
Module 3: Getting Started
Debugging

Changing the Embedded WorldTM

2

Module Objectives:

Section 1: Introduce Debugging Techniques
Section 2: PSoC In-Circuit Emulator (ICE)
Section 3: Hands on Debugging a System with

PSoC MCU

Breakpoints
Watch Variables
Dynamic Event Points

3

Let’s Run our Program

In Circuit Emulators (ICE) required for “real
application” testing

Most programs don’t work the first time…

You need to test the program in circuit

Debugging allows the developer to monitor the
application code line by line as it is running on the
circuit.

4

Most common types of errors

Off by one –

Memory corruption

Timing interrupts – Where did the code go?

Stray pointers

Hardware design errors

Peripheral errors

5

PSoC Debugging Features
Overview

Both C and Assembly level debugging
Real time (24MHz) In Circuit Emulation for all part

types
Trace Buffer - 128K Deep
Breakpoints
Watch Variables
Viewing Registers, RAM, Flash,CPU registers
Dynamic Event Points – more than a Breakpoint

Break
Trace On
Trace Off
External trigger

6

Debugging Features – Code
Debugging

Assembly and C level debugging
Assembly –

Singular step program execution capability
Displays Instruction in trace buffer
Full breakpoint capability in assembly

Source level C -
Single step instruction
Step over a procedure
Step out of a procedure
C – level breakpoint capability

7

Debugging Features - Trace
Buffer

Trace Buffer 128K bytes – (overwrites)
Default status is Trace buffer “ON”
Selectable fields – (Debug Trace mode)

PC Program Counter
Time Stamps
SP – Stack Pointer
A – Accumulator
External pins on ICE

On/Off capability with Dynamic Event Points

8

Debugging Features -
Breakpoints

Halts program execution, provides the user
with real time control of program
execution.

Selectable via application editor or debugger

Selectable by clicking in left margin of code

Breakpoint manager window

9

Debugging Features -
Watch Variables

Provides the user the ability to View Global
variables

Watch Variables may be modified

Watch Variables automatically recalled

10

Access to I/O Registers, RAM, Flash,CPU registers
CPU Registers – PC,SP,X, A, Flags

Bank 0 and Bank 1 viewable and modifiable
512 configuration registers may be changed
Debugging capability to reconfigure your device while
debugging
Bank 0 Port _2_Data output to LCD’s

RAM - Modifiable and viewable when program halts

Flash – Viewable Not modifiable

Debugging Features - Viewable Items

11

Debugging Features -
Dynamic Event Points

Advanced emulation capabilities –
Features comparable to $1,000+ emulators
Provides limitless conditional testing

Complete conditional TRACE capture

External triggering

Provides the capability to sequence complex
test scenarios

Similar to a hardware logic analyzer

12

Why Use Dynamic Event
Points?

Problem – How to monitor a complex sequence of
events?

A standard emulator provides the capability to look at
one condition and perform one event a Break.

Dynamic Event Points – Can help you answer “What
happens the 20th time through the loop when the Variable
is equal to 99h?”

We will perform this level of testing in the hands on
section

Dynamic Event Points – Debugging a sequence of
events, instruction by instruction

Each event is a mini if/then – if a condition occurs,
then take one or more actions + go to the next
conditions

13

Dynamic Event Points

Typical Dynamic Event Point Usages

• Find a stack overflow - SP

• Trace a specific range of code - PC

• Find when a memory location is corrupted

• Find when an IO address is written

• Drive an external signal in interrupt

• Measure interrupt latency

14

Dynamic Event Points

Typical Dynamic Event Point Usages (cont.)

• Break the Nth time a line of code is executed

• Detect jump or call out of program image

• Look for IOX access with specific address

• Break on carry flag status

• Break on signals from customer target board

• Wait for certain number of instructions

• Count sleep periods

15

Dynamic Event Points:
Main window

16

Conditions – IF …

The test case initialization includes the capability to
specify many different inputs and then add
conditional logic to them!

The IF – possible inputs
Accumulator, Stack Pointer, X, PC
External logic pins
Data address (Memory or I/O)
Data value (Memory or I/O)
Bit Field – Global Int, Extended I/O, R/W, Carry, Zero
Flags
Count

Conditions: Greater Than / Less Than / Equal To

17

Actions - … THEN

Possible Actions:
Test sequence (event)complete control:

ALWAYS – go to next state
Skip a state
Sequence on the same event

OPTIONS for each event:
Turn trace off
Turn trace on
Blip external trigger pin
Break

18

Dynamic Event Points:
Technical Nuts and Bolts

Multiple threads – 8/16 bit
16 bit threads

All CPU registers, including PC
Can monitor address/data at same time
No masking of bit fields

8 bit threads
Contains bit field – IOX bit, global int, ram/mem read/write
Can mask off unwanted bits
No PC support

Threads can be logically combined
Test suites can be ordered with complete flexibility

19

Execute Project Within
Debugger

The last section of this Module will be hands on. We
will use the debugger to find the system bug and
demonstrate the ICE features
Steps:
Switch to the Debugger – What’s Different?

(Looks like the Application Editor, but files are read-
only)

Connect to the ICE

Download the project

Let’s work!

20

Debugging – Download
actions

⇒ Download the GettingStartedproject .rom file to the Pod
by clicking the Download to Emulator icon .

The system automatically downloads your project .rom
file located in the …\output folder of your project
directory. A progress indicator will report download
status.

Upon successful connection, you will receive notification
and a green light displaying a status of Connected will
display in the lower-right corner of the subsystem.

(Note: An important general rule to remember before downloading is
to make sure there is not a part (M8C) in the programming socket of
the Pod. Otherwise, debug sessions will fail.)

21

Emulator Download

Speed has been greatly improved for
Emulator download
Device programming

22

Explore the Debugging
Window:

⇒The debugging window has many useful features:
Register Memory space, Watch Variable list, output
files, source files, and CPU registers (see the device
Data Sheet, section 2.0 for details).

In the status bar (at the bottom of the screen)you will find
ICE connection indication, debugger target state
information, and (in blue) Accumulator, X register,
Stack Pointer, Program Counter, and Flag register
values, as well as the line number of the current code.

23

Execute Project Within
Debugger

⇒Explore the Debugging Window:

24

Debugging Overview

Following is a summary of our debug strategy:

First, Compile and Link the project to ensure no run
time errors.

Second, Execute the program (RUN) with the PSoC
pup connected.

Verify output (on LED’s) to expected output.

System operation should be the full range of 8 bit
DAC output at a ¼ second update rate showing on
the LED’s. Starting at the high end and
proceeding down to the digital input of zero.

25

Debugging Features – Code
Debugging

Process:
Set breakpoints on both routines to see the
decrementing of the OutputV value as well as the
transfer to the Accumulator.

The Watch Variable from the code that we will
view/monitor is the “OutputV” value. This value
should cycle the entire 8 bit DAC range and then
reset again.

We will see the output to Port 2 register.

Lastly, We will introduce Dynamic Event Points

26

Debugging Features -
Breakpoints

Breakpoints
This feature of PSoC Designer allows you to stop program
execution at predetermined address locations. When a
break is encountered, the program is halted at the address
of the break, without executing the address’s code. Once
halted, the program can be restarted using any of the
available menu/icon options.

For our example we will set two breakpoints:

Open the main.asm file by highlighting it in the source tree. (If
the source tree is not showing, access View >> Project.)

Scroll down in the file to the statement: M8C_EnableGInt.

⇒ Go to the left margin next to this statement and left click. A
red dot will signify that you have just set a breakpoint.

27

Debugging Features -
Breakpoints

Breakpoints

⇒ The second breakpoint we will set in the RCTINT.asm file.
⇒ Scroll down to the statement “dec [outputV]”
⇒ Click on the left margin next to this statement. A red dot will
signify that you have set a breakpoint.

Breakpoint Manager
To view all the breakpoints you have
set, access Debug >> Breakpoints.

⇒Press OK to close the Breakpoint Dialog Box.

28

Debugging Features -
Watch Variables

The ICE provides the ability to select variables of
interest

(from the users program) that can be monitored real
time.

We will set a watch on the variable “OutputV.” The
address for this variable is 0Eh. This can be found
in the Trace window or in the output.mp file.

⇒ To set OutputV as a Watch Variable,
access Debug >> Watch Variables and
fill in the following details:

29

Trace Window

3 Display Options
Trace Display Can Be:

Saved to a file
Viewed, saved and printed as
HTML report

30

Watch Window

Global Variable addresses are
automatically entered/updated
each time the project is
downloaded to the ICE

Global Variables can be selected
from the << Globals selection
list

Name, Address, Type and Memory
Area are automatically set

Check box to select Watch
Variable

31

ICE Status Bar Read Left to Right

Accumulator
Index
Stack Pointer
Program Counter
Flag
Actual CPU frequency
Program execution status
ICE communication status
ICE connection status
Carry and Zero flags

32

C Compiler Project Settings

Macro Defines
Enable Multiply/Accumulate (MAC)
Optimize Math Functions for Speed

33

C Interrupts

C Interrupts are Supported

#pragma interrupt_handler <name> *
reti is used instead of ret to return from the
function
Virtual registers used by the function are
automatically saved and restored
If another function is called from the interrupt
handler all virtual registers are saved and
restored

Additional Information Available in the C
Language Compiler User Guide

34

We are now ready to start execution of the program. Our
example should stop on the first breakpoint in main.asm. A
yellow arrow will point to the M8C_EnableGInt line of code
when this happens.

Use the “Step Into…” functions to execute the next several
instructions. Watch what happens to outputV, the
Accummulator and the LEDs on the PuP at each step.

Click the Green Run icon to execute the program again. The
program will stop on the second breakpoint in RTCINT.asm,
“dec [outputV]”

Debugging Features - Execute the Program

35

Debugging screen:
Viewable Items

36

Viewable Items

Access to I/O Registers, RAM, Flash,CPU registers
CPU Registers – PC,SP,X, A, Flags

Bank 0 and Bank 1 viewable and modifiable
At this point in our tutorial we can view the I/O registers.
The results of the “OutputV” variable will be output onto
Port 2 data line, which is located at I/O Address Register
008.

In the right frame of the Debugger subsystem, click the
Flash (Bank0) tab and go to memory location 008. This is
the Port 2 data line, which will be output to the Pod LED
display. At this point, the LEDs should be lit representing
this value.

37

Viewable Items

View RAM Registers

⇒ View the OutputV variable in the RAM section
of the Debugger. Click the RAM tab and scroll
over to the address location 0E. The value is
also shown in the Watch Variable window in
the lower right

The Ram values may be dynamically changed
while in the debugger.

38

System Verification:

Is the system working correctly?
NO!

If we let the program run we can see that the
LED’s are not sequencing through the 8 bit
DAC values.

Let’s use the latest PSoC feature, Dynamic
Event Points to find our run-time error!

39

Test scenario:

Using test code from GettingStarted several test cases
have been developed as examples to demonstrate the
usage of Dynamic Event Points.

Test Case #1 – Demonstrates using the 8-Bit and 16-Bit
test threads in combination, monitoring an address
location, breaking on event and turning trace on.
(MEM_DA, MEM_DB).

Test Case #2 – Demonstrates monitoring a specific
assembly instruction using the Match count parameter.

Test Case #3 – Monitoring a particular line of code 16-Bit
(PC) and looking at the Flag registers.

40

Dynamic Event Points

Test Case #1: Demonstrating Mem_DA, Mem_DB and the
Combinatorial Operator.

Test: Determine if OutputV ever reaches a mid
range of 2f (hex)? If it does: Turn trace on and
Break.

The address location for OutputV is 0eH. (This can
be found by viewing the .mp file which can be found by
selecting the View toolbar Output.)

Expected test outcome:

A Break TWO LINES BELOW the mov A,outputV
line of code, the address location 0e = 2F, and the
Accumulator = 2F which would be correct for the
program

41

Dynamic Event Points: Test
Case #1

42

Dynamic Event Points: Test
Case #1-results

Test Case #1: We are looking to see if we hit a mid-
range of the DAC.

Results: If we were to hit OutputV = 2f the program would break.

It doesn’t! Let’s try something else.

Is the Decrement instruction working?

43

Dynamic Event Points

Test Case #2: Demonstrate (IR) Instruction Register, and
the Match Count

Test: Let’s see if the DEC instruction is working
correctly? When the decrement instruction (DEC)
is executed 3 times Break Turn trace OFF.

Expected test outcome:

A Break TWO LINES BELOW the DEC command.

44

Dynamic Event Points: Test
Case #2

45

Dynamic Event Points: Test
Case #2-results

Test Case #2: We are looking to see if the decrement
command is cycling

Results: Do we hit a breakpoint relatively quickly?

Yes! So we know that our cycle should be working

Let’s try something else.

46

Dynamic Event Points

Test Case #3: Let’s revisit what this program should do!
It should be cycling from 255-0 with the digital value lighting the
LED’s.

What is it doing?

We know from the previous tests the following: The mid
range never is hit(2F), But - the DEC command seems to
be working.

Dynamic Event Points will enable a more complex
testing to find our problems: Hint there are two!

47

Dynamic Event Points

Test Case #3: Let’s start with a simple code inspection first.

Why isn’t OutputV ever hitting the high end?

Answer: A code review of main.asm and RCTINT.asm
shows that we start with 255 and then we DEC first. So
our effective range is only 254.

OK that’s one bug, Now why isn’t it cycling?

48

Dynamic Event Points: Test
Case #3

Let’s perform a conditional branch test. (Many
regulated environments require this type of
testing)

Let’s look and see if Branch 1 is ever executed?

Also let’s look to see if how often the resetting of
OutputV occurs. It should only occur after the
completion of the loop 255-0.

Look at the .lst file (in the output section) for the
PC values. Let’s investigate the conditions of the
jz command as well.

49

Dynamic Event Points: Test
Case #3

Example List file (Your’s may be slightly different- do a Control Find
for RTCINT)

0054) mov A,[outputV] ;if voltage variable reaches 0 reset to
maximum value

011A: 51 0E MOV A,[outputV]

(0055) jz branch1

011C: A0 04 JZ 0x0121

(0056) mov [outputV],0

011E: 55 0E 00 MOV [outputV],0

(0059) branch1:

(0060) pop A ;restore A from stack

0121: 18 POP A

50

Dynamic Event Points: Test
Case #3

51

Dynamic Event Points: Test
Case #3

Expected Results for our tests:

We are looking in the first sequence for a
false on the jz command. If it is false then
the code will drop to the next command and
reset the OutputV value.

Our next event is looking for the inversion of
the above. Does the jz ever hit true?

52

Dynamic Event Points: Test
Case #3

Expected Results for our tests:

Let’s let it run and see what happens.

We should get lot of breaks if the code
is cycling correctly…….

Answers will be given in the class…..

Let’s Hit RUN!

53

