
1

AT89S8252 Primer

Introduction
The Atmel AT89S8252 microcontroller is
a low-power, high-performance device
featuring 8K bytes of Flash memory
(CMOS PEROM), 2K bytes of EEPROM,
and a Serial Peripheral Interface (SPI).
The Flash and EEPROM memories may
be reprogrammed in-system via the SPI.
The EEPROM provides applications with
re-writable, nonvolatile data storage.
These fea tu res , and o the rs , a re
described in the text which follows. Code
samples are provided. Additional infor-
mation on the AT89S8252 microcontrol-
ler may be found in the data sheet and
relevant sections in the Atmel AT89-
series Microcontroller Databook.

AT89S8252 Memory
Organization
Program Memory
The AT89S8252 has separate address
spaces for program memory and data
memory. Figure 1 shows two alternate
maps of program memory.

Program memory is read-only: the
microcontroller generates no write sig-
nals for program memory. Depending on
the state of the EA pin, program memory
may consist of 8K bytes of internal Flash
memory supplemented by up to 56K
bytes of external memory, or may con-
sist entirely of up to 64K bytes of exter-
nal memory. The 8K bytes of internal
F lash memory a re accessed a t
addresses 0000H-1FFFH. Program
memory accesses at addresses 2000H-
FFFFH always access external memory.

Figure 1. The AT89S8252 Program Memory

56K BYTES

EXTERNAL

64K BYTES

EXTERNAL

AND

8K BYTES

INTERNAL

(EA pin high)

FFFF

2000

1FFF

0000 0000

FFFF

OR

(EA pin low)

AT89S8252
Primer

Application
Note
AT89S8252
Primer

Rev. 1018A–03/98

AT89S8252
Primer

AT89S8252 Primer2

Data Memory
Figure 2 shows a map of AT89S8252 data memory, which
consists of 256 bytes of internal RAM, the Special Function
Registers (SFRs), 2K bytes of on-chip EEPROM and,
optionally, up to 64K bytes of external memory.

To the left in Figure 2 are shown the 256 bytes of internal
RAM and the SFRs, which shadow the upper 128 bytes of
internal RAM. The lower 128 bytes (00H-7FH) of internal
RAM are accessible by both direct and indirect addressing,
while the upper 128 bytes (80H-FFH) are accessible by
indirect addressing only. The SFRs (80H-FFH) are accessi-
ble by direct addressing only. The addressing mode of an
instruction distinguishes accesses to the upper 128 bytes
of internal RAM from accesses to the overlapping SFRs.

For an explanation of addressing modes, consult the Archi-
tectural Overview section in the Atmel AT89-series Micro-
controller Databook.

The stack, which grows upward, may reside anywhere in
the 256 bytes of internal RAM.

To the right in Figure 2 are shown the 2K bytes of on-chip
EEPROM and the optional 64K bytes of external data
memory. Although the EEPROM is internal, it is shown in
the diagram shadowing the lower 2K bytes of external data
memory because some of the same instructions are used
to access EEPROM as are used to access external data
memory.

Figure 2. The AT89S8252 Data Memory

EEPROM
EEPROM and external data memory are accessible by
indirect addressing only, utilizing the MOVX instructions,
which come in two flavors: 8-bit and 16-bit. Only the 16-bit
MOVX instructions (those utilizing DPTR) may be used to
access internal EEPROM. The 2K bytes of EEPROM are
accessed at addresses 000H-7FFH.

Accesses to EEPROM are distinguished from accesses to
external data memory by the state of the EEMEN bit in SFR
WMCON (96H). To access EEPROM, EEMEN is set; to
access external data memory, EEMEN is cleared. Reset
clears EEMEN.

To enable write accesses to EEPROM, bit EEMWE in SFR
WMCON must also be set. Reset clears this bit, disabling
EEPROM writes. It is not necessary to explicitly erase any
portion of EEPROM before writing new data.

A write to a location in EEPROM triggers an internal pro-
gramming cycle, which is guaranteed to last no longer than
10 milliseconds. The completion of an EEPROM program-

ming cycle may be determined by monitoring the RDY/BSY
bit in SFR WMCON. RDY/BSY low indicates that program-
ming is in progress; RDY/BSY high indicates that program-
ming is complete. When programming is complete, the
contents of the written location may be read back and veri-
fied.

The end of an EEPROM programming cycle may also be
determined utilizing the DATA Polling method, in which the
location written is read repeatedly. During programming,
the most significant bit of the data read is the complement
of the data bit written. When programming is complete, true
data is returned. The return of true data also serves as ver-
ification of the write operation.

Sample code showing EEPROM reads and writes is pre-
sented in Listing 1.

FF

INTERNAL

INDIRECT

ADDRESSING

ONLY

64K BYTES

EXTERNAL

SFRs
DIRECT

ADDRESSING ONLY
80H TO FFH

DIRECT

EEPROM (MOVX
INDIRECT ADDRESSING)

AND INDIRECT

ADDRESSING

FF

80

80

7F

00

000

7FF

0000

FFFF

AND

AT89S8252 Primer

3

Listing 1: EEPROM Read/Write Examples.
; The WMCON register is not bit-addressable, so Boolean operations are used

; to control functions and test bits.

WMCON DATA 96h ; watchdog and memory control register

EEMEN EQU 00001000b ; EEPROM access enable bit

EEMWE EQU 00010000b ; EEPROM write enable bit

WDTRST EQU 00000010b ; EEPROM RDY/BSY bit

; EEPROM read example.

orl WMCON, #EEMEN ; enable EEPROM accesses

mov dptr, #ADDRESS ; address to read

movx a, @dptr ; read EEPROM

xrl WMCON, #EEMEN ; disable EEPROM accesses

; EEPROM write example, utilizing fixed delay for write cycle.

; Delay is worst case (10 ms). Code for delay is not shown.

; Write is followed by verify (read and compare), but code to handle

; verification failure is not shown.

orl WMCON, #EEMEN ; enable EEPROM accesses

orl WMCON, #EEMWE ; enable EEPROM writes

mov dptr, #ADDRESS ; address to write

mov a, #DATA ; data to write

movx @dptr, a ; write EEPROM

call DELAY_10_MS ; wait 10 ms

movx a, @dptr ; read EEPROM

cjne a, #DATA, ERROR; jump if data compare fails

xrl WMCON, #EEMWE ; disable EEPROM writes

xrl WMCON, #EEMEN ; disable EEPROM accesses

; EEPROM write example, utilizing RDY/BSY to determine the end of

; the write cycle. Write is followed by verify (read and compare),

; but code to handle verification failure is not shown.

; Needs timeout to prevent write error from causing an infinite loop.

orl WMCON, #EEMEN ; enable EEPROM accesses

orl WMCON, #EEMWE ; enable EEPROM writes

mov dptr, #ADDRESS ; address to write

mov a, #DATA ; data to write

movx @dptr, a ; write EEPROM

loop:

mov a, WMCON ; get EEPROM write status

anl a, #WDTRST ; check RDY/BSY

jz loop ;jump if busy

AT89S8252 Primer4

movx a, @dptr ; read EEPROM

cjne a, #DATA, ERROR; jump if data compare fails

xrl WMCON, #EEMWE ; disable EEPROM writes

xrl WMCON, #EEMEN ; disable EEPROM accesses

; EEPROM write example, utilizing DATA Polling to determine the end of

; the write cycle. After data is loaded, the code loops on read until

; data is returned true. Write verification is implicit in this method.

; Needs timeout to prevent write error from causing an infinite loop.

orl WMCON, #EEMEN ; enable EEPROM accesses

orl WMCON, #EEMWE ; enable EEPROM writes

mov dptr, #ADDRESS ; address to write

mov a, #DATA ; data to write

movx @dptr, a ; write EEPROM

loop:

movx a, @dptr ; read EEPROM

cjne a, #DATA, loop ; jump if data compare fails (busy)

xrl WMCON, #EEMWE ; disable EEPROM writes

xrl WMCON, #EEMEN ; disable EEPROM accesses

Dual Data Pointers
The AT89S8252 features two 16-bit data pointers (DP0
and DP1) for accessing data in program memory, external
data memory, and on-chip EEPROM. The low and high
bytes of DP0 are stored in SFRs DP0L (82H) and DP0H
(83H), respectively. The low and high bytes of DP1 are
stored in SFRs DP1L (84H) and DP1H (85H), respectively.
Note that DP0 occupies the same SFRs as the single data
pointer in conventional 8051 microcontrollers.

In the AT89S8252, the DPS bit in SFR WMCON (96H)
selects the active data pointer (DP0 or DP1). All instruc-
tions which reference DPTR utilize the data pointer which is
currently selected. To select DP0, DPS is cleared; to select
DP1, DPS is set. Reset clears DPS.

The two data pointers may be used to expedite the transfer
of data between program memory, external data memory,
and on-chip EEPROM, as shown in Listing 2.

AT89S8252 Primer

5

Listing 2: Dual Data Pointer Examples.
; The WMCON register is not bit-addressable, so Boolean operations are used.

WMCON DATA 96h ; watchdog and memory control register

EEMEN EQU 00001000b ; EEPROM access enable bit

EEMWE EQU 00010000b ; EEPROM write enable bit

WDTRST EQU 00000010b ; EEPROM RDY/BSY bit

DPS EQU 00000100b ; data pointer select bit

; Copy block from program memory to external data memory.

mov r7, #COUNT ; block byte count

mov dptr, #PGM_ADDR; pointer to program memory

xrl WMCON, #DPS ; switch data pointers

mov dptr, #XD_ADDR ; pointer to external data memory

loop:

xrl WMCON, #DPS ; switch data pointers

clr a ; read program memory

movc a, @a+dptr ;

inc dptr ; advance program memory pointer

xrl WMCON, #DPS ; switch data pointers

movx @dptr, a ; write external data memory

inc dptr ; advance external data memory pointer

djnz r7, loop ; continue until done

; Copy block from external data memory to on-chip EEPROM.

; Utilizes RDY/BSY to determine the end of the EEPROM write cycle.

; Needs timeout to prevent write error from causing an infinite loop.

orl WMCON, #EEMEN ; enable EEPROM accesses

orl WMCON, #EEMWE ; enable EEPROM writes

mov r7, #COUNT ; block byte count

mov dptr, #EE_ADDR ; pointer to EEPROM

xrl WMCON, #DPS ; switch data pointers

mov dptr, #XD_ADDR ; pointer to external data memory

copy:

movx a, @dptr ; read external data memory

inc dptr ; advance external data memory pointer

xrl WMCON, #DPS ; switch data pointers

movx @dptr, a ; write EEPROM

inc dptr ; advance EEPROM pointer

xrl WMCON, #DPS ; switch data pointers

wait:

mov a, WMCON ; get EEPROM write status

anl a, #WDTRST ; check RDY/BSY

jz wait ; jump if busy

djnz r7, copy ; continue until done

xrl WMCON, #EEMWE; disable EEPROM writes

xrl WMCON, #EEMEN; disable EEPROM accesses

AT89S8252 Primer6

IMPORTANT: The state of DPS affects ALL accesses to
the data pointer SFRs (82H, 83H, 84H, 85H). Any machine

instruction whose operand is one of the data pointer SFRs
may produce unexpected results, as shown below.

Examples:
; Define the new data pointer SFRs for a generic 8051 assembler.

DP0L DATA 82h ; data pointer 0

DP0H DATA 83h ;

DP1L DATA 84h ; data pointer 1

DP1H DATA 85h ;

orl WMCON, #DPS ; set DPS

push DP0L ; PUSHES DP1L!!!

mov 83h, a ; COPIES ACCUMULATOR TO 85H!!!

xrl WMCON, #DPS ; clear DPS

push DP1H ; PUSHES DP0H!!!

mov 84h, a ; COPIES ACCUMULATOR TO 82H!!!

The user must exercise caution to avoid accessing the
wrong SFRs. The solution to the problem demonstrated
above is to clear DPS before any accesses to SFRs 82H
and 83H and to set DPS before any accesses to SFRs 84H
and 85H.

Watchdog Timer
The AT89S8252 features a watchdog timer which allows
control of the microcontroller to be regained, should it be
lost. When enabled, the timer will reset the microcontroller
after a specified period has elapsed, unless prevented from
doing so by the intervention of the firmware.

To enable the watchdog timer, the WDTEN bit in SFR
WMCON (96H) must be set; to disable the timer, WDTEN
should be cleared. Once the timer is enabled, the firmware
must set the WDRST bit in SFR WMCON (or disable the
timer) before the reset period elapses to prevent the timer
from resetting the microcontroller. Each time WDRST is
set, a new reset period begins, requiring another response
from the firmware. The firmware does not need to clear
WDRST after setting it; WDRST is automatically cleared by
the microcontroller.

The watchdog timer reset period varies from 16 to 2048
milliseconds, as specified by bits PS0, PS1 and PS2 in
SFR WMCON. Refer to the AT89S8252 data sheet for the
nominal reset periods corresponding to the bit settings. The
timer reset period is independent of the frequency of the
clock source driving the microcontroller and may deviate
from the documented nominal value by a huge percentage.

The watchdog timer continues to operate even when the
microcontroller is in Idle mode, but is disabled during
Power Down mode. The elapsed time between a watchdog
timer reset and the execution of the first instruction is
approximately 16 ms. Reset (including reset generated by
the watchdog timer) clears WDTEN, WDRST, SP0, SP1
and SP2, disabling the watchdog timer.

A typical application of the watchdog timer is outlined in
Listing 3.

AT89S8252 Primer

7

Listing 3: Watchdog Timer Example.
; Use the watchdog timer to regain control of the microcontroller if an

; operation takes longer than expected. The details of the operation are not

; shown. The operation is expected to take less than 20 ms to complete and

; the reset period chosen is 32 ms. Adequate margin must be allowed between

; the desired reset period and the selected period to allow for the slop

; present in the timer.

; The WMCON register is not bit-addressable, so Boolean operations are used.

WMCON DATA 96h ; watchdog and memory control register

WDTEN EQU 00000001b ; watchdog timer enable bit

WDTRST EQU 00000010b ; watchdog timer reset bit

PS0 EQU 00100000b ; watchdog timer period select bits

PS1 EQU 01000000b ;

PS2 EQU 10000000b ;

orl WMCON, #PS0 ; select 32-ms period

orl WMCON, #WDTEN ; enable watchdog

loop:

; Do something which normally takes less than 20 ms.

.

.

.

orl WMCON, #WDTRST ; keep watchdog at bay

jmp loop

Power Off Flag
The Power Off Flag (POF) indicates that power has been
removed from the AT89S8252. This allows the firmware to
differentiate between reset due to the application of power
and reset due to the watchdog timer, or a logic high on the
RST pin. POF is set when power is applied to the micro-
controller and is not affected by the watchdog timer or by

activity on RST. POF is located at bit four in SFR PCON
(87H), and may be read, set, or cleared by firmware. Note
that PCON is not bit-addressable.

A typical application of the Power Off Flag is outlined in
Listing 4.

AT89S8252 Primer8

Listing 4. Power Off Flag Example.
; After reset, the microcontroller begins executing code at program memory

; address 0000H. POF is tested to determine if the controller was reset

; by the application of power (cold start) or by the watchdog timer or a

; high on RST (warm start).

; Code for the cold start and warm start routines is not shown.

POF EQU 00010000b ; Power Off Flag bit

CSEG ; code segment

ORG 0000h ; location of reset vector

jmp xreset ; vector

.

.

.

xreset: ; code for responding to reset

.

.

.

mov a, PCON ; get Power Control register

anl a, #POF ; test Power Off Flag

jz WARM_START ; POF=0 indicates reset from

; watchdog timer or RST

xrl PCON, #POF ; clear POF for next time

jmp COLD_START ; POF=1 indicates reset from power

Serial Peripheral Interface
The Serial Peripheral Interface (SPI) permits compatible
devices to communicate serially over a high-speed, syn-
chronous bus. Devices resident on the bus act as masters
or slaves, with only one master and one slave active at any
one time. Data transfers are always initiated by a master,
and are actually data exchanges, with data flowing from the
master to the slave and from the slave to the master simul-
taneously.

SPI-compatible devices have four pins in common: SCK,
MOSI, MISO, and SS. All devices in a system have their
SCK, MOSI, and MISO pins tied together. Data flows from
master to slave via MOSI (Master Out Slave In) and from
slave to master via MISO (Master In Slave Out). Data
transfers are synchronized to a clock generated by the
master and output on its SCK pin. SCK is an input for
devices configured as slaves. Inactive masters must be
reconfigured as slaves to prevent them from driving their
SCK and MOSI pins.

The SS (Slave Select) pins on the devices in the system
are not bussed. Each slave is connected to its master by a
select line from its SS input to a general purpose output on
the master. If a slave has multiple masters, the multiple
select lines must be gated to its SS input. Masters do not

utilize their SS pins during SPI data transfers, freeing them
for use as general-purpose outputs.

To initiate an SPI data transfer, the active master selects a
slave by applying a logic low to the slave’s SS input. The
master starts the serial clock, which it outputs on its SCK
pin, and shifts out a byte on its MOSI pin, synchronized to
the clock. Simultaneously, the slave shifts out a byte on its
MISO pin, synchronized to the clock. When the master and
slave have exchanged data, the transfer is complete. The
master stops the serial clock and may deselect the slave.
Slaves which are not selected ignore their SCK inputs and
float their MISO outputs to avoid contention with the active
output of the selected slave.

In the AT89S8252, the SPI is configured via SFR SPCR
(D5H), the SPI Control Register. The frequency of the
serial clock, the ordering of the serial data, and the relation-
ship between the clock and the shifting and sampling of
data are all programmable, as described below.

To enable the SPI feature, the SPE bit in SFR SPCR must
be set; to disable the SPI, SPE is cleared. When the SPI is
enabled, microcontroller pins P1.4, P1.5, P1.6 and P1.7
become SS, MOSI, MISO, and SCK, respectively. The SPI
may not operate correctly unless pins P1.4-P1.7 are first

AT89S8252 Primer

9

programmed high. Reset sets pins P1.4-P1.7 high and
clears SPE, disabling the SPI.

The MSTR bit in SFR SPCR configures the microcontroller
as a SPI master when set, and as a slave when cleared.
Reset clears MSTR. When the microcontroller is configured
as a SPI master, SS (P1.4) is not utilized and may be used
as a general-purpose, programmable output.

When the microcontroller is configured as a SPI master,
the frequency of the serial clock is determined by bits
SPR0 and SPR1 in SFR SPCR. The frequency of the serial
clock is the frequency of the microcontroller’s clock source
divided by the selected divisor. The divisor must be
selected to produce a serial clock frequency which is com-
patible with the master’s slaves. Refer to the AT89S8252
data sheet for the divisors corresponding to the settings of
bits SPR0 and SPR1.

The DORD bit in SFR SPCR determines the order in which
the bits in the serial data are transferred. Data is trans-
ferred least-significant bit (LSB) first when DORD is set;
most-significant bit (MSB) first when DORD is cleared.
Reset clears DORD. Note that only MSB-first data transfers
are shown in the diagrams in the AT89S8252 data sheet.

The polarity of the SPI serial clock is determined by the
CPOL bit in SFR SPCR. Setting CPOL specifies serial
clock high when idle; clearing CPOL specifies serial clock
low when idle. Reset clears CPOL.

The CPHA bit in SFR SPCR controls the phase of the SPI
serial clock, which defines the relationship between the
clock and the shifting and sampling of serial data. Setting
CPHA specifies that data is to be shifted on the leading
edge of the clock and sampled on the trailing edge. Clear-
ing CPHA specifies that data is to be sampled on the lead-
ing edge of the clock and shifted on the trailing edge. Reset
sets CPHA. The state of bit CPHA also affects the slave
selects. If CPHA is set, the slave may remain selected
between consecutive byte transfers, or may be perma-
nently selected (SS tied low). If CPHA is clear, the slave
must be deselected (SS returned high) after each byte
transferred. Examples of SPI serial clock phase and polar-
ity are shown in the diagrams in the AT89S8252 data
sheet.

Only an AT89S8252 configured as an SPI master may ini-
tiate a data transfer. A data transfer is triggered by a byte
written to SFR SPDR (86H), the SPI Data Register. As data
is shifted out of the master, data from the selected slave is
simultaneously shifted in, replacing the data in SPDR.
When a data transfer is complete, the SPIF bit is set in SFR
SPSR (AAH), the SPI Status Register. The data received
from the slave may then be read from SPDR. Writing
SPDR during a data transfer sets the Write Collision bit
(WCOL) in SPSR. The progress of the data transfer is not
affected by a collision. To clear bits SPIF and WCOL, read
SPSR and read or write SPDR.

An interrupt may be generated as an alternative to polling
SPIF to determine the end of a SPI data transfer. To enable
the SPI interrupt, three bits must be set. The first is the
SPIE bit in SPCR, which causes an interrupt to be gener-
ated when SPIF is set. The second and third bits are ES
and EA in SFR IE (A8H). ES is the UART interrupt enable
bit, which must be set because the SPI shares an interrupt
vector with the UART. EA is the global interrupt enable bit.
When an SPI interrupt occurs, the SPI/UART interrupt ser-
vice routine must determine the source of the interrupt. An
SPI interrupt is indicated when the SPIF bit in SPSR is set.
Bits SPIF and ES must be cleared by software.

In the application shown below, the AT89S8252 is config-
ured as an SPI master and interfaces to an Atmel AT25040
SPI-compatible EEPROM. The EEPROM provides 512
bytes of re-writable, non-volatile storage while requiring
only a four-pin interface to the microcontroller. The micro-
controller and EEPROM are wired as shown in Figure 3.
Note that the microcontroller’s SS pin is used as a slave
select, since it is unused when the microcontroller is config-
ured as a SPI master. Additional EEPROMs may be con-
nected to the microcontroller’s SCK, MISO and MOSI pins,
but each device must have its own select line.

Sample code for the application is shown in Listing 5. A SPI
master must be configured to meet the requirements of its
slaves. The AT25040 data sheet states that the maximum
clock rate for the device is 2 MHz. The microcontroller’s
clock source is a 24-MHz crystal (Figure 3), so a SPI serial
clock divisor of 16 was chosen to produce a serial clock of
1.5 MHz. As shown in the AT25040 data sheet, the
device’s chip select (CS) input must remain active (low) for
the duration of an operation, which may include multiple
data transfers. Also, the serial clock must be low when idle
and data is transferred most-significant bit first. Therefore,
CPHA=1, CPOL=0 and DORD=0. In the example, SPI
interrupts are not used.

AT89S8252 Primer10

Figure 3. AT89S8252 as an SPI Master

Listing 5: SPI Example.
; Write/Read AT25C040 EEPROM via the Serial Peripheral Interface (SPI).

; Completion of AT25C040 programming is determined by polling the device.

; SPI interrupt is not used. ; Works with a microcontroller clock of 24 MHz (or slower).

;

; The AT25040 routines (“read_status”, “enable_write”, “read_byte”,

; “write_byte”) are excerpted from code previously made available by Atmel

; for use with the AT89Cx051 microcontrollers. In that code, access to the

; AT25040 was via “bit banging”. The two routines which shifted the serial

; data in/out have been replaced by the single SPI routine “masterIO”.

; Microcontroller registers and bit definitions.

SPCR DATA 0d5h ; SPI control register

SPSR DATA 0aah ; SPI status register

SPIF EQU 10000000b ; interrupt flag

SPDR DATA 86h ; SPI data register

; Microcontroller connections to AT25040.

CS_ BIT p1.4 ; AT25040 slave select

MOSI BIT p1.5 ; SPI

MISO BIT p1.6 ; SPI

SCK BIT p1.7 ; SPI

; AT25040 device command and bit definitions.

AT89S8252
AT25040

10

39

21
11

38

22
12

37

23
13

36

24
14

35

25

33

27

29

16

15

34

26

32

28

30

17

1

5

3

7

2

6

4

8

EA/VPP

XTAL 1

XTAL2

RST

P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1

P1.0/T2
P1.1/T2EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

CS
SCK

SI
SO

HOLD
WP

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

PSEN
ALE/PROG

P3.6/WR
P3.7/RD

31

U1

U2

7
3

2

1
6
5

VCC

VCC

SPI Master Mode

VCC

19

18

C2

C1
1 uF

C3

Y1
24 MHz

33 pF

33 pF 9

+

AT89S8252 Primer

11

RDSR EQU 05h ; Read Status Register

WRSR EQU 01h ; Write Status Register

READ EQU 03h ; Read Data from Memory

WRITE EQU 02h ; Write Data to Memory

WREN EQU 06h ; Write Enable

WRDI EQU 04h ; Write Disable

A8 BIT acc.3 ; MSB of address

NRDY BIT acc.0 ; high = write cycle in progress

main:

; SPI master mode initialization code.

setb CS_ ; deselect AT25040

setb MOSI ; initialize SPI pins

setb MISO ;

setb SCK ;

mov SPCR, #01010101b ; initialize SPI master

; interrupt disable, pin enable,

; MSB first, polarity 0, phase 1,

; clock rate /16

; Write one byte to AT25040 and verify (read and compare).

; Code to handle verification failure is not shown.

; Needs timeout to prevent write error from causing an infinite loop.

call enable_write ; must precede each byte write

mov a, #DATA ; data

mov dptr, #ADDRESS ; address

call write_byte ; write

wchk:

call read_status ; check write status

jb NRDY, wchk ; loop until done

mov dptr, #ADDRESS ; address

call read_byte ; read

cjne a, #DATA, ERROR ; jump if data compare fails

.

.

.

read_status:

; Read device status.

; Returns status byte in A.

clr CS_ ; select device

mov a, #RDSR ; get command

call masterIO ; send command

call masterIO ; get status

AT89S8252 Primer12

setb CS_ ; deselect device

ret

enable_write:

; Enable write.

; Does not check for device ready before sending command.

; Returns nothing. Destroys A.

clr CS_ ; select device

mov a, #WREN ; get command

call masterIO ; send command

setb CS_ ; deselect device

ret

read_byte:

; Read one byte of data from specified address.

; Does not check for device ready before sending command.

; Called with address in DPTR.

; Returns data in A.

clr CS_ ; select device

mov a, dph ; get high byte of address

rrc a ; move LSB into carry bit

mov a, #READ ; get command

mov A8, c ; combine command and high bit of addr

call masterIO ; send command and high bit of address

mov a, dpl ; get low byte of address

call masterIO ; send low byte of address

call masterIO ; get data

setb CS_ ; deselect device

ret

write_byte:

; Write one byte of data to specified address.

; Does not check for device ready or write enabled before sending

; command. Does not wait for write cycle to complete before returning.

; Called with address in DPTR, data in A.

; Returns nothing.

clr CS_ ; select device

push acc ; save data

mov a, dph ; get high byte of address

rrc a ; move LSB into carry bit

mov a, #WRITE ; get command

mov A8, c ; combine command and high bit of address

call masterIO ; send command and high bit of address

mov a, dpl ; get low byte of address

AT89S8252 Primer

13

call masterIO ; send low byte of address

pop acc ; restore data

call masterIO ; send data

setb CS_ ; deselect device

ret

masterIO:

; Send/receive data through the SPI port.

; A byte is shifted in as a byte is shifted out,

; receiving and sending simultaneously.

; Waits for shift out/in complete before returning.

; Expects slave already selected.

; Called with data to send in A. Returns data received in A.

mov SPDR, a ; write output data

bbb:

mov a, SPSR ; get status

anl a, #SPIF ; check for done

jz bbb ; loop until done

move a, SPDR ; read input data

ret

