cAESar results: Implementation of Four AES
Candidates on T'wo Smart Cards

Gaél Hachez Francois Koeune
Jean-Jacques Quisquater
Université catholique de Louvain, UCL Crypto Group,
Laboratoire de microélectronique (DICE),
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium.
E-mail: {hachez,fkoeune,jjq}@dice.ucl.ac.be
URL: http://www.dice.ucl.ac.be/crypto

September 26, 2000

Abstract
One of the important criteria the future cryptographic standard will
have to meet is smart card suitability. However, the information provided
in the official submission makes comparison rather difficult. This paper
tries to partially answer this question, by describing our experience in
implementing four of the candidates on two smart card: a typical low-
cost one and a typical “sophisticated” one.

1 Introduction

In the requirements for an AES candidate submission, the NIST asked for an
estimation of the performances on an 8-bit platform. This question was an-
swered very differently by the 15 candidates. Some completed a full smart-card
implementation, while others gave only general estimations of the consequences
an 8-bit implementation would imply, or forgot the memory usage question, ...

Anyway, even the full implementations were performed on different smart
cards, which makes performance comparison impossible.

In view of the increasing importance of smart cards in today’s world, it
appeared indispensable to perform an advanced, independent examination of
the value of the candidates regarding smart cards.

This paper describes our experience in implementing four AES candidates
on two very different smart cards. We hope it will be a good basis for direct
comparison of these candidates, as well as a starting point for a more complete
work in this area.

The next section presents the two smart cards we chose to work with and the
reasons of our choice; we then briefly explain our implementation goals; section

5 describes in some details our implementation experience with each candidate;
finally, section 6 summarizes the candidate’s relative performances.

2 The smart cards

As an insight in smart card world, we decided to choose two very different
platforms to port AES candidates to. The first one had to be a basic, low-
cost device, typical of everyday life usage such as pay-TV application, etc; the
second one was supposed to be representative of a powerful smart card, aimed
at providing several services, among which security.

Below we briefly present the two smart cards we chose to use.

2.1 The 8051

The 8051 is a micro-controller developed by Intel at the time of the 8086. Many
smart cards (Philips, ...) are based on this micro-controller. Its main charac-
teristics are:

Harvard architecture,

8 bit architecture,

e 34-1024 bytes of RAM. However, this RAM is organized in pages of 256
bytes, and accessing data located elsewhere than on the current page is a
costfull operation. In this paper, we will thus limit ourselves to 256 bytes
of available RAM, which is the most current case in actual smart cards,

e 2 KB or more of ROM,

e accumulator based architecture: data processing instructions specify only
one operand; the other operand has to be stored in the accumulator before
call, and this is also the place where the result will be put,

e 8 general-purpose registers (program counter, . ..not included),

e depending on version, performance peek varying between 1 (at 12 MHz)
and 2.5 (30 MHz) million 8-bit instructions per second; note, however,
that the standard clock frequency to sample a smart card is 3.57 MHz,

e several addressing modes (immediate value, direct, indirect! addressing,
bit-addressable zone, ...) supported. For many instructions, operating
on memory is a fast as on registers

e CISC architecture: the 8051 disposes of a complex set of instructions.
Some of them allow interesting spare of time (there is, for example, an
instruction allowing to increment the value of one register without the
need to pass through the accumulator; another instruction — decrement

INote that only two of the registers can be used for indirect addressing

and jump if not zero — is very useful for efficient loops). Note, however,
that not every addressing mode is available with every instruction type,

variable-size instructions,

byte-by-byte multiplier: the 8051 disposes of an instruction allowing to
multiply two 8 bit values, yielding a 16 bit result (however, this instruction
is not always implemented in hardware, and its execution time thus greatly
varies among versions). A byte-by-byte divider is also available, but it was
of no use in our work.

We believe the 8051 to be a good example — one of the most-used today — of
a basic, low-cost, microprocessor-based smart card. The price of a smart card
of course highly depends on many factors (amount of units needed, ...), but we
estimate is at about US $ 2-4.

2.2

The ARM

ARM (Advanced Risc Machine) is a familly of processors developped by ARM
Ltd. Some characteristics of these processors are:

von Neuman architecture,
32 bit architecture,

4 GB of address space (of course, the memory actually available on a smart
card is much smaller, typically 1 KB),

3-address instructions: every data processing instruction specifies both the
operands and the destination place for the result. This allows much more
efficient coding than for the 8051, where the first operand and destination
are always forced to the accumulator,

16 registers, some of them with preassigned functions (program counter,
stack pointer, ...),

17 MIPS sustained at 25 MHz,
3-stages pipeline,
coprocessor interface (like UART (memory management coprocessor), ...),

orthogonal instruction set: the ARM is a RISC machine, the instruction
encoding size is therefore fixed; furthermore, the number of instructions is
much smaller than on the 8051. On the other hand, these instructions are
completely orthogonal: with a few exceptions, any operand can be used
with any instruction,

e LOAD, STORE architecture: data processing instructions always operate
either on direct values or on registers. Operating on memory thus requires
pre- and post- transfer from and to memory. As these are rather slow
operations, they should however be avoided (something that is helped by
the big number of registers),

e conditional execution: every instruction can be conditionally executed ac-
cording to the state of flags (carry, overflow, ...). Instructions that are
not executed take a single clock cycle. Considering that every instruc-
tion can also decide whether to affect the flags or not, this feature allow

very efficient coding of small “if ...then ...else ...” blocks, com-
pared to the overhead of branch instructions? used on more conventional
architectures,

e barrel shifter: the second operand in a data processing instruction can
optionnaly be shifted or rotated before being processed. This feature also
allows to code complex operations in very few instructions,

e multiplier: the ARM disposes of an instruction allowing to multiply two
32-bit values, yielding the 32 low-order bits of the product. There is a
member of the ARM family — the ARMT7M — which disposes of a multiplier
yielding the full 64-bit result, but this feature did not appear usefull for
our work, as every multiplication we implemented was modulus 232.

We believe the ARM to be a typical example of a current sophisticated smart
card. Its price is estimated to about US $ 10.

3 Our objectives

Implementation implies to make various decisions. This section is an attempt
to summarize them.
As for our design goals, they were, in decreasing order of importance:

1. Low RAM usage: the most sensitive resource on a smart card is certainly
RAM. We saw that it is often reduced to 256 bytes on the 8051; it is a bit
larger on the ARM, but, as this type of smart card is typically devoted to
contain more than a simple encryption function, it would be a good thing
not to use a too large part of the available RAM. We therefore decided
to optimize the code towards RAM usage first, even if there is a speed
drawback. For example, every time it was possible to compute round keys
on-the-fly, we used this alternative.

2. Speed: of course, fast execution is one of the most important features we
expect from a program, so, any decision not affecting RAM usage was
taken in favour of speed.

2Mainly due to the stalls they introduce on the pipeline engine.

3. On a less extent, code size: ROM is not so scarce as RAM on a smart
card, and we were therefore not as severe about code size than about RAM
usage (some critical portions of the code, for example, were unrolled when
the performance benefit was important). We simply tried to stay under
reasonable limits, for example by preventing ourselves to unroll all and
every loop and, when large (more than 1 KB) tables were necessary, to
propose a non-table variant as well.

Flexibility was definely not one of our aims. For example, we do not expect a
typical smart card application to have to support different key sizes; as 128 bits
seems to offer nowadays a safe shield, we chose to implement this variant. In
the same way, our goal was not to construct general building blocks that could
be reused by other programs co-existing on the smart card and we therefore
did not try to design general-purpose functions, nor to give them a standard
interface; such features were always sacrificed in benefit of speed.

3.1 Other hypotheses
3.1.1 Scenario

Speed measurements of a cryptosystem depend on various parameters. For ex-
ample, the amount of data to be encrypted will influence the relative importance
of key schedule and encryption times : if the same key is to be used for a long
time, then it may be worth storing the round keys in EEPROM rather than
computing them on-the-fly.

In the scenario we are considering here, the secret key is likely to be changed
often (we call this key agility). This is typical of a session key or of a system
were several keys — depending on the interlocutor — are stored on the smart card.
We therefore expect the system to be able to complete a key schedule as fast
as possible, and prevent the use of non-volatile memory to store key-dependent
values.

3.1.2 Endianness

The AES candidates were presented in either big or little-endian version (or
both). This endianness question is of course irrelevant on an 8-bit architecture,
as the programmer will have to implement it himself. One interesting feature
of the ARM is that it can be configured on-the-fly to behave as a little or as a
big endian machine. We therefore chose to implement the candidates in their
native endianness.

We will not extend further on this consideration, as we do not believe it has
a significant impact on performances.

3.1.3 Emulators

Our implementations were performed on emulators of the two smart cards.
Therefore, actual results may slightly vary. We believe them to be although

rather accurate.

4 The candidates

After eliminating candidates for which significant flaws have already been dis-
covered, we were left with a handfull of cryptosystems to implement. Somehow
or other, we had to choose some of them to begin with. We chose six among
those we believe to have a good chance to pass the first round. Two of these
(Mars, Serpent) are subject of master’s theses at UCL, and we hope their im-
plementations to be completed soon. The results for the four others (E2, RC6,
Rijndael, Twofish) are described here. Of course, implementation work contin-
ues; further results will be put on cAESar’s page
(http://www.dice.ucl.ac.be/crypto/CAESAR /caesar.html).

5 Implementations

5.1 Implementing E2
5.1.1 8051-based smart card

E2 does not support on-the-fly key schedule and it is therefore necessary to
allocate enough RAM space (256 bytes) for the round keys. This constraint
makes E2 impossible to implement on the 8051, as well as on almost any low-
cost smart card. For comparison purpose, we decided though to implement
it using the external RAM to store the rounds keys. This is not a realistic
implementation, as, to recover the key, it would suffice for an adversary to
eyesdrop the wires connecting external RAM to the chip. We did this only to
get an idea of the execution time.

Besides the extended key, 88 bytes of RAM were needed by our implemen-
tation. The original key is destroyed by the key extension process, so we have
to add 16 bytes if we want to keep it for further use. Among the 88 bytes, there
are 16 bytes for the message, and 72 which are needed by the function G (this is
the size of the result of a single call to G). We therefore believe it is impossible
to use less RAM. Other functions can easily reuse the space reserved for G.

The most time-consuming operation required by E2 is modular inversion
modulus 232. As suggested by the authors, we have incorporated this operation
in the key schedule (see [TC98] for more details); this does not slow down single
block encryption and will greatly improve performances if more blocks are to
be encrypted. Among the methods proposed by the authors to compute a
modular inverse, the extended binary ged [Knu97] appeared to be most efficient
one, especially as, in the peculiar case where the modulus is a power of 2, this
algorithm can be greatly improved: the outer of the two nested loops is always
executed exactly once and, moreover, it is possible to consider only positive
numbers®. The improved version of the algorithm is depicted in figure 1.

3This is especially interesting in this case as, if negative numbers had to be considered,

u=1;v=0;
for k=1to n
if (u even) then
u=u/2
v=10/2
else
u=(u+z)/2
v=(v+2")/2
endfor
v=2"—v
return v

Figure 1: Fast computation of £~! mod 2"

Our E2 implementation completes key schedule in 26147 clock cycles and
encryption in 9725 cycles.

5.1.2 ARM-based smart card

256 bytes of RAM is not beyond ARM’s capacities, and E2 can thus be imple-
mented on it. There is not much to say about this implementation. Most of the
comments of previous section remain valid (of course, the binary ged is much
easier to implement on a 32 bit machine !).

Our implementation performed the key schedule in 8712 cycles and encryp-
tion in 2180 cycles. The code size was 1004 bytes.

Several other tricks have been used in the implementation of E2, both on
the 8051 and on the ARM, but we do not find it interesting to extend on them
here. We refer the interested reader to the source code for further details.

5.2 Implementing RC6
5.2.1 ARM-based smart card

RC6 was beyond doubt the easiest candidate to implement on a 32 bits machine,
as is illustrated by its incredibly short code (272 bytes).

On a speed point of view, RC6 is impressive too. The choice of operations
show RC6 was carefully designed for good performance on a 32 bit CPU. Our
implementation completes the key schedule in 3903 clock cycles, and an encryp-
tion in 790 cycles.

In view of the small code size, we fell allowed to try to unroll some more
loops than usually, and do some tedious work in order to speed up the key

we would be forced to store variables in five bytes instead of four, which would significantly
increase the overhead.

schedule; this “big” version of RC6 requires 460 bytes of code, and completes
key schedule in 2231 clock cycles.

Unfortunately, the bad point about RCG6 is that it does not allow on-the-fly
key schedule, and thus requires rather much RAM: 176 bytes are necessary to
store the extended key, to which we have to add 16 bytes to store the key if we
want to preserve it; the message block can fit into registers.

A last point we would like to comment about RCG6 is on rotations: as a rotate
left x positions corresponds to a rotate right 32 — x popsitions, and in order to
spare one instruction, the barrel shifter of the ARM only offers a rotate right in-
struction, However, RC6 performs its rotations left and, as the rotation amount
is data-dependent, we loose two cycles per rotation to compute 32 — x mod 32.
Due to the big amount of data-dependent rotations performed by RC6, this two
cycles difference has a big impact on global performance. On the other hand,
decryption uses right rotations and is therefore faster than encryption on the
ARM. This property should be taken into account for protocols where only one
direction — encryption or decryption — has to be performed by the smart card.

Finally, note that the key schedule always uses rotations left, and is therefore
handicapped on the ARM.

5.2.2 8051-based smart card

RC6 was mainly designed for 32 bits machine. It only relies on 32 bit operations
(32 bit addition, multiplication, XOR and rotate).

Each operation must be decomposed on a 8 bits architecture. While the
addition and the XOR can be, without too much overhead, made with 8 bits
operation, the multiplication need more computations. With a little rewriting
of the operations, we can transform this multiplication into a square which is
easier to implement and faster to compute.

The last operation, the rotate, must be carefully designed. This is the most
used operation in RC6 and a difficult one to implement with the instruction set
of the 8051. The rotate instruction of the 8051 is only able to rotate a byte of
one bit position (left or right). The original paper of RC6 [RSA98] describes
some tricks to speed-up the implementation.

As stated for the ARM implementation, the key schedule cannot be com-
puted on the fly. The additional RAM needed takes a large amount of the
available memory on the 8051. This is the main drawback of the RC6 on sys-
tems with limited memory such as smart cards.

Designed for 32 bits operations, RC6 performs poorly on a 8 bits architecture.
The key setup takes about 43000 cycles to be achieved and the encryption about
14500 cycles. The cycles given are message-dependent due to the rotate. These
cycles must not be considered as absolute values but as indicative values.

One of the advantages ot RC6 is that it does not rely on tables. This leads
to a compact code of less than 600 bytes.

5.3 Implementing Rijndael
5.3.1 ARM-based smart card

Rijndael is extremely efficient on the ARM. Regarding memory usage, it was
possible to implement encryption, including on-the-fly key schedule, using only
the registers of the smart card (as this process destroys the register copy of the
key, some could prefer to say a Rijndael block encryption requires 16 bytes of
RAM). This will of course have a positive impact on performance, as memory
access is a rather slow operation on the ARM.

Regarding speed, an encryption (including key schedule) can be completed in
as few as 2889 clock cycles. An interesting property of Rijndael is that, although
it involves in theory multiplications in GF(2%) - a rather costly operation -, these
are in fact restricted to multiplications by x (’02’), which can be implemented
by a shift followed by a conditional XOR, and by x + 1 (’03’), which reduces to
the previous operation plus an additional XOR. These properties, together with
the efficient structure of MizColumn, allow to implement this transformation
very efficiently.

The rather big size of the code is partially due to the fact the implementation
was done in registers. As the registers names must be fixed at compilation
time, we had to use macros instead of functions. A more memory-consuming
implementation would have much smaller code.

For even better performances, [DR98] suggests to use 1 KB of tables, which
would allow to reduce the cost of one round to 16 table lookups (plus 16 ANDs
and 16 shifts to isolate appropriate bytes), 12 rotations and 16 XORs. The
code size grows a bit more*, and we cannot avoid this time the use of 16 bytes
of RAM, but the performance increase is worth the effort: encryption + key
schedule are now completed in 1467 clock cycles!

An alternative, using 4 KB of tables, would give slightly better results, but
the gain in speed appears this time rather small compared to the cost in ROM
space.

5.3.2 8051-based smart card

Rijndael has been implemented on the 8051 by their authors themselves, and
we therefore decided not to repeat their work. For comparison purposes we
simply note that their implementation requires 49 bytes of RAM, and performs
an encryption (including key schedule) in (depending on code size) between 3168
and 4065 clock cycles.

4Because this cannot be applied to the last round, which must still be computed in the
standard way

5.4 Implementing Twofish
5.4.1 ARM-based smart card

Twofish also permits on-the-fly key schedule, and is therefore possible to imple-
ment with a very low RAM usage. Our implementation on the ARM required
only 48 bytes of RAM: 4 words for the message block, 4 for the key and 6 to
store the arrays M,, M, and S; the round keys were computed on-the-fly and
stored in registers.

(. key-dependent
data

AT

Na key-dependent
data

MDS

Figure 2: Twofish h function (128-bit version).

On the other hand, Twofish apperead to be much slower than RC6 or Ri-
jndael on the ARM. A block encryption (including key schedule) required 8406
cycles to complete. This not-so-good performance may look surprising when
compared to the excellent performances of Twofish on a standard 32-bit com-
puter. It appears to be mainly due to the key-dependent nature of the S-boxes.
The function h, whose structure is represented on figure 2, involves 12 passes
through boxes go, 1, followed by a matrix multiplication. [Sys98] proposes a way
to speed up computations (full keying) by expanding each S-box to a 8-by-32
table that combines both the ¢; boxes, the XORs and the multiply by the ap-
propriate columns of the MDS matrix. However, as h is key-dependent, such a
table would have to be stored in RAM®, which is clearly impossible on a smart
card. We are therefore left with another option, which is a compromize between

5 An alternative, if a large amount of data is to be encrypted with the same key, would be
to store such a table in EEPROM. This, however, contradicts the key agility hypothesis of
our scenario.

10

the partial and zero keying alternatives of [Sys98|: we simply store (in ROM)
a 4KB® table gathering MDS and the last “layer” of ¢;, and implement other
layers by independent table-lookups. But a table lookup (that is, a memory
access) is a rather slow operation on the ARM, requiring three clock cycles to
complete. Considering that h involves 12 table lookups and that this function
is called 72 times we get a total of 2592 clock cycles devoted to table lookups,
that is, almost one third of the total time.

Note that, if ROM space is scarce, it is possible to implement A without the
4KB of tables. Such an implementation completes a block encryption in 13662
cycles.

As for Rijndael, it is possible to implement the multiplication by matrix RS
much more efficiently than by “dumb” matrix multiplication. We are gratefull
to Dr. B. Gladman for this point. Dr. Gladman also proposes [Gla98] an
efficient way to multiply by the matrix MDS; if the 4KB table is to be avoided.
This method was used for the second version of our implementation.

5.4.2 8051-based smart card

Twofish behaves quite well on the 8051. Table-lookups are faster than on the
ARM, and the key-dependent S-boxes, even implemented without the 4 KB
table, are therefore no more a problem.

This implementation requires 68 bytes of RAM (the original key is not de-
stroyed”), 1443 bytes of ROM, and performs an encryption (including key sched-
ule) in about 25142 clock cycles. Note that the code size could be reduced at a
small performance drawback.

6 Summary
The following tabulars summarize our results. The code size (in bytes) does

not include decryption functions. The speed is in clock cycles. The “(+16)”
notation means that 16 bytes of RAM must be added if the key is to be kept.

6.1 8051 implementations

Algorithm | Code size | Table size | RAM usage | Key setup time | Encryption time
E2 1188 256 344 (+16) 26147 9725
RC6 596 0 205 (4+16) 43200 14400
Rijndael 512 256 49 (+16) 4065
760 256 49 (+16) 3168
Twofish 931 512 68 24422
879 1024 48 18126

6 According to [Sys98], this table is only 1 KB large, but we believe it is a typo.

"We can, as preferred, recover it from the double-words M,, Me, or keep those in memory
together with S, which will allow faster recomputation of the key schedule.

11

6.2 ARM implementations

Algorithm | Code size | Table size | RAM usage | Key setup time | Encryption time
E2 1004 256 336 (+16) 8172 2180
RC6 272 0 176 (4+16) 3903 790
460 0 176 (+16) 2231 790
Rijndael 1148 256 0 (+16) 2889
2620 1280 16 (+16) 1467
Twofish 908 512 48 13662
696 4608 48 8406

6.3 Achievable speeds

To get a more intuitive idea of what speeds can be achieved by the various can-
didates, we have translated the above data in terms of bytes per second. For
each candidate, we have retained the fastest implementation, regardless of table
sizes, memory usage, ...As we preferred, when possible, the implementations
where the round keys are computed on-the-fly, and in order not to disadvan-
tage candidates which allowed this choice regarding those which do not, the key
schedule time is included for each block (in oher words, we are assuming here
that the key changes for every block). The 8051 is supposed to be running at
3.57 MHz (6 oscillator periods per instruction); the ARM at 28.56 MHz (that
is, we suppose the smart card is sampled at the standard frequence of 3.57 MHz
and uses a clock multiplier).

ARM @ 28.56 MHz
44142 bytes/sec

Algorithm | 8051 @ 3.57MHz
E2 267 bytes/sec®

RC6 165 bytes/sec 151260 bytes/sec
Rijndael 3005 bytes/sec 311492 bytes/sec
Twofish 525 bytes/sec 56 289 bytes/sec

7 Conclusion

Regarding RAM usage, E2 is the only candidate to be ruled out for the 8051.
All the other implementations are feasible, although RC6 is a rather big RAM
consumer, which does not leave very much free space for other applications on
a low-cost smart card. The very small RAM usage of Rijndael and Twofish (we
have not completed Twofish implementation on 8051 yet, but we do not see any
reason why it would need much more than the 48 bytes it needs on the ARM)
clearly makes them front runners on this point of view.

Regarding speed, Rijndael is at no doubt the best candidate on both smart
cards. On the ARM, it is followed by RC6, which is impressively fast too; then,
but much slower, come Twofish and, finally, E2.

On the 8051, Rijndael has no competitive adversary (except maybe Twofish:
we hope to complete its implementation soon and to answer this question at the

12

conference itself). E2, about ten times slower, comes in second position. RC6,
apparently not designed for 8-bit processors, is this time the slowest candidate.

Note that the difference in performance between candidates is rather impor-
tant, the ratio between the best and worst candidate being of about 1 to 7 on
the ARM, 1 to 11 on the 8051.

That was for the first four candidates. In the future, we will put results for
Mars, Serpent (and hopefully others !) on cAESar’s page, at
http://www.dice.ucl.ac.be/crypto/ CAESAR /caesar.html.

8 Acknowledgements

The authors wish to thank Dr. Brian Gladman for his very efficient C imple-
mentation of Twofish and for his advices.

Note about the code: except for Twofish, were we used parts of Brian
Gladman’s code, and a few consultations (due to typos in reference paper) of
Rijndael source code from its website, all the algorithms were coded from scratch
on the basis of the candidates’ description (AES CD-1).

References

[DR98] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. In Proc.
first AES conference, August 1998. Available on-line from the official
AES page: http://csrc.nist.gov/encryption/aes/aes home.htm.

[Gla98] Brian Gladman. AES algorithm efficiency, 1998. Available on-line
from http://www.seven77.demon.co.uk/aes.htm.

[Knu97] D.E. Knuth. The art of computer programming, volume Volume 2
Seminumerical Algorithms of Computer science and information pro-
cessing. Addison-Wesley, 3rd. edition, 1997.

[Ltd97] Advanced RISC Machines Ltd. ARM Software Developpment Toolkit
version 2.11: User guide. Advanced RISC Machines Ltd, 1997. Doc-
ument number: ARM DUT 0040C.

[RSA98] RSA Laboratories. The RC6 block cipher. In Proc. first AES con-
ference, August 1998. Available on-line from the official AES page:
http://csrc.nist.gov/encryption/aes/aes home.htm.

[Sem93] Philips Semiconductors. 80C51-Based 8-Bit microcontrollers: data
handbook. Philips, 1993.

[Sys98] Counterpane Systems. Twofish: A 128-bit block cipher. In Proc. first
AES conference, August 1998. Available on-line from the official AES
page: http://csrc.nist.gov/encryption/aes/aes home.htm.

13

[TC98] Nippon Telegraph and Telephone Corporation. Specification of
E2 - a 128-bit block cipher. In Proc. first AES conference,
August 1998. Available on-line from the official AES page:
http://csrc.nist.gov/encryption/aes/aes home.htm.

[vSA93] Alex van Someren and Carol Attack. The ARM RISC Chip: a pro-
grammer’s guide. Addison-Wesley, 1993.

14

