=~

%i CYPRESS

Connecting From Last Mile To First Mile.

he Embedded World™

Module 3: Getting Started
Debugging

.m-'ﬁ-_ !
R, i T
PERSONAL imi ENTERPRISE () 0 () CORE |
N Ny - B, " L
— e el
j = o

A == - e

———
—
[——.
—

=~

S M CYPBESS

Connecting From Last Mile To First Mile.

Section 1: Introduce Debugging Techniques
Section 2: PSoC In-Circuit Emulator (ICE)

Section 3: Hands on Debugging a System with
PSoC MCU

+ Breakpoints
+ Watch Variables
+ Dynamic Event Points

=sonss Let’s Run our Program

——— 1

Connecting From Last Mile To First Mile.

In Circuit Emulators (ICE) required for “real
application” testing

Most programs don’t work the first time...
You need to test the program in circuit

Debugging allows the developer to monitor the
application code line by line as it is running on the
circuit.

e —
e ———
 ——— — —
———
J——
[— e

s - JMoOst common types of errors

Connecting From Last Mile To First Mile."

Off by one —

Memory corruption

Timing interrupts — Where did the code go?
Stray pointers

Hardware design errors

Peripheral errors

——

Connecting From Last Mile To First Mile.

= Toss POOC Debugging Features
Overviewv

Both C and Assembly level debugging

Real time (24MHz) In Circuit Emulation for all part
types

Trace Buffer - 128K Deep

Breakpoints

Watch Variables

Viewing Registers, RAM, Flash,CPU registers

Dynamic Event Points — more than a Breakpoint

¢+ Break

Trace On

Trace Off
External trigger

L 2 <& <&

S Debugglng Features — Code

Connecting From Last Mile To First Mile.

Assembly and C level debugging
Assembly —

¢+ Singular step program execution capability
+ Displays Instruction in trace buffer
+ Full breakpoint capability in assembly

Source level C -
¢+ Single step instruction
+ Step over a procedure
+ Step out of a procedure
¢+ C —level breakpoint capability

s Tooess Debugging Features - Trace

—
—

Connecting From Last Mile To First Mile.

Trace Buffer 128K bytes — (overwrites)
Default status is Trace buffer “ON”
Selectable fields — (Debug—->Trace mode)

+ PC Program Counter
¢+ Time Stamps

+ SP - Stack Pointer

¢+ A — Accumulator

+ External pins on ICE

On/Off capability with Dynamic Event Points

= Debugglng Features -

Connecting From Last Mile To First Mile.

Halts program execution, provides the user
with real time control of program
execution.

Selectable via application editor or debugger
Selectable by clicking in left margin of code

Breakpoint manager window

= Debuggmg Features -

Connecting From Last Mile To First Mile.

Provides the user the ability to View Global
variables

Watch Variables may be modified

Watch Variables automatically recalled

—

2 CYPRESS

——— 1

Connecting From Last Mile To First Mile.

Access to I/O Registers, RAM, Flash,CPU registers
+ CPU Registers — PC,SP,X, A, Flags

Bank 0 and Bank 1 viewable and modifiable
+ 512 configuration registers may be changed

+ Debugging capability to reconfigure your device while
debugging
+ Bank 0 Port 2 Data output to LCD’s

RAM - Modifiable and viewable when program halts

Flash — Viewable Not modifiable

w OO0

Connecting From Last Mile To First Mile.

B4 Crpress Debugglng Features -
P

Advanced emulation capabilities —

¢+ Features comparable to $1,000+ emulators
Provides limitless conditional testing

+ Complete conditional TRACE capture
+ External triggering

¢+ Provides the capability to sequence complex
test scenarios

Similar to a hardware logic analyzer

11

/5w Why Use Dynamic Event
Doir ?

Connecting From Last Mile To First Mile.

Problem — How to monitor a complex sequence of
events?

+ A standard emulator provides the capability to look at
one condition and perform one event a Break.

¢+ Dynamic Event Points — Can help you answer “What
happens the 20t time through the loop when the Variable
is equal to 99h?”

+ We will perform this level of testing in the hands on
section

Dynamic Event Points — Debugging a sequence of
events, instruction by instruction

Each event is a mini if/then — if a condition occurs,
then take one or more actions + go to the next
conditions

=sTms Dynamic Event Points

——— 1

Connecting From Last Mile To First Mile.

Typical Dynamic Event Point Usages

o Find a stack overflow - SP

o Trace a specific range of code - PC

o Find when a memory location is corrupted
o Find when an IO address is written

o Drive an external signal in interrupt

) Measure interrupt latency

13

s Cooess Dynamic Event Points

——— 1

Connecting From Last Mile To First Mile.

Typical Dynamic Event Point Usages (cont.)

o Break the Nth time a line of code is executed
o Detect jump or call out of program image

) Look for IOX access with specific address

o Break on carry flag status

o Break on signals from customer target board
. Wait for certain number of instructions

o Count sleep periods

14

B/ cress Dynamic Event Points:

Connecting From Last Mile To First Mile.

Debugger Events X |
2 Bit Thread T State Logic 16 Bit Thread
Disabled Disabled Disabled
1
Disabled Disabled Disabled
2
Disabled Disabled Disabled
3
a | _'l_I
— 1 Enable & bit Thread — State Logic —1I_ Enable 16 bit Thread
= | lrverted Mext state: I Ereske = | Irwerted
ID
T o
Low compare Input Select: High compare . ; EEeEn Low compare Input elect High compare
atch count: Tirace
oo <= [BITFELD. -] <= 00 - _ on0d N ERE =] <= oo
™| Extermal tigger
Input M ask:
i
BITFIELD Help: Bits O-7 ﬂ uP Program Counter [PC1E]
Bit-0 [0=07) Rk read flag [active low]
cmp Hi= cmp Lo= 00
Bit-1 [0x02] Rk write flag [active low]
cmp Hi= cmp Lo= 00
|
Help | ok | [fpply | Cearan |

15

S/5oess Conditions - IF ...

——

Connecting From Last Mile To First Mile.

The test case Initialization includes the capability to
specify many different inputs and then add
conditional logic to them!

The IF — possible inputs
Accumulator, Stack Pointer, X, PC
External logic pins

Data address (Memory or I/O)
Data value (Memory or 1/O)

Bit Field — Global Int, Extended 1/O, R/W, Carry, Zero
Flags
+ Count

Conditions: Greater Than / Less Than / Equal To

<& <& <& <& L 4

: OO0

=2 CYPRESS ACtiOnS — THEN

——— 1

Connecting From Last Mile To First Mile.

Possible Actions:

Test sequence (event)complete control:
+ ALWAYS - go to next state
+ Skip a state
¢+ Sequence on the same event

OPTIONS for each event:

¢ Turn trace off

¢ Turn trace on

+ Blip external trigger pin
¢+ Break

17

==:s.....Dynamic Event Points:

ConnechngFromI.cstMleToFrszEChnlcal Nuts and BOItS

Multiple threads — 8/16 bit

16 bit threads
+All CPU registers, including PC
+Can monitor address/data at same time
*No masking of bit fields

8 bit threads
+Contains bit field — 10X bit, global int, ram/mem read/write
+Can mask off unwanted bits
*No PC support

Threads can be logically combined
Test suites can be ordered with complete flexibility

: OO0

=0mss EXecute Project Within

——— 1

Connecting From Last Mile To First Mile.

The last section of this Module will be hands on. We
will use the debugger to find the system bug and
demonstrate the ICE features

Steps:

Switch to the Debugger — What’s Different?

h:

Connect to the ICE

e

Download the project @7

Let’s work!

19

Connecting From Last Mile To First Mile.

/5w Debugging — Download

I

5
— Download the GettingStartedproject .rom file to the Pod
by clicking the Download to Emulator icon .

The system automatically downloads your project .rom
file located in the ..\ out put folder of your project
directory. A progress indicator will report download
status.

Upon successful connection, you will receive notification
and a green light displaying a status of Connected will
display in the lower-right corner of the subsystem.

20

Emulator Download

22 CYPRESS

Connecting From Last Mile To First Mile.

Speed has been greatly improved for

+ Emulator download
x|

¢+ Device programming
Wenfying ...

B7% complete
IRNRNENEREEER

| Cancel I

e Yo (o

21

= s Explore the Debugging

Connecting From Last Mile To First Mile.

% e 3

—The debugging window has many useful features:
Register Memory space, Watch Variable list, output
files, source files, and CPU registers (see the device

Data Sheet, section 2.0 for details).

In the status bar (at the bottom of the screen)you will find
ICE connection indication, debugger target state
information, and (in blue) Accumulator, X register,
Stack Pointer, Program Counter, and Flag register
values, as well as the line number of the current code.

rmss EXecute Project Within

Connecting From Last Mile To First Mile. D e b u ofleo e r

File Edit W“iew Project Config Buld Debug Program Tools Window Help
(B oD=dd @S0 e E = O] R o @ w72
S AT % AL (5 || m | R e || = 20 T B 7 TF |

=l x| =l x|
= @ Example_DAC_outp Current I l
=423 Source Files
= boot.asm Int 10 o oo
nterrup : FLAGS oo
B4 main.asm 4 eall wvoid_handler == o0 |38
3 Headers reci
[Library Source Interruptll: sP oo
[Library Headers 54 Ead 40
TR R R AR A AR R AR RN AAAARR AR AATARRTARAAAARARARARAAAARE TR a
Exsmple DAC_outpurt_2Spin, & PSoC_Pup bosrd project
Purpose
To demonstrate the operation of the DAC user module of the P
=l x|
Function
Upon prografm execution all hardware Settings from the dewvice Current: IDD
loaded into the device and main.asm is executed. The example
& khit DAC and places it in = =analog switched capacitor FSoC oo ([CC CC CcC CC CC CC CC CCa
three. This location allows connection through Analog Buffer gg |CC oo oC oo oo oo s GO
;The DAC cutputs one of &4 possible analog voltages onco the 0 |lcC oo oC o oC oC OC oo
;displays the wvalus on the LED display. The wvalus is in signe
rformar with the analog outpur centered arcund analog oround 18 [CcC CC CC CC CC CC CC CC
srsystem clock is divided by 16 (24V_1) and 186 (24V_2) to prod p=d 0 [B SR 5 S 5 R e e G e S e R W
for the timer. The timer modules interupt is used to update PE |CC OO CC CC CC CC OO OO
(0 to 63) to feed the DAC module allowing easy voltage chser B P e e
multimeter.
38 |[CC CC CC CC CC CC CC CC
q0 (CC CC CC CC CC CC CC CC
48 |(CC CC CoC CC CC CC CC CC
Sireulb Connechions 50 [CC CC ©C C©C CC CoC CC CC
This application note runs on the PSod pup hoard supplied wi T
;kits or compatible hardware. For proper coperation = multime 4 EEMCC |CC [CC |CC |[CC |[CC |CC |CO.
cn e e e e ~ e e
<] | 4 r »
[Files | A output] raM |10 Regs | Flash |
:ll ;I j MName [value

23 outputy [s}*%atelaTe)

—
< [* [Build 4 Debug >| < | |
For Help, press F1 Ln23 [aroo][Xi4d [SPioo [PCrooss [Foo! [EESEll e [Sornected UM

|J IDE Tutorial Klmber...“ L Example _DAC_o... Ui <f- e ©

PERSONAL () ACCESS () ENTERPRISE

23

==~ Debugging Overview

Connecting From Last Mile To First Mile.

Following is a summary of our debug strategy:

First, Compile and Link the project to ensure no run
time errors.

Second, Execute the program (RUN) with the PSoC
pup connected.

Verify output (on LED’s) to expected output.

System operation should be the full range of 8 bit
DAC output at a ¥4 second update rate showing on
the LED’s. Starting at the high end and
proceeding down to the digital input of zero.

24

= e Debugglng Features — Code

Connecting From Last Mile To First Mile.

Process:

Set breakpoints on both routines to see the
decrementing of the OutputV value as well as the
transfer to the Accumulator.

The Watch Variable from the code that we will
view/monitor is the “OutputV” value. This value
should cycle the entire 8 bit DAC range and then
reset again.

We will see the output to Port 2 register.

Lastly, We will introduce Dynamic Event Points

25

—_—

Connecting From Last Mile To First Mile.

Breakpoints

This feature of PSoC Designer allows you to stop program
execution at predetermined address locations. When a
break is encountered, the program is halted at the address
of the break, without executing the address’s code. Once
halted, the program can be restarted using any of the
available menul/icon options.

For our example we will set two breakpoints:

Open the main.asm file by highlighting it in the source tree. (If
the source tree is not showing, access View >> Project.)

Scroll down in the file to the statement: MBC EnableGInt.

= Go to the left margin next to this statement and left click. A

red dot will signify that you have just set 'W"@'ﬂ

26

e —
e ———
e ———
———
[—— il

=sToms Debugging Features -

Connecting From Last Mile To First Mile. B rea k 00 i N ts
Breakpoints

second breakpoint we will set in the RCTINT.asm file.
= Scroll down to the statement “dec [outputVv]”

= Click on the left margin next to this statement. A red dot will
signify that you have set a breakpoint.

Breakpoint Manager

To view all the breakpoints you have it 48

set, access Debug >> Breakpoints.

—=Press OK to close the Breakpoint Dialog Box. = [fem Aemovel | [ok |

: e Yo (o

Features -

Connecting From Last Mile To First Mile. e

=2 CYPRESS Debugging_
AP - -

The ICE provides the ability to select variables of
interest

(from the users program) that can be monitored real
time.

We will set a watch on the variable “OutputV.” The
address for this variable is OEh. This can be found
in the Trace window or in the output.mp file.

= To set OutputV as a Watch Variable,
access Debug >> Watch Variables and
fill in the following details:

28 sasonk 0 s

" s 1race Window

Connecting From Last Mile To First Mile.

PSoC Designer
Trace Report

3 Display Options C:\Program File \Cypress MicroSystems' PSoC

DesignertExamplesiExample_Dynamic_PWM'itrace
e r :
] Trace Report
u - L - n

Trace Dlsplay Can Be. e jPC ~ INSTRUCTION - DATA jAjXSP FLAGS- EXTERNAL
01C8 |OR REG[3Eh], 01h ;F 01 |00 ;6 ;)0 ;0000000

o 0106 |CALL PWMI16 4 Start 08 01 |00 |08 |00 00000000

+ Saved to afile

n u
¢+ Viewed, saved and printed as

026% RET FF 01 (00 |04 |00 00000000

-}

0266 |OR REG[33h], 01h EFF 01 |00 |08 |00 00000000
CALL PWNM16_3_Start 06 a1 |00 |06 |00 00000000
0307 [RET EFF 01 |00 |04 |00 00000000
0304 |OR REG[2Eh], 01h FF a1 |00 |06 |00 00000000
0102 |CALL PWMI6_2 Start 04 01 |00 |08 |00 00000000
0345 [RET FF a1 |00 |04 |00 00000000
03A2 |OR REG[23h], 01h EFF 01 |00 |08 |00 00000000

FEREREEREREEE w
=]
=
=

«PC-| =~ INSTRUCTION = |« DATA | A« | =3 |« SP | -FLAGS~| EXTERNAL ﬂ
0124 OR REG[23h]. 01k FF 07 11 06 0d 00000000
00D CALL _PwWMI1E_5 Stat OF 07 11 06 00 00000000
0643 RET FF 07 11 04 nn 00000000
0GAS POPA 07 07 11 06 00000000
o POP 5 mm11111111111111111111111111113
0644 OR M[OTh], 02h e £ 00000000
0642 AND F.EFh e Trace Report 12 nn 00000000
0G9F OR REG[E1h]. FFh 5 10 00000000
069C AMD REG[ETHL OOh 00 cz C2 08 12 00000000
NMEAs MR F 11k M r= r= Mnq 12 CInn

. (e Y Y

22 ~YPRESS WatC h Wi n d oW

——— 1

Connecting From Last Mile To First Mile.

Global Variable addresses are x
automatically entered/updated Vaiabl N |
each time the project is sadess o
downloaded to the ICE Tope: B =]
{ {
Global Variables can be selected S RS & Hex

from the << Globals selection e et
after download.
list
+ Name, Address, Type and Memory/'

Select global wariables:

Area are automatically set Adcress | Name | Tope |

<< Globals | ok | Cancel |

Check box to select Watch /EI
Variable

Select Al | Unselect &l |

so (Yo oY

= vpRrSS ICE Status Bar readLeft to Right

Connecting From Last Mile To First Mile.

Accumulator

Index

Stack Pointer

Program Counter

Flag

Actual CPU frequency
Program execution status
ICE communication status
ICE connection status
Carry and Zero flags

A:0L %00 5P:04 PC:0108 F:00 3.01 MHz [HEESEMN dle Connected (C:0 Z:0
: OO0

———
—
—
— -

=7 ..« C Compiler Project Settings

Connecting From Last Mile To First Mile.

Macro Defines

Enable Multiply/Accumulate (MAC)
Optimize Math Functions for Speed

Project Settings

Carnpiler | Device Eu:Iitu:urI Linker I P'ru:ugrammerl

Macro defines:

=

b acro undefines

¥ Enable ImageCraft

W Enable MAC [Optimize math functions for zpeed

" | Enable Code Compression

o |

Cancel |

32

e Yo

=2 CYPRESS C I nte 'ru ptS

-~

Connecting From Last Mile To First Mile.

C Interrupts are Supported

#pragma interrupt_handler <name> *

¢+ reti is used instead of ret to return from the
function

¢+ Virtual registers used by the function are
automatically saved and restored

+ If another function is called from the interrupt
handler all virtual registers are saved and
restored

Additional Information Available in the C
Language Compiler User Guide

33

=~

2 CYPRESS

——— 1

Connecting From Last Mile To First Mile.

=581 [MTT L O

We are now ready to start execution of the program. Our
example should stop on the first breakpoint in main.asm. A
yellow arrow will point to the M8C_EnableGInt line of code

when this happens.

Use the “Step Into...” functions to execute the next several
instructions. Watch what happens to outputV, the
Accummulator and the LEDs on the PuP at each step.

Click the Green Run icon to execute the program again. The
program will stop on the second breakpoint in RTCINT.asm,

. OO0

s e weneNffawaple Items

=/ crems€bugging screen:

» IntroGettingStarted - PSoC Designer - [rteint - Read Only]

B File Edit WView Project Config Build Debug Program Tools Window Help |2 x|
- - = =
IEEEEEE == e il d B 282
EEZ2ARAABGE|Z|DE|SE S @ﬁu-b»ﬁﬂwn?mmm
e | H none. B alx]
[IntroGettingSt : i
e | N T —
= boot.asm ' none- A m
5 aﬁ ma'g'asm ; SIDE EFFECTS: FLags |00
= IDrary ource: R none . PC | iz
----- [= DACE asm .
----- = PSoCCorfi : s |18
_____ 3 P ocCoric ; THEORY of OPERATICHN: W 14
----- [RTC.asm | : nens.
----- [= RTCINT.a: "
----- [RateGena T - - - - - -
----- [RateGenlN RTCINT:
I'_—'I--a Libray Headers push ' is r2awe L on stack :lﬂl
[l DACEH ‘
----- i DACE.I -
_____ % IntrDG;thi:nc o dec [outputri] ;Decrement wvoltage wvariahle and place R 00
----- E IntroGetting EE: :é[?;;;;;z% L Addresz| Data | Usger Reg Mame | Mode |‘
..... @ RTCh g 4 go0 (14 Port_0_Data R
----- i RTC.i
_____ % Flateéin:nh call DACE WriteStall ;write new wvoltage wvariskhle to DACS om |- Part_0_IE Wi
_____ | HateGen.ir rand wait for optimum write time o2 | - Port_0_Bypass Wi
_____ @ e inc :gnd wait for optimum write time 3 | - reserved RES
?Zv ;.;;iz;?utV] ;if woltage wvariable reaches 0 reset 01 | oo Port_1_Data B
Wy [outputvl,o - oos | - Port_1_IE Wil
oog | - Port_1_Bypazz Wil
n7 | - rezerar RFS =
;I_I _'I branchl: <|rI r N
B Files Chatpat - pop i ;restore L from stackl _>|_'I BAM Bankn |Bank1 | Flashl
X Malted = | =
N
4 Step into A e
Halted
Step out
Halted

Halted

Frogram

Fos Help, proseFl [&.01 14 5% 16 [Po-0113 .00 HEHERNN 1 Comecied [hum|
stare] | @ 3 W FE O Y| POR | K| S| Em] @] Fufl& . B16 Fe [BRE] Ml MOTAUESS 752 aM

PERSONAL ()

() ENTERPRISE

35 ACCESS

2 ¥ ~YPRESS Viewable |temS

—_—

Connecting From Last Mile To First Mile.

Access to I/O Registers, RAM, Flash,CPU registers
+ CPU Registers — PC,SP,X, A, Flags
Bank 0 and Bank 1 viewable and modifiable

At this point in our tutorial we can view the 1/O registers.
The results of the “OutputV” variable will be output onto
Port 2 data line, which is located at I/O Address Register
008.

In the right frame of the Debugger subsystem, click the
Flash (Bank0) tab and go to memory location 008. This is
the Port 2 data line, which will be output to the Pod LED
display. At this point, the LEDs should be lit representing
this value.

. e Yo X

22 ~YPRESS Viewable |temS

——— 1

Connecting From Last Mile To First Mile.

View RAM Registers

¢+ = View the OutputV variable in the RAM section
of the Debugger. Click the RAM tab and scroll
over to the address location OE. The value is
also shown in the Watch Variable window In
the lower right

+ The Ram values may be dynamically changed
while in the debugger.

37

=Toss OYyStem Verification:

——— 1

Connecting From Last Mile To First Mile.

Is the system working correctly?
NO!

¢+ If we let the program run we can see that the
LED’s are not sequencing through the 8 bit
DAC values.

¢+ Let’s use the latest PSoC feature, Dynamic
Event Points to find our run-time error!

38

==_
=

=7 CYPRESS

Connecting From Last Mile To First Mile.

Test scenario:

Using test code from GettingStarted several test cases
have been developed as examples to demonstrate the
usage of Dynamic Event Points.

Test Case #1 — Demonstrates using the 8-Bit and 16-Bit
test threads in combination, monitoring an address
location, breaking on event and turning trace on.
(MEM_DA, MEM_DB).

Test Case #2 — Demonstrates monitoring a specific
assembly instruction using the Match count parameter.

Test Case #3 — Monitoring a particular line of code 16-Bit
(PC) and looking at the Flag registers.

- e Yo X

=00 Dynamic Event Points

——— 1

Connecting From Last Mile To First Mile.

Test Case #1: Demonstrating Mem_ DA, Mem_DB and the
Combinatorial Operator.

Test: Determine if OutputV ever reaches a mid

range of 2f (hex)? If it does: Turn trace on and
Break.

The address location for OutputV is 0eH. (This can
be found by viewing the .mp file which can be found by
selecting the View toolbar ->Output.)

Expected test outcome:

A Break TWO LINES BELOW the mov A,outputV
line of code, the address location 0e = 2F, and the
Accumulator = 2F which would be correct for the
program

o OO0

sorress Dynamic Event Points: Test

—_—

Connecting From Last Mile To First Mile.

Debugger Events :H:I
2 Bit Thread ™ State Logic 16 Bit Thread

Dizabled Disakled Dizabled
1

Dizabled Disakled Dizabled
2

Disabled Dizakled Disabled
3

4 I _>I_I
— I+ Enable 2 bit Thread — State Logic —I+ Enable 16 bit Thread
I Inverted Hest state: ¥ Break I Inverted
ID
w T o
Lowe compare Input Select: High compare > . F racs =n Low compare Input zelect High compare
atch count: Trace OFF
IEIe o= IMEM_DA vI = IDe 3 ; IDDEF o= IMEM_DEI vI o= IDD2f
I [T External trigger
Input b aszk:
ff Combinatorial Operator:
uP Bakd Data Address D) uFP Bakd Data Bus [DE]
5> =
Help | oK. | Cancel | spply | Clearall |

a1 PERSONAL ATCESS

=5mss Dynamic Event Points: Test

Connecting From Last Mile To First Mile.” C ase # 1 =esu ItS

Test Case #1: We are looking to see if we hit a mid-
range of the DAC.

Results: If we were to hit OutputV = 2f the program would break.
It doesn’t! Let’s try something else.

Is the Decrement instruction working?

& Bit Thread “P* State Logic

42

———
—
[——.
—

=sC.ws Dynamic Event Points

Connecting From Last Mile To First Mile.

Test Case #2: Demonstrate (IR) Instruction Register, and
the Match Count

Test: Let’s see if the DEC instruction is working
correctly? When the decrement instruction (DEC)
is executed 3 times Break Turn trace OFF.

Expected test outcome:

A Break TWO LINES BELOW the DEC command.

. e Yo (o

sorress Dynamic Event Points: Test

——— 1

Connecting From Last Mile To First Mile.

Debugger Evenks

2 Bit Thread ™ State Logic 16 Bit Thread

Disakled Disahbled Disahbled
1
Disabled Disahbled Disahbled
2
Dizakbled Disahled Dizahbled
3
4 i 1l
— 1+ Enable & bit Thread State Logic — 1 Enable 15 bit Thread
I Inverted Mext state: " Break I Inverted
ID
T a
Lowe compare Input Select: High compare " h | Tozez O Low compare Input zelect High compare
I?a o IIF| "I o I?a atch count: v Trace Off IEIEI?a e IIFE "I e IEII:I?a
2 I E=xternal trigger
Input kM aszk:
ff
uP instruction regizter [IR] uP Inztruction Register [IR]

Help | oK | Cancel | spply | Clear sl |

PERSONAL ()

44 () ENTERPRISE ()

ACCESS

=,5ss Dynamic Event Points: Test

Connecting From Last Mile To First Mile.” C ase #2 =esu ItS

Test Case #2: We are looking to see if the decrement
command is cycling

Results: Do we hit a breakpoint relatively quickly?

Yes! So we know that our cycle should be working

Let’s try something else.

45

———
—
[——.

=sC.ws Dynamic Event Points

Connecting From Last Mile To First Mile.

Test Case #3: Let’s revisit what this program should do!

We know from the previous tests the following: The mid

range never is hit(2F), But - the DEC command seems to
be working.

Dynamic Event Points will enable a more complex
testing to find our problems: Hint there are two!

. (e Y Y

——— 1

Connecting From Last Mile To First Mile.

=00 Dynamic Event Points

Test Case #3: Let’s start with a simple code inspection first.
Why isn’t OutputV ever hitting the high end?

Answer: A code review of main.asm and RCTINT.asm

shows that we start with 255 and then we DEC first. So
our effective range is only 254.

OK that’s one bug, Now why isn’t it cycling?

47

-~

Connecting From Last Mile To First Mile.

==:"..... Dynamic Event Points: Test

Let’s perform a conditional branch test. (Many
regulated environments require this type of
testing)

Let’s look and see if Branch 1 is ever executed?

Also let’s look to see if how often the resetting of
OutputV occurs. It should only occur after the
completion of the loop 255-0.

Look at the .Ist file (in the output section) for the
PC values. Let’s investigate the conditions of the
Jz command as well.

48

Connecting From Last Mile To First Mile.

Sormss PDynamic Event Points: Test

Example List file (Your’s may be slightly different- do a Control Find
for RTCINT)

0054) mov A,[outputV] ;if voltage variable reaches 0 reset to
maximum value

011A: 51 0OE MOV A, [outputV]
(0055) jz branch1
011C: A004 JZ 0x0121
(0056) mov [outputV],0
011E: 55 OE 00 MOV [outputV],0
(0059) branch1:
(0060) pop A ;restore A from stack
0121: 18 POP A

. e Yo (o

=T Dynamic Event Points: Test

Connecting From Last Mile To First Mile.”

Debugoer Events E3 I

g Eit Thread ™ State Logic 15 Eit Thread
00 ==BITFIELD== 00 11c ==PC16==11c
Inverted = TRUE hatch Count 1 Mext State 2 Inverted = FALSE
1 hask: 20 Break On
Trace Off
Disalbled 11e ==PC16==11&
bdatch Count 1 Mext State 1 Inverted = TRUE
2 Break On
Trace Off
Dizakled Disakled Dizakled
3
| i =i
— v Enable 2 bit Thread — State Logic — I+ Enable 15 bit Thread
™ Inwverted Mext state: [Break ™ lnverted
[
w T]
Lowe compars Input Select: High compare —— : :: Trace I:l:: Lowe compare Input zelect High compare
atch count: race
IEIEI <= IEHTFIELD ;I <= IEIEI 7 : |EI11|: <= |p|:15 ;I o= IEI11|:
I T External trigger
Input b aszk:
=20 Cormbinatarial Operatar:
BITFIELD Help: Bits O-7 = uP Program Counter [PC1E]
Eit-0 [0=01] Rakd read flag [active low] MAMD
crp Hi= cmp Lo= 00 :[}D—
Bit-1 [0=02] Rakd warite flag [active low] aR
crp Hi= cmp Lo= 00
=l 5 =l
Help | [Ok,] Cancel | apply | Clear &l |

S DYynNamic Event Points: Test

—
—

Connecting From Last Mile To First Mile.

Expected Results for our tests:

We are looking in the first sequence for a
false on the jz command. Ifit is false then
the code will drop to the next command and
reset the OutputV value.

Our next event is looking for the inversion of
the above. Does the jz ever hit true?

51

—
—

S DYynNamic Event Points: Test

Connecting From Last Mile To First Mile.

Expected Results for our tests:
Let’s let it run and see what happens.

We should get lot of breaks if the code
Is cycling correctly.......

Answers will be given in the class.....

Let’s Hit RUN!

52

2 CYPRESS

Connecting Frorn Last Mile To First Mile."

