192

Step 3: Configure Asterisk to include the external address in the header
fields of the SIP packets including SDP (Session Description Protocol). You
accomplish this by adding two statements to the sip.conf file.

externip=200.180.4.168 ;External IP address
localnet=192.168.1.0/255.255.255.0 ;Internal Network Address
nat=yes

The first parameter (EXTERNIP) tells Asterisk to include the external IP
address inside the SIP headers for external destinations. The second
parameter (LOCALNET) allows Asterisk to differentiate external and internal
addresses.

Optionally you can use “externhost” if you use a Dynamic DNS with a DHCP
address on the server.

7.6 SIP LIMITATIONS

Asterisk does not support SIP calls over TCP or TLS transport protocols. It
uses only UDP.

Asterisk uses the incoming RTP flow to synchronize the outgoing flow. If the
incoming flow is interrupted (silence suppression) then music-on-hold will be
cut. In other words, you cannot use silence suppression in phones or
providers with Asterisk.

7.7 SIP DIAL STRINGS

You can call a SIP destination with different dial strings. You can use:

SIP/peer ; Need to have a defined peer in sip.conf
SIP/flavio@voffice.com.br ; By the URI
SIP/[exten@]peer[:portno]
SIP/[user:password@domain/extension

Examples:

exten=>s,1,Dial(SIP/ipphone)
exten=>s,1,Dial(SIP/info@voffice.com.br)
exten=>s,1,Dial(SIP/192.168.1.8:5060,20)
exten=>s,1,Dial(SIP/8500@sip.com:9876)

7.8 SIP CLI COMMANDS

193 | Chapter 7 – The SIP Protocol

You can show all available SIP console commands using:

CLI>help sip

7.9 QUESTIONS

1. SIP is a protocol similar to ______ and _______.

a) IAX
b) HTTP
c) H323
d) SMTP

2. SIP can have sessions of type: (mark all that apply)

a) Voice
b) e-mail
c) Video
d) Chat
e) Games

3. Are SIP components: (mark all that apply)

a) User Agent
b) Media gateway
c) PSTN Server
d) Proxy Server
e) Registrar Server

4. Before a phone can receive calls, it needs to ___________.

5. A SIP server can operate in the PROXY or REDIRECT mode. The difference
between them is that in the Proxy mode, all signaling pass by the SIP proxy.
In the redirect mode, after discovering the location, the clients signal
between themselves.

a) True
b) False

6. In proxy mode, the media flow goes through the SIP Proxy.

a) True
b) False

 7.9 Questions | 194

7. Asterisk is a SIP Proxy.

a) True
b) False

8. The canreinvite=yes/no option is fundamental. It will define if the media
pass inside Asterisk or goes directly from one client to another. It has a
major impact in Asterisk scalability.

a) True
b) False

9. Asterisk supports silence suppression in the SIP channels.

a) True
b) False

10. The hardest NAT type to traverse is:

a) Full Cone
b) Restricted Cone
c) Port Restricted Cone
d) Symmetric

195 | Chapter 7 – The SIP Protocol

Page intentionally left empty

Introduction to the dial plan

The dial plan is the most important Asterisk configuration. All calls are
handled by the dial plan. It is responsible for the PBX operation and
behavior. The dial plan controls everything Asterisk does when you dial a
number or name. It is controlled by a file named
/etc/asterisk/extensions.conf and you will learn how to create this file
structure in this chapter.

8.1 OBJECTIVES

By the end of this chapter, you should be able to:

 Figure 8.1 Objectives

Chapter 8

197 | Chapter 8 – Introduction to the dial plan

8.2 EXTENSIONS.CONF FILE STRUCTURE

 Figure 8.2 Extensions.conf file structure

The extensions.conf file is separated in sections. The first is the [general]
section followed by the [globals] section. The beginning of each section
starts with its name definition (i.e. [default]) and finishes when another
section is created.

8.2.1 [general] section

General section sits at the top of the file. Before starting to configure the dial
plan is interesting to know the general options that controls some dial plan
behaviors. These options are:

• static and write protect: If static=yes and writeprotect=no, you can
save dialplan by CLI command 'save dialplan' too.

Warning: If you issue an “save dialplan” command from the CLI you will

loose any remarks and comments in the file.

•
• autofallthrough: If autofallthrough is set, then if an extension runs

out of things to do, it will terminate the call with BUSY, CONGESTION,
or HANGUP depending on Asterisk's best guess. This is the default. If

 8.2 Extensions.conf file structure | 198

autofallthrough is not set, then if an extension runs out of things to do,
Asterisk will wait for a new extension to be dialed. In version 1.4 the
default is yes.

• clearglobalvars: If clearglobalvars is set, global variables will be

cleared and reparsed into an dialplan reload, or Asterisk reload. If
clearglobalvars is not set, then global variables will persist through
reloads, and even if deleted from the extensions.conf or one of its
included files, they will remain set to the previous value.

•
• priority jumping: If priorityjumping is set to 'yes', then applications

that support 'jumping' to a different priority based on the result of
their operations will do so (this is backwards compatible behavior with
pre-1.2 releases of Asterisk). Individual applications can also be
requested to do this by passing a 'j' option into their arguments. In
version 1.4, this option defaults to ‘no’.

8.2.2 [globals] Section

In the [globals] section you will define global variables and their initial
values. You can access the variable in the dialplan using
${GLOBAL(variable)}. You can even access variables defined in the
linux/unix environment using ${ENV(variable).

Global variables are not case sensitive. A few examples could be:

INCOMING>Zap/8&Zap/9
RINGTIME=>3

In the example below, you can set and test a global variable in the dialplan.

exten=9000,1,set(GLOBAL(RINGTIME)=4)
exten=9000,n,Noop(${GLOBAL(RINGTIME)})
exten=9000,n,hangup()

199 | Chapter 8 – Introduction to the dial plan

8.3 CONTEXTS

 Figure 8.3 Asterisk call flow

Context is the named partition of the dial plan. In chapter three, we have
learned the basic concepts of context, extensions and priorities. After the
sections [general] and [globals], the dial plan is a set of contexts, each
context has several extensions, each extension has several priorities, and
each priority calls an application with several arguments. Let us revise the
concepts introduced in chapter three.

 8.4 Extensions | 200

Call Processing

[globlals]
OPERATOR=SIP/4000

[incoming]

exten=s,1,dial(${OPERATOR},20)
exten=s,n,hangup()

[default]

;dialing other extensions starting with 4
followed by three digits
exten=>_4XXX,1,Dial(SIP/${EXTEN},20)
exten=>_4XXX,n,hangup()
; Send every digit after 9 to the PSTN
exten=>_9.,1,Dial(ZAP/g1/${EXTEN:1},20)
exten=>_9.,n,hangup()

[4001]
type=friend
context=default

extensions.confzapata.conf

sip.conf

 Figure 8.4 Basic Dial Plan

You can build a simple dial plan to reach other phones and the PSTN.
However, Asterisk is much more powerful than that. Our objective is to
teach you more details of what is possible in the dial plan.

8.4 EXTENSIONS

 Figure 8.5 Extensions and priorities

201 | Chapter 8 – Introduction to the dial plan

Different from the traditional PBX, where extensions are associated with
phones, interfaces, menus and so on, in Asterisk an extension is a list of
commands to be processed when a specific extension number or name is
triggered. The commands are processed in priority order.

An extension can be literal, standard, or special. A standard extension
includes only numbers or names and the characters “*” and “#”. 12#89* is
a valid literal extension. Names can be used for extension matching too.
Extensions are case sensitive. However, you cannot create two extensions
with the same name with different cases.

When an extension is dialed, the command with the first, priority is executed
followed by the command with priority 2 and so on. This happens until the
call is disconnected or some command returns the number one indicating
failure. What Asterisk does when the last priority is executed is regulated by
the parameter autofallthrough. See the [general] section in this chapter.

Example:

exten=>123,1,Answer
exten=>123,2,Playback(tt-weasels)
exten=>123,4,Hangup

Above you find the list of instructions to be processed when extension “123”
is dialed. The first priority is to answer the channel (necessary when the
channel is in the ringing state, i.e. FXO channels). The second priority is to
playback an audio file called “tt-weasels”. The third priority hangs up the
channel.

Another option is to handle the call by the CallerID. You can use the “/”
character to specify the CallerID to be processed.

Examples:

exten=>123/100,1,Answer()
exten=>123/100,2,Playback(tt-weasels)
exten=>123/100,4,Hangup()

This example will trigger extension “123” and execute the following options
only if CallerID is 100.

This can also be done by using pattern, as described below:

exten=>1234/_256NXXXXXX,1,Answer()

 8.4 Extensions | 202

hint: maps an extension to a channel. It is used to monitor channel state. It
is used in conjunction with presence. The phone has to support it.

8.4.1 Pattern Matching

You can use patterns in the dial plan. They are very useful to reduce the dial
plan size. Any pattern starts with the “_” character. The following characters
can be used to define a pattern.

 Figure 8.6 Pattern Matching

8.4.2 Standard extensions

Asterisk uses some extension names as standard extensions.

203 | Chapter 8 – Introduction to the dial plan

Asterisk Standard Extensions

i : Invalid
s : Start
h : Hangup
t : Timeout
T : AbsoluteTimeout
o : Operator
a : Called when user press * in voicemail
fax : Used for fax detection
Talk : Used with BackgroundDetect

 Figure 8.7 Asterisk standard extensions

Description:

s: Start. It is used to handle a call when there is no dialed number. It is
useful for FXO trunks and in menu processing.

t: Timeout. It is used when calls stay inactive after a prompt had been
played. It is used to hang-up an inactive line as well.

T: AbsoluteTimeout. If you establish a call limit using the AbsoluteTimeout()
function. When the call exceeds the limit defined, it will be sent to T
extension.

h: Hangup. It is called after the user disconnects the call

i: Invalid. It is triggered when you call an inexistent extension in the
context. Using these extensions can affect the content of CDR records.
Specifically, the dst that does not contain the number dialed.

o: Operator. It is used to go to operator when the user presses “0” in
voicemail.

8.5 VARIABLES

 8.5 Variables | 204

In the Asterisk PBX, variables can be global, channel-specific, and
environment-specific. You can use the NoOP() application to see the content
of a variable in the console.

It can use a global variable or a channel-specific variable as applications
arguments. A variable can be referenced as below where “varname” is the
name of the variable.

${varname}

A variable name can be an alphanumeric string starting with a letter. Global
variable names are not case sensitive. However system variables (Asterisk
defined are channel defined) are case sensitive. The variable ${EXTEN} is
different from ${exten}.

8.5.1 Global variables

Global variables can be configured in the [global] section in the
extensions.conf file or using the application:

set(Global(variable)=content).

8.5.2 Channel variables

Channel variables are configure dusing the “Set()” application. Each channel
receives its own variable space. There is no chance of collisions between
variables from different channels. A channel specific variable is destroyed
when the channel hangs up.

Some of the most used variables are:

${EXTEN} Extension dialed
${CONTEXT} Current context
${CALLERID(name)}
${CALLERID(num)}
${CALLERID(all)} Current callerID
${PRIORITY} Current priority

There are other channel variables. They are all uppercase. You can see the
content of several variables using the dumpchan() application. Below is a
simple excerpt of dump channel variables.

exten=9001,1,dumnpchan()
exten=9001,n,echo()
exten=9001,n,hangup()

205 | Chapter 8 – Introduction to the dial plan

Dumpchan output:

Dumping Info For Channel: SIP/4400-08191828:
==
Info:
Name= SIP/4400-08191828
Type= SIP
UniqueID= 1161186526.0
CallerID= 4400
CallerIDName= laptop
DNIDDigits= 9001
RDNIS= (N/A)
State= Ring (4)
Rings= 0
NativeFormat= 0x4 (ulaw)
WriteFormat= 0x4 (ulaw)
ReadFormat= 0x4 (ulaw)
1stFileDescriptor= 16
Framesin= 0
Framesout= 0
-TimetoHangup= 0
ElapsedTime= 0h0m0s
Context= default
Extension= 9001
Priority= 1
CallGroup=
PickupGroup=
Application= DumpChan
Data= (Empty)
Blocking_in= (Not Blocking)

Variables:
SIPCALLID=500CEBC0-9483-4CED-B1E4-16D953655CFC@192.168.1.116
SIPUSERAGENT=SJphone/1.61.312b (SJ Labs)
SIPDOMAIN=192.168.1.133
SIPURI=sip:4400@192.168.1.116

Tip: A complete list can be found at:

http://www.voip-info.org/wiki/view/Asterisk+Detailed+Variable+List

8.5.3 Environment variables

Environment variables can be used to access variables defined in the
operating system. You can set environment variables using the function
ENV()

${ENV(LANG)}
Set(ENV(LANG))=en_US

 8.5 Variables | 206

8.5.4 Application specific variables

Some applications use variables for data input and output. You can set
variables before calling the application or retrieve the variable after the
application execution.

Example:

The Dial application returns the following variables:

• ${DIALEDTIME} ->This is the time from dialing a channel until it is
disconnected.

• ${ANSWEREDTIME} -> This is the amount of time for actual call

• ${DIALSTATUS} This is the status of the call:

• CHANUNAVAIL
• CONGESTION
• NOANSWER
• BUSY
• ANSWER
• CANCEL
• DONTCALL
• TORTURE

• ${CAUSECODE} -> Error message for the call

8.5.5 Macro specific variables

Some additional channel variables are available within a macro context:

• ${ARG1}: First macro argument

• ${ARG2}: Second macro argument and so on.

• ${MACRO_CONTEXT}: Context where the macro was called

• ${MACRO_EXTEN}: Extension that triggers the macro

• ${MACRO_OFFSET}: Set by a macro to influence priority after
exiting.

• ${MACRO_PRIORITY}: Priority where the macro was triggered

207 | Chapter 8 – Introduction to the dial plan

8.6 EXPRESSIONS

Math Operators

Addition (+), Subtraction (-), Multiplication(*), Division (/), Modulus (%)

Logical Operators

Logical “AND” (&), Logical “OR” (|), Unary not (!)

Comparison Operators

(=, >, >=, <,<=,!=)

Regular expression operators

Regular expression matching (:), Regular expression exact matching (=~)

Conditional operator

expression1 ? expression2 :: expression3

Asterisk Expressions

 Figure 8.5 Asterisk expressions

Expressions can be very useful in the dial plan. They are used to manipulate
strings and perform math and logical operations. The expression syntax is
defined below:

$[expression1 operator expression2]

Let’s suppose that we have a variable called “I” and we want to add 100 to
the variable.

$[${I}+100]

When Asterisk finds an expression in the dial plan, it changes the whole
expression by the resulting value.

8.6.1 Operators

The following operators can be used to build expressions. It is important to
observe operator precedence.

1 – Parentheses “()”
2 – Unary operators “! -“
3 – Regular expression “: =~

 8.6 Expressions | 208

4 – Multiplicative operators “* / %”
5 – Additive operators “+ -“
6 – Comparison operators
7 – Logical operators
8 – Conditional operators

Math Operators

• Addition (+)
• Subtraction (-)
• Multiplication(*)
• Division (/)
• Modulus (%)

Logical Operators

• Logical “AND” (&)
• Logical “OR” (|)
• Logical Unary Complement (!)

Regular expression operators

• Regular expression matching (:)
• Regular expression exact matching (=~)

A regular expression is a special text string to describe a search pattern. You
may think of regular expressions as wildcards. Regular expressions are used
to match a string to a pattern to check matching. If the match succeeds and
the regular expression contains at least one match, the first match is
returned. Otherwise, the result is the number of characters matched.

Comparison operators

The result of a comparison is 1 if the relation is true or 0 if false.

• = equal
• != not equal
• < less than
• > greater than
• <= less or equal than
• >= greater or equal than

8.6.2 LAB. Evaluate the following expressions:

209 | Chapter 8 – Introduction to the dial plan

Put these expressions in your dial plan and use the NoOP() application to
evaluate the expressions. Dial # 9002 and see results in the Asterisk
console. Use verbose 15 to show the results.

exten=9002,1,set(NAME="FLAVIO") ;Set NAME=FLAVIO
exten=9002,n,set(I=4)
exten=9002,n,set(URI="40001@asteriskguide.com")
exten=9002,n,NoOP(${NAME})
exten=9002,n,NoOP(${I})
exten=9002,n,NoOP($[${I}+${I}])
exten=9002,n,NoOP($[${I}=4])
exten=9002,n,NoOP($[${I}=4 & ${NAME}=FLAVIO])
exten=9002,n,NoOP($[${URI} =~ "4[0-9][0-9][0-9][0-9]@."])
exten=9002,n,NoOP($[${I}=4?"MATCH"::"DO NOT MATCH"])
exten=9002,n,hangup

8.7 FUNCTIONS

After version 1.2, some applications are being replaced by functions. They
allow the processing of some variables in a more advanced way than only
expressions. You can see the full list of functions issuing the console
command below.

CLI>core show functions

8.7.1 String length

${LEN(string)} returns the string length

Example:
exten=>100,1,Set(Fruit=pear)
exten=>100,2,NoOp(${LEN(Fruit)})
exten=>100,3,NoOp(${LEN(${Fruit})})

In the first operation, the system has to show 5 as the result (the number of
letters in the word “fruit”). The second returns the number 4 (the number of
letters in the word “pear”).

8.7.2 Substrings

${string:offset:length }

Returns the substring, starting from the positing defined by the “offset”
parameter, with the string length defined in the “length” parameter.

 8.8 Applications | 210

If offset is negative, it starts from right to left, beginning at the end of the
string.

If length is omitted or negative then it takes the whole string starting by the
offset.

Examples:

${123456789:1}-returns 23456789
${123456789:-4}-returns 6789
${123456789:0:3}-returns 123
${123456789:2:3}-returns 345
${123456789:-4:3}-returns 678

exten=>_NXX.,1,Set(areacode=${EXTEN:0:3})

Takes the area code from the first three digits.

exten=>_516XXXXXXX,1,Dial(${EXTEN:3})

It takes all digits from the variable ${EXTEN}, except for the area code

8.7.3 String concatenation

To concatenate two strings, simply write them together.

${foo}${bar}
555${number}
${longdistanceprefix}555${number}

8.8 APPLICATIONS

To build a dial plan we need to understand the concept of applications. You
will use applications to handle the channel in the dial plan. Applications are
implemented in several modules. Available applications depend on modules.
You can show all Asterisk applications using the console command:

CLI>core show applications

Alternatively, you can show details of a specific application using:

Example:

CLI>core show application dial

211 | Chapter 8 – Introduction to the dial plan

To build a simple dial plan you need to know a few applications. In the next
chapter, we will discuss more advanced examples.

 Figure 8.6 Simple applications to build a dialplan

We will use the above applications to create a simple dial plan for two basic
PBXs.

8.8.1 Answer application

[Synopsis]
Answers a channel if ringing

[Description]

Answer([delay]): If the call has not been answered, the application will
answer it. Otherwise, it has no effect on the call. If a delay is specified,
Asterisk will wait this number of milliseconds specified in ‘delay’ before
answering the call.

8.8.2 Dial application

The description below can be obtained issuing show application dial in the
dial plan. For easy searching it is being reproduced below.

Dial()

 8.8 Applications | 212

Place a call and connect to the current channel

The syntax for the Dial application is shown below

;Dialing a channel
Dial(type/identifier,timeout,options, URL)

;Dialing to multiple channels
Dial(Technology/resource[&Tech2/resource2...][|timeout][|options][|URL]):

This application will place calls to one or more specified channels. As soon as
one of the requested channels answers, the originating channel will be
answered, if it has not already been answered. These two channels will then
be active in a bridged call. All other channels that were requested will then
be hung up.

Unless there is a timeout specified, the Dial application will wait indefinitely
until one of the called channels answers, the user hangs up, or if all of the
called channels are busy or unavailable. Dialplan executing will continue if no
requested channels can be called, or if the timeout expires.

This application sets the following channel variables upon completion:

• DIALEDTIME - This is the time from dialing a channel until the time
that it is disconnected.

• ANSWEREDTIME - This is the amount of time for actual call.

• DIALSTATUS - This is the status of the call:

• CHANUNAVAIL

• CONGESTION

• NOANSWER

• BUSY

• ANSWER

• CANCEL

• DONTCALL

• TORTURE

For the Privacy and Screening Modes, the DIALSTATUS variable will be set to
DONTCALL if the called party chooses to send the calling party to the 'Go
Away' script. The DIALSTATUS variable will be set to TORTURE if the called
party wants to send the caller to the 'torture' script.

213 | Chapter 8 – Introduction to the dial plan

This application will report normal termination if the originating channel
hangs up, or if the call is bridged and either of the parties in the bridge ends
the call.

The optional URL will be sent to the called party if the channel supports it. If
the OUTBOUND_GROUP variable is set, all peer channels created by this
application will be put into that group (as in Set(GROUP()=...).

Options:

A(x) Plays an announcement to the called party,

using 'x' as the file.
C Reset the CDR for this call.
d Allow the calling user to dial a 1-digit extension

while waiting for a call to be answered. Exit to
that extension if it exists in the current context,
or the context defined in the EXITCONTEXT
variable, if it exists.

D([called][:calling]) Send the specified DTMF strings *after* the
called party has answered, but before the call
gets bridged. The 'called' DTMF string is sent to
the called party, and the 'calling' DTMF string is
sent to the calling party. Both parameters can
be used alone.

f Force the callerid of the *calling* channel to be
set as the extension associated with the
channel using a dialplan 'hint’. For example,
some PSTNs do not allow CallerID to be set to
anything other than the number assigned to
the caller.

g Proceed with dialplan execution at the current
extension if the destination channel hangs up.

G(context^exten^pri) If the call is answered, transfer the calling party
to the specified priority and the called party to
the specified priority+1.Optionally, an
extension, or extension and context, may be
specified. Otherwise, the current extension is
used.

h Allows the called party to hang-up by sending
the '*' DTMF digit

H Allow the calling party to hang-up by hitting the
'*' DTMF digit.

i Asterisk will ignore any forwarding requests it
may receive on this dial attempt.

 8.8 Applications | 214

j Jump to priority n+101 if all of the requested
channels were busy.

L(x[:y][:z]) Limits the call to 'x' ms. Plays a warning when
'y' ms are left. Repeats the warning every 'z'
ms. The following special variables can be used
with this option:

• LIMIT_PLAYAUDIO_CALLER yes|no
(default yes) Play sounds to the caller.

• LIMIT_PLAYAUDIO_CALLEE yes|no
Play sounds to the callee.

• LIMIT_TIMEOUT_FILE File to play when
time is up.

• LIMIT_CONNECT_FILE ->File to play
when call begins.

• LIMIT_WARNING_FILE ->File to play
as warning if 'y' is defined. The default is
to say the time remaining.

m([class]) Provides hold music to the calling party until a
requested channel answers. A specific
MusicOnHold class can be specified.

M(x[^arg]) Executes the Macro for the *called* channel
before connecting to the calling channel.
Arguments can be specified to the Macro using
'^' as a delimiter. The Macro can set the
variable MACRO_RESULT to specify the
following actions after the Macro is finished
executing.

• ABORT Hangs-up both legs of the call.
• CONGESTION Behaves as if line

congestion was encountered.
• BUSY Behaves as if a busy signal was

encountered. This will also have the
application jump to priority n+101 if the
'j' option is set.

• CONTINUE Hangs-up the called party
and allows the calling party to continue
dialplan execution at the next priority.

• GOTO:<context>^<exten>^<priority>
Transfers the call to the specified priority.
Optionally, an extension, or extension and
priority, can be specified. In addition, PBX
services are not run on the peer (called)
channel, so you will not be able to set
timeouts via the TIMEOUT() function in

215 | Chapter 8 – Introduction to the dial plan

this macro.
n This option is a modifier for the screen/privacy

mode. It specifies that no introductions be
saved in the priv-callerintros directory.

N This option is a modifier for the screen/privacy
mode. It specifies that if callerID is present, do
not screen the call.

o Specifies that the CallerID that was present on
the *calling* channel be set as the CallerID on
the *called* channel. This was the behavior of
Asterisk 1.0 and earlier.

O([x]) “Operator Services" mode (Zaptel channel to
Zaptel channel only; if specified on non-Zaptel
interface, it will be ignored). When the
destination answers (presumably an operator
services station), the originator no longer has
control of their line They may hang-up, but the
switch will not release their line until the
destination party hangs-up (the operator).
Specified without an arg, or with 1 as an arg,
the originator hung-up will cause the phone to
ring back immediately. With 2 specified, when
the "operator" flashes the trunk, it will ring
his/her phone back.

p This option enables screening mode. This is
basically privacy mode without memory.

P([x]) Enables privacy mode. Use 'x' as the family/key
in the database if it is provided. The current
extension is used if a database family/key is not
specified.

r Indicates ringing to the calling party. Passes no
audio to the calling party until the called
channel has answered.

S(x) Hangs-up the call after 'x' seconds *after* the
called party has answered the call.

t Allows the called party to transfer the calling
party by sending the DTMF sequence defined in
features.conf.

T Allows the calling party to transfer the called
party by sending the DTMF sequence defined in
features.conf.

w Allows the called party to enable recording of
the call by sending the DTMF sequence defined
for one-touch recording in features.conf.

 8.8 Applications | 216

W Allows the calling party to enable recording of
the call by sending the DTMF sequence defined
for one-touch recording in features.conf.

K Allows the called party to enable parking of the
call by sending the DTMF sequence defined for
call parking in features.conf.

K Allows the calling party to enable parking of the
call by sending the DTMF sequence defined for
call parking in features.conf.

Example:

exten=_4XXX,1,Dial(SIP/${EXTEN},20,tTm)

In the example above, the application will dial to the corresponding SIP
channel. Both caller and called could transfer the call (Tt). Music on hold will
be heard instead of ring back. If nobody answers in 20 seconds, the
extension will go to the next priority.

8.8.3 Dialing between extensions

To enable dialing between extension, we could use the channel variable
${EXTEN} that means the dialed extension.

Example:

If the extension range is between 4000 to 4999 and all extensions use SIP,
we could adopt the command below.

exten=_4XXX,1,Dial(SIP/${EXTEN})

8.8.4 The hang-up application

Hangs-up the calling channel

[Description]

Hangup([causecode]): This application will hang-up the calling channel. If a
causecode is given, the channel's hangup cause will be set to the given
value.

8.8.5 The Goto application

Jump to a particular priority, extension, or context

217 | Chapter 8 – Introduction to the dial plan

[Description]

Goto([[context|]extension|]priority): This application will cause the calling
channel to continue dialplan execution at the specified priority. If no specific
extension, or extension and context, are specified, then this application will
jump to the specified priority of the current extension. If the attempt to
jump to another location in the dialplan is not successful, then the channel
will continue at the next priority of the current extension.

8.9 BUILDING A DIALPLAN

To build a simple dial plan you need to treat all incoming and outgoing calls.
You do this by creating contexts and extensions. In this section, we will
show you how to build the most common extensions.

8.9.1 Dialing to an external destination

To dial an external destination you could precede the number dialed with a
route. In North America, it is usual to use 9 followed by the number to be
dialed externally. If you are using an analog or digital channel to the PSTN
the command should look like below.

exten=_9NXXXXXX,1,Dial(Zap/1/${EXTEN:1},20,tT)

The above line will permit you to dial 9 and the desired number. In the way
it is been done you will use the first zapata channel (ZAP/1). If you have
several lines and this one is busy, the call will not be completed. In other
hand, you could use the line below to choose automatically the first available
Zapata channel.

exten=_9NXXXXXX,1,Dial(Zap/g1/${EXTEN:1},20,tT)

The “g1” parameter will search the first available channel in the group,
allowing the use of all channels.

Using the line below you could dial a long distance number.

exten=_91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1},20,tT)

8.9.2 Dialing 9 to get a PSTN line

 8.9 Building a Dialplan | 218

If you do not have any restrictions to external dialing you could simplify and
use the line below.

exten=9,1,Dial(Zap/g1,20,tT)

8.9.3 Receiving a call in the operator extension

In the example below, the operator extension is 4000. The PSTN line is
connected to a FXO interface. In the Zapata.conf file the context specified is
“[incoming]”. Any call coming from the PSTN will be routed to the incoming
context in the dialplan. This line does not have a DID (direct inward dialing);
then, we will have to receive the call in the “s” extension.

[incoming]
exten = s,1,Answer()
exten = s,2,Dial(SIP/4000,40,tT)
exten = s,3,Hangup()

8.9.4 Receiving a call using DID (direct inward dialing)

If you have a digital line, you will receive the dialed extension. When this is
the case, you don’t need to forward to the operator. You can forward the call
directly to the destination. Suppose your DID range is from 3028550 to
3028599 and the last four numbers are passed in the DID. The configuration
should look like the one in the example below.

[incoming]
exten => _85[5-9]X,1,Answer()
exten => _85[5-9]X,2,Dial(SIP/${EXTEN},15,tT)
exten => _85[5-9]X,3,Hangup()

8.9.5 Playing several extensions simultaneously

You can set Asterisk to dial an extension and if it is not answered to dial
several other extension simultaneously. You can do that as below.

exten => 0,1,Dial(Zap/1,15,tT)
exten => 0,2,Dial(Zap/1&Zap/2&Zap/3,15)
exten => 0,2,Hangup()

In this example when someone dials the operator, in the first place the
channel ZAP/1 is tried. If nobody answers after 15 seconds (timeout) the
channels ZAP/1, ZAP/2 and ZAP/3 will ring simultaneously for another 15
seconds.

219 | Chapter 8 – Introduction to the dial plan

8.9.6 Routing by the Caller ID

In this example you could give different treatments depending on the
CallerID (this could be useful for ex-girlfriends, for example!).

exten => 8590/4832518888,1,Playback(Ihavemovedtochina)
exten => 8590,1,Dial(Zap/1,20)
exten => 8590,2,Voicemail(u8590)
exten => 8590,102,Voicemail(b8590)

In this example, we have added a special rule when, if the Caller ID is
4832518888, you playback a message on the previously recorded file
“Ihavemovedtochine”. Other calls are accepted as usual.

8.9.7 Using variables in the dial plan

Asterisk can use global and channel variables in the dial plan as arguments
for certain applications. Look at the examples below.

[globals]
Flavio => Zap/1
Daniel => Zap/2&SIP/pingtel
Anna => Zap/3
Christian => Zap/4

[mainmenu]
exten => 1,1,Dial(${Daniel}&${Flavio})
exten => 2,1,Dial(${Anna}&${Christian})
exten => 3,1,Dial(${Anna}&${Flavio})

Using variables makes future changes easier. If you change the variable, all
references are changed immediately.

8.10 BUILDING A SIMPLE DIAL PLAN

This section will show you how to build a simple dial plan in the
/etc/asterisk/extensions.conf for two very common scenarios.

8.10.1 PBX with 16 SIP extensions and 4 FXO trunks to PSTN.

Consider the following PBX example:

• Digium TDM400 installed and running

• zaptel.conf correctly configured

• zapata.conf correctly configured

• sip.conf correctly configured

 8.10 Building a simple Dial Plan | 220

• Channel group = 1 (group=1 in zapata.conf)

• FXO context = incoming (context=incoming in zapata.conf)

• SIP channels context = extensions

• Extensions range from 20 to 39

• Dial 0 to Operator

• Operator in the extension 20

•
;Operator call reception
[incoming]
exten=s,1,Answer()
exten=s,2,Dial(SIP/20,20,tT)
exten=s,3,Hangup()

[extensions]
;dialing other channels
exten=_[2-3]X,1,Dial(SIP/${EXTEN},20,tT)
exten=_[2-3]X,2,Hangup()

;PSTN call
exten=9,1,Dial(Zap/g1,20,tT)

;Calling the operator
exten=0,1,Dial(SIP/20,20,tT)

8.10.2 PBX with one T1 trunk and 50 sip phones

Consider the example below:

• TE110P installed and connected to a PSTN over a T1 trunk

• zaptel.conf correctly configured

• zapara.conf correctly configured

• sip.conf correctly configured

• Channel group =1 (group=1 in zapata.conf)

• T1 context = incoming (context=incoming in zapata.conf)

• SIP channels context= extensions

• Channel numbering from 4000 to 4049

• Operator in the 4000 extension or dialing 9

• External calls routed using DID

;Incoming calls
[incoming]
exten=_40[0-4]X,1,Answer()
exten=_40[0-4]X,2,Dial(SIP/${EXTEN},20,tT)
exten=_40[0-4]X,3,Hangup()

[extensions]
;dialing other extensions
exten=_40[0-4]X,1,Dial(SIP/${EXTEN},20,tT)

221 | Chapter 8 – Introduction to the dial plan

exten=_40[0-4]X,2,Hangup()

;external calls
exten=_9.,1,Dial(zap/g1/${EXTEN:1},20,tT)

;Calling the operator
exten=0,1,Dial(SIP/4000,20,tT)

8.11 ADDING SOME LOGIC TO YOUR DIAL PLAN

Several new features where introduced in version 1.2. In version 1.0, when
an error occurs the logic jumped 101 priorities. This behavior is regulated by
the “priorityjumping” parameter in the [general] section of the
extensions.conf file. The parameter was introduced in version 1.2 and its
default setting was ‘yes’. Now, in version 1.4, the default value is ‘no’.

The good news is that the dial plan is now more easily readable and can use
labels to help the extensions logic. See the example below:

Example in the 1.0 version

Example after 1.2 version.

Adding some logic to the dialplan

 Figure 8.6 Adding some logic to the dial plan

You can observe the new constructions after version 1.2. Firstly, the “n”
(next) priority appears. Secondly,, the goto jumps to the labels, instead of
jumping 101 positions as in the old style. This makes it easier to insert new
lines in the extension without been worried about the correct priority
number. Thirdly, we could use the Goto application to jump according to the
${DIALSTATUS} variable value. Now you have a fine tuning treatment for
the calls.

 8.12 Summary | 222

You can also use the variable ${HANGUPCAUSE} that allows capturing the
PRI (q931) cause codes in ISDN channels.

8.12 SUMMARY

In this chapter, you have learned that a dial plan is the main configuration
piece of Asterisk. It is composed of a combination of contexts, extensions
and priorities. You have learned how to build a simple dial plan for digital as
well as analog PBXs.

223 | Chapter 8 – Introduction to the dial plan

8.13 QUESTIONS

1. In the [general] section the default value to the option “writeprotect” is
‘no’. If you issue a command “save dialplan” in Asterisk’s CLI (mark all that
apply).

a) Asterisk will overwrite extensions.conf with actual configuration
b) All comments are lost
c) An extensions.conf.bak will be created
d) The option static=”yes” should be configure to save the dial plan

2. Usually, the global variables are written in uppercase and the channel
variables with only the first letter in uppercase. This is not mandatory, but
makes it easier to identify the variable’s type

a) True
b) False

3. The ‘s’ extension is used as the starting point in a context. Usually you
use the ‘s” extension in the following cases:

a) In the incoming context for a call without DNIS (dialed number)
b) As a menu staring point called from the background application
c) In the incoming context with DNIS (dialed number)
d) As a starting point directed by the “goto’ command

4. Write four situations where contexts could be used

5. To use a variable in the dial plan you should use the following format

a) $[varname]
b) {varname}
c) $(varname)
d) ${varname}

 8.13 Questions | 224

6. The Asterisk variable type could be (mark three)
.

a) Constants
b) Public variables
c) Environment variables
d) Global variables
e) Private variables
f) Channel variables

7. To obtain a string length you could use the function:__________.

8. To concatenate strings it is simply put them together:

${foo}${bar}
555${thenumber}

a) True
b) False

9. Suppose that you are configuring an analog PBX based on Asterisk. Write
the necessary instructions to build a dial plan to receive calls in the operator
(SIP/4000). If the operator extension is not answered before the timeout, it
will have to ring channels SIP/4000 and SIP/4001 simultaneously.

10. Suppose that you are configuring a digital PBX based on Asterisk. Write
the necessary instructions to allow the external dialing for long distance
numbers.

225 | Chapter 8 – Introduction to the dial plan

Page intentionally left empty

Dial Plan advanced features

Now that you have learned the basics of a dial plan, let us put some spice in
the configuration by describing advanced techniques, new applications, and
concepts.

9.1 OBJECTIVES

Receive calls using an IVR menu
Use Macros to avoid unnecessary rewrites
Implement some dial plan security using “Include”
Implement follow-me using AsteriskDB
Implement after hours behavior in your PBX
Use the switch command to transfer to another PBX
Implement the privacy manager

Objectives

By the end of this chapter you should be able to:

 Figure 9.1 Objectives

9.2 RECEIVING CALLS USING AN IVR MENU.

In the last section you have received all calls by using DID or forwarding to
the operator. Now you will learn how to implement an IVR menu and how to
create an auto-attendant service. Before getting into the specific about how
to do it, let’s examine some new applications.

Chapter 9

227 | Chapter 9 – Dial Plan Advanced Features

 Figure 9.2 Applications used in this section

We simply put the output of the command show application below to make
easier for readers. You can obtain these descriptions using “show application
applicationname”.

9.2.1 The Background() application

Play an audio file while waiting for digits of an
extension to go to.

[Description]

Background()

Options
s – skip recording if not answered
n - Don't answer the channel before playing the files.
m - Only break if a digit hit matches a one-digit extension

 Figure 9.3 Background application

This application will play the given list of files while waiting for an extension
to be dialed by the calling channel. To continue waiting for digits after this

 9.2 Receiving calls using an IVR menu. | 228

application has finished playing files, the WaitExten application should be
used. The 'langoverride' option explicitly specifies which language to attempt
to use for the requested sound files. If a 'context' is specified, this is the dial
plan context that this application will use when exiting to a dialed extension.
If one of the requested sound files does not exist, call processing will be
terminated.

Options:

• s - Causes the playback of the message to be skipped if the channel is
not in the 'up' state (i.e. it hasn't been answered yet). If this happens,
the application will return immediately.

• n - Don't answer the channel before playing the files.
• m - Only break if a digit hit matches a one-digit extension in the

destination context.

9.2.2 The Record() application

Record()

Record to a file

[Description]

Options
'a' : append to existing recording rather than replacing
'n' : do not answer, but record anyway if line not yet answered
'q' : quiet (do not play a beep tone)
's' : skip recording if the line is not yet answered
't' : use alternate '*' terminator key (DTMF) instead of default '#'
'x' : ignore all terminator keys (DTMF) and keep recording until hangup

'format' is the format of the file type to be recorded
'silence' is the number of seconds of silence allowed before returning.
'maxduration' is the maximum recording duration in seconds.

 Figure 9.4 Record() application

This application records from the channel into a given filename. If the file
exists, it will be overwritten.

• 'format' is the format of the file type to be recorded (wav, gsm, etc).
• 'silence' is the number of seconds of silence allowed before returning.
• 'maxduration' is the maximum recording duration in seconds. If it is

missing or zero there is no maximum.
• 'options' may contain any of the following letters:

229 | Chapter 9 – Dial Plan Advanced Features

o 'a' : appends to existing recording rather than replacing
o 'n' : do not answer, but record anyway if line not yet answered
o 'q' : quiet (do not play a beep tone)
o 's' : skips recording if the line is not yet answered
o 't' : use alternate '*' terminator key (DTMF) instead of default '#'
o 'x' : ignore all terminator keys (DTMF) and keep recording until

hung-up

If filename contains '%d', these characters will be replaced with a number
incremented by one each time the file is recorded.

Use 'core show file formats' to see the available formats on your system.

The user can press '#' to terminate the recording and continue to the next
priority.

If the user hangs-up during a recording, all data will be lost and the
application will terminate.

9.2.3 The playback application

 Figure 9.5 Playback() application

Plays back given filenames (do not put extension). Options may also be
included following a pipe symbol. The 'skip' option causes the playback of
the message to be skipped if the channel is not in the 'up' state (i.e. it hasn't
been answered yet). If 'skip' is specified, the application will return
immediately should the channel not be off hook. Otherwise, unless

 9.2 Receiving calls using an IVR menu. | 230

'noanswer' is specified, the channel will be answered before the sound is
played. Not all channels support playing messages while still on hook. If 'j' is
specified, the application will jump to priority n+101 when the file does not
exist, if present.

This application sets the following channel variable upon completion:

PLAYBACKSTATUS The status of the playback attempt as a text string, one
of:

• SUCCESS
• FAILED

9.2.4 The read application

 Figure 9.6 Read() application

This application reads a pre-determined number of string digits, a certain
number of times, from the user into the given variable.

• filename -- file to play before reading digits or tone with option i
• maxdigits -- maximum acceptable number of digits. Stops reading

after maxdigits have been entered (without requiring the user to press
the '#' key). Defaults to 0 - no limit - wait for the user press the '#'
key. Any value below 0 means the same. Max accepted value is 255.

• option -- options are 's' , 'i', 'n'
o 's' to return immediately if the line is not up,
o 'i' to play filename as an indication tone from your

indications.conf

231 | Chapter 9 – Dial Plan Advanced Features

o 'n' to read digits even if the line is not up
• attempts -- if greater than 1, these many attempts will be made in

case no data is entered
• timeout -- An integer number of seconds to wait for a digit response. If

greater than 0, that value will override the default timeout.

Read should disconnect if the function fails or errors out.

9.2.5 The gotoif application

Conditional goto

[Description]

Gotoif()

 Figure 9.7 Gotoif() application

This application will cause the calling channel to jump to the specified
location in the dial plan based on the evaluation of the given condition. The
channel will continue at 'labeliftrue' if the condition is true, or 'labeliffalse' if
the condition is false. The labels are specified with the same syntax as used
within the Goto application. If the label chosen by the condition is omitted,
no jump is performed, but execution continues with the next priority in the
dial plan.

9.2.6 Important timeout settings

You can set two timeout parameters:

Set(TIMEOUT(digit)=seconds) – Interdigit timeout.

Set(TIMEOUT(response)=seconds) – Timeout for a full response.

 9.2 Receiving calls using an IVR menu. | 232

9.2.7 Lab - Building an IVR menu step-by-step.

Let’s create an IVR menu with the following functionality:

When dialed, the IVR will playback an audio file with the message “Welcome
to the XYZ Corporation; press 1 for sales, 2 for tech support, 3 for training,
or wait to speak to a representative. When digit one is pressed , the call is
transferred to sales (SIP/4001); else, if digit 2 is pressed, the call is
transferred to tech support (SIP/4002); if 3 is pressed, the call is transferred
to training (SIP/4003). If no digits are pressed, the call is transferred to the
operator (SIP/4000).

Step 1 – Record the prompts

Let’s create an extension to record the prompts. To record a prompt, dial
from a soft phone to 9005filename. When you hear the beep start recording,
press “#” to stop recording, you will hear a beep and the system will
playback the recorded prompt.

Recording a prompt

 Figure 9.8 Recording a prompt()

233 | Chapter 9 – Dial Plan Advanced Features

Step 2 – Creating the menu logic

 Figure 9.9 Menu logic

When dialing the 9004 extension, processing will jump to the menu in the ‘s’
extension, priority 1.

9.2.8 Matching as you dial

A company setup menu for receiving calls. The background application reads
the current context and defines the maximum length for each number for
any possible combination.

[incoming]
exten=>s,1,Background(welcome)
exten=>1,1,Dial(Zap/1)
exten=>2,1,Dial(Zap/2)
exten=>21,1,Dial(Zap/3)
exten=>22,1,Dial(Zap/4)
exten=>31,1,Dial(Zap/5)
exten=>32,1,Dial(Zap/6)

When you dial this company, the welcome message is played first. After
that, Asterisk waits for any digit to be dialed.

Dialed number Asterisk Action
1 Immediately calls Dial(Zap/1)
2 Waits for the timeout, then goes to

Dial(Zap/2)

 9.2 Receiving calls using an IVR menu. | 234

21 Immediately calls (Zap/3)
22 Immediately calls (Zap/4)
3 Waits for the timeout then disconnects
31 Immediately calls Dial(Zap/5)
32 Immediately calls Dial(Zap/6)
4 Immediately disconnects

It is important to avoid ambiguity in the menus. Everybody wants to be
answered quickly. For this reason, you should not use numbers 2, 21, and
22.

9.2.9 Lab – Using the Read() application

 Figure 9.10 Using the read() application()

235 | Chapter 9 – Dial Plan Advanced Features

9.3 CONTEXT INCLUSION

A context can include the contents of another context.

[local]
exten=_9NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})

[ld]
exten=_91N.,Dial(Zap/g1/${EXTEN:1})
include=>local

[internat]
exten=_9011.,1,Dial(Zap/g1/${EXTEN:1})
include=>ld

Context inclusion

sip.conf extensions.conf

 Figure 9.11 Context inclusion

In the example above, any channel can dial any extension in the internal
context, but only the 4003 channel can dial international extensions. You can
use context inclusion to make it easier the dial plan creation. Using context
inclusion, you can control who has access to what extensions.

9.3.1 Context inclusion golden rules

1. A channel can only dial numbers within the same context as the
channel.

2. The context where the call is processed is defined in the
incoming channel (zapata.conf, iax.conf, sip.conf).

 9.4 Using the switch statement | 236

9.4 USING THE SWITCH STATEMENT

 Figure 9.12 Switch statement

You can send the dial plan processing to another server using the switch
command. You will need the name and key of the other server. The context
is the destination context.

237 | Chapter 9 – Dial Plan Advanced Features

9.5 DIAL PLAN PROCESSING ORDER

Dial plan processing order

1. An exact match using dialed number and callerID
2. An exact match using only dialed number
3. A pattern that matches the dialed number
4. A context included in the switch statement
5. An included context

 Figure 9.13 Dial plan processing order

When Asterisk receives an incoming call, it looks in the context defined by
the channel. In some cases, if more than one pattern matches the dialed
number, Asterisk cannot process the call in the exact way you think it
should. You can see the matching order using the “dialplan show” CLI
command.

Example:

Let’s say that you want to dial 912 to route to an analog trunk (ZAP/1) and
all other numbers starting with 9 to another analog trunk (ZAP/2). Then you
write something like:

[example]
exten=>_912.,1,Dial(Zap/1/${EXTEN})
exten=>_9.,1,Dial(Zap/2/${EXTEN})

If two patterns match an extension, you can control what extension is
processed first, using included contexts. An included context is processed
later than a pattern in the same context.

9.6 THE #INCLUDE STATEMENT

 9.7 Macros | 238

Will we use a big file or several files? You can use the #INCLUDE
<filename> statement to include other files in your extensions.conf. As an
example, we could create a users.conf for local users, services.conf for
special services. Be careful to not mix “#INCLUDE <filename>” with
“include=>context”.

9.7 MACROS
A Macro is an instruction set that executes sequentially. Macros are used to
avoid rewriting lines of code, thereby allowing the re-utilization of pieces of
code inside the dial plan.

 Figure 9.14 Macros

9.7.1 Defining a macro

You can define a macro using [macro-macroname]. Within the macro, you
may use the specific variables listed below:

• ${ARG1}: First macro argument

• ${ARG2}: Second macro argument and so on.

• ${MACRO_CONTEXT}: Context where macro was called

• ${MACRO_EXTEN}: Extension that triggers the macro

239 | Chapter 9 – Dial Plan Advanced Features

• ${MACRO_OFFSET}: Set by a macro to influence priority after
exiting

• ${MACRO_PRIORITY}: Priority where the macro was triggered

9.7.3 Calling a macro

To call a macro you need to use the application:

Macro(macroname,arg1,arg2...)

To call the macro defined above you should use:

exten =>_4XXX,2,Macro(stdexten,sip/${EXTEN})

Please check the macros defined in extensions.conf (sample file) to see other
examples.

9.8 IMPLEMENTING CALL FORWARD, BLACK LISTS AND DND

AstDB

Family

KEY1=VALUE

KEY2=VALUE

Functions
variable=${DB(<family/key>)}
DB(<family/key>)=value
DB_EXISTS(<family/key>)

Applications
dbdel(<family/key>)
dbdeltree(<family>)

CLI Commands
database del database put
database show <family[/key]> database showkey
database deltree database get

 Figure 9.15 Asterisk DB

To implement call forward and black lists we will need some way to store
and restore data. Fortunately, Asterisk provides a mechanism for storing
and retrieving data from a Berkley DB database (version 1) called AstDB. It
is similar to the Windows registry database using the family and keys
hierarchical concept. The data persists between Asterisk restarts.

 9.8 Implementing Call Forward, Black Lists and DND | 240

9.8.1 Functions, applications and CLI commands

There are some functions, applications and CLI commands to work with
AstDB.

• variable=${DB(<family/key>)}
• DB(<family/key>)=value
• DB_EXISTS(<family/key>)

Examples:

exten=_*21*XXXX,1,set(DB(CFBS/${CALLERID(num)}=${EXTEN:4}))
exten=s,1,set(temp=${DB(CFBS/${EXTEN})})

Some applications can be used to manipulate Astdb.

• dbdel(<family/key>)
• dbdeltree(<family>)

It is possible to use CLI commands to set and delete keys as well.

• database del
• database put
• database show <family[/key]>
• database showkey
• database deltree
• database get

9.8.2 Implementing Call Forward, DND and blacklists

In this example, you will learn how to implement call forward immediate and
call forward on busy. We will use *21* to program call forward immediate
and *61* to program call forward on busy status. To cancel the
programming, use #21# and #61# respectively.

To populate the database with all the options use:

241 | Chapter 9 – Dial Plan Advanced Features

Call Forward. BlackList, DND

[apps]
;call forward immediate
exten=>_*21*XXXX,1,Set(DB(CFIM/${CALLERID(num)})=${EXTEN:4})
exten=>_*21*XXXX,2,Hangup
exten=>*21*,1,DBdel(CFIM/${CALLERID(num)})
exten=>*21*,2,Hangup
;Do not disturb
exten=>_*41*X.,1,Set(DB(dnd/${EXTEN:4})=${EXTEN:4})
exten=>_*41*X.,n,Hangup
exten=>*41*,1,DBdel(dnd/${EXTEN:4})
exten=>*41*,2,Hangup
;call forward on busy status
exten=>_*61*XXXX,1,Set(DB(CFBS/${CALLERID(num)})=${EXTEN:4})
exten=>_*61*XXXX,2,Hangup
exten=>*61*,1,DBdel(CFBS/${CALLERID(num)})
exten=>*61*,2,Hangup

 Figure 9.16 populating the database

Families used:

• CFIM – Call Forward Immediate
• CFBS – Call Forward on Busy status
• DND – Do Not Disturb

Try populating the database dialing:

• *21*(Destination extension for call forwarding immediate)
• *61*(Destination extension for call forwarding on busy status)
• *41*(Extension to put on not disturb)

Use the CLI command “database show” to see the families, keys and values
added.

 9.9 Using a blacklist | 242

Call Forward. BlackList, DND

 Figure 9.17 handling the calls using a macro

The above macro checks if the database contains the key:value pairs
corresponding to CFIM, CFBS or DND and handle them appropriately. The
macro exemplified below calls the dialing routine.

exten=_4XXX,1,Macro(stdexten,${EXTEN})

9.9 USING A BLACKLIST

To create a black list we use the LookupBlacklist() application. The
application checks the name/number in the CallerdID. If the number is not
found, the applications sets the variable $LOOKUPBLSTATUS to
“NOTFOUND”. If to the number is found, the application sets the variable to
“FOUND”. You can use the “j” option in the application to use the old (1.0)
behavior, jumping 101 positions if the number/name is found.

Example:

[incoming]
exten => s,1,LookupBlacklist(j)
exten => s,2,Dial(SIP/4000,20,tTj)
exten => s,3,Hangup()
exten => s,102,Goto(blocked,s,1)

[blocked]
exten => s,1,Answer()
exten => s,2,Playback(blockedcall)
exten => s,3,Hangup()

243 | Chapter 9 – Dial Plan Advanced Features

To insert a number in the blacklist we could use the same resource as
before, using *31* followed by the extensions to be blacklisted. To remove
from the blacklist you should use #31# followed by the number to be
removed.

[apps]
exten=>_*31*X.,1,Set(DB(blacklist/${EXTEN}=1})
exten=>_*31*X.,2,Hangup()
exten=>_#31#X.,1,dbdel(blacklist/${EXTEN}:4)
exten=>_#31#X.,2,Hangup()

You can also insert the numbers in the blacklist using the console CLI:
CLI>database put blacklist <name/number> 1

Note: The value associated with the key can be anyone. The blacklist
application will search for the key, not the value.

To erase the number from the blacklist you can use:
CLI>database del blacklist <name/number>

9.10 TIME BASED CONTEXTS

 Figure 9.18 Time based contexts

In the above figure, we have a dial plan with three contexts. The [incoming]
context is where the calls are usually received. We have included four lines
that change behavior depending on the system time, as exemplified below:

 9.11 To get a new dial tone use DISA | 244

include => context|<times>|<weekdays>|<mdays>|<months>

During regular working hours, processing will be redirected to the mainmenu
where it will probably call an IVR to handle the incoming call. If is the call
takes place after hours, it will call the security extension defined in the
${SECURITY} variable. If the security does not get the call, it will be sent to
the operator’s voicemail.

GotoifTime().

The gotoiftime() syntax is shown below.

GotoIfTime(<timerange>|<daysofweek>|<daysofmonth>|<months>?[[context|]extension|]pri)

It can replace the time-based context and seems easier to understand and
read. You can specify the time as follows.

<timerange>=<hour>':'<minute>'-'<hour>':'<minute> |"*"
<daysofweek>=<dayname>|<dayname>'-'<dayname>|"*"
<dayname>="sun"|"mon"|"tue"|"wed"|"thu"|"fri"|"sat"
<daysofmonth>=<daynum>|<daynum>'-'<daynum> |"*"
<daynum>=number from 1 to31
<hour>=number from 0 to 23
<minute>=number from 0 to 59
<months>=<monthname>|<monthname>'-'<monthname>|"*"
<monthname>="jan"|"feb"|"mar"|"apr"|"may"|"jun"|"jul"|"aug"|"sep"|"oct"
|"nov"|"dec"

Names for days and months are not case sensitive.

exten=>s,1,GotoIfTime(8:00-18:00|mon-fri|*|*?normalhours,s,1)

The statement above transfers the processing to the extension ‘s’ in the
normalhours context if the call is between 08:00AM and 06:00PM from
Monday to Friday.

9.11 TO GET A NEW DIAL TONE USE DISA

DISA or “direct inward system access” is a system that allows receiving a
second dial tone. It permits users to dial again to another destination. It is
often used by technicians when dialing long distance calls for technical

245 | Chapter 9 – Dial Plan Advanced Features

supporting during the weekend. Instead of dialing from their homes directly
to the destination, they call the office’s DISA number, receive a dial tone,
and then call the destination. Long distance charges incur at the company
instead of the home phone.

DISA(passcode[|context])
DISA(password file)

Example:

exten => s,1,DISA(no-password|default)

With the above statement, the user dials the PBX and even without passing
any password, it will receive a dial tone. Any call using DISA will be
processed using the default context.

The arguments for this application include a global password or individual
passwords inside a file. If no context is specified ‘DISA’ will be assumed. If
you use a password file, the complete path has to be specified. A callerID
can be specified for the DISA external dialing too.

Example:

numeric-passcode|context|"Flavio" <(48) 30258590>

9.12 LIMIT SIMULTANEOUS CALLS

In version 1.2 server, new functions were added. The GROUP() function
allows you to count how many active channels you have in one group at the
same time.

Example:

You have a branch in Rio de Janeiro where phones follow the pattern
“_214X”. This location is served by a leased line and 64K was reserved for
voice bandwidth. In this case the maximum number of allowed calls is 2
(G.729, 30.2K per call). To limit calls to Rio by two:

exten=>_214X,1,set(GROUP()=Rio)
exten=>_214X,n,Gotoif($[${GROUP_COUNT()} > 1]?outoflimit)
exten=>_214X,n,Dial(SIP/${EXTEN})
exten=>_214X,n,hangup
exten=>_214X,n(outoflimit),playback(callsexceedcapacity)
exten=>_214X,n,hangup

 9.13 LAB - Putting it all together | 246

9.13 LAB - PUTTING IT ALL TOGETHER

 Figure 9.19 Complete PBX example

By now, you should have learned several dial plan concepts. You are
probably now a bit confused by too many applications, functions, and
concepts. Let’s put it all together in a dial plan example.

Let’s guide you through the whole PBX configuration for the scenario below.

• 4 analog trunks

• 16 SIP based extensions

• 3 service classes

o restrict (Internal, local and 1-800)

o ld (long distance)

o ldi (International)

• After hours message

• Auto attendant

247 | Chapter 9 – Dial Plan Advanced Features

9.13.1 Step 1 – Configuring channels

Analog trunks (zapata.conf)

To begin with, we will configure the analog trunks in the zapata channel
configuration file (zapata.conf). In this case we will use a T400P Digium card
with 4 FXO interfaces.

Let’s assume that the driver is already loaded and the driver configuration
file (zaptel.conf) is correctly configured.

signalling=fxs_ks
language=en
context=incoming
group=1
channel => 1-4

SIP channels (sip.conf)

We have chosen the dial plan numbering from 2000 to the number 2099.
Two codecs will be used: G.729 and G.711 ulaw. The first one will be used
for phones using Asterisk over the Internet or WAN and the second one for
phones using in the local network. We will arbitrate that, extensions from
2000 to 2039 use ‘restrict service class’, 2040 to 2059 ‘ld service class’, and
2060 to 2099 ‘ldi service class’.

[general]
disallow=all
allow=gsm
allow=ulaw
bindport = 5060
bindaddr = 0.0.0.0
context = restrict

[2000]
type=friend
username=20
secret=secret
host=dynamic
mailbox=20
context=restrict
canreinvite=yes

[2040]
type=friend
username=20
secret=secret
host=dynamic
mailbox=20
context=ld

 9.13 LAB - Putting it all together | 248

canreinvite=yes
dtmfmode=rfc2833

[2060]
type=friend
username=20
secret=secret
host=dynamic
mailbox=20
context=ldi
canreinvite=yes
dtmfmode=rfc2833

9.13.2 Step 2 – Configure the dial plan

Now let’s start to configure the extensions.conf.

Define internal extensions and local dialing

[restrict]
exten=>_20XX,1,Dial(SIP/${EXTEN},20,t)
exten=>_9XXXXXXX,1,Dial(ZAP/g1/${EXTEN:1},20) ; local calls
exten=>_91800.,1,Dial(ZAP/g1/${EXTEN:1},20); 1-800

Define LD (long distance)

[ld]
Include=>restrict
exten=>_9NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1},20)

Define international calls

[ldi)
include=> ld
exten=>_901X.,1,Dial(Zap/g1/${EXTEN:1},20)

9.13.3 Step 3 - Receive calls using an auto-attendant

To receive calls, use two contexts. The first one is for normal-hours
operation, where the call will be received by an auto-attendant. The second
one is for after hours, where the caller will receive a message like “you
called company XYZ, our normal hours are from 08:00AM to 06:PM; if you
know the destination extension number you can try dialing it now or hang-
up”.

Menus: Normal-hours, After-hours

In the menus below, the system will play a message warning the caller that
the company was reached after regular working hours, allowing the caller to

249 | Chapter 9 – Dial Plan Advanced Features

dial the destination extension number (someone may be working after
regular working hours).

[incoming]
include=>normalhours|08:00-18:00|mon-fri|*|*

include=>afterhours|18:00-23:59|*|*|*
include=>afterhours|00:00-07:59|*|*|*
include=>afterhours|*|sat-sun|*|*

[normalhours]
exten=>s,1,Goto(mainmenu,s,1)

[afterhours]
exten=>s,1,Background(afterhours)
exten=>s,2,hangup()
exten=>i,1,hangup()
exten=>t,1,hangup()
include=>restrict

Menus: Main and Sales

During normal working hours the call is answered by an auto-attendant
menu. A message like “welcome to XYZ Company, dial 1 for sales, 2 for
tech-support, three for training, or the desired extension number”.

[globals]
OPERATOR=SIP/2060
SALES=SIP/2035
TECHSUPPORT=SIP/2004
TRAINING=SIP/2036

[mainmenu]
exten=> s,1,Background(welcome)
exten=>1,1,Goto(sales,s,1)
exten=>2,1,Goto(techsupport,s,1)
exten=>3,1,Goto(training,s,1)
exten=>i,1,Playback(Invalid)
exten=>i,2,hangup()
exten=>t,1,Dial(${OPERATOR},20,Tt)
include=>restrict

[sales]
exten=>s,1,Dial(${SALES},20,Tt)

[techsupport]
exten=>s,1,Dial(${TECHSUPPORT},20,Tt)

[training]
exten=>s,1,Dial(${TRAINING},20,Tt)

With all these statements, the functionality of your dialing plan is now ready.
In the next section, we will demonstrate how to operate the PBX.

 9.14 Summary | 250

9.14 SUMMARY

In this chapter, you have learned how to receive calls using an IVR or an
auto-attendant. You have understood the concept of context inclusion, and
implemented a few examples. Macros were used to avoid repetitive typing
and the Asterisk database based on Berkley Db engine was used for
functions that require data storage like call forward, do not disturb, or black
lists. Finally, you have learned how to implement after hours behavior and
implemented a complete dial plan using these concepts.

9.15 QUESTIONS

1. To include a time-dependent context, you can use:

include=> context|<times>|<weekdays>|<mdays>|<months>

The statement below:

include=>normalhours|08:00-18:00|mon-fri|*|*

a) Execute extensions from Monday to Friday between 08:00 to 18:00
b) Execute options everyday in all months
c) Its format is invalid.

2. When an user dials “0” to get an external line, Asterisk automatically cuts
the audio. This can be bad because the user is familiarized to hear the
external dialing tone before dialing the other numbers. You can simulate the
old dialing behavior with the _______________ statement.

3. The statements below (mark all that apply):

exten => 8590/482518888,1,Congestion
exten => 8590,2,Dial(Zap/1,20,j)
exten => 8590,3,Voicemail(u8590)
exten => 8590,103,Voicemail(b8590)

Makes the user who called to the 8590 extension:

a) Receive a busy tone if the CallerID=482518888
b) Receive a busy tone, independent from the number dialed.
c) Dial the ZAP/1 channel
d) Goto to the voicemail if ZAP/1 is busy or did not answered, except

when CallerID=482518888.

251 | Chapter 9 – Dial Plan Advanced Features

4. To concatenate several extensions you can separate them using the ____
character.

5. A voice menu is usually created using the__________ application.

6. You can include files inside the configuration files using the
____________ statement.

7. The Asterisk database is based in __________.

a) Oracle
b) MySQL
c) Berkley DB
d) PostgreSQL

8. When you use Dial(type1/identifier1&type2/identifier2), the Asterisk dials
to each one in sequence and wait 20 seconds between one to another. The
affirmative is:

a) False
b) True

9. Using the Background application, you need to wait until the message is
played before you can choose an option sending a dtmf digit.

a) False
b) True

10. The valid formats for the goto application are:

a) Goto (context,extension)
b) Goto(context,extension,priority)
c) Goto(extension,priority)
d) Goto(priority)

11. Switches are used to direct the dial plan processing to another server.
The affirmative is:

a) False
b) True

12. A macro can be used to automate the processing of an extension. The
first macro argument is:

 9.15 Questions | 252

a) ${ARG1}
b) ${ENV1}
c) ${V1}
d) ${X}

253 | Chapter 9 – Dial Plan Advanced Features

page intentionally left empty

Using PBX features

In this chapter, we will look at the main PBX functionality. We will explore
features like call transfer, call parking and others.

10.1 OBJECTIVES

 Figure 10.1 Objectives

10.2 PBX FEATURES SUPPORT

In the SIP kingdom, telephone rules. However, Asterisk supports several
kinds of phones. Some resources can be found in ATA or the phone itself
while others are found in the Asterisk PBX. It is important to standardize the
phones in your installation or you will have to explain to each user how to
use several of the PBX features.

First and foremost it is important to understand when the PBX features are
being executed by or, alternatively, when the phone is doing all the work.
As an example, you may transfer a call by using the TRANSFER button on
the phone, or by dialing # (unconditional transfer executedby the PBX
itself).

Chapter 10

255 | Chapter 10 – Using PBX features

Figure 10.2 where the features are implemented

10.2.1 Features implemented by Asterisk

• Music on hold
• Call parking
• Call pickup
• Call recording
• Meetme conference room
• Call transfer (blind and consultative)

10.2.2 Features usually implemented by the Dial Plan

• Call forward on busy
• Call forward immediate
• Call forward on unanswered
• Call filtering (blacklist)
• Do not disturb
• Redial

10.2.3 Features usually implemented by the Phone

• Call on hold
• Blind transfer
• Consultative transfer
• Three-way conference
• Message waiting indicator

 10.2 PBX features support | 256

10.2.4 Features.conf configuration file

Some of the features presented in this chapter are configured in
features.conf configuration file. It is possible to change the behavior of some
features by modifying this file. We presented the whole sample file below. In
the next sections of this chapter we will describe each feature.

PBX features support

Figure 10.3 PBX feature support

;
; Sample Call Features (parking, transfer, etc) configuration
;
[general]
parkext => 700 ; What extension to dial to park
parkpos => 701-720 ; What extensions to park calls on. These needs to be
 ; numeric, as Asterisk starts from the start position
 ; and increments with one for the next parked call.
context => parkedcalls ; Which context parked calls are in
;parkingtime => 45 ; Number of seconds a call can be parked for
 ; (default is 45 seconds)
;courtesytone = beep ; Sound file to play to the parked caller
 ; when someone dials a parked call
 ; or the Touch Monitor is activated/deactivated.
;parkedplay = caller ; Who to play the courtesy tone to when picking up a parked call
 ; one of: parked, caller, both (default is caller)
;adsipark = yes ; if you want ADSI parking announcements
;findslot => next ; Continue to the 'next' free parking space.
 ; Defaults to 'first' available
;parkedmusicclass=default ; This is the MOH class to use for the parked channel
 ; as long as the class is not set on the channel directly
 ; using Set(CHANNEL(musicclass)=whatever) in the dialplan
;transferdigittimeout => 3 ; Number of seconds to wait between digits when transferring a call
 ; (default is 3 seconds)
;xfersound = beep ; to indicate an attended transfer is complete
;xferfailsound = beeperr ; to indicate a failed transfer
;pickupexten = *8 ; Configure the pickup extension. (default is *8)
;featuredigittimeout = 500 ; Max time (ms) between digits for
 ; feature activation (default is 500 ms)
;atxfernoanswertimeout = 15 ; Timeout for answer on attended transfer default is 15 seconds.

[featuremap]
;blindxfer => #1 ; Blind transfer (default is #)
;disconnect => *0 ; Disconnect (default is *)

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

257 | Chapter 10 – Using PBX features

;automon => *1 ; One Touch Record a.k.a. Touch Monitor
;atxfer => *2 ; Attended transfer
;parkcall => #72 ; Park call (one step parking)

[applicationmap]
; Note that the DYNAMIC_FEATURES channel variable must be set to use the features
; defined here. The value of DYNAMIC_FEATURES should be the names of the features
; to allow the channel to use separated by '#'. For example:
;
; Set(DYNAMIC_FEATURES=myfeature1#myfeature2#myfeature3)
;
;
; The syntax for declaring a dynamic feature is the following:
;
;<FeatureName> => <DTMF_sequence>,<ActivateOn>[/<ActivatedBy>],<Application>[,<AppArguments>[,MOH_Class]]
;
; FeatureName -> This is the name of the feature used in when setting the
; DYNAMIC_FEATURES variable to enable usage of this feature.
; DTMF_sequence -> This is the key sequence used to activate this feature.
; ActivateOn -> This is the channel of the call that the application will be executed
; on. Valid values are "self" and "peer". "self" means run the
; application on the same channel that activated the feature. "peer"
; means run the application on the opposite channel from the one that
; has activated the feature.
; ActivatedBy -> This is which channel is allowed to activated this feature. Valid
; values are "caller", "callee", and "both". "both" is the default.
; The "caller" is the channel that executed the Dial application, while
; the "callee" is the channel called by the Dial application.
; Application -> This is the application to execute.
; AppArguments -> These are the arguments to be passed into the application.
; MOH_Class -> This is the music on hold class to play while the idle
; channel waits for the feature to complete. If left blank,
; no music will be played.
;
;
; IMPORTANT NOTE: The applicationmap is not intended to be used for all Asterisk
; applications. When applications are used in extensions.conf, they are executed
; by the PBX core. In this case, these applications are executed outside of the
; PBX core, so it does *not* make sense to use any application which has any
; concept of dialplan flow. Examples of this would be things like Macro, Goto,
; Background, WaitExten, and many more.
;
;
; Example Usage:
;
;testfeature => #9,peer,Playback,tt-monkeys ;Allow both the caller and callee to play
; ;tt-monkeys to the opposite channel
;
;pauseMonitor => #1,self/callee,Pausemonitor ;Allow the callee to pause monitoring
; ;on their channel
;unpauseMonitor => #3,self/callee,UnPauseMonitor ;Allow the callee to unpause monitoring
; ;on their channel;
; IMPORTANT NOTE: The applicationmap is not intended to be used for all Asterisk
; applications. When applications are used in extensions.conf, they are executed
; by the PBX core. In this case, these applications are executed outside of the
; PBX core, so it does *not* make sense to use any application which has any
; concept of dialplan flow. Examples of this would be things like Macro, Goto,
; Background, WaitExten, and many more.
;
; Example Usage:
;
;testfeature => #9,peer,Playback,tt-monkeys ;Allow both the caller and callee to play
; ;tt-monkeys to the opposite channel
;
;pauseMonitor => #1,self/callee,Pausemonitor ;Allow the callee to pause monitoring
; ;on their channel
;unpauseMonitor => #3,self/callee,UnPauseMonitor ;Allow the callee to unpause monitoring
; ;on their channel

 10.3 Call Transfer | 258

10.3 CALL TRANSFER

Figure 10.4 Call Transfer

Call transfer can be implemented by the phone, by ATA or by Asterisk itself.
See your phone manual to understand how calls are transferred. If your
phone does not support call transfer, you can use Asterisk to accomplish this
task.

Call transfer can be done in two ways. The first way is to use the blind
transfer feature. You simply dial # followed by the number to be transferred.
Some times you will use the transfer feature of your IP phone or IP soft
phone. You can change the transfer character editing the blindxfer
parameter in the features.conf file.

You can enable assisted transfer in Asterisk by removing the ´;´ before the
atxfer parameter in features.conf file. During a conversation, you would
press *2. Asterisk will say transfer and will give you a dial tone. The caller is
sent to music on hold. You talk to the destination person and hang-up the
phone. The system then bridges the caller to the destination.

10.3.1 Configuration task list

1. If the phone is SIP based, make sure that the option canreinvite is
equal to “no” or use a ´t´ or ´T´ option in the Dial() application

10.4 CALL PARKING

259 | Chapter 10 – Using PBX features

Figure 10.5 Call Parking

This feature is used to park a call. This helps, for example, when you are
answering a phone call outside of your room and you want to transfer the
call back to your desk. You may accomplish this by parking the call in an
extension. Then, when you reach your desk, simply dial the number of the
parking extension to recover the call.

By default the 700 extension is used to park a call. In the middle of a
conversation press # to transfer the call to the 700 extension. Now the
Asterisk will announce your parking extension, probably 701 or 702. Hang-
up the phone and the caller will be placed on hold. Go to your desk phone
and now dial the announced parking extension to recover the call. If the
caller is parked for too much time, the timeout feature will trigger and the
original dialed extension will ring again.

10.4.1 Configuration task list

10.4.2 Enable call parking: (required)

In the extensions.conf file type the statement below.

include=>parkedcalls

10.4.3 Test the call parking feature by dialing #700.

Notes:

 10.5 Call pickup | 260

• The parking extension won’t be shown in the “dialplan show” CLI
command.

• It is necessary to restart Asterisk after changing the features.conf
file. A simple reload won’t work.

• To park a call you need to transfer to #700. Verify the options t
and T in the Dial application.

10.5 CALL PICKUP

Figure 10.6 Call Pickup

Call pickup allows you to capture a call from a colleague in the same call
group. This would help to avoid, for example, that you have to wake up to
take a call which is ringing to another person in your room, but who is not
present.

By dialing *8, you can capture a call within your call group. This number can
be modified in the features.conf file.

10.5.1 Configuration task list

1. Configure a call group for your extensions. This is done in the
channel configuration file (sip.conf, iax.conf, zapata.conf). This
task is required.

261 | Chapter 10 – Using PBX features

[4x00]
callgroup=1
pickupgroup=1,2

2. Change the call-pickup feature number (optional).

pickupexten=*8; Configures the call pickup extension

10.6 CALL CONFERENCE (MEETME)

Conference
Only one Speaker

Conference
Password protected

Dynamic
Conference

Meetme

Meetme requires a zaptel timer
(use ztdummy if you don’t have a Digium card)

Zaptel has to be compiled before Asterisk
or meetme is not included

Figure 10.7 meetme application

Some SIP phones implement a three-way conferencing in the phone itself. If
this is the case, you may choose to use the phone feature. Search the phone
manual for instructions for conference calling.

Alternatively, you may choose to use the Meetme application. Meetme is a
conference bridge, which is very simple to use. It works with any type of
channel and it is the standard method for conference in the Asterisk
platform. Let’s look at this feature in more depth.

10.6.1 Meetme Application

 10.6 Call Conference (Meetme) | 262

Meetme()
MeetMe conference bridge
[Description]
MeetMe([confno][,[options][,pin]])

Main Options
'a' -- set admin mode
'c' -- announce user(s) count on joining a conference
'd' -- dynamically add conference
'D' -- dynamically add conference, prompting for a PIN
'e' -- select an empty conference
'E' -- select an empty pinless conference
'i' -- announce user join/leave with review
'I' -- announce user join/leave without review
'l' -- set listen only mode (Listen only, no talking)
'm' -- set initially muted
'M' -- enable music on hold when the conference has a single caller
'q' -- quiet mode (don't play enter/leave sounds)
't' -- set talk only mode. (Talk only, no listening)
'1' -- do not play message when first person enters

Figure 10.8 Meetme Application

Using the ‘meetme show’ CLI command you can obtain the description
above. To use meetme, you need to compile the zaptel drivers and have at
least one zaptel kernel module loaded. If you don’t have at least one zaptel
card installed, load the ztdummy kernel module to provide a timing source.

Description

The MeetMe application gets the user into a specified MeetMe conference. If
the conference number is omitted, the user will be prompted to enter one.
The user can leave the conference by hanging-up or, if the 'p' option is
specified, by pressing '#'.

Please note: The Zaptel kernel modules and at least one hardware driver (or
ztdummy) must be present for conferencing to operate properly. In addition,
the chan_zap channel driver must be loaded for the 'i' and 'r' options to
operate at all.

The option string may contain zero or one or more of the following
characters:

• 'a' -- sets admin mode
• 'A' -- sets marked mode
• 'b' – runs the AGI script specified in

${MEETME_AGI_BACKGROUND}Default: conf-background.agi (Note:
This does not work with non-Zap channels in the same conference)

• 'c' -- announces user(s) count on joining a conference

263 | Chapter 10 – Using PBX features

• 'd' -- dynamically adds conference
• 'D' -- dynamically adds conference, prompting for a PIN
• 'e' -- selects an empty conference
• 'E' -- selects an empty pinless conference
• 'i' -- announces user join/leave with review
• 'I' -- announces user join/leave without review
• 'l' -- sets listen only mode (Listen only, no talking)
• 'm' -- sets initially muted
• 'M' -- enables music on hold when the conference has a single caller
• 'o' -- sets talker optimization - treats talkers who aren't speaking as

being muted, meaning (a) no encode is done on transmission and (b)
received audio that is not registered as talking is omitted causing no
buildup in background noise

• 'p' -- allows users to exit the conference by pressing '#'
• 'P' -- always prompts for the pin even if it is specified
• 'q' -- quiet mode (don't play enter/leave sounds)
• 'r' -- Records conference (records as

${MEETME_RECORDINGFILE}using format
${MEETME_RECORDINGFORMAT}). Default filename is meetme-conf-
rec-${CONFNO}-${UNIQUEID} and the default format is wav.

• 's' -- Presents menu (user or admin) when '*' is received ('send' to
menu)

• 't' -- sets talk only mode. (Talk only, no listening)
• 'T' -- sets talker detection (sent to manager interface and meetme list)
• 'w[(<secs>)]' -- waits until the marked user enters the conference
• 'x' -- closes the conference when last marked user exits
• 'X' -- allows user to exit the conference by entering a valid single digit

extension ${MEETME_EXIT_CONTEXT} or the current context if that
variable is not defined.

• '1' -- does not play message when first person enters

10.6.2 Meetme configuration file

This file is used to configure the application meetme.

Example:

;
; Configuration file for MeetMe simple conference rooms for Asterisk of course.
;
; This configuration file is read every time you call app meetme()

[general]
;audiobuffers=32 ; The number of 20ms audio buffers to be used
 ; when feeding audio frames from non-Zap channels
 ; into the conference; larger numbers will allow
 ; for the conference to 'de-jitter' audio that arrives

 10.6 Call Conference (Meetme) | 264

 ; at different timing than the conference's timing
 ; source, but can also allow for latency in hearing
 ; the audio from the speaker. Minimum value is 2,
 ; maximum value is 32.
;
[rooms]
;
; Usage is conf => confno[,pin][,adminpin]
;
conf=>9000
conf=>9001,123456

It is not necessary to use either reload or restart to make Asterisk see the
changes in the meetme.conf file.

10.6.3 Meetme related applications

The meetme application has two other support applications.

MeetMeCount(confno[|var])

It plays the number of users in the conference. If a variable is specified, it
does not play the message but sets the number of users to it.

MeetMeAdmin(confno,command,[user]):

Run admin command for conference

• 'e' -- Ejects last user that joined
• 'k' -- Kicks one user out of conference
• 'K' -- Kicks all users out of conference
• 'l' -- Unlocks conference
• 'L' -- Locks conference
• 'm' -- Unmutes one user
• 'M' -- Mutes one user
• 'n' -- Unmutes all users in the conference
• 'N' -- Mutes all non-admin users in the conference
• 'r' -- Resets one user's volume settings
• 'R' -- Resets all users volume settings
• 's' -- Lowers entire conference speaking volume
• 'S' -- Raises entire conference speaking volume
• 't' -- Lowers one user's talk volume
• 'T' -- Lowers all users talk volume
• 'u' -- Lowers one user's listen volume
• 'U' -- Lowers all users listen volume
• 'v' -- Lowers entire conference listening volume
• 'V' -- Raises entire conference listening volume

265 | Chapter 10 – Using PBX features

10.6.4 Meetme configuration task list

1. Choose the extension for the Meetme room (required)

2. Edit the meetme file to configure the passwords (optional)

10.6.3 Examples

Example #1: Simple meetme room

1. In the extensions.conf file create the conference room 101

exten=>500,1,MeetMe(101,,123456)

2. In the meetme.conf file establish the password for the room 101.

Important Note:
The meetme application needs a timer to work. If you don’t have digium
hardware installed and configured, use ztdummy as a timing source.

10.7 CALL RECORDING

There are several ways to record a call in Asterisk. You can use the
mixmonitor() application to easily record calls.

 10.7 Call Recording | 266

10.7.1 Using the mixmonitor application

Record a call and mix the audio during the recording

[Description]
MixMonitor(<file>.<ext>[|<options>[|<command>]])

Records the audio on the current channel to the specified
file.

options:

a- Append to the file instead of overwriting it.

b-Only save audio to the file while the channel is bridged.

v(<x>) - Adjust the heard volume by a factor of <x>

V(<x>) - Adjust the spoken volume by a factor of <x>

W(<x>) - Adjust the both heard and spoken volumes

Mixmonitor()

Figure 10.9 Mixmonitor application

Mixmonitor records the audio in the current channel to the specified file.
If the filename is an absolute path, ituses that path, otherwise it creates the
file in the configured monitoring directory from asterisk.conf.

Valid options:

• a - Appends to the file instead of overwriting it.
• b - Only saves audio to the file while the channel is bridged.
• Note: does not include conferences.
• v(<x>) - Adjusts the audible volume by a factor of <x> (range -4 to

4)
• V(<x>) - Adjusts the spoken volume by a factor of <x> (range -4 to

4)
• W(<x>) - Adjusts both audible and spoken volumes by a factor of <x>

(range -4 to 4)

<command> will be executed when the recording is over. Any strings
matching ^{X} will be unescaped to ${X} and all variables will be evaluated
at that time. The variable MIXMONITOR_FILENAME will contain the filename
used to record.

An interesting resource is Automon. It allows you to simply dialing *1 to
immediately start recording.

267 | Chapter 10 – Using PBX features

Example:

exten=>_4XXX,1,Set(DYNAMIC_FEATURES=automon)
exten=>_4XXX,2,Dial(SIP/${EXTEN},20,jtTwW);wW enables the recording.

The audio channels are incoming (IN) and outgoing (OUT) and are separated
into two distinct files in the following directory.

/var/spool/asterisk/monitor

Both files can be mixed using the sox application.

debian#soxmix *in.wav *out.wav output.wav

If you don’t want to use Set() before the Dial() application, you can set at
the globals section:

[globals]
DYNAMIC_FEATURES=>automon

10.8 MUSIC ON HOLD

Figure 10.10 Music on Hold

MOH (Music on hold) has been changed several times between versions 1.0,
1.2, and 1.4. In the latest version, MOH defaults to “FILE-BASED”. In other

 10.8 Music on hold | 268

words, Asterisk will supply the MOH files in formats like G.729, alaw, ulaw,
gsm, and so on. Thus, it is not necessary to transcode the music before
sending it to the channel. This saves processor time, which is a welcomed
modification for those working with productions systems. In older versions,
MOH was usually provided by MP3 (it still can be configured that way).
Providing MOH using MP3 obligates Asterisk to transcode and spend valuable
CPU power in the process.

The new configuration file is shown below. Note that the default class now
uses the native file format “mode=files”. All other modes are commented.

Each section is a class. The only uncommented class right now is default. If
you want to have different classes for different files, you will need to create
new sections (classes)

; Music on Hold -- Sample Configuration

;[samplemp3]
;mode=quietmp3
;directory=/var/lib/asterisk/mohmp3
;
; valid mode options:
; quietmp3 -- default
; mp3 -- loud
; mp3nb -- unbuffered
; quietmp3nb -- quiet unbuffered
; custom -- run a custom application (See examples below)
; files -- read files from a directory in any Asterisk supported
; media format. (See examples below)

;[manual]
;mode=custom
; Note that with mode=custom, a directory is not required, such as when
reading
; from a stream.
;directory=/var/lib/asterisk/mohmp3
;application=/usr/bin/mpg123 -q -r 8000 -f 8192 -b 2048 --mono -s

;[ulawstream]
;mode=custom
;application=/usr/bin/streamplayer 192.168.100.52 888
;format=ulaw

; mpg123 on Solaris does not always exit properly; madplay may be a better
; choice
;[solaris]
;mode=custom
;directory=/var/lib/asterisk/mohmp3
;application=/site/sw/bin/madplay -Q -o raw:- --mono -R 8000 -a -12
;

;
; File-based (native) music on hold
;

269 | Chapter 10 – Using PBX features

; This plays files directly from the specified directory, no external
; processes are required. Files are played in normal sorting order
; (same as a sorted directory listing), and no volume or other
; sound adjustments are available. If the file is available in
; the same format as the channel's codec, then it will be played
; without transcoding (same as Playback would do in the dialplan).
; Files can be present in as many formats as you wish, and the
; 'best' format will be chosen at playback time.
;
; NOTE:
; If you are not using "autoload" in modules.conf, then you
; must ensure that the format modules for any formats you wish
; to use are loaded _before_ res_musiconhold. If you do not do
; this, res_musiconhold will skip the files it is not able to
; understand when it loads.
;

[default]
mode=files
directory=/var/lib/asterisk/moh
;
;[native-random]
;mode=files
;directory=/var/lib/asterisk/moh
;random=yes ; Play the files in a random order

10.8.1 MOH configuration tasks

Now to use music on hold, set the MOH class in the channel configuration
files (zapata.conf, sip.conf, iax.conf and so on). The freeplay tunes installed
are now in wav format. At the time of installation you can select (using make
menuselect) the MOH file formats to be available. If you want to add new
MOH files, you will have to supply them in the required formats.

Example:

In /etc/asterisk/zapata.conf, add the line:

[channels]
musiconhold=default

Edit the file /etc/asterisk/musiconhold.conf

[default]
mode=files
directory=/var/lib/asterisk/moh

In the dialplan, you can hear the MOH using the example below:

Exten=>100,1,SetMusicOnHold(default)

 10.9 Application Maps | 270

Exten=>100,2,Dial(Zap/2)

Example:

Configuring the extensions.conf to test MusicOnHold.

[local]
exten => 6601,1,WaitMusicOnHold(30)

10.9 APPLICATION MAPS

Application MAP

Using this application an attendant can press, during
the call, #8 to identify the caller as a costumer or #9 to
identify the costumer as a partner

Figure 10.11 Application maps

In version1.2, it became possible to add new features by using the
application maps section of the features.conf file. Suppose you need to
identify to a Call Center the type of costumer you are answering. You could
create an application map to each costumer type. This application could
count the number of answered costumers per type.

271 | Chapter 10 – Using PBX features

10.10 QUESTIONS

1. The following statements are true about Call Parking:

a) By default, extension 800 is used for Call Parking
b) When you are out of your desk and receive a call, you can park a call.

The system will announce to you the parking extension. Then, you go
to your desk and dial the announced extension to retrieve the call.

c) By default, extension 700 is used for Call Parking. Calls are parked in
extensions 701 to 720.

d) You need to dial 700 to retrieve a parked call.

2. To use the Call Pickup feature, all extensions are required to be in the
same _____________. For ZAP channels this is configured in the
_____________ file.

3. When transferring a call, you may choose between _________________,
where the destination extension is not consulted before the transfer and
_____________ where you talk first to the destination extension before the
transfer.

4. To make a consultative transfer you use the ___ character, while for blind
transfer you use ___.

a) #1, *2
b) *2, #1
c) #2, #1
d) #1, #2

5. To enable conference calls in the Asterisk server, it is necessary to use
the __________ application.

6. If you have to supervise a conference, you can use the _______________
application.

a) MeetMe()
b) MeetMeConsole()
c) MeetMeAdministrator()
d) MeetmeAdmin()

 10.10 Questions | 272

7. The best format for music on hold is MP3 because it uses very little
processing power from the Asterisk server.

a) True
b) False

8. To capture a call from a specific call group you need to be in their
respective ________ group.

9. You can record a call by using the utility mixmonitor() or using the
automon feature. By default the automon feature uses the ___ character
sequence.

a) *1
b) *2
c) #3
d) #1

10. In the meetme application, if you want to have users in the listening
only mode you should:

a) Merge different conference rooms with different options
b) It is not possible using Asterisk.
c) Enable an extension that calls the meetme application with the ‘l’

option and instruct the listening users to call that extension.
d) Enable an extension that calls the meetme application with the ‘t’

option and instruct the listening users to call that extension.

273 | Chapter 10 – Using PBX features

Page intentionally left empty

ACD Automatic Call Distribution

11.1 OBJECTIVES

Objectives

By the end of this chapter you should be able to:

Understand why and how to use na ACD

Understand the basic theory of of ACD operation

Install and configure the ACD.

 Figure 11.1 Objectives

11.2 INTRODUCTION

Call queues allow you to answer calls in a more efficient way. An automatic
call distributor can help reduce costs, increase service or improve sales. This
is because call distributors affect how your business functions, not for a few
days, but for many years. With an ACD you can correctly dimension the
number of agents, control who is a good and bad attendant and analyze call
flow.

Chapter 11

275 | Chapter 11 – ACD Automatic Call Distribution

 Figure 11.2 Automatic Call Distribution

Usually, a call queue works like this:

1. Calls are queued

2. Agents answer the queue (logged in agents)

3. A queuing strategy to distribute the calls is used.

4. Music on hold is played while the caller waits.

5. Announcements can de made to callers, warning about waiting time.

The main application for queues is costumer service or call centers. Using
queues, you avoid to lost calls when your agents are busy. You can add new
agents to the queue if you find that the number of callers in the queue is
growing.

Another thing is, with queues you can now have statistics like Call abandon
rate, average call duration and call answering target. These statistics will
help you to dimension the number of agents and provide a better service to
your costumer.

 11.3 ACD architecture | 276

11.3 ACD ARCHITECTURE

Figure 11.3 ACD architecture

The ACD architecture is formed by queues and agents. One agent can be in
two queues at the same time. A queue can have agents, channels and agent
groups.

11.4 QUEUES

Queues are defined in the queues.conf configuration file. Agents are
attendants who log in and are members of queues. Agents are defined in the
agents.conf file.

In version 1.4, the queue system has evolved largely and now the
configuration file is huge. We will explain some of the major parameters.

General parameters

autofill=yes

The old behavior for the queue was serial type. The queue waited for a call
to be dispatched before sending the succeeding call to the next agent. If an
agent takes 15 seconds to get a call, the other calls in the queue had to wait
until that call was answered. For high volume queues, this behavior was
poor.

The new behavior (autofill=yes) does not wait until a call is answered. It
works in a parallel fashion.

277 | Chapter 11 – ACD Automatic Call Distribution

11.4.1 Queues.conf example:

Figure 11.4 queues.conf example

11.4.2 Members

Members are active channels responding to the queue. Members can be
direct channels (sip, zap, mgcp) or agents who log in before receiving calls.

11.4.3 Strategies

Calls are distributed between members according to one of these strategies:

• ringall: Plays all channels available until someone answers.

• roundrobin: Distributes equally between members.

• leastrecent: Distributes to the least recent member.

• fewestcalls: Distributes to the member with fewest calls.

• random: Distributes randomly between members

• rrmemory: It is a roundrobin with memory. It remembers where
it let off the call in the last pass.

 11.5 Agents | 278

11.5 AGENTS

Agent 300

The user pick up the
phone and dial an extension
to login. It passes the login
number and password

After running the
agentlogin() application
sucessfully, the agent is ready
to take calls

You can check the agent
status using the CLI command
show agents

Agents

Figure 11.5 Agent login process

Agent is a proxy channel. It can be used with queues. Another use for
Agents is extension mobility. The user can login within any phone and
receive its calls. This allows a user to go to any room and make it their
office. You can dial an agent in the dial plan using Dial(Agent/<name>). You
define agents in the agents.conf file.

11.5.1 Agent Groups

You may choose to use agent groups. This function does not take
consideration of ACD strategies. Probably you will prefer to list all agents
individually. If you want to transfer to an agent group you can use in
queues.conf:

member=>agent/@1 ;any agent in group 1
member=>agent/:1,1 ;any agent in group 1, wait for first available, ;do not use
agent groups.

11.5.2 Agents.conf example:

279 | Chapter 11 – ACD Automatic Call Distribution

Agents.conf

Figure 11.6 agents.conf file

11.6 ACD RELATED APPLICATIONS

11.6.1 queue()

The queue() application

Queue a call for a call queue

[Description]

Queue(queuename[|options[|URL][|announceoverride][|ti
meout][|AGI]):

Options:

'd' -- data-quality (modem) call (minimum delay).
'h' -- allow callee to hang up by hitting *.
'H' -- allow caller to hang up by hitting *.
'n' -- no retries on the timeout; will exit this application.
'i' -- ignore call forward requests from queue members and do nothing
'r' -- ring instead of playing MOH
't' -- allow the called user transfer the calling user
'T' -- to allow the calling user to transfer the call.
'w' -- allow the called user to write the conversation to disk via Monitor
'W' -- allow the calling user to write the conversation to disk via Monitor

Figure 11.7 The queue() application

This function queues incoming calls into a particular call queue as defined in
queues.conf. The option string may contain zero or more of the following
characters:

 11.6 ACD related applications | 280

Options:

• 'd' -- data-quality (modem) call (minimum delay).
• 'h' -- allows callee to hang-up by hitting *.
• 'H' -- allows caller to hang-up by hitting *.
• 'n' -- no retries on the timeout; will exit this application and go to the

next step.
• 'i' -- ignores call forward requests from queue members and does

nothing when they are requested.
• 'r' -- rings instead of playing MOH
• 't' -- allows the called user to transfer the calling user
• 'T' -- allows the calling user to transfer the call
• 'w' -- allows the called user to write the conversation to disk via

Monitor
• 'W' -- allows the calling user to write the conversation to disk via

Monitor

In addition to transferring the call, a call may be parked and then picked up
by another user.

The optional URL will be sent to the called party if the channel supports it.

The optional AGI parameter will setup an AGI script to be executed on the
calling party's channel once they are connected to a queue member.

The timeout will cause the queue to fail out after a specified number of
seconds, checked between each queues.conf 'timeout' and 'retry' cycle.

This application sets the QUEUE status variable upon completion:

• TIMEOUT
• FULL
• JOINEMPTY
• LEAVEEMPTY
• JOINUNAVAIL
• LEAVEUNAVAIL

11.6.2 Agentlogin()

281 | Chapter 11 – ACD Automatic Call Distribution

Call agent login

[Description]
 AgentLogin([AgentNo][|options]):

The agentlogin() application

Options:

's' silent login - do not announce the login ok

Figure 11.8 The agentlogin() application

This applications asks the agent to login into the system. It always returns -
1. While logged in, the agent can receive calls and will hear a 'beep' when a
new call comes in. The agent can dump the call by pressing the star key.

Options:

• 's' silent login - do not announce the login ok

 11.6 ACD related applications | 282

11.6.3 Agencallbacklogin()

Figure 11.9 Agentcallbacklogin()

This applications asks the agent to login to the system and hang-up. The
agent’s extension will ring when someone is in the queue. The agent's
callback extension is called (optionally with the specified context).

Options:

• 's' -- silent login - do not announce the login ok segment agent logged
in/off

283 | Chapter 11 – ACD Automatic Call Distribution

11.6.4 Support applications and CLI commands

Figure 11.10 Support applications and CLI commands

11.7 CONFIGURATION TASKS

Figure 11.11 ACD Configuration Tasks

11.7.2. Create the call queue

queues.conf

 11.7 Configuration tasks | 284

[telemarketing]
music = default
;announce = queue-telemarketing
;context = qoutcon
timeout = 2
retry = 2
maxlen = 0
member => Agent/300
member => Agent/301
[auditing]
music = default
;announce = queue-auditing
;context = qoutcon
timeout = 15
retry = 5
maxlen = 0
member => Agent/600
member => Agent/601

11.7.3 Define agent parameters

agents.conf

debian:/etc/asterisk# cat agents.conf
;
; Agent configuration
;

[agents]
; Define maxlogintries to allow agent to try max logins before
; failed.
; default to 3
maxlogintries=5
; Define autologoff times if appropriate. This is how long
; the phone has to ring with no answer before the agent is
; automatically logged off (in seconds)
autologoff=15
; Define autologoffunavail to have agents automatically logged
; out when the extension that they are at returns a CHANUNAVAIL
; status when a call is attempted to be sent there.
; Default is "no".
;autologoffunavail=yes
; Define ackcall to require an acknowledgement by '#' when
; an agent logs in using agentcallbacklogin. Default is "no".
;ackcall=no
; Define endcall to allow an agent to hangup a call by '*'.
; Default is "yes". Set this to "no" to ignore '*'.
;endcall=yes
; Define wrapuptime. This is the minimum amount of time when
; after disconnecting before the caller can receive a new call
; note this is in milliseconds.
;wrapuptime=5000
; Define the default musiconhold for agents
; musiconhold => music_class
;musiconhold => default
;
; Define the default good bye sound file for agents

285 | Chapter 11 – ACD Automatic Call Distribution

; default to vm-goodbye
;agentgoodbye => goodbye_file
; Define updatecdr. This is whether or not to change the source
; channel in the CDR record for this call to agent/agent_id so
; that we know which agent generates the call
;updatecdr=no
;
; Group memberships for agents (may change in mid-file)
;
;group=3
;group=1,2
;group=

11.7.4 Create the agents

agents.conf

;agent => agentid,agentpassword,name
[agents]
agent => 300,300,Test Rep - 300
agent => 301,301,Test Rep . 301
agent => 600,600,Test Ver - 600
agent => 601,601,Test Ver . 601

11.7.5 Put the queue in the dialplan

extensions.conf

; Telemarketing queue.
exten=>_0800XXXXXXX,1,Answer
exten=>_0800XXXXXXX,2,SetMusicOnHold(default)
exten=>_0800XXXXXXX,3,Set(TIMEOUT(digit)=5)
exten=>_0800XXXXXXX,4,Set(TIMEOUT(response)=10)
exten=>_0800XXXXXXX,5,Background(welcome)
exten=>_0800XXXXXXX,6,Queue(telemarketing)

; Transfer to the queue auditing
exten => 8000,1,Queue,(auditing)
exten => 8000,2,Playback(demo-echotest); No auditor available
exten => 8000,3,Goto(8000,1) ; Verify auditor again

; Agent login for the telemarketing and auditing queues

exten => 9000,1,Wait(1)
exten => 9000,2,AgentLogin()

11.7.6 Configure queue recording

Calls may be recorded using Asterisk's monitor/MixMonitor application. This
may be enabled from within the Queue application, beginning the recording

 11.8 Queue operation | 286

when the call is actually picked up. Only successful calls are recorded and no
recordings are performed while people are listening to MOH.

To enable monitoring, simply specify "monitor-format"; this feature is
otherwise disabled.

You can set the filename for the recording using “Set
(MONITOR_FILENAME=<filename>)”; otherwise it will use
MONITOR_FILENAME=${UNIQUEID}.

queues.conf

;
monitormonitormonitormonitor----format = wavformat = wavformat = wavformat = wav
;
monitormonitormonitormonitor----type = MixMonitortype = MixMonitortype = MixMonitortype = MixMonitor
;
monitmonitmonitmonitorororor----join = yesjoin = yesjoin = yesjoin = yes

11.8 QUEUE OPERATION

Working example:

Part 1: Agent login

Example: An agent in the telemarketing queue picks up the phone and dials
#9000. The agent hears an invalid login message and is asked for his/her
name and password. The auditing queue follows the same procedure.

Part 2: Queue

Once in the queue, the agent will hear MOH if defined. When a call comes in
the telemarketing queue, the agent will hear a “beep” and will be connected
to that call.

Part 3: Call ending

When the agent finishes the call, he/she can:

• Press ‘*’ to disconnect and stay in the queue.

• Disconnect the phone, disconnecting to the queue.

• Press #8000 to transfer the call for auditing.

287 | Chapter 11 – ACD Automatic Call Distribution

11.9 ADVANCED RESOURCES

11.9.1 User menu

You can define a menu for a user while waiting in the queue. You can use
one-digit extensions. To enable this option, define a context in the queue
configuration (queues.conf).

11.9.2 Penalty

Agents can be configured with a penalty. A queue will send the calls first for
users with lower penalty values. Let me exemplify. Since we know that our
costumers love Susan with her soft voice, we may choose to assign priority 0
to her). Alternatively, an agent named Uber with less experience is less
preferred for costumer service, and therefore we may assign a priority 10 for
this agent.

Queues.conf

[costumerservice]
member=300,0,Susan the excelent agent
member=300,10,Uber the new guy

11.9.3 Priority

Queues operate in the FIFO (first in first out) mode. If you want to give
priority for special costumers (platinum, gold) you can set up differentiated
priorities.

Platinum or Gold costumers
exten=>111,1,Playback(welcome)
exten=>111,2,Set(QUEUE_PRIO=10)
exten=>111,3,Queue(costumerservice)

Blue Costumers

exten=>112,1,Playback(welcome)
exten=>112,2,Set(QUEUE_PRIO=5)
exten=>112,3,Queue(costumerservice)

 11.10 Questions | 288

11.10 QUESTIONS

1. Cite four strategies for routing call in a queue.

2. It is possible to record a conversation between an agent and a costumer
using the statement _________________ in the queues.conf file.

3. To login an agent you will use the application agentlogin([agentnumber]).
When the agent finishes the call, he can press:

a) * to disconnect and stay in the queue
b) hang-up the phone and disconnect from the queue
c) Press #8000 to transfer to call audit
d) Press # to hang-up

4. The required tasks to configure a call queue are:

a) Create the queue
b) Create the agents
c) Configure the agents
d) Configure the recording
e) Put the queue in the dial plan

5. What’s the difference between the applications AgentLogin() and
AgentCallBackLogin().

6. When in a call queue, you can define a certain number of options that the
user can dial. This is done including a ____________ in the file queues.conf

a) Agent
b) Menu
c) Context
d) Application

289 | Chapter 11 – ACD Automatic Call Distribution

7. The support applications AddQueueMember(), AgentLogin(),
AgentCallBackLogin e RemoveQueueMember() should be included in the:

a) Dial plan
b) Command line interface
c) queues.conf
d) agents.conf

8. It is possible to record the agents, but it is necessary an external
recorder.

a) True
b) False

9. “Wrapuptime” is the time the user needs after ending the call to complete
business process related to that call.

a) True
b) False

10. A call can be prioritized depending on the CallerID inside the same
queue: The affirmative is:

a) True
b) False

Voicemail

12.1 OBJECTIVES

 Figure 12.1 Objectives

12.2 INTRODUCTION

Voicemail is a computerized telephone answering system that records
incoming voice messages, and saving them on disk or sending them via e-
mail. It can be used to page a user; sometimes it has a directory where you
can lookup voicemails by name. In the past, voicemail systems were very
expensive. Now with IP telephony, voicemail systems became a standard
feature.

Chapter 12

291 | Chapter 13 – CDR and Billing

12.3 CONFIGURATION TASK LIST

 Figure 12.2 Configuration task list

To configure voicemail you should go through the following steps:

12.3.1 Configuring voicemail.conf

Figure 12.3 mailbox configuration

 12.3 Configuration task list | 292

Voicemail has several options that control voicemail behavior. For now, we
will stick to the default options and concentrate in mailbox definition. After
the [general] section in the file you will start configuring the mailbox id in its
own context.

Example:

[general]

[default]
1234=>1234,SomeUser,email@address.com,pager@address.com,saycid=yes|dialout=fro
mvm|callback=fromvm|review=yes|operator=yes

More options later.

12.3.2 Configuring the extensions.conf file

Voicemail Macro

 Figure 12.4 Voicemail Macro

12.3.3 Using the VoiceMailMain() application

exten=>9000,1,VoiceMailMain()

Dialing 9000 gives you access to the voicemail menu where you can search,
retrieve and administer your voicemail mailbox.

293 | Chapter 13 – CDR and Billing

 Figure 12.5 Voicemailmain menu

12.3.4 Voicemail application syntax

 Figure 12.6 Voicemail application

This application allows the calling party to leave a message for a specified
list of mailboxes. When multiple mailboxes are specified, the greeting will be
taken from the first specified mailbox. Dialplan execution will stop if the
specified mailbox does not exist. Voicemail application will exit if any of the
following DTMF digits are received:

 12.3 Configuration task list | 294

• 0 - Jumps to the 'o' extension in the current dialplan context.
• * - Jumps to the 'a' extension in the current dialplan context.

This application will set the following channel variable upon completion:

• VMSTATUS - This indicates the execution status of the VoiceMail
application. The possible values are:

o SUCCESS
o USEREXIT
o FAILED

Options:

• b - Plays the 'busy' greeting to the calling party.
• g(#) - Uses the specified amount of gain when recording voicemail

messages. The units are whole-number decibels (dB).
• s - Skips the playback of instructions for leaving a message to the

calling party.
• u - Plays the 'unavailble greeting.
• j - Jumps to priority n+101 if the mailbox is not found or some other

error occurs.

In all cases, the beep.gsm file will be played before the recording begins.
Voicemail messages will be stored in the inbox directory.

/var/spool/asterisk/voicemail/context/boxnumber/INBOX/

If a caller presses 0 (zero) during the announcement, it will be moved to the
‘o’ (out) extension in the voicemail current context. This can be used to exit
to the operator.

If during the recording the caller presses # or the silence limit times out,
recording is stopped and the call goes to the next priority. Make sure that
you handle the call after the voicemail is played, as shown below.

exten=>somewhere,5,Playback(Goodbye)
exten=>somewhere,6,Hangup

295 | Chapter 13 – CDR and Billing

12.4 SENDING VOICEMAIL TO E-MAIL

In some cases (like mine), we simply do not use the voicemailmain()
application to read e-mail. It is simpler and practical to send all messages to
e-mail with the audio attached. Using the parameters ‘attach’ and ‘delete’
you can send all mails to e-mail and delete them from the mailbox.

attach=yes
delete=yes

To send voicemail to e-mail, the voicemail application uses the MTA
(Message Transfer Agent) a component of your operating system. Debian
uses Exim as the MTA. The application that sends the e-mail is defined in the
‘mailcmd’ parameter.

mailcmd =/usr/sbin/sendmail -t

In the Debian distribution of Linux, the MTA is exim. To configure exim in
Debian, use:

dpkg-reconfigure exim4-config

You can choose to make your MTA send e-mail directly through SMTP or a
smarthost (probably your company mail server). Verify with your e-mail
administrator the best way to send e-mail from the Asterisk server to your
e-mail server.

12.4.1 Customizing the e-mail message

You can control how messages are sent by setting-up the following
variables:

Variables for e-mail subject and e-mail body:

• VM_NAME
• VM_DUR
• VM_MSGNUM
• VM_MAILBOX
• VM_CIDNUM
• VM_CIDNAME
• VM_CALLERID
• VM_DATE

 12.5 Voicemail Web interface | 296

The e-mail body and e-mail subject will be created as described below. You
can modify the e-mail body and subject, but the size limit of the message is
512 bytes.

emailsubject=[PBX]: New message ${VM_MSGNUM} in mailbox
${VM_MAILBOX}. The following definition is very close to the default, but
the default shows just the CIDNAME, if it is not null, otherwise just the
CIDNUM, or "an unknown caller", if they are both null.

emailbody=Dear ${VM_NAME}:\n\n\tjust wanted to let you know you were
just left a ${VM_DUR} long message (number ${VM_MSGNUM})\nin
mailbox ${VM_MAILBOX} from ${VM_CALLERID}, on ${VM_DATE}, so you
might\nwant to check it when you get a chance. Thanks!\n\n\t\t\t\t--
Asterisk\n

12.5 VOICEMAIL WEB INTERFACE

 Figure 12.7 Web voice mail interface

There is a Perl script in the source distribution called vmail.cgi located in
/usr/src/asterisk/vmail.cgi.

297 | Chapter 13 – CDR and Billing

The command “make install” does not install this interface unless you run
make webvmail. This script requires the Perl command interpreter and
Apache installed in the server.

For the Debian distribution, detailed instructions can be found at

http://www.voip-info.org/wiki/index.php?page=Asterisk+gui+vmail.cgi

make webvmail

Maybe you will need to edit this script before installing. Copy the source files
to the html directory.

cp /usr/asterisk/images/*.gif /var/html/asterisk

Use the command below to make the cgi executable.

chmod +x vmail.cgi

12.6 VOICEMAIL NOTIFICATION

You can configure voicemail to send a notify message to your phone when
you have new voicemail. Voicemail notification works with SIP phones, ZAP
phones, and also with some IAX2 phones. To indicate an unheard voicemail,
an indicator light may blink or the phone may play a shutter tone.
You need to configure the mailbox in the corresponding channel
configuration file.

sip.conf
mailbox=8590

zapata.conf
mailbox=8580

12.6.1 Lab. Message Notification in the Phone

This lab was tested using xlite for windows 3.0.

1. Edit the sip.conf and add ‘mailbox=4401’ in the sip channel named 4401.

2. Edit the extensions.conf and create an extension to record a voicemail to
4401 extensions.

 12.7 Using the directory application | 298

exten=9008,n,voicemail(b4401)

3. Go to the CLI> console and reload.

4. Go to the X-Lite > Mouse Right Button >SIP Account Settings >Properties
>Voicemail and check the box ‘check voicemail’.

5. Dial 9008 and leave a message.

6. Observe the message icon on the phone.

12.7 USING THE DIRECTORY APPLICATION

 Figure 12.8 The directory application

This application will present the calling channel with a directory of extensions
from which they can search by name. The list of names and corresponding
extensions is retrieved from the voicemail configuration file, voicemail.conf.
This application will immediately exit if one of the following DTMF digits are
received and the extension to jump to exists:

• 0 - Jumps to the 'o' extension, if it exists.
• * - Jumps to the 'a' extension, if it exists.

Parameters:

299 | Chapter 13 – CDR and Billing

• vm-context - This is the context within voicemail.conf to use for the
directory.

• dial-context - This is the dialplan context to use when looking for an
extension that the user has selected, or when jumping to the 'o' or 'a'
extension.

Options:

• e - In addition to the name, also reads the extension number to the
caller before presenting dialing options.

• f - Allows the caller to enter the first name of a user in the directory
instead of using the last name.

12.7.1 Lab. using the directory application

1. Edit the voicemail.conf file to add two extensions in the dial plan

[default]
; Define maximum number of messages per folder for a particular context.
;maxmsg=50
4400=>4400,Clint Eastwood,ceastwood@asteriskguide.com
4401=>4401,John Wayne,jwayne@asteriskguide.com

2. Create these extensions in your dial plan

exten=9006,1,VoiceMailMain()
exten=9006,n,Hangup()
exten=9007,1,Directory(default|default)
exten=9007,n,Hangup()

3. Go to the console and reload

4. Dial 9006 and record a name for each extension (4400, 4401)

5. Dial 9007 and select the three letters of the last name for one extension
(Eas=327). If this is the correct option, press ‘1’ to transfer to the name.

12.8 SUMMARY

In this chapter we learned how to setup a voicemail system and how to use
support applications like Voicemailmain(). You learned, for example that you
need an MTA configured to send voicemail to e-mail. Finally, you have
configured the directory application to easily find names in your directory.

 12.9 Questions | 300

12.9 QUESTIONS

1. The files involved in the voicemail configuration are:

a) sip.conf
b) iax.conf
c) asterisk.conf
d) voicemail.conf
e) vmail.conf
f) extensions.conf

2. In the voicemail application, the parameters “u” and “b” are __________
and __________ respectively. They are used to determine what message
will be played.

a) BUSY, FREE
b) BUSY, UNASWERED
c) UNANSWERED, BUSY
d) FREE, ARRESTED

3. The VoiceMailMain() application is used for the caller to leave a message
in the voicemail. The affirmative is:

a) True
b) False

4. To exit VoiceMailMain you should press:

a) 0
b) *
c) #
d) 9999

301 | Chapter 13 – CDR and Billing

5. Write below the voicemail() application syntax.

6. In the [general] section of the voicemail.conf file the parameter
“attach=yes” makes Asterisk to send a notification by e-mail to the user with
the audio file attached. The affirmative is:

a) False
b) True

7 The option “delete” makes that every message after being sent to the e-
mail be erased from the mailbox.

a) False
b) True

8. The best format for voicemail audio is “WAV”. It better support in
Windows workstations.

a. False
b. True

9. It is possible to customize e-mail messages by modifying the e-mail
subject and body. What variable can be used to indicate a CallerID in the
message?

10. The cgi name to install the web voicemail interface is ____________.

Asterisk Call Detail Records

13.1 INTRODUCTION

Asterisk, like other telephony platforms, allows billing of phone calls. Several
programs in the market can import the records generated by PBXs. Those
records are used to verify the correct amount of the bill, statistics, among
other things.

13.2 OBJECTIVES

By the end of this chapter, the reader should be able to:

• Describe where and in what format the records are generated
• Generate records in MySQL database
• Implement an authentication scheme integrated with billing

13.3 ASTERISK CDR FORMAT

Asterisk generates a CDR (Call Detail Record) for each call. These records
are stored, by default, in a text file in a CSV (comma separated value) in the
/var/log/asterisk/cdr-csv. The file is organized in the following fields:

CDR Fields

CDR Description Type Size
Accountcode Account Number to use String 20
Src Caller ID Number String 80
Dst Destination Extension String 80
Dcontext Destination Context String 80
Clid Caller ID with Text String 80
Channel Channel Used String 80
Dstchannel Destination channel String 80
Lastapp Last application String 80
Lastdata Last application data String 80
Start Start of call Date/Time
Answer Answer of call Date/Time
End End of Call Date/Time
Duration Time, from dial to hang-up Integer

Chapter 13

303 | Chapter 13 – CDR and Billing

(seconds)
Billsec Time, from answer to hang-up

(seconds)
Integer

Disposition What Happened to the call
(ANSWERED, NO ANSWER,
BUSY, FAILED)

String 20

Amaflags Flags (DOCUMENTATION,
BILLING, IGNORE)

String 20

User field User defined field String 255

Sample of csv file imported into a table.

AccountCode CallerID No. Extension Context CallerID text Src Dst

1234 4830258576 *72*1234*8584 admin "Alexandre Keller" <4830258576> SIP/8576-5f30 SIP/8584-9153

1234 4830258576 *72*1234*8584 admin "Alexandre Keller" <4830258576> SIP/8576-96f5 SIP/8584-3312

1234 4830258576 *72*1234*8584 admin "Alexandre Keller" <4830258576> SIP/8576-74ac SIP/8584-297b

1234 4830258576 2012348584 admin "Alexandre Keller" <4830258576> SIP/8576-2c5d SIP/8584-9870

1234 4830258584 2012348576 default "Luiz Eduardo Dagios" <4830258584> SIP/8584-03fd SIP/8576-645c

Application Appdata Start Answer End Dur Bil Disposition Amaflags

Dial SIP/8584|30|tT 27/3/2006 16:05 27/3/2006 16:05 27/3/2006 16:05 5 3 ANSWERED DOCUMENTATION

Dial SIP/8584|30|tT 27/3/2006 16:16 27/3/2006 16:16 27/3/2006 16:16 6 4 ANSWERED BILLING

Dial SIP/8584|30|tT 27/3/2006 16:22 27/3/2006 16:22 27/3/2006 16:22 9 5 ANSWERED BILLING

Dial SIP/8584|30|tT 27/3/2006 16:37 27/3/2006 16:37 27/3/2006 16:37 5 2 ANSWERED BILLING

Dial SIP/8576|30|tT 27/3/2006 16:37 27/3/2006 16:37 27/3/2006 16:37 9 5 ANSWERED BILLING

13.4 ACCOUNT CODES AND AUTOMATED MESSAGE ACCOUNTING

You can specify account codes and “ama” flags on each channel. Usually this
is done on the channel configuration file like zapata.conf, sip.conf, iax.conf
and others.

Amaflags define what to do with the cdr record. Amaflag values are:

• Default:
• Omit:
• Billing:
• Documentation:

Similarly to the way a record can be flagged for billing or documentation, an
account code can be set to each record. The account is a 20 characters
string. Usually, it is used to assign a record to a department or business
unit.

Example: (sip.conf)

 13.5 Changing the CDR format. | 304

[8576]
amaflags=default
accountcode=Support
type=friend
username=8576

13.5 CHANGING THE CDR FORMAT.

You can change the csv format changing the cdr_custom.conf file.

;
; Mappings for custom config file
;
[mappings]
Master.csv =>
"${CDR(clid)}","${CDR(src)}","${CDR(dst)}","${CDR(dcontext)}","${CDR(channel)}
","${CDR(dstchannel)}","${CDR(lastapp)}","${CDR(lastdata)}","${CDR(start)}","$
{CDR(answer)}","${CDR(end)}","${CDR(duration)}","${CDR(billsec)}","${CDR(dispo
sition)}","${CDR(amaflags)}","${CDR(accountcode)}","${CDR(uniqueid)}","${CDR(u
serfield)}"

You can change the CDR format in the cdr_custom.conf file.

13.6 CDR STORAGE

The storage of cdr can be done in several ways. The most important are CSV
text files that can be imported easily into spreadsheets. For small
businesses, this is usually ok. Some billing software accepts, by default, csv
files. However, storing in a database is a lot better and safer, and Asterisk
support several database flavors. There are some graphical interfaces for
billing in the market. At V’Office we have tested the open source versions of
A2billing and AsteriskStats from Areski (www.areski.net). In my opinion,
they are very good.

13.6.1 Storage drivers available

cdr_csv – Comma Separated Value text files
cdr_SQLite – SQLite databases
cdr_pgsql – Postgres databases
cdr_odbc – unixODBC supported databases
cdr_mysql – MySQL databases
cdr_FreeTDS – Sybase and MSSQL databases
cdr_yada – yada databases
cdr_manager – CDR to Manager Interface
cdr_radius – CDR radius interface

305 | Chapter 13 – CDR and Billing

CDR recording is done to all active modules loaded in
/etc/asterisk/modules.conf. If the “autoload=yes” option is set, all modules
are loaded.

13.6.2 CSV Storage

As we said before, by default, Asterisk sends all CDR to a csv text file. This is
done by the cdr_csv.so module. If you can’t see the files in the
/var/log/asterisk/cdr-csv, check to see if the module is being loaded using
the CLI command “module show”. If it’s not loaded, check modules.conf.

13.6.3 Storing in MySQL database

Due to licensing restrictions of MySQL, Digium cannot bundle the database
with Asterisk. That’s why MySQL support for CDR is in the Asterisk add-ons.
You will have to download, uncompress and compile the module separately.
Follow the instructions below to install MySQL Support.

Step 1: Install MySQL and MYSQL-devel packages.

#apt-get install mysql-server-4.1
#apt-get install libmysqlclient12-dev
#cd /usr/src
#wget http://ftp.digium.com/pub/asterisk/releases/asterisk-addons-1.4.1.tar.gz
#tar –xzvf asterisk-addons-1.4.1
#cd asterisk-addons-1.4.1
#make clean
#make
#make install

Step 2: Make the necessary adjustments on cdr_mysql.conf file. This
configuration has to point to where the database will be located.

[global]
hostname=localhost
dbname=asteriskdb
password=asterisk
user=asterisk
port=3306
sock=/var/run/mysqld/mysqld.sock
;userfield=1

Use vi (or your preferred editor) to edit modules.conf to include the
cdr_addon_mysql.so loading. In most cases you don’t need to do it as the
option autoload=yes is default.

Step 3: Create a database for cdr_addon_mysql

 13.7 Applications and functions | 306

mysql -p

Just press <ENTER> when asked for the password.

CREATE DATABASE asteriskdb;

GRANT INSERT
 ON asterisk.*
 TO asterisk@localhost
 IDENTIFIED BY 'asterisk';

USE asteriskdb;

CREATE TABLE `cdr` (
`calldate` datetime NOT NULL default '0000-00-00 00:00:00',
`clid` varchar(80) NOT NULL default '',
`src` varchar(80) NOT NULL default '',
`dst` varchar(80) NOT NULL default '',
`dcontext` varchar(80) NOT NULL default '',
`channel` varchar(80) NOT NULL default '',
`dstchannel` varchar(80) NOT NULL default '',
`lastapp` varchar(80) NOT NULL default '',
`lastdata` varchar(80) NOT NULL default '',
`duration` int(11) NOT NULL default '0',
`billsec` int(11) NOT NULL default '0',
`disposition` varchar(45) NOT NULL default '',
`amaflags` int(11) NOT NULL default '0',
`accountcode` varchar(20) NOT NULL default '',
`userfield` varchar(255) NOT NULL default ''
);

ALTER TABLE `cdr` ADD INDEX (`calldate`);
ALTER TABLE `cdr` ADD INDEX (`dst`);
ALTER TABLE `cdr` ADD INDEX (`accountcode`);

One tip is to copy and paste these commands to a text file named “cdr.sql”
and execute the following command:

mysql --user=username --password=password asteriskdb <cdr.sql

13.7 APPLICATIONS AND FUNCTIONS

Several applications are related to billing.

13.7.1 CDR(accountcode)

Sets an account code before calling other application as Dial() for example.

Format:

Set(CDR(accountcode)=account)

307 | Chapter 13 – CDR and Billing

The account code can be verified using the channel variable
${CDR(accountcode)}

13.7.2 CDR(amaflags)

Set(CDR(amaflags)=amaflags)

Set a flag for billing purposes. Options are default, omit, documentation,
billing.

13.7.3 NoCDR()

No CDR recorded to the file or database.

13.7.4 ResetCDR()

Resets to zero the CDR. If ´w´ option is set it saves the original CDR record.

13.7.5 Set(CDR(userfield)=Value)

This command sets a user field in the CDR. If you were using
cdr_addon_mysql, check to see if you have the option userfield=1 in the
cdr_mysql.conf. For csv text files, you have to edit the source code
(cdr_csv.c) and recompile Asterisk if you want to use userfields. This
command is useless if userfield is not enabled in the source code or in the
myssql configuration file (cdr_mysql.conf).

13.7.6 AppendCDRUserField(Value)

Append data to the user field on the CDR.

13.8 USER AUTHENTICATION

Some companies use to bill the calls to their employees. In Asterisk you can
set an authentication scheme that allows to bill the authenticated user on
the CDR. This authentication can be done by a password passed as a
parameter to the Authenticate application, a password file, indicated by a
´/´ (slash) before the parameter or a Asterisk database (dbput/dbget).

Format:

 13.9 Using passwords from voicemail. | 308

Authenticate(password[|options])
Authenticate(/passwdfile|[|options])
Authenticate(</db-keyfamily|d>options)

Options:

• a – Set the account code as the password.
• d – Interpret the parameter as a Asterisk DB key
• r – Removes the key after successful authentication (only with ´d´

option)
• j – Jump to priority n+101 for invalid authentication

Example: (International Calls)

exten=_9011.,1,Authenticate(/password|daj)
exten=_9011.,2,Dial(Zap/g1/${EXTEN:1},20,tT)
exten=_9011.,3,Hangup()
exten=_9011.,102,Playback(unauthorized)
exten=_9011.,103,Hangup()

To insert the password in a DB key from the console.

CLI> database put senha 123456 1

13.9 USING PASSWORDS FROM VOICEMAIL.

This application does the same as authenticate, but uses the voicemail
configuration file for the password.

VMAuthenticate([mailbox][@context][|options])

If a mailbox is specified, only the mailbox password will be considered valid.
If the mailbox is not specified, a channel variable AUTH_MAILBOX will be set
with the authenticated mailbox. If the option ´s´ (silent) is set no prompt
will be executed.

Example: (International Calls)

exten=_9011.,1,VMAuthenticate(${CALLERID(num)}@local|ajs)
exten=_9011.,2,Dial(Zap/g1/${EXTEN:1},20,tT)
exten=_9011.,3,Hangup()
exten=_9011.,102,Playback(unauthorized)
exten=_9011.,103,Hangup()

13.10 SUMMARY

309 | Chapter 13 – CDR and Billing

In this chapter we have learned how to implement CDR recording in text
files and in a mysql database, how to set amaflags and account codes. At
the end of the chapter we have learned how to use an authentication
scheme integrated with cdr and billing.

 13.11 Questions | 310

13.11 QUESTIONS

1. By default, Asterisk records the CDR in /var/log/asterisk/cdr-csv
directory.

a. False
b. True

2. Asterisk allows using only these databases:

a. MySQL
b. Native Oracle
c. Microsoft SQL
d. CSV Text files
e. unix_ODBC supported databases

3. Asterisk generates a CDR only to single kind of storage.

a. False
b. True

4. Which are Asterisk amaflags available?

a. Default
b. Omit
c. Tax
d. Rate
e. Billing
f. Documentation

5. Fill the spaces left.

If you intend to associate a department to a CDR, you should use the
command ____________. The account code can be verified using the
channel variable _______________.

6. The difference between the applications NOCDR() and Reset CDR() is that
NoCDR() does not generate any record and ResetCDR() zeroes the current
record.

a. False
b. True

311 | Chapter 13 – CDR and Billing

7. To use a user defined field with the cdr_csv.so module, is necessary to
edit the source code and recompile the Asterisk.

a. False
b. True

8. The three authentication methods available to the Authenticate()
application are:

a. Password
b. Password file
c. Asterisk DB (dbput e dbget)
d. Voicemail

9. Voicemail password are specified in a different section of the
voicemail.conf file and are not the same as the voicemail users.

a. False
b. True

10. This option of authenticate command put the password used to
authenticate in the CDR.

a. a
b. j
c. d
d. r

Extending Asterisk with AMI and AGI

14.1 INTRODUCTION

In several situations it may be necessary to extend the features of Asterisk
by using external applications. With conventional PBXs, this was normally
done using a CTI (Computer Telephony Integration) interface. Asterisk is
built in a computer and not based on a circuit switch; therefore, there are
many different ways by which it may be extended. In this chapter we will
cover Asterisk’s CTI interface named AMI (Asterisk Manager Interface).

Since there are other ways to integrate Asterisk with other programs, we will
also look at the command “asterisk –rx” and the System() application. At the
end of this chapter, we will look at the powerful AGI (Asterisk Gateway
Interface), which enables Asterisk to call external applications made with
any languages that support Linux standard I/O, a much used resource to
build IVRs (Interactive Voice Response). The only drawback in Asterisk
integration is that it does not have a standard CSTA interface, which could
make it easier for other programs to port applications like dialers, report
generators and others. The abbreviations AMI (Asterisk Manager Interface)
and AGI (Asterisk Gateway Interface) will be used throughout this chapter.

14.2 OBJECTIVES

By the end of this chapter the reader should be able to:

• Describe access options to external programs
• Use “asterisk –rx” command to execute a console command
• Use the System() app to call external programs in the dialplan
• Explain what is AMI and how it works
• Configure the manager.conf file and enable AMI
• Execute an Asterisk AMI command from a PHP program
• Explain what Asterisk Manager Proxy is and how it works
• Describe different AGI Flavors (DeadAGI, AGI, EAGI, FastAGI)
• Execute a simple AGI program created with PHP

14.3 MAJOR WAYS TO EXTEND ASTERISK

Asterisk has different ways to interface with external programs. In this
chapter, we will cover:

Chapter 14

313 | Chapter 14– Extending Asterisk using AMI and AGI

• Linux command line and Asterisk Console
• System() Application
• Asterisk Manager Interface - AMI
• Asterisk Gateway Interface - AGI

14.4 EXTENDING ASTERISK WITH CONSOLE CLI

An application can easily call Asterisk from the Linux shell using the following
command.

asterisk –rx <command>

Example:

#asterisk –rx “stop now”

Even a command with an output can be called:

asterisk:~# asterisk -rx "sip show peers"
Name/username Host Dyn Nat ACL Port Status
4000/4000 10.1.1.6 D 5060 Unmonitored
1 sip peers [1 online , 0 offline]

14.5 EXTENDING ASTERISK USING THE SYSTEM() APPLICATION

The System() command enables Asterisk to call an external application.

asterisk*CLI> show application system
asterisk*CLI>
 -= Info about application 'System' =-

[Synopsis]
Execute a system command

[Description]
 System(command): Executes a command by using system(). If the command
fails, the console should report a fallthrough.
Result of execution is returned in the SYSTEMSTATUS channel variable:
 FAILURE Could not execute the specified command
 SUCCESS Specified command successfully executed

14.5.1 System() app example

This application does a screen-pop using netbios WindowsPopup.

 14.6 What is AMI? | 314

exten => 9000,1,System(/bin/echo -e "'Incoming Call From -> ${CALLERID(num)}
\\r Received: ${DATETIME}'"|/usr/bin/smbclient -M target_netbiosname)
exten => 9000,2,Dial(SIP/9000,15,t)
exten => 9000,3,Hangup

14.6 WHAT IS AMI?

AMI enables a client program to connect to an Asterisk instance and issue
commands or read events over a TCP connection. Systems integrators will
find these resources useful to track channel states. AMI is built in a simple
concept of a line protocol using key:value pairs over TCP. Asterisk by itself is
not ready to handle too many connections over this interface. If you have
lots of connections to AMI consider using Asterisk Manager Proxy.

14.6.1 What language to use for AMI?

Selecting a programming language can be hard these days. There are simply
too many options like Java, php, Perl, C, C#, Python, and several others. It’s
possible to use AMI with any language that supports a socket or telnet
interface. We have chosen php for this book because of the popularity.

14.6.2 AMI protocol behavior

• Before sending any commands to Asterisk, you need to establish an
AMI session.

• The first line of a packet will have the key “Action” when sent from a
client.

• The first line of a packet will have a key “Response” or “Event” when
coming from Asterisk.

• Packages can be transmitted in any direction after the authentication.

14.6.3 Packet types

The type of the packet is determined by the existence of the following keys:

• Action: A packet sent from a client connected to AMI asking for a
specific action. There is a finite set of actions available to clients. The
loaded modules determine these actions. A packet contains the action
name and its parameters.

• Response: The response sent from Asterisk to the last action sent
from the client.

• Event: Data belonging to an event generated in the Asterisk core or
by a module.

315 | Chapter 14– Extending Asterisk using AMI and AGI

When a client sends packets of the Action type, a parameter named ActionID
is included. Since the order in which the responses sent from Asterisk cannot
be predicted, ActionID is used to correlate actions and responses.

Event packets are used in two different contexts. Firstly, events inform the
client about changes in Asterisk (E.g. newly created channels, channels
disconnected, or agents login in and out to a queue). Secondly, events are
used to transport responses to a client action.

14.7 CONFIGURING USERS AND PERMISSIONS

To access AMI, it is necessary to establish a TCP connection listening to a
TCP port (usually 5038). You will need to configure
/etc/asterisk/manager.conf file to create a user account and permissions.

There is a finite set of permissions, “read”, “write” or both. These
permissions are defined in the manager.conf file.

[general]
enabled=yes
port=5038
bindaddr=127.0.0.1

[admin]
secret=senha
read=system,call,log,verbose,command,agent,user
write=system,call,log,verbose,command,agent,user
deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/255.255.255.255

14.7.1 Logging into the AMI

To login and authenticate into AMI, you will need to send an Action packet of the login type
with a username and account created in the manager.conf.

Action:login
Username:admin
Secret:password

14.7.2 Example:

Logging into AMI using php

<?php

$socket = fsockopen("127.0.0.1","5038", $errno, $errstr, $timeout);
fputs($socket, "Action: Login\r\n");

 14.7 Configuring users and permissions | 316

fputs($socket, "UserName: admin\r\n");
fputs($socket, "Secret: senha\r\n\r\n");

?>

If you don’t need to receive the events you can use “Events Off”.

<?php

$socket = fsockopen("127.0.0.1","5038", $errno, $errstr, $timeout);
fputs($socket, "Action: Login\r\n");
fputs($socket, "UserName: admin\r\n");
fputs($socket, "Secret: senha\r\n\r\n");
fputs($socket, "Events: off\r\n\r\n");

?>

14.7.3 Action packets

When you send an action packet to Asterisk, you can provide some extra
keys (e.g. called number). You do this by passing key:value pairs after the
Action. It is also possible too pass channel and global variables to the
dialplan.

Action: <action type><CRLF>
<Key 1>: <Value 1><CRLF>
<Key 2>: <Value 2><CRLF>

Variable: <Variable 1>=<Value 1><CRLF>
Variable: <Variable 2>=<Value 2><CRLF>
...
<CRLF>

14.7.4 Action commands

You can use the CLI instruction “manager show commands” to list the
available actions. In version 1.2.7 the commands were:

Action Privilege Synopsis
AbsoluteTimeout call,all Sets Absolute Timeout
AgentCallbackLogin agent,all Sets an agent as logged in by

callback
AgentLogoff agent,all Sets an agent as no longer logged

in
Agents agent,all Lists agents and their status
ChangeMonitor call,all Changes monitoring filename of a

channel
Command command,all Executes Asterisk CLI Command

317 | Chapter 14– Extending Asterisk using AMI and AGI

DBGet system,all Gets DB Entry
DBPut system,all Puts DB Entry
EventsControl <none> Event Flow
ExtensionState call,all Checks Extension Status
Getvar call,all Gets a Channel Variable
Hangup call,all Hang-up Channel
IAXnetstats <none> Shows IAX Netstats
IAXpeers <none> Lists IAX Peers
ListCommands <none> Lists available manager commands
Logoff <none> Logoff Manager
MailboxCount call,all Checks Mailbox Message Count
MailboxStatus call,all Checks Mailbox
Monitor call,all Monitors a channel
Originate call,all Originates Call
ParkedCalls <none> Lists parked calls
Ping <none> Keepalive command
QueueAdd agent,all Adds interface to queue.
QueuePause agent,all Makes a queue member

temporarily unavailable
QueueRemove agent,all Removes interface from queue.
Queues <none> Queues
QueueStatus <none> Queue Status
Redirect call,all Redirects (transfers) a call
SetCDRUserField call,all Sets the CDR UserField
Setvar call,all Sets Channel Variable
SIPpeers System,all Lists SIP peers (text format)
SIPshowpeer System,all Shows SIP peer (text format)
Status call,all Lists channel status
StopMonitor call,all Stops monitoring a channel

If you need to know specific command parameters, use the “manager show
command <command>”.

Example:

asterisk*CLI> manager show command originate
Action: Originate
Synopsis: Originate Call
Privilege: call,all
Description: Generates an outgoing call to a Extension/Context/Priority or
 Application/Data
Variables: (Names marked with * are required)
 *Channel: Channel name to call
 Exten: Extension to use (requires 'Context' and 'Priority')

 14.7 Configuring users and permissions | 318

 Context: Context to use (requires 'Exten' and 'Priority')
 Priority: Priority to use (requires 'Exten' and 'Context')
 Application: Application to use
 Data: Data to use (requires 'Application')
 Timeout: How long to wait for call to be answered (in ms)
 CallerID: Caller ID to be set on the outgoing channel
 Variable: Channel variable to set, multiple Variable: headers are allowed
 Account: Account code
 Async: Set to 'true' for fast origination

14.7.5 Event packets

Link Events:

Description:

Triggered when two channels are connected and voice transmission starts.
More than on event can be triggered for a single call. Any call that needs
transcoding will generate two events: the first one is a fail to establish a
native bridge between the channels, the second is the call itself.

Example:
 Event: Link
 Channel1: SIP/4001-AAAA
 Channel2: SIP/4000-BBBB
 Uniqueid1: 1234567890.12
 Uniqueid2: 1234567890.12

Unlink events:

Description:

Triggered when a link between two channels are disconnected a little before
the call is completed.

Example:

 Event: Link
 Channel1: SIP/4001-AAAA
 Channel2: SIP/4000-BBBB
 Uniqueid1: 1234567890.12
 Uniqueid2: 1234567890.12

319 | Chapter 14– Extending Asterisk using AMI and AGI

14.7.8 Events available

AbstractAgentEvent HoldEvent PeerStatusEvent
AbstractParkedCallEvent JoinEvent QueueEntryEvent
AbstractQueueMemberEvent LeaveEvent QueueEvent
AgentCallbackLoginEvent LinkageEvent QueueMemberAddedEvent
AgentCallbackLogoffEvent LinkEvent QueueMemberEvent
AgentCalledEvent LogChannelEvent QueueMemberPausedEvent
AgentCompleteEvent ManagerEvent QueueMemberRemovedEvent
AgentConnectEvent MeetMeEvent QueueMemberStatusEvent
AgentDumpEvent MeetMeJoinEvent QueueParamsEvent
AgentLoginEvent MeetMeLeaveEvent QueueStatusCompleteEvent
AgentLogoffEvent MeetMeStopTalkingEvent RegistryEvent
AgentsCompleteEvent MeetMeTalkingEvent ReloadEvent
AgentsEvent MessageWaitingEvent RenameEvent
AlarmClearEvent NewCallerIdEvent ResponseEvent
AlarmEvent NewChannelEvent ShutdownEvent
CdrEvent NewExtenEvent StatusCompleteEvent
ChannelEvent NewStateEvent StatusEvent
ConnectEvent OriginateEvent UnholdEvent
DBGetResponseEvent OriginateFailureEvent UnlinkEvent
DialEvent OriginateSuccessEvent UnparkedCallEvent
DisconnectEvent ParkedCallEvent UserEvent
DNDStateEvent ParkedCallGiveUpEvent ZapShowChannelsCompleteEvent
ExtensionStatusEvent ParkedCallsCompleteEvent ZapShowChannelsEvent
FaxReceivedEvent ParkedCallTimeOutEvent
HangupEvent PeerEntryEvent
HoldedCallEvent PeerlistCompleteEvent

14.8 ASTERISK MANAGER PROXY

Asterisk was not meant to manage a large number of connections to the
manager interface as in a large number of agents and supervisors in a
contact center environment. If this happens, Asterisk may become instable.
To solve this problem Asterisk manager Proxy was created. The main
advantages of Astmanproxy are:

• Single and persistent connection to the Asterisk
• A safer (non-root) TCP interface
• I/O filtering
• Less load and connections to the Asterisk box
• Multiple ways to access (standard, http, xml, csv)
• SSL support
• Connection to multiple Asterisk servers
• I/O formats selectable per client

 14.8 Asterisk Manager Proxy | 320

Astmanproxy supports web based applications using HTTP POST and HTTP
GET and receiving the output in HTML. On the other hand, it is possible to
use Astmanproxy as an XML feeder to a .NET program that keeps the
Asterisk status.

14.8.1 Astmanproxy, Installation and configuration

To install astmanproxy you will need:

Step 1: Download astmanproxy

Use subversion system to download astmanproxy.

svn checkout http://svncommunity.digium.com/svn/astmanproxy/trunk

Step 2: Compile and install

make
make install

Step 3: Edit the configuration file

vi /etc/asterisk/astmanproxy.conf

; astmanproxy.conf
; Asterisk Manager Proxy Configuration Sample
; (C) 2005-2006 David C. Troy - dave@popvox.com

; List of asterisk host(s) you want to proxy
; host = ip_addr, port, user, secret, events, use_ssl
host = localhost, 5038, admin, senha, on, offhost = localhost, 5038, admin, senha, on, offhost = localhost, 5038, admin, senha, on, offhost = localhost, 5038, admin, senha, on, off

; Server reconnect interval (in seconds); how often to retry
; Connecting to an asterisk server whose connection was lost
retryinterval = 2

; Number of times to retry connecting to a given server
; use 0 for infinitely, or some finite number
maxretries = 10

Step 4: Edit the other files (optional)
vi /etc/asterisk/astmanproxy.users
vi /etc/asterisk/ssl.conf

Step 5: Start the program

#astmanproxy

321 | Chapter 14– Extending Asterisk using AMI and AGI

Step 6: To see the output, start astmanproxy in debug mode.

#astmanproxy -dddddd

Step 7: To start astmanproxy at boot:

Put the following in /etc/rc.d/rc.local.

/usr/local/sbin/astmanproxy

You can find more information about the astmanproxy distribution in the
README file.

14.9 ASTERISK GATEWAY INTERFACE

AGI is a gateway interface to Asterisk similar to CGI used by web servers. It
allows the use of high level languages like Perl, php and Python to extend
Asterisk’s functionality. The main application to CGIs is IVRs building.

There are three AGI types.

• Normal AGI, which calls a program inside Asterisk’s box.
• Fast AGI, which calls an AGI in another server using TCP sockets.
• EAGI, which enables sound channel access and control from the AGI.
• DEADAGI, which gives access to the channel even after hangup().

Usually called in the ‘h’ extension.

Application format:

asterisk*CLI> core show application agi
asterisk*CLI>
 -= Info about application 'AGI' =-

[Synopsis]
Executes an AGI compliant application

[Description]
 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface compliant
program on a channel. AGI allows Asterisk to launch external programs
written in any language to control a telephony channel, play audio,
read DTMF digits, etc. by communicating with the AGI protocol on stdin
and stdout.
Returns -1 on hangup (except for DeadAGI) or if application requested
 hangup, or 0 on non-hangup exit.
Using 'EAGI' provides enhanced AGI, with incoming audio available out of band
on file descriptor 3

Use the CLI command 'agi show' to list available agi commands

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

 14.9 Asterisk Gateway Interface | 322

You can show the available AGI commands using:

asterisk*CLI> agi show
 answer Answer channel
 channel status Returns status of the connected channel
 database del Removes database key/value
 database deltree Removes database keytree/value
 database get Gets database value
 database put Adds/updates database value
 exec Executes a given Application
 get data Prompts for DTMF on a channel
 get full variable Evaluates a channel expression
 get option Stream file, prompt for DTMF, with timeout
 get variable Gets a channel variable
 hangup Hangup the current channel
 noop Does nothing
 receive char Receives one character from channels supporting it
 receive text Receives text from channels supporting it
 record file Records to a given file
 say alpha Says a given character string
 say digits Says a given digit string
 say number Says a given number
 say phonetic Says a given character string with phonetics
 say date Says a given date
 say time Says a given time
 say datetime Says a given time as specfied by the format given
 send image Sends images to channels supporting it
 send text Sends text to channels supporting it
 set autohangup Autohangup channel in some time
 set callerid Sets callerid for the current channel
 set context Sets channel context
 set extension Changes channel extension
 set music Enable/Disable Music on hold generator
 set priority Set channel dialplan priority
 set variable Sets a channel variable
 stream file Sends audio file on channel
 control stream file Sends audio file on channel and allows the listner to
control the stream
 tdd mode Toggles TDD mode (for the deaf)
 verbose Logs a message to the asterisk verbose log
 wait for digit Waits for a digit to be pressed

To debug use ‘agi debug’.

14.9.1 Using AGI

In this example, we will use php-cli, the php command line version. Install
php-cli if it’s not already installed.

Follow these steps to use php AGI scripts.

Step 1: All AGI scripts are located in /var/lib/asterisk/agi-bin

323 | Chapter 14– Extending Asterisk using AMI and AGI

Step 2: Change the permissions to allow execution.

chmod 755 *.php

Step 3: Shell interface (php specific)

The script first lines have to be:

#!/usr/bin/php -q
<?php

Step 4: Opening I/O channels

$stdin = fopen('php://stdin', 'r');
$stdout = fopen('php://stdout', 'w');
$stdlog = fopen('agi.log', 'w');

Step 5: Managing the Asterisk output

Asterisk sends the information set each time AGI is called.

agi_request:testephp
agi_channel: Zap/1-1
agi_language: en
agi_type: Zap
agi_callerid:
agi_dnid:
agi_context: default
agi_extension: 4000
agi_priority: 1

Saving the information sent.

while (!feof($stdin)) {
 $temp = fgets($stdin);
 $temp = str_replace("\n","",$temp);
 $s = explode(":",$temp);
 $agivar[$s[0]] = trim($s[1]);
 If (($temp == "") || ($temp == "\n")) {
 break;
 }
}

The above script will create an array named $agivar. Options available are:

• agi_request – AGI file name
• agi_channel – AGI Originating channel
• agi_language – Language set

 14.9 Asterisk Gateway Interface | 324

• agi_type – Channel type (e.g. SIP, ZAP)
• agi_uniqueid – Unique identifier
• agi_callerid – CallerID (Ex. Flavio <8590>)
• agi_context – Originating context
• agi_extension – Called extensions
• agi_priority – Priority
• agi_accountcode – Originating account code

To call a variable named agi_extensions use $agivar[agi_extensions].

Step 6: Using channel AGI

At this point you can start talking to Asterisk. Use the fputs command to
send commands to AGI. You can use the echo command too.

fputs($stdout,"SAY NUMBER 4000 '79#' \n");
fflush($stdout);

Notes about using quotes:

• AGI command options are not optional
• Some options need to be enclosed in quotes <escape digits>
• Some options should not be enclosed in quotes <digit string>
• Some options can use both formats
• You can use single quotes

Step 7 – Passing variables

Channel variables can be set in the AGI, but cannot be used inside the AGI.
The example below does not work inside an AGI.

SET VARIABLE MY_DIALCOMMAND "SIP/${EXTEN}"

The example below does work:

SET VARIABLE MY_DIALCOMMAND "SIP/4000"

Step 8: Asterisk responses

The following is necessary to verify responses from Asterisk:

$msg = fgets($stdin,1024);
fputs($stdlog,$msg . "\n");

Step 9: Kill the locked (zombie) processes

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

325 | Chapter 14– Extending Asterisk using AMI and AGI

If your script fails for some reason, the process will hang. Use the killproc
command to clean it before testing again.

 #!/usr/bin/php4 -q
 <?php
 ob_implicit_flush(true);
 set_time_limit(6);
 $in = fopen("php://stdin","r");
 $stdlog = fopen("/var/log/asterisk/agi.log", "w");

 // Enable debug (more verbose)
 $debug = false;

 // Functions definition
 function read() {
 global $in, $debug, $stdlog;
 $input = str_replace("\n", "", fgets($in, 4096));
 if ($debug) fputs($stdlog, "read: $input\n");
 return $input;
 }

 function errlog($line) {
 global $err;
 echo "VERBOSE \"$line\"\n";
 }

 function write($line) {
 global $debug, $stdlog;
 if ($debug) fputs($stdlog, "write: $line\n");
 echo $line."\n";
 }

 // Put agi headers in the array
 while ($env=read()) {
 $s = split(": ",$env);
 $agi[str_replace("agi_","",$s[[0])] = trim($s[[1]);
 if (($env == "") || ($env == "\n")) {
 break;
 }
 }

 // main program
 echo "VERBOSE \"Start here!\" 2\n";
 read();
 errlog("Call from ".$agi['channel']." – Phone ringing ");
 read();
 write("SAY DIGITS 22 X"); // X is the escape digit. since X is not DTMF, no e
xit is possible
 read();
 write("SAY NUMBER 2233 X"); // X is the escape digit. since X is not DTMF, no
 exit is possible
 read();

 // clean up file handlers etc.
 fclose($in);
 fclose($stdlog);

 14.9 Asterisk Gateway Interface | 326

 exit;
 ?>

14.9.2 DeadAGI

DeadAGI is used when you do not have a live channel. Usually you execute
the DeadAGI in the ´h´ extension.

14.9.3 FASTAGI

Fast AGI implements AGI using a TCP port (4573 by default) as the
Input/Output channel. FastAGI format is (agi://).

Example:

exten => 0800400001, 1, Agi(agi://192.168.0.1)

When the TCP connection is lost or disconnected, the AGI ends and the TCP
connection is closed followed by call disconnection. This resource is useful to
ease the CPU load from your Asterisk server running scripts in an external
server. You may obtain more details about FastAGI in the source code
directory (please see the file “agi/fastagi-test”).

OrderlyCalls has a Java AGI server that implements Fast AGI for Java. For
more information see http://www.orderlycalls.com.

327 | Chapter 14– Extending Asterisk using AMI and AGI

14.10 CHANGING THE SOURCE CODE

Asterisk is developed in C language (not C++). To teach C programming is
outside the scope of this document. Anyway, if you are interested, you will
find related documentation in:

www.asterisk.org/developers

The above web site has good tips on how to apply and create patches to
Asterisk as well API documentation, mostly generated by Doxygen software.

http://www.asterisk.org/doxygen/

For those familiar with C programming, changing the applications source
code can be the most powerful (and dangerous) way to extend Asterisk.

14.11 SUMMARY

In this chapter, you have learned how to interface external programs to the
Asterisk PBX. We have started with “asterisk –rx” passing commands from
the Linux shell to the Asterisk console. Next, we have seen the System()
application that allows calling an external program from the dial plan. AMI
(Asterisk Manager Interface) is the closest to a CTI interface common in
traditional PBXs. To call an application from the dial plan, we have used the
AGI, with a taste for its different flavors: DeadAGI for dead channels, EAGI
for handling the audio streaming, Fast AGI for using TCP sockets as the
input/output interface, and normal AGI that calls and process the scripts
inside the same Asterisk box.

 14.12 Questions | 328

14.12 QUESTIONS

1. Which of the following is not an interfacing method for Asterisk?

a. AMI
b. AGI
c. Asterisk –rx
d. System()
e. External()

2. AMI (Asterisk Manager Interface) enables passing Asterisk commands via
TCP sockets. This resource is enabled by default.

a. True
b. False

3. AMI is very safe, because its authentication is done using MD5
challenge/response.

a. True
b. False

4. To compensate the lack of security and scalability of AMI, we could use:

a. AMI does not have any scalability or security problem
b. Astmanproxy
c. Sysproxy

5. FastAGI allows the calling of external scripts from the dial plan to an
external machine using TCP sockets (usually 4573).

a. True
b. False

6. DeadAGI is used in active channels. It can be used in ZAP channels but
not in SIP or IAX channels.

a. True
b. False

329 | Chapter 14– Extending Asterisk using AMI and AGI

7. Only php can be used for AGI scripting.

a. True
b. False

8. The command _____________ shows all available AGI commands.

9. The command ________________ shows all available AMI commands.

10. To debug an AGI you should use the command
__________________________.

Asterisk Real-Time

15.1 INTRODUCTION

As you know, Asterisks configuration is accomplished with the use of several
text files in the /etc/asterisk directory. In spite of the easiness of using text
files, there are some known drawbacks:

• Necessity to reload Asterisk each time the files are changed
• Memory usage for large volume of users
• Hard to code a provisioning interface using text files
• No possibility of integration to existing databases

ARA or Asterisk Realtime, as it is known, was created by Anthony Minessale
II, Mark Spencer, and Constantine Filin and was designed to allow
transparent integration with SQL databases. A LDAP interface is available
too. This system is also known as Asterisk External Configuration and is
configured in /etc/asterisk/extconfig.conf. You can map configuration files to
tables in a database (static configuration) and real time entries for dynamic
creation of objects without the need to reload Asterisk.

15.2 OBJECTIVES

By the end of this chapter, the reader should be able to:

• Understand advantages and limitations of Asterisk Real Time.
• Install MySQL for use with ARA
• Compile and Install ARA using MySQL
• Test the system in a LAB environment

Chapter 15

331 | Chapter 15 Asterisk Real Time

15.3 HOW DOES ASTERISK REAL TIME WORK?

In the new Real Time architecture, all database specific code was moved to
channel drivers. The channel only calls a generic routine that searches the
database. The result is a much simpler and cleaner process from the source
code point of view. The database is accessed by three functions:

• STATIC: Used to setup a static configuration when a module is loaded.
• REALTIME: Used to search objects during a call or another event.
• UPDATE: Used to update objects.

The channel database support was not changed. There are peers and users
called static (normal) and peers and users called real time (database). For
the static, it doesn’t matter if it is loaded from a configuration file or from
the database kept in the memory. The real time peers/users are loaded only
when a call is made. After the call, the peer or user is deleted. Because of
this, there is no support for NAT or MWI (Message Waiting Indicator). You
can enable real time caching using the command “rtcachefriends=yes” in the
sip.conf file or from the static database. By doing so, you will have NAT
traversal and MWI, but, if you do any updates to this peer/user you will have
to reload.

15.4 LAB 1 INSTALLING ASTERISK REAL/TIME

 15.5 Configuring Asterisk Real Time | 332

For this lab, we will assume that you still have the MySQL libraries installed
in Chapter 13.

Step 1: Download the add-ons package

#wget http://ftp.digium.com/pub/asterisk/releases/asterisk-addons-1.4.x.tar.gz

Step 2: Uncompress the file

#tar –xzvf asterisk-addons-1.4.x.tar.gx
#cd asterisk-1.4.x
#make
#make install
#make samples

Confirm the module installation using ‘module show’

15.5 CONFIGURING ASTERISK REAL TIME

ARA is configures in the extconfig.conf text file, where two sections can be
easily seen. The first one is the static configuration files section, where you
can substitute the text configuration files for database tables. The second
section is the realtime configuration engine where you configure database
tables for dynamic objects (peers/users). It is not unusual to use text files
for the static configuration and the database for dynamic entries. In this
case, the first section is untouched.

extconfig.conf file format:

Ex
cl

us
iv

o
pa

ra
 R

ac
ha

el
 D

av
is

333 | Chapter 15 Asterisk Real Time

;
; Static and realtime external configuration
; engine configuration
;
; Please read doc/README.extconfig for basic table
; formatting information.
;
[settings]
;
; Static configuration files:
;
; file.conf => driver,database[,table]
;
; maps a particular configuration file to the given
; database driver, database and table (or uses the
; name of the file as the table if not specified)
;
;uncomment to load queues.conf via the odbc engine.
;
;queues.conf => odbc,asterisk,ast_config
;
; The following files CANNOT be loaded from Realtime storage:
; asterisk.conf
; extconfig.conf (this file)
; logger.conf
;
; Additionally, the following files cannot be loaded from
; Realtime storage unless the storage driver is loaded
; early using 'preload' statements in modules.conf:
; manager.conf
; cdr.conf
; rtp.conf
;
; Realtime configuration engine
;
; maps a particular family of realtime
; configuration to a given database driver,
; database and table (or uses the name of
; the family if the table is not specified
;
;example => odbc,asterisk,alttable
;iaxusers => odbc,asterisk
;iaxpeers => odbc,asterisk
;sipusers => odbc,asterisk
;sippeers => odbc,asterisk
;voicemail => odbc,asterisk
;extensions => odbc,asterisk
;queues => odbc,asterisk
;queue_members => odbc,asterisk

15.5.1 Static configuration section

 15.6 Database configuration | 334

The static configuration section is where you store the equivalent to
configuration files in the database. These configurations are read during the
Asterisk load. Some modules reread the database when you reload.

Static configuration example:

<conf filename> => <driver>,<databasename>[,table_name]
queues.conf => mysql,asteriskdb,queues_conf
sip.conf => odbc,asteriskdb,sip_conf
iax.conf => ldap,MyBaseDN,iax

Three examples are described above. In the first one, you bind queues.conf
to a table queues in the asteriskdb database. In the second example, you
bind sip.conf to the table sip_conf in the database asteriskdb defined in the
odbc configuration. In the last example, you bind iax.conf to a LDAP
directory. MyBaseDN is the base DN to be searched.

In the example above, the application app_queue.so is loaded while MySQL
driver quries the database and gets the necessary information.

15.5.2 Real Time configuration section

The realtime configuration (second part of the extconfig.conf file) is where
the configuration piece to be loaed is configured, updated, and unloaded in
real time. With real time is not necessary to reload the configurations.

The realtime syntax follows:

<family name> => <driver>,<database name>[,table_name]

Example:

sippeers => mysql,asteriskdb,sip_peers
sipusers => mysql,asteriskdb,sip_users
queues => mysql,asteriskdb,queue_table
queue_members => mysql,asteriskdb,queue_member_table
voicemail => mysql,asteriskdb,test

Above, we have five configuration lines. In the first line, you bind the family
sippeers to a table sip_peers in the asteriskdb MySQL database. In the last,
you bind the voicemail family to the test table in the asteriskdb database.
Note that sip_peers and sip_users could point to the same table.

15.6 DATABASE CONFIGURATION

335 | Chapter 15 Asterisk Real Time

Now that we have configured the extconfig.conf file, let’s create the tables.
Generally speaking, the database columns need to have the same fields as
the configuration files.

Example: For a SIP or an IAX object, such as the one described below,

[4000]
host=dynamic
secret=senha
context=default
context=ramais

the database table should look like this:

name host secret context ipaddr port regseconds
4000 dynamic senha default;ramais 10.1.1.1 4569 1765432

To use with IAX, the tables need to have at least the following fields:
“name”, “port”, and “regseconds”. You may configure other columns to the
desired fields. For example, if you want the parameter callerid, create a
column named callerid (the same parameter as the text file).

A SIP table may look like the one below:

name host secret context ipaddr port regseconds username
4000 dynamic senha default 10.1.1.1 5060 1765432 4000

A voicemail table should look like this:

Uniqueid mailbox context password email fullname
1 4000 default 4000 joao@silva.com Joao Silva

The uniqueid should be unique to each voicemail user and can be
autoincrement. It need not have any relationship to the mailbox or context.

 15.7 Lab 2 – Installing and creating the database tables | 336

15.6.1 Building a dialplan using Asterisk Realtime

The extension table should look like the one below:

context Exten priority app appdata
Ramais 4000 1 dial SIP/4000&IAX2/4000

In the dialplan, you have to use the switch command to use the real-time.

[local]
switch => realtime

or

[local]
Switch =>realtime/ramais@extensions

15.7 LAB 2 – INSTALLING AND CREATING THE DATABASE TABLES

In this lab we will prepare the database to receive Asterisk parameters. We
will prepare just the REALTIME databases. The static configuration will be
left to the configuration text files (Cool isn’t it ?).

15.7.1 Table creation in MySQL

Step 1: Get into to the MySQL database using root

337 | Chapter 15 Asterisk Real Time

#mysql –u root –p

Step 2: Create a database for Asterisk Realtime

mysql>create database asteriskdb;

Step 3: Create a user with access to the asteriskdb database

mysql>grant all privileges on ‘asteriskdb’.* to 'asterisk'@'localhost'
identified by 'asterisk';

Step 4: Exit MySQL and login again using the user created in step 3

#mysql –u asterisk –p asteriskdb

When asked for the password type “asterisk”.

Step 5: Creating the necessary tables

Download from blog.asteriskguide.com/sql the following file:

#wget blog.asteriskguide.com/realtime.sql

Execute the following commands:

#mysql asteriskdb -u asterisk -p <realtime.sql

Use ‘asterisk’ as the password.

Step 6: Install phpmyadmin to handle database tasks

#apt-get install phpmyadmin

 15.7 Lab 2 – Installing and creating the database tables | 338

Phpmyadmin screenshot.

Login screenshot

Table screenshot

339 | Chapter 15 Asterisk Real Time

Step 7: Configure Asterisk to access the database

In the res_mysql.conf

[general]
dbhost = 127.0.0.1
dbname = asteriskdb
dbuser = asterisk
dbpass = asterisk
dbport = 3306

15.8 LAB 3 – CONFIGURING AND TESTING ARA

I this lab we will change the extconfig.conf configuration to reflect our
database configuration and tables.

Step 1: Configure extconfig.conf and reload Asterisk

; Realtime configuration engine
;
; maps a particular family of realtime
; configuration to a given database driver,
; database and table (or uses the name of
; the family if the table is not specified
;
;example => odbc,asterisk,alttable
iaxusers => mysql,asteriskdb,iax_buddies
iaxpeers => mysql,asteriskdb,iax_buddies
sipusers => mysql,asteriskdb,sip_buddies
sippeers => mysql,asteriskdb,sip_buddies
voicemail => mysql,asteriskdb,voicemail_users
extensions => mysql,asteriskdb,extensions_table

Step 2: Real Time extension test

 15.8 Lab 3 – Configuring and testing ARA | 340

Create a new 4001 SIP friend inserting a record on the sip_buddies table
and try to authenticate on this peer/user with a softphone.

Step 3: Try a call from the 4000 extension created before (static)
and the new 4001

Verify using SIP shows peers the SIP objects. You will note that only the
static peer shows. This behavior is normal since the peer is just created
when you call. If you need to have NAT traversal support or MWI, use
rtcachefriends=yes in the sip.conf file.

Step 4: Put the command “rtcachefriends=yes” in the [general]
section of the sip.conf file

Step 5: Try again a call from 4000 to 4001

Verify using show peers. Why it appears now?

Step 6: Create a new SIP peer in the database with the name 4007

Change the phone registration to 4007 without reloading Asterisk

Step 7 : Include the extensions in the database

341 | Chapter 15 Asterisk Real Time

mysql -u asterisk -p
Enter password:

--> Use “asterisk” when asked.

Use phpadmin to include na extension in the database. If you prefer, use the
following comands instead in the mysql client interface.

use asteriskdb;

insert into extensions_table(id, context, exten, priority, app, appdata) VALUES ('1','teste',

'40007','1','Dial','SIP/40007');

Step 8: Include Asterisk realtime into the dialplan.

In the default context:

switch => realtime/teste@extensions

Reload the extensions to activate the change.

asterisk-server*CLI>extensions reload

Step 9 : Reconfigure one of the phones to 40007. if you have not already
done.

Step 10: Dial from na existent phone to the 40007

15.9 SUMMARY

On this chapter, you have learned that Asterisk Real Time allows you to put
you configurations into a database. Databases supported are MySQL and any
other unix ODBC supported databases. The configuration is divided into
static and real-time. Static configuration replaces the configuration files,
while the realtime configuration creates dynamic objects that are loaded only
when a call or other related event happens. We concluded with a practical
lab teaching how to install and configure ARA.

15.10 QUESTIONS

1. Asterisk real-time is part of the standard Asterisk distribution.

a. True
b. False

 15.10 Questions | 342

2 – To compile ARA and use it with MySQL databases the following libraries
have to be installed.

a. Libmysqlclient12-dev
b. Mysql-server-4.1
c. Perl
d. Php

3 – Configuration of database server’s IP addresses and ports are done in
the following file:

a. extensions.conf
b. sip.conf
c. res_mysql.conf
d. extconfig.conf

4 - The file extconfig.conf is used to configure the tables that are used by
real time. This file has two distinct sections:

a. Static configuration
b. Realtime configuration
c. Outbound routes
d. IP addresses and database ports

5 – In the static configuration, once you load the objects from the database,
they are loaded dynamically into Asterisk’s memory whenever necessary.

a. True
b. False

6 – When a SIP channel is configured in real-time, it’s not possible to use
resources as “qualify” or “MWI” (message waiting indicator) because the
channel does not exist until a call is made. This causes the following
problems:

a. This channel can call but not receive calls
b. The SIP channel could not be used behind NAT because qualify is used

to keep NAT translation open.
c. It’s not possible to make Message Waiting indicator works in the

phones that support it.
d. It’s not possible to use the channel since SIP is always static.

7 – If you want to use realtime configuration with SIP channels, but need
support to NAT and MWI you should use:

343 | Chapter 15 Asterisk Real Time

a. Realtime was not created for use with NAT
b. “rtcachefriends=yes” in sip.conf
c. Only MWI is possible
d. To use NAT, the configuration needs to be static

8 – You can still use text configuration files even after installing ARA.

a. True
b. False

9 – Phpadmin is mandatory when you use real-time.

a. True
b. False

10 – The database has to be created with all the existing fields of the
configuration file.

a. True
b. False

Question’s Responses

CHAPTER 1

1. Mark the correct answers. Asterisk has four basic architectural
components.

- A, B, E, F -

2. If necessary, you can create an Asterisk PBX with four trunks and eight
phones using three TDM400 cards. The first one with four FXO channels and
the other two with four FXS channels each. This affirmative is:

- B -

3. A FXS channel generates a dialing tone, while a FXO channel receives a
dialing tone from the PSTN or another PBX. The affirmative is:

- B -

4. Mark the correct answers. Asterisk allows the use of the following
features:

- A, B, C, D -

5. To play music on hold, Asterisk needs an external player like a MP3 or CD
player. The affirmative is:

- A -

6. This technology is responsible for automatic answering of costumers.
Usually plays a “prompt” and wait an option dialed by the user. In some
cases can be integrated with a database to provide information by the
telephone using text-to-speech technology. It is named _____.

- B -

Appendix A

345 | Appendix A | Answers to exercises

7 – An E1 trunk supports ___ voice channels while a T1 trunk supports ___
voice channels.

- B -

8 – In traditional PBXs, usually ACD, IVR and voicemail are included in the
PBX together with their respective licensing. This affirmative is:

- A -

9 – It is possible to connect several branches using voice over IP, thereby
reducing long distance toll rates imposed by telephony companies. Asterisk
can act at a branch as:

- A, B -

10 – Asterisk can be used as a contact center platform. What are the three
main types of contact centers?

- C, D, E -

 Chapter 2 | 346

CHAPTER 2

1. What’s the minimal Asterisk hardware configuration?
Pentium 300 Mhz, 256 MB RAM, 100 MB free space in hard-disk

2. Telephony interface cards for Asterisk usually have some DSPs (Digital
Signal Processors) built in and do not need a lot of CPU resources from the
PC.

- B -

3. If you want perfect voice quality, you need to implement end-to-end QoS
(Quality of Service).

- A -

4. It is possible to have good voice quality with 100 Mbps switches in a non
congested local area network.

- A -

5. List the necessary packages for Asterisk and the Zaptel compilation.
Gcc, ncurses, ncurses-devel, bison, termcap, openssl, openssl-developer

6. If you don’t have a TDM interface card, you will end up needing a clock
source for synchronization. The ztdummy driver is responsible for this role
by using USB as a clock source (Kernel 2.4). This is necessary because some
applications like Meetme() and MusicOnHold() require a time reference.

7. When you install Asterisk, it’s better to leave GUIs uninstalled because
Asterisk is sensible to performance variations. GUIs stole a lots of CPU
cycles.

- A -

8. Asterisk configuration files are located in the /etc/asterisk directory.

9. To install Asterisk sample files you need to type the following command:
Make samples

347 | Appendix A | Answers to exercises

10. Why is it important to start Asterisk with a non-root user?

To avoid in a buffer-overflow attacks, that the attacker get root rights to the

server

 Chapter 3 | 348

CHAPTER 3

1. These are channel configuration files

- B, C, D -

2. It is important to define a context in the channel configuration file,
because this will define the incoming context for a call. In the extensions
configuration file (extensions.conf) a call from this channel will be processed
in the matching incoming context.

- A -

3. The main differences between the playback() and background()
applications are (choose two):

- A, C -

4. When a call gets into Asterisk using a telephony interface card (FXO) this
call is handled in the special extension:

- C -

5. Valid formats for the goto() application are (choose three):

- A, C, D -

6. An extension cannot be defined as (choose all correct answers):

- C -

7. A pattern _7[1-5]XX matches (choose all correct answers):

- A -

8. An incoming context for a zaptel compatible telephony interface is defined
in the _________ configuration file:

- B -

9. In the Options Inheritance grammar used by zapata.conf you:

- B -

349 | Appendix A | Answers to exercises

10. Priorities must be consecutive!

- B -

 Chapter 4 | 350

CHAPTER 4

1 – Supervision signaling includes:

- A, B, C -

2 – Information signaling includes:

- B, C, D, E, F

3 – There are two types of analog interfaces available for Asterisk, FXS and
FXO. Mark the correct answers.

- B, C –

4 – About T1 and E1 signaling, mark the correct affirmations.

- C, D –

5 – MFC/R2 signaling is supported by a third-party driver developed by
Steve Underwood available in www.soft-switch.org.

- B –

6 – To configure zaptel hardware you should first edit the ______ file:

- A –

7 – The zaptel hardware is independent of Asterisk. In the zapata.conf, you
configure Asterisk channels and not the hardware itself.

- B –

8 – When using a TDM400, with ___ ports, is necessary to connect the PC
power source to the card using a specific connector (similar to the used to
power the hard disk).

- B -

9 – Echo, pops and noise in a zaptel card are often related to the:

- C -

351 | Appendix A | Answers to exercises

10 – R2 signaling defined by ITU is standardized in the whole world and
there are no variations to the standard county dependent.

- B -

 Chapter 5 | 352

CHAPTER 5

1. Please, list at least four benefits of voice over IP.
Cost reductions, mobility, IP integrated IVR, Remote Agents

2. Convergence is the integrations of voice, data and video in a single
network and their main benefit is the cost reduction in the implementation
and maintenance of separate networks.

- B –

3. Asterisk cannot use simultaneously resources from PSTN and VoIP
because the codecs are not compatible.

- A –

4. Asterisk is a SIP proxy with integration to other protocols

- A –

5. Using the OSI reference model, SIP, H.323 and IAX2 are in the
____________ layer.

- D –

6. SIP is the most adopted protocol for IP phones and is an open standard
ratified by IETF.

- B –

7. H.323 is an inexpressive protocol with very few applications, abandoned
by the market, which is moving to SIP.

- A –

8. IAX is a proprietary Digium protocol. In spite of its small adoption by
phone vendors, IAX is excellent when you need:

- A, C –

353 | Appendix A | Answers to exercises

9. “Users” can receive calls from Asterisk.

- A –

10. Mark the correct answers concerning codecs.

- A, C, D –

 Chapter 6 | 354

CHAPTER 6

1. Two of the main benefits of IAX are bandwidth savings and easier NAT
traversal.

- B –

2. IAX protocols use different UDP ports for signaling and media.

- A –

3. The bandwidth used by the IAX protocol is the voice payload and the
following headers (Mark all that apply):

- A, B, C –

4. It is important to match the codec payload (20 to 30 ms) with frame
synchronization (20ms default) when using trunk mode.

- B –

5. When IAX is used in trunk mode, just one header is used for multiple
calls.

 - B –

6. IAX is the most used protocol to connect to service providers, because it
is easier for Nat traversal.

- A –

7. In an IAX channel as shown below, the option <secret> can be a
password or a digital key.

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][/<options>]]

8. The IAX2 show registry shows information about:

- B -

9. Jitter buffer sacrifices latency to have a steady flow of voice.

355 | Appendix A | Answers to exercises

- A –

10. RSA keys can be used for IAX authentication. You have to keep the
___________ key secret and give to your costumers and partners the
matching ___________ key.

- B -

CHAPTER 7

1. SIP is a protocol similar to ______ and _______.

- B, D –

2. SIP can have sessions of type: (mark all that apply)

- A, C, D, E –

3. Are SIP components: (mark all that apply)

- A, B, D, E –

4. Before a phone can receive calls, it needs to REGISTER.

5. A SIP server can operate in the PROXY or REDIRECT mode. The difference
between them is that in the Proxy mode, all signaling pass by the SIP proxy.
In the redirect mode, after discovering the location, the clients signal
between themselves.

- A, B –

6. In proxy mode, the media flow goes through the SIP Proxy.

- B –

7. Asterisk is a SIP Proxy.

- B –

8. The canreinvite=yes/no option is fundamental. It will define if the media
pass inside Asterisk or goes directly from one client to another. It has a
major impact in Asterisk scalability.

- A -

 Chapter 7 | 356

9. Asterisk supports silence suppression in the SIP channels.

- B –

10. The hardest NAT type to traverse is:

- D -

357 | Appendix A | Answers to exercises

CHAPTER 8

1. In the [general] section the default value to the option “writeprotect” is
‘no’. If you issue a command “save dialplan” in Asterisk’s CLI (mark all that
apply).

- A, B, D -

2. Usually, the global variables are written in uppercase and the channel
variables with only the first letter in uppercase. This is not mandatory, but
makes it easier to identify the variable’s type

- A –

3. The ‘s’ extension is used as the starting point in a context. Usually you
use the ‘s” extension in the following cases:

- A, B, D –

4. Write four situations where contexts could be used
Security implementation

Routing

Multilayer menus

Privacy

5. To use a variable in the dial plan you should use the following format

- D –

6. The Asterisk variable type could be (mark three).

- C, D, F –

7. To obtain a string length you could use the function: ${LEN(string)}.

8. To concatenate strings it is simply put them together:

${foo}${bar}
555${thenumber}

- A -

 Chapter 8 | 358

9. Suppose that you are configuring an analog PBX based on Asterisk. Write
the necessary instructions to build a dial plan to receive calls in the operator
(SIP/4000). If the operator extension is not answered before the timeout, it
will have to ring channels SIP/4000 and SIP/4001 simultaneously.
exten=4000,1,Dial(SIP/4000,15)

exten=4000,2,Dial(SIP/4000&SIP/4001,15)

10. Suppose that you are configuring a digital PBX based on Asterisk. Write
the necessary instructions to allow the external dialing for long distance
numbers.
[extensions]

exten=>_9XXXXXXXXXX,1,Dial(ZAP/g1/${EXTEN:1},15)

359 | Appendix A | Answers to exercises

CHAPTER 9

1. To include a time-dependent context, you can use:

include=> context|<times>|<weekdays>|<mdays>|<months>

The statement below:

include=>normalhours|08:00-18:00|mon-fri|*|*

- A –

2. When an user dials “0” to get an external line, Asterisk automatically cuts
the audio. This can be bad because the user is familiarized to hear the
external dialing tone before dialing the other numbers. You can simulate the
old dialing behavior with the ignorepat=> statement.

3. The statements below (mark all that apply):

exten => 8590/482518888,1,Congestion
exten => 8590,2,Dial(Zap/1,20,j)
exten => 8590,3,Voicemail(u8590)
exten => 8590,103,Voicemail(b8590)

Makes the user who called to the 8590 extension:

- A, C, D –

4. To concatenate several extensions you can separate them using the _&_
character.

5. A voice menu is usually created using the background() application.

6. You can include files inside the configuration files using the #include
statement.

7. The Asterisk database is based in __________.

- C –

8. When you use Dial(type1/identifier1&type2/identifier2), the Asterisk dials
to each one in sequence and wait 20 seconds between one to another. The
affirmative is:

 Chapter 9 | 360

- A –

9. Using the Background application, you need to wait until the message is
played before you can choose an option sending a dtmf digit.

- A –

10. The valid formats for the goto application are:

- B, C, D –

11. Switches are used to direct the dial plan processing to another server.
The affirmative is:

 - B –

12. A macro can be used to automate the processing of an extension. The
first macro argument is:

- A -

361 | Appendix A | Answers to exercises

CHAPTER 10

1. The following statements are true about Call Parking:

- C, D –

2. To use the Call Pickup feature, all extensions are required to be in the
same group. For ZAP channels this is configured in the zapata.conf file.

3. When transferring a call, you may choose between _________________,
where the destination extension is not consulted before the transfer and
_____________ where you talk first to the destination extension before the
transfer.

4. To make a consultative transfer you use the ___ character, while for blind
transfer you use ___.

- B –

5. To enable conference calls in the Asterisk server, it is necessary to use
the MEETME() application.

6. If you have to supervise a conference, you can use the _______________
application.

- D –

7. The best format for music on hold is MP3 because it uses very little
processing power from the Asterisk server.

- B –

8. To capture a call from a specific call group you need to be in their
respective pickup group.

9. You can record a call by using the utility mixmonitor() or using the
automon feature. By default the automon feature uses the ___ character
sequence.

- A –

 Chapter 10 | 362

10. In the meetme application, if you want to have users in the listening
only mode you should:

- C –

363 | Appendix A | Answers to exercises

CHAPTER 11

1. Cite four strategies for routing call in a queue.
Ringall, roundrobin, leastrecent, fewestcalls, random, rrmemory

2. It is possible to record a conversation between an agent and a costumer
using the statement record=yes in the queues.conf file.

3. To login an agent you will use the application agentlogin([agentnumber]).
When the agent finishes the call, he can press:

- A, B, D -

4. The required tasks to configure a call queue are:

- A, E –

5. What’s the difference between the applications AgentLogin() and
AgentCallBackLogin().

Using the Agentlogin() application keeps the phone open. The
operator just press # to take the calls. When you use

AgentCallBackLogin() you hang up the phone after the login. If call
gets into the queue, the phone will ring in the respective agent.

6. When in a call queue, you can define a certain number of options that the
user can dial. This is done including a ____________ in the file queues.conf

- C –

7. The support applications AddQueueMember(), AgentLogin(),
AgentCallBackLogin e RemoveQueueMember() should be included in the:

- A –

8. It is possible to record the agents, but it is necessary an external
recorder.

- B -

 Chapter 11 | 364

9. “Wrapuptime” is the time the user needs after ending the call to complete
business process related to that call.

- A –

10. A call can be prioritized depending on the CallerID inside the same
queue: The affirmative is:

- B -

365 | Appendix A | Answers to exercises

CHAPTER 12

1. The files involved in the voicemail configuration are:

- D, F –

2. In the voicemail application, the parameters “u” and “b” are __________
and __________ respectively. They are used to determine what message
will be played.

- C –

3. The VoiceMailMain() application is used for the caller to leave a message
in the voicemail. The affirmative is:

- B –

4. To exit VoiceMailMain you should press:

- B –

5. Write below the voicemail() application syntax.

VoiceMail(mailbox[@context][&mailbox[@context]][...][|options]):

6. In the [general] section of the voicemail.conf file the parameter
“attach=yes” makes Asterisk to send a notification by e-mail to the user with
the audio file attached. The affirmative is:

- B –

7 The option “delete” makes that every message after being sent to the e-
mail be erased from the mailbox.

- B –

8. The best format for voicemail audio is “WAV”. It has better support in
Windows workstations.

- B -

 Chapter 12 | 366

9. It is possible to customize e-mail messages by modifying the e-mail
subject and body. What variable can be used to indicate a CallerID in the
message?
VM_CALLERID

10. The cgi name to install the web voicemail interface is vmail.cgi.

367 | Appendix A | Answers to exercises

CHAPTER 13

1. By default, Asterisk records the CDR in /var/log/asterisk/cdr-csv
directory.

- B –

2. Asterisk allows using only these databases:

- A, C, D, E –

3. Asterisk generates a CDR only to single kind of storage.

- A –

4. Which are Asterisk amaflags available?

- A, B, E, F –

5. Fill the spaces left.

If you intend to associate a department to a CDR, you should use the
command Set(CDR(Account)=). The account code can be verified using
the channel variable ${ACCOUNTCODE}.

6. The difference between the applications NOCDR() and Reset CDR() is that
NoCDR() does not generate any record and ResetCDR() zeroes the current
record.

- B –

7. To use a user defined field with the cdr_csv.so module, is necessary to
edit the source code and recompile the Asterisk.

- B –

8. The three authentication methods available to the Authenticate()
application are:

- A, B, C –

9. Voicemail passwords are specified in a different section of the
voicemail.conf file and are not the same as the voicemail users.

 Chapter 13 | 368

- A –

10. This option of authenticate command put the password used to
authenticate in the CDR.

- A -

369 | Appendix A | Answers to exercises

CHAPTER 14

1. Which of the following is not an interfacing method for Asterisk?

- E –

2. AMI (Asterisk Manager Interface) enables passing Asterisk commands via
TCP sockets. This resource is enabled by default.

- B –

3. AMI is very safe, because its authentication is done using MD5
challenge/response.

- B –

4. To compensate the lack of security and scalability of AMI, we could use:

- B –

5. FastAGI allows the calling of external scripts from the dial plan to an
external machine using TCP sockets (usually 4573).

- A -

6. DeadAGI is used in active channels. It can be used in ZAP channels but
not in SIP or IAX channels.

- B –

7. Only php can be used for AGI scripting.

- B –

8. The command agi show shows all available AGI commands.

9. The command manager show commands shows all available AMI
commands.

10. To debug an AGI you should use the command agi debug.

 Chapter 15 | 370

CHAPTER 15

1. Asterisk real-time is part of the standard Asterisk distribution.

- B –

2 – To compile ARA and use it with MySQL databases the following libraries
have to be installed.

- A, B –

3 – Configuration of database server’s IP addresses and ports are done in
the following file:

- C –

4 - The file extconfig.conf is used to configure the tables that are used by
real time. This file has two distinct sections:

- B, D –

5 – In the static configuration, once you load the objects from the database,
they are loaded dynamically into Asterisk’s memory whenever necessary.

- B –

6 – When a SIP channel is configured in real-time, it’s not possible to use
resources as “qualify” or “MWI” (message waiting indicator) because the
channel does not exist until a call is made. This causes the following
problems:

- B, C –

7 – If you want to use realtime configuration with SIP channels, but need
support to NAT and MWI you should use:

- B –

8 – You can still use text configuration files even after installing ARA.

- A –

371 | Appendix A | Answers to exercises

9 – Phpadmin is mandatory when you use real-time.

- B –

10 – The database has to be created with all the existing fields of the
configuration file.

- B -

	Chapter 1 - ASTERISK INTRODUCTION
	1.1 OBJECTIVES
	1.2 WHAT IS ASTERISK?
	1.3 WHY ASTERISK?
	1.4 ASTERISK ARCHITECTURE
	1.5 OVERVIEW
	1.6 DIFFERENCES BETWEEN THE OLD AND THE NEW WORLD
	1.7 BUILDING A TEST SYSTEM
	1.8 ASTERISK SCENARIOS
	1.9 FINDING INFORMATION AND HELP
	1.10 SUMMARY
	1.11 QUESTIONS

	Chapter 2 - DOWNLOADING AND INTALLING ASTERISK
	2.1 OBJECTIVES
	2.2 INTRODUCTION
	2.3 MINIMUM HARDWARE
	2.4 CHOOSING AN OPERATING SYSTEM
	2.5 INSTALLING LINUX
	2.6 INSTALLING DEPENDENCIES
	2.7 OBTAINING AND COMPILING ASTERISK
	2.8 STARTING AND STOPPING ASTERISK
	2.9 STARTING ASTERISK AT BOOT TIME
	2.10 STARTING ASTERISK WITH A NON-ROOT USER
	2.11 ASTERISK INSTALLATION NOTES
	2.13 SUMMARY
	2.14 QUESTIONS

	Chapter 3 - FIRST STEPS
	3.1 OBJECTIVES
	3.2 UNDERSTANDING THE CONFIGURATION FILES
	3.3 GRAMMARS
	3.4 CONFIGURING A PSTN INTERFACE
	3.5 SIP IP PHONES CONFIGURATION
	3.6 DIAL PLAN INTRODUCTION
	3.7 CREATING A BASIC DIAL PLAN
	3.8 LABS
	3.9 SUMMARY
	3.10 QUESTIONS

	Chapter 4 - ANALOG AND DIGITAL CHANNELS
	4.1 OBJECTIVES
	4.2 TELEPHONY BASICS
	4.3 PSTN INTERFACES
	4.4 ANALOG FXS, FXO AND E&M INTERFACES
	4.5 E1/T1 DIGITAL LINES
	4.6. ASTERISK TELEPHONY CHANNELS SETUP
	4.7 ZAPATA.CONF CONFIGURATION OPTIONS
	4.8 MFC/R2 CONFIGURATION
	4.9 ZAP CHANNEL FORMAT
	4.10 UNICALL CHANNEL FORMAT
	4.11 QUESTIONS

	Chapter 5 - VOICE OVER IP WITH ASTERISK
	5.1 OBJECTIVES
	5.2 INTRODUCTION
	5.3 VOIP BENEFITS
	5.4 ASTERISK VOIP ARCHITECTURE
	5.5 HOW TO CHOOSE A PROTOCOL
	5.6 PEERS, USERS AND FRIENDS
	5.7 CODECS AND CODEC CONVERSION
	5.8 HOW TO CHOOSE A CODEC
	5.9 OVERHEAD CAUSED BY PROTOCOL HEADERS
	5.10 TRAFFIC ENGINEERING
	5.11 REDUCING THE BANDWIDTH REQUIRED FOR VOIP
	5.12 SUMMARY
	5.13 QUESTIONS

	Chapter 6 - THE IAX PROTOCOL
	6.1 OBJECTIVES
	6.2 INTRODUCTION
	6.3 HOW IT WORKS?
	6.4 BANDWIDTH USAGE
	6.6 CHANNEL NAMING
	6.7 USING IAX
	6.8 IAX AUTHENTICATION
	6.9 THE IAX.CONF FILE CONFIGURATION
	6.10 IAX2 DEBUG COMMANDS
	6.11 SUMMARY
	6.12 QUESTIONS

	Chapter 7 - THE SIP PROTOCOL
	7.1 OBJECTIVES
	7.2 OVERVIEW
	7.3 SIP ADVANCED SCENARIOS
	7.4 ADVANCED CONFIGURATIONS
	7.5 SIP NAT TRAVERSAL
	7.6 SIP LIMITATIONS
	7.7 SIP DIAL STRINGS
	7.8 SIP CLI COMMANDS
	7.9 QUESTIONS

	Chapter 8 - INTRODUCTION TO THE DIALPLAN
	8.1 OBJECTIVES
	8.2 EXTENSIONS.CONF FILE STRUCTURE
	8.3 CONTEXTS
	8.4 EXTENSIONS
	8.5 VARIABLES
	8.6 EXPRESSIONS
	8.7 FUNCTIONS
	8.8 APPLICATIONS
	8.9 BUILDING A DIALPLAN
	8.10 BUILDING A SIMPLE DIAL PLAN
	8.11 ADDING SOME LOGIC TO YOUR DIAL PLAN
	8.12 SUMMARY
	8.13 QUESTIONS

	Chapter 9 - DIAL PLAN ADVANCED FEATURES
	9.1 OBJECTIVES
	9.2 RECEIVING CALLS USING AN IVR MENU.
	9.3 CONTEXT INCLUSION
	9.4 USING THE SWITCH STATEMENT
	9.5 DIAL PLAN PROCESSING ORDER
	9.6 THE #INCLUDE STATEMENT
	9.7 MACROS
	9.8 IMPLEMENTING CALL FORWARD, BLACK LISTS AND DND
	9.9 USING A BLACKLIST
	9.10 TIME BASED CONTEXTS
	9.11 TO GET A NEW DIAL TONE USE DISA
	9.12 LIMIT SIMULTANEOUS CALLS
	9.13 LAB - PUTTING IT ALL TOGETHER
	9.14 SUMMARY
	9.15 QUESTIONS

	Chapter 10 - USING PBX FEATURES
	10.1 OBJECTIVES
	10.2 PBX FEATURES SUPPORT
	10.3 CALL TRANSFER
	10.4 CALL PARKING
	10.5 CALL PICKUP
	10.6 CALL CONFERENCE (MEETME)
	10.7 CALL RECORDING
	10.8 MUSIC ON HOLD
	10.9 APPLICATION MAPS
	10.10 QUESTIONS

	Chapter 11 - ACD AUTOMATIC CALL DISTRIBUTION
	11.1 OBJECTIVES
	11.2 INTRODUCTION
	11.4 QUEUES
	11.5 AGENTS
	11.6 ACD RELATED APPLICATIONS
	11.7 CONFIGURATION TASKS
	11.8 QUEUE OPERATION
	11.9 ADVANCED RESOURCES
	11.10 QUESTIONS

	Chapter 12 - VOICEMAIL
	12.1 OBJECTIVES
	12.2 INTRODUCTION
	12.3 CONFIGURATION TASK LIST
	12.4 SENDING VOICEMAIL TO E-MAIL
	12.5 VOICEMAIL WEB INTERFACE
	12.6 VOICEMAIL NOTIFICATION
	12.7 USING THE DIRECTORY APPLICATION
	12.8 SUMMARY
	12.9 QUESTIONS

	Chapter 13 - ASTERISK CALL DETAIL RECORDS
	13.1 INTRODUCTION
	13.2 OBJECTIVES
	13.3 ASTERISK CDR FORMAT
	13.4 ACCOUNT CODES AND AUTOMATED MESSAGE ACCOUNTING
	13.5 CHANGING THE CDR FORMAT
	13.6 CDR STORAGE
	13.7 APPLICATIONS
	13.8 USER AUTHENTICATION
	13.9 USING PASSWORDS FROM VOICEMAIL
	13.10 SUMMARY
	13.11 QUESTIONS

	Chapter 14 - EXTENDING ASTERISK WITH AMI AND AGI
	14.1 INTRODUCTION
	14.2 OBJECTIVES
	14.3 MAJOR WAYS TO EXTEND ASTERISK
	14.4 EXTENDING ASTERISK WITH CONSOLE CLI
	14.5 EXTENDING ASTERISK USING THE SYSTEM() APPLICATION
	14.6 WHAT IS AMI?
	14.7 CONFIGURING USERS AND PERMISSIONS
	14.8 ASTERISK MANAGER PROXY
	14.9 ASTERISK GATEWAY INTERFACE
	14.10 CHANGING THE SOURCE CODE
	14.11 SUMMARY
	14.12 QUESTIONS

	Chapter 15 - ASTERISK REAL-TIME
	15.1 INTRODUCTION
	15.2 OBJECTIVES
	15.3 HOW DOES ASTERISK REAL TIME WORK?
	15.4 LAB 1 INSTALLING ASTERISK REAL/TIME
	15.5 CONFIGURING ASTERISK REAL TIME
	15.6 DATABASE CONFIGURATION
	15.6 LAB 2-INSTALLING AND CREATING THE DATABASE TABLES
	15.7 LAB 3-CONFIGURING AND TESTING ARA
	15.7 SUMMARY
	15.8 QUESTIONS

	QUESTION`S RESPONSES

