Voice services in 3/4G networks

Ján Kučerák

ČVUT FEL, Katedra telekomunikační techniky kucerj17@fel.cvut.cz

UMTS architecture

- UTMS Release 99
 - New air interface and access network UTRAN
 - WCDMA (Wideband Code Division Multiple Access)
 - FDD (symetric channel)
 - TDD (asymetric channel)
 - Radio Channel 5 MHz
 - Core network based on the GSM/GPRS NSS

UE User Equipment
UTRAN UMTS Terrestrial Radio Access Network, (or RAN)
CN Core Network

New Entities in UMTS R99

Node B functionality

- Spreading and Modulation
 - code generation
 - supports FDD, TDD or both, and CDMA
- Fast power control ("Inner Loop")
 - Node B measures strengths of received signals and informs UE if it needs to adjust
- measures connection quality and strength
- handover

RNC functionality

Radio Resource Management

- guarantees stability and QoS of radio connection (radio bearer
 - Power control ("outer loop")
 - Handover control
 - · decide based on measurements by UE and Node B
 - Admission control and packet scheduling
 - can a new session be established on the UTRA without compromising the quality of existing sessions?
 - Plan channel use, calculate interference and utilisation levels
 - Configure radio resources accordingly
 - Code management
 - Macrodiversity management

Realocation

- For each UE, one RNC is responsible Serving RNC (SRNC)
- If the UE moves to a cell controlled by a different RNC, this becomes the Drift RNC (DRNC) but control stays with SRNC

UMTS Interfaces R99

UMTS Architecture

UMTS Release 4

UMTS Architecture

UMTS Architecture

UMTS Release 5

Core

New core entities known as IP Multimedia Subsystem platform

IMS

- is a global service control architecture that enables various types of multimedia services to end user using common Internet-based protocols
- multimedia services are e.g. Video, voice, possibly simultaneously with data etc.
- the PS domain just provides QoS, it does not provide multimedia services (app. layer)
- the PS domain serves as access system to the IMS
- the IMS in principle is access-system independent

Main Entities in IMS

CSCF (Call Session Control Function)

Processes SIP signaling in the IMS

P-CSCF

- First point of contact between the IMS terminal and network
- Security
- Compression of signaling messages

I-CSCF

- Assigning S-CSCF upon reception of registration request from UE
- Routing incoming requests further to an assigned S-CSCF

S-CSCF

- · Central node of the IMS signaling plane
- Registration of user, Authentication
- Routing decisions

HSS

Instead of HLR (mobility management, security, identification, etc.)

MGCF

- Handling of protocol conversion between ISUP and IMS call control protocols
- Exchange of signalling related to IP services between UMTS and CS networks

MRF

Setting up multimedia connections

UMTS Interface R5

Evolution of network architecture

The Access Network Requirements

- Radio interface throughput
- Data transmission latency
- Terminal state transition requirements
- Mobility requirements
- Flexibility in spectrum usage
- Mobility requirements between systems

Radio Interface Throughput

- instantaneous downlink (from network to terminal) peak data rate of 100 Mb/s within a 20 MHz downlink spectrum
- an instantaneous uplink (from terminal to network) peak data rate of 50 Mb/s within a 20 MHz
- corresponds to a spectrumefficiency:
 - 5 bits/s/Hz for the downlink,
 - 2.5 bits/s/Hz for the uplink
 - (compare to max 2.9 bits/s/Hz for downlink for UMTS)

Terminal State Transition

UTRAN vs E-UTRAN

Physical nodes & functions merging

Network entities

- eNodeB,
- Mobility Management Entity (MME)
- Serving GW (S-GW)
- PDN GW(P-GW)
- PCRF

eNodeB

- in charge of radio interface
 - radio resource management
 - radio bearer control
 - radio admission control
 - scheduling of uplink and downlink

 provides IP header compression and encryption of the user-plane data

eNodeB 3G equivalent

- 3G equivalent would be NodeB of course, but eNB is much smarter than NB
- since there is no RNC any more eNB takes care of all the functions RNC was responsible for in UTRAN

MME

Mobility Management Entity MME

- main node for control of the LTE access network
- selects the Serving GW for a UE
 - during the initial attachment
 - during handover
- responsible for
 - tracking and paging procedures during UE Idle mode
 - activation and deactivation of bearers on behalf of a UE
 - EPS session management
 - end-user authentication, communicates with HSS(also in roaming case, S6a int.)
 - control-plane functionality for legacy networks mobility (LTE and 2G/3G access networks, the S3 int. to SGSN)

MME

- MME is fully responsible for Non-Access Stratum (NAS) signaling with UE
- acts as the termination point in the network for the security of NAS signaling
 - handling the ciphering protection
 - management of security keys
- handles lawful intercept related to signaling

MME 3G equivalent

• 3G equivalent is a control plane part of SGSN

S-GW

Serving GW (S-GW) 1/3

- terminates the interface towards E-UTRAN
- every UE that attaches to an EPS is associated with a single Serving GW
- selected for the UE based on network topology and UE location just like MME
 - The Domain Name Service (DNS) may be used to resolve a DNS string of possible Serving GW addresses that serve the UE's location

S-GW 2/3

- handles the forwarding of end-user data packets
- acts as a local anchor point for inter-eNodeB handover
- terminates the S4 interface
 - provides a connection for the transfer of user traffic from 2G/3G network systems and the P-GW

S-GW 3/3

- terminates the downlink (DL) path for data during UE idle state
 - If new packets arrive, triggers paging

 responsible for the reproduction of user traffic for lawful interception purposes

S-GW 3G equivalent

user plane part of SGSN

P-GW

The "Edge Router" of the EPC

Implementation

- separate box
- integrated with S-GW
- · integrated with GGSN

Home Agent Function

- for mobile IP (e.g. in case of non-3GPP access)
- · reffered to as LMA in PMIPv6
- reffered to as HoA in MIPv4

PDN GW (P-GW) Packet data network gateway

- provides connectivity to external PDNs for UE
- entry and exit point for the UE data traffic
- allocates an IP address to the UE
- may perform deep packet inspection or packet filtering on a per-user basis
- performs service-level gating control
- rate enforcement through rate policing and shaping.
- From a QoS perspective, marks the uplink and downlink packets with, for example, the DiffServ Code Point.

P-GW 3G equivalent

GGSN for sure

Policy and Charging Rules FunctionPCRF

- policy and charging control element of the SAE architecture
- provides network-based control related to:
 - service data flow detection
 - gating
 - QoS, and flow-based charging
- the control is providet towards the Policy and Charging Enforcement Function (PCEF).
- not responsible for credit management

Overal PCC architecture (non-roaming)

EPC & PCC

EPS bearer

Voice in LTE alternatives

- CSFB
- VoLGA
- SVLTE
- OTT
- VoLTE
- SRVCC

Voice evolution

CSFB: Circuit Switched Fallback

SRCV: Single radio Voice Call Continuity (if LTE coverage ends)