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yclic redundancy codes, or CRCs, preserve the integrity of data in

storage and transmission applications. CRC implementations can use

either hardware or software methods. In the traditional hardware
implementation, a simple shift register circuit performs the computations by
handling the data a bit at a time. In software implementations, however,
handling the data as bytes or even words becomes more convenient and
faster. Several software algorithms for performing CRC computations have
been reported in the literature.!-? Here, after briefly reviewing the theory
behind CRC, we describe these algorithms from a mathematical viewpoint.
We then compare the different algorithms in terms of their speeds and
storage requirements.

Mathematical background

We shall first introduce the binary field and the binary polynomials that
facilitate the definition of cyclic redundancy codes. In simple terms, a field
is an algebraic system in which the operations of addition, subtraction, mul-
tiplication, and division can be performed. The set of real numbers, for ex-
ample, forms a field. Fields can be finite or infinite. The smallest finite field
is the binary field that has just two elements denoted usually by O and 1. The
tables in Figure 1 define the addition and multiplication operations in this
field.

From the addition table, we see that an EXOR gate is all that we need to
perform the addition operation in the binary field. Moreover, we see 0 and
1 to be their own additive inverses, and so subtraction in the binary field is
the same as addition. Multiplication in the binary field can be performed
simply by means of an AND gate. We must define division in this field only
for the single nonzero element 1, and we do this trivially by noting that divi-
sion by 1 leaves both 0 and 1 unchanged.

A binary polynomial is a polynomial with coefficients from the binary
field. For example, 0,1, x, I + x, x2, 1 + x + x2 are all binary polynomials
in the dummy variable x. Given any sequence of bits, we can associate a
binary polynomial with it by regarding the different bits as representing the
coefficients of the polynomial. For instance, with the sequence 10101 1, we
can associate the fifth degree polynomial 1-x0+0-x!1 +1-x2+0-x3+
1-x4+1.x5 =1+x2 +x* +x5.
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According to the convention used here, the rightmost
bit of a sequence represents the coefficient of the high-
est degree term of the associated polynomial. A left-to-
right shift of a sequence of bits by i positions (with the
vacated positions filled with 0’s), therefore, cor-
responds to multiplying the associated polynomial by
xi. We perform operations involving binary
polynomials in exactly the same manner as we do with
ordinary polynomials, that is, polynomials with real
number coefficients. However, we manipulate the co-
efficients using the rules of the binary field. Figure 2
contains some examples.

Cyclic redundancy codes

Error control coding provides the means to protect
data from errors and involves essentially adding a cer-
tain amount of redundancy to the data in a controlled
fashion. In a typical (block) coding scheme, the data to
be protected is first divided into k-bit message blocks.
Each block is then encoded into an n-bit (n > k)
codeword. The redundancy added therefore amounts
ton — k bits per message block. We refer to these bits
as check (or parity) bits.

We collectively refer to the set of codewords as a code
and select it such that it has good error correction/
detection capabilities and also some algebraic structure
to facilitate implementation. A simple example of a
code is the even-parity code used in many microcom-
puter systems to protect data in memory. For this code,
k =8,n =9,and n-k = 1. All codewords have even
parity, and the code is capable of detecting all odd num-
bers (1, 3, 5, 7, and 9) of errors in a codeword.

1 +x

+ x3 + x6
X + x2 + x6

+ x4

1 +x2 4+ x3 + x4

M1 +x2 +xH)-x +x3)=x +x7

+ 10 (1 0|1

0{0 |1 0|0]|0

1y1/0 1101}1
@ (b)

Figure 1. Addition table (a) and multiplication table (b).

The selection of a code for a specific application
depends on a number of factors including the amount
of protection required, the overhead involved, the cost
of implementation, the error control strategy em-
ployed, and the nature of errors. The n - k check bits of
a code forming the overhead directly affect the error
control capability of the code and thereby the amount
of protection provided. In general, the more check bits
in a code, the greater is its power of error correction/de-
tection. For a given number of check bits, the relative
overhead of a code can be kept low by using a large mes-
sage block size k; however, this action tends to increase
the implementation cost of the code.

Two error control strategies have been popular in
practice. They are the FEC, or forward error correc-
tion, strategy, which uses error correction alone, and
the ARQ, or automatic repeat request, strategy, which
uses error detection combined with retransmission of
corrupted data. The ARQ strategy is generally prefer-
red for several reasons, including the fact that the num-
ber of check bits required to provide a certain amount
of error protection is smaller for error detection than

Addition
(or subtraction)

Multiplication

x2 4+ x + 1 ~Quotient
x4+ x2 + 1 [x5+x5 +x + 1
x6 + x4 + x2
x5 4+ x4 +x2 4+ x +1 Division
x5 + x3 + x
x4 + x3 4+ x2 + 1
x4 + x2 + 1
x3 —Remainder

Figure 2. Examples of operations involving binary polynomials.
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for error correction. The FEC strategy is typically used
when retransmission is impossible or impractical.
Depending on the nature of the error-generating mech-
anism in the storage or transmission medium, errors
can be random (isolated) or bursty (clustered) and cor-
respondingly influence the choice of a code.

Cyclic redundancy codes (also known as polynomial
codes) form a powerful class of codes suited especially
for the detection of burst errors. In such a code, we
select the codewords such that the associated polyno-
mials are multiples of a certain polynomial g(x) called
the generator polynomial. The generator polynomial
therefore decides the error control properties of a CRC.
Later, we discuss how we can choose the generator
polynomial of a CRC in such a way that we induce cer-
tain desirable properties in the code. Some commonly
used generator polynomials are listed in Table 1.

We now present a simple encoding procedure for a
CRC given its generator polynomial g(x) of degree n -
k. Let u(x) and v(x) represent the polynomials associ-
ated with a k-bit message and the corresponding n-bit
codeword respectively. We refer to u(x) and v(x), with
respective (maximum) degrees of k- 1andn -1, as a
message polynomial and a codeword polynomial
respectively. The relationship between u(x) and v(x) is
then expressed as

v(x)=u(x) g(x).

Notice that the number of added redundant bits equals
the degree of the generator polynomial g(x). The above
encoding procedure, which involves the multiplication
of two binary polynomials, can easily be implemented
in hardware by means of shift registers and EXOR
gates.

We describe another encoding procedure for a CRC
by the equation

v(x)=s(x) + x"*u(x)

where s (x) =Ry [x7* u(x)] is the remainder result-
ing from the division of x” - ku(x) by g(x). That is, for
some unique polynomials a(x) and s(x), we can write

x"*u(x) =a(x)g(x) +s(x)

so that v(x) =a(x)g(x) is a multiple of g(x).

In this encoding procedure the rightmost k bits of a
codeword, which correspond to the coefficients of
x"-* y(x), are simply the message bits being encoded.
The leftmost n - k bits, which correspond to the coeffi-
cients of s(x) (which has a maximum degree of n- k- 1),
form the check bits. Later, we discuss the implementa-
tion of this encoding procedure using hardware and
software approaches.

Both of the encoding procedures we described gener-
ate the same set of codewords [multiples of g(x)}], but
the correspondence between a message and a codeword
is altered depending on the procedure used. The second
procedure, which maps a message into a codeword con-
taining the message itself as a constituent part, is invari~
ably used because the encoding and decoding algorithms
are essentially identical when using this procedure.

Let us look at an example of this procedure. Let the
message to be encoded be the sequence 10101 1 repre-
sented by the polynomial #(x) =1+x2 +x* +x5. Let
g(x) be the CRC-16 polynomial 1 + x2 + x!5 + x!6,
Then

XKy (x) =x160c5 + x4 +x2 +1)

=x2 4 x20 4 x18 4 x16,

Dividing x” - ¥ u(x) by g(x), we obtain the remainder s(x)
seen in Figure 3.

The check bits are therefore011111010000000
0, and the message 10101 1 is encoded into the code-
word0111110100000000101011.

We accomplish error detection using a CRC as
follows. Let a message polynomial #(x) be encoded into

CRC-16
SDLC (IBM, CCITT)
CRC-16 REVERSE

Table 1.
Commonly used generator polynomials.
 EEEEEEEEEEEEEEEEEEEEEEE—

x4+ xS+ x2+1
X6+ x124 %541
x4 x4+ x+1

SDLC REVERSE x4+ x4 x4+ 1

LRCC-16 x4 1

CRC-12 X+ x 43+ x2+x+1

LRCC-8 X+ 1

ETHERNET %32 4 x26 4 X33 4 x72 4 x16 4 x12 4 x!!

+x0+ 8+ X"+t P+ x+ ]
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x5 4+ x2 + x

x21 + x20 + x8 + x
x84 x154 x2 4+ 1 x21 + x20 + x7 + x5
x18 + x16 4+ X7 + x5
x18 4+ x17 + x4 + x2
x17 4+ x16 4 X7 + x5 + x4 + x2
x17 4+ x16 + x3 + x
x7 + x5 + x4 + 3 + X2 + x

s= x + x2 + x3 + x4 + x5 + X7

o e e

Figure 3. An example of message encoding.

the codeword polynomial v(x) before transmission or
storage. Let the errors affecting the codeword be repre-
sented by the error polynomial e(x). The maximum
degree of e(x) is n - 1, and its nonzero terms indicate the
positions where errors have occurred.

The polynomial r(x)=v(x)+e(x) represents the
corrupted codeword received at the decoder and has a
maximum degree also of n - 1. The decoder checks
whether r(x) represents a codeword, that is, whether it is
amultiple of g(x). We do this simply by dividing r(x) (or
equivalently [x" - ¥r(x)] by g(x) and checking for a zero
remainder. If the remainder is zero, we assume r(x) to
be error free. That is, e(x) = 0 so that r(x) = v(x), and
the original message u(x) may be recovered from it.

If the remainder is not zero, we detect the presence of
one or more errors. However, the possibility exists that
the remainder is zero; that is, 7(x) is a multiple of g(x),
even though errors have occurred. When can this hap-
pen? Since both v(x) and r(x) are multiples of g(x), such
a situation arises when e(x) itself is a nonzero multiple
of g(x); that is, when e(x) represents a nonzero
codeword. The probability of such undetected errors
depends on the nature and distribution of errors in the
storage or transmission medium and the generator
polynomial g(x) of the CRC.

We can control the error detection capability of a
CRC by suitable choice of its generator polynomial
g(x).* Consider a single error pattern represented by
e(x) =xiforsomei, 0 < i <n-1. If g(x) has more than
one nonzero term, it does not divide x/ evenly and
therefore can detect all single errors.

Suppose g(x) has (1 + x) as one of its factors. Then
the codeword polynomials, which are multiples of g(x),
also have (1 + x) as a factor. Any polynomial with (1 +
x) as a factor has an even number of terms. We show
this by considering some polynomial v (x) = (1 +x)w
(x). Upon substituting x = 1, we have v(1) = (1 +
Dw(1) = 0, implying that v(x) has an even number of
terms. Therefore, if g(x) has (1 + x) as a factor, all the
codewords have even parity and any odd number of er-
rors can be detected.

Consider now a double error pattern e (x) =x! +x/
=xi(1+x/) forsomei, 0 <i<n-2andj,i+1 </
< n-1. If g(x) does not have x as a factor and if it does

not evenly divide [1 + x/-{]for1 < j-i<n-1,wecan
detect all double errors.

Let us now consider the detection of burst errors. A
burst error of length b is any error pattern for which the
number of bits between the first and last errors, in-
cluding these errors, is b. For example, the error pattern
00010101100, ..., 0represented by e (x) =x3 +x3
+x7 + x8 is a burst error of length 6. Let the generator
polynomial of a CRC be of the form g(x) =1+g,x
+ o+ gppa Xk £ xmk where g1, 82, s Bn-k-1
can be either 0 or 1. In other words, g(x) has a degree of
n - k and is not divisible by x. Any burst error of length
(n - k) or less can be represented as e (x) =x/ (1 +e,x+

+ +e, 4 x"*1)forsomei, 0 < i < kand wheree,,
€5, ..., €,_x- canbeeither O or 1. Clearly, such a poly-
nomial is not evenly divisible by g(x), and therefore we
can detect the corresponding burst error.

Consider now a burst error of length n - k + 1repre-
sented by e(x) =xi(1+e;x+ - +e, 1 x" %1 +
xm-*), Of the 27-k-1 possible error patterns of this
form for each i, 0 < i < k -1, only one error pattern,
namely, e(x) =xig(x), is undetectable. The fraction
of undetected burst errors of length n - k + 1 is
therefore 2-(7-% -1 Similar consideration shows that
the fraction of undetected burst errors of length greater
than n - k + 1is2<7-%)_ Notice the fundamental role
played by the number of check bits 7 - k in the detection
of burst errors.

We now quantify the error detection capability of a
specific code, the one generated by the CRC-16 poly-
nomial. For this code, g(x)=1+x2+x15+x16=
(1+x) (1+x+x!%) and the smallest integer m for
which g(x) divides [1 + x™] is 32,767. So, if the
codeword length n < 32,767 (or equivalently, if the
message block size k < 32,751), the CRC-16 poly-
nomial can detect all single, double, triple, and odd
numbers of errors. Furthermore, it can detect all burst
errors of length 16 or less, 99.997 percent of 17-bit error
bursts, and 99.998 percent of 18-bit or longer error
bursts.

Among the different generator polynomials shown
earlier in Table 1, the CRC-16 polynomial is commonly
used worldwide; for instance, the Bisync (binary syn-
chronous) protocol uses it. IBM’s synchronous data
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link control protocol uses the SDLC polynomial, and
CCITT (the International Consultative Committee for
Telegrapy and Telephony) has standardized it. The
‘‘reverse’”’ polynomials are the same as the ‘‘forward”’
polynomials except that the codewords are in reverse
order. The CRC-12 polynomial is used with 6-bit char-
acters. The LRC (Longitudinal Redundancy Code)
polynomials are used for simple longitudinal parity
calculations, that is, a mod-2 sum of bytes (LRCC-8) or
words (LRCC-16). The Ethernet polynomial is used in
local area networks. 5

Hardware implementation

The second CRC encoding procedure described
earlier involves the computation of s(x), which is the re-
mainder resulting from the division of x”-*u(x) by
g(x). The decoding operation also involves the division
of r(x) [or x"-*r(x)] by g(x) for computing the re-
mainder. A hardware circuit that simulates the division
operation is a linear feedback shift register.4 Figure 4
shows the LFSR circuit for the CRC-16 polynomial.
Notice that the message polynomial u(x) [r(x) for
decoding] feeds in at the right end of the shift register
that corresponds to multiplication of u(x) [or r(x)] by
xn-k,

We perform CRC encoding using a LFSR circuit as
follows. We feed in the entire message u(x) (with the
rightmost bit first) at the right end of the LFSR circuit.
The circuit performs the division operation and stores
the check bits corresponding to s(x) in the different shift
register stages as indicated. Then we append these bits

to the message to form the codeword. The decoding
operation is quite similar. We feed the received poly-
nomial r(x) into the LFSR circuit to compute the re-
mainder. If the remainder is zero, we simply drop the
check bits from the codeword to recover the message. If
the remainder is not zero, we have detected the presence
of error(s) and must take suitable action to recover
from the error condition.

Software implementations

In the hardware implementation we just described,
we process data bit by bit. It is possible to duplicate the
operation of the hardware circuit in software, giving
rise to what we refer to as the bitwise, or CRCB, algo-
rithm. However, we can achieve faster implementa-
tions in software by handling the data as bytes or even
words. We derive the necessary relationship for such
implementations by considering the effect on the check
bits of a message when the message is augmented by a
byte. We assume a generator polynomial g(x) of degree
16 (for example, CRC-16) in the following derivation.

Let u(x) and s(x) represent a message and the cor-
responding check bits respectively. These binary
polynomials are of the form,

u(x) =ug+ux+uyx?+---,and

5(x) =sg+5X+853x2+ -+ +515x15.

Since s(x) is the remainder resulting from the division of
x16u(x) by g(x), we can write for some polynomial a(x),

x1u(x) =a(x)g(x) +s(x).

— > S1a -+ §15 -+

u(x) for encoding

r(x) for decoding

Figure 4. LFSR circuit for the CRC-16 polynomial 1 + x2 + x5 +x!16,
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Let us now augment the message by one more byte.
This corresponds to shifting the original message eight
positions to the right and inserting the extra byte in the
vacated positions. The augmented message #’(x) can
therefore be written as
u’ (x) =b(x) +x8u(x) where,
b(x)=byg+bx+-++ +byx’
corresponds to the newly added byte. Let s’ (x) repre-
sent the check bits corresponding to #’(x). Then, s’ (x)
is the remainder resulting from the division of x16u’ (x)
by g(x). We will denote this symbolically as
5" (X) =Rgx) X160’ (x)].
Expressing u’(x) in terms of u(x), we have
X164 (x) =x16[b(x) +x8u(x)]
=x'6b (x) +x8[x10u (x)]
=x16p(x) +x3[a(x) g (x) +s(x)]

=x16p(x) +x8a(x) g (x) +x8s(x)

The remainder of a sum of polynomials under division
by another polynomial is simply the sum of the re-
mainders of the individual polynomials. So,

5 (X) =Ry [x16u’ (x)]
=Ry X195 (x) +x8a(x) g (x) +x85(x)]

=Ry (X10D (X)] + Ry () Ix8a (x) £ (x)]
+R () Ix8s(x)]

=Ry () x'05 (x) +x85(x)]

since g(x) evenly divides x8a(x)g(x). Expressing b(x)
and s(x) in expanded form,
x16b(x) +x8s(x)=box!6 +byx!7 + - +bxB
+50x8 +5.x% 4+ +59x13
+5gx16 £ 5ox!7 4+ -0 +5y5x23
= (bo+5g)x 16 +(by +59)x1 T + -+ +(by +515xF
+5gx8 +51x% + -0 45915,

Replacing [b; + s; ,g]l by ¢t; fori =0,1,...,7,

x16p (x) +x8s(x) =tox16 44, x17 + -+ +17x2
+50x8 +5x7+ -0 +57x1S
and
5 (X) =Rg(nltox'S +11x\7 4+ +17xB)

+Rg(x) [Soxs +S]X9 + - +S7X15]

=Rg(x) [t0x15+t,xl7 + e +t7X23]
+(soxB+5x%+ -+ +s57x15)

since the degree of the second expression is smaller than
that of g(x).

The last equation relates the check bits of the
augmented message with the check bits of the original

message and the added byte. Notice that the expression
(50x8 + s,x% + - -+ + s,x!5) represents the high-order
eight check bits of u(x) shifted to the right by eight posi-
tions. The bits (¢, ¢, ..., {7) are simply the sum of the
added byte (b, by, ..., b7) and the low-order eight
check bits (sg, Sg, ..., 515) of u(x).

Different algorithms for CRC computations may be
viewed as methods to compute s’ (x) from s(x) and b(x)
using the last equation. In the following material, we
present a few bytewise algorithms that can be used
directly with generator polynomials of degree 16.
Modifications to these algorithms to handle generator
polynomials of other degrees and to handle other units
of data, for example, words, are fairly straightforward.

Table lookup algorithm

For different values of the byte (¢, 2, ..., f7), wecan
precompute the values of the remainder R,y [fox'® +
t;x'7 + ..+ + r,x23] and store themin a table. Such a
table would have 256 entries, each two bytes long. For
example, Table 2 stores the lookup values correspond-
ing to the CRC-16 polynomial. We describe an algo-
rithm for CRC computations using such a table as
follows. Assume that the check bits are stored in aregis-
ter referred to as the CRC register.

1) Initialize the CRC register to 0000 hex, that is, set
the values of s, through 5,5 to 0.

2) EXOR the input byte (bg, b, ..., b7) with (sg, 59,
..., Ss)to form (4g, ¢, ..., t7).

3) Shift the CRC register eight positions to the right.

4) Look up the value corresponding to (¢, ¢, - - -,
t;) from the table and EXOR the CRC register with it.

5) Repeat steps 2 to 4 until you reach the end of the
message.

Compared with the bitwise algorithm, the table
lookup, or CRCT, algorithm we described has a con-
siderable speed advantage.

Reduced table lookup algorithm

In some applications the amount of storage required
for the table lookup algorithm may be too high. We can
use a reduced (smaller) table in such situations. The
basic idea here is to split up the expression R,y
[£ox!6 + ¢, x17 + -+ - +¢7x2] into the sum Ry [£ox'6]
+Rg(x) [t]x”] + .- +Rg(x) [t7x23]. Fori = 0, 1, ...,
7, t; can be either O or 1. If t; = 0, Ry [;x7+16] =0.
So, we must precompute only eight 16-bit values corre-
sponding to Ry [x'6], R,y [x!"], -+-, and Ry(y
[x23]. These values can be stored in a smaller table just
16 bytes long as against the 512 bytes required for the
previous algorithm. Table 3 shows such a reduced table
with precomputed values for CRC-16. We describe the
bytewise reduced table lookup, or CRCR(B), algorithm
as follows:
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by row.

Note: The lookup values in hex notation correspond to (¢, 7}, ..

Table 2.
Lookup table for CRC-16.
0000 D801  FOO1 2800 A001 7800 5000 8801
COC1 = 18CO  30C0 ESC1 60CO BSCl1 90C1 - 48C0
Ci81 . 1980 3180 E981 6180 B981 9181 4980
0140 = D941 - F141 2940 Al41 7940 5140 8941
C301  1BOO0 ~ 3300 EBO1 6300 BBO1 9301 4B00
03C0 DBC1 F3C1  2BCO A3CI 7BCO 53C0 8BC1
0280 DAS1 F281 2A80 A281 7A80 5280 8AS81
C241 1A40 3240 FEA41 6240 BA41 9241 4A40
C601 1E00 3600 [EEO1 6600 BEO1 9601 4E00
06C0 DEC1 F6C1 2ECO A6C1 7TECO 56C0 8EC1
0780 DF81 F781 2F80 A781 7F80 5780 8F81
C741 1F40 3740 EF41 6740 BF41 9741  4F40
0500 DDO1 F501 2D00 AS501 7D00 5500 8DO1
C5C1 1DCO 35C0 EDC1 65C0 BDCi 95C1 4DCO
C481 1C80 3480 FEC81 6480 BC81 9481  4C80
0440 DC41 F441 2C40 Ad41  7C40 5440 8C41
CCO1 1400 3C00 [E401 6C00 B401  9CO1 4400
0CCO D4C1  FCC1 24C0 ACC1 74C0 SCCO 84Ci1
0D80 D581 FD81 2580 ADS81 7580 5SD8O 8581
CD41 1540 3D40 [ES41 6D40 BS41 9D41 4540
OF00 D701 FFO1 2700 AFO1 7700 5F00 8701
CFC1 17C0 3FCO  E7C1 6FCO B7C1 9FC1 47C0
CE81 1680 3E80 [E681 6E80 B681 9E81 4680
OE40 D641 FE41 2640 AE41 7640 SE40 8641
0A00 D201 FAO1 2200 AAO01 7200 5SA00 8201
CAC1 1200 3ACO E2C1 6ACO B2C1 9ACT 42C0
CBS1 1380 3B80 [E381 6B80 B381 9B81 4380
O0B40 D341  FB41 2340 AB41 7340 5SB40 8341
€901 1100 3900 E101 6900 BI101 9901 4100
09CO0  DIC1 F9IC1 21C0 A9CT 71CO 59C0 8iC1
0880 DOS1 F881 2080 A881 7080 5880 8081
C841 1040 3840 ~ EO41 6840  BO41 9841 4040

.» t7), ranging from 0 to 255 and increasing first by column and then

1) Initialize the CRC register to 0000 hex.

2) EXOR the input byte (bg, b, ..., b7) with (sg, 59,
veey 515) to form (to, | ST t7).

3) Shift the CRC register eight positions to the right.

4)Fori=0,1,...,7ift; = 1, look up the correspon-
ding 16-bit value (R, i, [x* *'6]) from the table and EX-
OR the CRC register with it.

5) Repeat steps 2 to 4 until you reach the end of the
message.

Notice that only step 4 differs from the previous al-
gorithm. Instead of a single EXOR operation, the num-
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ber of EXOR operations corresponds to the number of
..., t7). An average value of 4
seems reasonable for random data. This increased
number of operations naturally detracts from the speed

nonzero bits in (¢, ¢,

performance of the algorithm.

It is possible to generate a regular lookup table from
a reduced lookup table in a simple manner. For exam-
ple, Table 2 can be generated from Table 3 as follows.
., 17), generate the lookup
value in Table 2 by EXORing the entries of Table 3 cor-

For any given byte (¢g, ¢, ..

responding to the nonzero bits of the byte.




Table 3. On-the-fly algorithm
Reduced lookup table for CRC-16. Another approach that keeps the storage require-
. ment low is the on-the-fly, or CRCF, algorithm.? In
Power of x (/) Ry [x] (in hex) this algorithm, we compute each modified check bit
(s; ") as a function of the original check bits (s;’s) and
16 A001 the sum of the original check bits and the input bits
17 FOO1 (t;’s). We can derive the required functional relation-
18 D801 ships by using the reduced lookup table, as shown in
19 CCol Table 4 for the CRC-16 polynomial. The first row in
Table 4 corresponds to the original check bits, that is,
20 C601 s(x) shifted eight positions to the right. The next eight
21 C301 rows correspond to the entries of Table 3 expressed in
22 Ci81 binary with the nonzero bits replaced by the appropri-
23 COC1 ate symbolic notation ¢;,i = 0, 1, ..., 7. Table 5 is a re-
Table 4.
Relationships leading to the on-the-fly algorithm.3
s S’ S sy sd ss s s s s’ s’ sy’ S sy S Sis
0 0 0 0 0O O 0 0 s s S S3 S S5 S
%4 0 tt 0 0 o 0O O o 0O 0O ©O0 0 0 O
t, t 4 t 0 0 0 O 0 0 O 0 0 o 0
t, t, 0 t t O 0 0 0 o0 © o o 0 o0
ty 1 0 0 0 ts ty, O 0 0 0 0 : 0 O 0
t4, ¢, 0 0O 0O O0 t t O o o 0 0 0 O
%4 t, 0 0 0 0 0 t t 0 o 0 0 0 0
t, w 0 o0 0 0 0 0 t t O 0 6 0 0
Table 5.
Rearranged form of Table 4.

. . ’ ¥ . .

S S S5 S5 S4 S5 S¢ S S¢Sy S0 Su 52 53 Su

0 0 0 0 O 0 0 O s s S5 sS3 S S S &
h 4 b oy Lty 4 ot ot b e

Yy ot ot ot oty oty ottt
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ty  ts

s 1

tt 4

4
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arranged form of Table 4 and is identical to Perez’s 2) EXOR the input byte (by, b, ..., b7) with (sg, 59,
Table 53 except for notational differences. We describe ..., S15) to form (¢g, ¢y, ..., t7).
the on-the-fly algorithm here: 3) Shift the CRC register eight positions to the right.

4) Calculate the contribution toeachs;’,i = 0, 1, ...,

1) Initialize the CRC register to 0000 hex.
) Initialize the & ° 15 from the t;’s using the relationships in Table 5.

Table 6.
Reduced lookup tables for some important CRC polynomials including Ethernet.

mﬁ
CRC-16 SDLC
CRC-16 SDLC Reverse Reverse
I Ry [x] i Ry ¥ i Ry [x1] i Ry [
16 AQ0C01 16 8408 16 C002 16 8810
17 FOO1 17 4204 17 6001 17 4408
18 D801 18 2102 18 F0O2 18 2204
19 CcCo1 19 1081 19 7801 19 1102
20 C601 20 8C48 20 FC02 20 0881
21 C301 21 4624 21 7E01 21 8Cs0
22 - Cl81 22 2312 22 FF0O2 22 4628
23 CoC1 23 1189 23 7F81 23 2314
24 Co061 24 8CCC 24 FFC2 24 118A
25 C031 25 4666 25 7FE1 25 08Cs
26 C019 26 2333 26 FFF2 26 8C72
27 C00D 27 9591 27 7FF9 27 4639
28 C007 28 CECO 28 FFFE 28 ABOC
29 C002 29 6760 29 7FFF 29 5586
30 6001 30 33B0 30 FFFD 30 2AC3
31 9001 31 19D8 31 BFFC 31 9D71
Ethernet

i Ry [x1] i Ry [¥1] i Ry [x1] i Ry [X1]
32 EDB88320 40 3B83984B 48 E1351B80 56 ED359B63B
33 76DC4190 41 FO794F05 49 709A8DCO 57 9B14583D
34 3B6E20C8 42 958424A2 50 384D46EO 58 AO032AF3E
35 1DB71064 43 4AC21251 51 1C26A370 59 5019579F
36 OEDB8832 44 C8D98A08 52 OE1351B8 60 C5B428EF
37 076DC419 45 646CC504 53 0709A8DC 61 8F629757
38 - EEOE612C 46 32366282 54 0384D46E 62 AA09C88B
39 770730% 47  191B3141 35 01C26A37 63 B8BC6765
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EXOR the CRC register with the calculated 16-bit
value.

5) Repeat steps 2 to 4 until you reach the end of the
message.

Wordwise algorithms

The software algorithms we have discussed so far,
except for the bitwise algorithm, handle data a byteat a
time. These algorithms can easily be modified to handle
larger units of data provided the size of such a unit does
not exceed the degree of the generator polynomial. In
Table 6 we list reduced lookup tables for some
1mportant generator polynomials. The program shown
in the accompanying box generated these tables.

For each g(x), we provide the values of R g ) [x1forn
-k < i < 2(n - k). Such tables are useful in generating
the necessary information for implementing the
different software algorithms with any unit of data the
size of which does not exceed the degree of the
generator polynomial. For example, consider the
CRC-16 polynomial with a word as the unit of data.
The corresponding reduced lookup table can be used to
generate a regular lookup table with 65,536 entries
necessary to implement the table lookup algorithm. It
can be used directly in a wordwise reduced table
lookup, or CRCR(W), algorithm. It can also be used to
generate the necessary functional relationships for
implementing the on-the-fly algonthm The descrip-
tions of the different algorithms using a word as the
unit of data undergo minor modifications. We describe
the wordwise reduced table lookup algorithm, for
example, as follows:

1) Initialize the CRC register to 0000 hex.

2) EXOR the input word (bg, by, ..., bys) with (so,
81, ..., S15) to form (fo, 2y, ..., L15)-

3) Shift the CRC register 16 positions to the right.

4) Fori = 0,1, .., 15if t; = 1, look up the
corresponding 16-bit value from the table and EXOR
the CRC register with it.

5) Repeat steps 2 to 4 until you reach the end of the
message.

terms of their speeds and storage requirements.

Table 7 lists the results. These algorithms are the
bitwise CRCB, the table lookup CRCT, the on-the-fly
CRCF, and the bytewise and wordwise reduced table
lookup CRCR(B) and CRCR(W). The generator poly-
nomial used in the comparison is the CRC-16 poly-
nomial. The accompanying box lists the five programs
implementing the different algorithms. The programs
are written in 8086 assembly language as routines to be
called from a main C program. We used an Intel single-
board computer (iSBC 86/12) operating at 5-MHz
clock speed in executing the different programs.

We compared the different software algorithms in

P ——

: Ta"'e'generation

LISTING 1

This progrom interactively gomrous o reduced look~up tabie for ony
given generstor polynomial g(x) of degree 18 or 32. The information
about the polynomial is entered in two steps as follows:

1) . Degree of ‘the polynomisl (16 or 32).

2) Coefficients of the polynomial except thot of
the highest degres term in hex nototien (4 or
8 hex characters).

For exomple, consider the CRC-16 polynomial with g(x) = 1 + xes2 +

x#¢15 4 xes16, When prompted, information obout CRC~16 is entered
as foliows: : :
1)’ Enter degree of the poiynomial (16 or 32).
16 <CR> i :
2) - Enter cosfficients of the potynoniol in hex.
A0 <CR>

The volue A1 is obtained from the coefficients of ‘the CRC-16
polynomiot {except the highest degree gom) arranged os:

1.(xe40)40, (xe01)+1, (xv02)+. . v 41, (xes18)

*nie e we R e 8 8 B 8 & 8 s s 4oe e e

mTE: This progeom ossumes 32 bit lntcﬁrs '

ssasnen

main() -

i

: ;nt doqr‘n.‘eooﬂ. uﬁaindu. tw/p, power;

/e get ﬂnfomlion aboh( the gu\umt;t poyty'nu'niul o/

prlnu{"ﬁnur degree of uu polynomel (15 or. 32) \n");
scont("Xd" kdegree); . 2
white («grn e 32 &% degres !- IG) {
printf("Onty 18 and 32 are ol lowed. \!\')
printf("Enter degree of the polynoniol (16 or 32).\n"):
scant("%d" kdegrae); :
}
prin(f("tn!u ;ulhchnu of ‘the polynemcl in hex, \n").
:canl("ﬂ(" ‘&coefl);

/e compute end print the r'c,dueod leok'—-up toble s/

winﬂ("va of x [=i]" R((lni)/g(x)}\n"),
printf(" . ")
remainder. = eol”, %
ior (power = degres; power < 2sdegree; power++) |
printf(” Xd XX\n", power, remainder):
tanp = remainder k 2x00000001; %

o remainder = {remainder » 1)
: ll (Vemp == 1) : : §

; ; remainder = remainder t coeff;

} ; ; /e 'né main e/

4 o 0 o s 0 2 8 s s

XN e 2 8 6 8 6.6 @ & 8 o 08 oo
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000 U

The programs implementing the five CRC algorithms

i This module contains 8886 ossembly languoge routines implementing crcb4: Joop crebi ikeep looping till end of word
different CRC atgorithms for the CRC-16 polynomici. These routines dec 8i H
are to be invoked from o main C tanguage progrom (not shown). This jnz crcbe ikeep looping till end of message
i module is to be assembled using the Aztec CB6 softwore package. pop dx istandard epitog
largscode pop cx
assume cs:icodeseg, ds:datoseg . pop si
pop di
dotaseg segment parc public ‘'doto’ pop s
pop bp
tabletl dw eepen ;the 256 entry took—up table ret

H . sfor CRC~16 goes here
erch_ endp

toble2 dw QABQ1h ithe 16 entry reduced look-up
B . stabie for CRC-16 goes here H LISTING 3
H .
Tabie Look-~up Algorithm
dotaseg ends L
codeseg segment pora public ‘code’ ie .
) ;e crct (buff_addr.length) .
Hhd .
B LISTING 2 i This routine computes the check bits for any given message o
i* using the table look-up clgorithm. .
H Bit-wise Algorithm ie .
;¢ Colled from “C" program as: cret{buff_addr, length); .
B Ly T T T PP T YT Y . .
i * ;= Input H buff_addr -~ message buffer oddress .
;e crcb (buff_addr,length) * . length - message length (bytes) .
e .
. ;. .
i» This routine computes the check bits for any given message o e Output . check bits ~ returned in ox .
i® using the bit-wise algorithm, i.e., software simuiction of . .
i*  the LFSR circuit hardware inplenentation. . is NOTE: The 256 entry (512 bytes) look-up table starts at o
i * ie label “tablel* within the dota segment. .
i* Cailled from “C" program as : crcb(buff_oddr,length); L4 ‘. -

[ * e N IR PE eIttt IetITINENtIsIETIRIRIIRIOEIREOIORIS
;e Input H buff_addr ~ message buffer oddress .
B length ~ messoge length (words) . public eret_
. . cret_ proc far
i+ Output : check bits — returned in ox .
e ° push bp :stondard prolog
B T T T YT T Y PO, mov bp.sp
R push es
pubtic crcb_ .
creb, proc for push d'v
- push bx
push bp ;standord prolog push cx
mov bp.sp
push es les di,6{bp] il1oad buffer address in es:di
push di mov ex,18{bp] iload message length in cx
push si
push cx xor ax,ax sinitioltize CRC register
push dx crct®: mov bl,es:[di] ;fatch o message byte
les di,6{bp) ;load buffer oddress in es:di ine di ibump message pemt?r
mov si,10[bp] i1ood messege length in si xor bt.al ;XO‘? messoge b:{to with Iov.: (':RC byte
mov al,ah ;shift CRC register 8 positions to
xor ax,ax jinitialize CRC register xor oh,oh i the right
crebd:  mov dx,es:[di]) ;fetch o message word xof bh,bh iprepare bx for indexing
odd di,2 ibump message pointer shi bx,1 imuitipty bx by 2
mov cx,16 ;1oad word length (16 bits) in cx xor ax, tablet{bx] iXOR CRC register with table entry
erebl: cle ;prepare for o shift loop crcté ikeep looping tilt end of message
rer ax,1 ;shift CRC register to right
jc crd':bz scheck Isb of CRC register pop ex istondard epitog
rer dx, 1 icheck Isb of message word pop bx
jne crebé ;8- - no action pop di
imp crcbl ;-1 - modify CRC register pop es
ereb2:  rer dx,1 icheck 1sb of message word pop bp
. je crebe ;1=1 « no action ret
ercb3: - xor ax,8A801h ;1-@ — modify CRC register erct_  endp
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B LISTING 4 H LISTING §
H On—the~fly Algorithm B Reduced Table Look—up Algorithm
; (Byte—wise)

9000 E I EIIEsNNENtNIEENINININNItITIOENIsRINPRARItIEIIIEEEL
S EEaEENNICeINNIIEITINNIINCAIINNIOREONIAIIIIIRSIIIINIIREIIRISS

ie .

;e crct (butf_oddr,length) . B .
. . ;e crerb (buff_addr, fength) .
;e This routine computes the check bits for aony given message =« I *

« This routine computes the check bits for aony given message

;» using the on-the-fly aigorithm [3]. .
0. . ;e using the byte—Wwise reduced table look-up atgorithm, *
;s Called from “C" program as : crcf(buff_oddr, length); . Hd .
. . ;» Called from "C" progrom as : crerb(buff_oddr, length); .
;s Input : buff_addr =~ message buffer address . [ .
B length - message iength (bytes) . ;o Input H buff_addr - message buffer address .
. . e fength -~ message length (bytes) .
;e Output : check bits — returned in ox . i .
Hd . : Output H check bits = returned in ax .
;» NOTE: See [3] for o description of the logic and the . .
. symbolic notations used in this routine. . NOTE: The 16 entry (32 bytes) reduced look-up table .
i . storts ot labe! “"toble2” within the dato segment. .
S e P YSes0E0NEINIINtNtaeTIIcENETISAtIIsIIEIREIINIIIIIITIININY This routine uses only the first eight entries of .
public cref_ the table. .
cref_ proc tar B .
P L L T L T T T L AL At
push bp ;standard prolog
mov bp.sp public crerb_
push es crerb,.  proc for
push di,
push si push bp :standard prolog
push ox mov bp.sp
push dx push o3
push di
les di,6{bp] :lood buffer address in es:di push ai
mov si,1e{bp] :load message length in gi push bx
push cx
xor ax,ox ;initiclize CRC register push dx
crcf@: mov di,es:fdi] ;fetch o message byte
inc di ’ ;bump message pointer les di,8[bp} :load buffer address in es:di
xor di,al ;xor message byte with fow CRC byte mov si,1e[bp] :load message length in si
mov dh,di ; to form x ond save it
odd dh,dh ;compute x8 & xx7 as corry and parity x0¢ ax,ax ;initiolize CRC register
pushf ;save ths flags crerb@: mov di,es:[di] ;fetch a message byte
xor d1,dh ;compute R14 through R7 inc di ;bump message pointer
xor dh,dh ;make xx7 ond xx8 equal to @ xor dl.0! ;xor message byte with iow CRC byte
popf irestore the flags mov al.aeh ;shift CRC register 8 positions to
jpe crefl ;if xx7 ectuatly is 1, make xx7 ond xor ah,ah i the rignt
mov dh,0e11b ; xx8 equat to 1 mov cx,8 ;load byte length (B bits) in cx
crcfl:  jnc ercf2 ;if x8 equats 1, then xor bx,bx ;load table index in bx
xor dh,818b ; complement xx8 crecrbl: red dt, 1 ;check the msb of d!
cref2:  mov al,dl ;1oad R14 through R7 in low CRC byte jne crerb2 i@ - no action
mov ch,oh ;save high CRC byte xor ax, table2[bx] ;1 ~ modify CRC register
mov oh,dh :1oad R16 and RIS in high CRC byte crerb2: odd bx,2 ;bump table index
shr dh,t ;make xx8 the Isb loop ercrbt ;keep looping till end of byte
mov cl.6 ;shift CRC register six positions dec si :
shi ax.cl i to left jnz crcrb® ikeep looping till end of message
or al.dh ;CRC register has R16 through Rt
xor at.ch ;xSr with high CRC byte pop dx istandard epilog
dec si H pop ex
inz crete ;keep looping tili end of message pop bx
pop si
pop dx ;stondard epilog pop di
pop ex pop es
pop si pop bp
pop di ret
pop es
pop bp crerb_  endp
ret
cref_ endp
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; s LISTING &

H . Reduced Table Look-up ﬂlqaritm
: : ('crd—vin")
H Cuene . esee ‘,
ve .
1eererw (buff_oddr, length) .
i* . : G
;& This routine computes the check Bits for any given tﬁuog'a .
;» using the word-wise reduced table look-up alqorith,n.‘"“ b 'Y
i S ; ; Lara )
is Called from "C"-program as : ‘crerw({butf_oddr, length}; i
i Input S butf_addr '~ message buffer cddress e
. Clength .~ message Yength (words) . e
HJ E T .
;¢ Output : check bits = returned in ox o .
e P : A i : .
i» NOTE: The 16 antry (32 bytes) reduced ‘|ook-up tobie .
;e storts at tobei "tabie2" within the dote segment. i
i B ; .
;-‘---‘cn : sasseensnvy

public  crerw_
crerw, .proc for

push bp istondard yvroloq

mov bp.sp . Lo

push es

push di

push si

push b

push éx

push - dx

i100d buffer address in es:di
iload message length in si

tes di.6{bp)
Lmov si . 10{bp)]

xor ox;an iinitiolize CRC register

crerwd: mov. i dx,es:[di] ifatch o message word < -
‘odd 4,2 sbump messoge pointer w0
et dnax ixor messoge word with CRC register
xor Caxian 1Shift CRC register 16 positions to
; : U5 tne rignt g
mov ex,18 chsito lood 'word tength (16 bits) iniex :
xor bxibx ;load teble index.in bx
crerwl rel dx. icheck the msb of dx
jne crerwd 3@ nig action
xor ox,tabiez{bx] ;1 ~ medify CRC register
crerw2: ddd bx[2 jbump ‘toble index
ioop erorwl | ikeep looping till end of wotd
dec. s H ; :
jnz crerwd ikeep Tooping till end of message
pop dx ;stendard epilog
pop ox :
pop bx
pop si
pop 4i
pop L
pop bp

ret

ercrw. endp

codeseq ends

74 1EEE MICRO

Table 7.
Comparison of CRC algorithms,

- Algorithm Time (ms) Storage (bytes)
' (for 512 bytes)
_CRCB 612 56
. CRCT 8.4 553
© CRCF 188 67
CRCR(B) 533 72

CRCR(W) 509 88

In Table 7 we see the results of a comparison of the
execution speeds of the different algorithms; we
compared the times taken to encode a 512-byte long
message. The bitwise algorithm is seen to be the
slowest. In comparison, the reduced table lookup algo-
rithms are about 20 percent faster. The on-the-fly and
table lookup algorithms are faster by a factor of about
3 and 7. The table lookup algorithm requires the largest
amount of storage, while the other algorithms have
relatively moderate storage requirements. In terms of
the flexibility to use different generator polynomials,
all programs except the one implementing the on-the-
fly algorithm require minimal recoding. &
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