&

QUARTUS"II

Quartus Il Version 8.0 Handbook

AVO[S RYA\,

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Qll5Vv1-8.0

Volume 1: Design and Synthesis

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

LS. EN ISO 9001

Altera Corporation

A |:| ==/ Contents

Chapter ReviSion DAtescccciiiiiiieieii e e e e e e eeenens Xvii

About this HandbooK ...
)5 (O AT (o N @0} a1 =T AN <) = USROS
Third-Party Software Product Information ...
Typographic CONVENtIONScceviiiuiiiiiiiiiic st

Section I. Design Flows

Chapter 1. Design Planning with the Quartus Il Software
| 50000 o AT 5 o) o NNRR TS OSSURRRTURPRRTRRRONE
Creating Design Specifications ...
DIEVICE SELECHION. ..vvveevieiieeteeeteeete ettt ettt et e e vttt et e e teeeaeeaaeeseeeseeeseeeseesseeseeseesseenseenssenseensesnseenes
Device Migration PIanningccceevveeiniiiiiiiiceece st
Planning for Device Programming/Configuration ...
Early Power EStimation ...
Early Power Estimator File ...
Early Pin Planning and I/O ANalysis ..o
Selecting Third-Party EDA TOOl FIOWScccccviiiniiiiniiiienic s —
Synthesis Tools
SIMUIATION TOOLS ..ottt ettt et a e e e eeta e te e teeseeaseeaseeaseerseeneenseas
Formal Verification TOOLScc.icuieuieuieieeeereretetect et er e ereeve e ere e s s s seebesteersessersersensenseseas
Planning for On-Chip Debugging Options
Design Practices and HDL Coding Styles
Design Recommendationscccccoevueee.
Recommended HDL Coding Stylesccoviuiiiiieiiiiiniciiiicececie s
Planning for Hierarchical and Team-Based Designccccocoorviiiiiiinininiciicccs
Flat Compilation Flow with No Design Partitions
Incremental Compilation with Design Partitions
Top-Down Versus Bottom-Up Incremental Flows ...
Planning Design Partitions ...
Creating a Design FIOOIPIanccviiiieiiiiiiiiicicc i
Fast Synthesis and Early Timing Estimation
CONCIUSION. evivvirireerecrecte ettt ettt ettt ettt e teeteeteeteetseasersessessessessesesessseseeseessessersessensensensensensensensan
Referenced DOCUIMENESoo.viviiieiceiiceeeeceteeeteeete et e et e et e steeeteeaeeaveesesesseeseesseeeseenseenseenseeseans
Document Revision HiStOIYccooiiiiiiiiiicccccce s

Altera Corporation iii

Quartus Il Handbook, Volume 1

Chapter 2. Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

INEFOAUCHON ..o
Choosing a Quartus II Compilation Flowc....c.........
Flat Compilation Flow with No Design Partitions
Incremental Compilation Flow with Design Partitionscccccccoviiiiiiiiciiccne
Top-Down versus Bottom-Up Compilation FIOWScccccviiiiiiiiiiiiiiccccce
Quick Start Guide—Summary of Steps for an Incremental Compilation Flow ...
Top-Down Incremental Compilation FIOWccccovviiiiiiiiiiiiiiccce s
Bottom-Up Incremental Compilationccoceuevireiniiniiiniicecee e
Choosing and Creating Design Partitions ..o
Using Partitions with Third-Party Synthesis TOOIScccocooiriviiiiiiiiiiccns
Design Partition Assignments Compared to Physical Placement Assignments 2-20
Impact of Design Partitions on Design Optimizationc.c.cccoceevviiniiiienicece, 2-20
Creating Design Partitions with the Design Partition Plannerc.c.cococooeveninnininnennnnn. 2-21
Creating Design Partitions Outside the Design Partition Planner ... 2-23
Partition Namecccooovviiiinicie, 2-25
Setting the Netlist Type for Design Partitions ... 2-25
Fitter Preservation LeVel ... 2-28
EmMpty Partitionscccocie s 2-30
What Changes Trigger a Partition’s Automatic Resynthesis? 2-31
Creating a Design Floorplan with LogicLock Location Assignments 2-34
Taking Advantage of the Early Timing Estimatorcccccccccvuneaee. o 2-37
What LogicLock Changes Trigger Refitting? ..o 2-37
Exporting and Importing Partitions for Bottom-Up Design Flows
Quartus II Exported Partition File ...
Exporting a Lower-Level Partition to be Used in a Top-Level Projectccccoeevevnirunnnnen. 2-39
Exporting a Lower-Level Block within a Project ..o, 2-42
Importing a Lower-Level Partition Into the Top-Level Projectcccccocvviiivinincininnnnns 2-42
Importing Assignments and Advanced Import Settingscccocoevriiiiiiiiiiiiiicns 2-44
Generating Bottom-Up Design Partition Scripts for Project Management ...
Partition Statistics REPOIScoceviiiiiiiiiicieiiic 2-53
Incremental Compilation AdVISOTcoceiiiiiiiiiiiicccc e 2-54
Recommended Design Flows and Compilation Application Examples 2-56
Incremental Compilation ReStrictions 2-71
Using Incremental Synthesis Only Instead of Full Incremental Compilation ... 2-72
Preserving Exact Timing Performance ... 2-73
Using Incremental Compilation with Quartus II Archive Filesccocooooriiiiiiiiiicnce, 2-73
Formal Verification SUPPOTtccocoevviviiiiiiiciccccccccces 2-73
OpenCore Plus Feature for MegaCore Functions in Bottom-Up Flows ... e 2-74
Importing Encrypted IP Cores in Bottom-Up FIOWScccccvuviiiiiiiiiiiiiniiciiicnne .. 2-74
SignalProbe Pins and Engineering Change Management with the Chip Planner 2-74

SignalTap I Embedded Logic Analyzer in Bottom-Up Compilation Flows
Logic Analyzer Interface in Bottom-Up Compilation Flows
Exporting a Lower-Level Partition that Uses a JTAG Featurecccocooveeininiieeincccnnne,
Migrating Projects with Design Partitions to Different Devicescccccoovvrrniiiicriinnnce.
HardCopy Compilation and Migration FIOWSccccccceiiiiiiiiiiiiiiiiiicccccns
Assignments Made in HDL Source Code in Bottom-Up FIOWScccccceuviiiiiiininiiiciiiiinnns

Altera Corporation

Contents

Compilation Time with Physical Synthesis Optimizations
Restrictions on Megafunction Partitionsccccoeviiiniane.
Routing Preservation ...t
Synopsys Design Constraint Files for the TimeQuest Timing Analyzercccccccceeruennne. 2-80
Bottom-Up Design Partition Script Limitations
Register Packing and Partition Boundariesccccooeeviiininiicieinicciececeec,
I/O Register PaCKiNgccccoviuiimiiiiiiiiiiicicicc s
Scripting SUPPOTt ..o
Generate Incremental Compilation Tcl Script Command
Preparing a Design for Incremental Compilation
Creating Design Partitions ..ot
Setting Properties of Design Partitions ...
Creating Good Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM or DSP Blocks)
Generating Bottom-Up Design Partition Scripts
Exporting a Partition to be Used in a Top-Level Projectccccccoeviiiniiiniiiininiiciiiiinns 2-101
Importing a Lower-Level Partition into the Top-Level Projectc..cccoevvvininiviininiinnnns 2-102
IMAKESILES ...ttt ettt ettt ettt ettt et s ettt et b et n et ae et eaenan 2-102
Recommended Design Flows and Compilation Application Examples—Scripting and
Command-line OPeration ... 2-103
CONCIUSION ...ttt ettt ettt ettt e et e st e s et et e be st s e e es e sesebentese s es e seneesanseseseneesansesensan 2-105
Referenced DOCUMENLESccoiieirieiriiieeeiet ettt ettt et s s st b et esa s eseeseneeseneesensen 2-105
Document Revision HiStOTYoooiiimiiie s 2-106

Chapter 3. Quartus Il Design Flow for MAX+PLUS Il Users

INEFOAUCHON .o —
Chapter OVEIVIEWcoiiiiiiiiitci ettt
Typical Design FIOW ..o
DVICE SUPPOTT ..o
Quartus II GUI Overview
Project NaVIZAtor ..o s
INOAE FINAET ...
Tcl Console
Messages
StAtUS oo
Setting Up MAX+PLUS II Look and Feel in Quartus IL..........ccccccoviiiiniinniiniciiccccnns 3-6
MAX+PLUS II LOOK @Qnd Feelooviiiiiiiiiiiciicccic e 3-7
Compiler Toolccoevruerevinnnnnns
Analysis and Synthesis ...
Partition Merge
FIEEET oo
ASSEIMDIET ...ttt
Timing Analyzer
EDA Netlist WIIerc.coviiiiiiiiiiiiiiiii s
Design ASSISLANEc.cvevieiveiiiicieieiccte e
MAX+PLUS II Design CONVEISIONcoovvviiiiiiiiiiiieie e snens 3-12
Converting an Existing MAX+PLUS II DeSIgNccccccovvvviiiiiiiniiiiiiiiiicccces 3-12

Altera Corporation v

Quartus Il Handbook, Volume 1

Converting MAX+PLUS II Graphic Design Files
Importing MAX+PLUS II Assignments

Quartus IT Design FLOWcccoiiiiiiiiiiiiie s
Creating @ New Project ..o
Design Entry
MaKing ASSIZNIMNENTSc.cevoiurieiiiiieieieicei et
SYNENESIS .ottt
Functional Simulation ...
Place and Route
Timing Analysisc.cccc....
Timing Closure FIOOTPIancoociiiiiiiiiiiii s
Timing SIMUIALION «..vviviviiiieic e
Power Estimation
Programming

Conclusioncccceceeeee.

QUICK MENU REFEIEICE ...ouvviiiiieiiieiieieieieetee ettt ettt ettt ettt be bt se e e s e s eneesesenessens

Quartus IT Command Reference for MAX+PLUS IT USETIS.......ccceeerierirenieirieinienieeeieeeiesieeeenene 3-36

Referenced DOCUMENESc.eovreeveeiirirerieirieieeirieieeeie e

Document Revision History

Chapter 4. Quartus Il Support for HardCopy Series Devices

Vi

INEPOAUCHION ..o

HardCopy Series Device SUPPOTTcccocruiiiiiiiiiiiiiiiiicc s
HardCopy Series Design Benefits ..o
Quartus II Features for HardCopy Planning ..

HardCopy Development FIOW ..ottt
Designing the FPGA First ..o
Designing the HardCopy Device First ..o

HardCopy Device ReSource GUIde...........ccocvuiiiuiiiiiiiiniiiiciiiiscsn s

HardCopy Companion Device Selection

HardCopy Recommended Settings in the Quartus II Softwarecccooooveiviriiieiciecine 4-13
Limit DSP and RAM to HardCopy Device ReSOUICEScccevuirmieiriinrieiiiicieieeciee e 4-13
Enable Design Assistant to Run During Compile ..o, 4-14
TIMING SEHINGS ...vovoviviiiicie s 4-15
Constraints for Clock Effect Characteristicscccooviiiiiiiiiiiiniicinccccc, 4-17
Quartus II Software Features Supported for HardCopy Designscccccoovrvviviiunininieninnnn. 4-19

HardCopy Utilities MENUcoceiiiiuiiniiiieieiiciiee sttt sae s ssasanes 4-21
CompPanion REVISIONScceueiiiueiiiiiieiiie et b e 4-23
Compiling the HardCopy Companion Revisionccc....... v 4-25
Comparing HardCopy and FPGA Companion Revisions e 4-25
Generate a HardCopy Handoff Reportcccoviiiiiiiiiiiiiiiicccccce e 4-26
Archive HardCopy Handoff Files ... 4-26
HardCopy Advisor

HardCopy Design Readiness Check ... 4-29
Execution of HardCopy Design Readiness Checkccocooviriiinininiiiicviciicicne, 4-30
StratixX IIL SUPPOTT ...oovviiiii s 4-31
Setting CheCk ... 4-31
I/ O CRECK i 4-33

Altera Corporation

Contents

PLL Usage CReCkccoiiiiiiiiciii s 4-34
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
Migrating One-to-One Changes ...
Migrating Changes that Must be Implemented Differently ...
Changes that Cannot be Migratedccccooeiiriiiiicii s
Overall Migration FIOWccooiiiiiiiiiiicc et
Formal Verification of FPGA and HardCopy Revisions ...
HardCopy Floorplan VIEW ...

Legacy HardCopy Device Support
FRALUIES ..ottt e e ettt e e ae e et e e e aeeeaaeeeaaeeeabe e e be e e aaeeeabeeereeentaeenns
HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devicesccccceueuneee. 4-45
HardCopy Design FIOWcccooiuiiiiiiiiiiiiiiciiiiccssenas

The Design Flow Steps of the One-Step Process

How to Design HardCopy Stratix Devicescc.......
Tcl Support for HardCopy Migrationccccceevuenenee

Design Optimization and Performance Estimation
Design Optimizationcccoeevicnniiicnnicecnnen
Performance Estimation
Buffer Insertioncccceeevevveveennennen.

Placement Constraints

LOCAtioN CONSITAINTS ...ocvieveierieeiiecteceteeeee et eee et e et eete e teeeveeeseesteeteeeseeesseeseeeseeseenseensessseessenseeessenseenseens
LAB ASSIGNIMENEScvviieiiiiiicieiicieie ettt sttt nnae e
LogicLock Assignments

Checking Designs for HardCopy Design Guidelinesccccocieiviviiiniiiiciiinicicciicenns 4-59
Altera-Recommended HDL Coding Guidelinescccccvuviiiiviiniiiiiiniiiiiceecinas 4-59
Design Assistant
Reports and SUMMATYcccceiiiiiiiiiiice st 4-61

Generating the HardCopy Design Databasecccocoeuviiiiiniiieiniicecee s 4-61

Static Timing Analysis

Early Power EStmation ... 4-63
HardCopy Stratix Early Power EStmation ... 4-63

Tcl Support for HardCopy Stratix

CONCIUSION. 1.evieeveeeeeetee ettt ettt et et e e et et e teete e e e eaeeeseeeseeeseenseenseesseeseeessenseeseeseesseesseesseesseeseenseens

Referenced DOCUMEINESceoveeviieieeeereeeeeeeteeteeteete et e e eees et eaeeseeseeseereeseeseeseeseeseessensensensensesenseses

Document Revision HiStOTYcoooiuiuiiiiiiiiiiici e

Section Il. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus Il Design
Assistant
INtroductioncoeeveeveeeeeeeeeeeieceeeeeeeees 5-1
Synchronous FPGA Design Practices
Fundamentals of Synchronous Design

Altera Corporation vii

Quartus Il Handbook, Volume 1

Ch

viii

Hazards of Asynchronous Design
Design Guidelinesccccoeviviciiiinnnnee
Combinational LOZic STIUCEUIESccoiiiiiiiiiiiiiiciicc e
ClocKINg SCHEMESciviiiiiiicii e
Checking Design Violations Using the Design Assistant
Quartus II Design Flow with the Design Assistantccccooeeevniceeiieeccece,
The Design Assistant Settings Pageccccoevuieieieiicieiiccc e
Message Severity Levels
Design Assistant Rulesccccocoeviiiiiniccinicnnn.
Enabling and Disabling Design Assistant Rules ...
Viewing Design Assistant Resultscccccoviiieiiiiiiiiiicecc e
CUSTOIM RULES ..ottt et ettt et et e s e aeeaaeetaeeaeeeteeeseenseenseeaseensasnsenses
Targeting Clock and Register-Control Architectural Features ...
Clock Network Resources
Reset Resources 549
Register Control SigNals ... 549
Targeting Embedded RAM Architectural Featurescccoovreinivininiiicciiiicceceecins 5-50
CONCIUSION ..cvveeeiieiecieeeeete ettt e
Referenced Documents.......
Document Revision History

apter 6. Recommended HDL Coding Styles

INELOAUCHON 1.ttt ettt ettt e bbb e st b et e se s e st se st ese s eneesensenesseneesansans 6-1

Quartus II Language Templates ... 62

Using Altera Megafunctions

Instantiating Altera Megafunctions in HDL Codecccoviiiiiiiiiiiiiiicnecccnnes 64
Instantiating Megafunctions Using the MegaWizard Plug-In Managerccccocceuvcuvvcnnnee. 64
Creating a Netlist File for Other Synthesis TOOISccccccovuiiiiiiiniiiiiiiiiicae 6-6
Instantiating Megafunctions Using the Port and Parameter Definitionccccccoevvnennne. 67

Inferring Multiplier and DSP Functions from HDL Codecccceoevvirunnnen.

Multipliers—Inferring the Ipm_mult Megafunction from HDL Code
Multiply-Accumulators and Multiply-Adders—Inferring altmult_accum and altmult_add
Megafunctions from HDL Codeccccvviiiiiiniiiiiiieicec s 6-10
Inferring Memory Functions from HDL Code
RAM Functions—Inferring altsyncram and altdpram Megafunctions from HDL Code 6-14
ROM Functions—Inferring altsyncram and lpm_rom Megafunctions from HDL Code 6-31
Shift Registers—Inferring the altshift_taps Megafunction from HDL Codeccceu..... 6-36
Coding Guidelines for Registers and Latchesc.ccccoviriiniiiiciniciccccccccaes ... 640

Register Power-Up Values in Altera Devicesc.ccccouruevniienreicnnnnnnns . 6-40
Secondary Register Control Signals Such as Clear and Clock Enable 6-42
LAtCREs ..o e 646
General Coding GUIAEHINEScccouiuiiiiiiiiiiiiii e 6-52
Tri-State Signals
Clock MUIPIEXING ..v.viviiviiiicieieiccie ittt 6-53
AT TTEES ...ttt 6-57
State MaChinescccouvveiiiiiiiic e 6-59
MULIEPIEXETS ..ot 667
Cyclic Redundancy Check FUNCHONScovuviimiiiiiiiiiiiiicc e 6-76

Altera Corporation

Contents

COMPATALTOLS ...vviiiiiiieie s s e sasa s e aen e srens 6-79

COUNLETS ..ot ... 680
Designing with Low-Level Prmitives ... 6-81
(@06 4 Tel S T3 To) s WSS

Referenced Documents
Document Revision HiStOIYoooiiiiiiiiiiiii e 6-82

Chapter 7. Best Practices for Incremental Compilation Partitions and Floorplan
Assignments
INELOAUCHION <.ttt ettt be et se et sa et sbeneene 7-1
Overview: Incremental Compilationccceveiiiniiiicieinc e 7-2
Choosing the Netlist Type and Fitter Preservation Levelccccoovniiiinininininnn. 7-3
Top-Down versus Bottom-Up Compilation FIOWSc.ccccoiiiiiiiiiiiiiicccccne 7-3
Generating Bottom-Up Design Partition Scripts for Project Management ...
Why Plan for Incremental Compilation?cooceueieiiieiiiiiiic e 7-5
Partition Boundaries and Optimization ..., 7-6
Creating Design Partitions: General Partitioning Guidelinesccccccoeeriiiiieeicneccnnnn, 7-7
Plan Design Hierarchy and Source Design Filescccccoocviiininiicniiiincnccce, 7-7
Partition Design by Functionality and Block Sizecccccoviiiiiiniciicne, ... 7-10
Partition Design by Clock Domain and Timing Criticalitycccccocoviiiiiiniiiiiinne, 7-10
Consider What Is Changingc.cccoceeeiiiiniiiccce s 7-11
Creating Design Partitions: Design Guidelines
Register Partition Inputs and Outputsccceevvieiiiniicnccc e 7-11
Minimize Cross-Partition-Boundary I/Occcccevuvirinninne. . 7-12
Avoid the Need for Logic Optimization Across Partitionscccccoeeiiiiiiiccicnnn, 7-14
Creating Design Partitions: Consider Additional Design Suggestionsccccccceviveiiiernnnnns 7-24
Balance Partition Resources if Requiredccccoovvriiiiininicnnine
Assign Virtual Pins in Bottom-Up Flows
Perform Timing Budgeting if Required
Consider a Cascaded ReSEt SLIUCLUTEc.covvieueuiriririeienieiieieerteie ettt
Drive Clocks Directly in Bottom-Up FIOWScccccovuiiiiiiiiiiiiiiccniciccenas
Recreate PLLs for Lower-Level Partitions if Required in Bottom-Up Flows
Checking Partition QUALItycccocovieiiiiiiiiiiiiicc
Design Partition PIannercoceiiiiiiiiice ettt
Incremental Compilation Advisor
Locate Design Instance in the Floorplan ...
Floorplan Partition Coloringcccceeeunne
Partition Statistics REPOItccoviieveieiiiee s
Ensure Partition Assignments Don't Impact the Quality of Resultsccccoevverieinnnnnnn.
Introduction to Design Floorplans ...
The Difference between Logical Partitions and Physical Regions
Why Create a Floorplan? ...
When to Create a FIOOTPIanccooiiiiiiiiiiiccc s
Creating a Design Floorplan: Placement Guidelinesccccooviuniviiiniiiiiiiicicciccnns
Assigning Partitions to LogicLock Regions
How to Size and Place Regionsccccceuuueee.
Modifying Region Size and OFiginccccooviiiiniiiiiiiicicc e

Altera Corporation ix

Quartus Il Handbook, Volume 1

Creating Non-Rectangular Regions

Checking Floorplan Qualitycccceo....
Incremental Compilation AdVISOTccciiiiiiiiiiiiii e
LogicLock Region Resource Estimatescccccoviiiiiiiiiniiiiicccccc s
LogicLock Region Properties Statistics Report ...
Critical Path DIiSPlaycccccooiveiiiiiieieiicii st
Locate the Quartus II TimeQuest Timing Analyzer Path in Chip Plannercccccoooeuu.... 7-48
Inter-Region Connection Bundles ..o, ... 748
Routing Utilization 749
Ensure Floorplan Assignments Don’t Impact Quality of Results ... wee 749

Recommended Design Flows and Application Examplescccccoovviiiiniiiiicinniceccnnns 7-50
Create a Floorplan for the Entire Design in a Top-Down FIoWccccccviviiiiniinicninnnn. 7-50
Create a Floorplan as the Project Lead in a Bottom-Up Flowcccoceeviieiiinnne. 7-51
Create a Floorplan Assignment for One Design Block with Difficult Timing 7-52

Potential Issues with Creating Partitions and Floorplan Assignments 7-53
Logic and Resource Utilization Effects ..., 7-53
Routing Utilization Effects ... 7-53

Conclusionccccoceevevereneeeneenne.

Referenced Documents

ReVISION HISTOIY ...oviiiiiiiiiiiic s

Section Ill. Synthesis

Chapter 8. Quartus Il Integrated Synthesis

INEFOAUCHON <o 8-1
DESIZN FLIOW ...ttt et 8-2
Language SUPPOItccoviiiiiiiiiiiiiciii 8-5

Verilog HDL SUPPOTTccuiiiiiiiiiiiiiiiciti s 8-5

VHDL Support 8-10

AHDL Supportccccooeeeevnvicnniiiennas ... 813

Schematic Design ENtry SUPPOTTc.coeviviiiiiiiiiciccc e 8-14

State Machine EdItOrooviiuiiiiiieceeceeeeeeeee ettt ettt veeeteeeaeeseenteeaaeetseeneeeanas 8-14

Design Libraries

Using Parameters/GeNeTiCScccooviiiiiiiniiiiiiiiiciicicicee st 8-20
Incremental Synthesis and Incremental Compilation ..o 824

Partitions for Preserving Hierarchical Boundariescccocoevieiiniinninniccceece, 8-25
Quartus II Synthesis OPtioNSccoceveiiriiiiiiiie e 8-25

Setting Synthesis Options

Optimization TEChNIQUEcccouviiiiiiiiiii e

Speed Optimization Technique for Clock DOmMainsccceeuvivimmieiiiininiiiiinceecns 8-32

PowerPlay Power Optimizationccccccoveiiinicinnns

Limiting DSP Block Usage in Partitions ...

Restructure Multiplexersc.c.ccoceveinnnen.

SYNthesis EfOItcoviiiiiiiiiiiiicc e

State Machine ProCESSING ..o

X Altera Corporation

Contents

Manually Specifying State Assignments Using the syn_encoding Attribute 8-39
Manually Specifying Enumerated Types Using the enum_encoding Attribute 842
Safe State MaChinesccovviviririiiriii e
POWET-UP LEVEL ..o
Power-Up Don’t Care

Remove Duplicate REISLETSccocviiiiiiiiiiiiiiice et 848
Remove Redundant Logic Cellscccoceiiiriiiiiiniiicici e 848
Preserve Registers ..o, ... 848
Disable Register Merging/Don’t Merge Register ... 849
Noprune Synthesis Attribute/Preserve Fan-out Free Register Nodecccccoviiiniiiinnnns 8-50
Keep Combinational Node/Implement as Output of Logic Cellcccccoovrriiirniiininnnns 8-51
Don't Retime, Disabling Synthesis Netlist Optimizationsccccceoveeiniiieniicenice,
Don't Replicate, Disabling Synthesis Netlist Optimizations
Maximum Fan-Outccooiiiii s
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
... 8-55
Megafunction Inference CONtIOl ..o 8-56
RAM Style and ROM Style—for Inferred MemMOTYcccvvrmviruniinininniicncicsicceicecncens 8-59
Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
... 8-61
RAM Initialization File—for Inferred MemMOTYcccccooeuiiiiiiiiiiiciiicccecc s 8-63
Multiplier Style—for Inferred MUItPLErscccccooviiiiiiiiiiiniiicccees 8-63
Full Case

Parallel Casecocoeueiiiiiieiicee s
Translate Off and On / Synthesis Off and Oncccccceuivviiviiiininncccee
Ignore translate_off and synthesis_off Directives
Read Comments as HDL
Use I/O Flpflopsccccocovvvviiniiniicicicinen,
Specifying Pin Locations with chip_pin ...
Using altera_attribute to Set Quartus II Logic Optionsccceceveviriiiiiiiiiniicieecens
Analyzing Synthesis Resultsc.ccccoeeeiiiiiiiiiieiieec,
Analysis and Synthesis Section of the Compilation Report
Project Navigator ..o
Analyzing and Controlling Synthesis Messagesc.cccouriviiiiniiiiininiiineceecennes
QUATTUS ITMESSAZES ...ovviiriviiiiieieiici st
VHDL and Verilog HDL MeSSagescccccoveeueirinenerereicnniennnns
Node-Naming Conventions in Quartus II Integrated Synthesis
Hierarchical Node-Naming Conventions 8-83
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)cccceevvvivirunninen. 8-84
Register Changes During Synthesis ..., 8-85
Preserving Register Names
Node-Naming Conventions for Combinational Logic Cellscccccoviivinniniicniicninnne.
Preserving Combinational Logic Namescccccoeviirieiiiinininiiciceeeeeses s
Scripting SUPPOItovviiiiiii e
Adding an HDL File to a Project and Setting the HDL Version
Quartus II Synthesis Options ..o,
ASSIZNING @ PN o s

Altera Corporation Xi

Quartus Il Handbook, Volume 1

Creating Design Partitions for Incremental Compilation
CONCIUSION evivviriiiericreerecte ettt ettt et et et ersersersensenes
Referenced DOCUIMENESc.vieviiiuiiiieceieeeeeee et ettt eteeeteeteeveeeeesesesseeseeeseeetesnasesseensesssenseeseens
Document Revision HiStOIYcoovoiiiiiiiiiii s

Chapter 9. Synplicity Synplify and Synplify Pro Support

INELOAUCHON ..ttt ettt b e bbbt et e bt b et be s e s e e e e ebeseene et eneee 9-1
Altera Device Family SUPPOItcoveieiiieiiiiic s 9-2
DESIZN FLIOW ...ttt 9-3
Output Netlist File Name and Result Formatcccccoeviiiiiiiiiiiiiiiiccccce, 9-7
Synplify Optimization Strate@ies ...
Implementations in Synplify Pro
Timing-Driven Synthesis Settingscccoeviiiiiniiiccinc e 9-9
FSM COMPILET ...ttt sttt 9-11
Optimization Attributes and Options 9-13
Altera-Specific AtrbULEScccociiiiiiiiiiiii ... 9-16
Exporting Designs to the Quartus II Software Using NativeLink Integration 9-18
Running the Quartus II Software from within the Synplify Softwarecccccocoerinnnnninn. 9-18
Using the Quartus II Software to Run the Synplify Software ..., 9-20
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 9-20
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 9-21
Passing Constraints to the Quartus II Software using Tcl Commandscccocoeveiiiininns 9-23
Guidelines for Altera Megafunctions and Architecture-Specific Featuresccccoovvviiinnnnns 9-33
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 9-34
Including Files for Quartus II Placement and Routing Only
Inferring Altera Megafunctions from HDL Codeccccouviiiiiinininiiciicicnccceens
Incremental Compilation and Block-Based Designcccocoeuiiivieiniinniiiiecce s
Creating a Design with Separate Netlist Files for Incremental Compilationcccccc..... 949
Using Synplify Pro MultiPoint Synthesis with Incremental Compilationcccccecvuennce. 9-50
Creating Multiple .vqm Files for Incremental Compilation Using Separate Synplify Projects ...
... 9-55
Performing Incremental Compilation in the Quartus II Softwareccccocovvvrviicviniiinnnnee. 9-62
CONCIUSION .ttt sttt

Referenced Documents
Document Revision History

Chapter 10. Mentor Graphics Precision RTL Synthesis Support

TNEFOAUCHION oo

Device Family SUPPOTTcocvviiiimiiiiicieicc st

DeSigN FIOW ..ottt e

Creating and Compiling a Project in the Precision RTL Synthesis Software
Creating a Project ...
Compiling the DESINccciiiiiiiiiiiiiic e

Mapping the Precision Synthesis Design ..o,
Setting Timing Constraints
Setting Mapping Constraints
Assigning Pin Numbers and I/O Settingsccccoovuiviiniciiciiiccccccccnnns

xii Altera Corporation

Contents

Assigning I/O REGISIErSccouiiiiiiiiiiiiiic e
Disabling I/O Pad Insertion
Controlling Fan-Out on Data Netscccocoiiiiiiiiiiiiiiiiccenes
Synthesizing the Design and Evaluating the Resultsc.ccccoiiiiiiiiiiiccns
Obtaining Accurate Logic Utilization and Timing Analysis Reports
Exporting Designs to the Quartus II Software Using NativeLink Integrationcccccc........ 10-14
Running the Quartus II Software from within the Precision RTL Synthesis Software 10-15
Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl
SCIIPT e s 10-17
Using Quartus II Software to Launch the Precision RTL Synthesis Software 10-17
Passing Constraints to the Quartus II SOftwarecccccoevvvieiiiccieiiicces 10-17
Megafunctions and Architecture-Specific Features ..o, 10-24
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10-25
Inferring Altera Megafunctions from HDL Codecccccoviiiiiiiicininiiiiiinccccicnns 10-27
Incremental Compilation and Block-Based Designcccccocviiiiiiviinininiiiiicceccnas 10-34
Hierarchy and Design Considerations ... 10-36
Creating a Design with Separate Netlist Filescccoooeiiininiiiccccn, 10-36
Creating Quartus II Projects for Multiple EDIF Filescccccooviiiiiiiinicnccicines 10-41
CONCIUSION. ..ot 1043
Referenced Documents.............. e 10-44
Document Revision HiStOIYccoooviiiiiiiicccccccccc e 1044
Chapter 11. Mentor Graphics LeonardoSpectrum Support
TNEFOAUCHION <o 11-1
Design Flow
Optimization Srate@ies ...t 11-5
Timing-Driven SYNthesis ... 11-5
Other CONSEIAINESc.ciiiiiiiiiiiiii s 11-6
Timing Analysis with the Leonardo-Spectrum Softwarecccoovviviiniiciicccns 11-8
Exporting Designs Using NativeLink Integration
Generating Netlist FIles ...
Including Design Files for Black Boxed Modulescccccovvuiiiinininiiiiinnccns 11-9
Passing Constraints wWith SCIiptsccooviiiiiiiicc e 11-9
Integration with the Quartus II SOftwareccccceviiiiiiiiiiiies 11-10
Guidelines for Altera Megafunctions and LPM Functionscccccccevviiiniiniicciicnnnas 11-10
Inferring Multipliers and DSP FUNCHONScccooviiiiiiiiiniiiiccccaes 11-12
Controlling DSP Block INfETNCe ..ottt 11-13
Block-Based Design with the Quartus II SOftwareccccoovveiirinieiiiccccces 11-19
Hierarchy and Design Considerationscccceeeeieiiiieiiiniieieceiece e 11-20
Creating a Design with Multiple EDIF Hlescccccooiiiiiiiiiiiiiiiiiiicccciines 11-21

Generating Multiple EDIF Files Using Black BOXEScccccocvuiiviiiiiiiiiiiiiiicceicnas 11-25
Incremental Synthesis Flow
ConcluSioncoceeeveeveecveeveeeeeennens
Referenced DOCUMEIESceevierieeiereereeeiteete ettt ete et evereeteeseeteereeseessessessessessessenseseeseeseeseeseeseesens
Document Revision HiStOTYoooiiiuiiiiiiiiiiiiiiic

Altera Corporation xiii

Quartus Il Handbook, Volume 1

Chapter 12. Analyzing Designs with Quartus Il Netlist Viewers
INELOAUCHION .ottt ettt ettt ettt et ne b neenes
When to Use Viewers: Analyzing Design Problems
Quartus II Design Flow with Netlist Viewers
RTL VIEWET OVEIVIEW ...ecuvieiiieeiieiieetiecieeeitesteeteesteeteseaessaesseesssesseesseessesssesssasssesssesseessssssesssessseesseensenns
State Machine VIEWET OVEIVIEWc.cecieirieiriirieiirieietenietesietetesteseetestesesteeesetesssseseesessesessenessensens
Technology Map Viewer Overview
Introduction to the USer INErfaCeovueueirieieiiiirieetre ettt
SCREMATIC VIEW ...ttt et sttt ettt ettt nes
Hierarchy LIStcciiiiiiiiiiiiiiii s
State MAChINE VIEWETociivicvieiietietieiieiteiet ettt reeve et et essessessebeeseesaeseessessessessessessessesseeseans
Navigating the Schematic View
Traversing and Viewing the Design Hierarchy ..o,
Viewing Contents of Atom Primitives ...
Viewing the Properties of Instances and Primitives
Viewing LUT Representations in the Technology Map Viewer
Grouping Combinational Logic into Logic Cloudscc.........
Changing the Constant Signal Value Formattingcccccocoenniiiiiiiniicccnns
Zooming and Magnification ...
Partitioning the Schematic into Pagesccccceevvuennn.
Customizing the Schematic Display in the RTL Viewer ...
Filtering in the Schematic VIieWccccccocvviiiiininiiciincnnes
Filter SOurces COMIMANAocueevierieieieieieietesteee et ere e ereeseeseessesesessesseeseeseeseessessessessensanns
Filter Destinations COMMANA.ccvevievieeiirieeieireeeeecte sttt e et ere s esessessessessesbesseereerens
Filter Sources and Destinations Command
Filter Between Selected Nodes Command
Filter Selected Nodes and Nets Command
Filter Bus Index Command
Filter Command Processing
Filtering Across Hierarchies
Expanding a Filtered Netlistc.cccocooiiiiiiiiiiniicc e
Reducing a Filtered Netlistcccoovviiiiiiiiiiicc e
Probing to Source Design File and Other Quartus II Windows
Moving Selected Nodes to Other Quartus II Windows
Probing to the Viewers from Other Quartus Il Windows ...
Viewing a Timing Path ...
Other Features in the Schematic VIEWETccoeiiiiiiiiiiiieeee e
TOOIHPS e
Radial Menu

Displaying Net Names in the Schematicc.cccocoeviiiiiiniiiis
Displaying Node Names in the Schematiccccoccoviiiiiiiiiiicces
Find Command
Exporting and Copying a Schematic Imageccccoevvviiieiiiiciiiicccece,
PIINEINE oot
Debugging HDL Code with the State Machine VIewerccccocviiiiiiiiniiniiicciinas
Simulation of State Machine Gives Unexpected Resultsc.ccccocciiiniiiniiiniininiiciinnnn,

Xiv Altera Corporation

Contents

CONCIUSION ..ot 12-63
Document Revision HiStOIYccociiiiiiiiiiiiiiicciccccc e 12-63

Altera Corporation XV

Quartus Il Handbook, Volume 1

XVi Altera Corporation

A |:| —Ig 0)/A\ Chapter Revision Dates

®

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Design Planning with the Quartus II Software
Revised: May 2008
Part number: QII51016-8.0.0

Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: May 2008
Part number: QII51015-8.0.0

Quartus II Design Flow for MAX+PLUS II Users
Revised: May 2008
Part number: QII51002-8.0.0

Quartus II Support for HardCopy Series Devices
Revised: May 2008
Part number: QII51004-8.0.0

Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: May 2008
Part number: QII51006-8.0.0

Recommended HDL Coding Styles
Revised: May 2008
Part number: QII51007-8.0.0

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: May 2008
Part number: QII51017-8.0.0

Quartus II Integrated Synthesis
Revised: May 2008
Part number: QII51008-8.0.0

Synplicity Synplify and Synplify Pro Support
Revised: May 2008
Part number: QII51009-8.0.0

Altera Corporation xvii

Chapter Revision Dates

Quartus Il Handbook, Volume 1

Chapter 10.

Chapter 11.

Chapter 12.

xviii

Mentor Graphics Precision RTL Synthesis Support
Revised: May 2008
Part number: QII51011-8.0.0

Mentor Graphics LeonardoSpectrum Support
Revised: May 2008
Part number: QII51010-8.0.0

Analyzing Designs with Quartus II Netlist Viewers
Revised: May 2008
Part number: QII51013-8.0.0

Altera Corporation

A |:| —Ig D)/A About this Handbook

®

How to Contact
Altera

Third-Party
Software
Product
Information

Altera Corporation

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 8.0.

For the most up-to-date information about Altera products, refer to the
following table.

Information Type Contact (7)
Technical support www.altera.com/mysupport/
Technical training www.altera.com/training/

custrain@altera.com
Product literature www.altera.com/literature/
FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 8.0 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Xix

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

Typographic Conventions

Quartus Il Handbook, Volume 1

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: High-
Speed Board Design.

ltalic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples: Delete
key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c¢: \gdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1.,2,3., and Numbered steps are used in a list of items when the sequence of the items is important,

a., b, c., etc. such as the steps listed in a procedure.

v/, —, N/A Used in table cells to indicate the following: + indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that the
table cell entry is not applicable to the item of interest.

H e ° Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

s The hand points to information that requires special attention.

>

CAUTION

A caution calls attention to a condition or possible situation that can damage or destroy
the product or the user’s work.

>

WARNING

A warning calls attention to a condition or possible situation that can cause injury to the
user.

“ The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.
XX Altera Corporation

NhiERA

Section |. Design Flows

®

Altera Corporation

The Altera® Quartus® II design software provides a complete design
environment that easily adapts to your specific design needs. This
handbook is arranged in chapters, sections, and volumes that correspond
to the major stages in the overall design flow. For a general introduction
to features and the standard design flow in the software, refer to the
Introduction to the Quartus II Software manual.

This section starts the Quartus II Handbook with an introduction to
design planning and a collection of various specialized design flows in
the Quartus II software.

This section includes the following chapters:

Chapter 1, Design Planning with the Quartus II Software

This chapter discusses important FPGA design planning issues
such as device selection, early power estimation, I/O pin
planning, and design planning. It provides recommendations
and describes various tools available for Altera FPGAs to help
you improve design productivity.

Use this chapter when starting your design for an overview of
various planning considerations.

Chapter 2, Quartus II Incremental Compilation for Hierarchical and
Team-Based Design

This chapter documents Altera’s incremental design and
compilation flow, which allows you to preserve the results and
performance for unchanged logic in your design as you make
changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular
hierarchical and team-based design flows using top-down or
bottom-up methodologies

Use this chapter to learn about using the incremental
compilation flow, and read about recommended incremental
design flows using Quartus II features.

Chapter 3, Quartus II Design Flow for MAX+PLUS II Users

There are many features in the Quartus II software to help users
of the legacy MAX+PLUS® I software easily transition to the
Quartus II software design environment. This chapter describes
how to convert MAX+PLUS II designs to Quartus II projects,

Section I-i

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Design Flows

Quartus Il Handbook, Volume 1

Section I-ii

and highlights the similarities and differences between the
MAX+PLUS II and Quartus II design flows.

Use this chapter if you are using the legacy MAX+PLUS II
software.

B Chapter 4, Quartus II Support for HardCopy Series Devices

Using the Quartus Il software, you can leverage an FPGA device
as a prototype and seamlessly migrate your design to a
HardCopy ASIC to reduce cost for volume production. This
chapter describes the Quartus II support for HardCopy design
flows.

Use this chapter if you want to migrate your design to a
HardCopy ASIC.

For information about the revision history for chapters in this section,
refer to each individual chapter for that chapter’s revision history.

Altera Corporation

Z;\l I:l —E D)/A 1. Design Planning with the

QI151016-8.0.0

® Quartus Il Software

Introduction

Altera Corporation
May 2008

Due to the significant increase in FPGA device densities over the last few
years, designs are increasingly complex and may involve multiple
designers. The inherent flexibility of advanced FPGAs means that the pin
layout, power consumption, area utilization, and timing performance for
each design block are all dependent on the final design implementation.
The system architect must resolve these design issues when integrating
design blocks, often leading to problems that affect the overall time to
market and thereby increase cost. Many potential problems can be solved
earlier in the design cycle by performing good design planning.

This chapter discusses these important FPGA design planning issues,
provides recommendations, and describes various tools available for
Altera® FPGAs to help you improve design productivity. This chapter
contains the following sections:

“Creating Design Specifications” on page 1-2

“Device Selection” on page 1-2

“Planning for Device Programming/ Configuration” on page 1-4
“Early Power Estimation” on page 1-5

“Early Pin Planning and I/O Analysis” on page 1-7

“Selecting Third-Party EDA Tool Flows” on page 1-9

“Planning for On-Chip Debugging Options” on page 1-11
“Design Practices and HDL Coding Styles” on page 1-13
“Planning for Hierarchical and Team-Based Design” on page 1-15
“Fast Synthesis and Early Timing Estimation” on page 1-20

Before reading the design planning guidelines discussed in this chapter,
consider your design priorities: What are the important factors for your
design? More device features, density, or performance can increase
system cost. Signal integrity and board issues may impact I/O pin
locations. Power, timing performance, and area utilization affect each
other, and compilation time is affected by optimizations for these factors.

The Quartus® II software optimizes designs for the best average results,
but you can change settings to focus on one aspect of the design results
and trade off other aspects. Certain tools or debugging options can lead
to restrictions in your design flow. If you know what is important in a
particular design, this knowledge will help you choose the tools, features,
and methodologies that you should use with the design. This chapter
cannot cover every possible consideration for planning a complex FPGA

Quartus Il Handbook, Volume 1

Creating Design
Specifications

Device Selection

design, but once you understand your design priorities, you can use the
design planning issues described here as a guide to help ensure a
productive and successful FPGA design flow.

This chapter provides an introduction to various design and planning
features in the Quartus II software. For a general overview of the
Quartus II design flow and features, refer to the Introduction to the
Quartus II Software manual. For more details about specific Quartus II
features and methodologies, this chapter provides references to other
appropriate chapters in the Quartus II Handbook. After you have selected
a device family, you can refer to the Design Guidelines section of the
device’s Literature page on Altera’s website to check if additional
guidelines are available for your device family.

Before you create your logic design or complete your system design, you
should have detailed design specifications. The specifications define
what the system should do, specify the I/O interfaces for the FPGA, and
include a block diagram of basic design functions. Taking the time to
create these specifications will help improve design efficiency.

Creating a test plan at this phase can also help you design for testability
and manufacturability. For example, do you want to perform any built-in
self-test functions to drive interfaces? If so, you could use a UART
interface with a NIOS®II processor inside the FPGA device. You might
require the ability to validate all the design interfaces. Refer to “Planning
for On-Chip Debugging Options” on page 1-11 for guidelines related to
analyzing and debugging the device after it is in the system.

It is also useful to consider a common design directory structure at this
point, if your design includes multiple designers. This will ease the
design integration stages. “Planning for Hierarchical and Team-Based
Design” on page 1-15 provides more suggestions for team-based designs.

The first stage in design planning is choosing the best device for your
application. The device selection affects the rest of your design cycle,
including board specification and layout. Most of this planning is
performed outside of the Quartus II software, but this section provides a
few suggestions to aid in the planning process.

It is important to choose the device family that best suits your design
needs. Different families offer different trade-offs, including cost,
performance, logic and memory density, I/O density, power utilization,
and packaging. You should also consider feature requirements, such as
1/0 standards support, high-speed transceivers, global/regional clock
networks, and the number of phase-locked loops (PLLs) available in the
device. You can review important features of each device family in the

Altera Corporation
May 2008

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Design Planning with the Quartus Il Software

Altera Corporation
May 2008

Selector Guides available on the Altera website
(www.altera.com/literature/lit-sg.jsp). Each device family also has a
device handbook or set of data sheets that documents the device features
in detail.

Determining the required device density can be a challenging part of the
design planning process. Devices with more logic resources and higher
I/0 counts can implement larger and potentially more complex designs,
but may have a higher cost. Select a device that meets your design needs
with some safety margin, in case you want to add more logic later in the
design cycle or reserve logic and memory for on-chip debugging (refer to
“Planning for On-Chip Debugging Options” on page 1-11). Consider
needs for specific types of dedicated logic blocks, such as memory blocks
of different sizes, or digital signal processing (DSP) blocks to implement
certain arithmetic functions.

If you have prior designs that target Altera devices, you can use their
resource utilization as an estimate for your new design. You can compile
existing designs in the Quartus I software with the device selection set to
Auto to review the resource utilization and find out which device density
fits the design. Note that coding style, device architecture, and the
optimization options used in the Quartus II software can significantly
affect a design’s resource utilization.

For resource utilization estimates for certain configurations of Altera’s
intellectual property (IP) designs, refer to the User Guides for Altera
Megafunctions and IP MegaCores® on the IP Megafunctions page on the
Altera website (www.altera.com/literature/lit-ip.jsp). You can use these
numbers to help estimate the resource utilization of your design.

Device Migration Planning

Determine whether you want the option of migrating your design to
another device density to allow flexibility when the design nears
completion, or whether you want to migrate to a HardCopy® ASIC when
the design reaches volume production. In some cases, designers may
target a smaller (and less expensive) device and then move to a larger
device if necessary to fit their design. Other designers may prototype
their design in a larger device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a final smaller device
after prototyping. Similarly, many designers compile and optimize their
design for an FPGA device before moving to a HardCopy ASIC when the
design is complete and ready for higher-volume production. If you
would like this flexibility, you should specify these migration options in
the Quartus II software at the beginning of your design cycle. Specify the
target migration devices in the Migration compatibility or Companion
device sections of the Device page in the Settings dialog box.

http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/lit-ip.jsp

Quartus Il Handbook, Volume 1

Planning for
Device
Programming/
Configuration

Selecting a migration device has an impact on pin placement because
some pins may serve different functions in different device densities or
package sizes. When making pin assignments in the Quartus II software,
the Pin Migration View in the Pin Planner highlights pins that change
function between your migration devices. (Refer to “Early Pin Planning
and I/O Analysis” on page 1-7 for more details.) Selecting a companion
device may force you to restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration
or companion devices later in the design cycle is possible, but requires
extra effort to check pin assignments, and may require design changes to
fit into the new target device. It is much easier to consider these issues
early in the design cycle than at the end, when the design is near
completion and ready for migration.

In addition, if you are planning to use a HardCopy ASIC, review
HardCopy guidelines early in the design cycle for any Quartus Il settings
that should be used or other restrictions you should consider. It is
especially important to use complete timing constraints if you want to
migrate to a HardCopy device because of the rigorous verification
requirements for ASICs.

For more information about timing requirements and analysis for
HardCopy designs, refer to the HardCopy Series Handbook.

Another important part of the device planning is determining how you
want to program or configure the device in your system. Choosing your
programming or configuration method up-front allows system and board
designers to determine what companion devices, if any, are needed for
your system. Your board layout also depends on the type of
programming or configuration method you plan to use for
programmable devices. Many programming options use a JTAG interface
to connect to the devices, so you may require a JTAG chain be set up on
the board.

The device family handbooks describe the configuration options
available for a given device family. For more details about configuration
options, refer to the Configuration Handbook. For information about
programming CPLD devices, refer to your device data sheet or
handbook. Programming and configuration of Altera devices includes
the following options:

B Using enhanced configuration devices—These devices combine
industry-standard flash memory with a feature-rich configuration
controller, including device features such as concurrent and dynamic
configuration, data compression, clock division, and an external
flash memory interface. You can also implement remote and local
system updates with enhanced configuration devices.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Design Planning with the Quartus Il Software

Early Power
Estimation

Altera Corporation
May 2008

B Using Flash memory devices with a memory controller, such as an

Altera MAX® device—The flash memory controller can interface
with a PC or microprocessor to receive configuration data via a
parallel port.

B Using the Quartus II Serial Flash Loader (SFL)—This scheme allows
you to configure the FPGA and program serial configuration devices
using the same JTAG interface.

B Using the Quartus II Parallel Flash Loader (PFL)—This solution
quickly retrieves data from a JTAG interface and generates data
formatted for the receiving target flash device, significantly reducing
the flash device programming time. If your system already contains
a common flash interface (CFI) flash memory, you can utilize it for
the FPGA configuration storage as well, because the PFL feature
supports many common industry-standard flash devices. If you
choose this method, check the list of supported flash devices early in
your system design cycle and plan accordingly. Refer to AN 386:
Using the MAX II Parallel Flash Loader with the Quartus II Software for
the list of supported Flash devices.

You can use the Quartus Il power estimation and analysis tools to provide
information to PCB board and system designers. You can perform early
power estimation before you have created any source code, or when you
have a preliminary version of the design, and then perform the most
accurate analysis when the design is complete.

Device power consumption must be accurately estimated to develop an
appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system. Power estimation and analysis
has two significant planning requirements:

B Thermal planning—You must ensure that the cooling solution is
sufficient to dissipate the heat generated by the device. In particular,
the computed junction temperature must fall within normal device
specifications.

B Power supply planning—Power supplies must provide adequate
current to support device operation.

Power consumption in FPGA devices is dependent on the design,
providing a challenge during early board specification and layout. The
Altera PowerPlay Early Power Estimator spreadsheet allows you to
estimate power utilization before the design is complete, by processing
information about the device resources that will be used in the design, as
well as the operating frequency, toggle rates, and environmental
considerations.

http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an386.pdf

Quartus Il Handbook, Volume 1

If you have an existing design or a partially-completed design, the power
estimator file generated by the Quartus II software can provide input to
the spreadsheet for your current design (refer to “Early Power Estimator
File”).

When the design is complete, the PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power to help
ensure that thermal and supply budgets are not violated.

The PowerPlay Early Power Estimator spreadsheets for each supported
device family are available on the Altera website:
(www.altera.com/support/devices/estimator /pow-powerplay.jsp).

Estimating power consumption early in the design cycle allows planning
of power budgets and avoids surprises for designers developing the PCB.

«® For more information about power estimation and analysis, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Power Estimator File

When entering data into the Early Power Estimator spreadsheet, you
must include the device resources, operating frequency, toggle rates, and
other parameters. Specifying these values requires familiarity with the
design. If you do not have an existing design, estimate the number of
device resources used in your design and enter it manually. If you have
an existing design or a partially completed design, you can generate a
power estimator file.

First, compile your design in the Quartus II software. After compilation
is complete, on the Project menu, click Generate PowerPlay Early Power
Estimator File. This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro, which parses the information in the power estimation file
and transfers it into the spreadsheet. If you do not want to use the macro,
you can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. You can edit the spreadsheet and add additional device
resources after importing the power estimation file information.

1-6 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp

Design Planning with the Quartus Il Software

Early Pin
Planning and I/0
Analysis

Altera Corporation
May 2008

It is important to plan top-level FPGA I/0O pins early, so board designers
can start developing the PCB design and layout. The FPGA device’s 1/O
capabilities influence pin locations and other types of assignments. In
cases where the board design team specifies an FPGA pin-out, it is crucial
that the pin locations be verified in the FPGA place-and-route software as
soon as possible to avoid the need for board design changes.

Traditionally, designers and system architects could not check the validity
of FPGA pin assignments until the design was complete. You can now
create a preliminary pin-out for an Altera FPGA using the Quartus Il Pin
Planner before the source code is designed, based on standard I/O
interfaces (such as memory and bus interfaces) and any other I/O-related
assignments defined by system requirements. Refer to “Creating a Top-
Level Design File for I/O Analysis” on page 1-8. Quartus I I/O
Assignment Analysis checks that the pin locations and assignments are
supported in the target FPGA architecture. You can use I/O Assignment
Analysis to validate I/O-related assignments that you make or modify
throughout the design process.

The Pin Planner enables easy I/O pin assignment planning, assignment,
and validation. Use the Pin Planner Package view to make pin location
and other assignments using a device package view instead of pin
numbers. The Pads view displays I/O pads in order around the silicon
die to help you follow pad distance and pin placement guidelines. With
the Pin Planner, you can identify I/O banks, voltage reference (VREF)
groups, and differential pin pairings to help you through the I/O
planning process. If migration devices are selected (including HardCopy
devices) as described in “Device Migration Planning” on page 1-3, the
Pin Migration view highlights pins that change function in the migration
device when compared to the currently selected device. Selecting pins in
the Device Migration view cross-probes to the rest of the Pin Planner, so
you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins
for use in “board-aware” signal integrity reports generated with the
Enable Advanced I/O Timing option. This option ensures you get very
accurate I/O timing analysis. You have the option to use a Microsoft Excel
spreadsheet to start the I/O planning process if you normally use a
spreadsheet in your design flow, and you can export a Comma-Separated
Value (.csv) file containing your I/O assignments for spreadsheet use
when all pins are assigned.

When planning is complete, the pin location information can be passed to
PCB designers. The Pin Planner is tightly integrated with certain PCB
design EDA tools, and can read pin location changes from these tools to
check the suggested changes. It is important that pin assignments match
between the Quartus II software and your schematic and board layout
tools to ensure the design works correctly on the board where it is placed,

Quartus Il Handbook, Volume 1

especially if changes to the pin-out must be made. The system architect
can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they
compile their design. When the design is complete, the Quartus II Fitter
reports should be used for the final sign-off of pin assignments.

Starting FPGA pin planning early—before the HDL design is complete—
improves the confidence in early board layouts, reduces the chance of
error, and improves the design’s overall time to market.

For more information about I/O assignment and analysis, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook. For more
information about passing I/O information between the Quartus II
software and third-party EDA tools, refer to the Mentor Graphics PCB
Design Tools Support and Cadence PCB Design Tools Support chapters in the
I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Creating a Top-Level Design File for I/0 Analysis

Early in the design process, before the source code is created, the system
architect typically has information about the I/O interfaces and IP cores
that to used in the design. You can use this information with the
Create/Import Megafunction feature in the Pin Planner to specify details
about the design I/O interfaces. Specifying these details allows you to
create a top-level design file that includes all your I/O information, so
you can analyze the I/O assignments in the Quartus II software.

The Pin Planner interfaces with the MegaWizard® Plug-In Manager, and
allows you to create or import custom megafunctions and IP cores that
use I/0O interfaces. Configure how they are connected to each other by
specifying matching node names for selected ports in the Set Up
Top-Level Design File dialog box. Make any other I/O-related
assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much information as possible, generate a
top-level design file using the Create Top-Level Design File command.
The Pin Planner creates virtual pin assignments for internal nodes, so
internal nodes are not assigned to device pins during compilation. After
analysis and synthesis of the newly generated top-level wrapper file, use
the generated netlist to perform I/O Analysis with the Start 1/O
Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP
parameters and repeat the checking process until the I/O interface meets
your design requirements and passes the pin checks in the Quartus II
software. When this initial pin planning is complete, you can create a

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf

Design Planning with the Quartus Il Software

Selecting Third-
Party EDA Tool
Flows

Altera Corporation
May 2008

Quartus II Revision based on the Quartus II-generated netlist. You then
have a choice for how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated
netlist and use the generated Quartus II Settings File (.qsf) with the actual
design.

Your complete FPGA design flow may include third-party EDA tools in

addition to the Quartus II software. Determine which tools you want to

use with the Quartus I software to ensure that they are supported and set
up correctly, and that you are aware of any useful features or undesired

limitations.

Synthesis Tools

You can synthesize your design using the Quartus Il software’s integrated
synthesis tool or your preferred third-party synthesis tool. Different
synthesis tools may give different results. If you want to select the
best-performing tool for your application, you can experiment by
synthesizing typical designs for your application and coding style and
comparing the results. Be sure to perform placement and routing in the
Quartus II software to get accurate timing analysis and logic utilization
results. Results from synthesis are estimates before place-and-route and
do not include logic that is treated as a black box for synthesis (such as
megafunctions or Altera IP cores in some synthesis tools). In addition,
these estimates do not take into account logic usage reduction achieved
in the Quartus II Fitter through register packing or other Quartus II
optimizations, such as Physical Synthesis, that may change both timing
and resource utilization results.

Altera recommends that you use the most recent version of third-party
synthesis tools, because tool vendors frequently add new features, fix tool
issues, and enhance performance for Altera devices. The Quartus II
Software Release Notes lists the version of each synthesis tool that is
officially supported by that version of the Quartus II software.

Specify your synthesis tool in the New Project Wizard or the EDA Tools
Settings page of the Settings dialog box to use the correct Library
Mapping File for your synthesis netlist.

Synthesis tools may offer the capability to create a Quartus II project and
pass constraints, such as the EDA tool setting, device selection, and
timing requirements that you specified in your synthesis project. You can
use this capability to save time when setting up your Quartus II project
for placement and routing.

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

Quartus Il Handbook, Volume 1

1-10

If you want to take advantage of an incremental compilation
methodology, you should partition your design for synthesis and
generate multiple output netlist files. Refer to “Incremental Compilation
with Design Partitions” on page 1-16 for more information.

For more information about synthesis tool flows, refer to the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Simulation Tools

Altera provides the ModelSim-Altera simulator with Quartus II license
subscriptions, and the Quartus Il software can generate timing netlist files
to support other third-party simulation tools.

If you use a third-party simulation tool, ensure that you use the software
version that is supported with your Quartus II version. The Quartus I
Software Release Notes list the version of each simulation tool that is
officially supported with that particular version of the Quartus II
software. Also ensure that you use the model libraries provided with
your Quartus II software version. Libraries can change between versions,
which might cause a mismatch with your simulation netlist.

Specify your simulation tool in the EDA Tools Settings page of the
Settings dialog box to generate the appropriate output simulation netlist.

For more information about simulation tool flows, refer to the
appropriate chapter in the Simulation section in volume 3 of the
Quartus II Handbook.

Formal Verification Tools

The Quartus II software supports some formal verification flows.
Consider whether your desired formal verification flow impacts the
design and compilation stages of your design.

Using a formal verification flow can impact performance results because
it requires that certain logic optimizations be turned off, such as register
retiming, and forces hierarchy blocks to be preserved, which can restrict
optimization. Formal verification treats memory blocks as black boxes.
Therefore, it is best to keep memory in a separate hierarchy block so other
logic does not get incorporated into the black box for verification. There
are other restrictions that may also limit your design, so consult the
documentation for details. If formal verification is important to your
design, it is easier to plan for limitations and restrictions in the beginning
than to make changes later in the design flow.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

Design Planning with the Quartus Il Software

Planning for
On-Chip
Debugging
Options

Altera Corporation
May 2008

Specify your formal verification tool in the EDA Tools Settings page of
the Settings dialog box to generate the appropriate output netlist.

For more information about formal verification flows, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the
Quartus Il Handbook.

Altera’s in-system debugging tools offer different advantages and
trade-offs, so a particular debugging tool may work better for different
systems and designers. It is beneficial to evaluate on-chip debugging
options early in your design process, to ensure that your system board,
Quartus II project, and design are all set up to support the appropriate
options. Planning can reduce time spent during debugging and eliminate
the need to make changes later to accommodate your preferred
debugging methodologies.

The Quartus II portfolio of verification tools includes the following
in-system debugging features:

B SignalProbe incremental routing—This feature makes design
verification more efficient by quickly routing internal signals to I/O
pins without affecting the design. Starting with a fully routed design,
you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

B SignalTap® Il Embedded Logic Analyzer—This logic analyzer helps
you debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment or extra
I/0 pins, while the design is running at full speed in an FPGA
device. Defining custom trigger-condition logic provides greater
accuracy and improves the ability to isolate problems. The
SignalTap II Embedded Logic Analyzer does not require external
probes or changes to the design files to capture the state of the
internal nodes or I/O pins in the design; all captured signal data is
conveniently stored in device memory until you are ready to read
and analyze the data.

B Logic Analyzer Interface (LAI)—This interface enables you to
connect and transmit internal FPGA signals to an external logic
analyzer for analysis. You can use this feature to connect a large set
of internal device signals to a small number of output pins for
debugging purposes, and allows you to take advantage of advanced
features in your external logic analyzer or mixed signal oscilloscope.

B In-System Memory Content Editor—This feature provides read and
write access to in-system FPGA memories and constants through the
JTAG interface, making it easy to test changes to memory contents
and constant values in the FPGA while the device is functioning in a
system.

1-11

http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf

Quartus Il Handbook, Volume 1

1-12

B In-System Sources and Probes—This feature sets up customized
register chains to drive or sample the instrumented nodes in your
logic design, providing an easy way to input simple virtual stimuli
and capture the current value of instrumented nodes. You can force
trigger conditions set up using the SignalTap II Logic Analyzer,
create simple test vectors to exercise your design without the use of
external test equipment, and dynamically control run-time control
signals with the JTAG chain.

B Virtual JTAG Megafunction—The sld_virtual_jtag megafunction
allows you to build your own system-level debugging infrastructure,
including both processor-based debugging solutions and debugging
tools in software for system-level debugging. The sld_virtual_jtag
megafunction can be instantiated directly in your HDL code to
provide one or more transparent communication channels to access
parts of your FPGA design using the JTAG interface of the device.

For more information about debugging tools, refer to the appropriate
“Referenced Documents” on page 1-22. For an overview of debugging
options that will help you decide which option to use, refer to the
introduction in Section V. In-System Design Debugging in volume 3 of the
Quartus II Handbook.

If you intend to use any of these features, you may have to plan for the
features when developing your system board, Quartus II project, and
design. The following paragraphs describe various factors to consider
during your design planning stages.

The SignalTap Il Embedded Logic Analyzer, Logic Analyzer Interface,
In-System Memory Content Editor, In-System Sources and Probes, and
Virtual JTAG Megafunction require JTAG connections to perform
in-system debugging. Plan your system and board with JTAG ports that
are available for debugging.

The JTAG debugging features also require a small amount of additional
logic resources to implement the JTAG hub logic. If you set up the
appropriate feature early in your design cycle, you can include these
device resources in your early resource estimations to ensure you do not
overfill the device with logic.

The SignalTap I Embedded Logic Analyzer uses device memory to
capture data during system operation. To ensure that you have enough
memory resources to take advantage of this debugging technique,
consider reserving device memory to be used during debugging.

To use incremental debugging with the SignalTap II Embedded Logic
Analyzer, the Full incremental compilation option must be turned on.
This option is on by default for projects created in the Quartus II software

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Design Planning with the Quartus Il Software

DesignPractices
and HDL Coding
Styles

Altera Corporation
May 2008

version 6.1 or later, but is not turned on automatically for existing
projects. If incremental compilation is not enabled, you must recompile
the entire design when you want to add debugging functions, or when
you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap II Embedded Logic Analyzer greatly
reduces the compilation time required for debugging.

SignalProbe and the Logic Analyzer Interface require 1/O pins for
debugging. Consider reserving I/O pins for debugging so that you do not
have to change the design or board to accommodate debugging signals
later. Keep in mind that the Logic Analyzer Interface can multiplex
signals with design I/O pins if required. Ensure that your board supports
some kind of debugging mode, where debugging signals do not affect
system operation.

If you want to use the Virtual JTAG megafunction for custom debugging
applications, you must instantiate it and incorporate it as part of the
design process.

The In-System Sources and Probes feature also requires that you
instantiate a megafunction in your HDL code. In addition, you have the
option to instantiate the SignalTap II Embedded Logic Analyzer as a
megafunction, so you can connect it to nodes in your design manually
and ensure that the tapped node names do not change during synthesis.
You can add the debugging block as a separate design partition for
incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or
the lpm_constant megafunction, ensure that you turn on the Allow
In-System Memory Content Editor to capture and update content
independently of the system clock option when you create the memory
block in the MegaWizard Plug-In Manager.

In the development of complex FPGA designs, design practices and
coding styles have an enormous impact on your device’s timing
performance, logic utilization, and system reliability. Follow Altera’s
recommendations to achieve the best synthesis and fitting results.

Design Recommendations

Use synchronous design practices to consistently meet your design goals.
Problems with other design techniques include reliance on propagation

delays in a device, incomplete timing analysis, and possible glitches. In a
synchronous design, a clock signal triggers all events. As long as all of the
registers’ timing requirements are met, a synchronous design behaves in

1-13

Quartus Il Handbook, Volume 1

1-14

a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades.

Pay particular attention to clock signals, because they have a large effect
on your design’s timing accuracy, performance, and reliability. Problems
with clock signals can cause functional and timing problems in your
design. Use dedicated clock pins and clock routing for best results,

and if PLLs are available in your target device, use the PLLs for clock
inversion, multiplication, and division. For clock multiplexing and
gating, use the dedicated clock control block or PLL clock switchover
feature instead of combinational logic if these features are available in
your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce
glitches.

The Design Assistant in the Quartus II software is a design-rule checking
tool that enables you to check for design issues early in the design flow.
The Design Assistant checks your design for adherence to
Altera-recommended design guidelines or design rules. To run the
Design Assistant, on the Processing menu, point to Start and click Start
Design Assistant. To set the Design Assistant to run automatically during
compilation, turn on Run Design Assistant during compilation in the
Settings dialog box. You can also use third-party “lint” tools to check
your coding style.

It is also helpful to understand your device’s target architecture, so you
can target your design to take advantage of those features. For example,
it is important that control signals use the dedicated control signals in the
device architecture, so in some cases you might be required to limit the
number of different control signals used in your design to achieve the best
results.

For more information about design recommendations and using the
Design Assistant, refer to the Design Recommendations for Altera Devices
and the Quartus II Design Assistant chapter in volume 1 of the Quartus II
Handbook. You can also refer to industry papers for more information
about multiple clock design. For a good analysis, refer to the
CummingsSNUG2001SJ_AsyncClk. pdf file under papers at
www.sunburst-design.com.

Recommended HDL Coding Styles

HDL coding styles can have a significant effect on the quality of results
(QoR) for programmable logic designs. Use Altera’s recommended
coding styles to achieve optimal synthesis results. When designing
memory and digital system processing (DSP) functions, it is helpful to

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.sunburst-design.com

Design Planning with the Quartus Il Software

Planning for
Hierarchical and
Team-Based
Design

Altera Corporation
May 2008

understand your device’s target architecture so you can take advantage of
the dedicated logic block sizes and configurations. Follow the coding
guidelines for inferring megafunctions and targeting dedicated device
hardware, such as memory and DSP blocks.

For specific HDL coding examples and recommendations, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. Refer to your synthesis tool’s documentation for any additional
tool-specific guidelines. In the Quartus II software, you can use the HDL
examples in the Language Templates available from the right-click menu in
the text editor.

If you want to create a hierarchical design that can take advantage of the
compilation-time savings and performance preservation of Quartus II
incremental compilation, plan for an incremental compilation flow from the
beginning of your design cycle. The following subsections describe the flat
compilation flow, in which the design hierarchy is flattened without design
partitions, and then the incremental compilation flows that use design
partitions in top-down, bottom-up, or mixed design methodologies.
Incremental compilation flows offer several advantages but require more
design planning to ensure good quality of results. The last subsections
discuss factors to consider when planning an incremental compilation flow:
planning design partitions and creating a design floorplan.

For details about using the incremental compilation flows in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions

In this compilation flow in the Quartus II software, the entire design is
compiled together in a “flat” netlist. This flow is used if you do not create
any design partitions. Your source code can have hierarchy, but the design
is flattened during compilation and all of the design source code is
synthesized and fit in the target device whenever the design is recompiled
after any change in the design. By processing the entire design, the software
performs all available logic and placement optimizations on the entire
design to improve area and performance. You can use debugging tools in an
incremental design flow, such as the SignalTap II Logic Analyzer, but you do
not specify any design partitions to preserve design hierarchy during
compilation.

1-15

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Quartus Il Handbook, Volume 1

1-16

The flat compilation flow is easy to use; you do not have to plan any
design partitions. However, because the entire design is recompiled
whenever there are any changes to the design, compilation times can be
relatively long for large devices. In addition, you may find that the results
for one part of the design change when you change a different part of
your design.

=" The full incremental compilation option is turned on by default
in the Quartus II software, so the project is ready for you to
create design partitions for incremental compilation. If you do
not create any lower-level design partitions, the entire design is
considered as a single design partition, and the software uses a
flat compilation flow.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large
design into smaller partitions which can be designed separately. Team
members can work on partitions independently, which can simplify the
design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while
maintaining or even improving the quality of results.

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to, or optimize, one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and reduce compilation time on subsequent iterations.

Incremental compilation may also be useful for both reducing
compilation time and achieving timing closure. For example, you may
want to specify which partitions should be preserved in subsequent
incremental compilations and then recompile the other partitions with
advanced optimizations turned on.

If a part of your design is not yet complete, you can create an empty
partition for the incomplete part of the design while compiling the
completed partitions. Then, save the results for the complete partitions
while you work on the new part of the design.

Alternately, different designers or IP providers may be working on
different blocks of the design using a team-based methodology, and you
may want to combine these blocks in a bottom-up compilation flow.

Altera Corporation
May 2008

Design Planning with the Quartus Il Software

Altera Corporation
May 2008

When planning your design code and hierarchy, ensure that each design
entity is created in a separate file so the entities remain independent when
you make source code changes in the file. If you use a third-party
synthesis tool, you should create separate Verilog Quartus Mapping
(VQM) or EDIF netlists for each design partition in your synthesis tool.
You may have to create separate projects within your synthesis tool, so
the tool synthesizes each partition separately and generates separate
output netlist files. Refer to your synthesis tool documentation for
information about support for Quartus II incremental compilation. The
netlists are then considered the source files for incremental compilation.

Top-Down Versus Bottom-Up Incremental Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows that are suitable for different design

methodologies. You can also combine these flows in a mixed compilation
flow. The following subsections briefly describe each of these compilation
flows so that you can choose the flow that best meets your design needs.

Top-Down Incremental Compilation Flow

With top-down compilation, one designer or project lead compiles the
entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can
add design entities to the project as they are completed. You can also
target optimizations on one part of the design while designating the rest
of the design as “empty.” Regardless of the source for all the design logic,
the project lead compiles and optimizes the top-level project as a whole.

Incremental compilation preserves the compilation results and
performance of unchanged partitions in your design, greatly reducing
design iteration time by focusing new compilations on changed design
partitions only. New compilation results are then merged with the
previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched. You can also use this flow with empty partitions if parts of
your design are incomplete or missing.

Bottom-Up and Team-Based Incremental Compilation Flow

Bottom-up design flows allow individual designers to complete the
optimization of their design in separate projects and then integrate each
lower-level project into one top-level project. Bottom-up methodologies
include team-based design flows in which design partitions are created
by team members in another location or by third-party IP providers.

1-17

Quartus Il Handbook, Volume 1

1-18

Incremental compilation provides export and import features to enable
bottom-up design methodologies. Designers of lower-level blocks can
export the optimized netlist for their design, along with a set of
assignments, such as LogicLock™ regions. The system architect then
imports each design block as a design partition in a top-level project.

In bottom-up design flows, it is very important that the system architect
provide guidance to designers of lower-level blocks to ensure that each
partition uses the appropriate device resources. Because the designs are
developed independently, each lower-level designer has no information
about the overall design or how their partition connects with other
partitions. This lack of information can lead to problems during system
integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, should be communicated
to the designers of lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use
Quartus II incremental compilation to communicate information to
lower-level designers through automatically-generated scripts. The
Generate bottom-up design partition scripts option automates the
process of transferring top-level project information to lower-level
modules. The software provides a project manager interface for
managing project information in the top-level design.

The scripts can create Quartus II projects for all the lower-level design
blocks and pass all the relevant project assignments. Using these scripts
makes it easier for designers of lower-level modules to implement the
instructions from the project lead, and avoid conflicts between projects
when importing and incorporating the projects into the top-level design.
You can use this methodology to help reduce the need to further optimize
the designs after integration and improves overall designer productivity
and team collaboration.

Mixed Incremental Compilation Flow

You can combine top-down and bottom-up compilation flows to take
advantage of top-down flows for part of your design, while importing
parts of the design that are developed independently.

The top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated. A top-down approach also provides the design
software with information about the entire design, so it can perform
global placement optimizations when no part of the design is locked
down to a specific location.

Altera Corporation
May 2008

Design Planning with the Quartus Il Software

Altera Corporation
May 2008

In a bottom-up design methodology, you must perform resource
balancing and time-budgeting very carefully, because the software does
not have any information about the other partitions in the top-level
design when it compiles individual lower-level partitions. Using
bottom-up compilation flows where required, in combination with
top-down compilation flows to reduce compilation time and preserve
results for other parts of the design, can be an effective way to improve
your productivity.

Planning Design Partitions

Partitioning a design for an FPGA requires planning to ensure optimal
results when the partitions are integrated, and ensure that each partition
is placed well relative to other partitions in the device. Following Altera’s
recommendations for creating design partitions improves the overall
quality of results. For example, registering partition I/O boundaries
keeps critical timing paths inside one partition that can be optimized
independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual
blocks reduces the chance of timing problems during system integration.
If you optimize lower-level partitions separately, any unregistered paths
that cross between partitions are not optimized as an entire path. To
ensure that the software correctly optimizes the input and output logic in
each partition, you may be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between
partitions, you should make timing assignments on the corresponding
I/0 path in each partition to constrain both ends of the path to the
budgeted timing delay. Assigning a timing budget for each part of the
connection ensures that the software optimizes paths appropriately so
they meet the top-level design requirements.

Itis important to plan and balance resource utilization. When performing
incremental compilation, the software synthesizes each partition
separately, with no data about the resources used in other partitions.
Therefore, device resources can be overused in the individual partitions
during synthesis, and the design may not fit in the target device when the
partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level. Balancing resource
utilization between the design partitions avoids any problems with
conflicting resources when all the partitions are integrated.

1-19

Quartus Il Handbook, Volume 1

Fast Synthesis
and Early Timing
Estimation

1-20

For guidelines on creating design partitions and organizing your source
code, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan chapter in volume 1 of the Quartus I Handbook.

Creating a Design Floorplan

To take full advantage of incremental compilation, you may be required
to create a design floorplan to avoid conflicts between design partitions,
and to ensure that each partition is placed well relative to other partitions.
Creating location assignments for each partition ensures that no conflicts
occur for locations between different partitions. In addition, a design
floorplan helps to avoid a situation in which the Fitter is directed to place
or replace a portion of the design in an area of the device where most
resources have already been claimed. Without floorplan assignments, this
situation can lead to increased compilation time and reduced quality of
results.

You can use the Quartus II Timing Closure Floorplan or Chip Planner,
depending on your target device, to create a design floorplan using
LogicLock region assignments for each design partition. With a basic
design framework for the top-level design, these floorplan editors allow
you to view connections between regions, estimate physical timing
delays on the chip, and move regions around the device floorplan. When
you have compiled the full design, you can also view logic placement and
locate areas of routing congestion to improve the floorplan assignments.

Good partition and floorplan design helps lower-level designs meet
top-level design requirements when integrated with the rest of the
design, reducing the time spent integrating and verifying the timing of
the top-level design.

For details about creating placement assignments in the design
floorplan, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook. For guidelines on
creating a design floorplan for incremental compilation, refer to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

It is much less costly to find design issues early in the design cycle than
to find problems in the final timing closure stages. When the first version
of the design source code is complete, you may want to perform a quick
compilation to create a kind of silicon virtual prototype, or SVP, that you
can use to perform timing analysis.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Design Planning with the Quartus Il Software

If you synthesize with the Quartus Il software, you can choose to perform
a Fast synthesis, which reduces the compilation time but may give
reduced quality of results. On the Assignments menu, click Settings. On
the Analysis & Synthesis Settings tab, click More Settings and set the
Synthesis Effort.

Regardless of your compilation flow, you can use the an Early Timing
Estimate to perform a quick placement and routing, and a timing analysis
of your design. On the Processing menu, point to Start, and click Start
Early Timing Estimate. The software chooses a device automatically if
required, places any LogicLock regions used to create a floorplan, finds a
quick initial placement for all the design logic, and provides a useful
estimate of the final design performance. If you have entered timing
constraints, timing analysis reports on these constraints.

'~ Early Timing Estimation is supported with both the TimeQuest
and Classic Timing Analyzers. Use the TimeQuest Timing
Analyzer with Synopsys Design Constraint (SDC) format
constraints to enable advanced timing analysis capabilities that
are not available in the Classic Timing Analyzer.

Designers of individual blocks in bottom-up design flows can use these
features as they develop the design. Any issues highlighted in the lower
level design blocks can be communicated to the system architect.
Resolving these issues may require allocating additional device resources
to the individual block or changing its timing budget.

A top-level designer can also use fast synthesis and early timing
estimation to prototype the entire design. Incomplete partitions can be
marked as empty in an incremental compilation flow, while the rest of the
design is compiled to get an early timing estimate and detect any
problems with design integration.

A system architect can use early timing estimation along with design
partition scripts (as described in “Bottom-Up and Team-Based
Incremental Compilation Flow” on page 1-17) to pass additional
constraints to lower-level designers, and provide more information about
the other partitions in the design. This information can be especially
useful to optimize cross-partition paths. Running early timing
estimations helps designers find and resolve design problems during the
early design stages.

Altera Corporation 1-21
May 2008

Quartus Il Handbook, Volume 1

Conclusion

Referenced
Documents

1-22

Modern FPGAs support large, complex designs with fast timing
performance. By planning several aspects of your design early in the
process, you can reduce unnecessary time spent handling issues in later
stages of the process. You can use various features of the Quartus II
software to quickly plan your design and achieve the best possible
results. Following the guidelines presented in this chapter will improve
productivity, which reduces the design cost and improves the final
product’s time to market.

This chapter references the following documents:

B Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus I Handbook

B AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software

B Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus I Handbook

B Cadence PCB Design Tools chapter in volume 2 of the Quartus II
Handbook

W Configuration Handbook

B Design Debugging Using the SignalTap I Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

B Design Debugging Using In-System Sources and Probes chapter in
volume 3 of the Quartus II Handbook

B Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook

B Formal Verification section in volume 3 of the Quartus II Handbook

B [/O Management chapter in volume 2 of the Quartus II Handbook

B [n-System Debugging Using External Logic Analyzers chapter in
volume 3 of the Quartus II Handbook

B [n-System Updating of Memory and Constants chapter in volume 3 of
the Quartus II Handbook

B Introduction to the Quartus II Software

B Mentor Graphics PCB Design Tools Support chapter in volume 2 of the
Quartus II Handbook

B PowerPlay Power Analysis chapter in volume 3 of the Quartus II
Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

B Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook

Simulation section in volume 3 of the Quartus Il Handbook

sld_virtual_jtag Megafunction User Guide

Synthesis section in volume 1 of the Quartus II Handbook

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/an/an386.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Design Planning with the Quartus Il Software

Document Table 1-1 shows the revision history for this chapter.
Revision History

Table 1-1. Document Revision History
Date and
Document Changes Made Summary of Changes
Version
May 2008 e Organization changes Updated for the Quartus Il
v8.0.0 e Added “Creating Design Specifications” section 8.0 software release and
o Added reference to new details in the In-System Design related documentation;
Debugging section of volume 3 expanded and improved
o Added more details to the “Design Practices and HDL organization of topic
Coding Styles” section coverage.
o Added references to the new Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter
o Added reference to the Quartus |l Language Templates
October 2007 Reorganized “Referenced Documents” on page 1-22. Updated for the Quartus Il
v7.2.0 7.2 software release.
May 2007 v7.1.0 | Updated for the Quartus Il 7.1 software release, including: Updated for the Quartus Il
e Expanded Introduction, Device Migration Planning, and 7.1 software release and
Early Pin Planning and Analysis sections. expanded topic coverage.
o Added new sections: Selecting Third-Party EDA Tool Flows
and Planning for Debug Options.
o Other minor changes and reorganization.
o Added Referenced Documents.
March 2007 Updated Quartus |l software 7.0 revision and date only. No —
v7.0.0 other changes made to chapter.
November 2006 | Initial release. —
v6.1.0
Altera Corporation 1-23

May 2008

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Handbook, Volume 1

1-24 Altera Corporation
May 2008

2. Quartus Il Incremental
/ANOTE 2Ya o

Compilation for Hierarchical
and Team-Based Design

®

Q1151015-8.0.0

Introduction

Altera Corporation
May 2008

For today’s high-density, high-performance FPGA designs, the ability to
iterate rapidly during the design and debugging stages is critical. The
Quartus® II software delivers advanced technology to create designs for
high-density FPGAs. Altera introduced the FPGA industry’s first true
incremental design and compilation flow, which provides the following
benefits:

B Preserves the results and performance for unchanged logic in your
design as you make changes elsewhere

B Reduces design iteration time by up to 70%, so you can perform more

design iterations per day and achieve timing closure efficiently

Provides ease of use in the graphical user interface (GUI)

Includes Tel scripting, command-line, and makefile support

Integrates with third-party synthesis software’s incremental

synthesis flows

B Facilitates modular hierarchical and team-based design flows using
top-down or bottom-up methodologies

B Supports the Arria™ GX devices, and Stratix® and Cyclone® series of
devices; supports some incremental compilation flows for
HardCopy® II devices (for details, refer to “HardCopy Compilation
and Migration Flows” on page 2-78)

Incremental compilation in the Quartus II software is an optional
compilation flow. “Choosing a Quartus II Compilation Flow” on

page 2-3 provides an overview of the Quartus II design flow with and
without incremental compilation to help you decide if you should take
advantage of this feature for your project. The remainder of the chapter
includes the following sections:

B “Quick Start Guide—Summary of Steps for an Incremental
Compilation Flow” on page 2-11

B “Choosing and Creating Design Partitions” on page 2-17, including
integration with third-party synthesis tools and using the Quartus II
Design Partition Planner

B “Setting the Netlist Type for Design Partitions” on page 2-25

B “Creating a Design Floorplan with LogicLock Location
Assignments” on page 2-34

B “Exporting and Importing Partitions for Bottom-Up Design Flows”
on page 2-38

B “Incremental Compilation Advisor” on page 2-54

Quartus Il Handbook, Volume 1

2-2

B “Recommended Design Flows and Compilation Application
Examples” on page 2-56

B “Incremental Compilation Restrictions” on page 2-71

B “Scripting Support” on page 2-95

To take advantage of incremental compilation, organize your design into
logical partitions (and optionally physical regions) for synthesis and
fitting. Incremental compilation preserves the compilation results and
performance of unchanged partitions in your design, dramatically
reducing design iteration time by focusing new compilations only on
changed design partitions. New compilation results are then merged with
the previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched.

Incremental compilation supports two design methodologies and
combinations of the two: top-down, in which one designer manages a
single project for the entire design, and bottom-up, in which each design
block can be developed independently. Bottom-up methodologies
include team-based design flows in which design partitions are created
by team members in another location or by third-party intellectual
property (IP) providers. For bottom-up flows, you can generate scripts
from the top-level design that pass constraints to lower-level design
blocks compiled in separate Quartus II projects.

This chapter contains information to satisfy the following goals:

B Provide an overview of the Quartus II compilation flow and help
you decide whether to use incremental compilation
B Describe how to use the Quartus II incremental compilation feature
with a quick start guide and then more detailed information
B Provide you with the level of understanding required to make good
design decisions to achieve timing closure while speeding up design
iterations
B Present several recommended design flows for incremental
compilation in the form of examples, along with the rationale behind
them and the steps required to carry out the tasks:
e “Reducing Compilation Time When Changing a Source File for
One Partition” on page 2-57
e “Optimizing the Placement for a Timing-Critical Partition” on
page 2-59
o “Preserving Results for Some Partitions before Adding Other
Partitions” on page 2-57
e “Implementing a Team-Based Bottom-Up Design Flow” on
page 2-61

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Choosing a
Quartus i
Compilation
Flow

Altera Corporation
May 2008

e “Performing Design Iteration in a Bottom-Up Design Flow” on
page 2-65
e “Creating Hard-Wired Macros for IP Reuse” on page 2-67

Quartus II incremental compilation enhances the standard Quartus II
design flow by allowing you to reuse satisfactory results from previous
compilations and save compilation time. This section outlines the flat
compilation flow with no design partitions and the incremental flow, and
explains the differences. The section also explains when a flat compilation
flow is satisfactory, and highlights some of the reasons you might want to
create design partitions and use the incremental flow.

The full incremental compilation option is turned on by default in the
Quartus II software, so the project is ready for you to create design
partitions for incremental compilation. If you do not create any design
partitions, the software uses a flat compilation flow.

2-3

Quartus Il Handbook, Volume 1

Flat Compilation Flow with No Design Partitions

Figure 2-1 shows the compilation flow with no design partitions.

Figure 2-1. Quartus Il Compilation Flow with No Design Partitions

; Block
THou | | VRO | | AoL | pesen || (|| i (<
) (.vhd) (-tdf) File (zdfs) (: ;)
’ (.bdf) : -vq
[I I + T T T
. . Settings &
Analysis & Synthesis (1N <1 Assignments <
Post-Synthesis
Netlist
i Settings &
Fitter - !
Place-and-Route - Assignments |
Post-Fit
Netlist
| Assembler |
| Timing Analyzer |
Requirements No Make Design & Assignment
Satisfied? Modifications

C Program/Configure Device)

Note to Figure 2-1:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis tools,
Analysis and Synthesis creates the design database, but logic synthesis and technology
mapping are performed only for black boxes and Altera® megafunctions.

In the default flat compilation flow, all the source code is processed with
the Analysis & Synthesis module, and all the logic is placed and routed
by the Fitter module whenever the design is recompiled after a change in
any part of the design. One reason for this behavior is to obtain optimal
quality of results. By processing the entire design, the compiler can
perform global optimizations to improve area and performance.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

You can use a flat compilation flow for small designs, such as designs in
CPLD devices or low-density FPGA devices, when the timing
requirements are met easily with a push-button compilation. A flat
design is satisfactory when compilation time and preserving results for
timing closure are not concerns.

Quartus Il Smart Compilation

The Quartus II software also includes a feature called Smart Compilation,
which should not be confused with incremental compilation. In any
Quartus II compilation flow, you can use smart compilation to allow the
compiler to determine which compiler stages are required, based on the
changes made to the design since the last smart compilation, and then
skip any stages that are not required. For example, when Smart
Compilation is on, the compiler skips the Analysis & Synthesis module if
all the design source files were unchanged. Smart compilation skips only
entire compiler stages. It cannot make incremental changes within a given
stage of the compilation flow, so it is not considered to be an incremental
design flow. To turn on Smart Compilation, on the Assignments menu,
click Settings. In the Category list, select Compilation Process Settings
and click Use Smart Compilation.

Incremental Compilation Flow with Design Partitions

There are many situations in which an incremental compilation flow is
more desirable than the simple flat compilation flow. Using an
incremental flow allows you to preserve the results and performance for
unchanged logic in your design as you make changes elsewhere. It
reduces design iteration time by up to 70%, allowing you to perform more
design iterations per day and achieve timing closure more efficiently.
Incremental compilation is recommended for large designs and high
device densities, as well as designs that require high performance relative
to the speed of the device architecture. The feature also facilitates
team-based design environments, allowing designers to create and
optimize design blocks independently.

In conventional FPGA design, a hierarchical design is flattened into a
single netlist before logic synthesis and fitting, and the entire design is
recompiled every time the design changes, as described in the previous
section. To use the Quartus II incremental compilation flow, start by
splitting the design along any of its hierarchical boundaries into blocks
called design partitions. Refer to “Choosing and Creating Design
Partitions” on page 2-17 for more details. The Quartus II software
synthesizes each individual hierarchical design partition separately, then
merges the partitions into a complete netlist for subsequent stages of the
compilation flow. When recompiling the design, you can use source code,
post-synthesis results, or post-fitting results for each partition. If you

2-5

Quartus Il Handbook, Volume 1

2-6

want to preserve the Fitter results, you can keep just the Fitter netlist,
keep the placement results, or keep both the placement and routing
results.

You can use incremental compilation later in the design cycle when you
do not have to improve the majority of the design any further and want
to make changes to or optimize one specific block. In this case, you can
preserve the performance of modules that are unmodified and to reduce
compilation time on subsequent iterations. There are also situations in
which incremental compilation is useful for reducing compilation time
and for achieving timing closure. For example, you can specify which
partitions should be preserved in subsequent incremental compilations,
and then recompile the other partitions with advanced optimizations
turned on.

You might also have part of your design that is not yet complete, for
which you can create an empty partition while compiling the completed
partitions, and then save the results for the complete partitions while you
work on the new part of the design. Alternatively, different designers or
IP providers may be working on different blocks of the design using a
team-based methodology, and you can combine them in a bottom-up
compilation flow. In these cases, the Fitter can perform placement and
routing on each partition independently. For more detailed examples that
describe recommended design flows to take advantage of the incremental
compilation features, refer to “Recommended Design Flows and
Compilation Application Examples” on page 2-56.

If you use the incremental compilation feature at any point in your design
flow, you should start planning for incremental compilation from the
start of your design development. It is easier to accommodate the
guidelines for partitioning and creating a floorplan if you start planning
at the beginning of your design cycle.

Refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook for
more information.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Figure 2-2 shows a block diagram of the Quartus II design flow using
incremental compilation with design partitions.

Figure 2-2. Quartus Il Design Flow Using Incremental Compilation

Verilog VHDL AHDL Block EDIF vam
HDL (.vhd) (:tdf) Design File Netlist Netlist
(.v) (.bdf) (.edf) (.vgm)
T T T T

v

Partition Top
Partition 1
Partition 2

Design Partition
Assignments

Analysis & Synthesis (1)
Synthesize Changed Partitions,
Preserve Others

One Post-Synthesis
Netlist per Partition

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design
Floorplan

Fitter .
. € Location |
Place-and-Route Changed Partitions, Assignments

Preserve Others

One Post-Fit
Netlist per
Partition

Create Individual Netlists and
Complete Netlists

Single Post-Fit
Netlist for
Complete DeS|gn

[Assembler

[Timing Analyzer]

Make Design &
Assignment Modifications

C Program/Configure Device)

Note to Figure 2-2:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis
tools, Analysis and Synthesis creates the design database, but logic synthesis and
technology mapping are performed only for black boxes and Altera
megafunctions.

2-7

Quartus Il Handbook, Volume 1

The diagram in Figure 2-2 shows a top-level partition and two
lower-level partitions. If any part of the design changes, Analysis and
Synthesis processes the changed partitions and keeps the existing netlists
for the unchanged partitions. After completion of Analysis and Synthesis,
there is one post-synthesis netlist for each partition.

The partition merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from
lower-level projects, depending on the netlist type you specify for each
partition.

The Fitter then processes the merged netlist, preserving the placement or
placement and routing of unchanged partitions, refitting only those
partitions that have changed. The Fitter generates the complete netlist for
use in further stages of the compilation flow, including timing analysis
and programming file generation. It also generates individual netlists for
each partition so the partition merge step can use the post-fit netlist to
preserve the placement and routing of a partition if you specify to do so
in future compilations.

If the design does not meet its requirements (functionality, timing, or
area), you can make changes to the design and recompile. The Quartus II
software does not resynthesize or refit unchanged partitions that have a
netlist type assignment that specifies the use of a post-synthesis or post-fit
netlist, respectively.

For more information about using the incremental compilation feature,
refer to the “Quick Start Guide—Summary of Steps for an Incremental
Compilation Flow” on page 2-11.

Table 2-1 shows a summary of the impact of incremental compilation on
your compilation results.

Table 2-1. Summary of the Impact of Full Incremental Compilation (Part 1 of 2)

Characteristic

Impact of Full Incremental Compilation

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; there are
savings in both Quartus Il integrated synthesis and the Fitter.

Performance
Preservation

Excellent when critical paths are contained within a partition, because you can preserve
post-fitting information for unchanged partitions.

Node Name
Preservation

Preserves post-fitting node names for unchanged partitions.

Area Changes

The area (logic resource utilization) might increase because cross-boundary optimizations
are no longer possible, and placement and register packing are restricted.

2-8

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-1. Summary of the Impact of Full Incremental Compilation (Part 2 of 2)

Characteristic

Impact of Full Incremental Compilation

fuax Changes

The design’s maximum frequency might be reduced because cross-boundary optimizations
are no longer possible. If the design is partitioned and the floorplan location assignments are
created appropriately, there is no negative impact on fyax.

Floorplan
Creation

Recommended for critical partitions to ensure the best quality of results when making design
changes. Required in bottom-up flows to avoid placement conflicts.

Altera Corporation
May 2008

Top-Down versus Bottom-Up Compilation Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows.

With top-down compilation, one designer compiles the entire design in
the software. You can use a top-down flow to optimize all blocks of the
design together, or to optimize one or more critical design blocks or IP
cores before adding the rest of the design. You can preserve fitting results
and performance for completed blocks while other parts of the design are
changing, which also reduces the compilation times for each design
iteration. Different designers or IP providers can create and verify HDL
code separately, but one person (generally the project lead or system
architect) compiles and optimizes the design as a single top-level project.

With bottom-up design flows, individual designers or IP providers can
complete the optimization of their design in separate projects and then
integrate each lower-level project into one top-level project. Incremental
compilation provides export and import features to enable this design
methodology. Designers of lower-level blocks can export the optimized
placed and routed netlist for their design, along with a set of assignments
such as LogicLock™ regions. The project lead then imports each design
block as a design partition in a top-level project.

The following two benefits are associated with a bottom-up design flow:

B Facilitates team-based development

B Permits the reuse of compilation results from another project, with
the ultimate goals of performance preservation and compilation time
reduction

A bottom-up design flow also has the following potential drawbacks that
require careful planning:

B Achieving timing closure for the full design may be difficult because
you compile the lower-level blocks independently without any
information about each other. This problem may be avoided by
careful timing budgeting and special design rules, such as always
registering the ports at the module boundaries.

2-9

Quartus Il Handbook, Volume 1

2-10

B For the same reason, resource budgeting and allocation may be
required to avoid resource conflicts and overuse. Floorplan creation
is typically very important in a bottom-up flow.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. For more information about the export and import
operations and how to use design partition scripts to help with design
planning, refer to “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2-38.

When using the full incremental compilation flow, users who
traditionally relied on a bottom-up approach for the sole reason of
performance preservation can now employ a top-down approach to
achieve the same goal. This ability is important for the following two
reasons:

B A top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated.

B A top-down approach provides the design software with
information about the entire design so it can perform global
placement and routing optimizations. Therefore, it is often easier to
ensure good quality of results with a top-down flow than with a
bottom-up flow.

The Quartus II incremental compilation feature is very flexible and

supports numerous design methodologies. You can mix top-down and

bottom-up flows within a single project. If the top-level design includes
one or more design blocks that are optimized by different designers or IP
providers, you can import those blocks (using a bottom-up methodology)
into a project that also includes partitions for a top-down incremental
methodology. In addition, as you perform timing closure for a design,
you can create a subproject for one block of the design to be optimized by
another designer in a separate Quartus II project, and pass information
about the rest of the design to the subproject to obtain the best results. By
following a mixed design methodology, you can take advantage of the
team-based capabilities of a bottom-up flow while maintaining the
advantages of a top-down flow for most of the design logic.

'~ Bottom-up incremental compilation is not supported in
HardCopy® or FPGA companion device compilations when
there is a migration device setting. You cannot use a bottom-up
methodology if you migrate to a HardCopy ASIC. For details,
refer to “HardCopy Compilation and Migration Flows” on
page 2-78.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Quick Start
Guide—
Summary of
Steps for an
Incremental
Compilation
Flow

Altera Corporation

May 2008

This section provides a summary of the steps required to perform an
incremental compilation flow. Detailed descriptions for some of these
steps are included in later sections of this chapter. For more examples of
design flows that take advantage of the incremental compilation features,
refer to “Recommended Design Flows and Compilation Application
Examples” on page 2-56. For guidelines about how to select your design
partitions and floorplan assignments, refer to the Best Practices for
Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Top-Down Incremental Compilation Flow

The flow chart in Figure 2-3 illustrates the complete incremental
compilation flow using a top-down methodology (all partitions are
contained in one top-level project). The following subsections describe
the steps in the flow. First, prepare the design for incremental compilation
and perform a full compilation. Then proceed to verify or debug your
design and make design changes as required. When you perform
additional design iterations and recompile your design, choose which
netlists to reuse and perform incremental compilations.

Figure 2-3. Summary of Top-Down Incremental Compilation Flow

| Perform Analysis & Elaboration |

v

Create Design Partitions |

v

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

v

| Make Changes to Design |<—
Repeat as Needed
| Set Netiist Type for Each Partition | During Design, Verification,
* & Debugging Stages
Perform Incremental Compilation

(Partitions are Compiled if Required)

2-11

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Handbook, Volume 1

2-12

Preparing a Design for Top-Down Incremental Compilation

To set up your design for incremental compilation, perform the following
general steps:

1.

Elaborate the design. On the Processing menu, point to Start and
click Start Analysis & Elaboration, or run any compilation flow
that includes this step. Elaboration is part of the synthesis process
that identifies your design’s hierarchy.

Create partitions in your design by designating specific instances as
Design Partitions.

Refer to “Choosing and Creating Design Partitions” on page 2-17 for
an explanation of design partitions and what part of your design can
be specified as a design partition, as well as details about assigning
design partitions.

If required for your design flow, use LogicLock regions to make
location assignments for each partition to create a design floorplan.
Depending on your design flow and requirements, each partition
may be required to be assigned to a physical region on the device.
Refer to the section “Creating a Design Floorplan with LogicLock
Location Assignments” on page 2-34 for details about these
assignments.

To compile the design, on the Processing menu, click Start
Compilation. The first compilation after making partition and
LogicLock assignments is a complete compilation that prepares the
design for subsequent incremental compilations.

Compiling a Design Using Incremental Compilation

After compiling the design once and then making changes, take
advantage of incremental compilation to recompile the changed parts of
the design while preserving the results for the unchanged partitions, thus
saving time on subsequent compilations. To do this, perform the
following general steps:

1.

Choose which of the following compilation results you intend to
reuse for each partition.

e To preserve previous placement results for a partition, set the
Netlist Type assignment for that partition to Post-Fit

e To preserve routing information as well, set the Fitter
Preservation Level to Placement and Routing

e To save only the synthesis results, set the Netlist Type
assignment for that partition to Post-Synthesis

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Partitions with design changes are recompiled automatically with
these Netlist Type settings. You can also direct the software to
recompile from the source code by choosing the Source File netlist
type. If you do not want to compile a specific partition at all, set its
Netlist Type to Empty.

For details about setting these partition properties, refer to “Setting
the Netlist Type for Design Partitions” on page 2-25.

2. Compile the design. When you start a compilation for a partitioned
design with incremental compilation turned on, the Quartus I
software uses the incremental compilation flow, preserving the
results you specified in Step 1.

Bottom-Up Incremental Compilation

The flow chart in Figure 2—4 illustrates the incremental compilation flow
using a bottom-up methodology (lower-level partitions are compiled
separately before being imported into the top-level project). The
following subsections describe the steps involved in the flow.

First, prepare the top-level design for incremental compilation. Then
design, optimize, verify, and debug the lower-level projects. Export the
lower-level projects, and import them into the top-level design. Finally,
compile the entire top-level design.

Figure 2-4. Summary of Bottom-Up Incremental Compilation Flow

Prepare Top-Level Project for
Bottom-Up Incremental Compilation

v

Create Lower-Level Project(s) |

v

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

v

Import Lower-Level Project(s) Repeat as Needed
into Top-Level Project During Design, Verification,
* & Debugging Stages

Perform Incremental Compilation
in Top-Level Project

Altera Corporation 2-13
May 2008

Quartus Il Handbook, Volume 1

Preparing a Design for Bottom-Up Incremental Compilation

To prepare the design for a successful bottom-up design methodology, the
project lead or top-level designer should perform the following steps:

1.

2-14

Create the top-level Quartus II project that will eventually
incorporate the entire design, and apply project-wide settings and
global assignments.

a. Define source code for a “skeleton” of the entire design that
defines the hierarchy and the port interfaces for the lower-level
designs. The top-level design file must include the top-level
entity that instantiates the lower-level blocks you plan to
compile in separate Quartus II projects.

b. Create all global assignments, including the device assignment,
pin location assignments, and timing assignments, so the final
design meets its requirements. Lower-level project designers
can add their own constraints for their partitions as needed,
and later provide them to the top-level designer, but the basic
constraints can be passed down from the top level to avoid any
conflicts and ensure that lower-level projects use the correct
assignments.

Make design partition assignments for each lower-level design, and
set the Netlist Type to Empty for each partition that will be
imported. Refer to “Choosing and Creating Design Partitions” on
page 2-17 and “Setting the Netlist Type for Design Partitions” on
page 2-25 for details.

Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. Refer to “Creating a Design Floorplan
with LogicLock Location Assignments” on page 2-34.

Optional: Perform a full compilation of the skeleton design and
create scripts to pass assignments to lower-level designers. After
compilation, on the Project menu, click Generate Bottom-Up
Design Partition Scripts. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2—46 for details.
Provide each lower-level designer with the generated Tcl file to
create their project with the appropriate constraints. If you use
makefiles in your design environment, provide the makefile for
each partition.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Creating and Compiling Lower-Level Projects

The designer of each lower-level design should create and compile the
design in a separate Quartus II project.

If you create the project manually, create a new Quartus II project for the
subdesign with all of the required settings. Create with LogicLock region
assignments and global assignments (including clock settings) as
specified by the project lead, as well as virtual pin assignments for ports
which represent connections to core logic instead of external device pins
in the top-level module.

If you have a bottom-up design partition script from the top-level
designer, source the Tcl script to create the Quartus II project with all the
required settings and assignments from the top-level design.

If you use makefiles, use the make command and the makefile provided
by the project lead to create a Quartus II project with all of the required
settings and assignments, and compile the project. Specify the
dependencies in the makefile to indicate which source file should be
associated with which partition.

Compile and optimize each lower-level design as a separate Quartus II
project.

Exporting Lower-Level Projects

When you achieve the design requirements for the lower-level design,
export each design as a partition for the top-level design.

If you are not using makefiles, on the Project menu, use the Export
Design Partition dialog box to export each lower-level design. Refer to
“Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2-39. If you want to export only a portion of the design in the
lower-level project, refer to “Exporting a Lower-Level Block within a
Project” on page 2—-42 for instructions. Each lower-level designer must
provide the Quartus II Exported Partition (.qxp) file to the project lead.

If your design team uses makefiles, the project lead can use the make
command with the master_makefile to export the lower-level partitions
and create Quartus II Exported Partition files, and then import them into
the top-level design.

Importing Lower-Level Projects into the Top-Level Project

The project lead then imports the files sent in by the designers of each
lower-level subdesign partition.

2-15

Quartus Il Handbook, Volume 1

2-16

If you are not using makefiles, on the Project menu, click Import Design
Partition and specify the partition in the top-level project that is
represented by the subdesign .qxp file. Refer to “Importing a
Lower-Level Partition Into the Top-Level Project” on page 2—42 for
details. Repeat the import process for each partition in the design.

If you are using makefiles, the master_makefile command imports each
partition into the top-level design. Be sure to specify which source files
should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported and how to avoid
conflicts, refer to “Importing Assignments and Advanced Import
Settings” on page 2—44.

Performing an Incremental Compilation in the Top-Level Project

After you have imported the design partitions that make up the top-level
project, you can perform a full compilation. The software compiles
imported partitions in the same way as partitions defined in the top-level
project. The software recompiles an imported partition only if it has been
imported since the last compilation.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Choosing and
Creating Design
Partitions

Altera Corporation
May 2008

It is a common design practice to create modular or hierarchical designs
in which you develop each design entity separately, and then instantiate
them in a higher-level entity, forming a complete design. The software
does not consider each design entity or instance to be a design partition
for incremental compilation automatically; instead, you must designate
one or more design hierarchies below the top-level project to be a design
partition. Creating partitions prevents the compiler from performing
optimizations across partition boundaries, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2-20. However, this
allows for separate synthesis and placement for each partition, making
incremental compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the
design because a partition cannot be a portion of the logic within a
hierarchical entity. When you declare a partition, every hierarchical
instance within that partition becomes part of the same partition. You can
create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no
longer included in the higher-level partition, as described in the
following example.

In Figure 2-5, hierarchical instances B and F form partitions in the
complete design, which is made up of instances A, B, C, D, E, and F. The
shaded boxes in Representation A indicate design partitions in a “tree”
representation of the hierarchy. In Representation B, the lower-level
instances are represented inside the higher-level instances, and the
partitions are illustrated with different colored shading. The top-level
partition, called Top, automatically contains the top-level entity in the
design, and contains any logic not defined as part of another partition.
The design file for the top level may be just a wrapper for the hierarchical
instances below it, or it may contain its own logic. In this example, the
partition for top-level entity A also includes the logic in one of its
lower-level instances, C. Because instance F is contained in its own
partition, it is not treated as part of the top-level partition. Another
separate partition, B, contains the logic in instances B, D, and E.

2-17

Quartus Il Handbook, Volume 1

2-18

Figure 2-5. Partitions in a Hierarchical Design

Representation A
Partition Top
A
B C
l—l—l Iﬁ
D E F
Partition B Partition F
Representation B
A
B C
D B F

You can make partition assignments to any design instance. The instance
can be defined in HDL or schematic design, or come from a third-party
synthesis tool as a VQM or EDIF netlist instance. To take advantage of
incremental compilation when source files change, create separate design
files for each partition. If you defined two different entities as separate
partitions but they are in the same design file, you cannot maintain
incremental compilation because the software would have to recompile
both partitions if you changed either entity in the design file. Similarly, if
two partitions rely on the same lower-level entity definition, changes in
that lower-level will affect both partitions.

If full incremental compilation is not turned on when you specify your
first partition, a dialog box appears that asks whether you want to enable
incremental compilation. To turn on incremental compilation, on the
Assignments menu, click Settings. In the Category list, select
Compilation Process Settings. Under Compilation Process Settings,
select Incremental Compilation. On the Incremental Compilation page,
turn on Full incremental compilation.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Turning off Incremental compilation on the Incremental Compilation
page of the Settings dialog box does not remove any partition
assignments. Partition assignments have no effect on the design if
incremental compilation is turned off.

Using Partitions with Third-Party Synthesis Tools

Incremental compilation works well with third-party synthesis tools. If
you are using a third-party synthesis tool, set up your tool to create a
separate VQM or EDIF netlist for each hierarchical partition. In the
Quartus II software, assign the top-level entity from each netlist to be a
design partition. The VQM or EDIF netlist file is treated as the source file
for the partition in the Quartus II software.

Synplicity Synplify Pro and Mentor Graphics Precision RTL Plus

The Synplify Pro software includes the MultiPoint synthesis feature to
perform incremental synthesis for each design block assigned as a
Compile Point in the user interface or a script. The Precision RTL Plus
software includes an incremental synthesis feature that performs
block-based synthesis based on Partition assignments in the source HDL
code. These features provide automated block-based incremental
synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within the synthesis tool ensures that only
those sections of a design that have been updated are resynthesized when
the design is compiled, reducing synthesis run time and preserving the
results for the unchanged blocks. You can change and resynthesize one
section of a design without affecting other sections of the design.

For more information about these incremental synthesis flows, refer to
your tool vendor’s documentation.

Other Synthesis Tools

You can also partition your design and create different netlist files
manually with the Synplify software (non-Pro), the Precision RTL
software (non-Plus), or any other supported synthesis tool by creating a
separate project or implementation for each partition, including the top
level. Set up each higher-level project to instantiate the lower-level
VQM/EDIF netlists as black boxes. Synplify, Precision, and most
synthesis tools automatically treat a design block as a black box if the
logic definition is missing from the project. Each tool also includes
options or attributes to specify that the design block should be treated as
a black box, which you can use to avoid warnings about the missing logic.

2-19

Quartus Il Handbook, Volume 1

2-20

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions,
different from physical placement assignments in the device floorplan. A
logical design partition does not refer to a physical area of the device and
does not directly control the placement of instances. A logical design
partition sets up a virtual boundary between design hierarchies so each is
compiled separately, preventing logical optimizations from occurring
between them. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse
the synthesis results or reuse the fitting results (including placement and
routing information) in subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not
necessary for you to back-annotate or make any location assignments for
specific logic nodes. You should not use the incremental compilation and
assignment back-annotation features in the same Quartus II project. The
incremental compilation feature does not use placement “assignments”
to preserve placement results; it simply reuses the netlist database that
includes the placement information.

You can assign design partitions to physical regions in the device
floorplan using LogicLock assignments. In the Quartus II software,
LogicLock regions are used to constrain blocks of a design to a particular
region of the device. Altera recommends using LogicLock regions to
improve the quality of results and avoid placement conflicts in some
cases when performing incremental compilation. Creating floorplan
location assignments for design partitions using LogicLock regions is
discussed in “Creating a Design Floorplan with LogicLock Location
Assignments” on page 2-34.

For more information about when and why to create a design floorplan,
refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Impact of Design Partitions on Design Optimization

The boundaries of your design partitions can impact the design’s quality
of results. Creating partitions prevents the compiler from performing
logic optimizations across partition boundaries, which allows the
software to synthesize and place each partition separately in an
incremental flow. Therefore, consider partitioning guidelines to help
reduce the effect of partition boundaries.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Whenever possible, register all inputs and outputs of each partition. This
helps avoid any delay penalty on signals that cross partition boundaries
and keeps each register-to-register timing path within one partition for
optimization. In addition, minimize the number of paths that cross
partition boundaries. If there are timing-critical paths that cross partition
boundaries, rework the partitions to avoid these inter-partition paths.
Including as many of the timing-critical connections as possible inside a
partition allows you to effectively apply optimizations to that partition to
improve timing, while leaving the rest of the design unchanged. In
addition, avoid constant partition inputs and outputs, because to
maintain incremental behavior, the software cannot use the constants to
optimize logic on either side of the partition boundary.

You can view statistics about design partitions, including the number of
I/0 connections and how many are unregistered or driven by a constant
value, in the Partition Merge Partition Statistics compilation report and
the Statistics tab in the Design Partitions Properties dialog box.

If critical timing paths cross partition boundaries, you can perform timing
budgeting and make timing assignments to constrain the logic in each
partition so the entire timing path meets its requirements. In addition,
because each partition is optimized independently during synthesis, you
may have to perform some resource balancing to ensure that each
partition uses an appropriate number of device resources.

For more partitioning guidelines and specific recommendations for
fixing common design issues, as well as information on resource
balancing and timing budgeting, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of
the Quartus II Handbook.

Creating Design Partitions with the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and
hierarchy, and can assist you in creating effective design partitions that
follow Altera’s guidelines.

The following steps outline methods for viewing a design and creating
design partitions:

1. Compile the flat (non-partitioned) design, or perform at least
Analysis & Synthesis.

2. On the Tools menu, click Design Partition Planner. The design is

displayed as a single top-level design block, containing its
lower-level instances as boxes.

2-21

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Handbook, Volume 1

2-22

3. To show connectivity between blocks, begin extracting instances
from the top-level design block. Click on a design clock and drag it
into the surrounding white space, or right-click an entity and click
Extract from Parent on the Shortcut menu. When you extract
entities, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities.

4. To switch between connectivity display mode and hierarchical
display mode, click Hierarchy Display on the View menu.
Alternately, to switch temporarily to a view-only hierarchy display,
click and hold the hierarchy icon in the top left corner of any entity.

5. When you have extracted a design block that you want to set as a
design partition, right-click on that design block and choose Create
Design Partition.

For more details about how to use the Design Partition Planner, refer to
Using the Design Partition Planner in the Quartus II Help.

Figure 2-6 shows the Design Partition Planner after making a design
partition assignment to one instance, and dragging another instance
away from the top-level block within the same partition. The figure
shows the number of connections between each partition and
information about the size of each design instance.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Figure 2-6. Design Partition Planner

4o Design Partition Planner

~
@ 0 Bank2
] -
[fittref _
EI E n 3% of tatal design, 32..
:Ec 36% of total design, 37 1... Mo Children
3 Chidren
© G T
inst3 %
Z
£ /!
\) /I/
. ¥ .
) fittrefimult inste 7
‘ﬁ 32% of total design, 33.. =
1 Chilct: =]
Ipm_mult_component
5
! v
< ¥

Creating Design Partitions Qutside the Design Partition Planner

You can create design partitions in the main Quartus II GUI with the
Design Partitions Window or the Project Navigator. Use one of these
methods when you have planned your design hierarchy for incremental
compilation and you already know which design blocks will make
effective design partitions.

On the Assignments menu, click Design Partitions Window (Figure 2-7).
Create your partitions in one of the following ways:

B Create new partitions for one or more instances by dragging and
dropping them from the Hierarchy tab of the Project Navigator, into
the Design Partitions window. Using this method, you can create
multiple partitions at once.

B Create new partitions by double-clicking the <<new>> cell in the
Partition Name column. In the Create New Partitions dialog box,
select the design instance and click OK.

To delete partitions in the Design Partitions window, right-click a
partition and click Delete, or select the partition and press the Delete key.

2-23

Quartus Il Handbook, Volume 1

Figure 2-7. Design Partitions Window

Design Partitions (5]

Partition Name |Compilaﬁon Hierarchy Path| Netlist Type |F'rl'ter Preservation Level
El ﬁ?@ Design Partitions

£ <<newss

SR Top fittref Source File
8 muttinsts S mult inst6 Post-Fit Placement
£ tapsinst @ tapsinst Post-Synthesis
1 hvaluesinst? @ hvaluesinst2 Post-Synthesis
< >

Alternatively, you can use the list of instances under the Hierarchy tab in
the Project Navigator to create and delete design partitions. Right-click
an instance in the Project Navigator and click Set as Design Partition.

I'=~ A design partition icon appears next to each instance that is set
as a partition (Figure 2-8).

To remove an existing partition assignment, right-click the instance in the
Project Navigator and click Set as Design Partition again. (This process
turns off the option.)

Figure 2-8. Project Navigator Showing Design Partitions

Project Mavigaktor ==
E ity |
Cyclone Il: EP2CEF2Z5ECE

Bl 2 filtref

~Gbd tapgingt E@

gbc state_minzt]

gbc hvalues:inst?
- 20% aecinstd

-3, mulkingts Sy

I+l

_Hierarn::h_l.'J Files] g Desigh Llnitsl

2-24 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Setting the
Netlist Type for
Design
Partitions

Altera Corporation
May 2008

Partition Name

When you create a partition, the Quartus II software automatically
generates a name based on the instance name and hierarchy path. To
change the name, double-click on the partition name in the Design
Partitions window, or right-click the partition and click Rename.
Alternatively, right-click the partition in the Design Partitions window
and click Properties to open the Design Partition Properties dialog box.
On the General tab, enter the new name in the Name field.

By renaming your partitions you can avoid referring to them by their
hierarchy path, which can sometimes be long. This is especially important
when using command-line commands or assignments. Partition names
can be from 1 to 1024 characters in length and must be unique. The name
can only contain alphanumeric characters and the pipe (|), colon (:),
and underscore (_) characters.

The Netlist Type property controls the incremental compilation process,
as described in “Compiling a Design Using Incremental Compilation” on
page 2-12. The Netlist Type is a property of each design partition that
allows you to specify the type of netlist or source file that the compiler
should use as the input for each partition. This property determines
which netlist is used by the Partition Merge stage in the next compilation.

To view and modify the Netlist Type, on the Assignments menu, click

Design Partitions Window. Double-click the Netlist Type for an entry.
Alternatively, right-click on an entry, click Design Partition Properties,
then modify the Netlist Type on the Compilation tab.

2-25

Quartus Il Handbook, Volume 1

Table 2-2 describes the different settings for the Netlist Type property,
explains the behavior of the Quartus II software for each setting, and
provides guidance on when to use each setting.

Table 2-2. Netlist Type Settings (Part 1 of 3)

Partition . - . -
Netlist Type Quartus 11 Behavior for Partition During Compilation
Source File Always compiles the partition using the associated design source file(s).

You can use this netlist type to recompile a partition from the source code using any new
synthesis or Fitter settings.

If a partition has an associated imported netlist, compiling it with netlist type set to Source File
removes the imported netlist. Therefore, you can use this setting to recompile a partition from
source files within the top-level project instead of using the imported result from another project.

Post-Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist as long

as the following conditions are true:

e A post-synthesis netlist is available from a previous synthesis

e No change that triggers an automatic resynthesis has been made to the partition since the
previous synthesis. For details, refer to “What Changes Trigger a Partition’s Automatic
Resynthesis?” on page 2-31.

Compiles the partition from the source files if resynthesis is triggered or if a post-synthesis
netlist is not available.

You can use this netlist type to preserve the synthesis results unless you make changes, but
allow the Fitter to refit the partition using any new Fitter settings.

If a partition has an associated imported netlist, this setting is not available.

Post-Fit

Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following

conditions are true:

e A post-fit netlist is available from a previous fitting

e No change that triggers an automatic resynthesis has been made to the partition since the
previous fitting. For details, refer to “What Changes Trigger a Partition’s Automatic
Resynthesis?” on page 2-31.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is
available, or otherwise compiles from the source files. Compiles the partition from the source
files if resynthesis is triggered.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level” on page 2—-28.

You can use this netlist type to preserve the Fitter results unless you make changes. You can
also use this netlist type to apply global optimizations, such as Physical Synthesis
optimizations, to certain partitions while preserving the fitting results for other partitions.

If a partition has an associated imported netlist, this setting is not available.

2-26

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-2. Netlist Type Settings (Part 2 of 3)

Partition

Netlist Type Quartus 11 Behavior for Partition During Compilation

Post-Fit (Strict) | Always preserves post-fit results for the partition as long as a post-fit netlist is available from a
previous fitting. Uses the post-fit netlist even if changes have been made to the associated
source files since the previous fitting. For more information, refer to “Forcing Use of the Post-
Fitting Netlist When a Partition has Changed” on page 2-33.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is
available, or otherwise compiles from the source files.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level” on page 2—-28.

If a partition has an associated imported netlist, this setting is not available.

Imported Compiles the partition using a netlist imported from a .gxp file.

The software does not modify or overwrite the original imported netlist during compilation. To
preserve changes made to the imported netlist (such as movement of an imported LogicLock
region), use the Post-Fit (Import-based) setting following a successful compilation with the
imported netlist. For additional details, refer to “Exporting and Importing Partitions for
Bottom-Up Design Flows” on page 2—-38.

The Fitter Preservation Level specifies what level of information is preserved from the
imported netlist. For details, refer to “Fitter Preservation Level” on page 2—-28.

If you have not imported a netlist for this partition using the Import Design Partition command,
this setting is not available.

Altera Corporation 2-27
May 2008

Quartus Il Handbook, Volume 1

Table 2-2. Netlist Type Settings (Part 3 of 3)

(Import-based)

Partition . - . -
Netlist Type Quartus 11 Behavior for Partition During Compilation
Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following

conditions are true:
e A post-fit netlist is available from a previous fitting
e No change has been made to the associated imported netlist since the previous fitting

Compiles the partition from the imported netlist if the imported netlist changes (which means it
has been reimported) or if a post-fit netlist is not available. Changes to assignments do not
cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level”.

You can use this netlist type to preserve changes to the placement and routing of an imported
netlist.

If a partition does not have an associated imported netlist, this setting is not available.

Empty

Uses an empty placeholder netlist for the partition and uses virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition. For more details
on the Empty setting, refer to “Empty Partitions” on page 2—-30.

2-28

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the
compiler will use from a post-fit or imported netlist. The property is
available only if the Netlist Type is set to Post-Fit, Post-Fit (Strict),
Imported, or Post-Fit (Import-based).

On the Assignments menu, click Design Partitions Window. To view
view and modify the Fitter Preservation Level, double-click an entry.
Alternatively, right-click and click Properties, then edit the Fitter
Preservation Level on the Compilation tab.

Table 2-3 describes the Fitter Preservation Level settings.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-3. Fitter Preservation Level Settings

Fitter Preservation
Level

Quartus Il Behavior for Partition During Compilation

Netlist Only

Preserves the netlist atoms of the design partition, but replaces and reroutes the design
partition. A Post-Fit netlist with the atoms preserved can be different than the
Post-Synthesis netlist because it contains any Fitter optimizations, for example, registers
duplicated by Physical Synthesis during a previous Fitting.

You can use this setting to:

o Preserve Fitter optimizations but allow the software to perform placement and routing
again

o Reapply certain Fitter optimizations (that is, physical synthesis) that would otherwise
be impossible when the placement is locked down

o Resolve resource conflicts between two imported partitions in a bottom-up design flow

Placement

Preserves the netlist atoms and their placement in the design partition. Re-routes the
design partition.

This setting saves significant compilation time because the Fitter does not need to re-fit
the nodes in the partition. Note that the Fitter refits affected nodes if the two nodes are
assigned to the same location, due to imported netlists or empty partitions set to re-use
a previous post-fit netlist.

This setting is not available if the netlist type is set to Imported and the imported netlist
does not contain placement data.

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing. The
minimum preservation level required to preserve Engineering Change Order (ECO)
changes made to the post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only. Note that the Fitter
may need to modify the routing for legality reasons.

This setting is not available if the netlist type is set to Imported and the imported netlist
does not contain routing data.

Placement, Routing,
and Tile

Preserves the design partition’s netlist atoms and their placement and routing in the
design partition, as well as the power tile settings of high-speed or low-power.

Note that the Fitter may have to modify the routing for legality reasons.

This setting is available only for devices with configurable power tiles.

Altera Corporation
May 2008

2-29

Quartus Il Handbook, Volume 1

2-30

Empty Partitions

You can use the Empty setting to skip the compilation of a lower-level
partition that is incomplete or missing from the top-level design. You can
also use it if you want to compile only some partitions in the design, such
as during optimization or if the compilation time is large for one partition
and you want to exclude it. This is useful if you want to optimize the
placement of a timing-critical block such as an IP core and then lock its
placement before adding the rest of your custom logic in a top-down
design flow.

To set the Netlist Type to Empty, on the Assignments menu, click Design
Partitions Window, or double-click an entry, or right-click an entry and
click Design Partition Properties and select Empty. This setting specifies
that the Quartus II Compiler should use an empty placeholder netlist for
the partition.

When a partition Netlist Type is defined as Empty, virtual pins are
automatically created at the boundary of the partition. This means that
the software temporarily maps I/O pins in the lower-level design entity
to internal cells instead of pins during compilation.

Any child partitions below an empty partition in the design hierarchy are

also automatically treated as empty, regardless of their settings.

s If you plan to take full advantage of the Empty setting, it is
important to keep the design logic in the leaves of the hierarchy
tree to provide the most flexibility. If you have logic at one
hierarchy level and additional logic in a child hierarchy, you
cannot isolate the top-level logic in an empty partition without
the lower-level partition being treated as empty as well.

You can use a design flow in which some partitions are set to Empty in a
variation of a bottom-up design flow, where you develop pieces of the
design separately and then combine them at the top level at a later time.

When you implement part of the design without information about the
rest of the project, it is impossible for the Compiler to perform global
placement optimizations. To reduce this effect, follow good partitioning
guidelines by ensuring the input and output ports of the partitions are
registered whenever possible, and minimizing cross-partition I/O.

When you set a design partition to Empty, a design file is required in

Analysis and Synthesis to specify the port interface information so it can
connect the partition correctly to other logic and partitions in the design.
If a partition is imported, the .qxp file contains this information. If there
isno .qxp file or design file to represent the design entity, you must create
a wrapper file (called a black box, stub, or hollow-body file) that defines

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

the design block and specifies the input, output, and bidirectional ports.
For example, in Verilog HDL, you should include a module declaration,
and in VHDL, you should include an entity and architecture declaration.

If the project database includes a previously generated post-synthesis or
post-fit netlist for an unchanged Empty partition, you can set the Netlist
Type from Empty directly to Post-Synthesis or Post-Fit. In this case, the
software reuses the previous netlist information and does not have to
recompile from the source code.

What Changes Trigger a Partition’s Automatic Resynthesis?

A partition is synthesized from its source files if there is no post-synthesis
netlist available from a previous synthesis, or if the Netlist Type is set to
Source File. In addition, certain changes to a design partition trigger an
automatic resynthesis of the partition when the Netlist Type is
Post-Synthesis or Post-Fit. The software resynthesizes the partition in
these cases to ensure that the design description matches the
post-place-and-route programming files. If you don’t want this
resynthesis to occur automatically, set the Netlist Type to Post-Fit (Strict).
Refer to “Forcing Use of the Post-Fitting Netlist When a Partition has
Changed” on page 2-33.

The following list explains the changes that trigger a partition’s automatic
re-synthesis when the Netlist Type is set to Post-Synthesis or Post-Fit:

B The device family setting has changed.

B Any dependent source design file has changed. Refer to
“Determining Which Partitions Will Be Resynthesized Due to Source
Code Changes” on page 2-32 for details.

B The partition boundary was changed by an addition, removal, or
change to the port boundaries of a lower-level partition (that is, a
partition defined for a lower-level instance within this partition).

B A dependent source file was compiled into a different library (so it
has a different -1ibrary argument).

B A dependent source file was added or removed; that is, the partition
depends on a different set of source files.

B The partition’s root instance has a different entity binding. In VHDL,
an instance may be bound to a specific entity and architecture. If the
target entity or architecture changes, it triggers resynthesis.

B The partition has different parameters on its root hierarchy or on an
internal AHDL hierarchy (AHDL automatically inherits parameters
from its parent hierarchies). This occurs if you modified the
parameters on the hierarchy directly, or if you modified them
indirectly by changing the parameters in a parent design hierarchy.

2-31

Quartus Il Handbook, Volume 1

2-32

The software reuses the post-synthesis results but re-fits the design if you
change the device setting within the same device family. The software
reuses the post-fitting netlist if you change only the device speed grade.

Synthesis and Fitter assignments such as optimization settings, timing
assignments, or Fitter location assignments including pin assignments,
do not trigger automatic recompilation in the incremental compilation
flow. For details about how you can affect placement with LogicLock
regions, refer to “What LogicLock Changes Trigger Refitting?” on
page 2-37. To recompile a partition with new assignments, change the
Netlist Type assignment for that partition to one of the following:

B Source File to recompile with all new settings

B Post-Synthesis to recompile using existing synthesis results but new
Fitter settings

B Post-Fit with the Fitter Preservation Level set to Placement to rerun
routing using existing placement results except for any new routing
settings (such as delay chain settings)

The project database folder (\db) includes all the netlist information for
previous compilations. To avoid unnecessary recompilations, the
database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a
Quartus II Archive File (.qar). Include the compilation database to
preserve compilation results. For details, refer to “Using Incremental
Compilation with Quartus II Archive Files” on page 2-73. To manually
create a project archive that preserves compilation results without
keeping the entire compilation database, you can keep all source and
settings files and create and save a .qxp file for each partition in the
design. Refer to “Exporting a Lower-Level Block within a Project” on
page 2—-42 for more details.

Determining Which Partitions Will Be Resynthesized Due to Source Code
Changes

The Quartus II software uses an internal checksum to determine whether
the contents of a source file have changed. Source files are the design files
used to create the design, and consist of VHDL files, Verilog HDL files,
AHDL files, Block Design Files (.bdf), EDIF netlists, VQM netlists, and
memory initialization files. Changes in other files, such as vector
waveform files for simulation, do not trigger recompilation. When design
files in a partition have dependencies on other files, changing one file may
trigger an automatic recompilation of another file. The Partition
Dependent Files table in the Analysis and Synthesis report lists the

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

design files that contribute to each design partition. You can use this table
to determine which partitions will be recompiled when a specific file is
changed.

For example, if a design has file a.v that contains entity a, b.v that contains
entity b, and c.v that contains entity ¢, then the Partition Dependent Files
table for the partition containing entity a lists file a.v, the table for the
partition containing entity b lists file b.v, and the table for the partition
containing entity c lists file c.v. Any dependencies are transitive, so if file
a.v depends on b.v, and b.v depends on c.v, then the entities in file a.v
depend on files b.v and c.v. In this case, files b.v and c.v are listed in the
report table as dependent files for the partition containing entity a.

If you define module parameters in a higher-level module, the Quartus II
software checks the parameter values when determining which partitions
require resynthesis. If you change a parameter in a higher-level module
that affects a lower-level module, the lower-level module will be
resynthesized. Parameter dependencies are tracked separately from
source file dependencies; therefore, parameter definitions are not listed in
the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is
referenced in each entity by the command *include includes.v,all
partitions are dependent on this file. A change to includes.v causes the
entire design to be recompiled. The VHDL statement use work.all
also typically results in unnecessary recompilations, because it makes all
entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities,
such as a common include file, contain only the set of information that is
truly common to all entities. Remove use work.all statements in your
VHDL file or replace them by including only the specific design units
needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Partition has Changed

Forcing the use of the post-fitting netlist when the contents of a source file
has changed is recommended only for advanced users who understand
when a partition must be recompiled. You might use this assignment, for
example, if you are making source code changes but do not want to
recompile the partition until you finish debugging a different partition.
To force the Fitter to use a previously generated post-fit netlist even when
there are changes to the source files, you can use the Post-Fit (Strict)
Netlist Type assignment.

2-33

Quartus Il Handbook, Volume 1

Creating a
Design
Floorplan with
LogicLock
Location
Assignments

2-34

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of
a functionally incorrect netlist when source design files change. Use
caution when applying this assignment.

A floorplan represents the layout of the physical resources on the device.
The expressions “creating a design floorplan” and “floorplanning”
describe the process of mapping the logical design hierarchy onto
physical regions in the device floorplan. After you have partitioned the
design, create floorplan location assignments for the design as discussed
in this section to improve the quality of results when using the full
incremental compilation flow. Creating a design floorplan is not a
requirement to use an incremental compilation flow, but it is highly
recommended in certain cases. Floorplan location planning can be
important for a design that uses full incremental compilation, for the
following two reasons:

B To avoid resource conflicts between partitions, predominantly in
bottom-up flows

B To ensure a good quality of results when recompiling individual
partitions in top-down flows

Logic that is not timing-critical can float throughout the device in a
top-down compilation flow, so a floorplan assignment might not be
required in this case.

The simplest way to create a floorplan for a partitioned design is to create
one LogicLock region per partition (including the top-level partition).
Initially, you can leave each region with the default settings of Auto size
and Floating location to allow the Quartus II software to determine the
optimal size and location for the regions. Then, after compilation, use the
Fitter-determined size and origin location as a starting point for your
design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed.
Alternately, you can perform synthesis, and then set the regions to the
required size based on resource estimates. In this case, use your
knowledge of the connections between partitions to place the regions in
the floorplan.

Once you have created an initial floorplan, you can refine the region using
tools in the Quartus II software. You can also use advanced techniques
such as creating non-rectangular regions by nesting child LogicLock
regions.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

«® For more information about when creating a design floorplan can be
important, as well as guidelines for creating the floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

You can use the Incremental Compilation Advisor to check that your
LogicLock regions meet Altera’s guidelines, described in “Incremental
Compilation Advisor” on page 2-54.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source File
or Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level
entity, which is automatically considered a partition) using one of
the following methods:

e On the Tools menu, click Design Partition Planner. Right-click
within the colored box that represents a partition and click
Create LogicLock Region. In the Design Partitions Window,
right-click on a partition and click Create New LogicLock
Region.

e Under Compilation Hierarchy in the Project Navigator,
right-click each instance that is denoted as a partition and click
Create New LogicLock Region. In the Design Partitions
Window, right click on the row for a partition and choose Create
New LogicLock Region.

With any of these methods, you can highlight multiple (or all)
partitions by holding down the Ctrl key and clicking each partition.
Then you can choose the option to create a separate LogicLock region
for each highlighted partition.

(&7 A LogicLock icon appears in the Project Navigator next to
each instance that is set as a LogicLock region (Figure 2-9).

Altera Corporation 2-35
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Handbook, Volume 1

Figure 2-9. Project Navigator Showing LogicLock Regions

Projeck Mavigaktor *
Entity |'&|
Stratix [EP2515F434C3

-2 filvef & 10
...... bo tapsingt ,55@ S =
------ 3'1"3 gtate_minst] 5
------ gbc hvalues:inst2 e.E@ @ 3
(- 508 gecingtd 1:
F-3, mulbinsts g S 4
¢ >

_Hierarch_l,'] FiIesJ g Design Llnits]

3. To place auto-sized, floating-location LogicLock regions, on the
Processing menu, point to Start and click Start Early Timing
Estimate.

'~ You must perform Analysis and Synthesis and Partition
Merge before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and
while holding the Ctrl key, click each LogicLock region to select all
regions (including the top-level region).

5. Right-click the last selected LogicLock region, and click Set Size and
Origin to Previous Fitter Results.

Il =" Use the Fitter-chosen locations only as a starting point to
make the regions of a fixed size and location. Generally,
regions with fixed size and location yield better fy;5x than
auto-sized regions.

Do not back-annotate the contents of the region, just save
the size and origin. Placement is preserved using the
post-fit netlist, not back-annotated content assignments.

2-36 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

6. If required, modify the size and location via the LogicLock Regions
Window or the Chip Planner. For example, make the regions bigger
to fill up the device and allow for future logic changes.

7. To estimate the timing performance of your design with these
LogicLock regions, on the Processing menu, point to Start and click
Start Early Timing Estimate.

8. Repeat steps 6 and 7 until you are satisfied with the quality of
results for your design floorplan.

9. On the Processing menu, click Start Compilation to run a full
compilation.

If you do not use auto-sized and floating-location regions, in steps 3-5,
you can estimate the size of the regions after synthesis. On the Processing
menu, point to Start, and choose Start Analysis & Synthesis. Right-click
a region in the LogicLock Regions dialog box, and choose Set to
Estimated Size. Then continue with step 6 to modify the size and origin
of each region as appropriate.

Taking Advantage of the Early Timing Estimator

The methodology for creating a good floorplan takes advantage of the
Early Timing Estimator to enable quick compilations of the design while
creating assignments. The Early Timing Estimator feature provides a
timing estimate for a design as much as 45 times faster than running a full
compilation, yet estimates are, on average, within 11% of final design
timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing
analyzer reports, and, if necessary, add or modify floorplan constraints.
You can then rerun the Early Timing Estimator to quickly assess the
impact of any floorplan location assignments or logic changes, enabling
rapid iterations on design variants to help you find the best solution. This
faster placement has an impact on the quality of results. If getting the best
quality of results is important in a given design iteration, perform a full
compilation with the Fitter instead of using the Early Timing Estimate
feature.

What LogicLock Changes Trigger Refitting?

As described in “What Changes Trigger a Partition’s Automatic
Resynthesis?” on page 2-31, most assignment changes do not trigger
recompilation of a partition if the Netlist Type and Fitter Preservation
Level settings specify that Fitter results should be preserved. For

2-37

Quartus Il Handbook, Volume 1

Exporting and
Importing
Partitions for
Bottom-Up
Design Flows

2-38

example, changing a pin assignment does not trigger recompilation;
therefore, the design does not use the new pin assignment unless you
change the Netlist Type to Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is
assigned to a LogicLock region, the Fitter always reuses the
corresponding LogicLock region size specified in the post-fit netlist. That
is, changes to the LogicLock Size setting do not trigger refitting if a
partition’s placement is preserved with the Post-Fit Netlist Type setting
or with an imported partition that includes post-fit information.

However, you can use the LogicLock Origin location assignment to
change or fine-tune the previous Fitter results. When you change the
Origin setting for a region, the Fitter can move the region in the following
manner, depending upon how the placement is preserved for that
region's members:

B When you set a new region Origin, the Fitter uses the new origin and
re-places the logic, preserving the relative placement of the member
logic

B When you set the region Origin to Floating, the following conditions
apply:

e Iftheregion’s member placement is preserved with an Imported
partition: The Fitter chooses a new Origin and re-places the
logic, preserving the relative placement of the member logic
within the region.

e If the region’s member placement is preserved with a Post-Fit
Netlist Type: The Fitter does not change the Origin location, and
reuses the previous placement results.

The bottom-up flow refers to the design methodology in which a project
is first divided into smaller subdesigns that are implemented as separate
projects, potentially by different designers. The compilation results of
these lower-level projects are then exported and given to the designer (or
the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. The bottom-up design partition scripts generated by
the Quartus II software can make it easier to plan a bottom-up design,
and limit the difficulties that can arise when integrating separate designs.
Refer to “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2—46 for details.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Refer to “Bottom-Up Incremental Compilation” on page 2-13 in the
Quick Start Guide section for an overview of the entire flow. For examples
of team-based scenarios, refer to “Implementing a Team-Based
Bottom-Up Design Flow” on page 2-61. There are some additional
restrictions related to bottom-up flows in the Quartus II software,
described in “Incremental Compilation Restrictions” on page 2-71.

This section describes the export and import features provided to support
bottom-up compilation flows. The section covers the following topics:

B “Quartus II Exported Partition File”

B “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” on page 2-39

B “Exporting a Lower-Level Block within a Project” on page 2-42

B “Importing a Lower-Level Partition Into the Top-Level Project” on
page 242

B “Importing Assignments and Advanced Import Settings” on
page 244

B “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2-46

Quartus Il Exported Partition File

The bottom-up incremental compilation flow uses the Quartus II
Extended Partition (.qxp) file to represent lower-level design partitions.
The .qxp file is a binary file that contains compilation results describing
the exported design partition and includes a post-fit or post-synthesis
netlist, LogicLock regions, and a set of assignments. Note that the .qxp file
does not contain the original source design files from the lower-level
design.

The following sections describe how to generate a .qxp file for a
lower-level design partition, and how to import the .qxp file into the
top-level project.

Exporting a Lower-Level Partition to be Used in a Top-Level
Project

Each lower-level subdesign is compiled as a separate Quartus II project.
In each project, use the following guidelines to improve the exporting and
importing process:

B If you have a bottom-up design partition script from the top level,
source the Tcl script to create the project and all the assignments from
the top-level design. Doing so may create many of the assignments
described below. Ensure that the LogicLock region uses only the
resources allocated by the top-level project lead.

2-39

Quartus Il Handbook, Volume 1

B Ensure that you know which clocks should be allocated to global
routing resources so that there are no resource conflicts in the
top-level design. Refer to the Best Practices for Incremental Compilation
Partitions and Floorplan Assignments chapter in volume 1 of the
Quartus 11 Handbook for information about resource balancing
between partitions.

e Set the Global Signal assignment to On for the high fan-out
signals that should be routed on global routing lines.

e To avoid other signals being placed on global routing lines, on
the Assignments menu, click Settings and turn off Auto Global
Clock and Auto Global Register Controls under More Settings
on the Fitter page of the Settings dialog box.

e Alternatively, you can set the Global Signal assignment to Off
for signals that should not be placed on global routing lines.
Placement for LABs depends on whether the inputs to the logic
cells within the LAB use a global clock. You may encounter
problems if signals do not use global lines in the lower-level
design but use global routing in the top level.

B Use the Virtual Pin assignment to indicate pins of a subdesign that
do not drive pins in the top-level design. This is critical when a
subdesign has more output ports than the number of pins available
in the target device. Using virtual pins also helps optimize
cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as
location and timing assignments.

B Because subdesigns are compiled independently without any
information about each other, you should provide more information
about the timing paths that may be affected by other partitions in the
top-level design. You can apply location assignments for each pin to
indicate where the port connection will be located after it is
incorporated in the top-level design. You can also apply timing
assignments to the I/O ports of the subdesign to perform timing
budgeting as described in.

«® For more information about timing budgeting, refer to the Best Practices
for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

2-40 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

When your subdesign partition has been compiled using these
guidelines, and is ready to be incorporated into the top-level design,
export a subdesign as a partition using the following steps:

1. In the subdesign project, use one of the following methods to open
the Export Design Partition dialog box.

e Inthe Design Partition Planner (available from the Tools menu),
right-click within the colored box that represents a partition and
click Export Design Partition.

e On the Project menu, click Export Design Partition.

2. In the Export file box, type the name of the .qxp file. By default, the
directory path and file name are the same as the current project.

3. You can also select the Partition hierarchy to export. By default, the
Top partition (the entire project) is exported, but you can choose to
export the compilation result of any partition hierarchy in the
project, as described in “Exporting a Lower-Level Block within a
Project” on page 2-42. Choose the partition hierarchy from the
pull-down list.

4. Under Netlist to export, select either Post-fit netlist or
Post-synthesis netlist. The default is Post-fit netlist. For post-fit

netlists, turn on or off the Export routing option as required.

5. Click OK. The Quartus II software creates the .qxp file in the
specified directory.

Alternatively, you can set up your project so that the export process is
performed every time you compile the design:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings,
select the Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the
Export Design Partition Settings button.

5. In the Export Design Partition Settings dialog box, change the

settings, if required, as in steps 2-4 in the preceding export
procedure. Click OK.

2-41

Quartus Il Handbook, Volume 1

2-42

6. Click OK to close the Settings dialog box. During the next full
compilation, the software creates the .qxp file in the specified
directory.

Exporting a Lower-Level Block within a Project

Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” enables you to create a .qxp file for a lower-level block within a
Quartus II project. When you do this, the command exports the entire
hierarchy under the specified partition into the .qxp file.

You can use this feature to add test logic around a lower-level block that
will be exported as a design partition for a top-level design. You can also
instantiate additional design components in a lower-level project so it
matches the top-level design environment. For example, you can include
a top-level PLL in your lower-level project so that you can optimize the
design with information about the frequency multipliers, phase shifts,
compensation delays, and any other PLL parameters. The software then
captures timing and resource requirements more accurately while
ensuring that the timing analysis in the lower-level project is complete
and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature in a top-down design flow to create
.qxp files for specific design partitions that are complete. You can then
import the .qxp file back into the project and use the Imported netlist
type, as described in the following section. In this usage, the .qxp file acts
as an archive for the partition, including the netlist and placement and
routing information in one file. If you change the source code for the
partition, you must change the netlist type back to Source File to use the
source instead of the imported information.

Importing a Lower-Level Partition Into the Top-Level Project

The import process involves importing the design netlist from the .qxp
file and adding the netlist to the database for the top-level project.
Importing also filters the assignments from the subdesign and creates the
appropriate assignments in the top-level project.

To import a subdesign partition into a top-level design, perform the
following steps:

1. In the top-level project, use one of the following methods to open
the Import Design Partition dialog box:

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

e In the Design Partition Planner right-click within the colored
box that represents a partition and click Import Design
Partition.

e IntheDesign Partitions window, right-click on the partition that
you want to import and click Import Design Partition.

e On the Project menu, click Import Design Partition.

In the Partition(s) box, browse to the desired partition if required.
To choose a partition, highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partitions.

Il=~ Notethat you can select multiple partitions if your top-level
design has multiple instances of the subdesign partition
and you want to use the same imported netlist.

Under Import file, type the name of the .qxp file or browse for the
file that you want to import into the selected partition. Note that this
file is required only during importation, and is not used during
subsequent compilations unless you reimport the partition.

I~ Ifyou have already imported the .qxp file for this partition
at least once, you can use the same location as the previous
import instead of specifying the file name again. To do so,
turn on Reimport using the latest import files at previous
locations. This option is especially useful when you import
the new Quartus II Exported Partition files for several
partitions that you have already imported at least once. You
can select all the partitions to be imported in the Partition(s)
box and then use the Reimport using latest import files at
previous locations option to import all partitions using
their previous locations, without specifying individual file
names.

To view the contents of the selected .qxp file, click Load Properties.
The properties displayed include the Netlist Type, Entity name,
Device, and statistics about the partition size and ports.

Click Advanced Import Settings and make selections, as
appropriate, to control how assignments and regions are integrated
from a subdesign into a top-level design partition. During
importation, some regions may be resized or slightly moved. Click
OK to apply the settings.

For more information about the advanced settings, refer to

“Importing Assignments and Advanced Import Settings” on
page 2—44.

2-43

Quartus Il Handbook, Volume 1

2-44

6. To start importation, in the Import Design Partition dialog box,
click OK. The specified .qxp file is imported into the database for
the current top-level project.

Importing Assignments and Advanced Import Settings

When you import a subdesign partition into a top-level design, the
software sets certain assignments by default and also imports relevant
assignments from the subdesign into the top-level design.

Design Partition Properties after Importing

When you import a subdesign partition, the import process sets the
partition’s Netlist Type to Imported.

If you compile the design and make changes to the place-and-route
results, use the Post-Fit (Import-based) Netlist Type on the subsequent
compilation. To discard an imported netlist and recompile from source
code, compile the partition with netlist type set to Source File and be sure
to include the relevant source code with the top-level project.

The import process sets the partition’s Fitter Preservation Level to the
setting with the highest degree of preservation supported by the
imported netlist. For example, if a post-fit netlist is imported with
placement information, the level is set to Placement, but you can change
it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2-25 for
details about the Netlist Type and Fitter Preservation Level setting.

Importing Design Partition Assignments Within the Subdesign

Design partition assignments defined within the subdesign project are
not imported into the top-level project. All logic in the subdesign is
imported as one partition in the .qxp file.

Synopsys Design Constraint Files for the Quartus Il TimeQuest Timing
Analyzer

Timing assignments made for the Quartus II TimeQuest Timing Analyzer
in a Synopsys Design Constraint (.sdc) file are not imported into the
top-level project. Manually ensure that the top-level project includes all of
the timing requirements for the entire project.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

If you copy lower-level .sdc files to the top-level project, consider
prefixing lower-level constraints with a variable for the design hierarchy.
Then, when you copy the file to the top-level design, you can set the
variable to provide the hierarchy path to the lower-level partition in the
top-level design.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate
multiple instances of a subdesign in the top-level design, the imported
LogicLock regions are set to a Floating location. Otherwise, they are set to
a Fixed location. You can change the location of LogicLock regions after
they are imported, or change them to a Floating location to allow the
software to place each region but keep the relative locations of nodes
within the region wherever possible. To preserve changes made to a
partition after compilation, use the Netlist Type Post-Fit (Import-Based).

The LogicLock Member State assignment is set to Locked to signify that
it is a preserved region.

LogicLock back-annotation and node location data is not imported
because the Quartus II Exported Partition file contains all of the relevant
placement information. Altera strongly recommends that you do not add
to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design
partition assignments, SDC constraints, and LogicLock assignments, as
described previously.

Importing Global Assignments

Global assignments are not imported. The project lead should make
global assignments in the top-level design. Note that clock settings for the
Quartus II Classic Timing Analyzer are global assignments, and are not
imported.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to specify the
options that control how assignments and regions are integrated and how
to resolve assignment conflicts when importing a subdesign partition into
a top-level design. The following subsections describe each of these
options.

2-45

Quartus Il Handbook, Volume 1

2-46

Allow Creation of New Assignments
Allows the import command to add new assignments from the imported
project to the top-level project.

When this option is turned off, it imports updates to existing
assignments, but no new assignments are allowed.

Promote Assignments to all Instances of the Imported Entity
Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions

Choose one of the following options to determine how to handle
conflicting LogicLock assignments (that is, subdesign assignments that
do not match the top-level assignments):

B Always replace regions in the current project (default)—Deletes
existing regions and replaces them with the new subdesign region.
Any changes made to the LogicLock region after the assignments
were imported are also deleted.

B Always update regions in the current projects—Overwrites existing
region assignments to reflect any new subdesign assignments with
the exception of the LogicLock Origin, in case the project lead has
made floorplan location assignments in the top-level design.

B Skip conflicting regions—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the
top-level design.

Assignment Conflict Resolution: Other Assignments

Choose one of the following options to determine how to handle conflicts
with other types of assignments (that is, the subdesign assignments do
not match the top-level assignments):

B Always replace assignments in the current project (default)—
Overwrites or updates existing instance assignments with the new
subdesign assignments.

B Skip conflicting assignments—Ignores and does not import
subdesign assignments that conflict with any assignments that exist
in the top-level design.

Generating Bottom-Up Design Partition Scripts for Project
Management
The bottom-up design partition scripts automate the process of

transferring top-level project information to lower-level modules. The
Quartus II software provides an interface for managing resource and

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

timing budgets in the top-level design. This makes it easier for designers
of lower-level modules to implement the instructions from the project
lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. This helps reduce the
need to further optimize the designs after integration, and improves
overall designer productivity and team collaboration.
=" Generating bottom-up design partition scripts is optional in any
bottom-up design methodology.

For example design scenarios using these scripts, refer to “Implementing
a Team-Based Bottom-Up Design Flow” on page 2-61. In a typical
bottom-up design flow, the project lead must perform some or all of the
following tasks to ensure successful integration of the subprojects:

B Manually determine which assignments should be propagated from
the top level to the bottom levels. This requires detailed knowledge
of which Quartus II assignments are needed to set up low-level
projects.

B Manually communicate the top-level assignments to the low-level
projects. This requires detailed knowledge of Tcl or other scripting
languages to efficiently communicate project constraints.

B Manually determine appropriate timing and location assignments
that will help overcome the limitations of bottom-up design. This
requires examination of the logic in the lower levels to determine
appropriate timing constraints.

B Perform final timing closure and resource conflict avoidance at the
top level. Because the low-level projects have no information about
each other, meeting constraints at the lower levels does not guarantee
they will be met when integrated at the top-level. It then becomes the
project lead’s responsibility to resolve the issues, even though
information about the low-level implementation may not be
available.

Using the Quartus II software to generate bottom-up design partition
scripts from the top level of the design makes these tasks much easier and
eliminates the chance of error when communicating between the project
lead and lower-level designers. Partition scripts pass on assignments
made in the top-level design, and create some new assignments that
guide the placement and help the lower-level designers see how their
design connects to other partitions. If necessary, you can exclude specific
design partitions.

2-47

Quartus Il Handbook, Volume 1

2-48

Generate design partition scripts after a successful compilation of the
top-level design. On the Project menu, click Generate Bottom-Up Design
Partition Scripts. The design can have empty partitions as placeholders
for lower-level blocks, and you can perform an Early Timing Estimation
instead of a full compilation to reduce compilation times.

The following subsections describe the information that can be included
in the bottom-up design partition Tcl scripts. Use the options in the
Generate Bottom-Up Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the
lower-level partition projects. Each time you rerun the script generation
process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition
scripts, refer to “Bottom-Up Design Partition Script Limitations” on
page 2-81.

Project Creation

You can use the Create lower-level project if one does not exist option
for the partition scripts to create lower-level projects if they are required.
The Quartus II Project File for each lower-level project has the same name
as the entity name of its corresponding design partition.

With this project creation feature, the scripts work by themselves to create
a new project, or can be sourced to make assignments in an existing
project.

Excluded Partitions

Use the Excluded partition(s) option at the bottom of the dialog box to
exclude specific partitions from the Tcl script generation process. Use the
browse button, then highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partitions.

Assignments from the Top-Level Design

By default, any assignments made at the top level (not including default
assignments or project information assignments) are passed down to the
appropriate lower-level projects in the scripts. The software uses the
assignment variables and determines the logical partition(s) to which the
assignment pertains. This includes global assignments, instance
assignments, and entity-level assignments. The software then changes
the assignments so that they are syntactically valid in a project with its
target partition’s logic as the top-level entity.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

The names of the design files that apply to the specific partition are added
to each lower-level project. Note that the script uses the file name(s)
specified in the top-level project. If the top-level project used a
placeholder wrapper file with a different name than the design file in the
lower-level project, be sure to add the appropriate file to the lower-level
project.

The scripts process wildcard assignments correctly, provided there is only
one wildcard. Assignments with more than one wildcard are ignored and
warning messages are issued.

Use the following options to specify which types of assignments to pass
down to the lower-level projects:

B Timing assignments—When this option is turned on, all Classic
Timing Analyzer global timing assignments for the lower-level
projects are included in the script, including tco, tsy, and fyjax
constraints. In addition, TimeQuest .sdc files are passed to
lower-level projects that provide the clock constraints and any
minimum or maximum delays. This option may also include timing
constraints on internal partition connections.

B Design partition assignments—When this option is turned on,
script assignments related to design partitions in the lower-level
projects are included, as well as assignments associated with
LogicLock regions.

B Pin location assignments—When this option is turned on, all pin
location assignments for lower-level project ports that connect to
pins in the top-level design are included in the script, controlling the
overuse of I/Os at the top-level during the integration phase and
preserving placement.

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design
units is turned on, the Quartus II software searches partition netlists and
identifies all ports that have cross-partition dependencies. For each
lower-level project pin associated with an internal port in another
partition or in the top-level project, the script generates a virtual pin
assignment, ensuring more accurate placement, because virtual pins are
not directly connected to I/O ports in the top-level project. These pins are
removed from a lower-level netlist when it is imported into the top-level
design.

Virtual Pin Timing and Location Assignments

One of the main issues in bottom-up design methodologies is that each
individual design block includes no information about how it is
connected to other design blocks. If you turn on the option to write virtual

2-49

Quartus Il Handbook, Volume 1

2-50

pin assignments, you can also turn on options to constrain these virtual
pins to achieve better timing performance after the lower-level partitions
are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is
turned on, the script includes location constraints for each virtual pin
created. Virtual output pins are assigned to the location of the
connection’s destination in the top-level project, and virtual input pins
are assigned to the location of the connection’s source in the top-level
project. If the top-level design uses Empty partitions, the final location of
the connection is not known, but the pin is still assigned to the LogicLock
region that contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock
region of the lower-level project, but at their location in the top-level
design, eliminating resource consumption in the lower-level project and
providing more information about lower-level projects and their port
dependencies. These location constraints are not imported into the
top-level project.

When Add maximum delay to created virtual input pins, Add
maximum delay from created virtual output pins, or both, are turned on,
the script includes timing constraints for each virtual pin created. The
value you enter in the dialog box is the maximum delay allowed to or
from all paths between virtual pins to help meet the timing requirements
for the complete design. The software uses the INPUT MAX DELAY
assignment or OUTPUT MAX_DELAY assignment to apply the constraint.

This option allows the project lead to specify a general timing budget for
all lower-level internal pin connections. The lower-level designer can
override these constraints by applying individual node-level
assignments on any specific pin as needed.

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on,
the script includes assignments identifying the LogicLock assignment for
the partition.

The script can also pass assignments to create the LogicLock regions for
all other partitions. When Include all LogicLock regions in lower-level
projects is turned on, the script for each partition includes all LogicLock
region assignments for the top-level project and each lower-level
partition, revealing the floorplan for the complete design in each
partition. Regions that do not belong to other partitions contain virtual
pins representing the source and destination ports for cross-partition

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

connections. This allows each designer to view the connectivity between
their partition and other partitions in the top-level design more easily,
and helps ensure that resource conflicts at the top level are minimized.

When Remove existing LogicLock regions from lower-level projects is
turned on, the script includes commands to remove LogicLock regions
defined in the lower-level project prior to running the script. This ensures
that LogicLock regions not part of the top-level project do not become
part of the complete design, and avoids any location conflicts by ensuring
lower-level designs use the LogicLock regions specified at the top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects
into the top-level design, you can choose to write assignments that
control how signals are promoted to global routing resources in the
lower-level partitions. These options can help resource balancing of
global routing resources.

When Promote top-level global signals in lower-level projects is turned
on, the Quartus II software searches partition netlists and identifies
global resources, including clock signals. For the relevant partitions, the
script then includes a global signal promotion assignment, providing
information to the lower-level projects about global resource allocation.

When Disable automatic global promotion in lower-level projects is
turned on, the script includes assignments that turn off all automatic
global promotion settings in the lower-level projects. These settings
include the Auto Global Memory Control Signals logic option, output
enable logic options, and clock and register control promotions. If you
select the Disable automatic global promotion in lower-level projects
option in conjunction with the Promote top-level global signals in
lower-level projects option, you can ensure that only signals promoted
to global resources in the top-level are promoted in the lower-level
projects.

Makefile Generation

Makefiles allow you to use make commands to ensure that a bottom-up
project is up-to-date if you have a make utility installed on your
computer. The Generate makefiles to maintain lower-level and
top-level projects option creates a makefile for each design partition in
the top-level design, as well as a master makefile that can run the
lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their
corresponding lower-level project directories.

2-51

Quartus Il Handbook, Volume 1

You must specify the dependencies in the makefiles to indicate which
source file should be associated with which partition. The makefiles use
the directory locations generated using the Create lower-level project if
one does not exist option. If you created your lower-level projects
without using this option, you must modify the variables at the top of the
makefile to specify the directory location for each lower-level project.

To run the makefiles, use a command such as

make -f master_makefile.mak from the script output directory. The
master makefile first runs each lower-level makefile, which sources its Tcl
script and then generates a .qxp file to export the project as a design
partition. Next, run the top-level makefile that specifies these newly
generated .qxp files as the import files for their respective partitions in the
top-level project. The top-level makefile then imports the lower-level
results and performs a full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the
EXCLUDE_FLAGS section of master_makefile.mak according to the
instructions in the file, and specify the appropriate options. You can also
exclude some partitions from being built, exported, or imported using
make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the
following example:

gnumake -f master makefile.mak exclude <partition directory>=1 +

This command instructs that the partition whose output files are in
<partition directory> are not built. Multiple directories can be excluded by
adding multiple exclude_<partition directory> commands.
Command-line options override any options in the makefile.

Another feature of makefiles is the ability to have the master makefile
invoke the low-level makefiles in parallel on systems with multiple
processors. This option can help designers working with multiple CPUs
greatly improve their compilation time. For the GNU make utility, add
the -j<N> flag to the make command. The value <N> is the number of
processors that can be used to run the build.
s The makefile does not include a make clean option, so the design
may recompile when make is run again and a .qxp file already
exists.

2-52 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Partition You can view statistics about design partitions in the Partition Merge

. a: Partition Statistics compilation report and the Statistics tab in the Design
Statistics Partitions Properties dialog box.
Reports

The Partition Statistics page under the Partition Merge folder of the
Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains and
how many are registered or unconnected. This report is useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the top-level design in a bottom-up compilation
flow, ensuring that the partitions meet the guidelines presented in
“Choosing and Creating Design Partitions” on page 2-17 and the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook. Figure 2-10 shows the
report window.

Figure 2-10. Partition Merge Partition Statistics Report

@ Compilation Report ~

&FB Legal Natice Partitian Total combinational | normal | anithmetic | Total Fiegiztersd [nput
ST Flow Summary M ame functions mode | mode registers Parts

S5 Flow Settings Top 16 4 12 26 12 10 1
&HEH Flow Mon-Default Global Se multinste | 42 24 18 0 1N 0
EHEE Flow Elapsed Time tapsinst |8 2 i 2 138 1

SB Flow Leg) hvalues inst2| 3 3 i 0 2 3 0
+-&EB1] Analysis & Syrthesis

= %@ Partikion Merge
ST summary
SHER netlist Types Used
EHER Partition Statistics
é@ Resource Lsage Surmm
) Messages

+¢&Sh(L] Fitter 3
2l D 3 | 3

[ele]=

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box. Click Show All Partitions to view all the partitions
in the same report (Figure 2-11).

Altera Corporation 2-53
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Quartus Il Handbook, Volume 1

Incremental
Compilation
Advisor

2-54

Figure 2-11. Statistics Tab in the Design Partitions Properties Dialog Box

Design Partition Properties -- hvalues:inst2 @

Generaw Corpilation Statistics]

Dizplays the post-compilation statistics for the design partitions selected in the Design Partitions windaw.

Statistic | Top | hevalues:irst2 | riultinste | taps:inst
El Resouices
b |40 15 0 i}]
- Combinational cell 22 3 42 12
i Register cel 2B 0 1] 3
- Clack contral block 3 1] 0 1]
= Connectiohs
i [nput Connections 11 2 43 1z
i FRegistered Input Connections |0 0 1] 95
- Output Connections 114 24 11 24
t Registered Output Conkections | 0 0 1] 1]
= Intemal Congestion
+-- Total Connections 254 26 106 204
- Registered Connections B2 0 1] 152
= Inter-partition connections
- Top 0 2 1 12
- hvalugsinst2 2 0 24 1]
b it ingte 1 24 1] 24
- bapaingt 112 0 24 i}
ok | Cancel | ‘

You can use the Incremental Compilation Advisor to check that your
design follows Altera’s recommendations presented for creating design
partitions and floorplan location assignments. On the Tools menu, point
to Advisors, and click Incremental Compilation Advisor.

As shown in Figure 2-12, recommendations are split into General
Recommendations that apply to all compilation flows and Bottom-Up
Design Recommendations that apply to bottom-up design
methodologies. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action
required to make the suggested change. In some cases, there is a link to
the appropriate Quartus II settings page where you can make a suggested
change to assignments or settings.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-12. Incremental Compilation Advisor

® Incremental Compilation Advisor

’i| Incremental Compilation Advisor

I /¥ General Recommendations
By Fegister All Non-Glob
Connect All Parts

+--/4 Timing Recommendations

f\ig How to use the Incremental Compilation Advisor

fi) Mare Infarmation on Incremental Complation Fiecommendation | Ensure that all non-global inputs and outputs that drive inter-partition connections are

2 -

A Check Timing Independent Recommendations registered

{4 Classic Timing Anakyzer - Check Timing Dependent Recomr | Description Since inter-partition optimizations are not allowed, it is best to register &l partition ports in
By TimeQuest Timing Anslyzer - Check Timing Dependent Reo an effort to keep ciitical paths within a single partition. By registering the ports, the

1 Summary The fallawing areas will be affected by the recommended changes:

7/ Do Mot Connect Parts ko YCC or GAD + Delay may decrease [fmax may increase]

w7 awoid LogicLock Regions With Poor Utilization Levels - Logic element usage may increase

wf Place Connected Regions Close Together Action The maodules with unregistered ports should be changed so that their ports ane

wd Partition Ports Should Have Unique Drivers registered. To see a list of all uniegistered parts, click the "Check Recommendations”
/Do Mot Directly Connect Parts On A Module buttan an the "Check Timing Independent” panel

1

Constrain the number of DSPs to be used by each part

+ 3 Bottom-Up Design Recommendations

length of the inter-partition register-to-register paths are kept to a minimum. Global
signals may be left unregistered if appropriate.

Partition Name | Unregistered Port Mame | Port Type | Mode Diiven By Port A
1 tapsiingt tapsiinztizel[0] Input tapsiingtzn_1[0]
2 tapsinst taps:instlzel[0] Inpt tapsinstlsn_2[1]
[3 | tapsirst taps:instizel[0] Input tapsinstxn_3[1]
3 4 taps:inst taps:instizel[0] Input tapsiinstln_1[2] a

Altera Corporation
May 2008

To check whether the design follows the recommendations, go to the
Timing Independent Recommendations page or the Timing Dependent
Recommendations page, and click Check Recommendations. For large
designs, these operations can take a few minutes. After you perform a
check operation, symbols appear next to each recommendation as shown
in Figure 2-12 to indicate whether the design or project setting follows the
recommendations, or if some or all of the design or project settings do not
follow the recommendations. Refer to the Legend on the How to use the
Incremental Compilation Advisor page in the advisor for more
information.

For some items in the Advisor, if your design does not follow the
recommendation, the Check Recommendations operation lists any parts
of the design that could be improved. For example, if not all of the
partition I/O ports follow the Register All Ports recommendation, the
advisor displays a list of unregistered ports with the partition name and
the node name associated with for the port.

When the advisor provides a list of nodes, you can right-click on a node

and click Locate to cross-probe to other Quartus II features such as the
RTL Viewer, Chip Planner, or the design source code in the text editor.

2-55

Quartus Il Handbook, Volume 1

Recommended
Design Flows
and Compilation
Application
Examples

2-56

Il The first time you open the RTL or Technology Map Viewer, a
preprocessor stage runs. This preprocessor resets the
Incremental Compilation Advisor, so you must rerun the Check
Recommendations process. Alternatively, you can open the
appropriate netlist viewer before you use the Incremental
Compilation Advisor if you want to locate nodes in the viewer.
In addition, opening a new TimeQuest report resets the
Incremental Compilation Advisor results.

This section provides design flows for solving common timing closure

and team-based design issues using incremental compilation. Each flow

describes the situation in which it should be used, and gives a

step-by-step description of the commands required to implement the
ow.

The following four top-down incremental design flow examples reduce
compilation time while making incremental changes to the design. The
following design flow examples also allow you to achieve timing closure
more quickly by optimizing or preserving the results for some of your
design partitions:

B “Reducing Compilation Time When Changing a Source File for One
Partition”

B “Preserving Results for Some Partitions before Adding Other
Partitions” on page 2-57

B “Optimizing the Placement for a Timing-Critical Partition” on
page 2-59

B “Optimizing the Placement for a Timing-Critical Partition” on
page 2-59

All examples assume you have set up the project to use the full
incremental compilation flow, using the steps described in “Quick Start
Guide—Summary of Steps for an Incremental Compilation Flow” on
page 2-11.

The following four bottom-up design flow examples illustrate
team-based design methodologies and design reuse:

B “Implementing a Team-Based Bottom-Up Design Flow” on
page 2-61

B “Performing Design Iteration in a Bottom-Up Design Flow” on
page 2-65

B “Creating Hard-Wired Macros for IP Reuse” on page 2-67

B “Using an Exported Partition to Send a Design without Including
Source Files” on page 2-70

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

Reducing Compilation Time When Changing a Source File for One
Partition

Use this flow to update the source file in one partition without having to
recompile the other parts of the design. To reduce the compilation time,
keep the post-fit netlists for the unchanged partitions. This also preserves
the performance for these blocks, which reduces additional timing
closure efforts.

Example background: You have just performed a lengthy, complete
compilation of a design that consists of multiple partitions. An error is
found in the HDL source file for one partition and it is being fixed.
Because the design is currently meeting timing requirements and the fix
is not expected to affect timing performance, it makes sense to compile
only the affected partition and preserve the rest of the design.

Perform the following steps to update the single source file:
1. Apply and save the fix to the HDL source file.
2. On the Assignments menu, click Design Partitions Window.

3. For the partitions that should be preserved, change the Netlist Type
to Post-Fit. You can set the Fitter Preservation Level to either
Placement or Placement and Routing. For the partition that
contains the fix, you can change the netlist type to Source File.
(Making the Source File setting is optional because the Quartus II
software recompiles partitions by default if changes are detected in
a source file.)

4. Click Start Compilation to incrementally compile the fixed HDL
code. This compilation should take much less time than the initial
full compilation.

5. Run simulation again to ensure that the bug is fixed, and use the
Timing Analyzer report to ensure that timing results have not
degraded.

Preserving Results for Some Partitions before Adding Other Partitions

Use this flow with the following two variations:

B To optimize one set of partitions in isolation and then lock the
placement to preserve the results while you complete the rest of your
design. For example, you can create a partition for some IP that
comes with instructions to perform optimization before you
incorporate the rest of your custom logic.

2-57

Quartus Il Handbook, Volume 1

2-58

B To compile your design without partitions that require a long
compilation time, and then lock down the rest of your design when
you add these last design blocks.

Example background: Prior to any compilation, you have some insight
into which partition will be the most timing-critical after placement and
routing, or which partition will take a long time to compile. To reduce
compilation time and help achieve timing closure, you decide to use one
of the following compilation flows.

In the first variation, the critical partition is placed and routed by itself,
with all optimizations turned on (manually or with the Design Space
Explorer). After timing closure is achieved for this partition, its content
and placement are preserved and the remaining partitions are fit with
normal or reduced optimization levels so that the compilation time can be
reduced.

In the second variation, only the quick-compiling partitions are placed
and routed initially with normal or reduced optimization levels, using
floorplan location assignments to reserve space in the floorplan for the
partitions to be added in the future. These quick-compiling partitions are
then preserved so they do not have to be compiled again when the last
partitions are introduced into the Fitter, with various optimizations
turned on (manually or with the Design Space Explorer).

=" Generally, this flow works only if each critical path is contained
within a single partition. This is one reason why both the inputs
and outputs of each partition should be registered.

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments.

2. For the partitions to be compiled first, on the Assignments menu,
click Design Partitions Window and set Netlist Type to Source

File.

3. For the remaining partitions (other than any direct or indirect
parents of partitions in step 2), set the Netlist Type to Empty.

4. To compile with the desired optimizations turned on, click Start
Compilation.

5. Check Timing Analyzer reports to ensure that timing requirements
are met. If so, proceed to step 6. Otherwise, repeat steps 4 and 5 until
the requirements are met.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

6. Inthe Design Partitions Window, set the Netlist Type to Post-Fit
for the first partitions. Set the Fitter Preservation Level to
Placement and Routing only if necessary to preserve results of the
timing-critical blocks; otherwise, use Placement to allow for the
most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the
remaining partitions.

8. Set the appropriate level of optimizations and compile the design.
Changing the optimizations at this point does not affect any fitted
partitions, because each has its Netlist Type set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements
are met. If not, make design or option changes and repeat step 8 and
step 9 until the requirements are met.

=y This flow is similar to a bottom-up design flow in which a
module is implemented separately and is merged into the
rest of the design afterwards. Refer to “Empty Partitions”
on page 2-30 for more information about potential issues.
Ensure that if there are any partitions representing a design
file that is missing from the project, you create a placeholder
wrapper file that defines the port interface.

Optimizing the Placement for a Timing-Critical Partition

Use this flow to optimize the results of one partition when the other
partitions in the design already meet their requirements.

Example background: You have just performed a lengthy full compilation
of a design that consists of multiple partitions. The Timing Analyzer
reports that the clock timing requirement is not met. After some analysis,
you believe that timing closure can be achieved if placement can be
improved for one particular partition. You have at least three
optimization techniques in mind: raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, it
makes sense to apply them (or just one of them) only to the partition in
question.

Perform the following steps to raise the Placement Effort Multiplier or
enable Physical Synthesis:

1. On the Assignments menu, click Design Partitions Window.

2-59

Quartus Il Handbook, Volume 1

2-60

2. For the partition in question, set the Netlist Type to Post-Synthesis.
This causes the partition to be placed and routed with the new Fitter
settings (but not resynthesized) during the next compilation.

3. For the remaining partitions (including the top-level entity), set the
Netlist Type to Post-Fit. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing. These
partitions are preserved during the next compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the
design with the new settings. During this compilation, the Partition
Merge stage automatically merges the post-synthesis netlist of the
critical partition with the post-fit netlists of the remaining partitions.
This “merged” netlist is fed to the Fitter. The Fitter then refits only
one partition. Because the effort is reduced as compared to the initial
full compilation, the compilation time is also reduced.

To use the Design Space Explorer, perform the following steps:
1. Repeat steps 1-3 of the previous set of steps.

2. Save the project and run the Design Space Explorer.

Debugging Incrementally with the SignalTap I Logic Analyzer

Incremental compilation enables you to preserve the synthesis and fitting
results of your original design and add the SignalTap® II Logic Analyzer
to your design without recompiling your original source code.

Use this flow to reduce compilation times when adding the logic analyzer
to debug your design, or when you want to modify the configuration of
the SignalTap II file without modifying your logic design or its placement.

It is not necessary to create any design partitions to use the SignalTap II
Incremental Compilation feature. When your design is set up to use full
incremental compilation, the SignalTap II Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the SignalTap II logic analyzer in an
incremental compilation flow:

1. On the Assignments menu, click Design Partitions Window.

2. Set the Netlist Type to Post-fit for all partitions to preserve their
placement.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

)

[& The netlist type for the top-level partition defaults to Source
File, so be sure to change this Top partition in addition to
any design partitions that you created.

3. If you have not already compiled the design with the current set of
partitions, perform a full compilation. If the design has already been
compiled with the current set of partitions, the design is ready to
add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II file using the SignalTap II: post-fitting
filter in the Node Finder to add signals for logic analysis. This
allows the Fitter to add the SignalTap II logic to the post-fit netlist
without modifying the design results.

5. To add signals from the pre-synthesis netlist, set the partition’s
Netlist Type to Source File and use the SignalTap II: pre-synthesis
filter in the Node Finder. This allows the software to resynthesize
the partition and tap directly to the pre-synthesis node names that
you choose. In this case, the partition is refit, so the placement will
typically be different from the previous fitting results.

1= Do not use the netlist type Post-Synthesis with the SignalTap II
Logic Analyzer.

For more information about setting up the SignalTap II Logic Analyzer,
refer to the Design Debugging Using the SignalTap II Embedded Logic
Analyzer chapter in volume 3 of the Quartus I Handbook.

Implementing a Team-Based Bottom-Up Design Flow

This example describes how to use incremental compilation in a
bottom-up design flow.

Example background: A project consists of several lower-level
subdesigns that are implemented separately by different designers. The
top-level project instantiates each of these subdesigns exactly once. The
subdesign designers want to optimize their designs independently and
pass on the results to the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2-61

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Quartus Il Handbook, Volume 1

To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. The top-level design
implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the
port interfaces but not the implementation.

Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

Make design partition assignments for each subdesign and set the
Netlist Type for each design partition that will be imported to
Empty in the Design Partitions window.

Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications.

On the Project menu, click Generate Bottom-Up Design Partition
Scripts, or launch the script generator from Tcl or the command
prompt.

Make any changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock region, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

Provide all lower-level designers with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles,
provide the makefile for each partition.

As the designer of a lower-level subdesign in this example, perform the
appropriate set of steps to successfully export your design, whether your
design team is using makefiles or exporting and importing the design
manually.

2-62

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

If you are using makefiles, perform the following steps:

1.

Use the make command and the makefile provided by the project
lead to create a Quartus II project with all design constraints, and
compile the project.

The information about which source file should be associated with
which partition is not available to the software automatically, so you
must specify this information in the makefile. You must specify the
dependencies before the software will rebuild the project after the
initial call to the makefile.

When you have achieved the desired compilation results and the
design is ready to be imported into the top-level design, the project
lead can use the master_makefile command to export this
lower-level partition and create a .qxp file, and then import it into
the top-level design.

If you are not using makefiles, perform the following steps:

1.

2.

Create a new Quartus II project for the subdesign.

Make LogicLock region assignments and global assignments
(including clock settings) as specified by the project lead.

Make Virtual Pin assignments for ports which represent connections
to core logic instead of external device pins in the top-level module.

Make floorplan location assignments to the Virtual Pins so they are
placed in their corresponding regions as determined by the
top-level module. This provides the Fitter with more information
about the timing constraints between modules. Alternatively, you
can apply timing I/O constraints to the paths that connect to virtual
pins.

Proceed to compile and optimize the design as needed.

When you have achieved the desired compilation results, on the
Project menu, click Export Design Partition. The Export Design
Partition dialog box appears.

Under Netlist to export, select the netlist type Post-fit netlist to
preserve the placement and performance of the subdesign, and turn
on Export routing to include the routing information if required.
You can export Post-synthesis netlist instead if placement or
performance preservation is not required.

2-63

Quartus Il Handbook, Volume 1

8. Provide the .qxp file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of
steps to import the files sent in by the designers of each lower-level
subdesign partition.

If you are using makefiles, perform the following steps:

1. Use the master_makefile command to export each lower-level
partition and create .qxp files, and then import them into the
top-level design.

2. The software does not have all the information about which source
files should be associated with which partition, so you must specify
this information in the makefile. The software cannot rebuild the
project if source files change unless you specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the .qxp file for each subdesign from the other
designers on the team, on the Project menu, click Import Design
Partition and specify the partition in the top-level project that is
represented by the subdesign .qxp file.

2. Repeat the import process described in step 1 for each partition in
the design. After you have imported each partition once, select all
the design partitions and use the Reimport using latest import files
at previous locations option to import all of the files from their
previous locations at one time.

Resolving Assignment Conflicts During Import

When importing the subdesigns, the project lead may notice some
assignment conflicts. This can occur, for example, if the subdesign
designers changed their LogicLock regions to account for additional logic
or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level project by
the project lead. To address these conflicts, the project lead can take one
or both of the following actions:

B Allow new assignments to be imported
B Allow existing assignments to be replaced or updated

2-64 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

When LogicLock region assignment conflicts occur, the project lead may
take one of the following actions:

B Allow the imported region to replace the existing region
B Allow the imported region to update the existing region
B Skip assignment import for regions with conflicts

The project lead can address all of these situations using the Advanced
Import Settings as described in “Importing Assignments and Advanced
Import Settings” on page 2—44.

If the placement of different subdesigns conflict, the project lead can also
set the set the partition’s Fitter Preservation Level to Netlist Only, which
allows the software to re-perform placement and routing with the
imported netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the scenario, one of the subdesigns is instantiated more
than once in the top-level design. The designer of the subdesign may
want to compile and optimize the entity once under a lower-level project,
and then import the results as multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving
Assignment Conflicts During Import” on page 2-64 is mandatory
because the top-level partitions share the same imported post-fit netlist.
If you import multiple instances of a subdesign in the top-level design,
the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and
manual LogicLock assignments to specify the placement of each instance
in the top-level design.

Performing Design Iteration in a Bottom-Up Design Flow

Use this flow if you re-optimize lower-level partitions in a bottom-up
compilation by incorporating additional constraints from the integrated
top-level design.

Example background: A project consists of several lower-level
subdesigns that have been exported from separate Quartus II projects
and imported into the top-level design in a bottom-up compilation flow.
In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each
individual lower-level project, but critical inter-partition paths in the top
level are causing timing requirements to fail.

2-65

Quartus Il Handbook, Volume 1

After trying various optimizations at the top level, the project lead
determines that the design cannot meet the timing requirements given
the current lower-level partition placements that were imported. The
project lead decides to pass additional constraints to the lower-level
projects to improve the placement.

To implement this design flow, perform the following steps:

1.

2-66

In the top-level design, on the Project menu, click Generate
Bottom-Up Design Partition Scripts, or launch the script generator
from Tcl or the command line.

Because lower-level projects have already been created for each
partition, turn off Create lower-level project if one does not exist.

Make any additional changes to the default script options as
desired. Altera recommends that you pass all the default
constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera also recommends that you
add a maximum delay timing constraint for the virtual I/O
connections in each partition.

The Quartus II software generates Tcl scripts for all partitions, but in
this scenario, you would focus on the partitions that make up the
cross-partition critical paths. The following assignments are
important in the script:

e Virtual pin assignments for module pins not connected to device
I/0 ports in the top-level design.

e Location constraints for the virtual pins that reflect the initial
top-level placement of the pin’s source or destination. These
help make the lower-level placement “aware” of its
surroundings in the top-level, leading to a greater chance of
timing closure during integration at the top-level.

[INPUT MAX DELAY and OUTPUT MAX DELAY timing
constraints on the paths to and from the I/O pins of the
partition. These constrain the pins to optimize the timing paths
to and from the pins.

The low-level designers source the file provided by the project lead.
e To source the Tcl script from the Quartus II GUI, on the Tools
menu, click Utility Windows and open the Tcl console. Navigate

to the script’s directory, and type the following command:

source <filename> +

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

e Tosource the Tcl script at the system command prompt, type the
following command:

quartus_cdb -t <filename>.tcl ¢

6. The lower-level designers recompile their designs with the new
assignments and ensure that the internal timing requirements are
met.

7. The lower-level designers re-export their results.
8. The top-level designer re-imports the results.

9. You can now analyze the design to determine whether the timing
requirements have been achieved. Because the lower-level
partitions were compiled with more information about connectivity
at the top level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

Creating Hard-Wired Macros for IP Reuse

Use this design flow to create a hard-wired macro or IP block that can be
instantiated in a top-level design. This flow provides the ability to export
a design block with post-synthesis or placement (and optionally routing)
information and to import any number of copies of this pre-placed macro
into another design.

Example background: An IP provider wants to produce and sell an IP
core for a component to be used in higher-level systems. The IP provider
wants to optimize the placement of their block for maximum
performance in a specific Altera device and then deliver the placement
information to their end customer. To preserve their IP, they also prefer to
send a compiled netlist instead of providing the HDL source code to their
customer.

The customer first specifies which Altera device is being used for this
project and provides the design specifications.

As the IP provider in this example, perform the following steps to export
a preplaced IP core (or hard macro):

1. Create documentation that defines the port interface for the IP core
and provide the file to the customer to instantiate as an empty

partition in the top-level design.

2. Create a Quartus II project for the IP core.

2-67

Quartus Il Handbook, Volume 1

2-68

3.

Create a LogicLock region for the design hierarchy to be exported.

Altera recommends creating a floorplan using LogicLock
regions, although it is not required for the generation and use of
.qxp files. Using a LogicLock region for the IP core allows the
customer to create an empty placeholder region to reserve space
for the IP in the design floorplan. This ensures there are no
conflicts with the top-level design logic, and that the IP core will
not affect the timing performance of other logic in the top-level
design.

LogicLock regions can be effective to reduce resource utilization
conflicts and to enable performance preservation. In addition,
without LogicLock regions, placement can be preserved only in
an absolute manner. With LogicLock regions, you can preserve
placement absolutely or relative to the origin of the associated
regions. This is important when a .qxp file is imported for
multiple partition hierarchies in the same project, because in this
case, the location of at least one instance in the top-level project
does not match the location used by the IP provider.

If required, add any logic (such as PLLs or other logic that will be
defined in the customer’s top-level design) around the design
hierarchy to be exported. If you do so, create a design partition for
the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block
within a Project” on page 2—42.

Optimize the design and close timing to meet the design
specifications.

Export the appropriate level of hierarchy into a single .qxp file.
Following a successful compilation of the project, you can generate
a .qxp file from the GUI, the command-line, or with Tcl commands:

e If you are using the Quartus II GUI, use the Export Design
Partition command.

e If you are using command-line executables, run quartus_cdb
with the - -incremental compilation_export option.

e If you are using Tcl commands, use the following command:
execute flow -incremental compilation export.

Provide the .qxp file to the customer. Note that you do not have to
send any of your design source code to the customer; the design
netlist and placement and routing information is contained within
this single file.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

As the customer in this example, incorporate the IP core in your design
by performing the following steps:

1. Create a Quartus II project for the top-level design that targets the
same device and instantiate a copy or multiple copies of the IP core.

2. On the Processing menu, point to Start and click Perform Analysis
& Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to
“Creating Design Partitions” on page 2-96) with the Netlist Type set
to Empty (refer to “Setting the Netlist Type for Design Partitions” on
page 2-25).

4. You can now continue work on your part of the design and accept
the IP core from the IP provider whenever it is ready.

5. Import the .qxp file from the IP provider for the appropriate
partition hierarchy. You can import a .qxp file from the GUI, the
command-line, or with Tcl commands.

e If you are using the Quartus II GUI, use the Import Design
Partition command.

e If you are using command-line executables, run quartus_cdb
with the - -incremental compilation import option.

e If you are using Tcl commands, use the following command:
execute_flow -incremental compilation_ import.

6. You can set the imported LogicLock regions to floating or move
them to a new location, with the relative locations of the region
contents preserved. Routing information is preserved whenever
possible.

1= The Fitter ignores relative placement assignments if the

LogicLock region’s location in the top-level design is not
compatible with the locations exported in the .qxp file.

7. You can control whether to preserve the imported netlist only,
placement, or placement and routing (if the placement or placement
and routing information was exported in the .qxp file) with the
Fitter Preservation Level.

By default, the software preserves the absolute placement and
routing of all nodes in the imported netlist if you choose to preserve
placement and routing. However, if you use the same .qxp files for

Altera Corporation 2-69
May 2008

Quartus Il Handbook, Volume 1

2-70

1=

multiple partitions in the same project, the software preserves the
relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

If the IP provider did not define a LogicLock region in the
exported partition, the software preserves absolute placement
locations and this leads to placement conflicts if the partition is
imported for more than one instance.

Using an Exported Partition to Send a Design without Including Source
Files

Use this flow to package a full design as a single file to send to an end
customer or another design location.

Example background: A designer wants to produce a design block and
needs to send out their design, but to preserve their IP, they prefer to send
a synthesized netlist instead of providing the HDL source code to the
recipient.

As the sender in this example, perform the following steps to export a
design block:

1.

Provide the device family name to the sender. If you send placement
information with the synthesized netlist, also provide the exact
device selection so they can set up their project to match.

Create documentation that defines the port interface for the design
block and provide it to the recipient so he can instantiate the block
as an empty partition in the top-level design.

Create a Quartus II project for the design block, and complete the
design.

Export the appropriate level of hierarchy into a single .qxp file. If
you use the Quartus II GUI, use the Export Design Partition
command (refer to “Exporting a Lower-Level Partition to be Used in
a Top-Level Project” on page 2-39).

Select the option to include just the Post-synthesis netlist if you do
not need to send placement information. If the recipient wants to
reproduce your exact Fitter results, you can select the Post-fitting
netlist option, and optionally enable Export routing.

Provide the .qxp file to the recipient. Note that you do not have to
send any of your design source code.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Incremental
Compilation
Restrictions

Altera Corporation
May 2008

As the recipient in this example, incorporate the design block into a
top-level design by performing the following steps:

1. Create a Quartus II project for the top-level design and ensure that
your project targets the same device (or at least the same device
family if the .qxp file does not include placement information), as
specified by the sender.

2. Instantiate the design block using the port information provided.

3. On the Processing menu, point to Start and click Perform Analysis
& Elaboration to identify the design hierarchy.

4. Create a design partition for the design block instance (refer to
“Choosing and Creating Design Partitions” on page 2-17) with the
Netlist Type set to Empty (refer to “Setting the Netlist Type for
Design Partitions” on page 2-25).

5. Import the .qxp file from the IP provider for the appropriate
partition hierarchy. If you are using the Quartus II GUI, use the
Import Design Partition command and browse to the .qxp file
provided (refer to “Importing a Lower-Level Partition Into the
Top-Level Project” on page 2—42).

6. If the sender provider Fitter information, you can control whether to
preserve the imported netlist only, placement, or placement and
routing, with the Fitter Preservation Level.

This section documents the restrictions and limitations that you may
encounter when using incremental compilation, including interactions
with other Quartus II features. Some restrictions apply to both top-down
and bottom-up design flows, while some additional restrictions apply
only to bottom-up design flows.

The following restrictions and limitations are covered:

B “Using Incremental Compilation with Quartus II Archive Files” on
page 2-73

B “Formal Verification Support” on page 2-73

B “OpenCore Plus Feature for MegaCore Functions in Bottom-Up
Flows” on page 2-74

B “Importing Encrypted IP Cores in Bottom-Up Flows” on page 2-74

B “SignalProbe Pins and Engineering Change Management with the
Chip Planner” on page 2-74

B “SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation
Flows” on page 2-76

2-71

Quartus Il Handbook, Volume 1

2-72

B “Logic Analyzer Interface in Bottom-Up Compilation Flows” on
page 2-77

B “Exporting a Lower-Level Partition that Uses a JTAG Feature” on
page 2-77

B “Migrating Projects with Design Partitions to Different Devices” on
page 2-78

B “HardCopy Compilation and Migration Flows” on page 2-78

B “Assignments Made in HDL Source Code in Bottom-Up Flows” on
page 2-79

B “Compilation Time with Physical Synthesis Optimizations” on

page 2-79

“Restrictions on Megafunction Partitions” on page 2-80

“Routing Preservation” on page 2-80

“Synopsys Design Constraint Files for the TimeQuest Timing

Analyzer” on page 2-80

B “Bottom-Up Design Partition Script Limitations” on page 2-81

B “Register Packing and Partition Boundaries” on page 2-83

B “I/O Register Packing” on page 2-83

Using Incremental Synthesis Only Instead of Full Incremental
Compilation

You can turn on incremental compilation for only the synthesis stage of
compilation to perform incremental synthesis, with no incremental
place-and-route. This mode is not recommended for new projects,
however, because it is not compatible with certain Quartus II design
flows, such as formal verification and incremental SignalTap II
verification.

To use incremental synthesis only, you can follow the steps for full
incremental compilation, but turn on the Incremental synthesis only
(Can reduce compilation time for a design with partition assignments)
option on the Incremental Compilation page under Compilation
Process Settings in the Settings dialog box.

In this mode, the Fitter uses a flattened netlist without partition
boundaries, so the design is always replaced and rerouted. The difference
between this flow and the one shown in Figure 2-2 on page 2-7 is that the
partition merge stage does not accept post-fit netlists produced by the
Fitter, and the Fitter does not compile partitions separately. The following
differences exist in the impact of incremental synthesis only as compared
to full incremental compilation:

B Compilation time reduction is limited to Quartus II integrated
synthesis.

B You cannot preserve placement and routing, therefore the feature
does not preserve partition timing performance.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

B A partition is automatically resynthesized whenever you make a
change to the source code or any synthesis assignments (changes to
synthesis or fitting assignments do not trigger an automatic
recompilation with Full Incremental Compilation).

Preserving Exact Timing Performance

Timing performance might change slightly in the top-level design when
all partitions are incorporated due to differences between the separate
partitions and the full design. For example, there may be parasitic effects
or crosstalk that was not present in the initial compilation with only part
of the design. Additional fan-out on routing lines can also degrade timing
performance. To ensure that the design meets performance when all
partitions are present, an approximate 2% margin may be required. This
applies to both bottom-up and top-down methodologies. The Fitter
automatically works to achieve more than a 2% margin when compiling
any design.

Using Incremental Compilation with Quartus Il Archive Files

The post-synthesis and post-fitting netlist information for each design
partition is stored in the project database. When you archive a project, the
database information is not included in the archive unless you include the
database files in the .qar file.

Altera recommends that you include the database files in the Archive
Project dialog box so compilation results are preserved. If available,
choose the Version-compatible database files (for future versions of the
Quartus II software) option to provide the most flexibility. After you
restore the project, on the Project menu, choose Import database to
include this database information in your project. If the
version-compatible option is not available for your project settings,
choose Compilation and simulation database files (For current versions
of the Quartus II software) and note that you cannot import this database
into another software version (including a service pack release).

The netlist information for imported partitions is already saved in the
corresponding .qxp file. Imported .qxp files are automatically saved in a
subdirectory called imported_partitions, so you do not need to archive
the project database to keep the results for imported partitions. When you
restore a project archive, the partition is automatically reimported from
the .qxp file in this directory if it is available.

Formal Verification Support

You cannot use design partitions if you are creating a netlist for a formal
verification tool.

2-73

Quartus Il Handbook, Volume 1

2-74

OpenCore Plus Feature for MegaCore Functions in Bottom-Up
Flows

You can use the OpenCore Plus hardware evaluation feature for
MegaCore® functions in top-down incremental compilation flows. You
cannot export partitions containing MegaCore functions that use the
OpenCore Plus feature. If you are using a bottom-up design flow, include
any IP functions that use the OpenCore Plus feature in your top-level
Quartus II project. If you do not require the OpenCore Plus hardware
evaluation functionality, you can disable the feature. On the Assignment
menu, choose Settings. On the Compilation Process Settings page, click
More Settings. Set the Disable OpenCore Plus hardware evaluation
option to On.

Importing Encrypted IP Cores in Bottom-Up Flows

Proper license information is required to compile encrypted IP cores. The
license assignment is imported in to the top-level project when a design
is imported as a .qxp file. However, the license assignment contains an
absolute path to the licensed IP source files. Therefore, the .qxp file works
correctly only if imported into a top-level project on the same computer
as the lower-level project, or the IP files are installed in the same directory
path location on both computers.

To avoid this problem, you can include this partition in the top-level
project instead of importing it, because IP cores generally do not require
additional changes by a designer in the project team. You can set the
partition that contains the core to Post-Fit after the first compilation to
reduce future compilation times, because the partition will not be
changing in any subsequent compilation. You can also set the partition to
Empty to exclude the IP core from the database until you are ready to
compile the entire design.

If you do want to import an encrypted IP core, copy the encrypted IP
source files to the top-level project's computer in exactly the same path
structure. For example, if the IP encrypted source file was
d:/work/my_encrypted_file.vhd, the top-level designer that imports the
.qxp file must create the same folder and place the file in this location.

SignalProbe Pins and Engineering Change Management with the
Chip Planner

When you create SignalProbe pins or use the Resource Property Editor to
make changes due to engineering change orders ECOs after performing
a full compilation, recompiling the entire design is not necessary. These
changes are made directly to the netlist without performing a new
placement and routing. You can preserve these changes using a post-fit

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

netlist with placement and routing. When a partition is recompiled,
SignalProbe pins and ECO changes in unaffected partitions are
preserved.

For more information about using the SignalProbe feature to debug your
design, refer to the Quick Design Debugging Using the SignalProbe chapter
in volume 3 of the Quartus IT Handbook. For more information about
using the Chip Planner and the Resource Property Editor to make ECOs,
refer to the Engineering Change Management with the Chip Planner chapter
in volume 2 of the Quartus Il Handbook.

To preserve SignalProbe pins or ECO changes, the partition netlist type
must be set to Post-fit with the Fitter Preservation Level set to Placement
and Routing. If any partitions with SignalProbe pins or ECO changes are
set to post-fit without routing or to netlist only, the software issues a
warning and internally uses the post-fit netlist with placement and
routing. If the partitions are set to use the source code or a post-synthesis
netlist, the software issues a warning and the post-fit SignalProbe pins or
ECO changes are not included in the new compilation. However,
partitions can become linked due to the SignalProbe pins or ECO
changes, as described below, in which case all linked partitions inherit the
netlist type from the linked partition with the highest level of
preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes

If ECO changes affect more than one partition or the connection between
any partitions, the partitions become linked. All of the higher-level
“parent” partitions up to their nearest common parent are also linked. In
this case, the connection between the partitions is actually defined
outside of the two partitions immediately affected, so all the partitions
must be compiled together. All linked partitions use the same netlist type,
and they inherit the netlist type from the linked partition with the highest
level of preservation.

When a SignalProbe pin is created, it affects the partition that contains the
node being probed. In addition, any pipeline registers are created in the
same partition as the node being probed. The SignalProbe output pin is
assigned to the top-level partition. Therefore, there is a new connection
formed between the top-level partition and the lower-level partition that
is being probed. Because of this connection, the lower-level partition
being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and
they inherit the netlist type from the linked partition with the highest
level of preservation.

2-75

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Quartus Il Handbook, Volume 1

2-76

When partitions are linked, they can change which netlists are preserved
when you recompile the design, as follows:

B If all the linked partitions are set to use the source code or a
post-synthesis netlist, the partitions are refit as normal. In this case,
the SignalProbe pins or ECO changes are not included in the new
netlists, so you must reapply the changes in the Change Manager.

B If any of the linked partitions is set to the Post-Fit netlist type, and
there are no source code changes, the software issues a warning and
internally uses the post-fit netlist with placement and routing for all
linked partitions. By preserving the appropriate post-fit netlists, the
software can preserve the SignalProbe pins or ECO changes.

B If any of the linked partitions is set to the Post-Fit (Strict) netlist type,
the software issues a warning and internally uses the post-fit netlist
with placement and routing for all linked partitions, regardless of
any source code changes. By preserving the appropriate post-fit
netlists, the software can preserve the SignalProbe pins or ECO
changes. Note that in this case, source code changes in any of the
linked partitions are not included in the new netlist.

B Ifany of the linked partitions is recompiled due to a change in source
code, the software issues a warning and recompiles the other linked
partitions as well. When this occurs, the SignalProbe pins or ECO
changes are not included in the new netlist, so you must reapply the
changes in the Change Manager.

Exported Partitions

In a bottom-up incremental compilation, the exported netlist includes all
currently saved SignalProbe pins and ECO changes. This might require
flattening and combining lower-level partitions in the child project to
avoid partition boundary violations at the top level. After importing this
netlist, changes made in the lower-level partition do not appear in the
Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level
partition, the software issues a warning message during the export
process that this netlist will not work in the top-level design without
modifying the top-level HDL code to reflect the lower-level change.

SignalTap Il Embedded Logic Analyzer in Bottom-Up
Compilation Flows

You can use the SignalTap II Embedded Logic Analyzer in any project
that you can compile and program into an Altera device.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

You cannot export a lower-level project that uses a SignalTap II File (.stp)
for the SignalTap II Logic Analyzer in a bottom-up incremental
compilation flow. You must disable the SignalTap II feature and
recompile the design before you export the design as a partition.

You can instantiate the SignalTap II Megafunction directly in your
lower-level design (instead of using an .stp file) and export the entire
design to the top level in a bottom-up flow. However, you cannot export
a lower-level partition within your project that contains an instantiated
SignalTap II megafunction, as described in “Exporting a Lower-Level
Partition that Uses a JTAG Feature” on page 2-77.

You can tap any nodes in a Quartus II project, including nodes imported
from other projects. Use the appropriate filter in the Node Finder to find
your node names. Use SignalTap II: post-fitting if the Netlist Type is
Post-Fit to incrementally tap node names in the post-fit netlist database.
Use SignalTap II: pre-synthesis if the Netlist Type is Source File to make
connections to the source file (pre-synthesis) node names when you
synthesize the partition from the source code.

For details about using the SignalTap II logic analyzer in an incremental
design flow, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Logic Analyzer Interface in Bottom-Up Compilation Flows

You can use the Logic Analyzer Interface in any project that you can
compile and program into an Altera device. You cannot export a
lower-level project that uses the Logic Analyzer Interface in a bottom-up
incremental compilation flow. You must disable the Logic Analyzer
Interface feature and recompile the design before you export the design
as a partition.

For more information about the Logic Analyzer Interface, refer to the
In-System Debugging Using External Logic Analyzers chapter in volume 3
of the Quartus II Handbook.

Exporting a Lower-Level Partition that Uses a JTAG Feature

“Exporting a Lower-Level Block within a Project” on page 2—42 describes
how you can export a lower-level partition that is not the top-level entity
of your project. This feature is not supported for partitions with any
feature that uses the device JTAG interface, including the In-System
Memory Content Editor, Nios® II OCI Debug and Nios II JTAG UART,
Virtual JTAG Interface, MAX® II Serial Flash Loader and Parallel Flash
Loader, and instantiated SignalTap II megafunctions.

2-77

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Quartus Il Handbook, Volume 1

2-78

To use these features with a bottom-up incremental compilation flow,
ensure that the lower-level designer exports the top-level entity of their
Quartus II project.

Migrating Projects with Design Partitions to Different Devices

Partition assignments are still valid if you migrate to a different device
density or family. LogicLock region size is valid if you migrate to a device
in the same family, but the origin location is not valid. Specific floorplan
assignments are not valid for different devices or families because the
location coordinates change between devices.

Post-synthesis netlists are valid if you migrate to a different-sized device
in the same family. Post-fit netlists are not valid if you migrate to a
different device density or family.

HardCopy Compilation and Migration Flows

HardCopy APEX and HardCopy Stratix Devices

Incremental compilation with the Quartus II software is not supported
for HardCopy APEX or HardCopy Stratix design flows.

HardCopy ASIC Migration Flows

Top-down incremental compilation is supported for the base family in
HardCopy migration flows for both the FPGA first and HardCopy. first
flows. Design partition assignments are migrated to the companion
device. LogicLock regions are suggested for design partitions but are not
migrated to the companion device, due to the different device
architecture. However, you can not make changes to the design after
migration because the design would not match the compilation results for
the base family. Therefore, you can perform top-down incremental
compilation on one device family, but cannot perform any incremental
compilations after migration.

The Netlist Only preservation level is not supported for Post-fit netlists
for FPGA or HardCopy ASIC device compilations when a migration
device is specified (that is, for HardCopy ASIC device compilations with
a FPGA migration device, or FPGA device compilations with a
HardCopy ASIC migration device).

Bottom-up incremental compilation is not supported in HardCopy ASIC
or FPGA device compilations when there is a migration device setting.
The Revision Compare feature requires that the HardCopy ASIC and
FPGA netlists are the same. Therefore, all operations performed on one

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

revision must also occur on the other revision. This is accomplished by
logging all operations and replaying them on the other revision. Using
the bottom-up flow and importing partitions does not support this
requirement. You can often use a top-down flow with Empty partitions to
implement behavior similar to a bottom-up flow, as long as you do not
change any global assignments between compilations. All global
assignments must be the same for all compiled partitions, so the
assignments can be reproduced in the companion device after migration.

HardCopy ASIC Stand-Alone Compilations

You can use both top-down and bottom-up incremental compilation for
stand-alone HardCopy ASIC compilations.

Routing preservation is not supported for HardCopy ASICs. Therefore,
the Placement and Routing preservation level is not available, and
routing cannot be exported in the bottom-up flow.

Assignments Made in HDL Source Code in Bottom-Up Flows

Assignments made with I/O primitives or the altera_attribute
HDL synthesis attribute in lower-level partitions are not currently
honored at the top level in a bottom-up flow. The assignments are
processed at the top level, but cannot always be applied to the netlist
database after import. Fitter-related assignments (such as I/O
termination setting) can be applied correctly if you use a post-synthesis
.qxp file.

Compilation Time with Physical Synthesis Optimizations

If Physical Synthesis is turned on, the optimizations run whenever there
is any partition placement that is not fixed with a post-fit netlist. For
example, when using the SignalTap II logic analyzer, there is an
automatic partition created for the SignalTap II instance that does not
have its placement preserved.

Compilation time is reduced when more of the design uses a post-fit
netlist, because physical synthesis does not optimize logic in partitions
using a post-fit netlist.

You can save additional compilation time by turning off physical
synthesis if you are recompiling a partition which does not require
physical synthesis optimizations to meet its timing or resource utilization
target. For example, when using the SignalTap II Logic Analyzer on a
design that has all partitions using post-fit netlists, you can turn off
physical synthesis to reduce compilation time. You can also compile
critical partitions that require Physical Synthesis first, and close timing for

2-79

Quartus Il Handbook, Volume 1

those partitions. If those partitions do not require any logic changes, you
can set the critical partitions to post-fit and then subsequent compilations
can have physical synthesis turned off. Be sure to turn the option on again
if you make design changes to timing-critical partitions and want to
recompile the new logic with physical synthesis optimizations.

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard® Plug-In Manager to customize
a megafunction variation, the MegaWizard-generated wrapper file
instantiates the megafunction. You can create a partition for the
MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to
implement logic in your design). If you have a module or entity for the
logic that is inferred, you can create a partition for that hierarchy level in
the design.

The Quartus II software does not support creating a partition for any
Quartus II internal hierarchy that is dynamically generated during
compilation to implement the contents of a megafunction.

Routing Preservation

There are some cases in which routing information cannot be preserved
exactly, especially in bottom-up compilation, because of legality in the
device architecture. For example, when multiple partitions are imported,
there may be routing conflicts because you cannot pre-assign routing for
each lower-level block. In addition, if an imported LogicLock region is
moved in the top-level design, the relative placement of the nodes is
preserved but the routing may not be preserved.

Synopsys Design Constraint Files for the TimeQuest Timing
Analyzer

As described in “Importing Assignments and Advanced Import Settings”
on page 2-44, timing assignments made for the TimeQuest Timing
Analyzer in an .sdc file are not imported into the top-level project. You
should manually ensure that the top-level project includes all of the
timing requirements for the entire project.

2-80 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

If you want to copy lower-level .sdc files to the top-level project, consider
prefixing lower-level constraints with a variable that describes the
constraint’s location in the design hierarchy. Then, when you copy the file
to the top-level design, you can set the variable to provide the hierarchy
path to the lower-level partition in the top-level design.

Bottom-Up Design Partition Script Limitations

The Quartus II software has some limitations related to bottom-up design
partition scripts.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Bottom-Up Design Partition Scripts

As described in “Generating Bottom-Up Design Partition Scripts for
Project Management” on page 2—46, design partition scripts include only
clock constraints and minimum and maximum delay settings for the
TimeQuest Timing Analyzer. Note that PLL settings and timing
exceptions are not passed to lower-level designs in the scripts.

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be
made to these nodes: Top | A:inst | B:inst | *, where A and B are
lower-level partitions, and hierarchy B is a child of A, that is B is
instantiated in hierarchy A. This assignment is applied to modules A, B
and all children instances of B. However, the assignment

Top | A:inst | B:inst* is applied to hierarchy A, but is not applied to the B
instances because the single level of hierarchy represented by B:inst* is
not expanded into multiple levels of hierarchy. To avoid this issue, ensure
that you apply the wildcard to the hierarchical boundary if it should
represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single
wildcards are supported. This means assignments such as

Top | A:inst | * | B:inst | * are not supported. The Quartus II software
issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level
partition, the lower-level partition does not receive assignments and
constraints from the top-level pin in the design partition scripts.

2-81

Quartus Il Handbook, Volume 1

2-82

This issue is of particular importance for clock pins that require timing
constraints and clock group settings. Problems can occur if your design
uses logic or inversion to derive a new clock from a clock input pin. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained.

In addition, if you use a PLL in your top-level design and connect it to
lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained or constrained with the incorrect
frequency. Alternately, manually duplicate the top-level derived clock
logic or PLL in the lower-level design file to ensure that you have the
correct multiplication or phase shift factors, compensation delays and
other PLL parameters for complete accurate timing analysis. Create a
design partition for the rest of the lower-level design logic that will be
exported to the top level. When the lower-level design is complete, export
just the partition that contains the relevant logic with the feature
described in “Exporting a Lower-Level Block within a Project” on

page 2-42.

Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition
Scripts

Pin assignments for high-speed GXB transceivers and hard LVDS blocks
are not written in the scripts. You must add the pin assignments for these
hard IP blocks in the lower-level projects manually.

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

Design partition scripts use INPUT_MAX DELAY and

OUTPUT_MAX DELAY assignments to specify inter-partition delays
associated with input and output pins which would not otherwise be
visible to the project. These assignments require that the software specify
the clock domain for the assignment and set this clock domain to “*’.

This clock domain assignment means that there may be some paths
constrained and reported by the timing analysis engine that are not
required.

To restrict which clock domains are included in these assignments, edit
the generated scripts or change the assignments in your lower-level
Quartus II project. In addition, because there is no known clock
associated with the delay assignments, the software assumes the
worst-case skew, which makes the paths seem more timing critical than

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, enter
negative numbers for input and output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design
Partition Scripts

When a single top-level I/O port drives multiple pins on a lower-level
module, it unnecessarily restricts the quality of the synthesis and
placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot
use any information about pins being logically equivalent at the top level.
In addition, because I/O constraints are passed from the top-level pin to
each of the children, it is possible to have more pins in the lower level than
at the top level. These pins use top-level I/O constraints and placement
options that might make them impossible to place at the lower-level. The
software avoids this situation whenever possible, but it is best to avoid
this design practice to avoid these potential problems. Restructure your
design so that the single I/O port feeds the design partition boundary
and the single connection is split into multiple signals within the lower-
level partition.

Register Packing and Partition Boundaries

The Quartus II software performs register packing during compilation
automatically. However, when incremental compilation is enabled, logic
in different partitions cannot be packed together because partition
boundaries prevent cross-boundary optimization. This restriction applies
to all types of register packing, including I/O cells, DSP blocks,
sequential logic, and unrelated logic.

1/0 Register Packing

Cross-partition register packing of I/O registers is allowed in certain
cases where your input and output pins exist in the top-level hierarchy
(and the Top partition), but the corresponding 1/0O registers exist in other
partitions.

The following specific circumstances are required for input pin
cross-partition register packing:

B The input pin feeds exactly one register

B The path between the input pin and register includes only input
ports of partitions that have one fan-out each

2-83

Quartus Il Handbook, Volume 1

The following specific circumstances are required for output register
cross-partition register packing:

B The register feeds exactly one output pin

B The output pin is fed by only one signal

B The path between the register and output pin includes only output
ports of partitions that have one fan-out each

Output pins with an output enable signal cannot be packed into the
device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition
assignments so that the register and tri-state logic are defined in the same
partition.

Bidirectional pins are handled in the same way as output pins with an
output enable signal. If the registers that need to be packed are in the
same partition as the tri-state logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device
primitive) is created as part of the partition that contains tri-state logic. If
an I/0 register and its tri-state logic are contained in the same partition,
the register can always be packed with tri-state logic into the I/O atom.
The same cross-partition register packing restrictions also apply to I/O
atoms for input and output pins. The I/O atom must feed the I/O pin
directly with exactly one signal. The path between the I/O atom and the
I/0 pin must include only ports of partitions that have one fan-out each.

Examples of I/0 Register Packing Across Partition Boundaries

The following examples provide detailed explanations for various I/O
and partition configurations. The examples use block design file (BDF)
schematics to illustrate the design logic.

Example 1—Output Register in Partition Feeding the Output Pin
In this example, a subdesign contains a single register, as shown in
Figure 2-13.

Figure 2-13. Subdesign with One Register, Designated as a Separate Partition

A = o« S S
d s 201 i O O - T
sk [——

i CLEH

SRS £ - W

2-84

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

As shown in Figure 2-14, the top-level design instantiates the subdesign
with a single fan-out directly feeding an output pin, and designates the
subdesign as a separate design partition.

Figure 2-14. Top-level Design Instantiating the Subdesign in Figure 2-13 as an Output Register

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment on pin out. This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not need to be changed and the
partition port feeds an output pin directly.

Example 2—Output Register in Partition Feeding Multiple Output
Pins

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2-13. The top-level design instantiates the subdesign
as an output register with more than one fan-out signal, as shown in
Figure 2-15.

Figure 2-15. Top-level Design Instantiating the Subdesign in Figure 2-13 with Two Output Pins

Altera Corporation
May 2008

In this case, the software does not perform output register packing. If
there is a Fast Output Register assignment on pin out, the software
issues a warning that the Fitter can’t pack the node to an 1/O pin because
the node and the I/O cell are connected across a design partition
boundary.

2-85

Quartus Il Handbook, Volume 1

This type of cross-partition register packing is not permitted because it
requires modification to the interface of the subdesign partition. To
perform incremental compilation, you must preserve the interface of
design partitions.

To allow the software to pack the register in the subdesign from
Figure 2-13 with the output pin out in Figure 2-15, make one of the
following changes:

Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the partition containing the output pin.
This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

Restructure your HDL code so the register feeds only one output pin.
Turn off the Analysis and Synthesis setting Remove Duplicate
Registers. Duplicate the register in your subdesign HDL as in
Figure 2-16 so that each register feeds only one pin, then connect the
extra output pin to the new port in the top-level design as shown in
Figure 2-17. This converts the cross-partition register packing into
the simplest case where the register has a single fan-out.

Figure 2-16. Modified Subdesign from Figure 2—13 with Two Output Registers and Two Output Ports

........................ R RS

2-86

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-17. Modified Top-Level Design from Figure 2-15 Connecting Two Output Ports to Output Pins

d

a
q

clk extra

Example 3—Output Register, Output Enable Register, and Tri-State
Logic in Partition Feeding the Output Pin

In this example, a subdesign designated as a separate partition contains
an output register, an output enable register, and the tri-state logic to
drive the output pin, as shown in Figure 2-18. The top-level design
instantiates the subdesign with a single fan-out directly feeding an output

pin, as shown in Figure 2-19.

Figure 2-18. Subdesign with Output Register, Output Enable Register and Tri-State Logic, Designated as a

Separate Partition

Altera Corporation
May 2008

2-87

Quartus Il Handbook, Volume 1

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment, Fast Output Enable Register
assignment, or both, on pin out. This kind of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed, no logic needs to be optimized
across the partition boundary, and the partition port feeds an output pin
directly.

Example 4—Output Register, Output Enable Register, or Both, in
Partition Feeding the Tri-State Output Pin

In this example, a subdesign designated as a separate partition contains
two registers, as shown in Figure 2-20. The top-level design instantiates
the subdesign with the registers driving the output and output enable
signal for an output pin, as shown in Figure 2-21.

Figure 2-20. Subdesign with Two Registers, Designated as a Separate Partition

In this case, the software cannot perform register packing. If there is a Fast
Output Register or Fast Output Enable Register assignment on pin out,
the software issues a warning that the Fitter cannot pack the node to an
I/0 pin because the node and the I/O cell are connected across a design
partition boundary.

2-88 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
May 2008

The same restrictions apply in the case in which the top-level design
includes either the output register or the output enable register as well as
the tri-state logic. The software cannot pack the register that is part of the
subdesign partition into the I/O register.

This type of register packing is not permitted because it requires moving
logic across a design partition boundary to place into a single I/O device
atom. To perform register packing, either the registers must be moved out
of the subdesign partition or the tri-state logic must be moved into the
subdesign partition. To guarantee correctness of the design with
subsequent incremental compilations, the contents of design partitions
must be preserved.

To allow the software to pack the output register, output enable register,
or both, in the subdesign from Figure 2-20 with the output pin out in
Figure 2-21, make one of the following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not need to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the top-level partition containing the
output pin. This guarantees that the Fitter can optimize the two
nodes without violating any partition boundaries.

B Restructure your HDL code so the register and tri-state logic are
contained in the same partition. Move the tri-state logic from the
top-level block into the subdesign with both registers, as shown in
Figure 2-18. Then connect the subdesign to an output pin in the
top-level design, as shown in Figure 2-19.

Example 5—Bidirectional Logic in Partition Feeding the Bidirectional
Pin

The behavior for bidirectional pins is similar to that of an output pin with
an output enable signal. To allow register packing, the registers must be
included in the same partition as the tri-state logic that drives the
bidirectional pin.

In this example, a subdesign designated as a separate partition contains
three registers and the tri-state logic for a bidirectional pin, as shown in
Figure 2-22. The top-level design instantiates the subdesign with ports
feeding bidirectional and output pins, as shown in Figure 2-23.

2-89

Quartus Il Handbook, Volume 1

Figure 2-22. Subdesign with Three Registers and Tri-State Logic, Designated as a Separate Partition

2-90

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register, Fast Output Enable Register, or Fast Input
Register assignment on pin bidir. This type of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed and the partition port feeds a
bidirectional pin directly.

Registers cannot be packed in designs that have the registers and tri-state
logic in different partitions. The situations described in “Example 4—
Output Register, Output Enable Register, or Both, in Partition Feeding the
Tri-State Output Pin” on page 2-88 apply similarly to bidirectional pins if
you replace the output pin out with a bidirectional pin in the top-level
design.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Example 6—Input Register in Partition Fed by Input Pin

In this example, a subdesign contains a single register, as shown in
Figure 2-24. The top-level design instantiates the subdesign with a single
fanin directly fed by an input pin, as shown in Figure 2-25, and
designates the subdesign to be a separate design partition.

Figure 2-24. Subdesign with One Register, Designated as a Separate Partition

;:::::::::::::::::::::'f-'ﬁ"";%""""""
- id C_—=——p Q

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This type of cross-partition
input register packing is permitted because the port interface of the
subdesign partition does not have to be changed and the partition port is
fed by an input pin directly.

Example 7—Input Register in Partition Fed by the Input with Multiple
Fan-Out

In this example, a subdesign designated as a separate partition contains a
register, as in Figure 2-24. The top-level design instantiates the subdesign
as an input register but the input pin also feeds another destination, as
shown in Figure 2-26.

Altera Corporation 2-91
May 2008

Quartus Il Handbook, Volume 1

Figure 2-26. Top-level Design Instantiating the Subdesign in Figure 2-24 as an Input Register for a Pin with

Two Destinations

0

2-92

In this case, the software does not perform input register packing. If there
is a Fast Input Register assignment on pin in, the software issues a
warning that the Fitter cannot pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not permitted because it
requires modification to the interface of the subdesign partition. To
perform incremental compilation, you must preserve the interface of
design partitions.

To allow the software to pack the register in the subdesign from
Figure 2-24 with the input pin in in Figure 2-26, make one of the
following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it also prevents you from using incremental compilation
for this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the input pin. The simplest option is to move the register from the
subdesign partition into the partition containing the input pin. This
guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

Example 8—Inverted Input Register in Partition Fed by the Input Pin
In this example, a subdesign designated as a separate partition contains
an inverted register, as shown in Figure 2-27. The top-level design

instantiates the subdesign as an input register, as shown in Figure 2-28.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-27. Subdesign with an Inverted Register, Designated as a Separate Partition

o
Fe]

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This type of cross-partition
input register packing is permitted because the software can implement
logic for the inversion with the input register inside the partition, and
then the partition port is fed by an input pin directly.

Example 9—Input Register in Partition Fed by the Inverted Input Pin
or Output Register in Partition Feeding the Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a
register, as shown in Figure 2-29. The top-level design in Figure 2-30
instantiates the subdesign as an input register with the input pin inverted.
The top-level design in Figure 2-31 instantiates the subdesign as an
output register with the signal inverted before feeding an output pin.

Figure 2-29. Subdesign with One Register, Designated as a Separate Partition

L lIIgETETTTI LI
: s S M e i e 9
clk | —" I
SRS AREREEE N [P b S SRS SR SRS
SRS SRS SRR AR SRR t:- - F S SRS S SRR

Altera Corporation
May 2008

2-93

Quartus Il Handbook, Volume 1

Figure 2-30. Top-level Design Instantiating the Subdesign in Figure 2-29 as an Input Register with an

Inverted Input Pin

Figure 2-31. Top-level Design Instantiating the Subdesign in Figure 2-30 as an Output Register Feeding an

Inverted Output Pin

d
clk

F=]

2-94

In these cases, the software does not perform register packing. If there is
a Fast Input Register assignment on pin in in Figure 2-30 or a Fast
Output Register assignment on pin out in Figure 2-31, the software
issues a warning that the Fitter cannot pack the node to an I/O pin
because the node and I/O cell are connected across a design partition
boundary.

This type of register packing is not permitted because it requires moving
logic across a design partition boundary to place into a single I/O device
atom. To perform register packing, either the register must be moved out
of the subdesign partition or the inverter must be moved into the
subdesign partition to be implemented in the register. To guarantee
correctness of the design with subsequent incremental compilations, the
contents of design partitions must be preserved.

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Scripting
Support

Altera Corporation
May 2008

To allow the software to pack the register in the subdesign from
Figure 2-29 with the input pin in in Figure 2-30 or the output pin out in
Figure 2-31, make one of the following changes:

B Remove the design partition assignment from the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the pin. The simplest option is to move the register from the
subdesign partition into the top-level partition containing the pin.
This ensures that the Fitter can optimize the two nodes without
violating any partition boundaries.

B Restructure your HDL code so the register and inverter are contained
in the same partition. Move the inverter from the top-level block into
the subdesign, as shown in Figure 2-27 for an input pin. Then
connect the subdesign to a pin in the top-level design, as shown in
Figure 2-28 for an input pin.

You can run procedures and make settings described in this chapter in a
Tel script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --ghelp ¢

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generate Incremental Compilation Tcl Script Command

To create a template Tcl script for full incremental compilation, use the
Generate Incremental Compilation Tcl Script feature. Right-click in the
Design Partitions Window and click Generate Incremental
Compilation Tecl Script.

2-95

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Quartus Il Handbook, Volume 1

2-96

If you have made any partition assignments in the user interface, this
script contains the Tcl equivalents of the assignments. The Tel
assignments are described in the following sections.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the
following command:

set _global assignment -name INCREMENTAL COMPILATION \
<value>

The incremental compilation <value> setting must be one of the following
values:

B FULL INCREMENTAL COMPILATION—Full incremental
compilation (this is the default)

B INCREMENTAL_SYNTHESIS—Incremental synthesis only

B OFF—No incremental compilation is performed

Creating Design Partitions

To create a partition, use the following command:

set_instance assignment -name PARTITION HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name
(including quotation marks), for example:

"ram:ram_ unit|altsyncram:altsyncram component"

For the top-level partition, you can use the pipe (|) symbol to represent
the top-level entity.

For more information about hierarchical naming conventions, refer to
Node-Naming Conventions in Quartus II Integrated Synthesis in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters. The name can consist only of
alphanumeric characters, and the pipe (|), colon (:), and underscore
(_) characters. Altera recommends enclosing the name in double
quotation marks (" ").

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored; you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_ file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the \db compilation database directory.

Setting Properties of Design Partitions

After a partition is created, set its Netlist Type with the following
command:

set _global assignment -name PARTITION NETLIST TYPE <value> -section_ id \

<partition name>

The netlist type <value> setting is one of the following values:

SOURCE—Source File

POST SYNTH—Post-Synthesis

POST_FIT—Post-Fit

STRICT POST_FIT—Post-Fit (Strict)
IMPORTED—Imported

IMPORT_ BASED_ POST_FIT—Post-Fit (Import-based)
EMPTY—Empty

Set the Fitter Preservation Level for a post-fit or imported netlist using the
following command:

set _global assignment -name PARTITION FITTER PRESERVATION LEVEL <uvalue> \
-section_id <partition name>

Altera Corporation
May 2008

The Fitter Preservation Level <value> setting is one of the following
values:

NETLIST ONLY—Netlist only

PLACEMENT—Placement

PLACEMENT_AND ROUTING—Placement and routing
PLACEMENT_AND ROUTING_AND_ TILE— Placement and routing,
as well as the power tile setting of high-speed or low-power

2-97

Quartus Il Handbook, Volume 1

For details about these partition properties, refer to “Setting Properties of
Design Partitions”.

Creating Good Floorplan Location Assignments—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)

Resourece filtering uses the optional Tcl argument
-exclude_ resourcesinthe set logiclock_contents function of
the LogicLock Tcl package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is
a colon-delimited string of the following keywords:

Table 2-4. Resources-to-be-Excluded Keywords

Keyword Resource

REGISTER Any registers in the logic cells

COMBINATIONAL Any combinational elements in the logic cells

SMALL MEM The small TriMatrix memory blocks (M512 or MLAB)
MEDIUM MEM The medium TriMatrix memory blocks (M4K or M9K)
LARGE_MEM The large TriMatrix memory blocks (M-RAM or M144K)
DSP Any DSP blocks

VIRTUAL_PIN Any virtual pins

For example, the following command assigns everything under
alu:alu_unit to the ALU region, excluding all the DSP and M512 blocks:

set_logiclock_contents -region ALU -to alu:alu unit -exceptions \
"DSP:SMALL MEM"

In the QSF, resource filtering uses an extra LogicLock membership
assignment called LI, MEMBER_RESOURCE_EXCLUDE. For example, the
following line in the QSF is used to specify a resource filter for the
alu:alu_unit entity assigned to the ALU region. The value of the
assignment takes the same format as the resource listing string taken by
the previous Tcl command.

set_instance assignment -name LL MEMBER RESOURCE EXCLUDE "DSP:SMALL_ MEM" \
-to "alu:alu unit" -section id ALU

2-98 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:
generate_bottom up scripts <options>

The command is part of the database_manager package, which must

be loaded using the following command before the command can be

used:

load package database manager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact

format of each option is specified in Table 2-5.

Table 2-5. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default
-include_makefiles <on|off> On
-include_project creation <on|off> On
-include_virtual pins <on|off> On
-include_virtual pin timing <on|off> On
-include_virtual pin_ locations <on|off> On
-include_logiclock_regions <on|off> On
-include_all logiclock regions <on|off> On
-include_global_signal promotion <on|off> Off
-include pin locations <on|off> On
-include_timing assignments <on|off> On
-include_design partitions <on|off> On
-remove_existing regions <on|off> On
-disable_auto_global_promotion <on|off> Off
-bottom up_scripts_output_directory <output directory> Current project directory
-virtual pin delay <delayin ns> (1)

Note to Table 2-5:
(1) No default.

Altera Corporation
May 2008

2-99

Quartus Il Handbook, Volume 1

The following example shows how to use the Tcl command:

load _package database manager
set project test proj
project open $project

generate bottom up scripts -bottom up scripts output directory test \

-include virtual pin timing on -virtual pin delay 1.2
project close

Command Line Support

To generate scripts at the command prompt, type the following

command:

quartus_cdb <project name> --generate_bottom up_ scripts=on <options> +

Once again, the options map to the same as those in the GUI. To add an
option, append “- - <option_name>=<val>" to the command line call.

The command prompt options are the same as those available in the GUIL

They are listed in Table 2-6.

Table 2-6. Options for Generating Bottom-Up Partition Scripts

Option Default
--include makefiles with bottom up scripts=<on|off> On
--include_project_ creation_in bottom up_scripts=<on|off> On
--include virtual pins in bottom up scripts=<on|off> On
--include_virtual_ pin_ timing in bottom_up_scripts=<on|off> On
--bottom up scripts virtual pin delay=<delay in ns> (1)
--include virtual pin locations in bottom up_ scripts=<on|off> On
--include logiclock regions in bottom up scripts=<on|off> On
--include all logiclock regions in bottom up scripts=<on|off> On
--include_global_signal promotion in bottom up scripts=<on|off> Off
--include pin locations in bottom up scripts=<on|off> On
--include timing assignments in bottom up_ scripts=<on|off> On
--include design partitions in bottom up scripts=<on|off> On
--remove existing regions_in bottom up scripts=<on|off> On
--disable_auto_global promotion in bottom up scripts=<on|off> Off
--bottom up scripts output directory=<output directory> Current project
directory

Note to Table 2-6:
(1) No default. You must provide this option if you are including virtual pin timing.

2-100

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Partition to be Used in a Top-Level Project

Use the quartus_cdb executable to export a file for a bottom-up
incremental compilation flow with the following command:

quartus_cdb --INCREMENTAL COMPILATION EXPORT=<file> \

[--incremental compilation export netlist type=<POST_SYNTH|POST_FIT>] \
[--incremental compilation export partition name=<partition name>] \
[--incremental compilation_export routing=<on|off>]

The <file> argument is the file path to the exported file. The

<partition name> is the name of the partition, not its hierarchical path. If
you do not specify the options, the executable uses any settings in the QSF
file, or it uses default values. The default partition is the top-level
partition in the project, the default netlist type is post-fit, and the default
for routing is on (for all device families that support exported routing).

The command reads the assignment
INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPEtOdeKHnﬁne
which netlist type to export; the default is post-fit.

You can also use the flow INCREMENTAL COMPILATION EXPORT in the
execute_flow Tcl command contained in the £1ow Tcl package.

Use the following commands to export a .qxp file for a given partition,
choose the netlist type and specify whether to export routing.

load package flow

set _global_ assignment -name INCREMENTAL COMPILATION EXPORT FILE <filename>
set_global assignment -name INCREMENTAL COMPILATION EXPORT NETLIST TYPE \
<POST_FIT | POST_SYNTH>

set_global assignment -name \

INCREMENTAL COMPILATION EXPORT PARTITION NAME <partition name>

set_global assignment -name INCREMENTAL COMPILATION_ EXPORT ROUTING \
<on | off>

execute flow -INCREMENTAL COMPILATION_ EXPORT

The default partition is the top-level partition in the project, the default
netlist type is post-fit, and the default for routing is on (for all device

families that support exported routing).

To turn on the option to always perform exportation following
compilation, use the following Tcl command:

set global assignment -name AUTO EXPORT INCREMENTAL COMPILATION ON

Altera Corporation 2-101
May 2008

Quartus Il Handbook, Volume 1

Importing a Lower-Level Partition into the Top-Level Project

Use the quartus_cdb executable to import a lower-level partition with
the following command:

quartus_cdb -- INCREMENTAL COMPILATION IMPORT ¢

You can also use the flow called INCREMENTAL COMPILATION IMPORT
in the execute_flow Tcl command contained in the £1ow Tcl package.

The following example script shows how to import a partition using a Tl
script:

load package flow
commands to set the import-related assignments for each partition
execute flow --INCREMENTAL COMPILATION IMPORT

Specify the location for the imported file with the

PARTITION_ IMPORT_FILE assignment. Note that the file specified by
this assignment is read only during importation. For example, the project
is completely independent from any files from the lower-level projects
after importing. In the command-line and Tcl flow, any partition that has
this assignment set to a non-empty value will be imported.

The following assignments specify how the partition should be imported:

PARTITION IMPORT PROMOTE ASSIGNMENTS = <on|off>
PARTITION IMPORT NEW ASSIGNMENTS = <on|off>

PARTITION_ IMPORT_EXISTING ASSIGNMENTS = \

replace conflicting | skip conflicting

PARTITION_ IMPORT EXISTING LOGICLOCK REGIONS = \

replace conflicting | update conflicting | skip conflicting

Makefiles

For an example of how to use incremental compilation with a

makefile as part of the bottom-up design flow, refer to the read_me.txt file
that accompanies the incr comp example located in the
/qdesigns/incr_comp_makefile subdirectory. When using a bottom-up
incremental compilation flow, the Generate Bottom-Up Design Partition
Scripts feature can write makefiles that automatically export lower-level
design partitions and import them into the top-level project whenever
design files change.

2-102 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Recommended Design Flows and Compilation Application
Examples—Scripting and Command-line Operation

This section provides scripting examples that cover some of the topics
discussed in the main section of the chapter.

The script shown in Example 2-1 opens a project called AB_project,
sets up two partitions, entities A and B, for the first time, and performs an
initial complete compilation.

Example 2-1. AB_project (1)
set project AB project

package require ::quartus::flow
project open $project

Ensure that incremental compilation is turned on
set _global assignment -name INCREMENTAL COMPILATION \
FULL_INCREMENTAL COMPILATION

Set up the partitions

set_instance assignment -name PARTITION HIERARCHY \
db/A_inst -to A -section_id "Partition A"

set instance assignment -name PARTITION HIERARCHY \
db/B_inst -to B -section id "Partition B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit

netlists)

set_global assignment -name PARTITION NETLIST TYPE \
POST FIT -section_id "Partition A"

set_global assignment -name PARTITION NETLIST TYPE \

POST_FIT -section_id "Partition B"

#
#
#
#

Run initial compilation:
export_assignments
execute flow -full compile

project_close

Reducing Compilation Time When Changing a Source File for One
Partition—Command-Line Example

Example background: You have run the initial compilation shown in the
example script in the previous section. You have modified the HDL
source file for partition A and want to recompile it.

Altera Corporation 2-103
May 2008

Quartus Il Handbook, Volume 1

Run the standard flow compilation command in your Tel script:
execute flow -full compile

Or, type the following command at a system command prompt:
quartus_sh --flow compile AB project¢

Assuming the source files for partition B do not depend on A, only A is
recompiled. The placement of B and its timing performance is preserved,
which also saves significant compilation time.

Optimizing the Placement for a Timing-Critical Partition

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples—Scripting and Command-line Operation” on
page 2-103. You would like to apply Fitter optimizations, such as
physical synthesis, only to partition A. No changes have been made to the
HDL files.

To ensure the previous compilation result for partition B is preserved, and
to ensure that Fitter optimizations are applied to the post-synthesis netlist
of partition A, set the netlist type of B to Post-Fit (which was already done
in the initial compilation, but is repeated here for safety), and the netlist
type of A to Post-Synthesis, as shown in Example 2-2:

Example 2-2. AB_project (2)
set project AB project

package require ::quartus::flow
project open $project

Turn on Physical Synthesis Optimization
set_global assignment -name \
PHYSICAL SYNTHESIS REGISTER_RETIMING ON

For A, set the netlist type to post-synthesis
set_global assignment -name PARTITION NETLIST TYPE POST SYNTH \
-section_id "Partition_ A"

For B, set the netlist type to post-fit
set_global_assignment -name PARTITION NETLIST_TYPE POST_FIT \
-section id "Partition B"

Run incremental compilation:
export assignments

execute flow -full compile

project close

2-104 Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Conclusion

Referenced
Documents

Altera Corporation
May 2008

With the Quartus II incremental compilation feature described in this
chapter, you can preserve the results and performance of unchanged logic
in your design as you make changes elsewhere. The various applications
of incremental compilation enable you to improve your productivity
while designing for high-density FPGAs, using either top-down or
bottom-up design methodologies.

This chapter references the following documents:

B Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus I Handbook

B Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

B Design Debugging Using the SignalTap I Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

B Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

B [n-System Debugging Using External Logic Analyzers chapter in
volume 3 of the Quartus II Handbook

B Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

B Quartus II Settings File Reference Manual

B Quick Design Debugging Using the SignalProbe chapter in volume 3 of
the Quartus I Handbook

B Tcl Scripting chapter in volume 2 of the Quartus 11 Handbook

2-105

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Quartus Il Handbook, Volume 1

Document

Table 2-7 shows the revision history for this chapter.

Revision History

Table 2-7. Document Revision History (Part 1 of 3)

Date and
Document Version

Changes Made Summary of Changes

May 2008
v8.0.0

Added several references to the Best Practices for
Assignments chapter
Clarified material in “Top-Down versus Bottom-Up

design flows, and added a note about HardCopy ASIC flows

section

flows

Updated for Quartus Il

Incremental Compilation Partitions and Floorplan software version 8.0.

Simplified “Choosing a Quartus || Compilation Flow” section
Compilation Flows” section, added information about “mixed”

Removed “When Design is Resynthesized” and “When
Design is Refit” from Table 2—1.
Reorganized “Choosing and Creating Design Partitions”

Added instructions for using the Design Partition Planner
Added information about design changes to Table 2-2 in
“Setting the Netlist Type for Design Partitions”

Removed requirement for HDL wrapper file for Empty
partitions that are Imported

Added details to “What Changes Trigger a Partition’s
Automatic Resynthesis?” section

Added “What LogicLock Changes Trigger Refitting?” section
Removed existing section “Guidelines for Creating Good
Design Partitions and LogicLock Regions” because it is
covered in the Best Practices for Incremental Compilation
Partitions and Floorplan Assignments chapter and moved
some of the material to other sections of the document
Renamed and reorganized Application Examples

Removed example Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow
and combined it with previous example

Added recommendation to use a version-compatible
database when archiving

Clarified HardCopy ASIC restrictions for bottom-up flows
Clarified export and import of SDC constraints in bottom-up

Added “Optimizing the Placement for a Timing-Critical
Partition” section

Added “Using an Exported Partition to Send a Design without
Including Source Files” section

2-106

Altera Corporation
May 2008

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-7. Document Revision History (Part 2 of 3)

Date and
Document Version Changes Made Summary of Changes
October 2007 e Updated “Introduction” on page 2—-1. Updated for Quartus Il
v7.2.0 e Updated “Choosing a Quartus |l Compilation Flow” on software version 7.2.

page 2-3.

e Changed title and updated “Preparing a Design for
Incremental Compilation” section to “Quick Start Guide —
Summary of Steps for an Incremental Compilation Flow” on
page 2-11.

e Updated “You can make partition assignments to HDL or
schematic design instances, or to VQM or EDIF netlist
instances (from third-party synthesis tools). To take
advantage of incremental compilation when source files
change, the top-level design entity of each partition should
have a unique design file. If you define two different entities of
separate partitions but they are in the same design file, you
cannot maintain incremental compilation because the
software would have to recompile both partitions if you
changed either entity in the design file.” on page 2—-18.

e Updated “Creating Design Partitions” on page 2—19.

e Updated “Creating a Design Floorplan With LogicLock
Location Assignments” on page 2-30.

o Updated “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2—-33.

e Updated “Guidelines for Creating Good Design Partitions and
LogicLock Regions” on page 2—47.

e Updated “Incremental Compilation Restrictions” on

page 2-77.
May 2007 e Updated “Choosing a Quartus Il Compilation Flow” on Removed several dialog
v7.1.0 page 2-3.Updated “Preparing a Design for Incremental box figures. Added
Compilation” on page 2—10. support for Arria GX
o Updated Tables 2—1 and 2-3. devices. Added Fitter
e Updated design in “Recommended Design Flows and Preservation Level
Compilation Application Examples” on page 2-61. Post-Fit Placement,
o Added new examples to “Design Flow 7—Creating Hard- Routing, and Tiles.

Wired Macros for IP Reuse” on page 2-72.

e Moved and simplified “Using Incremental Synthesis Only
Instead of Full Incremental Compilation” on page 2-76.

e Updated “HardCopy Compilation Flows” on page 2-81.

e Updated “Support for the TimeQuest Timing Analyzer and
SDC Constraints” on page 2-81.

e Updated “Setting Properties of Design Partitions” on
page 2-98.

o Added “Referenced Documents” on page 2—106.

March 2007 No changes to chapter. —
v7.0.0

Altera Corporation 2-107
May 2008

Quartus Il Handbook, Volume 1

Table 2-7. Document Revision History (Part 3 of 3)

Date and
Document Version

Changes Made

Summary of Changes

November 2006 Chapter 2 was formerly Chapter 1 in version 6.0.0. Added support for
v6.1.0 Reorganized chapter to group recommendations and guidelines | Stratix Il devices.
together. Added information
Updated for the Quartus Il software version 6.1: about new features and
e Added support for Stratix Il devices. updates in the
® Added information on the Incremental Compilation Advisor. | Quartus Il software
e The full incremental compilation option is now turned on by | version 6.1.
default.
o Added new feature for Exporting a Lower-Level Block within a
Project.
e Changed the location of the Automatically export design
partition after compilation option.
o Added support for HardCopy Compilation Flows.
e Added that routing can be exported in bottom-up flows.
@ Added I/O port guidelines in Creating Good Design Partitions.
e Updated limitations: SignalProbe Pins and Engineering
Change Management with the Chip Planner.
May 2006 Name changed to Quartus Il Incremental Compilation for —
v6.0.0 Hierarchical and Team-Based Design.
Updated for the Quartus Il software version 6.0.
e Added new device support information.
e Added top-down and bottom-up design flow information.
o Added incremental compilation design compiling information.
e Added recommendations for creating good floorplan location
assignments.
o Added register packing and partition boundary information.
o Added engineering management with the Chip Editor.
e Added information on how to check and save to reapply
SignalProbe.
e Added user scenarios.
December 2005 Minor typographic update. —
v5.1.1
October 2005 Updated for the Quartus Il software version 5.1. —
v5.1.0
August 2005 Added documentation on cross-partition register packing. —
v5.0.1
May 2005 Initial release. —
v5.0.0
2-108 Altera Corporation

May 2008

Z;\l |:| —E D)/A 3. Quartus Il Design Flow for

MAX+PLUS Il Users

®

Q1151002-8.0.0

Introduction

Chapter
Overview

Altera Corporation
May 2008

The feature-rich Quartus® II software helps you shorten your design
cycles and reduce time-to-market. With support for FLEX®, ACEX®, and
MAX® device families, as well as all of Altera®s newest devices, the
Quartus II software is the most widely accepted Altera design software
tool today.

This chapter describes how to convert MAX+PLUS® II designs to
Quartus II projects, as well as the similarities and differences between the
MAX+PLUS II and Quartus II design flows. This discussion includes
supported device families, graphical user interface (GUI) comparisons,
and the advantages of the Quartus II software.

There are many features in the Quartus II software to help MAX+PLUS II
users easily transition to the Quartus II software design environment.
These include a customizable Look & Feel feature, which changes the
GUI to display menus, toolbars, and utility windows as they appear in the
MAX+PLUS II software without sacrificing Quartus II software
functionality.

This chapter covers the following topics:

“Typical Design Flow” on page 3-2

“Device Support” on page 3-3

“Quartus II GUI Overview” on page 3—4

“Setting Up MAX+PLUS II Look and Feel in Quartus II” on page 3-6
“Compiler Tool” on page 3-9

“MAX+PLUS II Design Conversion” on page 3-12

“Quartus II Design Flow” on page 3-15

“Quick Menu Reference” on page 3-35

Quartus Il Handbook, Volume 1

Typical Design

Flow

Figure 3-1 shows a typical design flow with the Quartus II software.

Figure 3-1. Quartus Il Software Design Flow

Functional
Simulation

Gate-Level
Timing
Simulation

Functional
Netlist

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

(Design Files)

\4

Analysis & Elaboration

Constraints
& Settings

Constraints
& Settings

A

A

v
Integrated Analysis & Synthesis [«
\ 4
Fitter <
Timing
and Area No
Requirements
Satisfied?
Configuration/

C Program/Configure Device >

Programming
Files (.sof/.pof)

Altera Corporation

May 2008

Device Support

Device Su ppo rt The Quartus II software supports most of the devices supported in the
MAX+PLUS 1II software, but it does not support any obsolete devices or
packages. The devices supported by these two software packages are
shown in Table 3-1.

Table 3-1. Device Support Comparison
Device Supported Quartus Il MAX+PLUS Il
Arria GX™ v —
Stratix® Series v —
Cyclone® Series v —
Hardcopy® Series v —
MAX® || v —
Classic™ v
MAX 3000A v NG
MAX 7000S/AE/B v v
MAX 7000E v
MAX 9000 — v
ACEX® 1K v v
FLEX® 6000 v v
FLEX 8000 — v
FLEX 10K v (1) v
FLEX 10KA v v
FLEX 10KE v (2) v
APEX™ || v —
APEX™ 20K v —

Notes to Table 3-1:

(1) PGA packages (represented as package type G in the ordering code) are not
supported in the Quartus II software.

(2) Some packages are not supported.

Altera Corporation 3-3
May 2008

Quartus Il Handbook, Volume 1

Quartus Il GUI

Overview

3-4

The Quartus II software provides the following utility windows to assist
in the development of your designs:

Project Navigator
Node Finder

Tcl Console
Messages

Status

Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides additional information
such as logic cell, register, and memory bit resource utilization. The Files
and Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tecl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. You can use the Tcl Console window to enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS II software.

For more information on using Tcl with the Quartus II software, refer to
the Tcl Scripting chapter in volume 2 of the Quartus IT Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS 1II software, providing detailed information, warnings, and
error messages.You also can use it to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Quartus Il GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and elapsed time are shown for each stage of

the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Planner.

For more information about the Engineering Change Manager and the

Chip Editor, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus Il Handbook.

Figure 3-2 shows a typical Quartus II software display.

Figure 3-2. Quartus Il Look and Feel

:faltera/chiptrip/chiptrip - chiptrip

Fle Edit View Project Assignments Processing Tools Window Help

3 ox 1\? ||:mptrip

SR s@OB(0 >R E © B A

IGE=TEIERT

abd
3 auto_max 1

3 5
iL speed_ch2

el =zl I T2 chiptrip.baf | @ Compisiion Repot - Faw Summary |
ity [

iy Cysione || EPICEF25ECE 7 chiptrip.bdf

22 chene

I 100>

at -altera - -

5
3
4
o 3E0 time_crt:d 8
8
5
5

get ticketl-

Bl 32 tick_cnt:10
&5 Soounteourter a
2 tBeountsub F
1
(<) 3
&yHierarchy | B Files | ¢ Design Units
x| ¢
[Modde Pogesn [T d []|
Full Compilation
Analysis & Synthesis =
Farttion Merge 5
Fiter
e |
- Timing Analyzer @
- Dasign Assistart ~
w 0000
EDA Netlist Wrier 000006 ~ [Ern

at_altera

E tick ent
- get ticket1 =

s get ticket2 - - -

uartus Il
Information

@ Documentation

% Info: Quarius | Design Assistant was successful. 0 eors. 2 wamings
Info:
Info: Running Guartus 1| EDA Netiist Writer

Info: Command: quartus_sda ~read_settings_files=off -wiite_ssttings_filss=off chiptrip < chiptrip
Info: Generated file chiptrp.vo in folder "C:/attera/chiptrip/smulation/modelsim/” for EDA simulatior
Info: Quartus Il EDA Netlist Witer was successful. 0 emors, Dw:

& Info: Quartus Il Full Compilation was successful. 0 emors, 2

=

L e

Quartus IT Tcl Console
B

v
¢ | > =
2 [\ System), Processing £_Edialrio i Info J Warring J_Cilieal wiaming _Jy Enr f,_Suppressed | 2
5 [Message: 0 287 2| ¥ [recsion =] locae |3
Far Help, press F1 Hhel o | Idie [um | A
Altera Corporation 3-5

May 2008

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Quartus Il Handbook, Volume 1

Setting Up
MAX+PLUS I
Look and Feel in
Quartus Il

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box on the Tools menu.

s Any changes to the look and feel do not become effective until
you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu (Figure 3-21 on page 3-35) appears on the
left side of the menu bar. You can turn the Quartus II and MAX+PLUS II
quick menus on or off. You also can change the preferred positions of the
two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box is
shown.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

Altera Corporation
May 2008

MAX+PLUS Il Look and Feel

MAX+PLUS Il The MAX+PLUS II look and feel in the Quartus II software closely
resembles the MAX+PLUS II software. Figures 3-3 and 3—4 compare the
Look and Feel MAX+PLUS II software appearance with the Quartus Il MAX+PLUS II

look and feel.

Figure 3-3. MAX+PLUS Il Software GUI

MAX+plus Il - c:\altera\chiptrip\chiptrip
MAX+plusII File Processng Interfaces Assign Options Window Help

Dz =an o earnbepds @2 g
2 Hierarchy Display - | (x|
chiptripf g —@—time_ hiptrip.gdf - Graphic Editor
gdf
Ebd Eed Ebd bl Ebd
rpt log hst scf fit

{EH Bbd hbd Ebd
sym acf pin jan

SFEED_ToO_FAST|

: at altera
AT_ALTERA|

: get ticket?
GET_TICKET—

time_cnt
enable —JennBLE TIMEL7. . @

= Compiler

T Database Logic
Netlist Builde Synthesizer Partitioner
Extractor

Messages - Compiler
Info: State 'altera’ in state machine '|auto_max:1|street_map' is never exited
Info: Design Doctor has given the project a clean bill of health based on the EPLD Rules set

4 Message p| 0 of 2 I” Locate in Floorplan Editor Help on Message
Dof0 Loeste A

Altera Corporation 3-7
May 2008

Quartus Il Handbook, Volume 1

Figure 3—4. Quartus Il Software with MAX+PLUS Il Look and Feel

Quartus Il - C:/altera/ch

Fle Edit View Project Assignments Processing Tools Window Help

[DwE|= v me oo R[mme e8RS T[Tk 8 B[4
8 chiptip b | B Compiler Tool |
Project Navigator

Enty Logic Cells [LC
_Cyc\nneIIEPZCEFZEECS 5% Y . o % 5% Y . o % Y . o % 5% Y ry 5y 5y ry 5y 5y 5y ry 5y
-3 chiptnp Gad] ML
bbd auto_maxc1 uE

b 2 @
B spesd_chZ 404

Ehd w

< |

yHierarchy | Bl Files | 87 Design Units

3 Compiler Tool

at_altera
qget_ticket1

— Analysic & Synthesis
00:00:00

—— Partiion Merge-
00:00:00

Fitter
00:00:00

00000

— Timing Analyzer—

—— Design Assistant—
o

L0000 L00 3
wlolalall) alel e mlsm e else | wvelel sEelele

Full Compilation
100 %
00:00:00

T stop

Smart recompiation skipped module Ardlysis & Synthesis because 1 is not required
Smatt recompilation skipped module Partition Merge because it is ot required
Smart recompilation skipped module Fitter because f is not required

Smart recompilation skipped module Assembler because i is not required

Smatt recompilation skipped module Timing Anafyzer because t is ot required
Smart recompilation skipped module Design Assistant because t is not required
Smart recompilation siipped madule EDA Netist Writer because i is net required
<& Info: Quartus Il Full Compilation was successful. 0 emors, 0 wamings

System) Processing f_Extalrio J\ Info J, Waming Jy_Cilicsl Warming _Jy_ Evor i Suppessed |
2| ® [Cecaton

uartus Il
Informatien

=l Locate _
[G*E Idle

|Message: 0af &

For Help, pressF1

The standard MAX+PLUS II toolbar is also available in the Quartus II
software with the MAX+PLUS II look and feel in the Quartus II software
(Figure 3-5).

Figure 3-5. Standard MAX+PLUS Il Toolbar

NEE&E | RLARES2DL IEE Baa

3-8 Altera Corporation

May 2008

Compiler Tool

cOmp| ler Tool The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style
interface. You can edit the settings and view result files for the following
modules:

Analysis and Synthesis
Partition Merge

Fitter

Assembler

Timing Analyzer

EDA Netlist Writer
Design Assistant

Each of these modules is described later in this section.

To start a compilation using the Compiler Tool, click Compiler Tool from
either the MAX+PLUS II menu or the Tools menu and click Start in the
Compiler Tool. The Compiler Tool, shown in Figure 3-6, displays all
modules, including optional modules such as Partition Merge,
Assembler, EDA Netlist Writer, and the Design Assistant.

«o For information about using the Quartus II software modules at the
command line, refer to the Command-Line Scripting chapter in volume 2
of the Quartus II Handbook.

Figure 3-6. Running a Full Compilation with the Compiler Tool

s Compiler Tool

Analpsiz & Synthesis Partition kerge Fitter Agzembler Timing Analyzer Design Assistant E D Metlizt wiriter
00:00:34 00:00:06 00:00:42 00:00:09 00:00:05 00:00:04 00:00:05
wlol@lal alel 8wl wslelel wlelel wsslel griele

Full Compilation
100 %
00:01:45

= Start @ Report

Altera Corporation 3-9
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Quartus Il Handbook, Volume 1

Analysis and Synthesis

The Quartus II Analysis and Synthesis module analyzes your design,
builds the design database, optimizes the design for the targeted
architecture, and maps the technology to the design logic.

In MAX+PLUS II software, these functions are performed by the
Compiler Netlist Extractor, Database Builder, and Logic Synthesizer.
There is no module in the Quartus II software similar to the
MAX+PLUS II Partitioner module.

Partition Merge

The optional Quartus II Partition Merge module merges the partitions to
create a flattened netlist for further stages of the Quartus II compilation
flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner. This tool is available only if you turn on incremental
compilation. You can turn on incremental compilation by performing the
following steps:

1. On the Assignment menu, click Settings. The Settings dialog box
appears.

2. Inthe Category list, click the + icon to expand Compilation Process
Settings, and select Incremental Compilation. The Full
Incremental Compilation page appears.

3. Under Incremental compilation, turn on Incremental Compilation.

Fitter

The Quartus II Fitter module uses the PowerFit™ fitter to fit your design
into the available resources of the targeted device. The Fitter places and
routes the design. The Fitter module is similar to the Fitter stage of the
MAX+PLUS 1II software.

3-10 Altera Corporation
May 2008

Compiler Tool

Altera Corporation
May 2008

Assembler

The optional Quartus II Assembler module creates a device
programming image of your design so that you can configure your
device. You can select from the following types of programming images:

Programmer Object File (.pof)

SRAM Output File (.sof)

Hexadecimal (Intel-Format) Output File (.hexout)
Tabular Text File (.ttf)

Raw Binary File (.rbf)

Jam™ STAPL Byte Code 2.0 File (.jbc)

JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off
Run assembler in the Compilation Process Settings page in the Settings
dialog box. You also can turn off the Assembler by right-clicking in the
Compiler Tool window. The Assembler module is similar to the
Assembler stage of the MAX+PLUS II software.

Timing Analyzer

The Quartus II Timing Analyzer allows you to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer. The Quartus II Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains, and also reports
both fyjax and slack. Slack is the margin by which the timing requirement
is met or is not met. For more information on the Timing Analyzer, refer
to “Timing Analysis” on page 3-27.

EDA Netlist Writer

The optional Quartus Il EDA Netlist Writer module generates a netlist for
simulation with an EDA simulation tool. The EDA Netlist Writer module
is comparable to the VHDL and Verilog Netlist Writer in the
MAX+PLUS II software.

Design Assistant

The optional Quartus II Design Assistant module checks the reliability of
your design based on a set of design rules. The Design Assistant analyzes
and generates messages for a design targeting any Altera device and is
especially useful for checking the reliability of a design to be converted to
HardCopy series devices. The Design Assistant is similar to the Design
Doctor in the MAX+PLUS II software.

3-11

Quartus Il Handbook, Volume 1

MAX+PLUS I
Design
Conversion

3-12

In the Quartus II software, you can reduce subsequent compilation time
significantly by turning Use Smart compilation on before compiling your
design. The Smart Compilation feature skips any compilation stages
which are not required and which may use more disk space. This
Quartus II smart compilation option is similar to the MAX+PLUS II
Smart Recompile command. To turn the Use Smart compilation option
on, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Compilation Process Settings. The
Compilation Process Settings page appears.

3. Turn on Use Smart compilation.

With the Quartus II software, you can open MAX+PLUS II designs and
convert MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design
(HDL input, simulation vectors, assignments, and other relevant files) are
associated with a project file. For more information about creating a new
project, refer to “Creating a New Project” on page 3-16.

Converting an Existing MAX+PLUS Il Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Convert MAX+PLUS II Project command
in the Quartus II software or the Open Project command. You can find
these commands on the File menu

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file (Figure 3-7) and click Open. The Convert MAX+PLUS II
Project command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the .qsf file, which is equivalent to the
Assignments and Configuration File in the MAX+PLUS II software.

You also can open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the
Assignments and Configuration File or the top-level design file. Click
Open to display the Convert MAX+PLUS II Project dialog box.

Altera Corporation
May 2008

MAX+PLUS Il Design Conversion

Altera Corporation
May 2008

=" TheQuartus I software can import all MAX+PLUS Il-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Figure 3-7. Convert MAX+PLUS Il Project Dialog Box

Convert MAX+PLUS Il Project 53

Allows pou to convert existing MAX+PLUS | projects and assignments into a
new Quartus || project.

Max+PLUS 1l file name:
|EI:.-"tools.-"maxplus2.-"max2w0rk.-"c:hiptrip.-"c:hiptrip.ac:f

Quartusz || project name:

(] 8 | Cancel |

The conversion process performs the following actions:

B Converts the MAX+PLUS II Assignments and Configuration File
into a .qsf file (equivalent to importing all MAX+PLUS II
assignments)

B Creates a .qpf file
B Displays all errors and warnings in the Quartus II message window

I = The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS Il Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your
MAX+PLUS II Graphic Design File into a Quartus II Block Design File
using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
The Save As dialog box is shown.

2. Inthe Save as type list, select Block Diagram/Schematic File
(*.bdf).

3-13

Quartus Il Handbook, Volume 1

3. Run the quartus_g2b.exe command line executable located in the
\<Quartus II installation>\bin directory. For example, to convert the
chiptrip.gdf file to a Block Design File, type the following command
at a command prompt:

quartus_g2b.exe chip trip.gdf ¢

Importing MAX+PLUS Il Assignments

You can import MAX+PLUS II assignments into an existing Quartus II
project. Open the project, and on the Assignments menu, click Import
Assignments. Browse to the Assignments and Configuration File
(Figure 3-8). You can also import .qsf files and Entity Setting Files (.esf).

Figure 3-8. Import Assignments Dialog Box

Import Assignments @

Specify the source and categories of azsignments to import. Click LogicLock Import File Assignments
to zelect LogicLock Import File[z].

Categories. ..
& File name: |EI:.-"t00Is.-"maxplus2.-"max2w0rk.-"c:hiptrin.-"c:hiptrip.ac:f
" Use LogicLock Import File Assignments 4

Aszsignment source

[v Copy existing assignments into chiptrip.gsf.bak before importing

(] 8 | Cancel

The Quartus II software accepts most MAX+PLUS II assignments.
However, some assignments can be imported incorrectly from the
MAX+ PLUS II software into the Quartus II software due to differences in
node naming conventions and the advanced Quartus II integrated
synthesis algorithms.

The differing node naming conventions in the Quartus II and
MAX+PLUS II software can cause improper mapping when importing
your design from MAX+PLUS II software into the Quartus II software.
Improper node names can interfere with the design logic if you are
unaware of these node name differences and do not take appropriate

3-14 Altera Corporation
May 2008

Quartus Il Design Flow

Quartus Il
Design Flow

Altera Corporation
May 2008

steps to prevent improper node name mapping. Table 3-2 compares the
differences between the naming conventions used by the Quartus II and
MAX+PLUS 1II software.

Table 3-2. Quartus Il and MAX+PLUS Il Node and Pin Naming Conventions

Feature Quartus Il Format MAX+PLUS Il Format
Node name auto_max:auto|qo0 |auto_max:auto|qo
Pin name dfo]l, dl1]l, dl2] do, di, d2

When you import MAX+PLUS II assignments containing node names
that use numbers, such as signal0 or signall, the Quartus II software
imports the original assignment and also creates an additional copy of the
assignment. The additional assignment has square brackets inserted
around the number, resulting in signal [0] or signal [1]. The square
bracket format is legal for signals that are part of a bus, but creates illegal
signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in
anumber and are not part of a bus, you can edit the .qsf file to remove the
square brackets from the node names after importing them.

'~ You can remove obsolete assignments in the Remove
Assignments dialog box. Open this dialog box on the
Assignments menu by clicking Remove Assignments.

The Quartus II software may not recognize valid MAX+PLUS Il node
names, or may split MAX+PLUS Il nodes into two different nodes. As a
result, any assignments made to synthesized nodes are not recognized
during compilation.

For more information about Quartus II node naming conventions, refer
to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

For an overview of the Quartus II software features and design flow,
refer to the Introduction to the Quartus I Software manual.

3-15

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Quartus Il Handbook, Volume 1

3-16

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. On the File menu, click New Project Wizard to start the New
Project Wizard. The New Project Wizard generates the .qpf file and .qsf
file for your project.

Design Entry

The Quartus II software supports the following design entry methods:

Altera HDL (AHDL) Text Design File (.tdf)
Block Diagram File

EDIF Netlist File (.edf)

Verilog Quartus Mapping Netlist File (.vqm)
VHDL (.vhd)

Verilog HDL (.v)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus IT Handbook.

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.
2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK (see Figure 3-9).

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Quartus Il Design Flow

Figure 3-9. New Dialog Box

New

X

Device Design Files l Software Files] Other Files]

AHDL File

Block Diagram/S chematic File
EDIF File

SOPC Builder Spstem

Werilog HOL File

WHOL File

Cancel

s You can create other files from the Software Files tab and Other
Files tab of the New dialog box on the File menu. For example,
the Vector Waveform File (.vwf) is located in the Other Files tab.

To analyze a netlist file created by an EDA tool, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Design Entry & Synthesis. The Design
Entry & Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the
netlist (Figure 3-10).

Altera Corporation

3-17
May 2008

Quartus Il Handbook, Volume 1

Figure 3-10. Settings Dialog Box Specifying Design Entry Tool

Settings - chiptrip

Category:
Files
User Libraries [Current Project] Specify options for processing input files created by other ED& tools.
Device
b by fjgﬂ[::;”ts Fplions Tool name: | Syrpiity =l
e Farmat: [EDIF =
Timing Analysis ™ Run this tool automatically to spnthesize the current design
Board-Lewvel
Formal Verification S s
Physical Synthesiz
= Compilation Process Settings WL [VCC
Early Timing E stimate
Incremental Compilation GND: |GND
+- Analyziz & Synthesis Settings
- Fitter Setings Library tapping File
Azzembler
Timing Analyzer File name: |synplcty.lmf J

Dresign Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalProbe Settings r
=I- Simulator Settings
Simulation Power
PowerFlay Power Analyzer Settings
Operating Conditions
Software Build Settings
HardCopy Settings

[Show information messages describing LMF mapping during compilation

£

Reset
()8 | Cancel |

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an unlimited sheet size, multiple
region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (refer to the three images in Figure 3-11). You can reduce wire
congestion around a symbol by changing the positions of the ports.

3-18 Altera Corporation
May 2008

Quartus Il Design Flow

Figure 3-11. Various Port Position for a Symbol

. ’f'///////////////////////// L P
= R

..
- time cnt Z -
E — E
s -
5 . z.
; enable time[7.. é
s A

! g clk ? .
-z 7.
. i‘///////////////////////////.l///////////////////////////

-

. ”///////////////////////////.’///////////////////////////’ .
- o
B R .

E time cnt zZ
o] “.
N Z
% e . Z.
; | enable X time[7. . ﬁ
g U Z .

A

e .
o 4
% 4
L @
Z Z
. ARSI s e IRt s r s rr e e rer el

///////////////////////////.f///////////////////////////’ .

"

enable time[7. .
clk

N B P P i

Rttty SRR
B RO SOOI

To make changes to a symbol in a Block Design File, right-click a symbol
in the Block Editor and select Properties to display the Symbol
Properties dialog box. This dialog box allows you to change the instance
name, add parameters, and specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects

(see Figure 3-12). You can determine the connections between various
blocks in the Conduit Properties dialog box by right-clicking a conduit
and clicking Properties.

Altera Corporation 3-19
May 2008

Quartus Il Handbook, Volume 1

3-20

Figure 3-12. Blocks and Pins Connected with Conduits

....................... CU D taps

10| Type
clk [IMPLIT
reset [IMPUT
sel[1..0] [INFUT
et [INPUT
d[7.0] [MPUT
<700 |OUTROT

1

....................... o fhealues
DD [. - 0| Type
AR | I | I se|[1..|:|]||NPLIT
AR | I | I h[2.0] [OUTPUT
....................... 1
[R inst®

....................... i=tate_m
SOREEE SN B 0| Type
O ck NPUT
A reset JIMNPLIT
N newt NPT
............................ =el[1..0] [QUTPUT
A next [OUTPOT
A first [OUTPUT
DUDDIIIITIIIIIIII T e

Making Assignments

The Quartus I software stores all project and design assignments in a .qsf
file, which is a collection of assignments stored as Tcl commands and
organized by the compilation stage and assignment type. The .qsf file
stores all assignments, regardless of how they are made, from the
Floorplan Editor, the Pin Planner, the Assignment Editor, with Tcl, or any
other method.

Altera Corporation
May 2008

Quartus Il Design Flow

Altera Corporation
May 2008

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to
allow you to make, change, and manage a large number of assignments
easily. With the Assignment Editor, you can list all available pin numbers
and design pin names for efficiently creating pin assignments. You also
can filter all assignments based on assignment categories and node names
for viewing and creating assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, follow these steps:

1. On the Assignments menu, click Assignment Editor. The
Assignment Editor window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of

assignments.

For more information, refer to the Assignment Editor chapter in volume 2
of the Quartus IT Handbook.

3-21

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Quartus Il Handbook, Volume 1

3-22

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
On the Assignments menu, click Timing Wizard to create global clock
and timing settings. The settings include fy;ax, setup times, hold times,
clock to output delay times, and individual absolute or derived clocks.

You also can set timing settings manually by performing the following
steps:

1. On the Assignments menu, click Settings. The Setting dialog box is
shown.

2. In the Category list, select Timing Requirements & Options. The
Timing Requirements & Options page is shown.

3. Setyour timing settings.

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards and time
groups.

[l=~ A time group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making
timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins, two registers, or a pin and a register. This
assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 3-13 shows a 4 ns tgy requirement assignment to all paths from
any node to the “d” bus in the Assignment Editor.

Altera Corporation
May 2008

Quartus Il Design Flow

Figure 3-13. Single tgy Timing Assignment Applied to All Nodes of a Bus

¥ Assignment Editor E|@|Fz|
H g Category: |,'.\|| j| @ Al ¥ Pin | (b Timing | # Logic Options |
R | [= |
= | From To Assignment Mame Value Enabled
i & d[7] tsu Requirement 4ns ‘fes
2 <<new>> <<new>> <<new>>
i
e

e® For more information, refer to the Quartus II Classic Timing Analyzer or
the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Synthesis

The Quartus I advanced integrated synthesis software fully supports the
hardware description languages, Verilog HDL, VHDL, and AHDL,
schematic entry, and also provides options to control the synthesis
process. With this synthesis support, the Quartus II software provides a
complete, easy-to-use, stand-alone solution for today's designs.

You can specify synthesis options in the Analysis & Synthesis Settings
page of the Settings dialog box. Similar to MAX+PLUS II synthesis
options, you select one of these optimization techniques: Speed, Area, or
Balanced.

To achieve higher design performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap the components in the
netlist back to Altera primitives by turning on Perform WYSIWYG
primitive resynthesis. Additionally, you can move registers across
combinational logic to balance timing without changing design
functionality by turning on Perform gate-level register retiming. Both of
these options are accessible from the Synthesis Netlist Optimizations
page under Analysis & Synthesis Settings in the Settings dialog box on
the Assignments menu.

e® For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

Altera Corporation 3-23
May 2008

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Quartus Il Handbook, Volume 1

3-24

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, on MAX+PLUS II menu, click Simulator or
on the Tools menu, click Simulator Tool. Before you perform a functional
simulation, an internal functional simulation netlist is required. Click
Generate Functional Simulation Netlist in the Simulator Tool window
(Figure 3-14), or on the Processing menu, click Generate Functional
Simulation Netlist.

[l=" Generating a functional simulation netlist creates a separate
database that improves the performance of the simulation
significantly.

Figure 3-14. Simulator Tool Dialog Box

& Simulator Tool E| @| Pz|

Simulation mode: |Functi0nal j Generate Functional Simulation Metlist |

Simulation input: |ChithiD-SCf

Simulation period

" Run simulation until all vectar stimuli are used

t* End simulation at; [200.0 ns -

Simulation options
Iv Automatically add pins to simulation output waveforms

[Check outputs |
-
r po e <

[v Owenwiite simulation input file with simulation results

™ Generate Signal Activity File: |

00:00:00

E‘_L Start | @- Open |

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the Vector
Waveform File. To display the simulation results in the simulation input
vector waveform file, which is the MAX+PLUS II behavior, turn on
Overwrite simulation input file with simulation results.

Altera Corporation
May 2008

Quartus Il Design Flow

Altera Corporation
May 2008

When using either the MAX+PLUS II or Quartus II software, you may
have to compile additional behavioral models to perform a simulation
with an EDA simulation tool. In the Quartus II software, behavioral
models for library of parameterized modules (LPM) functions and
Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf files
can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File, or .bdf) are not
compatible with EDA simulation tools. To perform a register transfer
level (RTL) functional simulation of a Block Design File using an EDA
tool, convert your schematic designs to a VHDL or Verilog HDL design
file. Open the schematic design file and on the File menu, click
Create/Update > Create HDL Design File for Current File to create an
HDL design file that corresponds to your Block Design File.

You can export a Vector Waveform File or Simulator Channel File as a
Verilog HDL or VHDL test bench file for simulation with an EDA tool.
Open your Vector Waveform File or Simulator Channel File and on the
File menu, click Export. See Figure 3-15. Select Verilog or VHDL Test
Bench File (*.vt) from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the test bench.

Figure 3-15. Export Dialog Box
Export @

Savein: | I chiptrip j I‘j‘ v

|)atom_netlists
IZhdb
I simulation

File name: |c:hiptrip.'v't

Save as type: |"v"eri|og Test Bench File (") j Cancel

Iv Add zelf-checking code to file

3-25

Quartus Il Handbook, Volume 1

3-26

Place and Route

The Quartus II PowerFit is an incremental fitter that performs
place-and-route to fit your design into the targeted device. You can
control the Fitter behavior with options in the Fitter Settings page of the
Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require significant fitter effort to achieve
an optimal fit. The Quartus II software offers several options to reduce the
time required to fit a design. You can control the effort the Quartus II
Fitter expends to achieve your timing requirements with these options:

B Optimize timing performs timing-based placement using the timing
requirements you specify for the design. You can use this option by
itself or with one or more of the options below.

B Optimize hold timing optimizes the hold times within a device to
meet timing requirements and assignments you specify. You can
select this option only if the Optimize timing option is also chosen.

B Optimize fast-corner timing instructs the Fitter, when optimizing
your design, to consider fast-corner delays, in addition to
slow-corner delays, from the fast-corner timing model (fastest
manufactured device, operating in low-temperature and
high-voltage conditions). You can select this option only if the
Optimize timing option is also chosen.

If minimizing compilation time is more important than achieving specific
timing results, you can turn these options off.

Another way to decrease the processing time and effort the Fitter expends
to fit your design is to select either Standard Fit or Fast Fit in the Fitter
Effort box of the Fitter Settings page in the Settings dialog box on the
Assignments menu. The option you select affects the Fitter behavior and
your design as described below.

B Select Standard Fit for the Fitter to use the highest effort and
preserve the performance from previous compilations.

B Select Fast Fit for up to 50% faster compilation times, although this
may reduce design performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting your timing requirements. The
Auto Fit option is available for select devices.

For more information, refer to the Area and Timing Optimization chapter
in volume 2 of the Quartus IT Handbook.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Quartus Il Design Flow

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box on the Assignments
menu.

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box on the Assignments menu. The default seed value is 1. You can
specify any non-negative integer value. Changing the value of the seed
only repositions the starting location of the Fitter, but does not affect
compilation time or the Fitter effort level. However, if your design is
difficult to fit optimally or takes a long time to fit, sometimes you can
improve results or processing time by changing the seed value.

Timing Analysis

Version 6.1 and later of the Quartus II software supports two native
timing analysis tools: TimeQuest Timing Analyzer and the Classic Timing
Analyzer. Both timing analysis tools provide more complex clocking
schemes than is possible with the MAX_PLUS II Timing Analyzer. The
TimeQuest analyzer uses the industry-standard Synopsys Design
Constraint (SDC) methodology for constraining designs and reporting
results. In general, the TimeQuest Timing Analyzer provides more
control in constraining a design as compared to the Classic Timing
Analyzer. However, the Classic Timing Analyzer incorporates a basic
graphical user interface and the timing analysis flow is similar to the flow
in the MAX_PLUS Il software. As such, the section that follows provides
amore detailed look at timing analysis using the Classic Timing Analyzer.

e For more information on choosing between the TimeQuest Timing
Analyzer or the Classic Timing Analyzer, refer to the Timing Analysis
Section in the Introduction to the Quartus II Software manual.

Launch the Classic Timing Analyzer tool on the MAX+PLUS Il menu by
clicking Classic Timing Analyzer or by selecting Classic Timing
Analyzer Tool on the Processing menu. See Figure 3-16. To start the
analysis, click Start in the Timing Analyzer Tool or on the Processing
menu, by pointing to Start, and clicking Start Timing Analyzer.

Altera Corporation 3-27
May 2008

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Quartus Il Handbook, Volume 1

Figure 3-16. Registered Performance Tab of the Timing Analyzer Tool

& Timing Analyzer Tool

Registered Performance hpd |tsu Jtca |th | Custom Delays |
Clock: |clnck j

Walue |
Fram auto_ma:1 gdf

To speed_ch:Zticket

Clock period | 3067 ns

Frequency |326.69 MHz

100 %
00:00:07

W, Start | &b Report | Murnber of paths to list (10 List Paths

The Quartus II Classic Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains. You can ignore
paths that cross clock domains by using the following options in the
Timing Requirements & Options page in the Settings dialog box on the
Assignments menu:

B Create a Cut Timing Path assignment
B Turn on Cut paths between unrelated clock domains

To view the results from the Classic Timing Analyzer Tool, click the
Report button located at the bottom of the Classic Timing Analyzer
dialog box, or to get specific information, click on any of the following
tabs at the top of the Classic Timing Analyzer window:

Registered Performance
tep

tsy

tco

ty

Custom Delays

3-28 Altera Corporation
May 2008

Quartus Il Design Flow

The Quartus II Classic Timing Analyzer reports both fy4x and slack. Slack
is the margin by which the timing requirement was met or not met. A
positive slack value, displayed in black, indicates the margin by which a
requirement was met. A negative slack value, displayed in red, indicates
the margin by which a requirement was not met.

To analyze a particular path in more detail, select a path in the Classic
Timing Analyzer Tool and click List Paths. This displays a detailed
description of the path in the System tab of the Messages window
(Figure 3-17).

Figure 3-17. Messages Window Displaying Detailed Timing Information

Messages

.

) Info: -

l,) Info: tsu for register "speed_ch: Zticket” data pin = "dir[1]", clock pin = "clock") is &.000 ns
E]-: In‘fo + Longest pin to register delay is 8 3

B 87%)
--f_\J Info: + Micro setup delay m‘dertlnatlom 0.036ns

Fanout = 'I COME MNode = autofma;f.:'l speedftnoffaﬁ"EEi
0; Fanout = 3; COMB Node ="auto_max:1lspeed_too_fast~565
0 Fanout = 2; COMB Node = "speed_ch-Zticket~74
NE&; Fanout = 1; COME MNode = ‘speed_ch:2ticket ~feeder
7, Fanout = 1; REG Mode = 'speed_ch:2ticket

Total cell delay = 2.1
Total interconnect delay

Shortest clock paih from cluck C|UCk to de:

ns; Loc = _,LK\,TRL G2; Fanout = 24; COMB Node = ‘clock ~clctr
7 ns; Loc. = LCFF_X¥32_Y17_N7; Fanout = 1; REG MNode = 'speed_ch:2ticket

Total c:eII delay = 1.456 ns
Total interconnect delay

System /i Processing A Exbialnfo A Info A Waming)\ Critical Warning A Ermor A Suppressed /

Message: 0 of 19

2| ¥ [e

«® For more information, refer to the Quartus II Classic Timing Analyzer or
the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively view and debug your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLock™ regions,
the Timing Closure Floorplan also makes the task of improving your
design performance much easier.

Altera Corporation 3-29

May 2008

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Quartus Il Handbook, Volume 1

3-30

To view the Timing Closure Floorplan, on the MAX+PLUS Il menu, click
Floorplan Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views
equivalent to the MAX+PLUS II logic array block (LAB) views. In
addition to these views, available from the View menu, you also can select
from the Interior MegaLLABs (where applicable), Interior LABs, and Field
views.

1= The Pin Planner is equivalent to the MAX+PLUS II Device view.
The Pin Planner can be launched from the Timing Closure
Floorplan Editor by selecting Package (Top or Bottom) from the
View menu or on the Assignments menu by clicking Pin
Planner.

The Interior LABs view hides cell details for logic cells, Adaptive Logic
Modules (ALM), and macrocells, and shows LAB information

(see Figure 3-18). You can display the number of cells used in each LAB
on the View menu by clicking Show Usage Numbers.

Figure 3-18. Interior LAB View of the Timing Closure Floorplan
B B B ®B ®B ®B B @B B ©
The Field view is a color-coded, high-level view of your device resources

that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature on the View menu by clicking
Show Critical Paths. You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box on the
View menu.

The View Congestion feature displays routing congestion by coloring and
shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

Altera Corporation
May 2008

Quartus Il Design Flow

Altera Corporation
May 2008

= To show lower level details in any view, right-click on a resource
and click Show Details.

For more information, refer to the Analyzing and Optimizing the Design
Floorplan chapter in volume 2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third-party software for design verification.

Quartus Il Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that
uses the compiler database to simulate the logical and timing
performance of your design (Figure 3-19). When performing timing
simulation, the simulator uses place-and-route timing information.

Figure 3-19. Quartus Il Simulator Tool

= Simulator Tool [Z”E| rz|

Simulation mode: | Tirning j |

Simulation input: |ChiD“iD sef

Simulation period

" Run simulation unti all vector stimuli are used

% End simulation at; |800.0 ns -

Simulation options
v Automatically add ping to simulation output warvefoms

[Check outputs |

v Setup and hold time violation detection

[~ Glitch detection:

v Owenarite simulation input file with simulation results

™ Generate Signal Activiy File: |

00:00:00

» Start | U} Open |

You can use Vector Table Output Files (.tbl), Vector Waveform Files,
Vector Files (.vec), or an existing Simulator Channel File as the vector
stimuli for your simulation.

3-31

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Quartus Il Handbook, Volume 1

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the report file. To view the report file,
click Report in the Simulator Tool window.

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II generated timing netlist file in
the form of a Verilog Output File (.vo) or VHDL Output File (.vho), a
Standard Delay Format Output File (.sdo), and a device-specific atom file
(or files), shown in Table 3-3.

Table 3-3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

Specify your EDA simulation tool by performing the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or on the Processing menu, by pointing to Start
and clicking Start EDA Netlist Writer. The generated netlist and SDF file
are placed into the \<project directory>\simulation\<EDA simulator tool>
directory. The device-specific atom files are located in the

\<Quartus II Install>\eda\sim_lib directory.

3-32 Altera Corporation
May 2008

Quartus Il Design Flow

Altera Corporation
May 2008

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the PowerPlay Early Power Estimation
spreadsheet available on the Altera website at www.altera.com, or with
the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power
Estimation spreadsheet by entering device resource and performance
information. The Quartus II PowerPlay Analyzer tool performs
vector-based power analysis by reading either a Signal Activity File (.saf),
generated from a Quartus II simulation, or a Verilog Value Change Dump
File (.ved) generated from a third-party simulation.

For more information about how to use the PowerPlay Power Analyzer
tool, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer, including programming, verifying,
examining, and blank checking operations. Additionally, the Quartus II
Programmer now supports the erase capability for CPLDs. To improve
usability, the Quartus II Programmer displays all programming-related
information in one window (Figure 3-20).

Click Add File or Add Device in the Programmer window to add a file or
device, respectively.

3-33

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com

Quartus Il Handbook, Volume 1

Figure 3-20. Programmer Window

Ul chiptrip.cdf

‘.:., Hardware Setup... Ho Hardware

™ Enable realtime ISP to allow backaround programming [for k&3 1 devices)

Mode: |JTAG | Progress: 0%

¥ Delete

s Add File. .

Tz Change File...
Ebsavrie. |
[Add Device...
fu |
$oon |

Programy
L — i |
FFFFFFFF

Security
Bit.

Checksum Usercode Examine

Conclusion

3-34

= Figure 3-20 shows that the Programmer Window now supports
Erase capability.

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and
programming file name information.

The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS 1II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

Altera Corporation
May 2008

Quick Menu Reference

Quick Menu

Reference

Altera Corporation

May 2008

The commands displayed in the MAX+PLUS II Quick Menu and the
Quartus II Quick Menu vary based on whichever window is active
(Figures 3-21). In the following figure, the Graphic Editor window is
active.

Figure 3-21. MAX+PLUS Il Quick Menus in MAX+PLUS Il and Quartus Il
Software

MAX+PLUS Il Quick Menu MAX+PLUS Il Quick Menu in Quartus Il Software
MAX-+PLUS IT
Hierarchy Display @C MNew Text File
;Eg Graphic Editor @ MNew Block Diagram/Schematic File
H&l Symbol Editor @ New Block Symbol File

% Text Editor w Memory Initialization File

& Waveform Editor @ New Vector Waveform File
Boarplan Editor % Project Mavigator Alt+0
g_ompile" & node Finder Alt+1
£ Smustor \lj Td Console Alt+2
& Timing Analyzer B Messages Alt+3
@B Programmer B Status Alt+4
Al essage Processor e Changes Manager Alt+5

uick Start Guide
* o @ Assignment Editor Ctrl+Shift+A

File 4 @ Pin Planner Ctrl+5hift-+N
Assign 4 @ Timing Closure Floorplan

QOptions 3 @ LogicLock Regions Window Alt+.
Help 3 6’@ Design Partitions Window Alt+D

! Compilation Report Cirl+R
@ Simulation Report Ctrl+Shift+R

Compiler Tool
£ Simulator Toal
,['9 Timing Analyzer Tool

,r?f PowerPlay Power Analyzer Tool

':é), Resource Optimization Advisor
'@@ Timing Optimization Advisor
& chip Editor

Q RTL Viewer

@ Technology Map Viewer

R State Machine Viewer

= SignalTap II Logic Analyzer

m In-System Memory Content Editor
=] Logic Analyzer Interface Editor
% Programmer

3-35

Quartus Il Handbook, Volume 1

Quartus Il
Command
Reference for
MAX+PLUS I
Users

Table 34 lists the commands in the MAX+PLUS II software and gives
their equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not
listed, then the command is the same in both tools.

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 1 of 10)

MAX+PLUS Il Software

Quartus Il Software

MAX+PLUS Il Menu

Hierarchy Display

3

View menu, Utility Windows, Project Navigator

Graphic Editor @] Block Editor
Symbol Editor Effz] Block Symbol Editor

Text Editor

Text Editor

Waveform Editor

G =]

Waveform Editor

Floorplan Editor

&
52

Assignments menu, Timing Closure Floorplan

& B <8 |2] 2] o]] [

b
Compiler [T Tools menu, Compiler Tool
Simulator [} Tools menu, Simulator Tool
Timing Analyzer L"n Tools menu, Timing Analyzer Tool

:I

Programmer

Tools menu, Programmer

Message Processor

‘13!

View menu, Utility Windows, Messages

P

)
@
=
@
S
=

File menu, Project, Name (Ctrl+J)

i

File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current
File (Ctrl+Shift+J)

EE

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or
File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K)

R =S

Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)

or

Processing menu, Start, Start Analysis &
Elaboration

File menu, Project, Save & Compile (Ctrl+L)

&

Processing menu, Start Compilation (Ctrl+L)

Altera Corporation
May 2008

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 2 of 10)

MAX+PLUS Il Software

Quartus Il Software

:ﬂ File menu, Project, Save & Simulate
=1 (Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+l)

File menu, Project, Compile & Simulate
(Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive

Project menu, Archive Project

File menu, Project, <Recent Projects>

File menu, <Recent Projects>

File menu, Delete File

NA

File menu, Retrieve

NA

File menu, Info (Ctrl+I)

File menu, File Properties

File menu, Create Default Symbol

File menu, Create/Update, Create Symbol Files for
Current File

File menu, Edit Symbol

(Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File

File menu, Create/Update, Create AHDL Include Files for
Current File

F=]| File menu, Hierarchy Project Top (Ctrl+T)

EI Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U)

Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D)

Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top

NA

File menu, Hierarchy, Project Top (Ctrl+T)

El Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager

Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size

NA

(Waveform Editor) File menu, End Time

(Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare

(Waveform Editor) View menu, Compare to
q‘.‘l Waveforms in File

(Waveform Editor) File menu, Import Vector File

File menu, Open (Ctrl+O)

Waveform Editor) File menu, Create Table File

File menu, Save As

(
(
(Hierarchy Display
(
(

Hierarchy Display) File menu, Select Hierarchy | NA

) File menu, Open Editor (Project Navigator) Double-click
Hierarchy Display) File menu, Close Editor NA

)

Hierarchy Display) File menu, Change File Type

(Project Navigator) Select file in Files tab and select
Properties on right click menu

(Hierarchy Display) File menu, Print Selected
Files

NA

Altera Corporation
May 2008

3-37

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 3 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Programmer) File menu, Select Programming
File

File menu, Open

(Programmer) File menu, Save Programming
Data As

File menu, Save

(Programmer) File menu, Inputs/Outputs

NA

(Programmer) File menu, Convert SRAM Object
Files

File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG
Programming Files

NA

(Programmer) File menu, Create Jam or SVF File

File menu, Create/Update, Create JAM, SVF, or ISC File

Message Processor) Select Messages

NA

(Messages) Save Messages on right click menu

(
(Message Processor) Save Messages As
(

Timing Analyzer) Save Analysis As

Processing menu, Compilation Report - Save Current
Report on right click menu in Timing Analyzer sections

(Simulator) Create Table File

(Waveform Editor) File menu, Save As

(Simulator) Execute Command File

NA

(Simulator) Inputs/Outputs

NA

Edit Menu

Waveform Editor) Edit menu, Overwrite

(Waveform Editor) Edit menu, Value

Waveform Editor) Edit menu, Insert

(Waveform Editor) Edit menu, Insert Waveform Interval

Waveform Editor) Edit menu, Align to Grid

NA

Waveform Editor) Edit menu, Repeat

(Waveform Editor) Edit menu, Repeat Paste

Waveform Editor) Edit menu, Grow or Shrink

Edit menu, Grow or Shrink (Ctrl+Alt+G)

(
(
(
(Ctrl+Y)
(
(
(

Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent
(F2)

(Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent
(F3)

(Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle
Connection Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal

@ (Block Editor) Edit menu, Flip Horizontal

5B [1H] [l

(Graphic Editor) Edit menu, Flip Vertical

Ii‘l (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate

El (Block Editor) Edit menu, Rotate by Degrees

3-38

Altera Corporation
May 2008

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 4 of 10)

MAX+PLUS Il Software

Quartus Il Software

View Menu

View menu, Fit in Window (Ctrl+W)

View menu, Fit in Window (Ctrl+W)

E View menu, Zoom In (Ctrl+Space)

View menu, Zoom In (Ctrl+Space)

@ View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1)

EEE

View menu, Maximum Size (Ctrl+2)

P4
>

(Hierarchy Display) View menu, Auto Fit in
Window

pzd
>

(Waveform Editor) View menu, Time Range

View menu, Zoom

Assign menu, Device

Assignments menu, Device
or
Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip

Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements

Assignments menu, Assignment Editor - Timing
category

Assign menu, Clique

Assignments menu, Assignment Editor - Cliques
category

Assign menu, Logic Options

Assignments menu, Assignment Editor - Logic
Options category

Assign menu, Probe

Assign menu, Connected Pins

Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing

Assignments menu, Assignment Editor - Local
Routing category

Assign menu, Global Project Device Options

Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters

Assignments menu, Settings - Analysis and
Synthesis - Default Parameters

Assign menu, Global Project Timing
Requirements

Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis

Assignments menu, Settings - Analysis and
Synthesis

Assign menu, Ignore Project Assignments

Assignments menu, Assignment Editor - disable

Assign menu, Clear Project Assignments

Assignments menu, Remove Assignments

Altera Corporation
May 2008

3-39

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 5 of 10)

MAX+PLUS Il Software

Quartus Il Software

Assign menu, Back-Annotate Project

Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment
Format

NA

Utilities Menu

Utilities menu, Find Text (Ctrl+F)

Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File
(Ctrl+B)

ﬂ Project menu, Locate, Locate in Design File
L

Utilities menu, Find Node in Floorplan

o

s Project menu, Locate, Locate in Timing Closure
dnn

Floorplan

Utilities menu, Find Clique in Floorplan NA

Utilities menu, Find Node Source (Ctrl+Shift+S) | NA

Utilities menu, Find Node Destination NA

(Ctrl+Shift+D)

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)
Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

Utilities menu, Search and Replace (Ctrl+R)

Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source
(Ctrl+Alt+S)

Utilities menu, Timing Analysis Destination NA
(Ctrl+Alt+D)
Utilities menu, Timing Analysis Cutoff NA
(Ctrl+Alt+C)
Utilities menu, Analyze Timing NA
Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G)

Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching
Delimiter (Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next
Transition (Right Arrow)

(Waveform Editor) View menu, Next Transition (Right
Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left
Arrow)

Options Menu

Options menu, User Libraries

Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User Libraries

g

3-40

Altera Corporation
May 2008

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 6 of 10)

MAX+PLUS Il Software

Quartus Il Software

Options menu, Color Palette

Tools menu, Options

Options menu, License Setup

Tools menu, License Setup

Options menu, Preferences

Tools menu, Options

(Hierarchy Display) Options menu, Orientation

NA

(Hierarchy Display) Options menu, Compact
Display

NA

(Hierarchy Display) Options menu, Show All
Hierarchy Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All
Hierarchy Branches

NA

(Editors) Options menu, Font

Tools menu, Options

(Editors) Options menu, Text Size

Tools menu, Options

(Graphic Editor) Options menu, Line Style

Edit menu, Line

ﬂ (Graphic Editor) Options menu,
Rubberbanding

El Tools menu, Options

(Graphic Editor) Options menu, Show Parameters

View menu, Show Parameter Assignments
ad

(Graphic Editor) Options menu, Show Probes

NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

El View menu, Show Pin and Location Assignments

I.’JE (Graphic Editor) Options menu, Show All

(Ctrl+Shift+M)

(Graphic Editor) Options menu, Show Clique, NA
Timing & Local Routing Assignments
(Graphic Editor) Options menu, Show Logic NA
Options

NA

Graphic Editor) Options menu, Show Guidelines

Tools menu, Options - Block/Symbol Editor page

(
(Ctrl+Shift+G)
(

Graphic Editor) Options menu, Guideline
Spacing

Tools menu, Options - Block/Symbol Editor page

(Symbol Editors) Options menu, Snap to Grid

Tools menu, Options - Block/Symbol Editor page

Text Editor) Options menu, Tab Stops

Tools menu, Options - Text Editor page

Tools menu, Options - Text Editor page

Text Editor) Options menu, Syntax Coloring

NA

(
(Text Editor) Options menu, Auto-Indent
(
(

Waveform Editor) Options menu, Snap to Grid

View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size

Edit menu, Grid Size - Waveform Editor page

Altera Corporation
May 2008

3-41

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 7 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Floorplan Editor) Options menu, Routing
Statistics

NA

(Floorplan Editor) Options menu, Show
Node Fan-In

eEl

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show
Node Fan-Out

"_::I View menu, Routing, Show Fan-Out

E (Floorplan Editor) Options menu, Show Path

View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved
Nodes in Gray

NA

(Simulator) Options menu, Breakpoint

Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup

NA

(Timing Analyzer) Options menu, Time
Restrictions

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, NA
Auto-Recalculate
(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off /0 Pin
Feedback

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Clear &
Reset Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read
During Write Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only NA
Longest Path
(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming
Options

Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device

(Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup

(Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click)

(Block Editor) Edit menu, Insert Symbol (Double-

El Click)

Symbol menu, Update Symbol

Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters

Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub

‘ Double-click on edge of symbol

3-42

Altera Corporation
May 2008

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 8 of 10)

MAX+PLUS Il Software

Quartus Il Software

Element menu, Enter Parameters

NA

Templates (Text Editor)

Templates

E (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click)

Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF

Edit menu, Insert Node - click on Node Finder...

Node menu, Edit Node

Double-click on the Node

Node menu, Enter Group

Edit menu, Group

Node menu, Ungroup

Edit menu, Ungroup

Node menu, Sort Names

El Edit menu, Sort

Node menu, Enter Separator

P4

A

Layout (Floorplan Editor)

Layout menu, Full Screen

View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer

View menu, Equations

Layout menu, Device View (Double-Click)

View menu, Package Top

View menu, Package Bottom

Layout menu, LAB View (Double-Click)

View menu, Interior Labs

Layout menu, Current Assignments
Floorplan

View menu, Assignments, Show User Assignments

ENSHE R

?_-_EFJ Layout menu, Last Compilation Floorplan

I_I¢I

View menu, Assignments, Show Fitter
Assignments

Processing (Compiler)

Processing menu, Design Doctor

Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings

Assignments menu, Settings - Design Assistant

RNE

Processing menu, Functional SNF Extractor

Processing menu, Generate Functional Simulation
Netlist

Processing menu, Timing SNF Extractor

Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF

P4

A

Processing menu, Linked SNF Extractor

Altera Corporation
May 2008

3-43

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 9 of 10)

MAX+PLUS Il Software

Quartus Il Software

Processing menu, Fitter Settings

Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings

EE

Assignments menu, Settings

Processing menu, Generate AHDL TDO File

P4
>

Processing menu, Smart Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name
Synonyms

Assignments menu, Settings - Compilation Process

Interfaces (Compiler)

o

Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA
Initialize menu, Initialize Memory NA
Initialize menu, Save Initialization As NA
Initialize menu, Restore Initialization NA
Initialize menu, Reset to Initial SNF Values NA
Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) | NA
Node menu, Timing Analysis Destination NA
(Ctrl+Alt+D)

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) | NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix

(Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix

NA

Analysis menu, Registered Performance

(Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain

(Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup

(Programmer) Window

JTAG menu, Save JCF

File menu, Save

JTAG menu, Restore JCF

File menu, Open

JTAG menu, Initiate Configuration from
Configuration Device

Tools menu, Options - Programmer page

3-44

Altera Corporation
May 2008

Referenced Documents

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 10 of 10)

MAX+PLUS Il Software Quartus Il Software
FLEX (Programmer)
FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window

FLEX menu, Save FCF

File menu, Save

FLEX menu, Restore FCF

File menu, Open

Referenced
Documents

Altera Corporation
May 2008

This chapter references the following documents:

Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

Command Line Scripting chapter in volume 2 of the Quartus II
Handbook

Engineering Change Management with the Chip Planner chapter in
volume 3 of the Quartus Il Handbook

Introduction to Quartus Il manual

PowerPlay Power Analysis chapter in volume 3 of the Quartus 11
Handbook

Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

Quartus 1I TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook

Tcl Scripting chapter in volume 2 of the Quartus II Handbook

3-45

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Quartus Il Handbook, Volume 1

Document

Table 3-5 show the revision history of this chapter.

Revision History

Table 3-5. Document Revision History (Part 1 of 2)

o General formatting, editing updates, and figure updates.

e FLEX® 600 device support added.

e® Assignment Editor, Timing Assignments, and Synthesis

updated.

APEX Il support for balanced optimization technique

removed, MAX |l support added.

e Minor updates to Place and Route.

@ Tcl commands no longer supported for the Quartus Il
Simulator Tool.

e Excel-based power calculator replaced by PowerPlay Early
Power Estimation spreadsheet.

@ Added support for erase capability for CPLDs.

Date and

Document Version Changes Made Summary of Changes

May 2008 Updated date and part number, added hypertext links. —

v8.0.0

October 2007 Reorganized “Referenced Documents”. Updated for the

v7.2.0 Quartus Il 7.2 software
release.

May 2007 o Added support for Arria GX in Table 3-1. Minor updates to

v7.1.0 o Added “Referenced Documents” section. support Altera’s newest
device, Arria GX.

March 2007 Consolidated the device support table (Table 1-3) to show support —

v7.0.0 for Stratix series and Cyclone series devices.

\’:‘g \1/e(r)n ber 2006 Added document revision history to chapter. _

\li/(laag ?)006 Minor updates for the Quartus Il software version 6.0. _

\I?Se::erwber 2005 Minor typographic and formatting updates. -

\?;tfger 2005 Updated for the Quartus Il software version 5.1. o

May 2005 Chapter 2 was formerly Chapter 1 in version 4.2. —

v5.0.0

Dec. 2004 Updated for Quartus Il software version 4.2. —

v2.1.0 o Chapter 1 was formerly Chapter 2.

3-46

Altera Corporation
May 2008

Document Revision History

Table 3-5. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes
June 2004 e Updates to tables, figures. —
v2.0 o New functionality for Quartus Il software 4.1.
Feb. 2004 Initial release. —
v1.0

Altera Corporation
May 2008

3-47

Quartus Il Handbook, Volume 1

3-48 Altera Corporation
May 2008

HardCopy Series Devices

4, | f
Z;\l |:| —E D)/A Quartus Il Support for

®

QI151004-8.0.0

Introduction

HardCopy Series

Device Support

Altera Corporation
May 2008

This chapter includes Quartus® Il Support for HardCopy® Series devices
including legacy HardCopy Stratix® series devices. This chapter is
divided into the following sections:

B “HardCopy Series Device Support”
B “Legacy HardCopy Device Support” on page 443

Altera® HardCopy ASICs are the lowest risk, lowest total cost ASICs. The
HardCopy system development methodology offers fast time-to-market,
low risk, and using the Quartus II software, you can design with one set
of RTL code and one IP set for both FPGA and ASIC implementations.
This flow enables you to conduct true hardware/software co-design and
completely prepare your system for production prior to ASIC design
hand-off. Altera provides a turn-key process to convert your design to a
HardCopy ASIC for production.

In this chapter, the term FPGA refers to a Stratix® II or Stratix III device
which is a prototype for a HardCopy II or a HardCopy III device.

For legacy HardCopy Stratix devices, refer to “Legacy HardCopy Device
Support” on page 4-43.

This chapter discusses the following topics:

“HardCopy Development Flow” on page 4-3

“HardCopy Device Resource Guide” on page 4-9

“HardCopy Companion Device Selection” on page 4-11

“HardCopy Recommended Settings in the Quartus II Software” on

page 4-13

“HardCopy Utilities Menu” on page 4-21

“HardCopy Design Readiness Check” on page 4-29

“Performing ECOs with Quartus II Engineering Change

Management with the Chip Planner” on page 4-36

B “Formal Verification of FPGA and HardCopy Revisions” on
page 4—40

B “Legacy HardCopy Device Support” on page 4-43

For more information about the HardCopy series devices, refer to the
respective device data sheets in Volume 1 of the HardCopy Series
Handbook on the Altera website at www.altera.com.

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com

Quartus Il Handbook, Volume 1

4-2

HardCopy Series Design Benefits

Designing with HardCopy ASICs offers substantial benefits over other
ASIC offerings:

B Seamless prototyping using an FPGA for at-speed system
verification and system development reduces total project
development time

B Dependable conversion from an FPGA prototype to a HardCopy
ASIC expands product planning options

B Unified design methodology for FPGA design and HardCopy design
reduces the need for ASIC development software, two sets of
intellectual property, and project risk

B System development methodology delivers lowest total cost

Quartus Il Features for HardCopy Planning

With the Quartus II software, you can design a HardCopy ASIC using
seamless FPGA prototyping. The Quartus II software provides the
following expanded features for HardCopy series device planning:

B HardCopy Companion Device Assignment—Identifies compatible
HardCopy series devices for prototyping with the FPGA device
currently selected.

[=" This feature constrains the pins of your FPGA prototype,
making it compatible with your HardCopy device. It also
constrains the correct resources available for the HardCopy
device, ensuring the compatibility of your FPGA design. In
addition, you are required to compile the design targeting
the HardCopy device to ensure that the design fits, routes,
and meets timing requirements.

& Beginning in Quartus II software version 8.0, you can select
HardCopy III as the companion device, but you cannot
compile the HardCopy III device. This ensures that the
FPGA is compatible with the HardCopy III device in the
areas of pins, I/O standards, logic, and other resources.
Compilation for the HardCopy III family will be supported
in a later release of the Quartus II software.

Altera Corporation
May 2008

HardCopy Development Flow

HardCopy
Development
Flow

Altera Corporation
May 2008

B HardCopy Utilities—The HardCopy Utilities menu provides a
variety of functions to create or overwrite HardCopy companion
revisions, change revisions to use, and compare revisions for
equivalency.

B HardCopy Advisor—The HardCopy Advisor helps you follow the
necessary steps to successfully submita HardCopy design to Altera’s
HardCopy Design Center.

Il=" The HardCopy Advisor is similar to other advisors in the
Quartus II software. The HardCopy Advisor provides
guidelines you can follow during development, reporting
completed and uncompleted tasks during development.

B HardCopy Floorplan—The Quartus II software can show a
preliminary floorplan view of your HardCopy design’s Fitter
placement results.

B HardCopy Device Preliminary Timing—The Quartus II software
performs a timing analysis of HardCopy devices based on
preliminary timing models and Fitter placements. Final timing
results for HardCopy devices are provided by Altera’s HardCopy
Design Center.

B HardCopy Design Readiness Check—The Quartus II software tool
checks the project settings to ensure compliance with the HardCopy
device settings, I/O, PLL, and RAM usage checks.

B HardCopy Handoff Report-—The Quartus II software generates a
handoff report containing information about the HardCopy design
used by Altera’s HardCopy Design Center in the design review
process.

B HardCopy Design Archiving—The Quartus Il software archives the
HardCopy design project’s files needed to hand off the design to
Altera’s HardCopy Design Center.

B Formal Verification—Cadence Encounter Conformal software
performs formal verification between the source RTL design files and
post-compile gate level netlist from a HardCopy design.

In the Quartus II software, you design your FPGA and HardCopy
companion device together in one Quartus II project using one of the
following methods:

B Design the FPGA first and create a HardCopy companion device
second

B Design the HardCopy device first, create the FPGA companion
device second, and then build your prototype for in-system
verification

4-3

Quartus Il Handbook, Volume 1

Both of these flows are illustrated at a high level in Figure 4-1. The added
features in the HardCopy Ultilities menu help you complete your

HardCopy design for submission to Altera’s HardCopy Design Center
for back-end implementation.

Figure 4-1. HardCopy Flow in Quartus Il Software

Prepare Design HDL

Design FPGA First

Select FPGA Device
& HardCopy
Companion Device

v

Complete FPGA
Device First Flow (7)

Design FPGA Second

Select HardCopy
Device & FPGA
Companion Device

v

Complete HardCopy
Device First Flow (2)

Design
FPGA
First?

In-System Verification
of FPGA Design -

v

Compare FPGA
& HardCopy
Design Revisions

v

Generate the HardCopy
Handoff Files and
Archive the Design

Handoff Design Archive for
HardCopy ASIC Back-End

Notes for Figure 4-1:
(1) Refer to Figure 4-2 on page 4-5 for an expanded description of this process.
(2) Refer to Figure 4-3 on page 4-7 for an expanded description of this process.

= The FPGA first flow is the default flow and the rest of this
chapter is based on this flow.

4-4

Altera Corporation
May 2008

HardCopy Development Flow

Altera Corporation
May 2008

Designing the FPGA First

The HardCopy development flow, with the FPGA first flow begins with
seamless FPGA prototyping, is identical to the traditional FPGA design
flow, with a few additional tasks to be performed to convert the design to
the HardCopy companion device within the same project. To design your
HardCopy device when selecting the FPGA companion device first,
complete the following tasks:

Specify an FPGA device and a HardCopy companion device
Compile the FPGA design

Create and compile the HardCopy companion revision
Compare the HardCopy companion revision compilation to the
FPGA device compilation

Figure 4-2 provides an overview highlighting the development process
for designing with an FPGA first and creating a HardCopy companion
device second.

4-5

Quartus Il Handbook, Volume 1

Figure 4-2. Designing FPGA Device First Flow

FPGA Prototype Device Development Phase

C Prepare FPGA Design)

]

I Select HardCopy Companion Device l

v

I Review HardCopy Advisor l

v

I Apply Design Constraints l

In-System Verification <

Compile FPGA Design

Any
Violations?

f

Create or Overwrite HardCopy
Companion Revision

Fix Violations

HardCopy Companion Device Deyelopment Phase

Compile HardCopy Companion Revision

Fits in
HardCopy Device?

Select a Larger
HardCopy Companion
Device

Compare FPGA & HardCopy Revisions

Any
Violations?

No

Design Submission & Back-End Implementation Phase

A
I Generate Handoff Report l

v

C Archive Project for Handoff)

4-6

Altera Corporation
May 2008

HardCopy Development Flow

Altera Corporation
May 2008

You must select a target FPGA device and a companion HardCopy device
when compiling an FPGA design that you will migrate over to a
HardCopy device.

During the early stages of the design, picking the right HardCopy device
can be a problem. In such cases, the HardCopy Device Resource Guide

should help. After you have selected an FPGA and a HardCopy Device,
compile the FPGA and review the HardCopy Device Resource Guide to
see if all resources are available in the targeted HardCopy device. If there
are not enough resources available in the target HardCopy device, you

must select a larger HardCopy device and restart the FPGA compilation.

Once the FPGA and the HardCopy devices have been finalized perform
the following tasks:

B Review the HardCopy Advisor for required and recommended tasks
to perform

Enable Design Assistant to run during compilation

Add timing and location assignments

Compile your FPGA design

Create your HardCopy companion revision

Compile your design for the HardCopy companion device
Compare the HardCopy companion device compilation with the
FPGA revision

Generate a HardCopy Handoff Report

Generate a HardCopy Handoff Archive

Arrange for submission of your HardCopy Handoff Archive to
Altera’s HardCopy Design Center for back-end implementation

For more information about the overall design flow using the Quartus II
software, refer to the Introduction to the Quartus II Software manual on the
Altera website at www.altera.com.

Designing the HardCopy Device First

After you have selected an initial HardCopy ASIC device, you can design
your HardCopy device first and create your FPGA prototype second in
the Quartus Il software. This approach is best when using the HardCopy
ASIC to achieve higher performance than the FPGA prototype, because
you can see your potential maximum performance in the HardCopy
device immediately during development, and you can create a slower
performing FPGA prototype of the design for in-system verification. This
design process is similar to the HardCopy design flow where you build
the FPGA first, but instead, you merely change the starting device family.
The remaining tasks to complete your design for both the FPGA and
HardCopy devices roughly follow the same process (Figure 4-3). The

4-7

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com

Quartus Il Handbook, Volume 1

HardCopy Advisor adjusts its list of tasks based on which device family
you start with, FPGA or HardCopy, to help you complete the process
seamlessly.

Figure 4-3. Designing HardCopy Device First Flow

HardCopy Device Development Phase

(Prepare HardCopy Design >

v

| Select FPGA Companion Device |

v

| Review HardCopy Advisor |

v

| Apply Design Constraints |

| Compile HardCopy Design |47

Any

Violations? Fix Violations |

A

Create or Overwrite FPGA
Companion Revision

FPGA Companion Device Development Phase

\ 4
In-System Verification iq—‘ Compile FPGA Companion Revision |

v

| Compare HardCopy & FPGA Revisions |

Any
Violations?

Yes

Design Submission & Back-End Implementation Phase

| Generate Handoff Report |

v

(Archive HardCopy Archive for Handoff)

4-8 Altera Corporation
May 2008

HardCopy Device Resource Guide

Hard cOpv The HardCopy Device Resource Guide compares the resources required
. to successfully compile a design with the resources available in the
Device Resource various HardCopy devices. The report rates each HardCopy device and

G u i d e each device resource on how well it fits the design. The Quartus II
software generates the HardCopy Device Resource Guide for all designs
successfully compiled for FPGA devices. This guide is found in the Fitter
folder of the Compilation Report. Figure 4-4 shows an example of the
HardCopy Device Resource Guide. Refer to Table 4-1 for an explanation
of the color codes in Figure 4-4.

Figure 4-4. HardCopy Device Resource Guide

HardCopy II Device Resource Guide

Color Legend: ~
- Green:
-- Package Resource: The HardCopy || package can be migrated from the Stratix || FPGA selected package. and the design has been fitted with the
target device migration enabled.

w
Resource Stratix ||
EFP25130
1 igration Compatibility
2_ Prirany Migration Constraint Package Package Package Package Package Package Package
3| Package FBGA -1020 |FEGA - 484 |FEGA - 484 |FBGA -E72 |FBGA - 780 FBGA - 1020 |FBGA - 1508
4 | = Laogic - 19% 19% 10% 10% B% 4% 4%
5 - Logic cells IERTZALUT:
B_ -- D5P elements 0
7 | E Fins
E - Total 515 51574302 |515/335 |515/433 (5157435 |515/693 5157743 515 /352
ER - Differential [nput 1] 0766 0470 0730 07130 0/128 04224 07272
10| - Differential Output 1] 0744 07580 0770 0770 o/112 04200 0/ 256
| - PCI/ PCl 1] 074153 04167 07245 07247 0/359 04367 07472
12] - D0 a 0720 0720 0750 0750 07204 04204 07204
13 - D0RS a 0/8 0/8 0/18 0/18 0/72 0472 0/72
14| = Memony
E - M-RakM g B0 /0 /2 B/2 /6 643 E/3
16| - M4K blocks & M512 blocks™ |44
17| E PLLs
18| - Enhanced 2 242 242 272 272 274 244 274
19| - Fast a 0:/2 0/2 /2 /2 0/4 08 /8
20| DLLs a 041 041 041 041 0/2 042 0/2
21| = SERDES
22 - R a 0417 0/21 0/3 0/3 0748 0492 0/116
E - T 0 0418 04139 0729 07423 0744 0488 04116
E [= Configuration
3| - CRC 1] 0s0 0s0 0/0 o/0 o/0 040 o/0
25| - ASMI 1] 00 0/0 0/0 o/0 o/0 040 o/0
27| - Remote Update a 0/0 /0 0/0 a/0 /0 040 /0
28| - JTAG a 041 041 041 041 0/ 041 0/

* Device iz prefiminary. Overall perfarmance is expected to be degraded.
** Design containg one or more M512 blocks, which cannot be migrated to HardCopy |l devices.

Altera Corporation 4-9
May 2008

Quartus Il Handbook, Volume 1

Use this report to determine

which HardCopy device is a potential

candidate for your design. The HardCopy device package must be
compatible with the FPGA device package. A logic resource usage greater
than 100% or a ratio greater than 1/1 in any category indicates that the
design probably will not fit in that particular HardCopy device.

Table 4-1. HardCopy Device Resource Guide Color Legend
Color Package Resource (7) Device Resources
The design can map to the HardCopy package | The resource quantity is within the range of the
and the design has been fitted with target device | HardCopy device and the design can likely map
Green migr-ation.enabled in the HardCopy Companion | if all other resources also fit.
. Device dialog box.

(High) You are still required to compile the HardCopy
revision to make sure the design is able to route
and has all the other resources.

The design can map to the HardCopy package. | The resource quantity is within the range of the
However, the design has not been fitted with the | HardCopy device. However, the resource is at
target device migration enabled in the HardCopy | risk of exceeding the range for the HardCopy
Companion Device dialog box. package.
. If your target HardCopy device falls in this
(Medium) category, compile your design targeting the
HardCopy device as soon as possible to check if
the design fits and is able to route and migrate all
other resources. You may need to select a larger
device.
R The design cannot map to the HardCopy The resource quantity exceeds the range of the
ed ; ; :
package. HardCopy device. The design cannot migrate to
(None) this HardCopy device.

Note to Table 4-1:

()

The package resource is constrained by the FPGA for which the design was compiled. Only vertical migration

devices within the same package are able to migrate to HardCopy devices.

4-10

The HardCopy architecture consists of an array of fine-grained HCells,

which are used to build logic

equivalent to FPGA adaptive logic modules

(ALMs) and digital signal processing (DSP) blocks. The DSP blocks in
HardCopy devices match the functionality of the FPGA DSP blocks,
though timing of these blocks is different than the FPGA DSP blocks
because they are constructed of HCell Macros. The memory blocks in
HardCopy devices are equivalent to the FPGA memory blocks.
Preliminary timing reports of the HardCopy device are available in the
Quartus II software. Final timing results of the HardCopy device are
provided by Altera’s HardCopy Design Center after the HardCopy

back-end is complete.

Altera Corporation
May 2008

HardCopy Companion Device Selection

«® For more information about the HardCopy device resources, refer to the
Introduction to HardCopy Devices and the Description, Architecture and
Features chapters in the HardCopy Device Family Data Sheet in Volume 1 of
the HardCopy Series Handbook.

The report example in Figure 44 shows the resource comparisons for a
design compiled for an EP2S130F1020 device. Based on the report, the
HC230F1020 device in the 1,020-pin FineLine BGA package is an
appropriate HardCopy device. If the HC230F1020 device is not specified
as a migration target during the compilation, its package and migration
compatibility is rated orange, or Medium. The migration compatibilities
of the other HardCopy devices are rated red, or None, because the
package types are incompatible with the FPGA device. The 1,020-pin
FBGA HC240 device is rated red because it is only compatible with the
EP25180F1020 device.

Figure 4-5 shows the report after the (unchanged) design was recompiled
with the HardCopy HC230F1020 device specified as a migration target.
Now the HC230F1020 device package and migration compatibility is
rated green, or High.

Figure 4-5. HardCopy Device Resource Guide with Target Migration Enabled

HardCopy II Device Resource Guide

Color Legend:
- Greer:
-- Package Resource: The HardCopy || package can be migrated from the Stratiz || FPGA selected package, and the design has been fitted with the
target device migration enabled.

Resource Stratix [l
EFP25130

Migration Compatibility [High

-

2 | Primary Migration Canstraint Package |Package | Package Package Package

3| Package FBGA- 1020 |FBGA - 484 |FEGA-484 |FBGA-672 |FBGA - 780 |FBGA - 1020 |FBGA - 1020 |FEGA - 1508

Hard cOpv In the Quartus II software, you can select a HardCopy companion device

C . to ensure compatibility between the FPGA design and the HardCopy
ompanion device’s resources. To make your HardCopy companion device selection,

Device Selection on the Assignments menu, click Device (Figure 4-6) and select your
companion device from the Companion device list.

Selecting a HardCopy companion device for your FPGA prototype
constrains the memory blocks, DSP blocks, and pin assignments, so that
your design will fit into the HardCopy device resources. Pin assignments
are constrained in the FPGA design revision, so that the HardCopy device
selected is pin-compatible. The Quartus II software also constrains the
FPGA design revision so that identical device resources are targeted in
both the FPGA and the HardCopy ASIC.

Altera Corporation 4-11
May 2008

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf

Quartus Il Handbook, Volume 1

Figure 4-6. Quartus Il Settings Dialog Box

Settings - demo_design Ig
Categony:
- Files -
- Libraries Select the family and device you want to target for compilstion
- Device
=1+ Operating Settings and Conditions - Device Family - ~ Show in ‘vailable devices' fist-
- Wolage . :
Tt Farnily: |Stratis I =] | | Package [any -

(= Compilation Process Settings

- Fin count: Ary -
-~ Early Timing Estimate = x 1 _]
Incremental Compilation E ' | Speedgrade: |Any >
|- ED, Tool Settings 1~ Target device- 1

I Shaw advanced devices

=1+ Analysis & Synthesis Settings " Auta device selected by the Fitter e
- WHDL Input &5 : 5
i F * Specific device selected in 'Available devices' ist
+Werilog HOL Input) N
- Diefaulk Parameters € Other nfa | Device and Fin Options. . |
Sypnthesis Metlist Optimizations
(=1 Fitter Settings Available devices:
 Physical Syrthesis O ptimizations Wame: [Corev.. [ALUTs [Userls. [Memer.. [DSP__ | PLL
El- Timing Analsis Seltings EP3SETI0F1152C2 T ss00 744 B23320 112 8
-+ Timeluest Timing Analyzer EP3SET10F1152C3 1.1y B5200 744 8248320 112 8
#- Clagsic Timing Analyzer Settings E 110F11 L 112 g
Assembler EP3SET10F1152C4L 09 or. 85200 744 8248320 112 [

@

|- Design Assistant
SignalT ap Il Logic Analyzer
- Logic Analyzer Interface ¢ s
[+ Simulator Settings = —
- PowerPlap Power Analyzer Settings

[+

Migration compatibility - - Companion device -
tigration Devices... HardCopy : jHEESZFFHE2 [Advanced) j
2 migration devices selected ¥ Limit DSP & BAM to HardCopy device resources

Cancel

You can also specify your HardCopy companion device using the
following tool command language (Tcl) command:

set_global assignment -name\
DEVICE_TECHNOLOGY MIGRATION_LIST <HardCopy Device Part Number>

For example, to select the HC230F1020 device as your HardCopy
companion device for the EP25130F1020C4 FPGA, the Tcl command is:

set_global assignment -name)
DEVICE_ TECHNOLOGY MIGRATION LIST HC230F1020C

4-12 Altera Corporation

May 2008

HardCopy Recommended Settings in the Quartus Il Software

HardCopy
Recommended
Settings in the
Quartus I
Software

Altera Corporation
May 2008

The HardCopy development flow involves additional planning and
preparation in the Quartus II software compared to a standard FPGA
design. This is because you are developing your design to be
implemented in two devices: a prototype of your design/system in an
FPGA, and a companion revision in a HardCopy device for production.
You need additional settings and constraints to make the FPGA design
compatible with the HardCopy device, and in some cases, you must
remove certain settings in the design. This section explains the additional
settings and constraints necessary for your design to be successful in both
FPGA and HardCopy ASIC devices.

The Recommendations dialog box with the recommended settings is
shown in Figure 4-7.

Figure 4-7. Quartus Il Recommended Settings

For optimal design performance, Altera recommends you use the following settings.
These recommendations are based on settings changes you made in the Settings
dialog box. Turm off any settings vou do not want to change.

Agoept | Setting | Walue
Wse TimeQuest Timing Analyzer On
Fun Design Assistant during compilation On
Dizable Aszembler during compilation Off
| Enable HardCopy Desian Readiness Check 1On
| Optimize Hold Timing Al paths
_ | Optirnize Fast-Comer Timing |On |
Reserve al unused pins Az input tri-stated with weak pull-up

I Always accept Altera's recommendations

[Mate: Tuming on this option permanently suppresses this dialog box. You can
change this setting in the Options dialog bax]

Limit DSP and RAM to HardCopy Device Resources

On the Assignments menu, click Device. For example, if the prototype
device is a Stratix Il FPGA, in the Family list, select Stratix II. Under
Companion device, Limit DSP & RAM to HardCopy device resources
is turned on by default (Figure 4-8). This setting maintains compatibility
between the FPGA and HardCopy devices by ensuring your design does
not use resources in the FPGA device that are not available in the selected
HardCopy device or vice versa.

4-13

Quartus Il Handbook, Volume 1

=" If you require additional memory blocks or DSP blocks for
debugging purposes using the SignalTap® Logic Analyzer, you
can temporarily turn this setting off to compile and verify your
design in your test environment. However, your final FPGA and
HardCopy designs submitted to Altera for the HardCopy
back-end must be compiled with this setting turned on.

Figure 4-8. Limit DSP & RAM to HardCopy Device Resources Check Box

Companion device
HardCopy : |HC210F484C -]
Jv Limit DSP & RaM to HardCopy device resources

Enable Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy
designs for design rule violations before submitting the designs to
Altera’s HardCopy Design Center. Additionally, you must fix all critical
and high-level errors.

Il Altera recommends turning on the Design Assistant to run
automatically during each compilation so that you can see the
violations you must fix or waive after reviewing each violation.

g For more information about the Design Assistant and its rules, refer to
the Design Guidelines for HardCopy Series Devices chapter of the HardCopy
Series Handbook.

To enable the Design Assistant to run during compilation, on the
Assignments menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation
(Figure 4-9) or enter the following Tcl command in the Tcl Console:

set_global_assignment -name ENABLE DRC_SETTINGS ON

4-14 Altera Corporation
May 2008

http://www.altera.com/literature/hb/hrd/hc_h51011.pdf

HardCopy Recommended Settings in the Quartus Il Software

Figure 4-9. Enabling Design Assistant

Settings - catetop_hcii i x|
Categony:
-~ General Design Assistant
- Files
- Libraries Specify the potential design problems that pou want the Desian Assistant to check. You can choose to check the design for individual
o s prablems, or a category of design problems.
[Operating Settings and Conditions
& Compilation Frocess Settings ¥ Flun Design Assistant during compilation
[EDA Tool Settings
- Analysic & Syrthesis Satings Select the rules you want the Design Assistant to apply ta the project:
- Fitter Settings =[] Design Assistant configuration e names
=) Timing Analysis Settings Clock
TimeGQuest Timing Analyzer Resst
Classic Timing Anabyzer Seftings Tome closias
3 Assgmhler r v | Non-spnchronous design stiucture
- Diesign Assistant
. Sighal race
- SignalTap Il Logic Analyzer
e e e Asynehronous clock domains
[l Simulator Settings HardCopy rules
. Finite state machine

PowerPlay Paver Analyzer Settings

Report Settings

Specify the maximum number of messages to be reported,

Masirnum Pumber of vielation messages ta be reparted: [30
0

o
Cancel

Maximum number of detail messages to be reported:

Advanced..
Report Settings...

oK Cancel

i

Altera Corporation
May 2008

Timing Settings

Beginning in Quartus II software version 7.1, the TimeQuest Timing

Analyzer is the required timing analysis tool for all designs. The Classic
Timing Analyzer is no longer supported and Altera’s HardCopy Design
Center will not accept any designs which use the Classic Timing Analyzer

for timing closure.

If you are still using the Classic Timing Analyzer, Altera strongly
recommends that you switch to the TimeQuest Timing Analyzer.

For more information about switching to the TimeQuest Timing
Analyzer, refer to the Switching to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

4-15

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Quartus Il Handbook, Volume 1

When you specify the TimeQuest Timing Analyzer as the timing analysis
tool, the TimeQuest Timing Analyzer guides the Fitter and analyzes
timing results after compilation.

TimeQuest Timing Analyzer

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis
tool that validates timing in your design by using an industry-standard
constraint, analysis, and reporting methodology. You can use the
TimeQuest Timing Analyzer’s GUI or command-line interface to
constrain, analyze, and report results for all timing paths in your design.

Before running the TimeQuest Timing Analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing
exceptions, and signal transition arrival and required times. You can
specify timing constraints in the Synopsys Design Constraints (SDC) file
format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the
timing paths in the design, calculates the propagation delay along each
path, checks for timing constraint violations, and reports timing results as
slack in the Report pane and in the Console pane. If the TimeQuest
Timing Analyzer reports any timing violations, you can customize the
reporting to view precise timing information about specific paths, and
then constrain those paths to correct the violations. When your design is
free of timing violations, you can be confident that the logic will operate
as intended in the target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool
that you use as a sign-off tool for Altera FPGAs and HardCopy ASICs.

Setting Up the TimeQuest Timing Analyzer

To use the TimeQuest Timing Analyzer for timing analysis, on the
Assignments menu in the Quartus II software, click on Timing Analysis
Settings, and on the Timing Analysis Settings page, select Use
TimeQuest Timing Analyzer during compilation.

4-16 Altera Corporation
May 2008

HardCopy Recommended Settings in the Quartus Il Software

Use the following Tcl command to use the TimeQuest Timing Analyzer as
your timing analysis engine:

set_global_assignment -name USE_TIMEQUEST TIMING_ANALYZER ON

Altera Corporation
May 2008

You can launch the TimeQuest Timing Analyzer in one of the following
modes:

B Directly from the Quartus II software
B Stand-alone mode
B Command-line mode

To perform a thorough Static Timing Analysis, you need to specify all the
timing requirements. The most important timing requirements are clocks
and generated clocks, input and output delays, false paths and
multi-cycle paths, and minimum and maximum delays.

In the TimeQuest Timing Analyzer, clock latency, and recovery and
removal analysis are enabled by default.

For more information about the TimeQuest Timing Analyzer, refer to the
Quartus 1I TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook.

Constraints for Clock Effect Characteristics

The create clock, create_generated clock commands create
ideal clocks and do not account for board effects. In order to account for
clock effect characteristics, you can use the following commands:

B set_clock_latency

B set clock uncertainty

= For more information about how to use these commands, refer
to the Quartus II TimeQuest Timing Analyzer chapter in volume 3
of the Quartus I Handbook.

Beginning in Quartus II software version 7.1, you can use the new
command derive_ clock uncertainty to automatically derive the
clock uncertainties in your SDC file. This command is useful when you
are unsure what the clock uncertainties might be. The calculated clock
uncertainty values are based on I/O bulffer, static phase errors (SPE) and
jitter in the PLLs, clock networks, and core noise.

4-17

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Quartus Il Handbook, Volume 1

4-18

The derive clock_uncertainty command applies inter-clock,
intra-clock, and I/O interface uncertainties. This command automatically
calculates and applies setup and hold clock uncertainties for each
clock-to-clock transfer found in your design.

To determine I/0O interface uncertainty, you must create a virtual clock,
then assign delays to the input/output ports by using the
set_input_ delayand set_output_ delay commands for that
virtual clock.

s These uncertainties are applied in addition to those you
specified using the set _clock_uncertainty command.
However, if a clock uncertainty assignment for a source and
destination pair was already defined, the new one will be
ignored. In this case, you can use either the -overwrite
command to overwrite the previous clock uncertainty
command, or manually remove them by using the
remove_clock uncertainty command.

The syntax for the derive_clock_uncertainty is as follows:

derive clock_uncertainty [-h | -help] [-long help]
[-overwritel]

where the arguments are listed in Table 4-2:

Table 4-2. Arguments for derive_clock_uncertainty

Option Description
-h | -help |Shorthelp

-long_help |Long help with examples and possible return values

-overwrite | Overwrites previously performed clock uncertainty
assignments

When the derive_clock uncertainty constraintis used, a
PLLJ_PLLSPE_INFO.txt file is automatically generated in the project
directory. This file lists the names of the PLLs, as well as their jitter and
SPE values in the design. This text file can be used by the
HCII_DTW_CU_Calculator.

For more information about the derive clock uncertainty
command, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

HardCopy Recommended Settings in the Quartus Il Software

Altera Corporation
May 2008

Altera strongly recommends that you use the

derive clock_uncertainty command in the HardCopy revision.
Altera’s HardCopy Design Center will not be accepting designs that do
not have clock uncertainty constraint by either using the
derive_clock_uncertainty command or the HardCopy II Clock
Uncertainty Calculator, and then using the set_clock_uncertainty
command.

For more information about how to use the HardCopy II Clock
Uncertainty Calculator, refer to the HardCopy II Clock Uncertainty
Calculator User Guide.

Quartus Il Software Features Supported for HardCopy Designs

The Quartus II software supports optimization features for HardCopy
prototype development, including;:

Physical Synthesis Optimization

LogicLock™ Regions

PowerPlay Power Analyzer

Incremental Compilation (Synthesis and Fitter)

Physical Synthesis Optimization

To enable Physical Synthesis Optimizations for the FPGA revision of the
design, on the Assignments menu, click Settings. In the Settings dialog
box, in the Category list, select Fitter Settings. These optimizations are
passed into the HardCopy companion revision for placement and timing
closure. When designing with a HardCopy device first, physical
synthesis optimizations can be enabled for the HardCopy device, and
these post-fit optimizations are passed to the FPGA revision.

LogicLock Regions

The use of LogicLock regions in the FPGA is supported for designs
targeted to HardCopy devices. However, LogicLock regions are not
passed into the HardCopy companion revision. You can use LogicLock
regions in the HardCopy design, but you must create new LogicLock
regions in the HardCopy companion revision. In addition, LogicLock
regions in HardCopy devices cannot have their properties set to Auto
Size. However, floating LogicLock regions are supported. HardCopy
LogicLock regions must be manually sized and placed in the floorplan.
When LogicLock regions are created in a HardCopy device, they start
with width and height dimensions set to (1,1), and the origin coordinates
for placement are at X1_Y1 in the lower left corner of the floorplan. You
must adjust the size and location of the LogicLock regions you created in
the HardCopy device before compiling the design.

4-19

http://www.altera.com/literature/ug/ug_hc2_cuc.pdf
http://www.altera.com/literature/ug/ug_hc2_cuc.pdf

Quartus Il Handbook, Volume 1

4-20

For information about using LogicLock regions, refer to the Analyzing
and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy and
FPGA devices using the PowerPlay Early Power Estimator. Use the
PowerPlay Power Analyzer for more accurate estimation of your device’s
power consumption. The PowerPlay Early Power Estimator is available
in the Quartus II software version 5.1 and later. The PowerPlay Power
Analyzer supports HardCopy devices in version 6.0 and later of the
Quartus IT software.

For more information about using the PowerPlay Power Analyzer, refer
to the Quartus II PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Incremental Compilation

Quartus II Incremental Compilation in the FPGA is supported in both the
FPGA First design flow and the HardCopy First design flow.

To take advantage of Quartus II Incremental Compilation, organize your
design into logical and physical partitions for synthesis and fitting (or
place-and-route). Incremental compilation preserves the compilation
results and performance of unchanged partitions in your design. This
feature dramatically reduces your design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions
untouched.

In addition, be aware of the following guidelines:

B User partitions and synthesis results are passed to a companion
device.

B LogicLock regions are suggested for user partitions, but are not
migrated automatically.

B The first compilation after migration to a companion device requires
a full compilation (all partitions are compiled), but subsequent
compilations can be incremental if changes to the source RTL are not
required. For example, PLL phase changes can be implemented
incrementally if the blocks are partitioned.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

HardCopy Utilities Menu

HardCopy
Utilities Menu

Altera Corporation
May 2008

The entire design must be migrated between the FPGA and
HardCopy companion devices. The Quartus II software does not
support migration of partitions between companion devices.
Bottom-up Quartus II Incremental Compilation is not supported for
HardCopy devices.

Physical Synthesis can be run on individual partitions within the
originating device only. The resulting optimizations are preserved in
the migration to the companion device.

For information about using Quartus II Incremental Compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

The HardCopy Utilities menu in the Quartus II software is shown in
Figure 4-10. To access this menu, on the Project menu, click HardCopy
Utilities. This menu contains the main functions you use to develop your
HardCopy design and FPGA prototype companion revision. From the
HardCopy Ultilities menu, you can:

Create or update HardCopy companion revisions

Specify the current HardCopy companion revision

Compare the companion revisions for functional equivalence
Generate a HardCopy Handoff Report for design reviews

Archive HardCopy Handoff Files for submission to Altera’s
HardCopy Design Center

Enable the HardCopy Design Readiness Check tool if you disabled it
(the tool is enabled by default)

Track your design progress using the HardCopy Advisor

4-21

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Quartus Il Handbook, Volume 1

Figure 4-10. HardCopy Utilities Menu

Project

Add/Remoave Files in Project...

J Revisions...

Copy Project...

Archive Project...
Restore Archived Project...

Irnport Database. .
Export Database...,

Import Design Partition. ..
Export Design Partition...
Generate Bothom-Up Design Partition Scripts...

Generate Tcl File for Project...
Generate PowerPlay Early Power Estimator File

Organize Quartus II Settings File

#+ Create/Overwrite HardCopy Cormpanion Revision. ..

Hierarchy

Set Current HardCopy Companion Revision...
Compare HardCopy Companion Revisions

#+ Generate HardCopy Handoff Report

#+ Archive HardCopy Handoff Files...

Start HardCopy Design Readiness Check

HardCopy advisor

HardCopy Stratix Utilities

Each of the features within HardCopy Utilities is summarized in
Table 4-3. The process for using each of these features is explained in the

following sections.

Table 4-3. HardCopy Utilities Menu Options (Part 1 of 2)

Applicable Design

Men Description i,y Restriction

enu escriptio Revision estrictions
Create/Overwrite Create a new companion FPGA prototype design | @ Must disable Auto Device
HardCopy revision or update an existing |and HardCopy selection

Companion Revision

companion revision for your
FPGA and HardCopy design.

Companion Revision

e Must set an FPGA device
and a HardCopy
companion device

Set Current
HardCopy
Companion Revision

Specify which companion
revision to associate with
current design revision.

FPGA prototype design
and HardCopy
Companion Revision

Companion Revision must
already exist

Compare HardCopy

Compares the FPGA design

FPGA prototype design

Compilation of both revisions

Companion revision with the HardCopy and HardCopy must be complete
Revisions companion design revision Companion Revision
and generates a report.
4-22 Altera Corporation

May 2008

HardCopy Utilities Menu

Table 4-3. HardCopy Utilities Menu Options (Part 2 of 2)

Menu

Description

Applicable Design
Revision

Restrictions

Generate HardCopy
Handoff Report

Generate a report containing
important design information
files and messages generated
by the Quartus Il compile.

FPGA prototype design
and HardCopy
Companion Revision

e Compilation of both
revisions must be complete

e Compare HardCopy
Companion Revisions
must have been executed

Readiness Check

design's settings, 1/0 check,
PLL, and RAM usage checks.

and HardCopy
Companion Revision.

Archive HardCopy Generate a Quartus Il Archive | HardCopy Companion |e Compilation of both
Handoff Files File specifically for submitting | Revision revisions must be
the design to Altera’s completed
HardCopy Design Center. e Compare HardCopy
Companion Revisions
must have been executed
e Generate HardCopy
Handoff Report must have
been executed
HardCopy Advisor Open an Advisor, similar to the | FPGA prototype design | None
Resource Optimization and HardCopy
Advisor, helping you through | Companion Revision
the steps of creating a
HardCopy project.
HardCopy Design Generates a reports with the | FPGA prototype design | None

Altera Corporation
May 2008

Companion Revisions

You can create multiple revisions of both the FPGA and the HardCopy
device. For example, if your initial FPGA revision is called top and the
corresponding HardCopy Il revision is fop_hcii, you could create another
FPGA revision, top_fpga, and the corresponding HardCopy II revision
would be top_fpga_hcii. The Quartus II software creates specific
HardCopy design revisions of the project in conjunction to the regular
project revisions. These parallel design revisions for HardCopy devices
are called companion revisions.

=" Although you can create multiple project revisions, Altera
recommends that you maintain only one FPGA revision once
you have created the HardCopy companion revision.

4-23

Quartus Il Handbook, Volume 1

When you have successfully compiled your FPGA prototype, you can
create a HardCopy companion revision of your design and proceed with
compiling the HardCopy companion revision. To create a companion
revision, on the Project menu, point to HardCopy Utilities and click
Create/Overwrite HardCopy Companion Revision. Use the dialog box
to create a new companion revision or overwrite an existing companion
revision (Figure 4-11).

Figure 4-11. Create or Overwrite HardCopy Companion Revision

Create/Overwrite HardCopy || Companion Revision @

Create a companion HardCopy || revision to an existing Strati« || design. The companion
revizion must have the same assignments and settings az the curent revision. Submit both
revizions to the HardCopy || Design Center.

Current revizian: demo_deszign
Current companion revisian: demo_design_hcii
Create/ovenarite companion revizions
&+ Dwenwrite curment companion revision with assignments fram the current resisian

" Create new companion revision with assignments from the current revision

0K | Cancel

You can associate only one FPGA revision to one HardCopy companion
revision. If you created more than one revision or more than one
companion revision, set the current companion for the revision you are
working on. On the Project menu, point to HardCopy Utilities and click
Set Current HardCopy Companion Revision (Figure 4-12).

Figure 4-12. Set Current HardCopy Companion Revision

Set Current HardCopy Il Companion Revision

Allows wou to change the companion revigion azzociated with the current revision.

Current revizion: demo_design

Current campanion revigion:

4-24 Altera Corporation
May 2008

HardCopy Utilities Menu

Altera Corporation
May 2008

Compiling the HardCopy Companion Revision

The Quartus II software allows you to compile your HardCopy design
with preliminary timing information. The timing constraints for the
HardCopy companion revision can be the same as the FPGA design used
to create the revision. The Quartus II software contains preliminary
timing models for HardCopy devices and you can gauge how much
performance improvement you can achieve in the HardCopy device
compared to the FPGA. Altera verifies that the HardCopy Companion
Device timing requirements are met in Altera’s HardCopy Design Center.

After you create your HardCopy companion revision from your
compiled FPGA design, select the companion revision in the Quartus II
software design revision pull-down list (Figure 4-13) or from the
Revisions list. Compile the HardCopy companion revision. After the
Quartus II software compiles your design, you can perform a comparison
check of the HardCopy companion revision to the FPGA prototype
revision.

Figure 4-13. Changing Current Revision

File Edit Miew Project Assignments Processing Tools Window Help

0O = | Vs |dem0_design j
demo_design

i

Comparing HardCopy and FPGA Companion Revisions

Altera uses the companion revisions in a single Quartus II project to
maintain compatibility between the FPGA and HardCopy ASIC. This
methodology allows you to design with one set of RTL code to be used in
both the FPGA and HardCopy ASIC, guaranteeing functional
equivalency.

When making changes to companion revisions, use the Compare
HardCopy Companion Revisions command to ensure that your design
matches your HardCopy design functionality and compilation settings.
To compare companion revisions, on the Project menu, point to
HardCopy Utilities and click Compare HardCopy Companion
Revisions.

= You must perform this comparison after both the FPGA and

HardCopy designs are compiled to hand off the design to
Altera’s HardCopy Design Center.

4-25

Quartus Il Handbook, Volume 1

The Comparison Revision Summary is found in the Compilation Report
and identifies where assignments were changed between revisions or if

there is a change in the logic resource count due to different compilation
settings.

Generate a HardCopy Handoff Report

To submit a design to Altera’s HardCopy Design Center, you must
generate a HardCopy Handoff Report providing important information
about the design that you want Altera’s HardCopy Design Center to
review. To generate the HardCopy Handoff Report, you must:

B Successfully compile both FPGA and HardCopy revisions of your
design

B Successfully run the Compare HardCopy Companion Revisions
command

After you generate the HardCopy Handoff Report, you can archive the
design using the Archive HardCopy Handoff Files command described
in “Archive HardCopy Handoff Files”.

Archive HardCopy Handoff Files

The last step in the HardCopy design methodology is to archive the
HardCopy project for submission to Altera’s HardCopy Design Center
for the HardCopy back-end. The Archive HardCopy Handoff command
creates a different Quartus II Archive File than the standard Quartus II
project archive utility generates. This archive contains only the necessary
data from the Quartus II project needed to implement the design in
Altera’s HardCopy Design Center.

To use the Archive HardCopy Handoff Files command, you must
complete the following:

B Compile both the FPGA and HardCopy revisions of your design
B Run the Compare HardCopy Companion Revisions command
B Generate the HardCopy Handoff Report

To select this option, on the Project menu, point to HardCopy Utilities
and click Archive HardCopy Handoff Files.

4-26 Altera Corporation
May 2008

HardCopy Utilities Menu

Altera Corporation
May 2008

HardCopy Advisor

The HardCopy Advisor provides the list of tasks you should follow to
develop your FPGA prototype and your HardCopy design. To open the
HardCopy Advisor, on the Project menu, point to HardCopy Utilities
and click HardCopy Advisor. The following list highlights the
checkpoints that the HardCopy Advisor reviews. This list includes the
major checkpoints in the design process; it does not show every step in
the process for completing your FPGA and HardCopy designs:

1. Select an FPGA device.

2. Select a HardCopy device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the FPGA design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy companion results.

9. Compare companion revisions.

10. Generate a Handoff Report.

11. Archive Handoff Files and send to Altera.

The HardCopy Advisor shows the necessary steps that pertain to your
currently selected device. The Advisor shows a slightly different view for
a design with FPGA selected as compared to a design with HardCopy
selected.

In the Quartus II software, you can start designing with the HardCopy
device selected first, and build an FPGA companion revision second.
When you use this approach, the HardCopy Advisor task list adjusts
automatically to guide you from HardCopy development through FPGA
prototyping, then completes the comparison archiving and handoff to
Altera.

When your design uses the FPGA as your starting point, Altera

recommends following the Advisor guidelines for your FPGA until you
complete the prototype revision.

4-27

Quartus Il Handbook, Volume 1

When the FPGA design is complete, create and switch to your HardCopy
companion revision and follow the Advisor steps shown in that revision
until you are finished with the HardCopy revision and are ready to
submit the design to Altera for the HardCopy back-end.

Each category in the HardCopy Advisor list has an explanation of the
recommended settings and constraints, as well as quick links to the
features in the Quartus II software that are needed for each section. The
HardCopy Advisor displays:

B A green check box when you have successfully completed one of the
steps

B A yellow caution sign for steps that must be completed before
submitting your design to Altera for HardCopy development

B Aninformation callout for items you must verify

['=~ Selecting an item within the HardCopy flow menu provides a
description of the task and recommended action. The view in
the HardCopy Advisor may vary depending on the device you
select.

Figure 4-14 shows the HardCopy Advisor with the FPGA device
selected.

Figure 4-14. HardCopy Advisor with FPGA Selected

¥

By Gatting more nformation

4 HardCopy Namang Guidele

o Choose 8 TPGA device

o Chuuse & HardCopy comparion device
i Setup FRGA revision

vl Turm o Uve Dresign fusistant.

+ond Setup bming constraints

¥ o ek Tor Incumpatibie rosigrments

1y, Conple 194 rewison

¥, Clack FPGA revision

o Creste & HardCogy COmpanon revisn
¥ Yeriy Haruopry revision

#, Corple HerdCopy comparion reviion
1y Check HardZopy compsnion revision

¥, Cotpars comparsion raviskrs

#y Senersie Hardoff Report

%, Archére Herrdal | Fies arvd S Lo Albara

'y Confim JTAS urer code and "delay entry to user mode” settings

HwdCopy Advitcr &) This schizor provides shep-by-thep instruchons Ior coeafing & HaedCopy detign. Some thept aocly onl to the TTGA reviton and ctivers acply onl to the
el oy 1e4A%00 T4 LIS B 17 e appiopiisle 1evesnn i peoim thess sens

4-28

Altera Corporation
May 2008

HardCopy Design Readiness Check

Figure 4-15 shows the HardCopy Advisor with the HardCopy device
selected.

Figure 4-15. HardCopy Advisor with HardCopy Device Selected

¥ HardCopy Advizor |

T e N,
X Gattng more information
y o 4 Wity HadCopy sevion
%} HardCopy Naining Guidaiines The Il wé tecussd i crasfing & tuccesshd HadCipy conmaison
 Lse TimeQuest Timing Analyzer
+ Choose a FPGA device o Tum on the Dengn digtant
/ Choose 3 HardCopy companion devics Vit tmeg conirants
o St v FPGA. ruvision o Check s Incormguabie Assgrments

o Tum on the Design assistant
o St up timing constrants
J Enable cptimizations of $Ho hold tima alng all paths in the Fiter
4 Enable optimizations of Get-cormir timing n te Fittr,
4 Erable Multcorner Analyss n e Timeduest Timmg anlyzer,
J Chiek for incormpanil Avapiminty
o/ Turn on the Avsembler
J Enble HardCepy Design Readivess Check
J Rersieve all Lrused pims i rputs tri-stated with weak pullups
#, Compile FPGA ravision

= ol Verdy timing constraints
4 Enabilo cptimizations of $o hoid fime akng all paths in the Fetne
J Enable optirnzations of Ext-comer timing n the Fitter,
4 Enable Multcomer Analysis n e TimeQuast Timng Analmor.
o Chick for Incomputhl assgnmints
S Turn on B Aesembier

4 Enable HardCopy Design Feadngss Chck
o Perserve all rused pins & irputs ii-stated with weak pullups
& Confirm JTAG user code and “delay enfry o user mode” setings
1, Cormpile HardCopy companion revision
% Chedk HandCopy companion reviion
I Campare companion revisions
1, Generate Handoff Report

Iy Archive Handoff Files and Serd o Altera
Ha rdCopv Beginning in the Quartus II software version 7.2, the HardCopy Design
. Readiness Check (HCDRC) is available as one of the processing steps in

Desi gn the default compilation of either the FPGA or the HardCopy flow. This

Readiness feature checks issues that need to be addressed prior to handing off the
HardCopy design to Altera’s HardCopy Design Center for the HardCopy

Check back-end process. This is different from the user-driven approach in
HardCopy Advisor, in which you must manually open the Advisor to
check for any violations.
The implemented checking in the HCDRC for the Quartus II software
version 7.2 is only I/O-related. Beginning in the Quartus II software
version 8.0, the checks have been extended to include other logic checks
such as PLL, RAM, and Setting checks (Global Setting, Instance Setting,
and Operating Setting).

Altera Corporation 4-29

May 2008

Quartus Il Handbook, Volume 1

4-30

Execution of HardCopy Design Readiness Check

Beginning in the Quartus II software version 8.0, you can run the HCDRC
at post-Fitter or OFF. The tool can be turned on through the QSF, as

follows:

set_global assignment -name \
FLOW_HARDCOPY DESIGN READINESS CHECK ON

set_global assignment -name \
FLOW_HARDCOPY DESIGN READINESS CHECK OFF

The tool can also be turned on through the GUI, as shown in Figure 4-18.

s The tool is turned on by default.

Figure 4-16. HardCopy Design Readiness Check through the GUI

More Compilation Process Settings

Specify compilation process options.

Check during compilation.

Existing option settings:

Option

- - Reset
Mame:]Enable HardCopy Design Readiness Check, _VJ
Setting:] On Li Gl

Mame: | Sefing:
Dizable OpenCore Plus hardware eva... Off
Dizplay entity name for node name On
Enable HardCopy Design Readinesz ... On
Enable reduced memory made o

Reading or writing Hexadecimal. hex]... Use global settings

ok | Cancel

Altera Corporation

May 2008

HardCopy Design Readiness Check

Altera Corporation
May 2008

Stratix 11l Support

Beginning in the Quartus II software version 8.0, the HCDRC enables
support for Stratix III devices. This includes automated execution of
HCDRC in the Stratix III design flow. However, users must select a
HardCopy III companion first for HCDRC to run during the compilation.
See Figure 4-19.

Figure 4-17. Stratix Ill Support in HardCopy Design Readiness Check

Project Navigator * % & /0 Check Missing Termination assign]

Entity [EF 3 Compilation Report
y ; B Legal Motice Default
S5 i sanrrs Pn__|Dieoten |Femitin

eer dump SBER Flow Settings ool [npat il
&SHE= Flow Non-Default Global Settings

E3ER Flow Flapsed Time
&3B Flow Log
+ & Analysis & Synthesis
I ¢ Fitter
1€ HardCopy Design Readiness Check
B Summary
=& 1fO Check
SHER summary
&E3ER issing 1jO Standard assignment

1/0 Check Missing Termination assignment

g3 gt OF
inpuiZ linput | OFf
autput] |output | Series 50 Ohm without Calibration
outputZ| output | Series 50 Ohm wihout Calibration

[e[=]o]e]=

5B lissing Qukput Pin Load assignment
€SB Missing Pin Location assignment
&BER Missing Termination assignment
&BER Unconnected Pin
+-¢5_] Logic Check
&H 5 Messages

All checks are the same as for other families. If the check is specific to
Stratix III devices only, HCDRC dynamically runs the check exclusive to
the Stratix III revision.

Setting Check

Beginning in Quartus II version 8.0, HCDRC provides the Setting Check
report section. The report panels in this category are the setting checks
from the HandOff Report. Setting Check consists of the following three
sections.

Summary

The Summary section displays the number of settings that do not follow
the recommendations. One of the following messages is displayed:

<number>global setting(s) do not meet recommendation.
Please review the recommendation and do appropriate
correction as it may affect the result of the migration
to HardCopy.

4-31

Quartus Il Handbook, Volume 1

4-32

or

<numbers> instance setting(s) do not meet
recommendation. Please review the recommendation and
do appropriate correction as it may affect the result
of the migration to HardCopy.

Global Setting

The settings check in this section only displays recommendations for
global settings. Global settings that currently have a different value than
the recommended value are highlighted in red.

Instance Setting

This section is the same as Global Setting, but only checks for instances
assignments.

Operating Setting

In this section, checks related to the recommended operating settings for
the FPGA and the HardCopy device are reported.

The Operating Setting check is primarily applicable to Stratix III devices
used as prototype FPGAs because HardCopy III devices only support
0.9V core voltage, whereas the Stratix III devices support both 1.1V and
0.9V.

Figure 4-20 shows the Setting Check category for HCDRC in Quartus II
software version 8.0.

Altera Corporation
May 2008

HardCopy Design Readiness Check

Figure 4-18. Setting Check

@ Compilation Report - Setting Check._. l

@a Compilation Report Setting Check Global Setting
g Legal Motice Ontian Actual Recommended
ER Flow Summary Setting Setting
@% Flow Settings 1} Enable Design Assistant] iyl
g% Flow Mon-Default Global Settings 2| Dizable &zsembler OFF OFF
&8 Flow Elapsed Time B . 45 INPUT TRISTATED A5 INPUT TRISTATED
S Flowlog [E] feserve all unused pins WITH WEAK PULLIP WITH WEAK PULL-UP
+ g% Q-ZSIYSIS & Synthesis 4| Optimize Hold Timing [l'DPEAPT:TSHéND FAIMIR LR ALL PATHS
+ tker -
= %a HardCopy Design Readiness Check i Optimize Fast-Carmer Timing aFF oM
ST summary |6 Perform Multicarmer Analysis [uld} [ld]
+ @D 1/0 Check 7 Enable HardCopy Design Feadiness M N
+ @D Lagic Check || Check
= ¢&ZH2) Setting Check 5 H;idﬂgectkerted Pattern as Urinitialized an aFF
EHEE summary — Qe
EHE Global 5etting
EHEE Instance Setting
(i) Messages
&L

Altera Corporation
May 2008

Setting Check also includes checking for illegal assignments in the
HardCopy design flow. The illegal assignments checks are:

USE_CHECKERED PATTERN_AS UNINITIALIZED RAM CONTENT ON
STRATIXII MRAM COMPATIBILITY ON
STGNAI,_PROBE_ENABLE ON|OFF

SIGNAL_PROBE_SOURCE ON|OFF

1/0 Check

The HCDRC I/0 Check ensures that you have assigned location
assignments for the pins, I/O Standard, current strength assignment,
output pin load assignment, termination assignments, and also checks for
any unconnected pins. The tool issues a Warning if you have not specified
the assignment for the I/O check.

For example, for missing I/O Standard assignments, the HCDRC issues
the following warning;:

5 pin(s) have no explicit I/0 Standard assignments
provided in the setting file and default values are
being used. Please add a specific I/0 Standard
assignment for these pins.

4-33

Quartus Il Handbook, Volume 1

4-34

Input Pin Placement for Global and Regional Clock

Due to the difference in the interconnect delays between the FPGA and
HardCopy, the use of non-primary clock inputs as clock inputs in a design
may cause timing closure to be a problem when migrating the FPGA to
HardCopy. The Input Pin Placement for Global and Regional Clock check
informs you of the problem before finalizing the pin location, so that any
clock inputs can be moved to the primary clock input.

This check lists all the pins that drive the global or regional clock but are
not placed in a dedicated clock pad. All pins are required to have manual
location assignments. This is highlighted prior to this check. See

Figure 4-21.

Figure 4-19. I/0 Check in the HardCopy Design Readiness Check

| %&3 HardCopy Design Readiness Check,
EHEE surmmary

= &A1/ Check
EHEE Summary
%@ Missing Ii0 Standard assignment
%& Missing Cukput Pin Load assignment
%@ Missing Pin Location assignment
%& Missing Termination assignment
&SR Unconnecked Pin

The following message appears in the message panel during compilation
and also appears in the I/O Check Summary:

<number> pin(s) drives global or regional clock, but
is not placed in a dedicated clock pin position. Clock
insertion delay will be different between FPGA and
HardCopy companion revisions because of differences in
local routing interconnect delays.

PLL Usage Check

There is a new dedicated checking category for PLLs in the HCDRC. The
report folder that appears in the Ul report is PLL Usage Check. This is for
requirements and violations checks relating to PLL usage.

PLL Real-Time Reconfigurable Check

This check highlights the PLLs that do not have PLL reconfiguration. The
HCDRC requires users to have PLL reconfiguration if they use PLLs to
fine tune a design after manufacturing.

Altera Corporation
May 2008

HardCopy Design Readiness Check

Altera Corporation
May 2008

The following message appears in the message panel during compilation
and also appears in the Logic Check Summary:

<number> PLL(s) don't have real time reconfiguration.
It is highly recommended that each PLL to have PLL
reconfiguration for designs migrating to HardCopy.

There is a table listing the PLL elements that do not have PLL
reconfiguration.

PLL Clock Outputs Driving Multiple Clock Network Types Check

This check is derived from the Design Assistant rule check for HardCopy
(H102). It lists all PLL instances in the current design that have clock
outputs driving multiple clock network types. The following message is
displayed if the tool detects violations of this type:

Found <number> PLL(s) with clock outputs that drives
multiple clock network types.

PLL with No Compensation Mode Check

This check list all PLLs that are in “No compensation” operating mode.
This setting is not recommended for a design migrating to a HardCopy
device. This is due to the differences in the clock networks and the clock
delays between FPGA and HardCopy devices.

The following warning message appears during compilation when a PLL
is in a “No compensation mode”:

<number> PLL(s) is operating in a "No compensation"
mode.

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check

When a PLL is directly feeding an output pin, it must be set to Zero Delay
Buffer operating mode. However, if a PLL mode is set either in normal
compensation mode or source synchronous mode, a warning message is
printed during compilation.

During the runtime of HC Ready, the following warning message
appears:

<number> PLL(s) is in normal or source synchronous mode
that is not fully compensated because it feeds an
output pin -- only PLLs in zero delay buffer mode can
fully compensate output pins.

4-35

Quartus Il Handbook, Volume 1

Performing
ECOs with
Quartus Il
Engineering
Change
Management
with the Chip
Planner

4-36

RAM Usage Check

HardCopy Series devices do not support initialized RAM blocks. In
HardCopy Series devices, the RAMs power up uninitialized. In the RAM
Usage Check, the HCDRC tool checks to see if there are any RAMs that
are initialized using a Memory Initialization File (MIF). Any RAM that
has a MIF file is listed in a table with the following compilation warning
message:

<number> RAM(s) have Memory Initialization File (MIF).
HardCopy devices do not allow initialized RAM. Please
ensure that no RAM is initialized by a MIF file.

As designs grow larger and larger in density, the need to analyze the
design for performance, routing congestion, logic placement, and
executing Engineering Change Orders (ECOs) becomes critical. In
addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This becomes
difficult to manage, because ECOs are often implemented as last minute
changes to your design.

With the Altera Chip Planner tool, you can shorten the design cycle time
significantly. When changes are made to your design as ECOs, you do not
have to perform a full compilation in the Quartus II software. Instead,
you make changes directly to the post place-and-route netlist, generate a
new programming file, test the revised design by performing a gate-level
simulation and timing analysis, and proceed to verify the fix on the
system (if you are using an FPGA as a prototype). Once the fix has been
verified on the FPGA, switch to the HardCopy revision, apply the same
ECOs, run the timing analyzer and assembler, perform a revision
compare, and then run the HardCopy Netlist Writer for design
submission.

There are three scenarios from a migration point of view:

B There are changes which can map one-to-one (that is, the same
change can be implemented on each architecture—FPGA and
HardCopy).

B There are changes that must be implemented differently on the two
architectures to achieve the same result.

B There are some changes that cannot be implemented on both
architectures.

The following sections outline the methods for migrating each of these
types of changes.

Altera Corporation
May 2008

Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

Altera Corporation
May 2008

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both
architectures. In general, such changes include those that affect only I/O
cells or PLL cells. Some examples of one-to-one changes are changes such
as creating, deleting, or moving pins, changing pin or PLL properties, or
changing pin connectivity (provided the source and destination of the
connectivity changes are I/Os or PLLs). These can be implemented
identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated
Tel script (with a minor text edit) on the companion revision should
implement the appropriate changes as follows:

B Export the changes from the Change Manager to Tcl.

B Open the generated Tcl script, change the line “project_open
<project> -revision <revision>" to refer to the appropriate companion
revision.

B Apply the Tcl script to the companion revision.

The following is a partial list of examples of this type:

B I/0O creation, deletion, and moves

B I/O property changes (for example, I/O standards, delay chain
settings, and so forth)

B PLL property changes

B Connectivity changes between non-LCELL_COMB atoms (for
example, PLL to I/O, DSP to I/0O, and so forth)

Migrating Changes that Must be Implemented Differently

Some changes must be implemented differently on the two architectures.
Changes affecting the logic of the design may fall into this category.
Examples are LUTMASK changes, LC_COMB/HSADDER creation and
deletion, and connectivity changes not covered in the previous section.

Another example of this would be to have different PLL settings for the
FPGA and the HardCopy revisions.

For more information about how to use different PLL settings for the

FPGA and HardCopy Devices, refer to AN432: Using Different PLL
Settings Between Stratix 1I and HardCopy 1I Devices.

4-37

http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/an/AN432.pdf

Quartus Il Handbook, Volume 1

4-38

Table 44 summarizes suggested implementation for various changes.

Table 4-4. Implementation Suggestions for Various Changes

Change Type Suggested Implementation

LUTMASK changes Because a single FPGA atom may require multiple
HardCopy Il atoms to implement, it may be
necessary to change multiple HardCopy Il atoms to
implement the change, including adding or
modifying connectivity

Make/Delete LC_COMB If you are using a FPGA LC_COMB in extended
mode (7-LUT) or are using a SHARE chain, you
must create multiple atoms to implement the same
logic functions in HardCopy. Additionally, the
placement of the LC_COMB cell has no meaning in
the companion revision as the underlying
resources are different.

Make/Delete LC_FF The basic creation and deletion is the same on both
architectures. However, as with LC_COMB creation
and deletion, the location of an LC_FF in a
HardCopy revision has no meaning in the FPGA
revision, and vice versa.

Editing Logic Connectivity | Because a LCELL_COMB atom may have to be
broken up into several HardCopy LCELL_COMB
atoms, the source or destination ports for
connectivity changes may need to be analyzed to
properly implement the change in the companion
revision.

Changes that Cannot be Migrated

A small set of changes cannot be implemented in the other architecture
because they do not make sense in the other architecture. The best
example of this occurs when moving logic in a design; because the logic
fabric is different between the two architectures, locations in the FPGA
make no sense in HardCopy, and vice versa.

Overall Migration Flow

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful Revision
Compare such that the design can be submitted to Altera’s HardCopy
Design Center.

Altera Corporation
May 2008

Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

Preparing the Revisions

The general procedure for migrating changes between devices is the
same, whether going from the FPGA to HardCopy or vice versa. The
major steps are as follows:

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the
companion revision.

3. Compile the companion revision.

4. Perform a Revision Compare operation. The two revisions should
pass the Revision Compare.

If testing identifies problems requiring ECO changes, equivalent changes
can be applied to both FPGA and HardCopy revisions, as described in the
following section.

Applying ECO Changes

The general flow for applying equivalent changes in companion revisions
is as follows:

1. Make changes in one revision using the Chip Planner tools (Chip
Planner, Resource Property Editor, and Change Manager), then
verify and export these changes. The procedure for doing this is as
follows:

a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist
Changes command.

c. Verify correctness using timing analysis, simulation, and
prototyping (FPGA only). If more changes are required, repeat
steps a and b.

d. Export change records from the Change Manager to Tcl scripts,
or .csv or .txt file formats.

This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using the
Chip Planner tool.

Altera Corporation 4-39
May 2008

Quartus Il Handbook, Volume 1

Formal
Verification of
FPGA and
HardCopy
Revisions

4-40

As stated previously, some changes can be reapplied directly to the
companion revision (either manually or by applying the Tcl
commands), while others require some modifications.

4. Run the Compare HardCopy Revision command. The revisions
should match.

5. Verify the correctness of all changes (you may need to run timing
analysis).

6. Run the HardCopy Assembler command and the HardCopy
Netlist Writer command for design submission along with handoff
files.

The Tcl command for running the HardCopy Assembler is as
follows:

execute module -tool asm -args "--
read settings files=off --write settings files=off"

The Tcl command for the HardCopy Netlist Writer is as follows:

execute module -tool cdb \
-args "--generate hardcopy files"\

For more information about using Chip Planner, refer to the Quartus II
Engineering Change Management with Chip Planner chapter in volume 2 of
the Quartus II Handbook at www.altera.com.

Third-party formal verification software is available for your HardCopy
design. Cadence Encounter Conformal verification software is used for
FPGA and HardCopy families, as well as several other Altera device
families.

To use the Conformal software with the Quartus II software project for
your FPGA and HardCopy design revisions, you must enable the EDA
Netlist Writer. You must turn on the EDA Netlist Writer so it can generate
the necessary netlists and command files needed to run the Conformal
software. To automatically run the EDA Netlist Writer during the compile
of your FPGA and HardCopy design revisions, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. Under EDA Tool Settings, in the Category list, select Formal
Verification, and then in the Tool name list, select Conformal LEC.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com

Formal Verification of FPGA and HardCopy Revisions

Altera Corporation
May 2008

3. Compile your FPGA and HardCopy design revisions.

The Quartus IT EDA Netlist Writer produces one netlist for the FPGA
when it is run on that revision, and generates a second netlist when it runs
on the HardCopy revision. You can compare your FPGA
post-compilation netlist to your RTL source code using the scripts
generated by the EDA Netlist Writer. Similarly, you can compare your
HardCopy post-compile netlist to your RTL source code with scripts
provided by the EDA Netlist Writer.

For more information about using the Cadence Encounter Conformal
verification software, refer to the Cadence Encounter Conformal Support
chapter in volume 3 of the Quartus II Handbook.

HardCopy Floorplan View

The Quartus II software displays the preliminary timing closure
floorplan and placement of your HardCopy companion revision. This
floorplan shows the preliminary placement and connectivity of all I/O
pins, PLLs, memory blocks, HCell macros, and DSP HCell macros.
Congestion mapping of routing connections can be viewed using the
Layers Setting dialog box (in the View menu) settings. This is useful in
analyzing densely packed areas of your floorplan that may reduce the
peak performance of your design. Altera’s HardCopy Design Center
verifies final HCell macro timing and placement to guarantee timing
closure is achieved.

4-41

http://www.altera.com/literature/hb/qts/qts_qii53011.pdf

Quartus Il Handbook, Volume 1

Figure 4-16 shows an example of the HC230F1020 device floorplan.

Figure 4-20. HC230F1020 Device Floorplan

1
CEEEA 1]
|
I
I

£

R R Ay

£

!
T

O T OO, OO T

In this small example design, the logic is placed near the bottom edge.
You can see the placement of a DSP block constructed of HCell Macros,
various logic HCell Macros, and an M4K memory block. A labeled
close-up view of this region is shown in Figure 4-17.

Figure 4-21. Close-Up View of Floorplan

4-42 Altera Corporation
May 2008

Altera’s HardCopy Design Center performs final placement and timing
closure on your HardCopy design based on the timing constraints
provided in the FPGA design.

«® For more information about Altera’s HardCopy Design Center process,
refer to the Back-End Design Flow for HardCopy Series Devices chapter in
volume 1 of the HardCopy Series Device Handbook.

Le ac Altera HardCopy devices provide a comprehensive alternative to ASICs.
gacy)

HardCopy ASICs offer a complete solution from prototype to
Ha rd CUPV high-volume production, and maintain the powerful features and

Device Su ppo rt high—perform'a'nce architecture of their equivalent FPGAs With the
programmability removed. You can use the Quartus II design software to
design HardCopy devices in a manner similar to the traditional ASIC
design flow, and you can prototype with Altera’s high density Stratix
FPGAs before seamlessly migrating to the corresponding HardCopy
device for high-volume production.

HardCopy ASICs provide the following key benefits:

B Improves performance, on the average, by 40% over the
corresponding -6 speed grade FPGA device

B Lowers power consumption, on the average, by 40% over the
corresponding FPGA

B Preserves the FPGA architecture and features and minimizes risk

B Guarantees first-silicon success through a proven, seamless
migration process from the FPGA to the equivalent HardCopy
device

B Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in about eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

B Unified design flow from prototype to production

B Performance estimation of the HardCopy Stratix device allows you
to design systems for maximum throughput

B Easy-to-use and inexpensive design tools from a single vendor

B Anintegrated design methodology that enables system-on-a-chip
designs

Altera Corporation 4-43
May 2008

http://www.altera.com/literature/hb/hrd/hc_h51019.pdf

Quartus Il Handbook, Volume 1

Features

4-44

The next sections discuss the following topics:

How to design HardCopy Stratix and HardCopy APEX structured
ASICs using the Quartus II software

An explanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices
Performance and power estimation of HardCopy Stratix devices
How to generate the HardCopy design database for submitting
HardCopy Stratix designs to Altera’s HardCopy Design Center

Beginning in Quartus II software version 4.2, the Quartus II software
contains several powerful features that facilitate design of HardCopy
Stratix devices:

HARDCOPY FPGA PROTOTYPE Devices

These are virtual Stratix FPGA devices with features identical to
HardCopy Stratix devices. You must use these FPGA devices to
prototype your designs and verify the functionality in silicon.

HardCopy Timing Optimization Wizard

Using this feature, you can target your design to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

HardCopy Stratix Floorplans and Timing Models

The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for design performance.

Placement Constraints
Location and LogicLock constraints are supported at the HardCopy
Stratix floorplan level to improve overall performance.

Improved Timing Estimation

Beginning with version 4.2, the Quartus II software determines
routing and associated buffer insertion for HardCopy Stratix
designs, and provides the Timing Analyzer with more accurate
information about the delays than was possible in previous versions
of the Quartus II software. The Quartus II Archive File automatically
receives buffer insertion information, which greatly enhances the
timing closure process in the back-end migration of your HardCopy
Stratix device.

Design Assistant

This feature checks your design for compliance with all HardCopy
device design rules and quickly establishes a seamless migration
path.

Altera Corporation
May 2008

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devices

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix,
and Stratix
Devices

B HardCopy Files Wizard
This wizard allows you to deliver the design database and all the
deliverables required for migration to Altera. This feature is used for
HardCopy Stratix devices.

The HardCopy Stratix PowerPlay Early Power Estimator is available on
the Altera website at www.altera.com.

You must use the HARDCOPY_FPGA_PROTOTYPE virtual devices
available in the Quartus II software to target your designs to the actual
resources and package options available in the equivalent post-migration
HardCopy Stratix device. The programming file generated for the
HARDCOPY_FPGA_PROTOTYPE can be used in the corresponding
Stratix FPGA device.

The purpose of the HARDCOPY_FPGA_PROTOTYPE is to guarantee
seamless migration to HardCopy by making sure that your design only
uses resources in the FPGA that can be used in the HardCopy device after
migration. You can use the equivalent Stratix FPGAs to verify the design’s
functionality in-system, then generate the design database necessary to
migrate to a HardCopy device. This process ensures the seamless
migration of the design from a prototyping device to a production device
in high volume. It also minimizes risk, assures samples in about eight
weeks, and guarantees first-silicon success.

= HARDCOPY_FPGA_PROTOTYPE devices are only available
for HardCopy Stratix devices.

Table 4-5 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4-5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix

Devices

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device
FPGA Virtual FPGA Structured ASIC
FPGA Architecture identical to Stratix FPGA Architecture identical to Stratix FPGA
FPGA Resources identical to HardCopy Stratix device M-RAM resources different than

Stratix FPGA in some devices

Ordered by Altera | Cannot be ordered; use the Altera Stratix FPGA | Ordered by Altera part number
part number part number

Altera Corporation
May 2008

4-45

http://www.altera.com

Quartus Il Handbook, Volume 1

Table 4-6 lists the resources available in each of the HardCopy Stratix
devices.

Table 4-6. HardCopy Stratix Device Physical Resources

Dovice | LEs "oy | mogks | mlocks | Biocs | Blos | P45 |user V0 i
HC1S25F672 25,660 250 224 138 2 10 6 473
HC1S30F780 32,470 325 295 171 2(2) 12 6 597
HC1S40F780 41,250 410 384 183 2(2) 14 6 615
HC1S60F1020 | 57,120 570 574 292 6 18 12 773
HC1S80F1020 | 79,040 800 767 364 6 (2) 22 12 773

Notes to Table 4-6:
(1) Combinational and registered logic do not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

4-46

For a given device, the number of available M-RAM blocks in
HardCopy Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices. Maintaining the identical resources
between HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix
devices facilitates seamless migration from the FPGA to the structured
ASIC device.

For more information about HardCopy Stratix devices, refer to the
HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook.

The three devices, Stratix FPGA, HARDCOPY_FPGA_PROTOTYPE, and
HardCopy device, are distinct devices in the Quartus II software. The
HARDCOPY_FPGA_PROTOTYPE programming files are used in the
Stratix FPGA for your design. The three devices are tied together with the
same netlist, thus a single SRAM Object File (.sof) can be used to achieve
the various goals at each stage. The same SRAM Object File is generated
in the HARDCOPY_FPGA_PROTOTYPE design, and is used to program
the Stratix FPGA device, the same way that it is used to generate the
HardCopy Stratix device, guaranteeing a seamless migration.

For more information about the SRAM Object File and programming
Stratix FPGA devices, refer to the Programming and Configuration chapter
of the Introduction to the Quartus II Software manual.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/hrd/hc_h5v1_05.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

HardCopy Design Flow

Figure 4-22 shows a HardCopy Stratix design flow diagram. The design
steps are explained in detail in the following sections of this chapter. The
HardCopy Stratix design flow utilizes the HardCopy Timing
Optimization Wizard to automate the migration process into a one-step
process. The remainder of this section explains the tasks performed by
this automated process.

HardCopy
Design Flow

For a detailed description of the HardCopy Timing Optimization Wizard
and HardCopy Files Wizard, refer to “HardCopy Timing Optimization
Wizard” on page 4-48 and “Generating the HardCopy Design Database”
on page 4-59.

Figure 4-22. HardCopy Stratix Design Flow Diagram

(Slarl Quartus HardCopy Fluw>

v

Select FPGA Family

v

Select Stratix
HARDCOPY_FPGA_PROTOTYPE
Device

One Step Process (3)

\/ v

Compile ‘

Compil \ \
‘ onlmpl © Two Step Process (2

v v v

Migrate the Migrate the Migrate the

Compiled Project Compiled Project Compiled Project
Migrate Only (7)

v v v

Close the Quartus Il Close the Quartus I Close the Quartus Il
FPGA Project FPGA Project FPGA Project

v v v

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

v

v

v

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

A

Run HardCopy Files
 / v Placement Wizard (Quartus Il
p- Infofor Ll archive File for
HardCopy delivery to Altera)

Notes for Figure 4-22:

(1) Migrate-Only Process: The displayed flow is completed manually.

(2) Two-Step Process: Migration and Compilation are done automatically (shaded area).

(3) One-Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

Altera Corporation 4-47
May 2008

Quartus Il Handbook, Volume 1

The Design Flow Steps of the One-Step Process

The following sections describe each step of the full HardCopy
compilation (the One Step Process), as shown in Figure 4-22.

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the “Migrate the
Compiled Project” step. The selected device is one of the devices from the
HardCopy Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the Compilation Report
shows the performance of the design implemented in the HardCopy
device.

4-48 Altera Corporation
May 2008

How to Design HardCopy Stratix Devices

How to Design
HardCopy Stratix
Devices

Altera Corporation
May 2008

This section describes the design process for a HardCopy Stratix device
using the HARDCOPY_FPGA_PROTOTYPE as your initial selected
device. To use the HardCopy Timing Optimization Wizard, you must first
design with the HARDCOPY_FPGA_PROTOTYPE for the design to
migrate to a HardCopy Stratix device.

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. Onthe Assignments menu, click Settings. In the Category list, select
Device.

3. On the Device page, in the Family list, select Stratix. Select the
desired HARDCOPY_FPGA_PROTOTYPE device in the Available
Devices list (Figure 4-23).

Figure 4-23. Selecting a HARDCOPY_FPGA_PROTOTYPE Device

Settings - retiming_small El

Category:

Genersl
Files

User Libraries [Current Project]
Device

Timing Requirements & Options
ED& Tool Settings

Compilation Process Settings
Analysis & Synthesis Settings
Fitter Settings

Assembler

Timing Analyzer

Design Assistant

SignalTap |l Logic Analyzer
Logic Analyzer Interface
SignalPrabe Settings

Simulator Settings

PowerPlay Power Analyzer Settings
Software Build Settings
HardCopy Settings

[4]

Ees

+

Select the family and device you want to target for compilation.

Eamily:

Shralix |

Device & Pin Options... ‘

Target device

" Auto device selected by the Fitter

& Specific device selected in ‘4vailable devices' list
~

Ayailable devices:

Show in ‘tvaiable devices list
Package: [any -
Pingcount: [any -

Speed grade: [ny -

Coie voltage: 1.5%

v Show advanced devices

EP1540F780C5_HARDCOPY_FPGA_PROTOTYPE 41250
El 41

Harme [LEs [Memor [DSP]PIL &
EP1540B956/6 41250 3423744 14 12
EF1540F760C5 41250 23744 14 B

224409 14
4

[

[

6 E
3423744 B
[
[
3

EP1540F780C7
EP1S40F7E0CT_HARDCOPY_FPGA_PROTOTYPE 41250 2244096 14
EP1540F780CE 41250 423744 14
EP1540F780I6 41250 3423744 14 hd
2 D
Migration compatibility
Migration Devices.. J
O migration devices selected =

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
design information, available resources, package option, and pin
assignments are constrained to guarantee a seamless migration of

4-49

Quartus Il Handbook, Volume 1

your project to the HardCopy Stratix device. The netlist resulting
from the HARDCOPY_FPGA_PROTOTYPE device compilation
contains information about the electrical connectivity, resources
used, I/O placements, and the unused resources in the FPGA device.

4. Onthe Assignments menu, click Settings. In the Category list, select
HardCopy Settings and specify the input transition timing to be
modeled for both clock and data input pins. These transition times
are used in static timing analysis during back-end timing closure of
the HardCopy device.

5. Add constraints to your HARDCOPY_FPGA_PROTOTYPE device,
and on the Processing menu, click Start Compilation to compile the
design.

HardCopy Timing Optimization Wizard

After you have successfully compiled your design in the
HARDCOPY_FPGA_PROTOTYPE, you must migrate the design to the
HardCopy Stratix device to get a performance estimation of the
HardCopy Stratix device. This migration is required before submitting
the design to Altera for the HardCopy Stratix device implementation. To
perform the required migration, on the Project menu, point to HardCopy
Utilities and click HardCopy Timing Optimization Wizard.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices (Figure 4-24):

B Migration Only: You can select this option after compiling the
HARDCOPY_FPGA_PROTOTYPE project to migrate the project to a
HardCopy Stratix project.

You can now perform the following tasks manually to target the

design to a HardCopy Stratix device. Refer to “Performance

Estimation” on page 4-51 for additional information about how to

perform these tasks.

o Close the existing project

e Open the migrated HardCopy Stratix project

e Compile the HardCopy Stratix project for a HardCopy Stratix
device

B Migration and Compilation: You can select this option after
compiling the project. This option results in the following actions:
e Migrating the project to a HardCopy Stratix project
e Opening the migrated HardCopy Stratix project and compiling
the project for a HardCopy Stratix device

4-50 Altera Corporation
May 2008

How to Design HardCopy Stratix Devices

B Full HardCopy Compilation: Selecting this option results in the
following actions:
e Compiling the existing HARDCOPY_FPGA_PROTOTYPE
project
e Migrating the project to a HardCopy Stratix project
e Opening the migrated HardCopy Stratix project and compiling
it for a HardCopy Stratix device

Figure 4-24. HardCopy Timing Optimization Wizard Options

HardCopy Timing Optimization Wizard: New Project [page 1 of 2] E|

‘wihat iz the working directany for the migrated project? This directory will contain the wgrm
deszign file and other related files azzociated with this project. |F you type a directory name
that does niot exist, Quartus || can create it for pou.

C:/fpga_rizcB/he_nizc8_hardcopy_optimatiol -

‘whhich flow do you want this wizard to run?

" Migration Only: migrate the current project ta a HardCopy project

" Migration and Compilation: migrate the current project to a HardCopy project, and
then open and compile the new HardCopy project

&+ Full HardCopy Compilation; compile the current project, migrate the project to a
HardCopy project. and then open and compile the new HardCopy project

| et > | Cancel

The main benefit of the HardCopy Timing Wizard’s three options is
flexibility of the conversion process automation. The first time you
migrate your HARDCOPY_FPGA_PROTOTYPE project to a HardCopy
Stratix device, you may want to use Migration Only, and then work on the
HardCopy Stratix project in the Quartus II software. As your prototype
FPGA project and HardCopy Stratix project constraints stabilize and you
have fewer changes, the Full HardCopy Compilation is ideal for one-click
compiling of your HARDCOPY_FPGA_PROTOTYPE and HardCopy
Stratix projects.

Altera Corporation 4-51
May 2008

Quartus Il Handbook, Volume 1

After selecting the wizard you want to run, the HardCopy Timing
Optimization Wizard: Summary page shows you details about the
settings you made in the wizard, as shown in Figure 4-25.

Figure 4-25. HardCopy Timing Optimization Wizard Summary Page

HardCopy Timing Optimization Wizard: Summary [page 2 of 2] gl

Wwihen you click Finish, a new project will be created bazed on the curent project with the
fallawing zattings:

Praject name: he_riscB

Project directory: C:/fpga_rizc8/he_nisc8_hardcopy_optimatio/

Device family: HardCopy Stratix

Target device: HC1540F 730

The wizard will corpile the current project, rigrate the current project to a new HardCopy
project, and then apen and compile the new HardCopy praject.

‘whhen the wizard has successfully compiled the HardCopy project. and pou have finished
optimizing the timing of the project, use the HardCopy Files wizard to generate the files
necesszary for a HardCopy device.

< Back Cancel

When either of the second two options in Figure 4-24 are selected
(Migration and Compilation or Full HardCopy Compilation), designs
are targeted to HardCopy Stratix devices and optimized using the
HardCopy Stratix placement and timing analysis to estimate
performance. For details about the performance optimization and
estimation steps, refer to “Performance Estimation” on page 4-51. If the
performance requirement is not met, you can modify your RTL source,
optimize the FPGA design, and estimate timing until you reach timing
closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the tool command language (Tcl) shell to run the - -flow Tcl
command) to migrate the HARDCOPY_FPGA_PROTOTYPE project to
HardCopy Stratix devices:

quartus_sh --flow migrate_ to_hardcopy <project_name> [-cC <revision>] +

4-52 Altera Corporation
May 2008

Design Optimization and Performance Estimation

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix device:

quartus_sh --flow hardcopy full compile <project_name> [-C <revision>] +

Design
Optimization
and
Performance
Estimation

Altera Corporation
May 2008

This command performs the following tasks:

B Compiles the existing project for a
HARDCOPY_FPGA_PROTOTYPE device.

B Migrates the project to a HardCopy Stratix project.

B Opens the migrated HardCopy Stratix project and compiles it for a
HardCopy Stratix device.

The HardCopy Timing Optimization Wizard creates the HardCopy
Stratix project in the Quartus II software, where you can perform design
optimization and performance estimation of your HardCopy Stratix
device.

Design Optimization

Beginning with version 4.2, the Quartus II software supports HardCopy
Stratix design optimization by providing floorplans for placement
optimization and HardCopy Stratix timing models. These features allow
you to refine placement of logic array blocks (LABs) and optimize the
HardCopy design further than the FPGA performance. Customized
routing and buffer insertion done in the Quartus Il software are then used
to estimate the design’s performance in the migrated device. The
HardCopy device floorplan, routing, and timing estimates in the
Quartus II software reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4-26 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, migrate the design to the
HardCopy Stratix device, and get placement optimization and timing
estimation of your HardCopy Stratix device.

4-53

Quartus Il Handbook, Volume 1

In the event that the required performance is not met, you can:
B Work to improve LAB placement in the HardCopy Stratix project.
or

B Go back to the HARDCOPY_FPGA_PROTOTYPE project and
optimize that design, modify your RTL source code, repeat the
migration to the HardCopy Stratix device, and perform the
optimization and timing estimation steps.

e On average, HardCopy Stratix devices are 40% faster than the
equivalent -6 speed grade Stratix FPGA device. These
performance numbers are highly design dependent, and you
must obtain final performance numbers from Altera.

Figure 4-26. Obtaining a HardCopy Performance Estimation

Proven Netlist & New
Timing & Placement
Constraint

Proven Netlist,
Pin Assignments, & Timing
Constraints
Stratix FPGA Haron_py Placemlent
& Timing Analysis

HardCopy Stratix

\4

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. On the Project menu, point to HardCopy Utilities and click
HardCopy Timing Optimization Wizard.

3. Select a destination directory for the migrated project and complete
the HardCopy Timing Optimization Wizard process.

On completion of the HardCopy Timing Optimization Wizard, the
destination directory created contains the Quartus II project file, and
all files required for HardCopy Stratix implementation. At this stage,
the design is copied from the HARDCOPY_FPGA_PROTOTYPE
project directory to a new directory to perform the timing analysis.
This two-project directory structure enables you to move back and
forth between the HARDCOPY_FPGA_PROTOTYPE design

4-54 Altera Corporation
May 2008

Design Optimization and Performance Estimation

Altera Corporation
May 2008

database and the HardCopy Stratix design database. The Quartus II
software creates the <project name>_hardcopy_optimization
directory.

You do not have to select the HardCopy Stratix device while
performing performance estimation. When you run the HardCopy
Timing Optimization Wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization Wizard.

If an existing project directory is selected when the HardCopy

Timing Optimization Wizard is run, the existing information is
overwritten with the new compile results.

4-55

Quartus Il Handbook, Volume 1

4-56

The project directory is the directory that you chose for the migrated
project. A snapshot of the files inside the

<project name>_hardcopy_optimization directory is shown in

Table 4-7.

Table 4-7. Directory Structure Generated by the HardCopy Timing
Optimization Wizard

<project name>_hardcopy_optimization\

<project name>.qsf

<project name>.qpf

<project name>.sof

<project name>.macr

<project name>.gclk

db\

hardcopy_fpga_prototype\
fpga_<project name>_violations.datasheet
fpga_<project name>_target.datasheet
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_hcpy.vo
fpga_<project name>_cpld.datasheet
fpga_<project name>_cksum.datasheet
fpga_<project name>.tan.rpt
fpga_<project name>.map.rpt
fpga_<project name>.map.atm
fpga_<project name> fit.rpt
fpga_<project name>.db_info
fpga_<project name>.cmp.xml
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.atm
fpga_<project name>.asm.rpt
fpga_<project name>.qarlog
fpga_<project name>.qar
fpga_<project name>.qsf
fpga_<project name>.pin
fpga_<project name>.qpf

db_export\
<project name>.map.atm
<project name>.map.hdbx
<project name>.db_info

4. Open the migrated Quartus II project created in step 3.

5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

Altera Corporation
May 2008

Design Optimization and Performance Estimation

Altera Corporation
May 2008

Buffer Insertion

Beginning with version 4.2, the Quartus II software provides improved
HardCopy Stratix device timing closure and estimation, to more
accurately reflect the results expected after back-end migration. The
Quartus II software performs the necessary buffer insertion in your
HardCopy Stratix device during the Fitter process, and stores the location
of these buffers and necessary routing information in the Quartus II
Archive File. This buffer insertion improves the estimation of the
Quartus II Timing Analyzer for the HardCopy Stratix device.

Placement Constraints

Beginning with version 4.2, the Quartus II software supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 4-27 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
achieved.

Figure 4-27. Placement Constraints Flow for HardCopy Stratix Devices

Compile the Design for
HARDCOPY_FPGA_PROTOTYPE

Migrate to HardCopy Stratix

Device Using the HardCopy

Timing Optimization Wizard
T

v

- Add/Update
o Placement Constraints

v

g Add/Update »
"| LogicLock Constraints o

A4

\ 4

Compile for HardCopy
Stratix Device

Y

No " performance

Met?

(Generate HardCopy Files)

4-57

Quartus Il Handbook, Volume 1

Location This section provides information about HardCopy Stratix logic location

COnstra | nts constraints.
LAB Assignments

Logic placement in HardCopy Stratix is limited to LAB placement and
optimization of the interconnecting signals between them. In a Stratix
FPGA, individual logic elements (LEs) are placed by the Quartus II Fitter
into LABs. The HardCopy Stratix migration process requires that LAB
contents cannot change after the Timing Optimization Wizard task is
done. Therefore, you can only make LAB-level placement optimization
and location assignments after migrating the
HARDCOPY_FPGA_PROTOTYPE project to the HardCopy Stratix
device.

The Quartus II software supports these LAB location constraints for
HardCopy Stratix devices. The entire contents of a LAB is moved to an
empty LAB when using LAB location assignments. If you want to move
the logic contents of LAB A to LAB B, the entire contents of LAB A are
moved to an empty LAB B. For example, the logic contents of
LAB_X33_Y65 can be moved to an empty LAB at LAB_X43_Y56 but
individual logic cell LC_X33_Y65_N1 cannot be moved by itself in the
HardCopy Stratix Timing Closure Floorplan.

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can partition your design and
create each block of logic independently, optimize placement and area,
and integrate all blocks into the top level design.

«® Tolearn more about this methodology, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, it
is converted to have “Size=Auto” and “Location=Floating” as shown in
the following LogicLock examples. This modification is necessary
because the floorplan of a HardCopy Stratix device is different from that
of the Stratix device, and the assigned coordinates in the
HARDCOPY_FPGA_PROTOTYPE do not match the HardCopy Stratix
floorplan. If this modification did not occur, LogicLock assignments
would lead to incorrect placement in the Quartus II Fitter. Making the

4-58 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Checking Designs for HardCopy Design Guidelines

regions auto-size and floating maintains your LogicLock assignments,
allowing you to easily adjust the LogicLock regions as required and lock
their locations again after HardCopy Stratix placement.

Example 4-1 and Example 4-2 show two examples of LogicLock
assignments.

Example 4-1. LogicLock Region Definition in the HARDCOPY FPGA_PROTOTYPE Quartus Il Settings File
set _global assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL WIDTH 15 -entity risc8 -section_id test
set global assignment -name LL STATE LOCKED -entity risc8 -section_ id test
set _global assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

Example 4-2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus Il Settings File

set _global assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set global assignment -name LL WIDTH 15 -entity risc8 -section_ id test
set global assignment -name LL STATE FLOATING -entity risc8 -section id

test

set global assignment -name LL AUTO SIZE ON -entity risc8 -section_ id test

Checking
Designs for
HardCopy
Design
Guidelines

Altera Corporation
May 2008

When you develop a design with HardCopy migration in mind, you must
follow Altera-recommended design practices to ensure a straightforward
migration process or the design will not be able to be implemented in a
HardCopy device. Prior to starting migration of the design to a
HardCopy device, you must review the design and identify and address
all the design issues. Any design issues that have not been addressed can
jeopardize silicon success.

Altera-Recommended HDL Coding Guidelines

Designing for Altera PLD, FPGA, and HardCopy structured ASIC
devices requires that certain specific design guidelines and hardware
description language (HDL) coding style recommendations be followed.

For more information about design recommendations and HDL coding

styles, refer to the Design Guidelines section in volume 1 of the Quartus II
Handbook.

4-59

http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf

Quartus Il Handbook, Volume 1

Design Assistant

The Quartus II software includes the Design Assistant feature to check
your design against the HardCopy design guidelines. Some of the design
rule checks performed by the Design Assistant include the following
rules:

B Design should not contain combinational loops
B Design should not contain delay chains
B Design should not contain latches

To use the Design Assistant, you must run Analysis and Synthesis on the
design in the Quartus II software. Altera recommends that you run the
Design Assistant to check for compliance with the HardCopy design
guidelines early in the design process and after every compilation.

Design Assistant Settings

You must select the design rules on the Design Assistant page prior to
running the design. On the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Design Assistant and turn
on Run Design Assistant during compilation. Altera recommends
enabling this feature to run the Design Assistant automatically during
compilation of your design.

Running Design Assistant

To run Design Assistant independently of other Quartus II features, on
the Processing menu, point to Start and click Start Design Assistant.

The Design Assistant automatically runs in the background of the
Quartus II software when the HardCopy Timing Optimization Wizard is
launched, and does not display the Design Assistant results immediately
to the display. The design is checked before the Quartus II software
migrates the design and creates a new project directory for performing
timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files Wizard. The Design
Assistant report generated is used by Altera’s HardCopy Design Center
to review your design.

4-60 Altera Corporation
May 2008

Generating the HardCopy Design Database

Generating the
HardCopy
Design
Database

Altera Corporation
May 2008

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report. The
Design Assistant also generates the summary report in the

<project name>\hardcopy subdirectory of the project directory. This
report file is titled <project name>_violations.datasheet. Reports include
the settings, run summary, results summary, and details of the results and
messages. The Design Assistant report indicates the rule name, severity
of the violation, and the circuit path where any violation occurred.

To learn about the design rules and standard design practices to comply
with HardCopy design rules, refer to the Quartus II Help and the Design
Guidelines for HardCopy Series Devices chapter in volume 1 of the
HardCopy Series Handbook.

You can use the HardCopy Files Wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files Wizard asks questions related to the
design and archives your design, settings, results, and database files for
delivery to Altera. Your responses to the design details are stored in
<project name>_hardcopy_optimization\ <project name>.hps.txt.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II
Archive File is generated at the same directory level as the targeted
project, either before or after optimization.

Ils~ The Design Assistant automatically runs when the HardCopy
Files Wizard is started.

4-61

http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf

Quartus Il Handbook, Volume 1

Table 4-8 shows the archive directory structure and files collected by the
HardCopy Files Wizard.

Table 4-8. HardCopy Stratix Design Files Collected by the HardCopy Files
Wizard

<project name>_hardcopy_optimization\

<project name>.flow.rpt
<project name>.qpf
<project name>.asm.rpt
<project name>.blf
<project name>.fit.rpt
<project name>.gclk
<project name>.hps.txt
<project name>.macr
<project name>.pin
<project name>.qsf
<project name>.sof
<project name>.tan.rpt

hardcopy\
<project name>.apc
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

hardcopy_fpga_prototype\
fpga_<project name>.asm.rpt
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.xml
fpga_<project name>.db_info
fpga_<project name> fit.rpt
fpga_<project name>.map.atm
fpga_<project name>.map.rpt
fpga_<project name>.pin
fpga_<project name>.qsf
fpga_<project name>.tan.rpt
fpga_<project name>_cksum.datasheet
fpga_<project name>_cpld.datasheet
fpga_<project name>_hcpy.vo
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_target.datasheet
fpga_<project name>_violations.datasheet

db_export\
<project name>.db_info
<project name>.map.atm
<project name>.map.hdbx

4-62

After creating the migration database with the HardCopy
Timing Optimization Wizard, you must compile the design
before generating the project archive. You will receive an error if
you create the archive before compiling the design.

Altera Corporation
May 2008

Static Timing Analysis

Static Timing
Analysis

Early Power
Estimation

Altera Corporation
May 2008

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static timing
analysis (STA) using the Synopsys STA tool, PrimeTime. The following
files, necessary for timing analysis with the PrimeTime tool, are generated
by the HardCopy Files Wizard:

B <project name>_hcpy.vo—Verilog HDL output format
B <project name>_hpcy_v.sdo—Standard Delay Format Output File
B <project name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

Ils7 Use the HardCopy Stratix libraries for PrimeTime to perform
STA during timing analysis of designs targeted to
HARDCOPY_FPGA_PROTOTYPE device.

For more information about static timing analysis, refer to the Quartus II
Classic Timing Analyzer and the Synopsys PrimeTime Support chapters in
volume 3 of the Quartus II Handbook.

You can use PowerPlay Early Power Estimation to estimate the amount of
power your HardCopy Stratix or HardCopy APEX device will consume.
This tool is available on the Altera website. Using the Early Power
Estimator requires some knowledge of your design resources and
specifications, including;:

Target device and package

Clock networks used in the design

Resource usage for LEs, DSP blocks, PLL, and RAM blocks
High speed differential interfaces (HSDI), general I/O power
consumption requirements, and pin counts

B Environmental and thermal conditions

HardCopy Stratix Early Power Estimation

The PowerPlay Early Power Estimator provides an initial estimate of I¢
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

4-63

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf

Quartus Il Handbook, Volume 1

This calculation should only be used as an estimation of power, not as a
specification. The actual I should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

e For more information about simulation-based power estimation, refer to
the Power Estimation and Analysis section in volume 3 of the Quartus II
Handbook.

I'=~ Onaverage, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

Tel Su pp ort for The Quartus II software also supports the HardCopy Stratix design flow
Hard copv Stratix at the command prompt using Tcl scripts.

‘e For details about Quartus II support for Tcl scripting, refer to the

Tel Scripting chapter in volume 2 of the Quartus II Handbook.

Conclusion The methodology for designing HardCopy devices using the Quartus II
software is the same as that for designing the Stratix FPGA equivalent.
You can use the familiar Quartus II software tools and design flow, target
designs to HardCopy devices, optimize designs for higher performance
and lower power consumption than the Stratix FPGAs, and deliver the
design database for migration to a HardCopy device. Submit the files to
Altera’s HardCopy Design Center to complete the back-end migration.

Referenced This chapter references the following documents:
Documents B AN432: Using Different PLL Settings Between Stratix Il and HardCopy 11
Devices

B Back-End Design Flow for HardCopy Series Devices chapter in volume 1 of
the HardCopy Series Device Handbook

B Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook

B Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

B Description, Architecture and Features chapter in the HardCopy II Device
Family Data Sheet in the HardCopy Series Handbook

B Design Guidelines for HardCopy Series Devices chapter of the HardCopy
Series Handbook

B Design Guidelines Section in volume 1 of the Quartus II Handbook

HardCopy Series Handbook

HardCopy Stratix Device Family Data Sheet section in volume 1 of the

HardCopy Series Handbook

W Introduction to the Quartus II Software

4-64 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/hrd/hc_h51016.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_03.pdf

Document Revision History

Document

Introduction to HardCopy II Devices chapter in the HardCopy II Device
Family Data Sheet in the HardCopy Series Handbook

B Power Estimation and Analysis section in volume 3 of the Quartus II

Handbook

B Programming and Configuration chapter of the Introduction to Quartus IT

Manual

B Quartus Il Analyzing and Optimizing Design Floorplan chapter in

volume 2 of the Quartus II Handbook
B Quartus II Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook
B Quartus II PowerPlay Power Analysis chapter in volume 3 of the

Quartus II Handbook

B Quartus I TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus Il Handbook

B Synopsys PrimeTime Support chapter in volume 3 of the Quartus II

Handbook

B Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Table 4-9 shows the revision history for this chapter.

Revision History

Table 4-9. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes
May 2008 o Added new section “HardCopy Design Readiness Updated for Quartus II
v8.0 Check”. software version 8.0
e Updated the tables and figures for HardCopy Series
devices.

October 2007 Reorganized “Referenced Documents” on page 4-62. Updated for Quartus Il
V7.2 software version 7.2
May 2007 Updated Timing Settings. Updated for Quartus Il
v7.1 Updated TimeQuest. software version 7.1

Added Setting Up the TimeQuest Timing Analyzer.

Added Constraints for Clock Effect Characteristics.

Changed Performing ECOs with Change Manager and

Chip Planner title to Performing ECOs with Quartus Il

Engineering Change Management with the Chip

Planner.

e Updated Migrating Changes that must be Implemented
Differently.

e Added Referenced Documents.

March 2007 v7.0

Updated Quartus Il software 7.0 revision and date only. No

other changes made to chapter.

Altera Corporation
May 2008

4-65

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/hrd/hc_h51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Quartus Il Handbook, Volume 1

Table 4-9. Document Revision History (Part 2 of 2)

v6.1

Date and Document
; hanges M mm f Chan
Version Changes Made Summary of Changes
November 2006 Minor updates for the Quartus Il software version 6.1 A medium update to the

e Added Performing ECOs with Change Manager and chapter, due to changes in
Chip Planner and Overall Migration Flow sections. the Quartus Il software
e Updated Quartus Il Software Features Supported for version 6.1 release; most
HardCopy Il Designs section. changes were in the
Performing ECOs with
Change Manager and Chip
Planner and Overall
Migration Flow sections.
May 2006 v6.0 Minor updates for the Quartus Il software version 6.0. —

October 2005 v5.1

Updated for the Quartus Il software version 5.1.

May 2005 v5.0

Chapter 3 was formerly Chapter 2.

Updated for consistency with the Quartus Il Support for
HardCopy Il Devices and Quartus Il Support for
HardCopy Stratix Devices chapters in the HardCopy
Series Handbook.

Jan. 2005 v2.1

Added HardCopy Il Device Material.

Dec. 2004 v2.1

Chapter 2 was formerly Chapter 3.
Updates to tables, figures.
New functionality for Quartus Il software 4.2

June 2004 v2.0

Updates to tables, figures.
New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

4-66

Altera Corporation
May 2008

A |:| E DY/A Section Il. Design

® Guidelines

Altera Corporation

When designing large and complex FPGAs, your design and coding
styles can impact your quality of results significantly. Designs following
synchronous design practices behave in a predictable and reliable
manner, even when re-targeted to different device families or speed
grades. Using recommended HDL coding styles ensures that synthesis
tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic
provides the most flexibility when partitioning the design for incremental
compilation, and leads to the best results. If you create floorplan location
assignments to control the placement of different design blocks (useful in
team-based designs so each designer can target a different area of the
device floorplan), following best practices is important to maintaining
good design performance.

This section presents design and coding style recommendations for your
Altera® design, and includes the following chapters:

B Chapter 5, Design Recommendations for Altera Devices and the

Quartus II Design Assistant

e This chapter describes synchronous design practices, then
provides guidelines for combinational logic structures and
clocking schemes. It also explains how to check design “rules”
using the Quartus II Design Assistant. Finally, it discusses
targeting your design to use the clock and register-control
features in the device architecture.

e Use this chapter at the start of your design process to guide the
design.

B Chapter 6, Recommended HDL Coding Styles

e This chapter discusses Altera megafunctions and provides
specific Verilog HDL and VHDL coding examples for inferring
Altera dedicated logic such as memory and DSP blocks. It also
provides device-specific coding recommendations for registers
and certain logic functions such as tri-state signals, multiplexers,
and cyclic redundancy check (CRC) functions, and includes
references to other Altera documentation for low-level logic
design.

e Use this chapter when you code specific design blocks to ensure
you create HDL code that infers the optimal Altera device
architecture.

Section Il-i

Design Guidelines

Quartus Il Handbook, Volume 1

Section Il-ii

B Chapter 7, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and
partition your design to take advantage of the compilation time
savings, performance preservation, and hierarchical design
features offered by Quartus II incremental compilation, and to
help you create a design floorplan (using LogicLock™ regions)
to support the flow when required.

Use this chapter when setting up your design hierarchy and
determining the interfaces between logic blocks in your design,
as well as if/when you create a design floorplan. You can also
use this chapter to make changes to a design that was not
originally set up to take advantage of incremental compilation,
because it provides tips on changing a design to work better
with an incremental design flow.

For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.

Altera Corporation

for Altera Devices and the

. Design R dati
QA l |:| —E D)/A 5. Design Recommendations

®
Quartus Il Design Assistant

Q1151006-8.0.0

Introduction

Altera Corporation
May 2008

Current FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when
designing with Altera® devices, you should adhere to the following
guidelines:

B Understand the impact of synchronous design practices

B Follow recommended design techniques including hierarchical
design partitioning

B Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas, and
describes the Quartus® II Design Assistant that can help you check your
design for violations of design recommendations.

This chapter contains the following sections:

B “Synchronous FPGA Design Practices” on page 5-2

B “Design Guidelines” on page 54

B “Checking Design Violations Using the Design Assistant” on
page 5-15

B “Targeting Clock and Register-Control Architectural Features” on
page 548

B “Targeting Embedded RAM Architectural Features” on page 5-50

For specific HDL coding examples and recommendations, including
coding guidelines for targeting dedicated device hardware, such as
memory and DSP blocks, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

For information about migrating designs to HardCopy devices, refer to
the Design Guidelines for HardCopy Series Devices chapter in the HardCopy
Series Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf

Quartus Il Handbook, Volume 1

Synchronous
FPGA Design
Practices

5-2

For guidelines on partitioning a hierarchical design for incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

The first step in good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you meet your design goals consistently. Problems
with other design techniques can include reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all
of the registers’ timing requirements are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades. In addition, synchronous
design practices help ensure successful migration if you plan to migrate
your design to a high-volume solution such as an Altera HardCopy
device or if you are prototyping an ASIC.

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

B Before an active clock edge, the data input has been stable for at least
the setup time of the register

B After an active clock edge, the data input remains stable for at least
the hold time of the register

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

When you specify all of your clock frequencies and other timing
requirements, the Quartus II Classic Timing Analyzer reports actual
hardware requirements for the setup times (tsy) and hold times (ty) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

'~ Tomeetsetup and hold time requirements on all input pins, any
inputs to combinational logic that feeds a register should have a
synchronous relationship with the clock of the register. If signals
are asynchronous, you can register the signals at the input of the
Altera device to help prevent a violation of the required setup
and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations like noise in
power rails can cause the register to assume either the high or low voltage
level, resulting in an unpredictable valid state. Various undesirable effects
can occur, including increased propagation delays and incorrect output
states. In some cases, the output can even oscillate between the two valid
states for a relatively long period of time.

For details about timing requirements and analysis in the Quartus II
software, refer to the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in programmable logic device (PLD)
designs, enabling them to take “short cuts” to save device resources.
Asynchronous design techniques have inherent problems such as relying
on propagation delays in a device, which can result in incomplete timing
constraints and possible glitches and spikes. Because current FPGAs
provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more
important to focus on design practices that help you meet design goals
consistently than to save device resources using problematic
asynchronous techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the order of signal changes can affect the output of the logic.
PLD designs can have varying timing delays, depending on how the
design is placed and routed in the device with each compilation.

5-3

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Quartus Il Handbook, Volume 1

Design
Guidelines

5-4

Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Design
Guidelines” on page 5-4. Relying on a particular delay also makes
asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches,
which are pulses that are very short compared with clock periods. Most
glitches are generated by combinational logic. When the inputs of
combinational logic change, the outputs exhibit a number of glitches
before they settle to their new values. These glitches can propagate
through the combinational logic, leading to incorrect values on the
outputs in asynchronous designs. In a synchronous design, glitches on
the data inputs of registers are normal events that have no negative
consequences because the data is not processed until the clock edge.

When designing with HDL code, it is important to understand how a
synthesis tool interprets different HDL design techniques and what
results to expect. Your design techniques can affect logic utilization and
timing performance, as well as the design’s reliability. This section
discusses some basic design techniques that ensure optimal synthesis
results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your
combinational logic carefully to avoid potential problems and pay
attention to your clocking schemes so you can maintain synchronous
functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture,
using either logic elements (LEs) or adaptive logic modules (ALMs). For
some cases in which combinational logic feeds registers, the register

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

control signals can also be used to implement part of the logic function to
save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided whenever
possible. In a synchronous design, feedback loops should include
registers. Combinational loops generally violate synchronous design
principles by establishing a direct feedback loop that contains no
registers. For example, a combinational loop occurs when the left-hand
side of an arithmetic expression also appears on the right-hand side in
HDL code. A combinational loop also occurs when you feed back the
output of a register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 5-1.

Figure 5-1. Combinational Loop through Asynchronous Control Pin

———D Q

Clooe >
CLRN

= Use recovery and removal analysis to perform timing analysis
on asynchronous ports such as clear or reset in the Quartus II
software.

e If you are using the Classic Timing Analyzer, on the
Assignments menu, click Settings. In the Settings dialog
box, under Timing Analysis Settings, select Classic
Timing Analyzer Settings. On the Classic Timing
Analyzer Settings page, click More Settings, and turn on
the Enable Recovery/Removal Analysis option.

e Ifyouare using the TimeQuest Timing Analyzer, refer to the
Recovery and Removal section in the Quartus II TimeQuest
Timing Analyzer chapter for details on how the TimeQuest
Timing Analyzer performs the recovery and removal
analysis.

Altera Corporation 5-5
May 2008

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Quartus Il Handbook, Volume 1

5-6

Combinational loops are inherently high-risk design structures for the
following reasons:

B Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change, which means the
behavior of the loop is unpredictable.

B Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Latches

A latch is a small circuit with combinational feedback that holds a value
until a new value is assigned. Latches can be implemented directly with
primitives, using LPM_LATCH, or inferred from HDL code. It is common
for mistakes in HDL code to cause unintended latch inference. Quartus II
Synthesis issues a warning message if this occurs.

Unlike other technologies, a latch in an FPGA architecture is not
significantly smaller than a register. the architecture is not optimized for
latch implementation and generally has relatively slow timing arcs
compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from
input to output. A positive latch is in transparent mode when the enable
signal is high (low for negative latch). In transparent mode, glitches on
the input can pass through the output because of the direct path created.
This presents significant complexity for timing analysis. Typical latch
schemes use multiple enable phases to prevent long transparent paths
from occurring. However, timing analysis is generally not able to identify
these safe applications. The Quartus II software setting Analyze latches
as Synchronous Elements allows you to treat latches as having
nontransparent start and end points. Bear in mind that even an
instantaneous transition through transparent mode can lead to glitch
propagation. The Quartus II software does not perform cycle-borrowing
analysis, such as that performed by third-party timing analysis tools
(such as the Synopsys PrimeTime software).

Due to various timing complexities, latches have limited support in
formal verification tools. Therefore, it is very important that you do not
use latches when using formal verification.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Altera recommends avoiding using latches to ensure that you can
completely analyze the timing performance and reliability of your
design.

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Inverters are often
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.

Delays in PLD designs can change with each place-and-route cycle.
Effects such as rise and fall time differences and on-chip variation mean
that delay chains, especially those placed on clock paths, can cause
significant problems in your design. See “Hazards of Asynchronous
Design” on page 5-3 for examples of the kinds of problems that delay
chains can cause. Avoid using delay chains to prevent these kind of
problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators and Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 5-2. These techniques
are purely asynchronous and should be avoided.

Figure 5-2. Asynchronous Pulse Generators

Using an AND Gate

.

rigger

Using a Register

Trigger D Q Pulse
Clock Q
CLRN
T

5-7

Quartus Il Handbook, Volume 1

In “Using an AND Gate” (Figure 5-2), a trigger signal feeds both inputs
of a 2-input AND gate, but the design inverts or adds a delay chain to one
of the inputs. The width of the pulse depends on the relative delays of the
path that feeds the gate directly and the one that goes through the delay.
This is the same mechanism responsible for the generation of glitches in
combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5-2), a register’s output drives the same
register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. You cannot reliably determine the
width of the pulse when creating HDL code, and it cannot be set by EDA
tools. The pulse may not be wide enough for the application under all
PVT conditions, and the pulse width changes if you change to a different
device. In addition, static timing analysis cannot be used to verify the
pulse width, so verification is very difficult.

Multivibrators use a glitch generator to create pulses, together with a
combinational loop that turns the circuit into an oscillator. This creates
additional problems because of the number of pulses involved. In
addition, when the structures generate multiple pulses, they also create a
new artificial clock in the design that has to be analyzed by the design
tools.

When you must use a pulse generator, use synchronous techniques, as
shown in Figure 5-3.

Figure 5-3. Recommended Pulse-Generation Technique

’—DO—DM

Trigger Signal —— D Q D Q

_ U

Clock

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

5-8 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design’s performance and reliability. Avoid using internally generated
clocks wherever possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

= Specify all clock relationships in the Quartus II software to allow
for the best timing-driven optimizations during fitting and to
allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the
base clock.

Altera recommends using global device-wide, low-skew
dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines. See “Clock Network
Resources” on page 5-48 for a detailed explanation.

Avoid data transfers between different clocks wherever
possible. If a data transfer between different clocks is needed,
use FIFO circuitry. You can use the clock uncertainty features in
the Quartus II software to compensate for the variable delays
between clock domains. Consider setting a Clock Setup
Uncertainty and Clock Hold Uncertainty value of 10% to 15% of
the clock delay.

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

Because of these problems, Altera recommends that you always register

the output of combinational logic before you use it as a clock signal
(Figure 5-4).

5-9

Quartus Il Handbook, Volume 1

Figure 5-4. Recommended Clock-Generation Technique

Clock
Generation
Logic

FTET-

Internally Generated Clock
” Routed on Global Clock Resource

5-10

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you must use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as
described in “Internally Generated Clocks” on page 5-9, and route the
clock on global clock resources. To avoid glitches, you should not decode
the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, Altera recommends avoiding ripple counters in
your design. In the past, FPGA designers implemented ripple counters to
divide clocks by a power of two because the counters are easy to design
and may use fewer gates than their synchronous counterparts. Ripple
counters use cascaded registers, in which the output pin of each register
feeds the clock pin of the register in the next stage. This cascading can
cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis,
which can be difficult and may require you to make complicated timing
assignments in your synthesis and place-and-route tools.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Ripple clock structures are often used to make ripple counters out of the
smallest amount of logic possible. However, in all Altera devices
supported by the Quartus II software, using a ripple clock structure to
reduce the amount of logic used for a counter is unnecessary because the
device allows you to construct a counter using one logic element per
counter bit. Altera recommends that you avoid using ripple counters
under any circumstances.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. In these designs, multiplexing selects a clock
source, as in Figure 5-5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 5-5. Multiplexing Logic and Clock Sources

Multiplexed Clock Routed —Ip a—
Clock 1 on Global Clock Resource
Clock 2
Select Signal o a[
—p al—

Adding multiplexing logic to the clock signal can create the problems
addressed in the previous sections, but requirements for multiplexed
clocks vary widely depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources, if
the following criteria are met:

B The clock multiplexing logic does not change after initial
configuration

B The design uses multiplexing logic to select a clock for testing
purposes

B Registers are always reset when the clock switches

B A temporarily incorrect response following clock switching has no
negative consequences

5-11

Quartus Il Handbook, Volume 1

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, you must use a
synchronous design so that there are no timing violations on the registers,
no glitches on clock signals, and no race conditions or other logical
problems. By default, the Quartus II software optimizes and analyzes all
possible paths through the multiplexer and between both internal clocks
that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular
clock. If you do not need the more complete analysis, you can assign the
output of the multiplexer as a base clock in the Quartus II software, so
that all register-register paths are analyzed using that clock.

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any
possible hold time problems on the device due to logic delay on the clock
line.

e Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as shown in Figure 5-6. When a
clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 5-6. Gated Clock

Clock

[— ™\
Gating Signal 4|_/

Gated Clock

You can use gated clocks to reduce power consumption in some device
architectures by effectively shutting down portions of a digital circuit
when they are not in use. When a clock is gated, both the clock network
and the registers driven by it stop toggling, thereby eliminating their
contributions to power consumption. However, gated clocks are not part
of a synchronous scheme and therefore can significantly increase the

5-12 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These
clocks are also sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock
gating rather than using an AND or OR gate. For example, you can use the
clock control block in newer Altera devices to shut down an entire clock
network. Dedicated hardware blocks ensure that you use global routing
with low skew and avoid any possible hold time problems on the device
due to logic delay on the clock line.

«® Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power
consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when
gating clocks with logic, refer to “Recommended Clock-Gating Methods”
on page 5-14.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. FPGAs efficiently support clock enable signals
because there is a dedicated clock enable signal available on all device
registers. This scheme does not reduce power consumption as much as
gating the clock at the source because the clock network keeps toggling,
but it will perform the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register
to either load new data or copy the output of the register (Figure 5-7).

Figure 5-7. Synchronous Clock Enable

Data

Enable

Altera Corporation 5-13
May 2008

Quartus Il Handbook, Volume 1

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power
reduction and when gated clocks are able to provide the required
reduction in your device architecture. If you must use clocks gated by
logic, implement these clocks using the robust clock-gating technique
shown in Figure 5-8 and ensure that the gated clock signal uses dedicated
global clock routing.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, gate the clock at the source whenever
possible, so you can shut down the entire clock network instead of gating
it further along the clock network at the registers.

Figure 5-8. Recommended Clock-Gating Technique

Clock

—b af— —D Qaf—

} [[
Gated Clock Routed on
Global Clock Resources

Gating Signal
90 Enable

)

5-14

In the technique shown in Figure 5-8, a register generates the enable
signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the
clock to be gated (use the falling edge when gating a clock that is active
on the rising edge, as shown in Figure 5-8). Using this technique, only
one input of the gate that turns the clock on and off changes at a time. This
prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable command must be generated in one-half the clock cycle. This
situation might cause problems if the logic that generates the enable
command is particularly complex, or if the duty cycle of the clock is
severely unbalanced. However, careful management of the duty cycle
and logic delay may be an acceptable solution when compared with
problems created by other methods of gating clocks.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Checking Design
Violations Using
the Design
Assistant

Altera Corporation
May 2008

Ensure that you apply a clock setting to the gated clock in the Quartus II
software. As shown in Figure 5-8, apply a clock setting to the output of
the AND gate. Otherwise, the timing analyzer may analyze the circuit
using the clock path through the register as the longest clock path and the
path that skips the register as the shortest clock path, resulting in artificial
clock skew.

To improve the reliability, timing performance, and logic utilization of
your design, practicing good design methodology and understanding
how to avoid design rule violations are important. The Quartus II
software provides a tool that automatically checks for design rule
violations and tells reports their location.

The Design Assistant is a design rule checking tool that allows you to
check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design
guidelines. You can specify which rules you want the Design Assistant to
apply to your design. This is useful if you know that your design violates
particular rules that are not critical, so you want to allow these rule
violations. The Design Assistant generates design violation reports with
clear details about each violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II
design flow with Design Assistant, message severity levels, and an
explanation about how to set up the Design Assistant. The last parts of the
section describe the design rules and the reports generated by the Design
Assistant.

Quartus Il Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration,
Analysis and Synthesis, fitting, or a full compilation. To run the Design
Assistant, on the Processing menu, point to Start, and click Start Design
Assistant.

To set the Design Assistant to run automatically during compilation, on
the Assignments menu, click Settings. In the Category list, select Design
Assistant. Turn on Run Design Assistant during compilation. This
enables the Design Assistant to perform a post-fitting netlist analysis of
your design. The default is to apply all of the rules to your project. But if
there are some rules that are unimportant to your design, you can turn off
the rules that you do not want the Design Assistant to use. Refer to “The
Design Assistant Settings Page” on page 5-17.

5-15

Quartus Il Handbook, Volume 1

Figure 5-9 shows the Quartus II software design flow with the Design
Assistant.

Figure 5-9. Quartus Il Design Flow with the Design Assistant

Design Files
Pre-Synthesis Design Assistant
Netlist Golden Rules (1)
Analysis & Elaboration L/
Post-Synthesis Rule Violation
Netlist Report
Synthesis
(Logic Synthesis & . .
. Design Assistant
Technology Mapping) U
Fitter >
Post-Fitting Custom
Netlist Rules (2)

Timing Analysis

Notes to Figure 5-9:

(1) Database of the default rules for the Design Assistant.

(2) A file that contains the XML codes of the custom rules for the Design Assistant. Refer to “Custom Rules” on
page 5-44 for more details about how to create this file.

The Design Assistant analyzes your design netlist at different stages of
the compilation flow and may yield different warnings or errors, even
though the netlists are functionally the same. Your pre-synthesis,
post-synthesis, and post-fitting netlists may be different due to
optimizations performed by the Quartus II software. For example, a
warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

When you run the Design Assistant after running a full compilation or
fitting, the Design Assistant performs a post-fitting analysis on the
design. When you start the Design Assistant after performing Analysis
and Synthesis, the Design Assistant performs post-synthesis analysis on
the design. When you start the Design Assistant after performing
Analysis and Elaboration, the Design Assistant performs a pre-synthesis
analysis on the design. You can also perform pre-synthesis analysis with

5-16 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

the Design Assistant using the command-line. You can use the -rt1
option with the quartus_drc executable, as shown in the following
example:

quartus_drc <project_name> --rtl=on ¢

The Design Assistant generates warning messages when your design
violates design rules, and generates information messages to provide
information regarding the rules. The Design Assistant supports all Altera
devices supported by the Quartus II software.

The Design Assistant Settings Page

To apply design rules in the Design Assistant, on the Assignments menu,
click Settings. In the Settings dialog box, in the Category list, select
Design Assistant. In the Design Assistant page, turn on the rules that
you want the Design Assistant to apply during analysis. By default, all of
the rules except the finite state machine rules are turned on.

To specify the file path to the custom rule file of the user-defined rules,
refer to “Specifying the Path to the Custom Rules File” on page 5-47.

In the Timing Closure category, if Nodes with more than specified
number of fan-outs or Top nodes with highest fan-out are turned on,
you can use the High Fan-Out Net Settings dialog box to specify the
number of fan-out a node must have to be reported by the Design
Assistant. To open the High Fan-Out Net Settings dialog box, in the
Design Assistant page, in the Timing Closure category, select Nodes
with more than specified number of fan-outs or Top nodes with highest
fan-out. Click High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global
signal, you can use the Global Clock Threshold Settings dialog box to
specify the number of nodes with the highest fan-out which you want the
Design Assistant to report. To open the Global Clock Threshold Settings
dialog box, on the Design Assistant page, in the Clock category, select
Clock signal should be a global signal. Click Global Clock Threshold
Settings.

To specify the maximum number of messages reported by the Design
Assistant, on the Design Assistant page, click Report Settings and enter
the maximum number of violation messages and detail messages to be
reported.

5-17

Quartus Il Handbook, Volume 1

Message Severity Levels

The Design Assistant classifies messages and rules using the four severity
levels described in Table 5-1. Following Altera guidelines is very
important for designs that are migrated to the HardCopy series of
devices; therefore, the table highlights the impact of a rule violation on a
HardCopy migration. Designs that adhere to Altera-recommended
design guidelines do not produce any messages with critical-, high-, or
medium-level severity.

Table 5-1. Design Assistant Message Severity Levels

Severity Level

Explanation

Critical A violation of the rule critically affects the reliability of the design. Altera may not
be able to implement the design successfully without closely reviewing the
violations with the designer for HardCopy device conversions.

High A violation of the rule affects the reliability of the design. Altera must review the
violation before implementing the design for HardCopy device conversions.

Medium The rule violation may result in implementation complexity which may have an

impact for HardCopy device conversions.

Information Only

The rule provides information regarding the design.

5-18

Design Assistant Rules

This section describes the Design Assistant rules and details some of the
reasons that Altera recommends following certain guidelines. Many of
the Design Assistant rules enforce the design guidelines discussed in
previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The
rule ID is normally used in Tcl commands for rule suppression. The letter
in each rule ID corresponds to the group of rules based on the following
scheme:

A—Asynchronous design structure rules
C—Clock rules

R—Reset rules

S—Signal race rules

T—Timing closure rules
D—Asynchronous clock domain rules
H—HardCopy rules

M—Finite state machine rules

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

For example, the rule “Design Should Not Contain Combinational
Loops” is the first rule in the asynchronous design structure rules;

therefore, it is represented by rule ID A101.

I~ Finite state machine rules are applicable only to RTL level check.

Summary of Rules and IDs

Table 5-2 lists the rules, their rule IDs, and their severity level.

Table 5-2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level
A101 | Design Should Not Contain Combinational Loops Critical
A102 | Register Output Should Not Drive lts Own Control Signal Directly or through Critical
Combinational Logic

A103 | Design Should Not Contain Delay Chains High

A104 | Design Should Not Contain Ripple Clock Structures Medium

A105 | Pulses Should Not Be Implemented Asynchronously Critical

A106 | Multiple Pulses Should Not Be Generated in the Design Critical

A107 | Design Should Not Contain SR Latches High

A108 | Design Should Not Contain Latches High

A109 | Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous Medium
RAM

A110 | Design Should Not Contain Asynchronous Memory Medium

C101 | Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical

C102 | Logic Cell Should Not Be Used to Generate Inverted Clock High

C103 | Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Medium
Effectively Save Power: <n>

C104 | Clock Signal Source Should Drive Only Input Clock Ports Medium

C105 | Clock Signal Should Be a Global Signal High

C106 | Clock Signal Source Should Not Drive Registers that Are Triggered by Different Medium
Clock Edges

R101 | Combinational Logic Used as a Reset Signal Should Be Synchronized High

R102 | External Reset Should Be Synchronized Using Two Cascaded Registers Medium

R103 | External Reset Should Be Synchronized Correctly High

R104 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous High
Clock Domains Should Be Synchronized Correctly

R105 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Medium
Clock Domains Should Be Synchronized

Altera Corporation 5-19

May 2008

Quartus Il Handbook, Volume 1

Table 5-2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level
S101 | Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the High
Same Signal Source
S102 | Synchronous Port and Asynchronous Port of the Same Register Should Not Be High
Driven by the Same Signal Source
S103 | More Than One Asynchronous Signal Source of the Same Register Should Not Be High
Driven by the Same Source
S104 | Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven High
by the Same Signal Source
T101 | Nodes with More Than Specified Number of Fan-outs: <n> Information Only
T102 | Top Nodes with Highest Fan-out: <n> Information Only
D101 | Data Bits Are Not Synchronized When Transferred between Asynchronous Clock High
Domains
D102 | Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Medium
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
D103 | Data Bits Are Not Correctly Synchronized When Transferred Between High
Asynchronous Clock Domains
H101 | Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank Medium
H102 | A PLL Drives Multiple Clock Network Types Medium
M101 | Data Bits Are Not Synchronized When Transferred to the State Machine of High
Asynchronous Clock Domains
M102 | No Reset Signal Defined to Initialize the State Machine Medium
M103 | State Machine Should Not Contain Unreachable State Medium
M104 | State Machine Should Not Contain a Deadlock State Medium
M105 | State Machine Should Not Contain a Dead Transition Medium
Design Should Not Contain Combinational Loops
Severity Level: Critical
Rule ID: A101
A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A
combinational loop also occurs when the output of a register is fed back
to an asynchronous pin of the same register through combinational logic.
Combinational loops are among the most common causes of instability
and reliability in your designs and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.
5-20 Altera Corporation

May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Register Output Should Not Drive Its Own Control Signal Directly or
through Combinational Logic

Severity Level: Critical
Rule ID: A102

A combinational loop occurs when you feed back the output of a register
to an asynchronous pin of the same register (for example, the register’s
preset or asynchronous load signal), or the register drives combinational
logic that drives one of the control signals on the same register.
Combinational loops are among the most common causes of instability
and reliability in your designs and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.

Design Should Not Contain Delay Chains

Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a
single fan-in and a single fan-out are used to cause delay. Delay chains are
sometimes used to create intentional delay to resolve race conditions.
Delay chains may cause significant problems because they affect the rise
and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells, and is
limited to the clock and reset path of your design. This rule does not apply
to delay chains in the data path. Altera recommends that you do not
instantiate a cell that does not benefit the design and is used only to delay
the signal. Refer to “Delay Chains” on page 5-7 for examples of the kinds
of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures

Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use
two or more cascaded registers in which the output of each register feeds
the clock pin of the register in the next stage. Cascading structures cause
large skew in the output signal because each stage of the structure causes
a new clock domain to be defined. The additional clock domains from
each stage of the ripple clock are difficult for static timing analysis tools
to analyze. Refer to “Ripple Counters” on page 5-10 for examples of the
kinds of problems that ripple clock structures can cause.

5-21

Quartus Il Handbook, Volume 1

Pulses Should Not Be Implemented Asynchronously

Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

B Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR
gate, where the source for the two gate inputs are the same, but one
of the gate inputs is inverted

B Using a register where the register output drives the register’s own
asynchronous reset signal through a delay chain (refer to “Delay
Chains” on page 5-7 for more details).

These techniques are purely asynchronous and therefore should be
avoided. Refer to “Pulse Generators and Multivibrators” on page 5-7 for
recommended pulse generation guidelines.

Multiple Pulses Should Not Be Generated in the Design

Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists
of a combinational logic gate in which the inverted output feeds back to
one of the inputs of the same gate. This feedback path causes a
combinational loop which forces the output to change state and therefore,
oscillate. Sometimes multiple pulse generators or multivibrator circuits
are built out of a series of cascaded inverters in a structure called a “ring
oscillator.” Oscillation creates a new artificial clock in your design that is
difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse
generators because of the number of pulses involved. In addition,
multi-pulse generators also increase the frequency of the design. See
“Pulse Generators and Multivibrators” on page 5-7 for recommended
pulse generation guidelines.

5-22 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Design Should Not Contain SR Latches

Severity Level: High
Rule ID: A107

Alatch is a combinational loop that holds the value of a signal until a new
value is assigned. Combinational loops are hazardous to your design and
are the most common causes of instability and unreliability. Refer to
“Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR
latch can cause glitches and ambiguous timing, which complicates the
timing analysis of your design. Refer to “Latches” on page 5-6 for details
about latches and for more examples of the kinds of problems that latches
can cause.

Design Should Not Contain Latches

Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more
structures as latches.

Refer to “Latches” on page 5-6 for details about latches and for examples
of the kinds of problems that latches can cause.

Il The difference between A107 (“Design Should Not Contain SR
Latches”) and A108 is that A107 triggers only when an SR latch
is detected. A108 triggers when an unidentified latch exists in
your design.

Combinational Logic Should Not Directly Drive Write Enable Signal of
Asynchronous RAM

Severity Level: Medium
Rule ID: A109

Altera FPGA devices contain flexible embedded memory structures that
can be configured into many different modes. One possible mode is
asynchronous RAM. The definition of an asynchronous RAM circuit is
one in which the write-enable signal driving into the RAM causes data to
be written into it without a clock being required.

5-23

Quartus Il Handbook, Volume 1

You should not use combinational logic to directly drive the write-enable
signal of an asynchronous RAM. Any glitches that exist on the
write-enable signal can cause the asynchronous RAM to be corrupted.
Also, the data and write address ports of the RAM should be stable before
the write pulse is asserted and must remain stable until the write pulse is
de-asserted. Because of the limitations to using memory structures in this
asynchronous mode, synchronous memories are always preferred. In
addition, synchronous memories provide higher design performance.

As a guideline, a register should be used between combinational logic
and asynchronous RAM, or asynchronous RAM should be replaced with
synchronous memory. Refer to “Hazards of Asynchronous Design” on
page 5-3 for examples of the kinds of problems asynchronous techniques

can cause.
Il=~ This rule applies only to device families that support
asynchronous RAM.

Design Should Not Contain Asynchronous Memory

Severity Level: Medium
Rule ID: A110

You should avoid using asynchronous memory (for example,
asynchronous RAM) in your design because asynchronous memory can
become corrupted by glitches created in the combinational logic that
drives the write-enable signal of the memory. Asynchronous memory
requires that the data and write address ports of the memory be stable
before the write pulse is asserted and must remain stable until the write
pulse is de-asserted. In addition, asynchronous memory has lower
performance than synchronous memory.

As a guideline, a register should be used between combinational logic
and asynchronous RAM, or asynchronous RAM should be replaced with
synchronous memory. Immediately registering both input and output of
the RAM improves performance and timing closure. Refer to “Hazards of
Asynchronous Design” on page 5-3 for examples of the kinds of
problems asynchronous techniques can cause.

Il=~ This rule applies only to device families that support
asynchronous RAM.

5-24 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Gated Clocks Should Be Implemented According fo Altera Standard
Scheme

Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to
reduce the total power consumption of a device. Clock gating is
implemented using an enable signal that controls some sort of gating
circuitry. The gated clock signal prevents any of the logic driven by it from
switching so the logic does not consume any power. For example, when
a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive. However, the disadvantage of using this
type of circuit is that it can lead to unexpected glitches on the resultant
gated clock signal if certain rules are not followed.

Refer to “Gated Clocks” on page 5-12 for examples of the kinds of
problems gated clocks can cause. Refer to “Recommended Clock-Gating
Methods” on page 5-14 for a recommended clock gating technique.
However, when following the recommended clock gating techniques,
your design must have a minimum number of fan-outs to meet rule C103,
“Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock
Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock

Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to
operate. However, you should not implement an inverter to drive the
clock input of a register in your design with a logic cell. Implementing the
inverter with a logic cell can lead to clock insertion delay and skew, which
is hazardous to your design and can cause problems with the timing
closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary.
You should use the programmable clock inversion featured in the register
to generate the inverted clock signal. Refer to “Clocking Schemes” on
page 5-9 for details about different types of clocking methods.

Altera Corporation 5-25
May 2008

Quartus Il Handbook, Volume 1

5-26

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports
to Effectively Save Power: <n>

Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one
gated clock. However, to effectively reduce power consumption, Altera
recommends that the gated clock feed at least a pre-defined number of
clock ports (n ports). The default value for # is 30. You can set the number
of clock ports (1) by clicking Settings on the Assignments menu. In the
Category list, select Design Assistant. On the Design Assistant page,
expand the Clock category and turn on Gated clock is not feeding at
least a pre-defined number of clock port to effectively save power: <n>.
Click on the Gated Clock Settings button, and in the Gated Clock
Settings dialog box, set the number of clock ports a gated clock should
feed. Refer to “Clocking Schemes” on page 5-9, and “Recommended
Clock-Gating Methods” on page 5-14 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports

Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of
registers. Rule C104 triggers when a design contains a clock signal source
of a register that connects to the port rather than the clock port of another
register. Note that if the clock signal source and ports are of the same
register, rule 5104 “Clock Port and Any Other Signal Port of the Same
Register Should Not Be Driven by the Same Signal Source” is triggered
instead. Such a design is considered asynchronous and should be
avoided. Asynchronous design structures can be hazardous to your
design because some of them rely on the relative propagation delays of
signals to function correctly, which can result in incomplete timing
constraints and possible glitches and spikes. Refer to “Hazards of
Asynchronous Design” on page 5-3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to
“Clocking Schemes” on page 5-9 for proper clocking techniques.

This rule does not apply in the following conditions:
B When the clock signal source drives combinational logic that is used
as a clock signal and the combinational logic is implemented

according to the Altera standard scheme

B When the clock signal source drives only a clock multiplexer that
selects one clock source from a number of different clock sources

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

=" This type of multiplexer adds complexity to the timing analysis
of a design. You should avoid using the multiplexer in the
design.

B Using a clock multiplexer causes the “Gated Clocks Should Be
Implemented According to Altera Standard Scheme” rule (C101) to
be applied; refer to “Multiplexed Clocks” on page 5-11 for
recommended clock multiplexing techniques

Clock Signal Should Be a Global Signal

Severity Level: High
Rule ID: C105

You should ensure that all clock signals in your design use the global
clock networks that exist in the target FPGA. Mapping clock signals to use
non-dedicated clock networks can negatively affect the performance of
your design. A non-global signal can be slower and have larger skew than
a global signal because the clock must be distributed using regular FPGA
routing resources.

To specify the number of minimum fan-outs that you want the Design
Assistant to report, on the Design Assistant page, in the Clock category,
select Clock signal should be a global signal. Click Global Clock
Threshold Settings and enter the number in the dialog box.

If a design contains more clock signals than are available in the target
device, you should consider reducing the number of clock signals in the
design, such that only dedicated clock resources are used for clock
distribution. However, if the design must use more clock signals than you
can specify as global signals, implement the clock signals with the lowest
fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on

page 548 for detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by
Different Clock Edges

Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal
source that drives the clock inputs of both positive and negative
edge-sensitive registers. This error also triggers if your design contains an
inverted clock signal that drives the clock inputs of either positive or
negative edge-sensitive registers.

5-27

Quartus Il Handbook, Volume 1

5-28

These two scenarios can cause an increase in timing requirement
complexity and difficulties in design optimization. Also, because those
registers are clocked on different edges, synchronous resetting is
impossible. Refer to “Clocking Schemes” on page 5-9 for some specific
examples and recommended clocking methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized

Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design should
be synchronized. This means that a register should be placed between the
combinational logic that drives the reset signal and input reset pin.
Unsynchronized combinational logic can cause glitches and spikes that
lead to unintentional reset signals. Synchronizing the combinational logic
that drives the reset signal delays the resulting reset signal by an extra
clock cycle and avoids unintentional reset. You should consider the extra
clock cycle delay when using this method in your design.

=" Rule R101 does not trigger if the combinational logic used is
either a 2-input AND or NOR that feeds active low reset port, or
either a 2-input OR or NAND that feeds active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers

Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a
double-buffer circuit, which consists of two cascaded registers triggered
on the same clock edge and on the same clock domain as the targeted
registers.

This rule does not apply in the following two conditions:

B When the targeted registers use active-high reset ports and the
external reset signal drives the PRE ports on the cascaded registers
with the input port of the first cascaded registers is fed to GND. Refer
to Figure 5-10.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Figure 5-10. Active-High Reset Ports

PRE
—D
Clock >
ENA
CLR
inst3 inst2 Targeted
PRE PRE -~ Registers
1—D Q D Q -
inst
PRE
ENA ENA o ol
CLR CLR
v
T T ENA
Reset > = CLR
Cascaded Registers

B When the targeted registers use active-low reset ports and the
external reset signal drives the CLR ports on the cascaded registers
with the input port of the first cascaded registers is fed to Vc. Refer
to Figure 5-11.

Figure 5-11. Active-Low Reset Ports

inst4

PRE
Clock > 3
ENA ®

ResetDJ— CLR

Targeted

PRE PRE ~Registers
0—D Q D Q
inst9
PRE
ENA ENA —1p ol
CLR CLR
T -
inst6 r inst5 ENA
CLR
Cascaded Registers
Altera Corporation 5-29

May 2008

Quartus Il Handbook, Volume 1

External Reset Should Be Synchronized Correctly

Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two
cascaded registers. The registers should be triggered on the same clock
edge and should be in the same clock domain as the targeted registers.

This rule applies when an asynchronous reset or external reset signal is
synchronized but fails to follow the recommended guidelines as
described in rule R102 (“External Reset Should Be Synchronized Using
Two Cascaded Registers”). This violation happens when the external
reset is synchronized with only one register, or the cascaded
synchronization registers are triggered on different clock edges.

L=~ R102 triggers when you don’t use two cascaded registers to
synchronize the external reset. R103 triggers when the external
reset is synchronized but fails to follow the recommended
guidelines.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly

Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one
clock domain and used in one or more other asynchronous clock
domains, the reset signal should be synchronized. An unsynchronized
reset signal can cause metastability issues. To synchronize reset signals
across clock domains, use the following guidelines:

B The reset signal should be synchronized with two or more cascading
registers in the receiving asynchronous clock domain.
B The cascading registers should be triggered on the same clock edge.

5-30 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

B There should be no logic between the output of the transmitting
clock domain and the cascaded registers in the receiving
asynchronous clock domain. The synchronization registers may
sample unintended data due to the glitches caused by the logic.

This rule applies when the internal reset signal is synchronized but fails
to follow the recommended guidelines. This happens when the external
reset is only synchronized with one register, or the cascaded
synchronization registers are triggered on different clock edges, or there
is logic between the output of the transmitting clock domain and the
cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle.
You should consider this delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized

Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated
in one clock domain and used in one or more other asynchronous clock
domain, the reset signal should be synchronized. An unsynchronized
reset signal can cause metastability issues. To synchronize reset signals
across clock domains, you should follow guidelines described in Rule
R104 (“Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly”).

Il=~ This rule applies when the internally generated reset signal is
not being synchronized.

Output Enable and Input of the Same Tri-state Nodes Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: 5101

This rule applies when your design contains a tri-state node in which the
input and output enable are driven by the same signal source. Signal race
occurs between the input and output enable signals of the tri-state when
they are propagated simultaneously. Race conditions lead to incorrect
design function and unpredictable results. To avoid violation of this rule,
the input and output enable of the tri-state should be driven by separate
signal sources.

5-31

Quartus Il Handbook, Volume 1

5-32

Synchronous Port and Asynchronous Port of the Same Register Should
Not Be Driven by the Same Signal Source

Severity Level: High
Rule ID: 5102

A purely synchronous design is free of signal race conditions as long as
the clock signal is properly distributed and the timing requirements of the
registers are met. However, race conditions can occur typically when the
synchronous and asynchronous input pins of the register are driven by
the same signal source. Race conditions can cause incorrect design
function and unpredictable results. Rule S102 triggers when the
synchronous and asynchronous pins of a register are driven by the same
signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock and if the source
register is directly feeding the reset port, provided there is no
combinational logic in-between the signal and register.

More Than One Asynchronous Signal Source of the Same Register
Should Not Be Driven by the Same Source

Severity Level: High
Rule ID: S103

To avoid race conditions in your design, Altera recommends that you
avoid using the same signal source to drive more than one port on a
register. The following ports are affected: ALOAD, ADATA, Preset, and
Clear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S104

Any clock signal source in your design should drive only input clock
ports of registers. Rule 5104 triggers only when your design contains
clock signal sources that connect to ports other than the clock ports of the
same register. Rule S104 is a sub rule of C104, “Clock Signal Source
Should Drive Only Input Clock Ports” on page 5-26. Such a design is
considered asynchronous and should be avoided. Refer to “Hazards of
Asynchronous Design” for examples of the kinds of problems that
asynchronous design structures can cause. Refer to “Clocking Schemes”
for proper clocking techniques.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Nodes with More Than Specified Number of Fan-outs: <n>

Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of
fan-outs, which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, expand the Timing closure category by clicking the =
icon next to Timing closure. Turn on Nodes with more than specified
number of fan-outs. Click High Fan-Out Net Settings. In the High
Fan-Out Net Settings dialog box, enter the number of fan-outs a node
must have to be reported by the Design Assistant.

Top Nodes with Highest Fan-out: <n>

Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out,
which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design

Assistant page, click the ¥ icon next to Timing closure to expand the
folder. Select Nodes with more than specified number of fan-outs. Click
High Fan-out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of nodes with the highest fan-out to be reported by the
Design Assistant.

Data Bits Are Not Synchronized When Transferred between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a
design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain, in which the cascaded registers are triggered on the same
clock edge. There should be no logic between the output of the
transmitting clock domain and the cascaded registers in the receiving
asynchronous clock domain.

5-33

Quartus Il Handbook, Volume 1

5-34

If the data bits belong to multiple-bit data, a handshake protocol should
be used to guarantee that all bits of the data bus are stable when the
receiving clock domain samples the data. If a handshake protocol is used,
only the data bits that act as REQ (request) and ACK (acknowledge) signals
should be synchronized. The data bits that belong to multiple-bit data do
not need to be synchronized. You can ignore the violation on the data bits
that use a handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock
Domain

Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are
transferred between asynchronous clock domains are synchronized.
However, not all data bits may be aligned in the receiving clock domain.
Propagation delays may cause skew when the data reaches the receiving
clock domain.

If the data bits belong to multiple-bit data and a handshake protocol is
used, only the data bits that act as REQ, ACK, or both signals for the
transfer should be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the
data bits does not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in
a design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain. In this case, the cascaded registers are triggered on the
same clock edge and there should be no logic between the output of the
transmitting clock domain and the cascaded registers in the receiving
asynchronous clock domain.

= This rule only applies when the data bits across asynchronous

clock domains are synchronized but fail to follow the guidelines.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an
/0 Bank

Severity Level: Medium
Rule ID: H101

If your design targets a HardCopy APEX™ 20K device, you should not
assign more than one VREF pin to a HardCopy test pin in an I/O bank in
that targeted device. The assignment of more than one VREF pin to a
HardCopy test pin can cause contention of the VREF bus.

You can find the list of HardCopy test pins that are in each of a HardCopy
APEX 20K device’s I/O banks in the Messages window, the Design
Assistant Messages report, and the Design Assistant HardCopy Test Pins
report. You should use this information to ensure that only one VREF pin
is assigned to a HardCopy test pin.

However, the Fitter may have assigned the VREF pins to the HardCopy
test pins during compilation. To prevent the Fitter from making these
assignments during the next compilation, create and assign VREF pins
manually instead of allowing the Fitter to do so automatically.

=" This rule applies only to designs that target HardCopy
APEX 20K devices.

A PLL Drives Multiple Clock Network Types

Severity Level: Medium
Rule ID: H102

A PLL can compensate only one of the clock network types; therefore, the
other non-compensated clock network types have a non-zero delay.
However, the non-zero delay for the non-compensated clock network
types can change between a Stratix device and its corresponding
HardCopy Stratix device, or a Stratix II device and its corresponding
HardCopy II device.

Therefore, if a Stratix FPGA design relies on the relative offset between
the compensated clock network type and the non-compensated clock
network types driven by a PLL, an error can occur in the corresponding
HardCopy Stratix design because the relative offset in the HardCopy
Stratix design may differ from the relative offset in the original Stratix
FPGA design.

= This rule reports only nodes in a design where a PLL drives
multiple clock network types.

5-35

Quartus Il Handbook, Volume 1

5-36

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

Severity Level: High
Rule ID: M101

Data bits that are transferred between asynchronous clock domains in
your design should be synchronized to avoid metastability problems.
Rule M101 is a state-machine-specific rule that triggers when input
signals of a state machine across asynchronous clock domains are not
synchronized or improperly synchronized. Rule M101 applies to state
machines only, while the “Data Bits Are Not Synchronized When
Transferred between Asynchronous Clock Domains” rule (D101) and the
“Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains” rule (D103) apply only for data
synchronization between registers.

No Reset Signal Defined to Initialize the State Machine

Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) should have a reset signal that initializes the
state machine to its initial state. A finite state machine without a proper
initialization state is susceptible to functional problems and can introduce
extra difficulty in analysis, verification, and maintenance.

State Machine Should Not Contain Unreachable State

Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial
state. Having an unreachable state in your design causes logic
redundancy and affects your design functionality. Rule M103 triggers
when the initial state cannot traverse to a state through any of the
reachable states and transitions.

State Machine Should Not Contain a Deadlock State

Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another
state except to loop to itself. When the state machine enters a deadlock
state, it stays in that state until the state machine is reset. Your design may

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

have a single state, or a few states forming a deadlock structure. Having
a deadlock state in your design leads to design functionality problems,
and theoretically may consume more power.

You can change the maximum number of states to be detected as a
deadlock structure by clicking Settings on the Assignments menu, and in
the Settings dialog box, in the Category list, select Design Assistant. In
the Design Assistant page, click Finite State Machine Deadlock
Settings. In the Finite State Machine Deadlock Settings dialog box,
specify the maximum number of states to be reported as a deadlock
structure. The default setting is 2.

State Machine Should Not Contain a Dead Transition

Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless
of the event sequence input to the state machine. A dead transition
indicates logic redundancy in your design, although it may not affect
your design functionality. Rule M105 triggers when the condition
required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules

You can selectively enable or disable Design Assistant rules on individual
nodes by making an assignment in the Assignment Editor or by using the
altera_attribute synthesis attribute in Verilog HDL or VHDL, or
using a Tcl command.

For a list of the types of nodes that allow Design Assistant rule
suppression, refer to Node Types Eligible for Rule Suppression in the
Quartus II Help.

I Assignments made with Assignment Editor, the Quartus
Settings File (.qsf), and Tcl scripts and commands, take
precedence over assignments made with the
altera_attribute synthesis attribute. Assignments made to
nodes, entities, or instances, take precedence over global
assignments.

Using the Assignment Editor

You can enable or disable a Design Assistant rule on selected nodes in
your design by using the Assignments Editor. You must first compile
your design if you have not already done so. On the Assignments menu,
click Assignment Editor. In the spreadsheet, for the desired node, entity,

5-37

Quartus Il Handbook, Volume 1

5-38

or instance, double-click the cell in the Assignment Name column and
select Enable Design Assistant Rule or Disable Design Assistant Rule
in the pull-down menu. Then double-click the Value cell and type in the
Rule ID, or click Browse to open the Design Assistant Rules dialog box.
In the Design Assistant Rules dialog box, select the rule you want to
enable or disable for that particular node.
Il'=" You can enable or disable multiple rules by typing more than
one Rule ID in the cell and separating each Rule ID with a
comma.

Using Verilog HDL

You can use the altera_attributes synthesis attribute in your
Verilog HDL code to enable or disable a Design Assistant rule on the
selected nodes in your design.

To enable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable da_rule=<rule]D>" */

You can enable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable da_rule=\"<ruleID>, <ruleID>,
<ruleID>\""*/

To disable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable da_rule=<ruleID>" */

You can disable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable da_rule=\"<ruleID>,
<rulelD>, <ruleID>\""*/

I When enabling or disabling multiple rules in Verilog HDL, you
must separate the Rule ID strings with commas and spaces only,
and they must be enclosed with the \ " and \ " characters.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Using VHDL

You canuse thealtera_attributes synthesis attribute in your VHHDL
code to enable or disable a Design Assistant rule on the selected nodes in
your design.

To enable the rule on the selected node, use the following syntax:

attribute altera attribute : string;attribute
altera attribute of <object>: <entity class> is
"enable da_rule=<ruleID>"

You can enable more than one rule on a selected node as shown in the
following example:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable da_rule=""<ruleID>, <ruleID>, <ruleID>"""

To disable the rule on the selected node, use the following syntax:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable da_rule=<rule]D>"

You can disable more than one rule on a selected node as shown in the
following example:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable da_ rule=""<ruleID>, <ruleID>, <ruleID>"""

s When enabling or disabling multiple rules in VHDL, you must
separate the Rule ID strings with commas and spaces only, and
they must be enclosed with double quotation mark (" ")
characters.

Altera Corporation 5-39
May 2008

Quartus Il Handbook, Volume 1

Using TCL Commands

To enable a Design Assistant rule on the selected node in your design
using Tcl in a script or at a Tcl prompt, use the following Tcl command:

set_instance assignment -name enable da rule "<ruleID>" -to <design element> +

To enable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<ruleID>, <ruleID>" -to <design element> +

To disable a Design Assistant rule on a selected node in your design using
Tel in a script, or at a command or Tel prompt, use the following Tel
command:

set_instance assignment -name disable da rule "<ruleID>" -to <design element> +

To disable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name disable da_rule "<ruleID>,<ruleID>" -to <design element> +

Viewing Design Assistant Results

If your design violates a design rule, the Design Assistant generates
warning messages and information messages about the violated design
rule. The Design Assistant displays these messages in the Messages
window, in the Design Assistant Messages report, and in the Design
Assistant report files. You can find the Design Assistant report files called
<project_name>.drc.rpt in the <project_name> subdirectory of the project
directory.

The Design Assistant generates the following reports based on the
settings specified in the Design Assistant page:

Summary Report

Settings Report

Detailed Results Report

Messages Report

HardCopy Test Pins Report

Rule Suppression Assignments Report
Ignored Design Assistant Assignments Report
Custom Rules Report

5-40 Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Altera Corporation
May 2008

Summary Report

The Design Assistant Summary report contains summary of the Design
Assistant process on a particular project. This includes Design Assistant
Status, Revision Name, Top-level Entity, Targeted Family Device, and
total number of design violations of the project. The Design Assistant
Summary report provides the following information:

B Design Assistant Status—the status, end date, and end time of the
Design Assistant operation

B Revision Name—the revision name specified in the Revisions
dialog box

B Top-level Entity Name—the top-level entity of your design

B Family—the device family name specified in the Device page of the
Settings dialog box

B Total Critical Violations, Total High Violations, Total Medium
Violations, and Total Information Only Violations—the total
violations of the rules organized by level, some of which might affect
the reliability of the design

I'=" Youmust first review the violations closely before converting
your design for HardCopy devices to achieve a successful
conversion.

Settings Report

The Design Assistant Settings report contains a list of enabled Design
Assistant rules and options that you specified in the Design Assistant
Settings page, as shown in Figure 5-12.

5-41

Quartus Il Handbook, Volume 1

Figure 5-12. The Design Assistant Settings Report

% Compilation Report - Design Assistant Settings

% Compilation Report Design Assistant Settings

EB LegalNotice Option Setting Ta b
ST Flow Summary - " o
SHER Flow Settings 1 F Design Assistant mode Post-Fitting
BB Flow Non-Default Global 5¢ | 2| Threshald value for clock net not mapped to clack spines rule 25
@g Flow Elapsed Time 3_ inimurn nurmber of node fan-out a0
@ Flow Log 4_ b aximum number of nodes to report a0
+-&G1) Analysis & Synthesis |5 | Rule £101: Gated clock should be implemented accarding to Altera standard scheme On
* @D Fitter B_ Fiule C102: Logic cell should not be used to generate inverted clock On
+ gg iss.emlier | T | Rule C103: Input clock pin hould fan out to only one set of clock gating logic On
+ iming Analyzer = - - -
. X 8 | Rule C104: Clock signal source should drive only input clock ports On
= D Assistant —{
%E?En ssistan Fiule C105: Clock signal should be a global signal (Rule applies during post-fiting analysis.
um!'nary 9 | This rule applies during both post-fitting analyzis and post-synthesis analysiz if the design On
@5 Settings | | targets a Mak< 3000 or MAX 7000 device. For more information, see the Help for the rule.)
&HER Medium Violations 10| Fule C108: Clack signal saurce should nat drive registers that are tiggered by different clack | o
EHE Information only Violat || edges
5}; Messages l Fiule F107: Combinational logic used as reset signal should be synchronized On
+ @[:I EDA Netlist Writer E Rule R102: External reset shauld be synchronized using hwo cascaded registers On
E Fiule R103: External reset should be comectly synchronized On
14 Rule R104: Reset signal that iz generated in ane clock domain and used in ather, On
|| asynchronous clock domaing should be comectly synchronized
15 Rule R105: Reset signal that iz generated in one clock domain and used in ather, On
| " | aspnchronous clock domaing should be synchronized
16| Rule T101: Modes with more than specified number of fan-outs On
? Duls TAN Tam emdmn skl bimlmsb Foae sk M v
< paIN K ¥
Detailed Results Report
The Detailed Results report contains detailed information of every rule
violation including the rule name, node name, and fan-out. This report
appears only if you specify settings in the Design Assistant Settings
page. Refer to “The Design Assistant Settings Page” on page 5-17 for
more information about how to specify the settings.
Separate Detailed Results reports are generated for critical, high,
medium, and information only results. Figure 5-13 shows the
Information Only Violations report.
5-42 Altera Corporation

May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Figure 5-13. The Design Detailed Results Report, Information Only

% Compilation Report - Information only Violations

Information only Viclations

% Compilation Report

EB Legal Notice

Fiule ~
S Flow Summary hame Name
EHE Flow Settings 1 | Rule T102: Top nodes with highest far-out | clock
@% Flow Non-Default Global Settings 2_ Fule T102: Top nodes with highest fan-out | clken
g :Z: floapsed Time 3_ Rule T102: Top nodes with highest fan-out | ach
w & Analysisg& Synthesis 4_ Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentlipm_divide_Bis:aul
+ @D Fitter 5_ Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentlipm_divide_Bis:aul
+1- ¢S50 Assembler |6 [Fule T102: Top nodes with highest fan-out | my_divider:instlipm_divide:lpm_divide_componentllpm_divide_Bis: aul
+ @D Timing Analyzer ?_ Fule T102: Top nodes with highest fan-out | denom(0]
= %a Design Assistant 8 | Rule T102: Top nodes with highest fan-out | my_divider:instllpm_divide: lpm_divide_componentllpr_divide_Bis: aul
@E Summary 9_ Fiule T102: Top nodes with highest fan-out | denom(1]
@E Seth:ngs o E Fiule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Gis: aul
@E Medium \f'lolahons E 11| Rule T102: Top nodes with highest fan-out | denom(3]
ég Information only Violations
59 Messages £ Fule T102: Top nodes with highest fan-out | my_divider:instlipr_divide: lpr_divide_componentilprm_divide_Bis: aul
= EDA Netist Writer E Fiule T102: Top nodes with highest fan-out | denom[2]
i Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
E Rule T102: Top nodes with highest fan-out | my_divider:instlipm_divide:lpr_divide_componentlipr_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
i Fule T102: Top nodes with highest fan-out | my_divider:instliprm_divide:lpm_divide_componentllpm_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
13| Rule T102: Top nodes with highest fan-out | my_divider:instllpm_divide: lpm_divide_componentlipm_divide_Bis: aul »
< >

Messages Report

The Messages report contains current information, warning, and error
messages generated during the Design Assistant process. You can
right-click a message in the Messages report and click Help to display the
Quartus II software Help with details about the selected message, or click
Locate to trace or cross-probe the selected node and locate the source of
the violation.

HardCopy Test Pins Report

The HardCopy Test Pins report appears only if you turn on Run Design
Assistant during compilation in the Design Assistant page, and if your
design violates the “Only One VREF Pin Should Be Assigned to
HardCopy Test Pin in an I/O Bank” rule (H101). The report lists all the
HardCopy design rule violations and all of the test pins in the HardCopy
device.

Altera Corporation
May 2008

5-43

Quartus Il Handbook, Volume 1

5-44

Rule Suppression Assignments Report

The Rule Suppression Assignments report contains detailed information
about which Design Assistant rules are enabled or disabled, as explained
in the “Enabling and Disabling Design Assistant Rules” on page 5-37.
The report shows you the following information:

B Assignment—shows the name of the assignment
B Value—identifies the rule
B To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report

The Ignored Design Assistant Assignments report lists detailed
information about the invalid and conflicting rule assignments reported
by the Design Assistant. Note that this report is generated only if you
specify an invalid rule ID in the rule suppression or a conflicting rule
assignment. The following information appears in the report:

Assignment—shows the name of the assignment
Value—identifies the rule

To—shows the name of the node where the rule is being applied
Comment—shows why the assignment is being ignored

Custom Rules Report

The Design Assistant Custom Rules report contains the names of the
custom rules used in the design checking, the path to the custom rules
files which the custom rules are read from, and the list of ignored custom
rules.

Custom Rules

In addition to the existing design rules that the Design Assistant offers,
you can also create your own rules and specify your own reporting
format in a text file (with any file extension) using the XML format. Then
you specify the path to that file in the Design Assistant settings page and
run the Design Assistant for violations checking.

For details about how to set the file path to your custom rules, refer to
“Specifying the Path to the Custom Rules File” on page 5-47.

This section explains the basics of writing a custom rule, the Design
Assistant settings, and provides coding examples on how to check for
clock relationship and node relationship in a design.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

XML File Format for Custom Rules

All XML commands in custom rules file must be written within the
<ROOT> and </ROOT > tags. Every user-define rule consists of three main
sections:

B Rule Attribute
B Rule Definition
B Reporting

The Rule Definition and the Reporting sections must be defined inside the
Rule Attribute section. Example 5-1 shows all three sections in a
pre-defined custom rule file.

= XML commands and attributes are case sensitive. However,
attribute values are not case sensitive.

Example 5-1. Predefined XML File Format for a Custom Rule

<ROOT>
<!-Start create a rule here -->
<!--Define rule attribute for a rule here -->

<DA RULE ID=<ruleid>NAME=<rulename> SEVERITY=<ruleseverity> DEFAULT RUN=<default run>
>

<RULE _DEFINITION>
<!--Define rule definition here -->
</RULE_DEFINITION>
<REPORTING>
<!--Define report settings here -->
</REPORTING>
</DA_RULE>

</ROOT>

Altera Corporation 5-45
May 2008

Quartus Il Handbook, Volume 1

The Rule Attribute section contains the name, ID, severity level, and
enable value of a rule. The order of these attributes is not important. This
section is enclosed within <DA_RULE> and </DA_RULE> tags. Table 5-3
describes the attributes of the Rule Attribute section.

Table 5-3. Attributes for the Rule Attribute Section

Attribute Description
ID The value for this attribute is string type and must be unique. This attribute is
required. For the list of IDs of the default rules, refer to Table 5-2 on page 5-19.
NAME The value for this attribute is string type. This attribute is optional.
SEVERITY This attribute presents the severity level of the rule. The value is string type and

can be CRITICAL, HIGH, MEDIUM, or INFORMATION. This attribute is
required.

For details about rule severity level, refer to “Message Severity Levels” on
page 5-18.

DEFAULT_RUN

The value is string type and can only be YES, or NO. If the value is YES, the rule
is included in the design rule check, and vice versa. By default, the value is YES.
This attribute is optional.

5-46

1= All string-type values must be enclosed within double quotes.

Command lines that begin with a single XML tag must end with
the “/>" sign before another command begins.

The Rule Definition section is where you declare the node properties and
the rule triggering conditions, enclosed by <RULE _DEFINITION> and
</RULE_DEFINITION> tags.

There are four subsections within the Rule Definition section that you can
use to declare the properties and conditions, as described in detail below.

B <DECLARE>—Global nodes that are used in the file are declared in
this subsection. Every node name must be unique.

'~ Anode declared outside of the <DECLARE> subsection is
considered a local node. You can perform local node declaration
at any place in the <BASIC>, <REQUIRED>, and <FORBID>
subsections, and can be performed using the node declaration
command directly without being enclosed within the
<DECLARE> tag.

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

B <BASIC>—This subsection contains the condition that acts like a
trigger point which the Design Assistant continuously checks for a
match. If the condition is fulfilled, the Design Assistant checks the
remaining conditions in the <REQUIRED> and <FORBID>
subsections.

B <REQUIRED>—This subsection contains the acceptable conditions
that your design must meet. If the condition is not fulfilled, the
Design Assistant reports a rule violation.

B <FORBID>—This subsection contains the undesirable condition for a
design. If the condition is fulfilled, the Design Assistant highlights a
rule violation. This subsection may be optional, depending on your
rule situation.

The Reporting section is where you describe the settings for rule violation
reporting, enclosed by <REPORTING> and </REPORTING> tags. This
section is optional. If there is no Reporting section defined, the violated
rule will not be reported. If the Reporting section is defined, the Design
Assistant reports the name of the violated rule and the nodes that violated
the rule according to the reporting format that you defined.

Specifying the Path to the Custom Rules File

For the Design Assistant to check for rule violations within your rules,
you must specify the path to the custom rule file.

1. To specify the path, on the Assignments menu, click Settings.

2. In the Category list, click Design Assistant and select Custom Rule
Settings.

3. On the Custom Rule Settings page, in the Project custom rule file
name field, specify the path to your custom rule file.

4. Click OK.

Now your rules are included together with the list of default Design
Assistant rules.

To specify the rules that you want the Design Assistant to check for
violations, refer to “The Design Assistant Settings Page” on page 5-17.

Altera Corporation 5-47
May 2008

Quartus Il Handbook, Volume 1

Targeting

Clock and
Register-Control
Architectural
Features

5-48

In addition to following general design guidelines, it is important to code
your design with the device architecture in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and
dedicated inputs. You should use the FPGA’s low-skew, high fan-out
dedicated routing where available. By assigning a clock input to one of
these dedicated clock pins or using a Quartus II logic option to assign
global routing, you can take advantage of the dedicated routing available
for clock signals.

In ASIC design, balancing clock delay as it is distributed across the device
is important. Because Altera FPGAs provides device-wide global clock
routing resources and dedicated inputs, there is no need to manually
balance delays on the clock network.

Altera recommends limiting the number of clocks in your design to the
number of dedicated global clock resources available in your FPGA.
Clocks feeding multiple locations that do not use global routing may
exhibit clock skew across the device that could lead to timing problems.
In addition, when you use combinational logic to generate an internal
clock, it adds delays on the clock line. In some cases, delay on a clock line
can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register (such as hold time requirements) are violated
and the design will not function correctly.

Current FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks and both PLL
outputs and internal clocks can drive various clock networks.

To reduce the clock skew within a given clock domain and ensure that
hold times are met within that clock domain, assign each clock signal to
one of the global high fan-out, low-skew clock networks in the FPGA
device. The Quartus II software automatically uses global routing for
high fan-out control signals, PLL outputs, and signals feeding the global
clock pins on the device. You can make explicit Global Signal logic
option settings by turning on the Global Signal option settings. On the

Altera Corporation
May 2008

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Assignment menu, click Assignment Editor. Use this option when it is
necessary to force the software to use the global routing for particular
signals.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally-generated clocks)
should drive only the clock input ports of registers. In older Altera device
families (such as FLEX® 10K and ACEX® 1K), if a clock signal feeds the
data ports of a register, the signal may not be able to use dedicated
routing, which can lead to decreased performance and clock skew
problems. In general, allowing clock signals to drive the data ports of
registers is not considered synchronous design, and can complicate
timing analysis. Altera does not recommend this practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

Register Control Signals

Avoid using an asynchronous load signal if the design target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals.
Stratix III devices, for example, directly support an asynchronous clear
function, but not a preset or load function. When the target device does
not directly support the signals, the synthesis or place-and-route software
must use combinational logic to implement the same functionality. In
addition, if you use signals in a priority other than the inherent priority
in the device architecture, combinational logic may be required to
implement the desired control signals. Combinational logic is less
efficient and can cause glitches and other problems; it is best to avoid
these implementations.

«® For Verilog HDL and VHDL examples of registers with various control
signals, and information about the inherent priority order of register
control signals in Altera device architecture, refer to the Recormmended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 5-49
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Quartus Il Handbook, Volume 1

Targ eti ng Altera’s dedicated memory architecture offers many advanced features
Embedded RAM that you can target easily using the MegaWizard® Plug-In Manager or
mobedde using the recommended HDL coding styles that infer the appropriate

Architectural RAM megafunction (altsyncram or altdpram). Altera recommends using
synchronous memory blocks for your design, so the blocks can be
Features mapped directly into the device dedicated memory blocks. You can

choose to use single-port, dual-port, or three-port RAM with a single- or
dual-clocking method. Asynchronous memory logic is not inferred as a
memory block or placed in the dedicated memory block, but is
implemented in regular logic cells.

Altera memory blocks have differing read-during-write behaviors,
depending on the targeted device family, memory mode and block type.
Read-during-write behavior refers to read and write from the same
memory address in the same clock cycle; for example, you read from the
same address to which you write in the same clock cycle.

It is important to check how you specify the memory in your HDL code
when you use read-during-write behavior. The HDL code describes that
the read returns either the old data at the memory location, or the new
data being written to the memory location. The old data refers to the data
stored in the memory location, and new data refers to the data that is
being written to the memory location.

In some cases, when the device architecture cannot implement the
memory behavior described in your HDL code, the memory block is not
mapped to the dedicated RAM blocks, or the memory block is
implemented using extra logic in addition to the dedicated RAM block.
Altera recommends that you implement the read-during-write behavior
using single-port RAM in Arria™ GX devices, Stratix and Cyclone® series
of devices to avoid this extra logic implementation.

«® For Verilog HDL and VHDL examples and guidelines for inferring RAM
functions that match the dedicated memory architecture in Altera
devices, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

In many synthesis tools, you can specify that the read-during-write
behavior is not important to your design; if, for example, you never read
and write from the same address in the same clock cycle. For Quartus II
integrated synthesis, add the synthesis attribute
ramstyle="no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the
read-during-write behavior specified in your HDL code. Using this type
of attribute prevents the synthesis tool from using extra logic to
implement the memory block, and in some cases, can allow memory
inference when it would otherwise be impossible.

5-50 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Conclusion

Altera Corporation
May 2008

For details about using the ramstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about the synthesis attributes in other synthesis tools, refer
to your synthesis tool documentation, or to the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Following the design practices described in this chapter can help you
meet your design goals consistently. Asynchronous design techniques
may result in incomplete timing analysis, may cause glitches on data
signals, and may rely on propagation delays in a device leading to race
conditions and unpredictable results. Taking advantage of the
architectural features in your FPGA device can also improve the quality
of your results.

5-51

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Quartus Il Handbook, Volume 1

Referenced This chapter references the following documents:
Documents B Design Guidelines for HardCopy Series Devices chapter in the HardCopy
Series Handbook
B Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook
B Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
B Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook
B Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook
Document Table 5-4 shows the revision history for this chapter.

Revision History

Table 5-4. Document Revision History (Part 1 of 3)

Date and
Document Changes Made Summary of Changes
Version
May 2008 e Updated Figure 5-9 on page 5-16; added custom rules file to | Updated for Quartus Il
v8.0.0 the flow software version 8.0
o Added notes to Figure 5-9 on page 5-16 release.
o Added new section: “Custom Rules Report” on page 5-44
o Added new section: “Custom Rules” on page 5-44
o Added new section: “Targeting Embedded RAM Architectural

Features” on page 5-50

Minor editorial updates throughout the chapter

Added hyperlinks to referenced documents throughout the
chapter

October 2007 | @ Added restrictions to the rule “External Reset Should Be Updated for Quartus I

v7.2.0 Synchronized Using Two Cascaded Registers” on page 5-28 software version 7.2

e Added Figure 5-11 and 5-10 on page 529 release.

® Some changes regarding the Delay Chain rule description
(page 5-21)

o Added hyperlinks to referenced documents

5-52 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Table 5-4. Document Revision History (Part 2 of 3)

Date and
Document Changes Made Summary of Changes
Version
May 2007 e Changed chapter name to Design Recommendations for Altera | Updated for Quartus Il
v7.1.0 Devices and the Quartus Il Design Assistant software version 7.1.
e Removed Hierarchical Design Partitioning section
o Updated Design Assistant Rules on page 5-19
o Added Finite State Machine Rules on page 5-36
e Added Enabling and Disabling Design Assistant Rules on
page 5-38
o Added Rule Suppression Assignments Report on page 5-45
e Added Ignored Design Assistant Assignments Report on
page 5-45
e Updated Table 5-2
o Added Referenced Documents on page 5—47
March 2007 | Updated Quartus |l software 7.0 revision and date only. No other —
v7.0.0 changes made to chapter.
November Added the following sections (with additional subsections): Quartus Il software
2006 ® “Checking Design Violations Using the Design Assistant” version 6.1 added the
v6.1.0 e “Quartus Il Design Flow with the Design Assistant’ Design Assistant; the bulk
e “The Design Assistant Page” of the changes to this
® “Message Severity Levels” chapter are related to this
o “Design Assistant Rules” update.
e “Viewing Design Assistant Results”
May 2006 Minor updates for the Quartus Il version 6.0. -
v6.0.0
October 2005 | Updated for the Quartus Il software version 5.1. —
v5.1.0
May 2005 Chapter 5 was formerly Chapter 4 in version 4.2. —
v.5.0.0

Altera Corporation

May 2008

5-53

Quartus Il Handbook, Volume 1

Table 5-4. Document Revision History (Part 3 of 3)

Date and
Document Changes Made Summary of Changes
Version
December Updated for Quartus Il software version 4.2: —_
2004 v2.1 o Chapter 5 was formerly Chapter 6 in version 4.1.
o General formatting and editing updates.
o Updated hardware requirements for the Quartus Il Timing
Analyzer.
o Added timing requirements and analysis details.
o Updated Design Guidelines.
o Added information about performing timing analysis on
asynchronous ports.
o Added inferred latches information.
e Updated Delay Chains description.
e Updated figures, tables.
o Added Clocking Schemes information.
o Added details to Multiplexed Clocks details.
o Added clock gating details.
o Updated Hierarchical Design Partitioning to include synthesis
and incremental synthesis.
e Added global routing information.
June 2004 e Updates to tables, figures, coding examples. —
v.2.0 o New functionality for Quartus Il software 4.1.
February Initial release. -
2004 v1.0
5-54 Altera Corporation

May 2008

- R ded HDL
ZA\”] —ED A 6. Recommende

Coding Styles

®

Q1151007-8.0.0

Introduction

Altera Corporation
May 2008

HDL coding styles can have a significant effect on the quality of results
that you achieve for programmable logic designs. Synthesis tools
optimize HDL code for both logic utilization and performance. However,
sometimes the best optimizations require human understanding of the
design, and synthesis tools have no information about the purpose or
intent of the design. You are often in the best position to improve your
quality of results.

This chapter addresses HDL coding style recommendations to ensure
optimal synthesis results when targeting Altera® devices, including the
following sections:

B “Quartus II Language Templates” on page 62

B “Using Altera Megafunctions” on page 6-3

B “Instantiating Altera Megafunctions in HDL Code” on page 6—4

B “Inferring Multiplier and DSP Functions from HDL Code” on
page 6-7

B “Inferring Memory Functions from HDL Code” on page 613

B “Coding Guidelines for Registers and Latches” on page 6-40

B “General Coding Guidelines” on page 6-52

B “Designing with Low-Level Primitives” on page 6-81

For additional guidelines on structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook. For additional
hand-crafted techniques you can use to optimize design blocks for the
adaptive logic modules (ALMs) in many Altera devices, including a
collection of circuit building blocks and related discussions, refer to the
Advanced Synthesis Cookbook: A Design Guide for Stratix I and Stratix 111
Devices.

For style recommendations, options, or HDL attributes specific to your
synthesis tool (including Quartus® Il Integrated Synthesis and other EDA
tools), refer to the tool vendor’s documentation or the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Quartus Il Handbook, Volume 1

Quartus I
Language
Templates

The Quartus II software provides Verilog HDL, VHDL, AHDL, Tel script,
and megafunction language templates that can help you with your
design.

Many of the Verilog HDL and VHDL examples in this document
correspond with examples in the templates. You can easily insert
examples from this document into your HDL source code using the Insert
Template dialog box in the Quartus I user interface, shown in Figure 6-1.

To open the Insert Template dialog box when you have a file open in the
Quartus II Text Editor, on the Edit menu, click Insert Template.
Alternatively, you can right-click in the Text Editor window and choose
Insert Template.

Figure 6-1. Insert Template Dialog Box

Insert Template @

Language templates:

Preview:

= Werilog HDL
=I- Full Designs
-1- RAMs and ROMs

Single i

Simple Dual Port Rk [zim
Simple Dual Port Rk [du:
True Dual Port Rak [zingle
True Dual Port Rak [dual

+- Design Units
+- Declarations
+- Module Items
+- Sequential Statements
+|- Expressions
+- Logic
Synthesis Attributes
Altera Primitives

¥

¥

#f Quartus II Werilog Template
/7 Single port RAM with single read/write address

B module single_paort_ram
=2

input [(DATA_WIDTH-1):0] data,
input [(ADDR_WIDTH-1):0] addr,
input we, clk,

output [{DATA_WIDTH-1):0] q

Single Port RO
Diual Port ROM parameter DATA_WIDTH = §;
+1- Shift Registers pararmeter ADDR_WIDTH = 6;
#)- State Machines #f Declare the RAM variable
+- Arithmetic reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];
—I- Constructs

/f Wariable to hold the registered read address
req [ADDR_WIDTH-1:0] addr_req;

always @ (posedge clk)
begin
A irite
if {we)
ram[addr] <= data;

addr_reg <= addr;

User end
+- Systemieriog ff Continuous assignment implies read returns NEW data,
+ YHDL #f This is the natural behavior of the TriMatriz memory
+- AHDL /f blocks in Single Port mode.
+- Quartus |1 TCL assign g = ram[addr_req];
- TCL

drnodul
+- Commands Enamedule

< ¥

Ingert Cloze

6-2

Altera Corporation

Recommended HDL Coding Styles

Using Altera Altera provides parameterizable megafunctions that are optimized for
. Altera device architectures. Using megafunctions instead of coding your
Me gafu nctions own logic saves valuable design time. Additionally, the Altera-provided
megafunctions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size and set various
options by setting parameters. Megafunctions include the library of
parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as
described in “Instantiating Altera Megafunctions in HDL Code” on
page 6-4.

Sometimes it is preferable to make your code independent of device
family or vendor. In this case, you might not want to instantiate
megafunctions directly. For some types of logic functions, such as
memories and DSP functions, you can infer a megafunction instead of
instantiating it. Synthesis tools, including Quartus Il integrated synthesis,
recognize certain types of HDL code and automatically infer the
appropriate megafunction. The synthesis tool uses the Altera
megafunction code when compiling your design—even when you do not
specifically instantiate the megafunction. Synthesis tools infer
megafunctions to take advantage of logic that is optimized for Altera
devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of
instantiating a megafunction, follow the guidelines and coding examples
in “Inferring Multiplier and DSP Functions from HDL Code” on page 6-7
and “Inferring Memory Functions from HDL Code” on page 6-13 to
ensure your HDL code infers the appropriate Altera megafunction.

I You must use megafunctions to access some Altera
device-specific architecture features. You can infer or instantiate
megafunctions to target some features such as memory and DSP
blocks. You must instantiate megafunctions to target certain
device and high-speed features such as LVDS drivers, PLLs,
transceivers, and double-data rate input/output (DDIO)
circuitry.

Altera Corporation 6-3
May 2008

Quartus Il Handbook, Volume 1

Instantiating
Altera
Megafunctions
in HDL Code

6-4

For some designs, generic HDL code can provide better results than
instantiating a megafunction. Refer to the following general guidelines
and examples that describe when to use standard HDL code and when to
use megafunctions:

B For simple addition or subtraction functions, use the + or - symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations can result in a less efficient result because the
function is hard coded and the synthesis algorithms cannot take
advantage of basic logic optimizations.

B For simple multiplexers and decoders, use array notation (such as
out = data[sell)instead of an LPM function. Array notation
works very well and has simple syntax. You can use the 1pm mux
function to take advantage of architectural features such as cascade
chains in APEX" series devices, but use the LPM function only if you
understand the device architecture in detail and want to force a
specific implementation.

B Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplication creatively to
produce division results.

The following sections describe how to use megafunctions by
instantiating them in your HDL code with the following methods:

B “Instantiating Megafunctions Using the MegaWizard Plug-In
Manager”—You can use the MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

B “Creating a Netlist File for Other Synthesis Tools”—You can
optionally create a netlist file instead of a wrapper file.

B “Instantiating Megafunctions Using the Port and Parameter
Definition”—You can instantiate the function directly in your HDL
code.

Instantiating Megafunctions Using the MegaWizard Plug-In
Manager

Use the MegaWizard Plug-In Manager as described in this section to
create megafunctions in the Quartus II GUI that you can instantiate in
your HDL code. The MegaWizard Plug-In Manager provides a graphical
user interface to customize and parameterize megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, you can specify which files you want to be generated.
Depending on which language you choose, the MegaWizard Plug-In

Altera Corporation
May 2008

Recommended HDL Coding Styles

Manager instantiates the megafunction with the correct parameters and
generates a megafunction variation file (wrapper file) in Verilog HDL (.v),
VHDL (.vhd), or AHDL (.tdf) along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the
following files:

B Asample instantiation template for the language of the variation file
(Uinst.v | vhd | tdf).

B Component Declaration File (.cmp) that can be used in VHDL

Design Files

ADHL Include File (.inc) that can be used in Text Design Files (.tdf)

Quartus II Block Symbol File (.bsf) for schematic designs

Verilog HDL module declaration file that can be used when

instantiating the megafunction as a black box in a third-party

synthesis tool (_bb.v).

B If you enable the option to generate a synthesis area and timing
estimation netlist, the MegaWizard Plug-In Manager generates an
additional synthesis netlist file (_syn.v). Refer to “Creating a Netlist
File for Other Synthesis Tools” on page 66 for details.

Refer to Table 6-1 for a list and description of files generated by the
MegaWizard Plug-In Manager.

Table 6-1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL
design.

<output file>tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an
AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus Il Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module

in the megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the
megafunction wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the
subdesign in the megafunction wrapper file.

Altera Corporation 6-5
May 2008

Quartus Il Handbook, Volume 1

Table 6-1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File

Description

<output file>_bb.v

Black box Verilog HDL Module Declaration—Hollow-body module declaration that
can be used in Verilog HDL designs to specify port directions when creating black
boxes in third-party synthesis tools.

<output file>_syn.v (2)

Synthesis area and timing estimation netlist—Megafunction netlist used by certain
third-party synthesis tools to improve area and timing estimations.

Notes to Table 6-1:

(1) The MegaWizard Plug-In Manager generates either the Verilog HDL, VHDL, or AHDL Variation Wrapper File,
depending on the language you select for the output file on the megafunction-selection page of the wizard.

(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate a synthesis area and timing
estimation netlist option on the EDA page of the wizard.

6-6

Creating a Netlist File for Other Synthesis Tools

When you use certain megafunctions with third-party EDA synthesis
tools (that is, tools other than Quartus II integrated synthesis), you can
optionally create a netlist for area and timing estimation instead of a
wrapper file.

The netlist file is a representation of the customized logic used in the
Quartus II software. The file provides the connectivity of architectural
elements in the megafunction but may not represent true functionality.
This information enables certain third-party synthesis tools to better
report area and timing estimates. In addition, synthesis tools can use the
timing information to focus timing-driven optimizations and improve the
quality of results.

To generate the netlist, turn on Generate a synthesis area and timing
estimation netlist on the EDA page of the MegaWizard Plug-In Manager.
The netlist file is called <output file>_syn.v. If you use this netlist for
synthesis, you must include the megafunction wrapper file

<output file>.v | vhd in your Quartus II project for placement and routing.

Your synthesis tool may call the Quartus II software in the background to
generate this netlist, so you might not be required to perform the extra
step of turning on this option.

For information about support for area and timing estimation netlists in
your synthesis tool, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp

Recommended HDL Coding Styles

Inferring
Multiplier and
DSP Functions
from HDL Code

Altera Corporation
May 2008

Instantiating Megafunctions Using the Port and Parameter
Definition

You can instantiate the megafunction directly in your Verilog HDL,
VHDL, or AHDL code by calling the megafunction and setting its
parameters as you would any other module, component, or subdesign.

Refer to the specific megafunction in the Quartus II Help for a list of the
megafunction ports and parameters. Quartus II Help also provides a
sample VHDL component declaration and AHDL function prototype for
each megafunction.

I Altera strongly recommends that you use the MegaWizard
Plug-In Manager for complex megafunctions such as PLLs,
transceivers, and LVDS drivers. For details on using the
MegaWizard Plug-In Manager, refer to “Instantiating
Megafunctions Using the MegaWizard Plug-In Manager” on
page 6—4.

The following sections describe how to infer multiplier and DSP
functions from generic HDL code, and, if applicable, how to target the
dedicated DSP block architecture in Altera devices:

B “Multipliers—Inferring the Ipm_mult Megafunction from HDL
Code” on page 6-7

B “Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code” on
page 6-10

For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Multipliers—Inferring the Ilpm_mult Megafunction from HDL
Code

To infer multiplier functions, synthesis tools look for multipliers and
convert them to 1pm mult or altmult add megafunctions, or may
map them directly to device atoms. For devices with DSP blocks, the
software can implement the function in a DSP block instead of logic,

6-7

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/lit-qts.jsp

Quartus Il Handbook, Volume 1

depending on device utilization. The Quartus II Fitter can also place
input and output registers in DSP blocks (that is, perform register
packing) to improve performance and area utilization.

For additional information about the DSP block and the supported
functions, refer to the appropriate Altera device family handbook and
Altera’s DSP Solutions Center website.

The following four code samples show Verilog HDL and VHDL examples
for unsigned and signed multipliers that synthesis tools can infer as an
lpm mult or altmult_add megafunction. Each example fits into one
DSP block 9-bit element. In addition, when register packing occurs, no
extra logic cells for registers are required.

= The signed declaration in Verilog HDL is a feature of the
Verilog 2001 Standard.

Example 6-1. Verilog HDL Unsigned Multiplier

module unsigned mult (out, a, b);

output [15:0] out;

input [7:0] a;

input [7:0] b;

assign out = a * b;
endmodule

Example 6-2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed mult (out, clk, a, b);

output [15:0] out;
input clk;

input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)

begin
a_reg <= a;
b_reg <= b;
out <= mult_out;
end
endmodule
6-8 Altera Corporation

May 2008

http://www.altera.com/technology/dsp/dsp-index.jsp

Recommended HDL Coding Styles

Example 6-3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY unsigned mult IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO O0) ;
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)
END unsigned mult;

ARCHITECTURE rtl OF unsigned mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO O0) ;
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr ='1l') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = 'l') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;
END IF;
END PROCESS;
END rtl;

Example 6-4. VHDL Signed Multiplier
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed mult IS
PORT (
a: IN SIGNED (7 DOWNTO O0) ;
b: IN SIGNED (7 DOWNTO O0) ;
result: OUT SIGNED (15 DOWNTO 0)
)
END signed mult;

BEGIN
result <= a * b;
END rtl;
Altera Corporation 6-9

May 2008

Quartus Il Handbook, Volume 1

6-10

Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively, or may map them directly to device atoms. The Quartus II
software then places these functions in DSP blocks during placement and
routing.

s Synthesis tools infer multiply-accumulator and multiply-adder
functions only if the Altera device family has dedicated DSP
blocks that support these functions.

A multiply-accumulator consists of a multiplier feeding an addition
operator. The addition operator feeds a set of registers that then feeds the
second input to the addition operator. A multiply-adder consists of two
to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level
operator, if it is used. In addition to the multiply-accumulator and
multiply-adder, the Quartus II Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance
and area utilization.

The Verilog HDL and VHDL code samples shown in Examples 6-5
through 6-8 infer specific multiply-accumulators and multiply-adders.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 6-5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers

(Latency = 3)

module unsig altmult accum (dataout,

input [7:0] dataa;
input [7:0] datab;
input clk;

input aclr;

input clken;

output [31:0] dataout;
reg [31:0] dataout;
reg [7:0] dataa_reg;

[
reg [7:0] datab_reg;
reg [15:0] multa reg;
wire [15:0] multa;
wire [31:0] adder out;

assign multa = dataa_reg * datab_reg;
assign adder out = multa reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)

begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa reg <= 16'b0;
dataout <= 32'b0;

end

else if

begin
dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_ out;

end

end
endmodule

(clken)

dataa,

datab,

clk,

aclr, clken);

Example 6-6. Verilog HDL Signed Multiply-Adder (Latency = 0)

module sig_altmult_add (dataa, datab, datac, datad, result);

input signed [15:0] dataa;
input signed [15:0] datab;
input signed [15:0] datac;
input signed [15:0] datad;
output [32:0] result;

wire signed [31:0] multO_result;
wire signed [31:0] multl_result;

assign multO_result = dataa * datab;

assign multl_result = datac * datad;

assign result =
endmodule

(mult0_result + multl_result);

Altera Corporation
May 2008

6-11

Quartus Il Handbook, Volume 1

Example 6-7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO 0) ;
0)
0)

i

c: IN UNSIGNED (7 DOWNTO
d: IN UNSIGNED (7 DOWNTO
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)i
END unsignedmult_add;

i

ARCHITECTURE rtl OF unsignedmult_add IS

SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED

(7 DOWNTO O0) ;

SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO O0) ;

SIGNAL result_reg: UNSIGNED (15 DOWNTO O0) ;

BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = '1l') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');
ELSIF (clk'event AND clk = 'l') THEN
a_reg <= aj
b_reg <= b;
c_reg <= c;
d_reg <= d;

pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;
END IF;
END PROCESS;
result <= result_reg;
END rtl;

6-12

Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 6-8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (
a: IN SIGNED (7 DOWNTO 0) ;
b: IN SIGNED (7 DOWNTO O0) ;
clk: IN STD LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)
)

END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b _reg: SIGNED (7 DOWNTO 0) ;
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0) ;
SIGNAL adder_out: SIGNED (15 DOWNTO 0) ;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'event and clk = '1l') THEN

a_reg <= (a);
b_reg <= (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;

accum_out <= adder_out;

END rtl;

|nfe rri ng The following sections describe how to infer memory functions from
generic HDL code and, if applicable, to target the dedicated memory

M emo rv architecture in Altera devices:

Functions from

HDL Code

Altera Corporation
May 2008

B “RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code” on page 6-14

B “ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code” on page 6-31

B “Shift Registers—Inferring the altshift_taps Megafunction from HDL
Code” on page 6-36

For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Altera’s dedicated memory architecture offers a number of advanced
features that can be easily targeted using the MegaWizard Plug-In
Manager as described in “Instantiating Altera Megafunctions in HDL
Code” on page 6—4. The coding recommendations in the following

6-13

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/lit-qts.jsp

Quartus Il Handbook, Volume 1

6-14

sections provide portable examples of generic HDL code that infer the
appropriate megafunction. However, if you want to use some of the
advanced memory features in Altera devices, consider using the
megafunction directly so that you can control the ports and parameters
more easily.

RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the ALTSYNCRAM or ALTDPRAM
megafunctions for device families that have dedicated RAM blocks, or
may map them directly to device memory atoms. Tools typically consider
all signals and variables that have a two-dimensional array type and then
create a RAM block, if applicable, based on the way the signals, variables,
or both are assigned, referenced, or both in the HDL source description.
This section provides examples that demonstrate the coding styles that
are inferred to create a memory block.

Standard synthesis tools recognize single-port and simple dual-port (one
read port and one write port) RAM blocks. Some tools (such as the
Quartus II software) also recognize true dual-port RAM blocks that map
to the memory blocks in certain Altera devices. Tools usually do not infer
small RAM blocks because small RAM blocks typically can be
implemented more efficiently using the registers in regular logic.
s If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any RAM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

If your design contains a RAM block that your synthesis tool
does not recognize and infer, the design might require a large
amount of system memory that potentially can cause
compilation problems.

Some synthesis tools provide options to control the implementation of
inferred RAM blocks for Altera devices with TriMatrix™ memory blocks.
For example, Quartus II integrated synthesis provides the ramstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block. Quartus II
integrated synthesis does not map inferred memory into Stratix® III
MLABSs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

For details about using the ramstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus I Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus Il Handbook.

When you are using a formal verification flow, Altera recommends that
you create RAM blocks in separate entities or modules that contain only
the RAM logic. In certain formal verification flows, for example, when
using Quartus Il integrated synthesis, the entity or module containing the
inferred RAM is put into a black box automatically because formal
verification tools do not support RAM blocks. The Quartus II software
issues a warning message when this occurs. If the entity or module
contains any additional logic outside the RAM block, this logic also must
be treated as a black box for formal verification and therefore cannot be
verified.

The following subsections present several guidelines for inferring RAM
functions that match the dedicated memory architecture in Altera
devices, and then provides recommended HDL code for different types of
memory logic.

Use Synchronous Memory Blocks

Altera recommends using synchronous memory blocks for Altera
designs. The TriMatrix memory blocks in Altera’s newest devices are
synchronous, so RAM designs that are targeted towards architectures
that contain these dedicated memory blocks must be synchronous to be
mapped directly into the device architecture. For these devices,
asynchronous memory logic is implemented in regular logic cells.

Synchronous memories are supported in all Altera device families. A
memory block is considered synchronous if it uses one of the following
read behaviors:

B Memory read occurs in a Verilog always block with a clock signal or
a VHDL clocked process.

B Memory read occurs outside a clocked block, but there is a
synchronous read address (that is, the address used in the read
statement is registered). This type of logic is not always inferred as a
memory block, depending on the target device architecture.

s The synchronous memory structures in Altera devices differ
from the structures in other vendors’ devices. Match your
design to the target device architecture to achieve the best
results.

6-15

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/lit-qts.jsp

Quartus Il Handbook, Volume 1

Later subsections provide coding recommendations for various memory
types. All of these examples are synchronous to ensure that they can be
directly mapped into the dedicated memory architecture available in
Altera FPGAs.

For additional information about the dedicated memory blocks in your
specific device, refer to the appropriate Altera device family data sheet
on the Altera website at www.altera.com.

Avoid Unsupported Reset and Control Conditions

To ensure that your HDL code can be implemented in the target device
architecture, avoid unsupported reset conditions or other control logic
that does not exist in the device architecture.

The RAM contents of Altera memory blocks cannot be cleared with a reset
signal during device operation. If your HDL code describes a RAM with
a reset signal for the RAM contents, the logic is implemented in regular
logic cells instead of a memory block. As a general rule, avoid putting
RAM read or write operations in an always block or process block with a
reset signal. If you want to specify memory contents, initialize the
memory as described in “Specifying Initial Memory Contents at
Power-Up” on page 6-29 or write the data to the RAM during device
operation.

Example 6-9 shows an example of undesirable code where there is a reset
signal that clears part of the RAM contents. Avoid this coding style
because it is not supported in Altera memories.

Example 6-9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture

modu

(

le clear_ram

input clock,

input reset,

input we,

input [7:0] data_in,
input [4:0] address,

output reg [7:0] data out

reg [7:0] mem [0:31]
integer i;

i

always @ (posedge clock or posedge reset)

begin
if (reset == 1'bl)
mem [address] <= 0;
else if (we == 1'bl)

mem [address]

<= data_in;

data_out <= mem[address];

end

endmodule

6-16

Altera Corporation
May 2008

http://www.altera.com

Recommended HDL Coding Styles

Example 6-10 shows an example of undesirable code where the reset
signal affects the RAM, although the effect may not be intended. Avoid
this coding style because it is not supported in Altera memories.

Example 6-10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture

module bad reset

(
input clock,
input reset,
input we,
input [7:0]
input [4:0]

output reg [7:0] data out,

input d,

output reg gq

reg [7:0] mem [0:31];

integer 1i;

always @ (posedge clock or posedge reset)

begin
if (reset == 1'bl)
q <= 0;
else
begin
if (we == 1'bl)
mem[address] <= data_in;
data_out <= mem[address];
q <= d;
end
end
endmodule

Altera Corporation
May 2008

In addition to reset signals, other control logic can prevent memory logic
from being inferred as a memory block. For example, you cannot use a
clock enable on the read address registers in Stratix devices, because
doing so affects the output latch of the RAM, and therefore the
synthesized result in the device RAM architecture would not match the
HDL description. In Stratix II, Cyclone® II, Arria™ GX, and other newer
devices, however, you can use the address stall feature as a read address
clock enable, so there is no such limitation. Check the documentation on
your device architecture to ensure that your code matches the hardware
available in the device.

Check Read-During-Write Behavior

It is important to check the read-during-write behavior of the memory
block described in your HDL design as compared to the behavior in your
target device architecture. Your HDL source code specifies the memory

6-17

Quartus Il Handbook, Volume 1

6-18

behavior when you read and write from the same memory address in the
same clock cycle. The code specifies that the read returns either the old
data at the address, or the new data being written to the address. This is
referred to as the read-during-write behavior of the memory block. Altera
memory blocks have different read-during-write behavior depending on
the target device family, memory mode, and block type.

Synthesis tools map an HDL design into the target device architecture,
with the goal of maintaining the functionality described in your source
code. Therefore, if your source code specifies unsupported
read-during-write behavior for the device RAM blocks, the software must
implement the logic outside the RAM hardware in regular logic cells.

One common problem occurs when there is a continuous read in the HDL
code, as shown in the following samples. You should avoid using these
coding styles.

//Verilog HDL concurrent signal assignment
assign g = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr reg);

When a write operation occurs, this type of HDL implies that the read
should immediately reflect the new data at the address, independent of
the read clock. However, that is not the behavior of TriMatrix memory
blocks. In the device architecture, the new data is not available until the
next edge of the read clock. Therefore, if the synthesis tool mapped the
logic directly to a TriMatrix memory block, the device functionality and
gate-level simulation results would not match the HDL description or
function simulation results. If the write clock and read clock are the same,
the synthesis tool can infer memory blocks and add extra bypass logic so
that the device behavior does match the HDL behavior. If the write and
read clocks are different, the synthesis tool cannot reliably add bypass
logic, so the logic is implemented in regular logic cells instead of
dedicated RAM blocks. The examples in the following sections discuss
some of these differences for read-during-write conditions.

In many synthesis tools, you can specify that the read-during-write
behavior is not important to your design; for example, if you never read
from the same address to which you write in the same clock cycle. For
Quartus II integrated synthesis, add the synthesis attribute

ramstyle="no rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block, and
in some cases, can allow memory inference when it would otherwise be
impossible.

Altera Corporation
May 2008

Recommended HDL Coding Styles

«® For more information about attribute syntax, the no_rw_check
attribute value, or specific options for your synthesis tool, refer to your
synthesis tool documentation or to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following subsections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior
and addresses the support for the memory type in Altera devices.

Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code that
infers simple dual-port, single-clock synchronous RAM. Single-port
RAM blocks use a similar coding style.

The read-during-write behavior in these examples is to read the old data
at the memory address. Refer to “Check Read-During-Write Behavior” on
page 6-17 for details. Altera recommends that you use this coding style
as long as your design does not require that a simultaneous read and
write to the same RAM location read the new value that is currently being
written to that RAM location.

If you require that the read-during-write results in new data, refer to
“Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior” on page 6-21.

The simple dual-port RAM code samples shown in Examples 6-11 and
6-12 map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read
address and write address signals) can allow better RAM utilization than
dual-port memory blocks, depending on the device family.

Altera Corporation 6-19
May 2008

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/lit-qts.jsp

Quartus Il Handbook, Volume 1

Example 6-11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-
Write Behavior
module single_clk ram(

output reg [7:0] g,

input [7:0] 4,

input [6:0] write_address, read_address,

input we, clk

reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)
mem[write address] <= d;
g <= mem[read_address]; // g doesn't get d in this clock cycle
end
endmodule

Example 6-12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write
Behavior

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
g: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
)i
END single_clock_ram;

ARCHITECTURE rtl OF single_clock ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (2 DOWNTO O0) ;
SIGNAL ram block: MEM;

BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = 'l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
q <= ram _block (read address) ;
-- VHDL semantics imply that g doesn't get data
-- in this clock cycle
END IF;
END PROCESS;
END rtl;
6-20 Altera Corporation

May 2008

Recommended HDL Coding Styles

Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

These examples describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being
written to that RAM location.

To implement this behavior in the target device, synthesis software adds
bypass logic around the RAM block. This bypass logic increases the area
utilization of the design and decreases the performance if the RAM block
is part of the design’s critical path. Refer to “Check Read-During-Write
Behavior” on page 6-17 for details. If this behavior is not required for
your design, use the examples from “Single-Clock Synchronous RAM
with Old Data Read-During-Write Behavior” on page 6-19.

The simple dual-port RAM examples shown in Examples 6-13 and 6-14
require bypass the software to create this logic around the RAM block.

Single-port versions of the Verilog memory block (that is, using the same
read address and write address signals) do not require any logic cells to
create bypass logic in Arria GX devices, and Stratix and Cyclone series of
devices, because the device memory supports new data
read-during-write behavior when in single-port mode (same clock, same
read and write address).

Example 6-13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior
module single clock wr ram(

output reg [7:0] g,

input [7:0] 4,

input [6:0] write_address, read_address,

input we, clk

reg [7:0] mem [127:0];

always @ (posedge clk) begin

if (we)
mem [write address] = d;
g = mem[read_address]; // g does get d in this clock cycle if we is high
end
endmodule
Note that Example 6-13 is similar to Example 611, but Example 6-13
uses a blocking assignment for the write so that the data is assigned
immediately.
Altera Corporation 6-21

May 2008

Quartus Il Handbook, Volume 1

6-22

An alternative way to create a single-clock RAM is to use an assign
statement to read the address of mem to create the output g, as shown in
the following coding style. By itself, the code describes new data
read-during-write behavior. However, if the RAM output feeds a register
in another hierarchy, then a read-during-write would result in the old
data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds
a hard hierarchical partition boundary. For this reason, avoid using this
alternate type of coding style.

reg [7:0] mem [127:0];
reg [6:0] read address_reg;

always @ (posedge clk) begin
if (we)
mem[write address] <= d;

read_address_reg <= read_address;
end

assign g = mem[read_address_reg];

The following VHDL sample (Example 6-14) uses a concurrent signal
assignment to read from the RAM. By itself, this example describes new
data read-during-write behavior. However, if the RAM output feeds a
register in another hierarchy, then a read-during-write would result in the
old data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds
a hard hierarchical partition boundary.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 6-14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write

Behavior
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single clock_rw_ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD LOGIC_VECTOR (2 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
g: OUT STD_LOGIC VECTOR (2 DOWNTO 0)

)

END single clock rw ram;

ARCHITECTURE rtl OF single clock_rw_ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (2 DOWNTO O0) ;
SIGNAL ram _block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = 'l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
read_address_reg <= read_address;
END IF;

END PROCESS;
g <= ram block(read address_regq) ;
END rtl;

This example does not infer a RAM block for the APEX series of devices,
ACEX®, or the FLEX® series of devices by default because the
read-during-write behavior depends on surrounding logic. For

Quartus II integrated synthesis, if you do not require the
read-through-write capability, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code.

Simple Dual-Port, Dual-Clock Synchronous RAM

In dual clock designs, synthesis tools cannot accurately infer the
read-during-write behavior because it depends on the timing of the two
clocks within the target device. Therefore, the read-during-write behavior
of the synthesized design is undefined and may differ from your original
HDL code. Refer to “Check Read-During-Write Behavior” on page 6-17
for details.

Altera Corporation 6-23
May 2008

Quartus Il Handbook, Volume 1

When Quartus II integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior. If this
functionality is acceptable in your design, you can avoid the warning by
adding the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM.

The code samples shown in Examples 6-15 and 6-16 show Verilog HDL
and VHDL code that infers dual-clock synchronous RAM. The exact
behavior depends on the relationship between the clocks.

Example 6-15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock ram(
output reg [7:0] g,
input [7:0] 4,
input [6:0] write_address, read_address,
input we, clkl, clk2

reg [6:0] read address_reg;
reg [7:0] mem [127:0];

always @ (posedge clkl)
begin
if (we)
mem[write_address] <= d;
end

always @ (posedge clk2) begin
g <= mem[read address_reg];
read_address_reg <= read_address;
end
endmodule

Example 6-16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock ram IS
PORT (
clockl, clock2: IN STD_LOGIC;
data: IN STD LOGIC_VECTOR (3 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
g: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
)
END dual_clock ram;
ARCHITECTURE rtl OF dual_clock ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (3 DOWNTO O0) ;
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clockl)
BEGIN
IF (clockl'event AND clockl = '1l') THEN
6—24 Altera Corporation

May 2008

Recommended HDL Coding Styles

IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
END IF;

END PROCESS;

PROCESS (clock2)

BEGIN

IF (clock2'event AND clock2 = 'l') THEN
g <= ram_block(read address_reg) ;
read_address_reg <= read_address;

END IF;
END PROCESS;
END rtl;

Altera Corporation
May 2008

True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code that
infers true dual-port synchronous RAM. Different synthesis tools may
differ in their support for these types of memories. This section describes
the inference rules for Quartus Il integrated synthesis. This type of RAM
inference is supported only for Arria GX devices, and the Stratix and
Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports,
allowing for operations on two unique addresses simultaneously. A read
operation and a write operation can share the same port if they share the
same address. The Quartus II software infers true dual-port RAMs in
Verilog HDL and VHDL with any combination of independent read or
write operations in the same clock cycle, with at most two unique port
addresses, performing two reads and one write, two writes and one read,
or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the
two ports. Therefore, if you write to the same location on both ports at the
same time, the result is indeterminate in the device architecture. You must
ensure your HDL code does not imply priority for writes to the memory
block, if you want the design to be implemented in a dedicated hardware
memory block. For example, if both ports are defined in the same process
block, the code is synthesized and simulated sequentially so there would
be a priority between the two ports. If your code does imply a priority, the
logic cannot be implemented in the device RAM blocks and is
implemented in regular logic cells.

You must also consider the read-during-write behavior of the RAM block,

to ensure that it can be mapped directly to the device RAM architecture.
Refer to “Check Read-During-Write Behavior” on page 617 for details.

6-25

Quartus Il Handbook, Volume 1

When a read and write operation occur on the same port for the same
addpress, the read operation may behave as follows:

B Read new data. This mode matches the behavior of TriMatrix
memory blocks.

B Read old data. This mode is supported only by Stratix IV, Stratix III,
and Cyclone III TriMatrix memory blocks. This behavior is not
possible in TriMatrix memory blocks of other families.

When a read and write operation occur on different ports for the same
address (also known as mixed port), the read operation may behave as
follows:

B Read new data. Quartus II integrated synthesis supports this mode
by creating bypass logic around the TriMatrix memory block.

B Read old data. This behavior is supported by TriMatrix memory
blocks.

The Verilog HDL single-clock code sample shown in Example 6-17 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-during-
write behavior because it depends on the relationship between the clocks.

Example 6-17. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_ port_ram single_ clock

(

6-26

input [(DATA_WIDTH-1) :0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_ b, clk,

output reg

parameter DATA WIDTH
parameter ADDR WIDTH

[(DATA_WIDTH-1):0] g a, g b

= 8;
- 6;

// Declare the RAM variable
reg [DATA_WIDTH*l:O] ram[2**ADDR_WIDTH71:O];

always @ (posedge clk)
begin // Port A

<= data_a;

if (we_a)
begin
ram[addr a]
g_a <= data_a;
end

Altera Corporation
May 2008

Recommended HDL Coding Styles

else

g_a <= ram[addr_al;
always @ (posedge clk)

begin // Port b
if (we_b)
begin
ram[addr b]

<= data_b;

g b <= data_b;

end
else
g b <=
end

endmodule

ram[addr bl ;

Altera Corporation
May 2008

If you use the Verilog HDL read statements shown below instead of the
if-else statements in Example 6-17, the HDL code specifies that the
read results in old data when a read and write operation occur at the same
time for the same address on the same port or mixed ports. This behavior
is supported only in the TriMatrix memories of Stratix IV, Stratix IIT and
Cyclone III devices, and is not inferred as memory for other device
families.

always @ (posedge clk)
begin // Port A
if (we_a)

ram[addr a] <= data_a;

g_a <= ram[addr_a]l;

end

always @ (posedge clk)
begin // Port B
if (we_b)

ram[addr b] <= data_b;

gq_b <= ram[addr_b];
end

The VHDL single-clock code sample shown in Example 6-18 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
different ports for the same address, the old data in the memory is read.
Because simultaneous writes to the same location on both ports results in
indeterminate behavior, Altera recommends that you avoid this
condition.

A dual-clock version of this design describes the same behavior, but the

memory in the target device will have undefined mixed port read-during-
write behavior because it depends on the relationship between the clocks.

6-27

Quartus Il Handbook, Volume 1

Example 6-18. VHDL True Dual-Port RAM with Single Clock

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram single_clock is

generic

(
DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

)

port

(
clk : in std logic;
addr_a: in natural range 0 to 2**ADDR WIDTH - 1;
addr _b: in natural range 0 to 2**ADDR WIDTH - 1;
data_a: in std _logic_vector ((DATA_WIDTH-1) downto 0);
data _b: in std logic_vector ((DATA WIDTH-1) downto O0);

we_a: in std_logic := '1';

we b: in std logic := '1';

g_a : out std_logic_vector ((DATA _WIDTH -1) downto 0);
qgb out std logic_vector ((DATA WIDTH -1) downto O0)

)i
end true dual port ram single clock;
architecture rtl of true_dual_port_ram single_clock is

-- Build a 2-D array type for the RAM
subtype word t is std logic_ vector ((DATA WIDTH-1) downto 0);
type memory t is addr_a(raddr'high downto 0) of word t;

-- Declare the RAM signal.
signal ram : memory_ t;

begin

process (clk)

begin
if (rising_edge (clk)) then -- Port A
if (we_a = '1') then
ram(addr_a) <= data_a;
-- Read-during-write on the same port returns NEW data
g_a <= data_a;
else
-- Read-during-write on the mixed port returns OLD data
g a <= ram(addr_a);
end if;
end if;

end process;

process (clk)

begin
if (rising_edge (clk)) then -- Port B
if(we_b = '1') then
ram(addr_b) <= data_b;
6-28 Altera Corporation

May 2008

Recommended HDL Coding Styles

-- Read-during-write on the same port returns NEW data
g b <= data_b;

else

-- Read-during-write on the mixed port returns OLD data

g_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;

Altera Corporation
May 2008

Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents
of an inferred memory.

=

Certain device memory types do not support initialized
memory, such as the M-RAM blocks in Stratix and Stratix II
devices.

There are slight power-up and initialization differences between
dedicated RAM blocks and the Stratix IIl MLAB memory due to
the continuous read of the MLAB. Altera dedicated RAM block
outputs always power-up to zero and are set to the initial value
on the first read. For example, if address 0 is pre-initialized to FF,
the RAM block powers up with the output at 0. A subsequent
read after power up from address 0 outputs the pre-initialized
value of FF. Therefore, if a RAM is powered up and an enable
(read enable or clock enable) is held low, then the power-up
output of 0 is maintained until the first valid read cycle. The
Stratix IIl MLAB is implemented using registers that power-up
to 0, but are initialized to their initial value immediately at
power-up or reset. You will therefore see the initial value
regardless of the enable status. Quartus II integrated synthesis
does not map inferred memory to MLABs unless the HDL code
specifies the appropriate ramstyle attribute.

Quartus Il integrated synthesis supports the ram_init_file synthesis
attribute that allows you to specify a Memory Initialization File (.mif) for
an inferred RAM block.

For information about the ram_init file attribute, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For information about synthesis attributes in other synthesis
tools, refer to the tool vendor’s documentation.

6-29

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Quartus Il Handbook, Volume 1

In Verilog HDL, you can use an initial block to initialize the contents of an
inferred memory. Quartus II integrated synthesis automatically converts
the initial block into a MIF for the inferred RAM. Example 6-19 shows
Verilog HDL code that infers a simple dual-port RAM block and
corresponding MIF file.

Example 6-19. Verilog HDL RAM with Initialized Contents

module ram_with_init(
output reg [7:0] g,
input [7:0] 4,

input [4:0] write_address, read_address,

input we, clk

reg [7:0] mem [0:31];
integer i;

initial begin

for (i = 0; 1 < 32; i =1 + 1)

mem[i] = i[7:0]
end

7

always @ (posedge clk) begin

if (we)

mem[write address] <= d;
g <= mem[read_address];

end
endmodule

Quartus Il integrated synthesis and other synthesis tools also support the
$readmemb and $readmemh commands so that RAM and ROM
initialization work identically in synthesis and simulation. Example 6-20
shows an initial block that initializes an inferred RAM block using the
$readmemb command.

Refer to the Verilog Language Reference Manual (LRM) 1364-2001
Section 17.2.8 for details about the format of the ram.txt file.

Example 6-20. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial

begin
Sreadmemb ("ram.txt", ram);

end
In VHDL, you can initialize the contents of an inferred memory by
specifying a default value for the corresponding signal. Quartus II
integrated synthesis automatically converts the default value into a MIF
for the inferred RAM. Example 6-21 shows VHDL code that infers a
simple dual-port RAM block and corresponding MIF file.

6-30 Altera Corporation

May 2008

Recommended HDL Coding Styles

Example 6-21. VHDL RAM with Initialized Contents

LIBRARY ieee;

USE
use

ieee.std_logic_1164.all;
ieee.numeric_std.all;

ENTITY ram with init IS

END;

PORT (
clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO O0) ;
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std logic;
g: OUT UNSIGNED (7 DOWNTO 0)) ;

ARCHITECTURE rtl OF ram with init IS

TYPE MEM IS ARRAY (31 DOWNTO 0) OF unsigned (7 DOWNTO O0) ;
FUNCTION initialize_ram

return MEM is

variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP
result (i) := to_unsigned(natural (i), natural'(8));
END LOOP;

RETURN result;
END initialize_ ram;

SIGNAL ram block : MEM := initialize_ram;
BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = '1l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
g <= ram block(read_address) ;
END IF;
END PROCESS;
END rtl;
ROM Functions—Inferring altsyncram and Ipm_rom
Megafunctions from HDL Code
To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or Ipm_rom megafunctions,
depending on the target device family, only for device families that have
dedicated memory blocks.
Altera Corporation 6-31

May 2008

Quartus Il Handbook, Volume 1

6-32

ROMs are inferred when a CASE statement exists in which a value is set
to a constant for every choice in the case statement. Because small ROMs
typically achieve the best performance when they are implemented using
the registers in regular logic, each ROM function must meet a minimum
size requirement to be inferred and placed into memory.

= If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any ROM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

Some synthesis tools provide options to control the implementation of
inferred ROM blocks for Altera devices with TriMatrix memory blocks.
For example, Quartus II integrated synthesis provides the romstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block.

For details about using the romstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that
you create ROM blocks in separate entities or modules that contain only
the ROM logic because you may need to treat the entity and module as a
black box during formal verification.

= Because formal verification tools do not support ROM
megafunctions, Quartus II integrated synthesis does not infer
ROM megafunctions when a formal verification tool is selected.

The Verilog HDL and VHDL code samples shown in Examples 6-22,
6-23, 6-24, and 6-25 infer synchronous ROM blocks. Depending on the
device family’s dedicated RAM architecture, the ROM logic may have to
be synchronous; consult the device family handbook for details.

For device architectures with synchronous RAM blocks, such as the
Stratix series devices and newer device families, either the address or the
output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the RAM block, but the functionality of the ROM is not changed. If you
register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the synthesis software
issues a warning. The Quartus II Help explains the condition under
which the functionality changes when you are using Quartus II
integrated synthesis.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Recommended HDL Coding Styles

These ROM code samples map directly to the Altera TriMatrix memory
architecture.

Example 6-22. Verilog HDL Synchronous ROM
module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin
case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data out = 6'b110110;

8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;
endcase
end
endmodule

Example 6-23. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY sync_rom IS
PORT (
clock: IN STD LOGIC;
address: IN STD LOGIC VECTOR (7 downto 0) ;
data out: OUT STD_LOGIC_VECTOR (5 downto 0)
)i
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
BEGIN
IF rising edge (clock) THEN
CASE address IS
WHEN "00000000" => data out <= "101111";
WHEN "00000001" => data out <= "110110";

WHEN "11111110" => data out <= "000001";
WHEN "11111111" => data out <= "101010";
WHEN OTHERS => data_out <= "101111";
END CASE;
END IF;
END PROCESS;
END rtl;

Altera Corporation 6-33
May 2008

Quartus Il Handbook, Volume 1

Example 6-24. Verilog HDL Dual-Port Synchronous ROM Using readmemb
module dual_port_rom (

input [(addr_width-1):0] addr_a, addr_b,

input clk,

output reg [(data_width-1):0] g a, g b

parameter data_width = 8;
parameter addr width = 8

reg [data_width-1:0] rom[2**addr width-1:0];

initial // Read the memory contents in the file dual port rom_init.txt.
begin

Sreadmemb ("dual_port rom init.txt", rom);
end

always @ (posedge clk)
begin
g_a <= rom[addr_al;
g b <= rom[addr b];
end
endmodule

Example 6-25. VHDL Dual-Port Synchronous ROM Using Initialization Function
library ieee;

use ieee.std logic_1164.all;

use ieee.numeric_std.all;

entity dual port_rom is

generic (
DATA WIDTH : natural := 8;
ADDR_WIDTH : natural := 6
)
port (
clk : in std_logic;

addr_a: in natural range 0 to 2**ADDR WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR WIDTH - 1;
q a : out std logic vector ((DATA WIDTH -1) downto 0);
g b : out std_logic_vector ((DATA_WIDTH -1) downto 0)
)
end entity;

architecture rtl of dual_port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector ((DATA_WIDTH-1) downto 0);
type memory t is array(addr a'high downto 0) of word t;

function init rom
return memory t is
variable tmp : memory t := (others => (others => '0'));
begin
for addr pos in 0 to 2**ADDR WIDTH - 1 loop
-- Initialize each address with the address itself
tmp (addr_pos) := std _logic vector (to unsigned(addr pos, \ DATA WIDTH)) ;
end loop;

6-34 Altera Corporation
May 2008

Recommended HDL Coding Styles

return tmp;
end init_rom;

-- Declare the ROM signal and specify a default initialization value.

signal rom : memory t := init rom;
begin

process (clk)

begin

if (rising edge(clk)) then
g_a <= rom(addr_a) ;
g b <= rom(addr_b) ;
end if;
end process;
library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity dual port_rom is
generic (

DATA WIDTH : natural := 8;
ADDR_WIDTH : natural := 6
)
port (
clk : in std_logic;

addr_a: in natural range 0 to 2**ADDR WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR WIDTH - 1;
q a : out std logic vector ((DATA WIDTH -1) downto 0);
g b : out std_logic_vector ((DATA_WIDTH -1) downto 0)
)
end entity;

architecture rtl of dual_ port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector ((DATA_WIDTH-1) downto 0);
type memory t is array(addr a'high downto 0) of word t;

function init rom
return memory t is
variable tmp : memory t := (others => (others => '0'));
begin
for addr pos in 0 to 2**ADDR WIDTH - 1 loop
-- Initialize each address with the address itself
tmp (addr pos) := std logic_vector (to _unsigned(addr pos, DATA WIDTH)) ;
end loop;
return tmp;
end init_rom;

-- Declare the ROM signal and specify a default initialization value.

signal rom : memory t := init rom;
begin

process (clk)

begin

if (rising edge(clk)) then
g_a <= rom(addr_a) ;
g b <= rom(addr_b) ;
end if;
end process;

Altera Corporation 6-35
May 2008

Quartus Il Handbook, Volume 1

6-36

Shift Registers—Inferring the altshift_taps Megafunction from
HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an ALTSHIFT_TAPS megafunction.
To be detected, all the shift registers must have the following
characteristics:

B Use the same clock and clock enable
B Do not have any other secondary signals
B Have equally spaced taps that are at least three registers apart

When you are using a formal verification flow, Altera recommends that
you create shift register blocks in separate entities or modules containing
only the shift register logic, because you may need to treat the entity or
module as a black box during formal verification.

= Because formal verification tools do not support shift register
megafunctions, the Quartus II integrated synthesis does not
infer the ALTSHIFT_TAPS megafunction when a formal
verification tool is selected. You can select EDA tools for use
with your Quartus II project on the EDA Tool Settings page of
the Settings dialog box.

For more information about the altshift_taps megafunction, refer to the
altshift_taps Megafunction User Guide.

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and the software uses certain guidelines to
determine the best implementation. The following guidelines are
followed in Quartus II integrated synthesis and also are generally
followed by other EDA tools:

B For FLEX 10K® and ACEX 1K devices, the software does not infer
ALTSHIFT_TAPS megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

B For APEX 20K and APEX II devices, the software infers the
ALTSHIFT_TAPS megafunction only if the shift register has more
than a total of 128 bits. Smaller shift registers typically do not benefit
from implementation in dedicated memory.

B For Arria GX devices, and the Stratix and Cyclone series devices, the
software determines whether to infer the ALTSHIFT_TAPS
megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N).

e If the registered bus width is one (W = 1), the software infers
ALTSHIFT_TAPS if the number of taps times the length between
each tap is greater than or equal to 64 (N x L > 64).

Altera Corporation
May 2008

http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Recommended HDL Coding Styles

e If the registered bus width is greater than one (W > 1), the
software infers ALTSHIFT_TAPS if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W x N x L > 32).

If the length between each tap (L) is not a power of two, the software uses
more logic to decode the read and write counters. This situation occurs
because for different sizes of shift registers, external decode logic that
uses logic elements (LEs) or Adaptive Logic Modules (ALMs) is required
to implement the function. This decode logic eliminates the performance
and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the ALTSHIFT_TAPS
megafunction and places in RAM are not available in a Verilog HDL or
VHDL output file for simulation tools because their node names do not
exist after synthesis.

Simple Shift Register

The code samples shown in Example 6-26 and Example 6-27 show a
simple, single-bit wide, 64-bit long shift register. The synthesis software
implements the register (W=1and M = 64) in an ALTSHIFT_TAPS
megafunction for supported devices. If the length of the register is less
than 64 bits, the software implements the shift register in logic.

Example 6-26. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
module shift 1x64 (clk, shift, sr_in, sr_out);

input clk, shift;

input sr_in;

output sr_out;

reg [63:0] sr;

always @ (posedge clk)

begin
if (shift == 1'bl)
begin
sr[63:1] <= sr([62:0];
sr[0] <= sr_in;
end
end
assign sr out = sr([63];
endmodule
Altera Corporation 6-37

May 2008

Quartus Il Handbook, Volume 1

Example 6-27. VHDL Single-Bit Wide, 64-Bit Long Shift Register
LIBRARY IEEE;
USE IEEE.STD_LOGIC 1164.all;
ENTITY shift 1x64 IS
PORT (
clk: IN STD LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD LOGIC;
sr_out: OUT STD_LOGIC
)i
END shift_lx64;

ARCHITECTURE arch OF Shift_lx64 IS
TYPE sr_ length IS ARRAY (63 DOWNTO 0) OF STD LOGIC;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN
sr (63 DOWNTO 1) <= sr (62 DOWNTO O0) ;
sr(0) <= sr_in;
END IF;
END IF;

END PROCESS;
sr_out <= sr(63);
END arch;

Shift Register with Evenly Spaced Taps

The code samples shown in Examples 6-28 and 6-29 show a Verilog HDL
and VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with
evenly spaced taps at 15, 31, and 47. The synthesis software implements
this function in a single ALTSHIFT_TAPS megafunction and maps it to
RAM in supported devices.

Example 6-28. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift 8x64 taps (clk, shift, sr in, sr out, sr tap one, sr_tap two, sr tap three);
input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap two, sr_tap_ three, sr_out;

reg [7:0] sr [63:0];
integer n;

always @ (posedge clk)

begin

if (shift == 1'bl)

begin
for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
6-38 Altera Corporation

May 2008

Recommended HDL Coding Styles

sr[0] <= sr_in;
end

end

assign sr_ tap one = sr([l15];

assign sr_tap_two = sr[31];

assign sr_tap three = sr[47];

assign sr_out = sr[63];
endmodule

Example 6-29. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
LIBRARY IEEE;
USE IEEE.STD_LOGIC 1164.all;
ENTITY shift 8x64_ taps IS
PORT (
clk: IN STD LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0) ;
sr_tap_one: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;
sr_tap_two : OUT STD LOGIC_VECTOR (7 DOWNTO 0) ;
sr_tap_three: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;
sr_out: OUT STD_LOGIC_VECTOR (7 DOWNTO O0)
)
END shift_ 8x64_taps;

ARCHITECTURE arch OF shift 8x64_ taps IS
SUBTYPE Sr_width Is STD_LOGIC_VECTOR(7 DOWNTO 0) ;
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_ width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk '1l') THEN
IF (shift = '1') THEN

sr (63 DOWNTO 1) <= sr (62 DOWNTO O0) ;
sr(0) <= sr_in;
END IF;
END IF;

END PROCESS;

sr_tap_one <= sr(15);

sr_tap_two <= sr(31);

sr_tap_ three <= sr(47);

sr_out <= sr(63);

END arch;

Altera Corporation 6-39
May 2008

Quartus Il Handbook, Volume 1

Codi ng This section provides device-specific coding recommendations for Altera
. . registers and latches. Understanding the architecture of the target Altera

Guidelines for device helps ensure that your code produces the expected results and

Reg isters and achieves the optimal quality of results.

Latches This section provides guidelines in the following areas:

B “Register Power-Up Values in Altera Devices”

B “Secondary Register Control Signals Such as Clear and Clock
Enable” on page 642

B “Latches” on page 6—46

Register Power-Up Values in Altera Devices

Registers in the device core always power up to a low (0) logic level on all
Altera devices. However, there are ways to implement logic such that
registers behave as if they were powering up to a high (1) logic level.

If you use a preset signal on a device that does not support presets in the
register architecture, then your synthesis tool may convert the preset
signal to a clear signal, which requires synthesis to perform an
optimization referred to as NOT gate push-back. NOT gate push-back adds
an inverter to the input and the output of the register so that the reset and
power-up conditions will appear to be high but the device operates as
expected. In this case, your synthesis tool may issue a message informing
you about the power-up condition. The register itself powers up low, but
the register output is inverted so the signal that arrives at all destinations
is high.

Due to these effects, if you specify a non-zero reset value, you may cause
your synthesis tool to use the asynchronous clear (ac1r) signals available
on the registers to implement the high bits with NOT gate push-back. In
that case, the registers look as though they power up to the specified reset
value. You see this behavior, for example, if your design targets

FLEX 10KE or ACEX devices.

When a load signal is available in the device, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or
0. When the synthesis tool uses an asynchronous load signal, it is not
performing NOT gate push-back, so the registers power up to a 0 logic
level.

«® For additional details, refer to the appropriate device family handbook
or the appropriate handbook of the Altera website at www.altera.com.

6—40 Altera Corporation
May 2008

Recommended HDL Coding Styles

Designers typically use an explicit reset signal for the design, which
forces all registers into their appropriate values after reset but not
necessarily at power-up. You can create your design such that the
asynchronous reset allows the board to operate in a safe condition and
then you can bring up the design with the reset active. This is a good
practice so you do not depend on the power-up conditions of the device.

You can make the your design more stable and avoid potential glitches by
synchronizing external or combinational logic of the device architecture
before you drive the asynchronous control ports of registers.

«® For additional information about good synchronous design practices,
refer to the Design Recommendations for Altera Devices and the Quartus 11
Design Assistant chapter in volume 1 of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, use
the synthesis options available in your synthesis tool. With Quartus II
integrated synthesis, you can apply the Power-Up Level logic option. You
can also apply the option with an altera_attribute assignment in
your source code. Using this option forces synthesis to perform NOT gate
push-back because synthesis tools cannot actually change the power-up
states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level
assignment to a specific register or to a design entity, module or
subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore you can use this assignment
to force all registers to power up to 1 using NOT gate push-back.

I'=~ Beaware that using NOT gate push-back as a global assignment
could slightly degrade the quality of results due to the number
of inverters that are needed. In some situations, issues are
caused by enable or secondary control logic inference. It may
also be more difficult to migrate such a design to an ASIC or a
HardCopy® device. You can simulate the power-up behavior in
a functional simulation if you use initialization.

e The Power-Up Level option and the altera_attribute assignment
are described in the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus Il Handbook.

Altera Corporation 6-41
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts.jsp

Quartus Il Handbook, Volume 1

Some synthesis tools can also read the default or initial values for
registered signals and implement this behavior in the device. For
example, Quartus II integrated synthesis converts default values for
registered signals into Power-Up Level settings. That way, the
synthesized behavior matches the power-up state of the HDL code
during a functional simulation.

For example, the code samples in Example 6-30 and Example 6-31 both
infer a register for g and set its power-up level to high (while the reset
value is 0).

Example 6-30. Verilog Register with Reset and High Power-Up Value
reg q = 1'bl;

always @ (posedge clk or posedge aclr)

begin
if (aclr)
g <= 1'b0;
else
q <= d;
end

Example 6-31. VHDL Register with Reset and High Power-Up Level

SIGNAL g : STD_LOGIC := 'l'; -- g has a default value of '1'

PROCESS (clk, reset)

BEGIN
IF (reset = 'l') THEN
q <= '0";
ELSIF (rising_edge(clk)) THEN
q <= d;
END IF;

END PROCESS;

Secondary Register Control Signals Such as Clear and Clock
Enable

FPGA device architectures contain registers, also known as “flipflops”.
The registers in Altera FPGAs provide a number of secondary control
signals (such as clear and enable signals) that you can use to implement
control logic for each register without using extra logic cells. Device
families vary in their support for secondary signals, so consult the device
family data sheet to verify which signals are available in your target
device.

6—-42 Altera Corporation
May 2008

Recommended HDL Coding Styles

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so
getting functionally correct results is always possible. However, if your
design requirements are flexible in terms of which control signals are
used and in what priority, match your design to the target device
architecture to achieve the most efficient results. If the priority of the
signals in your design is not the same as that of the target architecture,
then extra logic may be required to implement the control signals. This
extra logic uses additional device resources, and can cause additional
delays for the control signals.

In addition, there are certain cases where using logic other than the
dedicated control logic in the device architecture can have a larger
impact. For example, the clock enable signal has priority over the
synchronous reset or clear signal in the device architecture. The clock
enable turns off the clock line in the logic array block (LAB), and the clear
signal is synchronous. So in the device architecture, the synchronous clear
takes effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority
over the clock enable signal, the software must emulate the clock enable
functionality using data inputs to the registers. Because the signal does
not use the clock enable port of a register, you cannot apply a Clock
Enable Multicycle constraint. In this case, following the priority of signals
available in the device is clearly the best choice for the priority of these
control signals, and using a different priority causes unexpected results
with an assignment to the clock enable signal.

Il=~ The priority order for secondary control signals in Altera
devices differs from the order for other vendors’ devices. If your
design requirements are flexible regarding priority, verify that
the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors
and try to match your target device architecture to achieve the
best results.

Altera Corporation 6-43
May 2008

Quartus Il Handbook, Volume 1

The signal order is the same for all Altera device families, although as
noted previously, not all device families provide every signal. The
following priority order is observed:

Asynchronous Clear, aclr—highest priority
Preset, pre

Asynchronous Load, aload

Enable, ena

Synchronous Clear, sclr

Synchronous Load, sload

Data In, data—lowest priority

NG W

The following examples provide Verilog HDL and VHDL code that
creates a register with the aclr, aload, and ena control signals.

s The Verilog HDL example (Example 6-32) does not have adata
on the sensitivity list, but the VHDL example (Example 6-33)
does. This is a limitation of the Verilog HDL language—there is
no way to describe an asynchronous load signal (in which g
toggles if adata toggles while aload is high). All synthesis
tools should infer an aload signal from this construct despite
this limitation. When they perform such inference, you may see
information or warning messages from the synthesis tool.

Example 6-32. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
module dff control (clk, aclr, aload, ena, data, adata, q);

input clk, aclr, aload, ena, data, adata;

output q;

reg qi

always @ (posedge clk or posedge aclr or posedge aload)
begin
if (aclr)
g <= 1'b0;
else if (aload)
g <= adata;
else if (ena)
g <= data;
end
endmodule

6-44 Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 6-33. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals

LIBRARY
USE ieee

ENTITY d
PORT

ieee;
.std_logic_1164.all;

ff control IS
(

clk: IN STD_LOGIC;

ac

lr: IN STD_LOGIC;

aload: IN STD_LOGIC;
adata: IN STD_ LOGIC;
ena: IN STD LOGIC;

data: IN STD_LOGIC;

q:
)

END 4ff

OUT STD_LOGIC

control;

ARCHITECTURE rtl OF dff_control IS

BEGIN
PROCESS (clk, aclr, aload, adata)
BEGIN
IF (aclr = '1l') THEN
q <= "'0";
ELSIF (aload = 'l') THEN
g <= adata;
ELSE
IF (clk = '1l' AND clk'event) THEN
IF (ena ='1') THEN
q <= data;
END IF;
END IF;
END IF;
END PROCESS;
END rtl;

Altera Corporation
May 2008

The preset signal is not available in many device families, so the preset
signal is not included in the examples.

Creating many registers with different sload and sc1r signals can make
packing the registers into LABs difficult for the Quartus II Fitter because
the sclr and sload signals are LAB-wide signals. In addition, using the
LAB-wide sload signal prevents the Fitter from packing registers using
the quick feedback path in the device architecture, which means that
some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases
in which there are enough registers with common signals to allow good
LAB packing. Using the LUT to implement the signals is always more
flexible if it is available. Because different device families offer different
numbers of control signals, inference of these signals is also
device-specific. For example, Stratix II devices have more flexibility than
Stratix devices with respect to secondary control signals, so synthesis
tools might infer more sload and sclr signals for Stratix II devices.

6-45

Quartus Il Handbook, Volume 1

If you use these additional control signals, use them in the priority order
that matches the device architecture. To achieve the most efficient results,
ensure the sclr signal has a higher priority than the s1oad signal in the
same way that aclr has higher priority than aload in the previous
examples. Remember that the register signals are not inferred unless the
design meets the conditions described previously. However, if your HDL
described the desired behavior, the software always implements logic
with the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace the
if (ena) g <= data; statementsin the Verilog HDL example
shown in Example 6-32 on page 6-44 (after adding the control signals to
the module declaration).

Example 6-34. Verilog HDL sload and scilr Control Signals
if (ena) begin
if (sclr)
g <= 1'b0;
else if (sload)
g <= sdata;
else
g <= data;
end

In VHDL, the following code for sload and sclr could replace the IF

(ena ='1') THEN g <= data; END IF; statementsin the VHDL
example shown in Example 6-33 on page 6—45 (after adding the control
signals to the entity declaration).

Example 6-35. VHDL sload and scir Control Signals

IF (ena ='1l') THEN

IF (sclr = '1l') THEN
q <= "'0";
ELSIF (sload = 'l') THEN
g <= sdata;
ELSE
g <= data;
END IF;
END IF;
Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned.

'~ Altera recommends that you design without the use of latches
whenever possible.

6—46 Altera Corporation
May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

For additional information about the issues involved in designing with
latches and combinational loops, refer to the Design Recommendations for
Altera Devices and the Quartus II Design Assistant chapter in volume 1 of
the Quartus Il Handbook.

Latches can be inferred from HDL code when you did not intend to use a
latch, as described in “Unintentional Latch Generation”. If you do intend
to infer a latch, it is important to infer it correctly to guarantee correct
device operation as detailed in “Inferring Latches Correctly” on

page 6-48.

Unintentional Latch Generation

When you are designing combinational logic, certain coding styles can
create an unintentional latch. For example, when CASE or IF statements
do not cover all possible input conditions, latches may be required to hold
the output if a new output value is not assigned. Check your synthesis
tool messages for references to inferred latches. If your code
unintentionally creates a latch, make code changes to remove the latch.

L=~ Latches have limited support in formal verification tools.
Therefore, ensure that you do not infer latches unintentionally.
For example, an incomplete CASE statement may create a latch
when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat
unspecified cases as don’t care values (X). However, using the
full_case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the
unspecified cases as latches.

Refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook for more information about using attributes in
your synthesis tool. The Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus I Handbook provides an example explaining
possible simulation mismatches.

Omitting the final else or when others clause in an if or case
statement can also generate a latch. Don’t care (X) assignments on the
default conditions are useful in preventing latch generation. For the best
logic optimization, assign the default case or final else value to don’t
care (X) instead of a logic value.

The VHDL sample code shown in Example 6-36 prevents unintentional
latches. Without the final else clause, this code creates unintentional
latches to cover the remaining combinations of the sel inputs. When you
are targeting a Stratix device with this code, omitting the final else

6-47

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Quartus Il Handbook, Volume 1

condition can cause the synthesis software to use up to six LEs, instead of
the three it uses with the e1se statement. Additionally, assigning the final
else clause to 1 instead of X can result in slightly more LEs because the
synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

Example 6-36. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;

USE IEEE.std_logic_1164.all;

ENTITY nolatch IS

PORT (a,b,c: IN STD_LOGIC;
sel: IN STD LOGIC VECTOR (4 DOWNTO O0) ;
oput: OUT STD_LOGIC) ;

END nolatch;

ARCHITECTURE rtl OF nolatch IS

BEGIN
PROCESS (a,b,c,sel) BEGIN
if sel = "00000" THEN
oput <=
ELSIF sel = "00001" THEN
oput <=
ELSIF sel = "00010" THEN
oput <=
ELSE --- Prevents latch inference
oput <= "'X'; --/
END if;
END PROCESS;
END rtl;
Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing
hazard problems typically associated with combinational loops.
=" Any use of latches generates warnings and is flagged if the
design is migrated to a HardCopy ASIC. In addition, timing
analysis does not completely model latch timing in some cases.
Do not use latches unless you are very certain that your design
requires it, and you fully understand the impact of using the
latches.
When using Quartus II integrated synthesis, latches that are inferred by
the software are reported in the User-Specified and Inferred Latches
section of the Compilation Report. This report indicates whether the latch
is considered safe and free of timing hazards.
6-48 Altera Corporation

May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

If a latch or combinational loop in your design is not listed in the
User-Specified and Inferred Latches report, it means that it was not
inferred as a safe latch by the software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are
at risk of timing hazards. These entries indicate possible problems with
your design that you should investigate. However, it is possible to have a
correct design that includes combinational loops. For example, it is
possible that the combinational loop cannot be sensitized. This can occur
in cases where there is an electrical path in the hardware, but either the
designer knows that the circuit will never encounter data that causes that
path to be activated, or the surrounding logic is set up in a mutually
exclusive manner that prevents that path from ever being sensitized,
independent of the data input.

For macrocell-based devices such as MAX® 7000AE and MAX 30004, all
data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User-Specified and Inferred Latches table have an
implementation free of timing hazards such as glitches. The
implementation includes a cover term to ensure there is no glitching, and
includes a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series,
and MAX I devices, all latches in the User-Specified and Inferred
Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior
of the LUT, the output does not glitch when a single input toggles
between two values that are supposed to produce the same output value.
For example, a D-type input toggling when the enable input is inactive,
or a set input toggling when a reset input with higher priority is active.
This hardware behavior of the LUT means that no cover term is needed
for aloop around a single LUT. The Quartus II software uses a single LUT
in the feedback loop whenever possible. A latch that has data, enable, set,
and reset inputs in addition to the output fed back to the input cannot be
implemented in a single 4-input LUT. If the Quartus II software cannot
implement the latch with a single-LUT loop because there are too many
inputs, then the User-Specified and Inferred Latches table indicates that
the latch is not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch
inputs with a single adaptive look-up table (ALUT) in the combinational
loop. Therefore, all latches in the User-Specified and Inferred Latches
table are free of timing hazards when a single input changes.

6-49

Quartus Il Handbook, Volume 1

If a latch is listed as a safe latch, other Quartus II optimizations, such as
physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input may change at a
time. Changing two inputs simultaneously, such as deasserting set and
reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Quartus II integrated synthesis infers latches from always blocks in
Verilog HDL and process statements in VHDL, but not from continuous
assignments in Verilog HDL or concurrent signal assignments in VHDL.
These rules are the same as for register inference. The software infers
registers or flipflops only from always blocks and process statements.

The Verilog HDL code sample shown in Example 6-37 infers a S-R latch
correctly in the Quartus II software.

Example 6-37. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
)

always @ (SetTerm or ResetTerm) begin
if (SetTerm)
LatchOut = 1'bl
else if (ResetTerm)
LatchOut = 1'b0

end
endmodule
The VHDL code sample shown in Example 6-38 infers a D-type latch
correctly in the Quartus II software.
6-50 Altera Corporation

May 2008

Recommended HDL Coding Styles

Example 6-38. VHDL Data Type Latch

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY simple_ latch IS

PORT (
enable, data
q
)i
END simple_latch;

: IN STD_LOGIC;
: OUT STD_LOGIC

ARCHITECTURE rtl OF simple latch IS

BEGIN

latch : PROCESS (enable,

BEGIN
IF (enable = '1')
g <= data;
END IF;

END PROCESS latch;
END rtl;

data)

THEN

Altera Corporation
May 2008

The following example shows a Verilog HDL continuous assignment that
does not infer a latch in the Quartus II software. The behavior is similar
to a latch, but it may not function correctly as a latch and its timing is not
analyzed as a latch.

assign latch out = (~en & latch out) | (en & data) ;

Quartus Il integrated synthesis also creates safe latches when possible for
instantiations of the LPM_LATCH megafunction. You can use this
megafunction to create a latch with any combination of data, enable, set,
and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera LPM_LATCH function in another synthesis tool
ensures that the implementation is also recognized as a latch in the
Quartus II software. If a third-party synthesis tool implements a latch
using the LPM_LATCH megafunction, then the Quartus II integrated
synthesis lists the latch in the User-Specified and Inferred Latches table
in the same way as it lists latches created in HDL source code. The coding
style necessary to produce an LPM_LATCH implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number
of LPM_LATCH functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals
including signals that Analysis and Synthesis identifies as latch enables.
In some cases the global insertion delay may decrease the timing

performance. If necessary, you can turn off the Quartus II Global Signal

6-51

Quartus Il Handbook, Volume 1

General Coding
Guidelines

6-52

logic option to manually prevent the use of global signals. Global latch
enables are listed in the Global & Other Fast Signals table in the
Compilation Report.

This section helps you understand how synthesis tools map various types
of HDL code into the target Altera device. Following Altera
recommended coding styles, and in some cases designing logic structures
to match the appropriate device architecture, can provide significant
improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

B “Tri-State Signals”. This section explains how to create tri-state
signals for bidirectional I/O pins.

B “Clock Multiplexing” on page 6-53. This section provides
recommendations for multiplexing clock signals.

B “Adder Trees” on page 6-57. This section explains the different
coding styles that lead to optimal results for devices with 4-input
look-up tables and 6-input adaptive look-up tables.

B “State Machines” on page 6-59. This section helps ensure the best
results when you use state machines.

B “Multiplexers” on page 6-67. This section explains how multiplexers
can be synthesized for 4-input LUT devices, addresses common
problems, and provides guidelines to achieve optimal resource
utilization.

B “Cyclic Redundancy Check Functions” on page 6-76. This section
provides guidelines for getting good results when designing CRC
functions.

B “Comparators” on page 6-79. This section explains different
comparator implementations and provides suggestions for
controlling the implementation.

B “Counters” on page 6-80. This section provides guidelines to ensure
your counter design targets the device architecture optimally.

Tri-State Signals

When you are targeting Altera devices, you should use tri-state signals
only when they are attached to top-level bidirectional or output pins.
Avoid lower level bidirectional pins, and avoid using the z logic value
unless it is driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexer logic, but Altera does not recommend
this coding practice.

Altera Corporation
May 2008

Recommended HDL Coding Styles

= In hierarchical block-based or incremental design flows, a
hierarchical boundary cannot contain any bidirectional ports,
unless the lower level bidirectional port is connected directly
through the hierarchy to a top-level output pin without
connecting to any other design logic. If you use boundary
tri-states in a lower level block, synthesis software must push
the tri-states through the hierarchy to the top-level to make use
of the tri-state drivers on output pins of Altera devices. Because
pushing tri-states requires optimizing through hierarchies,
lower level tri-states are restricted with block-based design
methodologies.

The code examples shown in Examples 6-39 and 6—40 show Verilog HDL
and VHDL code that creates tri-state bidirectional signals.

Example 6-39. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir) ;
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);
endmodule

Example 6-40. VHDL Tri-State Signal
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std logic_arith.all;

ENTITY tristate IS
PORT (
mybidir : INOUT STD LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
)i
END tristate;

ARCHITECTURE rtl OF tristate IS

BEGIN
mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;

END rtl;
Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function
with different clock sources. This type of logic can introduce glitches that
create functional problems, and the delay inherent in the combinational
logic can lead to timing problems. Clock multiplexers trigger warnings
from a wide range of design rule check and timing analysis tools.

Altera Corporation 6-53

May 2008

Quartus Il Handbook, Volume 1

6-54

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware
blocks avoid glitches, ensure that you use global low-skew routing lines,
and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL
reconfiguration, which is the safest and most robust method of changing
clock rates during device operation.

Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures. Also refer to the
altclketrl Megafunction User Guide, the altpll Megafunction User Guide, and
the Phase-Locked Loops Reconfiguration (ALTPLL_RECONFIG)
Megafunction User Guide.

If you implement a clock multiplexer in logic cells because the design has
too many clocks to use the clock control block, or if dynamic
reconfiguration is too complex for your design, it is important to consider
simultaneous toggling inputs and ensure glitch-free transitions.

Figure 6-2 shows a simple representation of a clock multiplexer (mux) in
a device with 6-input look-up tables (LUTs).

Figure 6-2. Simple Clock Multiplexer in a 6-Input LUT

clk_select (static)

clkd
clki
Sys_clk
clk2

clk3

The datasheet for your target device describes how LUT outputs may
glitch during a simultaneous toggle of input signals, independent of the
LUT function. Although in practice the 4:1 MUX function does not
generate detectable glitches during simultaneous data input toggles, it is
possible to construct cell implementations that do exhibit significant
glitches, so this simple clock mux structure is not recommended. An
additional problem with this implementation is that the output behaves

Altera Corporation
May 2008

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

Recommended HDL Coding Styles

erratically during a change in the c1k_select signals. This behavior
could create timing violations on all registers fed by the system clock and
result in possible metastability.

A more sophisticated clock select structure can eliminate the
simultaneous toggle and switching problems, as shown in Figure 6-3.

Figure 6-3. Glitch-Free Clock Multiplexer Structure

sel0 ——

olk0 I 4D_~D’ olk_out

1 > - DQ
sel1

clkd I _D_

This structure can be generalized for any number of clock channels.
Example 641 contains a parameterized version in Verilog HDL. The
design enforces that no clock activates until all others have been inactive
for at least a few cycles, and that activation occurs while the clock is low.
The design applies a synthesis_keep directive to the AND gates on the
right side of the figure, which ensures there are no simultaneous toggles
on the input of the c1k_out OR gate.

It is important to note that switching from clock A to clock B requires that
clock A continue to operate for at least a few cycles. If the old clock stops
immediately, the design sticks. The select signals are implemented as a
“one-hot” control in this example, but you can use other encoding if you
prefer. The input side logic is asynchronous and is not critical. This design
can tolerate extreme glitching during the switch process.

Altera Corporation 6-55
May 2008

Quartus Il Handbook, Volume 1

Example 6-41. Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock mux (clk,clk_select,clk_out);
parameter num_clocks = 4;

input [num clocks-1:0] clk;
input [num clocks-1:0] clk_select; // one hot
output clk_out;

genvar i;

reg [num clocks-1:0] ena r0;
reg [num_clocks-1:0] ena_rl;
reg [num clocks-1:0] ena r2;
wire [num clocks-1:0] qualified_sel;

// A look-up-table (LUT) can glitch when multiple inputs
// change simultaneously. Use the keep attribute to

// insert a hard logic cell buffer and prevent

// the unrelated clocks from appearing on the same LUT.

wire [num_clocks-1:0] gated clks /* synthesis keep */;

initial begin

ena_r0 = 0;
ena_rl = 0;
ena_r2 = 0;
end
generate

for (i=0; i<num clocks; i=i+1)
begin : 1p0
wire [num clocks-1:0] tmp_mask;
assign tmp mask = {num clocks{1'bl}} " (1 << i);

assign qualified sel[i] = clk_select[i] &
(~] (ena_r2 & tmp_mask)) ;

always @(posedge clk[i]) begin
ena_r0[i] <= qualified_sell[il];
ena_rl([i] <= ena rO[i];

end

always @ (negedge clk[i]) begin
ena_r2[i]l <= ena ri1l[i];
end

assign gated clks[i] = clk[i] & ena r2[i];
end
endgenerate

// These will not exhibit simultaneous toggle by construction

assign clk out = |gated_clks;

endmodule

6-56

Altera Corporation
May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application using a large adder tree
is a finite impulse response (FIR) correlator. Using a pipelined binary or
ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for
Altera 4-input LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series, APEX series,
and FLEX series of devices contain 4-input LUTs as the standard
combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C in devices that use 4-input lookup tables is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (one bit is added in one LE), so this
runs at full clock speed. This can be extended to as many numbers as
desired.

6-57

Quartus Il Handbook, Volume 1

In the code sample shown in Example 642, five numbers &, B, C, D, and E
are added. Adding five numbers in devices that use 4-input lookup tables
requires four adders and three levels of registers for a total of 64 LEs
(for 16-bit numbers).

Example 6-42. Verilog HDL Pipelined Binary Tree

modu

le binary adder tree (a, b, ¢, d, e, clk, out);
parameter width = 16;

input [width-1:0] a, b, ¢, d, e;

input clk;

output [width-1:0] out;

wire [width-1:0] suml, sum2, sum3, sum4;
reg [width-1:0] sumregl, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sumz2;
sumreg3 <= sum3;
sumreg4 <= sum4;
end

// 2-bit additions

assign suml = A + B;

assign sum2 = C + D;

assign sum3 sumregl + sumreg2;
assign sum4 sumreg3 + E;
assign out = sumreg4;

endmodule

6-58

Architectures with 6-Input LUTs in Adaptive Logic Modules

High-performance Altera device families use a 6-input LUT in their basic
logic structure, so these devices benefit from a different coding style from
the previous example presented for 4-input LUTs. Specifically, in these
devices, ALMs can simultaneously add three bits. Therefore, the tree in
the previous example must be two levels deep and contain just two
add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for
6-input LUT devices, the code is inefficient and does not take advantage
of the 6-input adaptive look-up table (ALUT). By restructuring the tree as
a ternary tree, the design becomes much more efficient, significantly
improving density utilization. Therefore, when you are targeting with
ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the
advanced device architecture.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 643 uses just 32 ALUTs in a Stratix II device—more than a 4:1

advantage over the number of LUTs in the prior example implemented in

a Stratix device.

= You cannot pack a LAB full when using this type of coding style
because of the number of LAB inputs. However, in a typical
design, the Quartus II Fitter can pack other logic into each LAB
to take advantage of the unused ALMs.

Example 6-43. Verilog HDL Pipelined Ternary Tree

module ternary adder_ tree (a, b, ¢, d, e, clk, out);

parameter width
input [width-1:0] a,

input clk;

16;

b, ¢, 4, e;

output [width-1:0] out;

wire [width-1:0]
reg [width-1:0]
// registers

suml, sum2;
sumregl, sumreg2;

always @ (posedge clk)

begin

sumregl <= suml;
sumreg2 <= sumz2;

end

// 3-bit additions

assign suml = a + b + c;

assign sum2

assign out =

endmodule

sumregl + d + e;
sumreg2;

Altera Corporation
May 2008

These examples show pipelined adders, but partitioning your addition
operations can help you achieve better results in nonpipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E)is
more likely to create the optimal implementation of a 3-input adder for
A + B + Cfollowed by a 3-input adder for suml + D + E than the
code without the parentheses. If you do not add the parentheses, the
synthesis tool may partition the addition in a way that is not optimal for
the architecture.

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when you use state machines. Ensuring that your synthesis
tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to

6-59

Quartus Il Handbook, Volume 1

6-60

use the known properties of state machines to optimize other parts of the
design. When synthesis recognizes a state machine, it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bit encoding for CPLD devices,
although the choice of implementation can vary for different state
machines and different devices. Refer to your synthesis tool
documentation for specific ways to control the manner in which state
machines are encoded.

For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to
improve the quality of results, Altera recommends that you observe the
following guidelines, which apply to both Verilog HDL and VHDL:

B Assign default values to outputs derived from the state machine so
that synthesis does not generate unwanted latches.

B Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

B If your design contains an operation that is used by more than one
state, define the operation outside the state machine and cause the
output logic of the state machine to use this value.

B Use asimple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as both an asynchronous reset and an asynchronous
load, the Quartus II software generates regular logic rather than
inferring a state machine.

If a state machine enters an illegal state due to a problem with the device,
the design likely ceases to function correctly until the next reset of the
state machine. Synthesis tools do not provide for this situation by default.
The same issue applies to any other registers if there is some kind of fault
in the system. A default or when others clause does not affect this
operation, assuming that your design never deliberately enters this state.
Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an
option to implement a safe state machine. The software inserts extra logic
to detect an illegal state and force the state machine’s transition to the
reset state. It is commonly used when the state machine can enter an

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Recommended HDL Coding Styles

Altera Corporation
May 2008

illegal state. The most common cause of this situation is a state machine
that has control inputs that come from another clock domain, such as the
control logic for a dual-clock FIFO.

This option protects only state machines. All other registers in the design
are not protected this way.

For additional information about tool-specific options for implementing
state machines, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL
State Machines” on page 6-65, describe additional language-specific
guidelines and coding examples.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog HDL guidelines.
Some of these guidelines may be specific to Quartus II integrated
synthesis. Refer to your synthesis tool documentation for specific coding
recommendations.

If the state machine is not recognized and inferred by the synthesis
software (such as Quartus II integrated synthesis), the state machine is
implemented as regular logic gates and registers and the state machine is
not listed as a state machine in the Analysis & Synthesis section of the
Quartus II Compilation Report. In this case, the software does not
perform any of the optimizations that are specific to state machines.

B If you are using the SystemVerilog standard, use enumerated types
to describe state machines (as shown in the “SystemVerilog State
Machine Coding Example” on page 6-64).

B Represent the states in a state machine with the parameter data
types in Verilog-1995 and -2001 and use the parameters to make state
assignments (as shown below in the “Verilog-2001 State Machine
Coding Example”). This implementation makes the state machine
easier to read and reduces the risk of errors during coding.

>
&

=y Altera recommends against the direct use of integer values
for state variables such as next_state <= 0. However,
using an integer does not prevent inference in the
Quartus II software.

6-61

http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Quartus Il Handbook, Volume 1

B No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic similar to that shown in the following

example:
case (state)
0: begin
if (ena) next state <= state + 2;
else next state <= state + 1;
end
1: begin
endcase

B No state machine is inferred in the Quartus II software if the state
variable is an output.

B No state machine is inferred in the Quartus II software for signed
variables

Verilog-2001 State Machine Coding Example
The following module verilog fsmis an example of a typical Verilog
HDL state machine implementation (Example 6-44).

This state machine has five states. The asynchronous reset sets the
variable state to state_0.Thesumof in 1 and in 2 is an output of
the state machine in state_1 and state_2. The difference
(in_1-1in 2)isalsousedin state_ 1 and state_2. The temporary
variables tmp_out_ 0 and tmp_out_ 1 store the sum and the difference
of in_1 and in_2. Using these temporary variables in the various states
of the state machine ensures proper resource sharing between the
mutually exclusive states.

Example 6-44. Verilog-2001 State Machine

module verilog fsm (clk, reset, in_1, in_ 2, out);

6-62

input clk;

input reset;
input [3:0] in_1;

input [3:0]

parameter
parameter
parameter
parameter
parameter

reg [4:0]
reg [2:0]

in_2;output [4:0] out;
state_0 = 3'b000;
state_1 = 3'b001;
state_2 = 3'b010;
state_3 = 3'b011;
state_4 = 3'b100;
tmp_out 0, tmp_out_1, tmp_out_2;
state, next_state;

always @ (posedge clk or posedge reset)

begin

if (reset)
state <= state_0;

else

Altera Corporation
May 2008

Recommended HDL Coding Styles

state <= next_state;

end
always @ (state or in 1 or in 2)
begin
tmp out 0 = in 1 + in 2;
tmp_out_1 = in 1 - in_ 2;

case (state)
state_0: begin
tmp out 2 <= in 1 + 5'b00001;
next_state <= state_1;
end
state_1: begin
if (in_ 1 < in 2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;
end
else begin
next_state <= state_3;
tmp_out_2 <= tmp_out_1;
end
end
state_2: begin
tmp_out_ 2 <= tmp out 0 - 5'b00001;
next_state <= state_3;
end
state_3: begin
tmp_out_ 2 <= tmp out 1 + 5'b00001;
next_state <= state_0;
end
state_4:begin
tmp out 2 <= in 2 + 5'b00001;
next_state <= state_0;
end
default:begin
tmp_out_2 <= 5'b00000;
next_state <= state_0;
end
endcase
end
assign out = tmp_out_2;
endmodule

An equivalent implementation of this state machine can be achieved by
using ‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a
‘state_xinstead of a state_x, as shown in the following example:

next_state <= ‘state_3;

Altera Corporation
May 2008

6-63

Quartus Il Handbook, Volume 1

=" Although the ‘define construct is supported, Altera strongly
recommends the use of the parameter data type because doing
so preserves the state names throughout synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm shown in Example 645 is an example of a
SystemVerilog state machine implementation that uses enumerated
types. Altera recommends using this coding style to describe state
machines in SystemVerilog.

=" InQuartus IT integrated synthesis, the enumerated type that
defines the states for the state machine must be of an unsigned
integer type as shown in Example 6-45. If you do not specify the
enumerated type as int unsigned, a signed int type is used
by default. In this case, the Quartus II integrated synthesis
synthesizes the design, but does not infer or optimize the logic
as a state machine.

Example 6-45. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data([3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_ state_logic
next_state = S0;
case (state)
S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;
endcase
end

always_ comb begin
case (state)
S0: o = datal3];

S1: o = datal2];

S2: o = datalll;

S3: o = datal0];
endcase

end

always ff@(posedge clk or negedge reset) begin
if (~reset)
state <= S0;
else
state <= next_state;
end
endmodule

6-64 Altera Corporation
May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risk of errors
during coding. If the state is not represented by an enumerated type,
synthesis software (such as Quartus II integrated synthesis) does not
recognize the state machine. Instead, the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Quartus II
Compilation Report. In this case, the software does not perform any of the
optimizations that are specific to state machines.

VHDL State Machine Coding Example
The following entity, vhd1l_fsm, is an example of a typical VHDL state
machine implementation (Example 6-46).

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of inl and in2 is an output of the
state machine in state_1 and state_2. The difference (inl - in2)is
also used in state_1 and state_2. The temporary variables

tmp out Oandtmp_ out_1 store the sum and the difference of inl and
in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive
states.

6-65

Quartus Il Handbook, Volume 1

Example 6-46. VHDL State Machine
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl_ fsm IS
PORT (
clk: IN STD LOGIC;
reset: IN STD_LOGIC;
inl: IN UNSIGNED (4 downto 0);
in2: IN UNSIGNED (4 downto 0) ;

out_1: OUT UNSIGNED (4 downto 0)

)
END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_fsm IS

TYPE Tstate IS (state_O, state_1,

SIGNAL state: Tstate;
SIGNAL next_state: Tstate;
BEGIN
PROCESS (clk, reset)
BEGIN
IF reset = 'l' THEN
state <=state_0;
ELSIF rising edge(clk) THEN
state <= next_state;
END IF;
END PROCESS;
PROCESS (state, inl, in2)

VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp_out_0 := inl + in2;
tmp _out_1 := inl in2;

CASE state IS
WHEN state 0 =>
out_1 <= inl;
next_state <= state_1;
WHEN state_1 =>
IF (inl < in2) then

next_state <= state_2;

out_1 <= tmp_out_0;
ELSE

next_state <= state_3;

out_1 <= tmp_out_1;
END IF;
WHEN state_2 =>
IF (inl < "0100") then
out_1 <= tmp_out_0;
ELSE
out_1 <= tmp_out_1;
END IF;

next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";

next_state <= state_4;

WHEN state_4 =>

6-66

state_2, state_3, state_4);

Altera Corporation
May 2008

Recommended HDL Coding Styles

out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <=

"00000";

next state <= state_0;

END CASE;
END PROCESS;
END rtl;

Altera Corporation
May 2008

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexer logic, you ensure the most
efficient implementation in your Altera device. This section addresses
common problems and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes
various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix
devices.

s Stratix II and other high-performance devices have 6-input
ALUTs and are not specifically addressed here. Although many
of the principles and techniques for optimization are similar,
device utilization differs in the 6-input LUT devices. For
example, these devices can implement wider multiplexers in
one ALM than can be implemented in the 4-input LUT of an LE.

Quartus Il Software Option for Multiplexer Restructuring

Quartus II integrated synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during
synthesis. In certain situations, this option automatically performs some
of the recoding functions described in this section without changing the
HDL code in your design. This option is on by default, when the
Optimization technique is set to Balanced (the default for most device
families) or set to Area.

For details, refer to the Restructure Multiplexers subsection in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to

understand how your coding style can be interpreted by your synthesis
tool, and avoid the situations that can cause problems in your design.

6-67

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp

Quartus Il Handbook, Volume 1

Multiplexer Types

This subsection addresses how multiplexers are created from various
types of HDL code. CASE statements, IF statements, and state machines
are all common sources of multiplexer logic in designs. These HDL
structures create different types of multiplexers including binary
multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
Example 647 shows Verilog HDL code for two ways to describe a simple
4:1 binary multiplexer.

Example 6-47. Verilog HDL Binary-Encoded Multiplexers

case (sel)
2'b00:
2'b01:
2'b10:
2'bl1:

endcase

N N N N

a;
b;
c;
d;

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary multiplexers can be constructed that use the 4:1
multiplexer; constructing an N-input multiplexer (N:1 multiplexer) from
a tree of 4:1 multiplexers can result in a structure using as few as
0.66*(N - 1) LUTs.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The
select lines for the multiplexer are one-hot encoded. Example 6-48 shows
a simple Verilog HDL code example describing a one-hot selector
multiplexer.

Example 6-48. Verilog HDL One-Hot-Encoded Case Statement

case (sel)

4'b0001:
4'b0010:
4'b0100:
4'b1000:
default:

endcase

N N N N N

aj
b;
(S
d;

1'bx;

6-68

Altera Corporation
May 2008

Recommended HDL Coding Styles

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected using two select lines in a
single 4-input LUT that uses two AND gates and an OR gate. The outputs
of these LUTs can be combined with a wide OR gate. An N-input selector
multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to
select the correct item must be checked in a specific order based on signal
priority. These structures commonly are created from IF, ELSE, WHEN,
SELECT, and ? : statements in VHDL or Verilog HDL. The example
VHDL code in Example 6—49 will probably result in the schematic
implementation illustrated in Figure 6—4.

Example 6-49. VHDL IF Statement Implying Priority

IF condl THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z

ELSE z <= d;
END IF;

Altera Corporation
May 2008

The multiplexers shown in Figure 6—4 form a chain, evaluating each
condition or select bit, one at a time.

Figure 6-4. Priority Multiplexer Implementation of an IF Statement

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in
the chain, requiring N-1 LUTs. This chain of multiplexers generally
increases delay because the critical path through the logic traverses every
multiplexer in the chain.

6-69

Quartus Il Handbook, Volume 1

To improve the timing delay through the multiplexer, avoid priority
multiplexers if priority is not required. If the order of the choices is not
important to the design, use a CASE statement to implement a binary or
selector multiplexer instead of a priority multiplexer. If delay through the
structure is important in a multiplexed design requiring priority, consider
recoding the design to reduce the number of logic levels to minimize
delay, especially along your critical paths.

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a default (Verilog
HDL) or OTHERS (VHDL) assignment. This assignment is especially
important in one-hot encoding schemes where many combinations of the
select lines are unused. Specifying a case for the unused select line
combinations gives the synthesis tool information about how to
synthesize these cases, and is required by the Verilog HDL and VHDL
language specifications.

Some designs do not require that the outcome in the unused cases be
considered, often because designers assume these cases will not occur.
For these types of designs, you can choose any value for the default or
OTHERS assignment. However, be aware that the assignment value you
choose can have a large effect on the logic utilization required to
implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use
different speed and area optimizations.

In general, to obtain best results, explicitly define invalid CASE selections
with a separate default or OTHERS statement instead of combining the
invalid cases with one of the defined cases.

If the value in the invalid cases is not important, specify those cases
explicitly by assigning the X (don’t care) logic value instead of choosing
another value. This assignment allows your synthesis tool to perform the
best area optimizations.

You can experiment with different default or OTHERS assignments for
your HDL design and your synthesis tool to test the effect they have on
logic utilization in your design.

6-70 Altera Corporation
May 2008

Recommended HDL Coding Styles

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way to
specify conditions that do not easily lend themselves to a CASE-type
approach. However, using IF statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even
when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

The code in Example 6-50 represents a multiplexer with four inputs (a, b,
¢, d) and one output (z). Altera does not recommend using this coding
style.

Example 6-50. VHDL IF Statement with Implicit Defaults
IF condl THEN
IF cond2 THEN
zZ <= aj;
END IF;
ELSIF cond3 THEN
IF cond4 THEN

zZ <= b;
ELSIF cond5 THEN
zZ <= C;
END IF;
ELSIF cond6é THEN
z <= d;
END IF;
Although the code appears to implement a 4:1 multiplexer, each of the
three separate IF statements in the code has an implicit ELSE condition
that is not specified. Because the output values for the ELSE cases are not
specified, the synthesis tool assumes the intent is to maintain the same
output value for these cases and infers a combinational loop, such as a
latch. Latches add to the design’s logic utilization and can also make
timing analysis difficult and lead to other problems.
The code sample shown in Example 6-51 shows code with the same
functionality as the code shown in Example 6-50, but specifies the ELSE
cases explicitly. (This is not a recommended coding style improvement,
but it explicitly shows the default conditions from the previous example.)
Altera Corporation 6-71

May 2008

Quartus Il Handbook, Volume 1

Example 6-51. VHDL IF Statement with Default Conditions Explicitly Specified

IF condl THEN
IF cond2 THEN

Z <= aj;
ELSE

Z <= Z;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

z <= b;
ELSIF cond5 THEN
Z <= C;
ELSE
Z <= Z;
END IF;
ELSIF condé THEN
z <= d;
ELSE
z <= 2Z;
END IF;
Figure 6-5 is a schematic representing the code in Example 6-51, which
illustrates that the multiplexer logic is significantly more complicated
than a basic 4:1 multiplexer, although there are only four inputs.
Figure 6-5. Multiplexer Implementation of an IF Statement with Implicit
Defaults
There are several ways you can simplify the multiplexed logic and
remove the unneeded defaults. The optimal method may be to recode the
design so the logic takes the structure of a 4:1 CASE statement.
Alternatively, if priority is important, you can restructure the code to
6-72 Altera Corporation

May 2008

Recommended HDL Coding Styles

deduce default cases and flatten the multiplexer. In this example, instead
of IF condl THEN IF cond2, use IF (condl AND cond2), which
performs the same function. In addition, examine whether the defaults
are don’t care cases. In this example, you can promote the last ELSIF
condé statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and logic utilization required to implement your design.

Degenerate Multiplexers

A degenerate multiplexer is a multiplexer in which not all of the possible
cases are used for unique data inputs. The unneeded cases tend to
contribute to inefficiency in the logic utilization for these multiplexers.
You can recode degenerate multiplexers so they take advantage of the
efficient logic utilization possible with full binary multiplexers.

Example 6-52 shows a VHDL CASE statement describing a degenerate
multiplexer.

Example 6-52. VHDL CASE Statement Describing a Degenerate Multiplexer

CASE sel([3:0] IS
WHEN "0101" =>
WHEN "0111" =>
WHEN "1010" =>
WHEN OTHERS =>

END CASE;

N N N N

aj
b;
c;
d;

Altera Corporation
May 2008

The number of select lines in a binary multiplexer normally dictates the
size of a multiplexer needed to implement the desired function. For
example, the multiplexer structure represented in Figure 6-6 has four
select lines capable of implementing a binary multiplexer with 16 inputs.
However, the design does not use all 16 inputs, which makes this
multiplexer a degenerate 16:1 multiplexer.

6-73

Quartus Il Handbook, Volume 1

6-74

Figure 6-6. Binary Degenerate Multiplexer

BE o @

[.1]] [.1] 111 [1]
[N [T [[11

sel[1.0] —

“00xx” “11xx”

sel[3:2]

Binary MUX

In the example in Figure 6-6, the first and fourth multiplexers in the top
level can easily be eliminated because all four inputs to each multiplexer
are the same value, and the number of inputs to the other multiplexers
can be reduced, as shown in Figure 6-7.

Figure 6-7. Optimized Version of the Degenerate Binary Multiplexer

sel[1:0]

Implementing this version of the multiplexer still requires at least five
4-input LUTs, two for each of the remaining 3:1 multiplexers and one for
the 2:1 multiplexer. This design selects an output from only four inputs, a
4:1 binary multiplexer can be implemented optimally in two LUTs, so this
degenerate multiplexer tree reduces the efficiency of the logic.

You can improve logic utilization of this_structure by recoding the select
lines to implement a full 4:1 binary multiplexer. The code sample shown
in Example 6-53 shows a recoder design that translates the original select
lines into the z_sel signal with binary encoding.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Example 6-53. VHDL Recoder Design for Degenerate Binary Multiplexer

CASE sel[3:0] IS

WHEN "0101" => z_sel <= "00";
WHEN "0111" => z_sel <= "01";
WHEN "1010" => z_sel <= "10";
WHEN OTHERS => z_sel <= "11";

END CASE;

The code sample shown in Example 6-54 shows you how to implement
the full binary multiplexer.

Example 6-54. VHDL 4:1 Binary Multiplexer Design
CASE z_sel[1:0] IS
WHEN "O0O0" =>
WHEN "01" =
WHEN "10" =>
WHEN "11" =
END CASE;

N

A

N

[o e R o]

z
z
z
z

A

Use the new z_sel control signal from the recoder design to control the
4:1 binary multiplexer that chooses between the four inputs a, b, ¢,and d,
as illustrated in Figure 6-8. The complexity of the select lines is handled
in the recoder design, and the data multiplexing is performed with simple
binary select lines enabling the most efficient implementation.

Figure 6-8. Binary Multiplexer with Recorder

i 7R
= T

z_sel[1:0]

The design for the recoder can be implemented in two LUTs and the
efficient 4:1 binary multiplexer uses two LUTs, for a total of four LUTs.
The original degenerate multiplexer required five LUTs, so the recoded
version uses 20% less logic than the original.

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to
perform the encoding, the overall logic utilization is often improved.

Altera Corporation 6-75
May 2008

Quartus Il Handbook, Volume 1

6-76

Buses of Multiplexers

The inputs to multiplexers are often data input buses in which the same
multiplexer function is performed on a set of data input buses. In these
cases, any inefficiency in the multiplexer is multiplied by the number of
bits in the bus. The issues described in the previous sections become even
more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in
the previous section can often be used in multiplexed buses. Recoding the
select lines may need to be completed only once for all the multiplexers
in the bus. By sharing the recoder logic among all the bits in the bus, you
can greatly improve the logic efficiency of a bus of multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32 bits wide, the function could
require 32 x 5 or 160 LUTs for the whole bus. The recoder design uses only
two LUTs, and the select lines only need to be recoded once for the entire
bus. The binary 4:1 multiplexer requires two LEs per bit of the bus. The
total logic utilization for the recoded version could be 2 + (2 X 32) or 66
LUTs for the whole bus, compared to 160 LUTs for the original version.
The logic savings become more important with wide multiplexer buses.

Using techniques to optimize degenerate multiplexers, removing
unneeded implicit defaults, and choosing the optimal DEFAULT or
OTHERS case can play an important role when optimizing buses of
multiplexers.

Cyclic Redundancy Check Functions

Cyclic redundancy check (CRC) computations are used heavily by
communications protocols and storage devices to detect any corruption
of the data. These functions are highly effective; there is a very low
probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The
way that synthesis tools flatten and factor these XOR gates to implement
the logic in FPGA LUTs can greatly impact the area and performance
results for the design. XOR gates have a cancellation property which
creates an exceptionally large number of reasonable factoring
combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for
these designs. When properly synthesized, CRC processing designs can
run at high speeds in devices with 6-input ALUTs.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Altera Corporation
May 2008

The following guidelines help you improve the quality of results for CRC
designs in Altera devices.

If Performance is Important, Optimize for Speed

Synthesis tools flatten XOR gates to minimize area and depth of levels of
logic. Synthesis tools such as Quartus II integrated synthesis target area
optimization by default for these logic structures. Therefore, for more
focus on depth reduction, set the synthesis optimization technique to
speed.

= Note that flattening for depth sometimes causes a significant
increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages

Some designers optimize their CRC designs to use cascaded stages, for
example, four stages of 8 bits. In such designs, intermediate calculations
are used as needed (such as the calculations after 8, 24, or 32 bits)
depending on the data width. This design is not optimal in FPGA devices.
The XOR cancellations that can be performed in CRC designs mean that
the function does not require all the intermediate calculations to
determine the final result. Therefore, forcing the use of intermediate
calculations increases the area required to implement the function, as well
as increasing the logic depth because of the cascading. It is typically better
to create full separate CRC blocks for each data width that you need in the
design, then multiplex them together to choose the appropriate mode at
a given time.

Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing
resources and extracting duplicates in two different CRC blocks because
of the factoring options in the XOR logic. As addressed previously, the
CRC logic allows significant reductions but this works best when each
CRC function is optimized separately. Check for duplicate extraction
behavior if you have different CRC functions that are driven by common
data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that
two CRC functions are sharing logic, ensure that the blocks are

synthesized independently using one of the following methods:

B Define each CRC block as a separate design partition in an
incremental compilation design flow

6-77

Quartus Il Handbook, Volume 1

®.e For details, refer to the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1
of the Quartus II Handbook.

B Synthesize each CRC block as a separate project in your third-party
synthesis tool and then write a separate VOM or EDIF netlist file for
each

Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC
functionality, adding registers and retiming the design can help reduce
area, improve performance, and reduce power utilization. If your
synthesis tool offers a retiming feature (such as the Quartus II software
Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide
and alternate between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic
toggles whenever there is a change in the design. To save power, use clock
enables to disable the CRC function for every clock cycle that the logic is
not needed. Some designs don't check the CRC results for a few clock
cycles while other logic is performed. It is valuable to disable the CRC
function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize

The data in many CRC designs must be initialized to 1’s before operation.
If your target device supports the use of the s1oad signal, you should use
it to set all the registers in your design to 1’s before operation. To enable
use of the s1oad signal, follow the coding guidelines presented in
“Secondary Register Control Signals Such as Clear and Clock Enable” on
page 6—42. You can check the register equations in the Timing Closure
Floorplan or the Chip Planner to ensure that the signal was used as
expected.

e If you must force a register implementation using an sload signal, you
can use low-level device primitives as described in the Designing with
Low-Level Primitives User Guide.

6-78 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp

Recommended HDL Coding Styles

Altera Corporation
May 2008

Comparators

Synthesis software, including Quartus II integrated synthesis, uses
device and context-specific implementation rules for comparators (<, >,
or ==) and selects the best one for your design. This section provides some
information about the different types of implementations available and
provides suggestions on how you can code your design to encourage a
specific implementation.

The == comparator is implemented in general logic cells. The <
comparison can be implemented using the carry chain or general logic
cells. In devices with 6-input ALUTSs, the carry chain is capable of
comparing up to three bits per cell. In devices with 4-input LUTSs, the
capacity is one bit of comparison per cell, similar to an add/subtract
chain. The carry chain implementation tends to be faster than the general
logic on standalone benchmark test cases, but can result in lower
performance when it is part of a larger design due to the increased
restriction on the Fitter. The area requirement is similar for most input
patterns. The synthesis software selects an appropriate implementation
based on the input pattern.

If you are using Quartus II integrated synthesis, you can guide the
synthesis by using specific coding styles. To select a carry chain
implementation explicitly, rephrase your comparison in terms of
addition. As a simple example, the following coding style allows the
synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except
for a few cases, such as when the chain is very short or the signals a and
b minimize to the same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in
twos complement logic if 4 is less than b, because the subtraction a — b
results in a negative number.

If you have any information about the range of the input, you have “don't
care” values that you can use to optimize the design. Because this
information is not available to the synthesis tool, you can often reduce the
device area required to implement the comparator with specific hand
implementation of the logic.

6-79

Quartus Il Handbook, Volume 1

6-80

You can also check whether a bus value is within a constant range with a
small amount of logic area by using the logic structure shown in
Figure 6-9. This type of logic occurs frequently in address decoders.

Figure 6-9. Example Logic Structure for Using Comparators to Check a Bus
Value Range

Address[|

< 2f00 <200 <1a0 <100

Select[3] Select[2] Select[1] Select[0]

Counters

Implementing counters in HDL code is easy; they are implemented with
an adder followed by registers. Remember that the register control
signals, such as enable (ena), synchronous clear (sc1r), and synchronous
load (sload), are available. For the best area utilization, ensure that the
up/down control or controls are expressed in terms of one addition
instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement
two separate carry chains for addition (if it doesn't detect the issue and
optimize the logic):

out <= count up ? out + 1 : out - 1;

The following coding style requires only one adder along with some
other logic:

out <= out + (count up ? 1 : -1);

In this case, the coding style better matches the device hardware because
there is only one carry chain adder, and the —1 constant logic is
implemented in the look-up table in front of the adder without adding
extra area utilization.

Altera Corporation
May 2008

Recommended HDL Coding Styles

Designing with
Low-Level
Primitives

Conclusion

Altera Corporation
May 2008

Low-level HDL design is the practice of using low-level primitives and
assignments to dictate a particular hardware implementation for a piece
of logic. Low-level primitives are small architectural building blocks that
assist you in creating your design. With the Quartus II software, you can
use low-level HDL design techniques to force a specific hardware
implementation that can help you achieve better resource utilization or
faster timing results.

Ils~ Using low-level primitives is an advanced technique to help
with specific design challenges, and is optional in the Altera
design flow. For many designs, synthesizing generic HDL
source code and Altera megafunctions gives you the best results.

Low-level primitives allow you to use the following types of coding
techniques:

B Instantiate the logic cell or LCELL primitive to prevent Quartus II
integrated synthesis from performing optimizations across a logic
cell

B Create carry and cascade chains using CARRY, CARRY SUM, and
CASCADE primitives

B Instantiate registers with specific control signals using DFF
primitives

B Specify the creation of LUT functions by identifying the LUT
boundaries

B Use I/O buffers to specify I/O standards, current strengths, and
other I/0O assignments

B Use I/O buffers to specify differential pin names in your HDL code,
instead of using the automatically-generated negative pin name for
each pair

Refer to the Designing with Low-Level Primitives User Guide for details
about and examples of using these types of assignments.

Because coding style and megafunction implementation can have such a
large effect on your design performance, it is important to match the
coding style to the device architecture from the very beginning of the
design process. To improve design performance and area utilization, take
advantage of advanced device features, such as memory and DSP blocks,
as well as the logic architecture of the targeted Altera device by following
the coding recommendations presented in this chapter.

For additional optimization recommendations, refer to the

Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

6-81

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/quartus2/lit-qts-implementation.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/ug/ug_low_level.pdf

Quartus Il Handbook, Volume 1

Referenced
Documents

Document

This chapter references the following documents:

B Area and Timing Optimization chapter in volume 2 of the Quartus II

Handbook

B Advanced Synthesis Cookbook: A Design Guide for Stratix II and

Stratix 1II Devices
W altshift_taps Megafunction User Guide

B Design Recommendations for Altera Devices and the Quartus II Design

Assistant chapter in volume 1 of the Quartus II Handbook

B Designing with Low-Level Primitives User Guide

B Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
B Synthesis section in volume 1 of the Quartus II Handbook

Table 6-2 shows the revision history for this chapter.

Revision History

Table 6-2. Document Revision History (Part 1 of 3)

Date and
Document
Version

Changes Made Summary of Changes

May 2008 Updates for the Quartus Il software version 8.0 release, Updates and
v8.0.0 including:

enhancements to subject

Added information to “RAM Functions—Inferring altsyncram | coverage for the Quartus Il
and altdpram Megafunctions from HDL Code” on page 6—14 | software version 8.0

Added information to “Avoid Unsupported Reset and Control | release.
Conditions” on page 6-16

Added information to “Check Read-During-Write Behavior”
on page 6-17

Added two new examples to “ROM Functions—Inferring
altsyncram and Ipm_rom Megafunctions from HDL Code” on
page 6-31: Example 6—24 and Example 6-25

Added new section: “Clock Multiplexing” on page 6-53
Added hyperlinks to references within the chapter

Minor editorial updates

v7.2.0

October 2007 Reorganized “Referenced Documents” on page 6—78.

Updates for the Quartus Il
software version 7.2.

6-82

Altera Corporation

May 2008

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/quartus2/lit-qts-implementation.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Recommended HDL Coding Styles

Table 6-2. Document Revision History (Part 2 of 3)

Date and
Document Changes Made Summary of Changes
Version
May 2007 Updates for the Quartus Il software version 7.1 release, Updates for the Quartus Il
v7.1.0 including: software version 7.1,
e Added Quartus Il Language Templates. including the addition of
e Updated text in Using Altera Megafunctions. Arria GX devices, new HDL
e Updated Table 6-1. design templates, new
e Added Avoid Unsupported Reset Conditions. support for inferring true
e Added Check Read-During-Write Behavior. dual-port RAM blocks.
® Added True Dual-Port Synchronous RAM. Clarified RAM inference
e Added Specifying Initial Memory Contents at Power-Up. guidelines with respect to
e Added Referenced Documents. synchronous memory and
read-during-write behavior.
March 2007 Updated Quartus Il software 7.0 revision and date only. No other —
v7.0.0 changes made to chapter.
November 2006 | Updates for the Quartus Il software version 6.1 release, Updates for the Quartus Il
v6.1.0 including: software version 6.1,
e Moved the “Simple Dual-Port, Dual-Clock Synchronous including the addition of
RAM” on page 7—-19 section within the chapter Stratix 1l devices.
e Added information about read-through-write conditions Changes to the
e Added example code, including Examples 7-13 and 7-14; | recommendations for RAM
Examples 7-17 and 7-19; and Example 7-23 block inference to ensure
e Added a section about “Designing with Low-Level Primitives” | better quality of results,
on page 7-71 and new suggestions for
e Added information about implementing a safe state machine | different general logic
o Reorganized the chapter, shuffling the “Coding Guidelines | structures.
for Registers and Latches” and “General Coding Guidelines”
and the subsections therein
e Added “Comparators” on page 7—69 and “Counters” on
page 7-71 to the General Coding Guidelines section
May 2006 Minor updates for the Quartus Il software version 6.0. —
v6.0.0
October 2005 Updated for the Quartus Il software version 5.1. —
v56.1.0

Altera Corporation

May 2008

6-83

Quartus Il Handbook, Volume 1

Table 6-2. Document Revision History (Part 3 of 3)

Date and
Document
Version

Changes Made

Summary of Changes

May 2005
v5.0.0

Chapter 4 was formerly Chapter 1 in version 4.2.

December 2004
v2.1

Updated for Quartus Il software version 4.2:

Chapter 4 was formerly Chapter 1.

General formatting and editing updates.

Device family support descriptions updated.

Updated HardCopy structured support for performance
improvements.

Quartus Il Archive File automatically receives buffer
insertion.

Power Calculator now Power Estimator for affected devices.
Updates to tables, figures.

The description of How to Design HardCopy Stratix Devices
was updated.

The description of HardCopy Timing Optimization Wizard
was updated.

HardCopy Floorplans and Timing Modules was renamed to
Design Optimization.

The description of Performance Estimation was updated.
Added new section on Buffer Insertion.

Location Constraints was updated.

Targeting Designs to HardCopy APEX 20KC and HardCopy
APEX 20KE Devices was removed.

A new section Altera Recommended HDL was added.
Table 2—-5 was added. It lists the HardCopy Stratix design
files collected by the hardCopy Files Wizard.

The description of the HardCopy APEX Power Estimator was
updated.

A new section about Targeting Designs to HardCopy APEX
Devices was added.

6-84

Altera Corporation
May 2008

A |:| 'Ig DYA 7. Best Practices for
® Incremental Compilation
Partitions and Floorplan
Assignments
Q1151017-8.0.0
Introduction The Quartus® II incremental compilation feature allows you to partition

a design, compile partitions separately, and reuse results for unchanged
partitions. It provides the following benefits:

Reduces compilation times by as much as 70%

Preserves performance for unchanged design blocks

e Provides repeatable results and reduces the number of
compilations

Enables true team-based design

This document provides a set of guidelines to help you partition your
design to take advantage of Quartus II incremental compilation, and to
help you create a design floorplan (using LogicLock™ regions) to support
the flow.

This document contains the following sections:

Altera Corporation
May 2008

“Overview: Incremental Compilation”

“Why Plan for Incremental Compilation?” on page 7-5
“Creating Design Partitions: General Partitioning Guidelines” on
page 7-7

“Creating Design Partitions: Design Guidelines” on page 7-11
“Creating Design Partitions: Consider Additional Design
Suggestions” on page 7-24

“Checking Partition Quality” on page 7-31

“Introduction to Design Floorplans” on page 7-37

“Creating a Design Floorplan: Placement Guidelines” on page 7—41
“Checking Floorplan Quality” on page 7-47

“Recommended Design Flows and Application Examples” on
page 7-50

“Potential Issues with Creating Partitions and Floorplan
Assignments” on page 7-53

Quartus Il Handbook, Volume 1

Overview:
Incremental
Compilation

7-2

Quartus II incremental compilation is an optional compilation flow that
enhances the default Quartus II compilation. If you do not divide up your
design for incremental compilation, your design is compiled using the
default “flat” or non-incremental full compilation flow. This section
provides an overview of the incremental flow, and highlights several best
practices.

For details about feature usage and application examples, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

The following procedure outlines the general Quartus II incremental
compilation flow:

1. Setup your design hierarchy and source code to support
partitioning along logical hierarchy boundaries. If you are using a
third-party synthesis tool, set up your tool to generate separate
netlist files.

2. Create Design Partition assignments in the Quartus II software to
specify which hierarchy blocks will be compiled independently as
partitions (including empty partitions for any missing or incomplete
logic blocks).

3. When the design is compiled, Quartus II Analysis and Synthesis
and the Fitter create separate netlists for each partition. These
netlists are internal post-synthesis and post-fit database
representations of the design.

4. Select which netlist type to preserve for each partition in the
subsequent compilation. You can reuse the synthesis or fitting
database, or instruct the software to resynthesize the source files.
You can also import compilation results from another project as part
of a bottom-up design flow, as described in “Top-Down versus
Bottom-Up Compilation Flows” on page 7-3.

5. After part of the design changes, the software recompiles only the
required partitions and merges the new compilation results with
existing netlists for other partitions, according to the settings from
the previous step.

In some cases, as described in “Introduction to Design Floorplans” on
page 7-37, you should create a design “floorplan” with placement
assignments to constrain each part of the design to a specific region of the
device.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Overview: Incremental Compilation

Altera Corporation
May 2008

Choosing the Netlist Type and Fitter Preservation Level

As discussed in the previous section, you must specify which
post-compilation netlist you want to use in subsequent compilations. You
do so by specifying a Netlist Type setting for each partition. For post-fit
netlists, you also specify a Fitter Preservation Level setting to indicate the
amount of fitting information you want to preserve. Use the following
general guidelines for each Netlist Type setting:

B Source File: Resynthesize the source code (with any new
assignments and replace any previous synthesis or Fitter results)

e If you modify the design source, the software automatically
resynthesizes the appropriate partitions with most Netlist Type
settings

e Most assignments do not trigger an automatic recompilation

B Post-Synthesis (default): Re-fit the design (with any new Fitter
assignments) but preserve the synthesis results
B Post-Fit: Preserve placement and performance results

e The default setting for post-fit is to preserve placement and
reroute the entire design; this usually allows the router to find
the best routing for all partitions given their placement on the
design, and gives very good performance preservation

B Post-Fit with Fitter Preservation Level = Placement and Routing:

Preserve routing, only if necessary

e Use post-fit with routing if necessary to meet the timing
requirements for specific partitions

Top-Down versus Bottom-Up Compilation Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows.

With top-down compilation, one designer compiles the entire design in
the software. You can use a top-down flow to optimize all blocks of the
design together, or to optimize one or more critical design blocks or IP
cores before adding the rest of the design. You can preserve fitting results
and performance for completed blocks while other parts of the design are
changing, which also reduces compilation times for each design iteration.
Different designers or IP providers can create and verify HDL code
separately, but one person (generally the project lead or system architect)
compiles and optimizes the design as a single top-level project.

Bottom-up design flows allow individual designers or IP providers to
complete the optimization of their design in separate Quartus II projects
and then integrate each lower-level project into one top-level project.
Incremental compilation provides export and import features to enable
this design methodology. Designers of lower-level blocks can export the

7-3

Quartus Il Handbook, Volume 1

optimized placed and routed netlist for their design, along with a set of
assignments such as LogicLock regions. The project lead then imports
each design block as a design partition in a top-level project.

«® For more information about different types of incremental design flows,
refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

A top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated. In addition, a top-down approach provides the
design software with information about the entire design so it can
perform global placement and routing optimizations. Therefore, it is
often easier to ensure good quality of results with a top-down flow than
with a bottom-up flow.

The Quartus II incremental compilation feature is very flexible and
supports numerous design methodologies. You can mix top-down and
bottom-up flows within a single project. If the top-level design includes
one or more design blocks that are optimized by different designers or IP
providers, you can import those blocks (using a bottom-up methodology)
into a project that also includes partitions for a top-down incremental
methodology. In addition, as you perform timing closure for a design,
you can create a subproject for one block of the design to be optimized by
another designer in a separate Quartus II project, and pass information
about the rest of the design to the subproject to obtain the best results.

By following a mixed design methodology, you can take advantage of the
team-based capabilities of a bottom-up flow while maintaining the
advantages of a top-down flow for most of the design logic.

s Bottom-up incremental compilation is not supported in
HardCopy® ASIC migration flows. You cannot use a bottom-up
methodology if you want to migrate to a HardCopy ASIC. The
Revision Compare feature requires that the HardCopy and
FPGA netlists are the same, and all operations performed on one
revision must also occur on the other revision. Unfortunately,
using the bottom-up flow and importing partitions does not
support this requirement.

Generating Bottom-Up Design Partition Scripts for Project
Management

If you are using a bottom-up or team-based methodology, you can create
design partition scripts to pass top-level constraints (such as floorplan

assignments or optimization constraints) to the designers of lower-level
blocks.

7-4 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Why Plan for Incremental Compilation?

Why Plan for
Incremental
Compilation?

Altera Corporation
May 2008

The bottom-up design partition scripting feature provides a project
manager interface for managing resource and timing budgets in the
top-level design. This interface makes it easier for designers of
lower-level modules to implement the instructions from the project lead,
and avoid conflicts between projects when importing and incorporating
the projects into the top-level design. Using the scripts also helps reduce
the need to further optimize the designs after integration and improves
overall designer productivity and team collaboration.

The feature creates Tcl files that each designer can run to set up a project
and makefiles for designers who use a make environment. To use this
feature, first set up the top-level project with appropriate constraints and
floorplan assignments to be passed to lower levels. Then generate design
partition scripts after successful compilation of the top-level design. You
can perform a Fast Synthesis and Early Timing Estimation instead of full
compilation to reduce compilation time. The top-level design can have
empty partitions when you generate the scripts. To generate the scripts,
on the Project menu, click Generate Bottom-Up Design Partition Scripts
and set the appropriate options.

For details about using these scripts, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Incremental compilation flows may require more up-front planning than
full “flat” compilations. For example, you might have to structure your
source code or design hierarchy to ensure that logic is grouped correctly
for optimization. It is easier to implement the correct logic grouping early
in the design cycle than to restructure the code later. Incremental
compilation generally requires that you be more rigorous about
following good design practices than flat compilations.

Planning consists of planning logic for partitioning and planning
placement assignments for creating a floorplan. Not all design flows
require floorplan assignments (as discussed later in this document). If
you decide to add floorplan assignments later, when the design is close to
completion, well-planned partitions make floorplan creation much
easier. You should be aware that poor partition or floorplan assignments
can hurt design area utilization and performance, making timing closure
more difficult. Use the guidelines provided in this document when
planning your design to help ensure good quality of results.

These planning issues are similar to the requirements for a multiple-chip
solution if you were using smaller devices, although planning for one
chip is much easier. As FPGA devices get larger and more complex,
following good design practices becomes more important for all design

7-5

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Quartus Il Handbook, Volume 1

flows. Adhering to the recommended synchronous design practices
makes designs more robust and easier to debug. Using an incremental
compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving
the performance of critical blocks and reducing compilation times. To get
the most out of the feature, follow the guidelines presented in this
document.

Partition Boundaries and Optimization

If there are any cross-boundary optimizations between partitions, the
software cannot obtain separate results for each individual partition.
Figure 7-1 describes this effect in more detail. To allow the software to
synthesize and place each partition independently, the logical
hierarchical boundaries between partitions are treated as hard
boundaries for logic optimization. It is important to understand this effect
so that you can effectively plan your design partitions.

Figure 7-1. Effects of Partition Boundaries during Logic Optimization

Hierarchy B

Compile Hierarchy A Hierarchy B Presence of cross-boundary
thgut optimization
partition Cannot obtain results of an

individual hierarchy for
incremental compilation

boundaries \—/

Hierarchies remain independent

Hierarchy A !
from one another during

Hierarchy B

Compile logic optimizations
W'.th Possible to incrementally
partition X .
boundaries recompile each hierarchy

7-6

To avoid cross-boundary optimizations, each partition is synthesized
without using any information about logic contained in other partitions.
In a flat compilation, the software uses unconnected signals, constants,
inversions, and other design information to perform optimizations.
When a design is split into partitions, these types of optimizations do not
take place on partition I/O ports. Good design partitions do not rely on
these types of logic optimizations.

When all partitions are placed together, the Fitter can perform placement
optimizations on the design as a whole to optimize the placement of
cross-partition paths. (However, the Fitter can never perform any logic
optimizations such as physical synthesis across the partition boundary.)
When partitions are fit separately in a bottom-up flow or if some
partitions use previous post-fitting results, the Fitter does not place and
route the entire cross-boundary path at the same time and cannot fully

Altera Corporation
May 2008

Creating Design Partitions: General Partitioning Guidelines

Creating Design
Partitions:
General
Partitioning
Guidelines

Altera Corporation
May 2008

optimize placement across the partition boundaries. Good design
partitions can be placed independently because cross-partition paths are
not the critical timing paths in the design.

Because cross-boundary logic and placement optimizations cannot occur,
the quality of results might decrease as the number of partitions
increases. Although more partitions allow for greater reduction in
compilation time, you might want to limit the number of partitions to
prevent degradation in the quality of results. Creating good design
partitions and good floorplan location assignments helps improve the
performance results for cross-partition paths. Guidelines for creating
these assignments are discussed in the following sections.

The first stage in planning your design partitions is to organize your
source code so that it supports good partition assignments. Although you
can assign any hierarchical block of your design as a design partition,
following the design guidelines presented in this section ensures better
results. Plan your design with incremental compilation partitioning
guidelines in mind. This section includes the following topics:

B “Plan Design Hierarchy and Source Design Files” on page 7-7

B “Partition Design by Functionality and Block Size” on page 7-10

B “Partition Design by Clock Domain and Timing Criticality” on
page 7-10

B “Consider What Is Changing” on page 7-11

Plan Design Hierarchy and Source Design Files

Start by planning the entities in the design hierarchy. When you assign a
hierarchical instance as a design partition, the partition includes the
assigned instance and any entities instantiated below it that are not
defined as separate partitions. You cannot group separate hierarchical
entities into one partition. Take advantage of the design hierarchy to
provide flexibility for partitioning and to support different design flows.
Keep logic in the “leaves” of the hierarchy tree instead of having a lot of
logic at the top level of the design. Doing so ensures that you can isolate
partitions if required.

Create entities that can lead to partitions of approximately equal size. For
example, do not instantiate a lot of small entities at the same hierarchy
level because it will be difficult to group them to form reasonably sized
partitions.

Figure 7-2 represents the logic blocks in a design hierarchy. The left side

does not follow the recommendations for entity organization, while the
right side provides much more flexibility for creating good partitions.

-7

Quartus Il Handbook, Volume 1

Figure 7-2. Design Hierarchy Recommendations

Top

Top

|||||||||||||__I_| ej ej

[] |——|:|:|

||||||| |||||i|

Lots of logic in top-level block, small

entities all at same level — Poor design Large blocks are at “leaves” of tree, blocks are

hierarchy for incremental compilation

similar sizes — Better design hierarchy

7-8

Create each entity in an independent file. The compiler uses a file
checksum to detect changes, and automatically recompiles a partition if
its source file changes (for most Netlist Type settings). If the design
entities for two partitions are defined in the same file, changes to the logic
in one partition trigger recompilation for both partitions.

Design dependencies also affect which partitions are compiled when a
source file changes. If two partitions rely on the same lower-level entity
definition, changes in that lower level will affect both partitions.
Commands such as VHDL use and Verilog HDL ~include create
dependencies between files, so that changes to one file can trigger
recompilations in all dependent files. Avoid these types of file
dependencies if they are not required. The Partition Dependent Files
report for each partition in the Analysis & Synthesis folder of the
Compilation Report lists which files contribute to each partition.

For more details about what changes trigger an automatic recompilation,
refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Planning your design hierarchy and setting up design files to
accommodate incremental compilation provides a good foundation to
create design partitions as you develop the design source code.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Creating Design Partitions: General Partitioning Guidelines

Using Partitions with Third-Party Synthesis Tools

Incremental compilation works well with third-party synthesis tools in
addition to Quartus Il integrated synthesis. If you are using a third-party
synthesis tool, set up your tool to create a separate VQM or EDIF netlist
for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a Design Partition. The VQM or
EDIF netlist file is treated as the source file for the partition in the
Quartus II software.

Synplicity Synplify Pro and Mentor Graphics Precision RTL Plus

The Synplify Pro software includes the MultiPoint synthesis feature to
perform incremental synthesis for each design block assigned as a
Compile Point in the user interface or a script. The Precision RTL Plus
software includes an incremental synthesis feature that performs
block-based synthesis based on Partition assignments in the source HDL
code.

These features provide automated block-based incremental synthesis
flows and can create different output netlist files for each block when set
up for an Altera® device. Using incremental synthesis within the
synthesis tool ensures that only those sections of a design that have been
updated are resynthesized when the design is compiled, reducing
synthesis run time and preserving the results for the unchanged blocks.
You can change and resynthesize one section of a design without
affecting other sections of the design.

«® For more information about support for these incremental synthesis
flows, refer to your tool vendor’s documentation.

Other Synthesis Tools

You can also partition your design and create different netlist files
manually with the Synplify software (non-Pro), the Precision software
(non-Plus), or any other supported synthesis tool by creating a separate
project or implementation for each partition, including the top level. Set
up each higher-level project to instantiate the lower-level VOM/EDIF
netlists as black boxes. Synplify, Precision, and most synthesis tools
automatically treat a design block as a black box if the logic definition is
missing from the project. Each tool also includes options or attributes to
specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Altera Corporation 7-9
May 2008

Quartus Il Handbook, Volume 1

7-10

Partition Design by Functionality and Block Size

In the first pass, partition your design along functional boundaries. Start
with the top-level system block diagram, and you will often find that each
block is a natural design partition. Typically, each block of a system is
relatively independent and has more signal interaction internally than
interaction between blocks, which helps reduce the need for
optimizations between partition boundaries. Keeping functional blocks
together means that synthesis and fitting can optimize related logic as a
whole, which can lead to improved optimization.

Consider how many partitions you want to maintain in your design,
because that helps dictate how large each partition should be. How much
compilation time reduction you want to achieve is also a factor, because
compiling small partitions is typically faster than compiling large
partitions.

There is no minimum size for partitions; however, as explained in a
previous section, having too many partitions can reduce the quality of
results by limiting optimization. Ensure that the design partitions are not
too small. As a general guideline, each partition should be more than
~2000 logic elements (LEs) or adaptive logic modules (ALMs). If your
design is not yet complete, use previous designs to help you estimate the
size of each block as you partition the design.

Partition Design by Clock Domain and Timing Criticality

Consider which clock in your design feeds the logic in each partition. If
possible, keep clock domains within one partition. When a clock signal is
isolated to one partition, it reduces any dependence on other partitions
for timing optimization. Isolating a clock domain to one partition also
allows better use of regional clock routing networks if the partition logic
is going to be constrained to one region of the design. In addition, limiting
the number of clocks within each partition simplifies the timing
requirements for each partition during optimization.

As with any good synchronous design, you should use an appropriate
subsystem to handle any clock domain transfers (such as a
synchronization circuit, dual-port RAM, or FIFO). You can include this
logic inside the partition at one side of the transfer.

Try to isolate timing-critical logic from logic that you expect to meet its
timing requirements easily. Doing so allows you to preserve the
satisfactory results for non-critical partitions and focus optimization
iterations on just the timing-critical portions of the design to minimize
compilation time.

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

Creating Design
Partitions:
Design
Guidelines

Altera Corporation
May 2008

Consider What Is Changing

When assigning partitions, think about what is changing in the design. Is
there any intellectual property (IP) or reused logic for which the source
code will not change during future design iterations? If so, define the
logic in its own partition so that you can compile once and immediately
preserve the results, and you will not have to compile that part of the
design again. Is some logic being tuned or optimized, or are specifications
changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest
of the design stays the same.

As a general rule, create partitions to isolate logic that will change from
logic that will not change. Partitioning a design in this way maximizes the
preservation of unchanged logic and minimizes compilation time.

Follow the partitioning guidelines presented in this section when
creating or modifying the HDL code for each design block that you might
want to assign as a design partition. Not all of these recommendations
have to be followed exactly to be successful with incremental
compilation, but adhering to as many as possible will maximize your
chances of success.

This section includes the following topics:

B “Register Partition Inputs and Outputs” on page 7-11

B “Minimize Cross-Partition-Boundary I/O” on page 7-12

B “Avoid the Need for Logic Optimization Across Partitions” on
page 7-14

This last subsection includes examples of the types of optimizations that
are prevented by partition boundaries, and describes how you can
structure or modify your partitions to avoid the need for such
optimizations.

Register Partition Inputs and OQutputs

Register partition input and output connections that are potentially
timing-critical. Registers minimize the delays on inter-partition paths,
and avoid the need for cross-boundary logic optimizations.

If every partition boundary has a register as shown in Figure 7-3, every
register-to-register timing path between partitions includes only routing
delay. Because the timing paths between partitions are not critical, the
placement of each partition does not depend on other partitions. This
advantage makes it easier to create floorplan location assignments for
each separate partition, and is especially important for bottom-up flows

7-11

Quartus Il Handbook, Volume 1

in which each partition is placed independently. In addition, the partition
boundary does not affect combinational logic optimization because each
register-to-register logic path is contained within a single partition.

Figure 7-3. Registering Partition I/0

Partition A Partition B

D Q D Q D Q—
Cross-partition

routing delay is not the
critical timing path

7-12

If a design cannot include both inputs and output registers for each
partition due to latency or resource utilization concerns, designers
typically choose to register one end of each connection. If you register
every partition output, for example, the combinational logic that occurs
in each cross-partition path is included in one partition so that it can be
optimized together. It is also good synchronous design practice to at least
include registers for every output of a design block. Registered outputs
ensure that the input timing performance for each design block is
controlled exclusively within the destination logic block.

The statistics described in “Partition Statistics Report” on page 7-35 list
how many I/0O are registered or unregistered. The Incremental
Compilation Advisor described on page 7—47 lists the unregistered ports
for each partition.

Minimize Cross-Partition-Boundary 1/0

Minimize the number of I/O paths that cross between partition
boundaries to keep logic paths within a single partition for optimization.
Doing so makes partitions more independent for both logic and
placement optimization.

This guideline is most important for the timing-critical and high-speed
connections between partitions. Slow connections that are not
timing-critical are acceptable because they should not impact the overall
timing performance of the design. If there are timing-critical paths
between partitions, rework the partitions to avoid these inter-partition
paths.

When dividing your design into partitions, consider the types of
functions at the partition boundaries. Figure 7—4 shows an expansive
function with more outputs than inputs, that makes a poor partition

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

boundary, and a better place to assign the partition boundary that
minimizes cross-partition I/O. Adding registers to one or both sides of
the cross-partition path in this example would improve the partition
quality even more.

Figure 7-4. Minimizing I/0 between Partitions by Moving the Partition Boundary

Al [B Al[B

Expansive function;

. - Better part of design to assign
Not ideal partition boundary

a partition output boundary

Another way to minimize connections between partitions is to avoid
using combinational “glue logic” between partitions. You can often move
the logic to the partition at one end of the connection to keep more logic
paths within one partition. For example, in Figure 7-5, the bottom
diagram includes a new level of hierarchy C that is defined as a partition
instead of block B. It is clear that there are fewer I/O connections between
partitions A and C than between partitions A and B in the top diagram.

Figure 7-5. Minimizing 1/0 between Partitions by Modifying Glue Logic

Many cross-partition paths: Poor design partition assignment
TOp

YWY

/V

Fewer cross-partition paths: Better partitions

Top

‘ Glue
Logic

Altera Corporation 7-13
May 2008

Quartus Il Handbook, Volume 1

7-14

The statistics described in “Partition Statistics Report” on page 7-35 list
the number of I/O ports as well as the number of inter-partition
connections for each partition. The Incremental Compilation Advisor
described on page 7—47 lists the number of intra-partition (within a
partition) and inter-partition (between partitions) timing edges.

Avoid the Need for Logic Optimization Across Partitions

As discussed in “Partition Boundaries and Optimization” on page 7-6,
partition boundaries prevent logic optimizations across partitions.
Remember this rule: Logic cannot be optimized or merged across a
partition boundary.

To ensure correct and optimal logic optimization, follow the guidelines in
this section. In some cases, especially if part of the design is already
complete or comes from another designer, these guidelines may not have
been followed when the source code was created. These guidelines are
not mandatory to implement an incremental compilation flow, but can
improve the quality of results. If assigning a partition affects resource
utilization or timing performance of a design block as compared to the
flat design, it might be due to one of the issues described in this section.
Many of the examples provide suggestions for making simple changes to
your design or hierarchy to move the partition boundary and improve
your results.

These guidelines ensure that your design does not require any logic
optimization across partitions:

B “Keep Logic in the Same Partition for Optimization and Merging”

B “Keep Constants in the Same Partition as Logic” on page 7-16

B “Avoid Unconnected Partition I/O” on page 7-17

B “Avoid Signals That Drive Multiple Partition I/O or Connecting I/O
Together” on page 7-18

B “Invert Clocks in Destination Partitions” on page 7-19

B “Do Not Use Internal Tri-States” on page 7-20

B “Include All Tri-State Output Logic in the Same Partition” on

page 7-21
B “Include All I/O Registers in the Same Partition” on page 7-22

Keep Logic in the Same Partition for Optimization and Merging

If any design logic requires logic optimization or merging to obtain
optimal results, ensure all the logic is part of the same partition.

If a combinational logic path is split across two partitions, the logic cannot
be optimized or merged into one logic cell in the device. This effect can
result in an extra logic cell in the path, increasing the logic delay. As a

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

very simple example, consider two inverters on the same signal in two
different partitions, A and B, as shown in the left side of Figure 7-6. To
maintain correct incremental functionality, these two inverters cannot be
removed from the design during optimization because they occur in
different design partitions. The software cannot use information about
other partitions when it compiles each partition. On the right side of the
figure, a new hierarchy block C has been created and defined as a
partition to group the logic in blocks A and B instead of having two
separate partitions. With the logic contained in one partition, the software
can optimize the logic and remove the two registers (shown in gray
color), which reduces the delay for that logic path. Removing two
registers is not a significant reduction in resource utilization because
inversion logic is readily available in Altera device architecture; however,
itis a good demonstration of the types of logic optimization that are
prevented by partition boundaries.

Figure 7-6. Keeping Logic in the Same Partition for Optimization

,,,,,,,,,,,,,,,,,,,,,, C e
B A B
Inverters in separate partitions A and B Inverters in same partition C can be removed:
cannot be removed from design: Better partition

Poor design partition assignment

Altera Corporation
May 2008

In a flat design, the Quartus II Fitter can also merge logical instantiations
into the same physical device resource. With incremental compilation,
logic defined in different partitions cannot be merged to use the same
physical device resource.

For example, the Fitter can merge two single-port RAMs from a design
into one dedicated RAM block in the device. If the two RAMs are defined
in different partitions, the Fitter cannot merge them into one dedicated
device RAM block.

This limitation is a concern only if merging is required to fit the design in
the target device. Therefore, you are more likely to encounter this issue
during troubleshooting than during planning, if your design uses more
logic than is available in the device.

7-15

Quartus Il Handbook, Volume 1

Merging PLLs and Transceivers (GXB)

Multiple instances of the altpll megafunction can use the same PLL
resource on the device. Similarly, GXB transceiver instances can share
high-speed serial interface (HSSI) resources in the same quad as other
instances.

The Fitter can merge multiple instantiations of these blocks into the same
device resource, even if it requires optimization across partitions
(beginning with the Quartus II software version 7.2). Therefore, there are
no restrictions for PLLs and high-speed transceiver blocks when setting
up partitions.

Keep Constants in the Same Partition as Logic

Because the software cannot optimize across a partition boundary,
constants are not propagated across partition boundaries. A signal that is
constant (1/VCC or 0/GND) in one partition cannot affect another
partition.

For example, the left side of Figure 7-7 shows part of a design in which
partition A defines some signals as constants. Constants like this could
appear due to parameter/generic settings or configurations with
parameters, or setting a bus to a specific set of values, or could result from
optimizations that occur within a group of logic. Because the blocks are
independent, the software cannot optimize the logic in block B based on
the information from block A. The right side of Figure 7-7 shows a new
partition C that groups the logic in blocks A and B, instead of having the
two separate partitions. Within the single partition, the software can use
the constants to optimize and remove much of the logic in block B (shown
in gray color).

Figure 7-7. Keeping Constants in the Same Partition as the Logic They Feed

vCcC

A

vee
T
| SR
c —
Q = B
GND —P
B A B

Connections to constants in another partition: ~ Constants in same partition C are used to optimize:
Poor design partition assignment Better partition

7-16

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

Altera Corporation
May 2008

The statistics described in “Partition Statistics Report” on page 7-35 list
how many input ports are fed by ground or VCC. The Incremental
Compilation Advisor described on page 7-47 lists the ports.

Avoid Unconnected Partition /0

When a port is left unconnected, optimizations might be able to remove
logic driving that port and improve results. However, these
optimizations are not allowed across partitions in incremental
compilation, because they would create cross-partition dependence.
Connect ports to an appropriate node or remove them from the partition.
If you know a port will not be used, consider defining a wrapper module
with a port interface that reflects this fact.

For example, the left side of Figure 7-8 shows a design that has a 10-bit
function defined in partition A, but has only 5 bits connected in partition
B. In a flat design, you would expect the logic for the other unused 5 bits
to be removed during synthesis. With incremental compilation, synthesis
does not remove the unused logic from partition A because partition B is
allowed to change independently from partition A. Therefore, you could
later connect all 10 bits in partition B and use all 10 bits from partition A.
In this case, if you know that you will not use the other 5 bits of
partition A, you should remove the unconnected ports and replace them
with ground signals inside A. You can create a new wrapper file in the
design hierarchy to do this, as shown on the right side of the figure. A
new partition C contains the logic from A but includes only the 5 output
ports required for connection with partition B. Within this new
partition C, the logic for the unused 5 bits can be removed from the
design, reducing area utilization.

7-17

Quartus Il Handbook, Volume 1

Figure 7-8. Avoiding Unconnected Partition 1/0 by Creating a Wrapper File

Unused logic is
preserved in A:
Poor design
partition
assignment

Wrapper file C set
as partition:
Better partition

7-18

The statistics described in “Partition Statistics Report” on page 7-35 list
how many I/0O are unconnected. The Incremental Compilation Advisor
described on page 7—47 lists the unconnected ports.

Avoid Signals That Drive Multiple Partition 1/0 or Connecting I/0 Together

Do not use the same signal to drive multiple ports of a single partition or
directly connect two ports of a partition.

If the same signal drives multiple ports of a partition, or if two ports of a
partition are directly connected, those ports are logically equivalent.
However, because the software has no information about connections
made in another partition (including the Top partition), the compilation
cannot take advantage of the equivalence. This restriction usually results
in sub-optimal results.

If your design has these types of connections, redefine the partition
boundaries to remove the affected ports. If one signal from a higher-level
partition feeds two input ports of the same partition, feed the one signal
into the partition and then make the two connections within the partition.
If an output port drives an input port of the same partition, the
connection can be made internally without going through any I/O ports.
If an input port drives an output port directly, the connection can likely
be implemented without the ports in the lower-level partition by
connecting the signals in a higher-level design partition.

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

As an example of one signal driving more than one port, refer to

Figure 7-9. The left diagram shows a design where a single clock signal is
used to drive both the read and write clocks of a RAM block. Because the
RAM block is compiled as a separate partition A, the RAM block is
implemented as though there are two unique clocks. If you know that the
port connectivity will not change (that is, the ports will always be driven
by the same signal in the Top partition in this case), redefine the port
interface so there is only a single port that can drive both connections
inside the partition. You can create a wrapper file to define a partition that
has fewer ports, as shown in the diagram on the right side. With the single
clock fed into the partition, the RAM can be optimized into a single-clock
RAM instead of a dual-clock RAM. Single-clock RAM can provide better
performance in the device architecture. In addition, partition A might use
two global routing lines for the two copies of the clock signal. Partition B
can use one global line that fans out to all destinations. Using just the
single port connection prevents overuse of global routing resources.

Figure 7-9. Preventing One Signal from Driving Multiple Partition Inputs

Top Top
Dual- Single-
rd_clk rd_clk
> clock clock
Clock
[wr_clk S RAM CIockE wr_clk > RAM
A B
Two clocks cannot be With Partition B, RAM can
treated as the same signal: be optimized for one clock:
Poor design partition assignment Better partition

Altera Corporation
May 2008

The Incremental Compilation Advisor described on page 7-47 lists
partition ports that have the same driving signal, and ports that are
directly connected together.

Invert Clocks in Destination Partitions

For best results, clock inversion should be done in the destination logic
array block (LAB), because each LAB contains clock inversion circuitry in
the device architecture. In a flat compilation, the software can optimize a
clock inversion to propagate it to the destination LABs regardless of
where the inversion takes place in the design hierarchy. However, clock
inversion cannot propagate through a partition boundary to take
advantage of the inversion architecture in the destination LABs.

7-19

Quartus Il Handbook, Volume 1

With partition boundaries as shown on the left side of Figure 7-10, the
Quartus II software uses logic to invert the signal in the partition that
defines the inversion (the Top partition in this example), and then routes
the signal on a global clock resource to its destinations (in partitions A
and B). The inverted clock acts as a gated clock with high skew. A better
solution is to invert the clock signal in the destination partitions as shown
on the right side of the figure. In this case the correct logic and routing
resources can be used, and the signal is not a gated clock.

Figure 7-10. Inverting Clock Signal in Destination Partitions

Clock

Top

C

Top

B Clock B
CoO——

Inverter acts as clock gating (skew!): Clock inverted inside destination LABs,
Poor design partition assignment only one global routing signal: Better partition

7-20

Notice that this diagram also shows another example of a single pin
feeding two ports of a partition boundary. In the left diagram, partition B
does not have the information that the clock and inverted clock come
from the same source. In the right diagram, partition B has more
information to help optimize the design because the clock is connected as
one port of the partition.

Do Not Use Internal Tri-States

Internal tri-state signals are not recommended for FPGAs because the
device architecture does not include internal tri-state logic. If designs do
use internal tri-states in a flat design (with no partitions), the tri-state
logic is typically converted to OR gates or multiplexing logic. But if
tri-state logic occurs on a hierarchical partition boundary, the software
cannot convert the logic to combinational gates because the partition
could be connected to a top-level device I/O through another partition.

Figure 7-11 shows a design with partitions that are not supported for
incremental compilation due to the internal tri-state output logic on the
partition boundaries. Instead of using internal tri-state logic for partition
outputs, implement the correct logic to select between the two signals.

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

Doing so is good practice even when there are no partitions, because such
logic explicitly defines the behavior for the internal signals instead of
relying on the software to convert the tri-state signals into logic.

Figure 7-11. Unsupported Internal Tri-State Signals

Top

Design results in Quartus Il error message:

The software cannot synthesize this
design and maintain incremental functionality

Altera Corporation
May 2008

Do not use tri-state signals or bidirectional ports on hierarchical partition
boundaries, unless the port is connected directly to a top-level I/ O pin on
the device. If you must use internal tri-state logic, ensure that all the
control and destination logic is contained in the same partition, in which
case the software can convert the internal tri-state signals into
multiplexing logic like a flat design. If possible, you should avoid using
internal tri-state logic in any Altera FPGA design to ensure that you get
the desired implementation when the design is compiled for the target
device architecture.

Include All Tri-State Output Logic in the Same Partition

When multiple output signals use tri-state logic to drive a device output
pin, the Quartus II software merges the logic into one tri-state output pin.
The software cannot merge tri-state outputs into one output pin if any of
the tri-state logic occurs on a partition boundary.

Figure 7-12 shows a design with tri-state output signals that feed a device
bidirectional I/O pin (assuming that the input connection feeds
elsewhere in the design and is not shown in the figure). On the left side of
the figure, the tri-state output signals appear as the outputs of two
separate partitions. In this case, the software cannot implement the
specified logic and maintain incremental functionality. On the right side,
another level of hierarchy C has been created to group the logic from
blocks A and B. With this single partition C, the Quartus II software can
merge the two tri-state output signals and implement them in the tri-state
logic available in the device I/O element.

7-21

Quartus Il Handbook, Volume 1

Figure 7-12. Including All Tri-State Output Logic in the Same Partition

C
Top Top
> —_ >
Multiple tri-states on partition boundaries: Tri-state output logic within same partition C:

lllegal partitions Better partition

7-22

Include All I/0 Registers in the Same Partition

For a bidirectional partition port that feeds a bidirectional I/O pin at the
top level, all the logic that forms the bidirectional I/O cell must reside in
the same partition. This guideline applies to the Stratix II family,
Cyclone® II family, and all older Altera device families that include I/O
registers. In addition, as discussed in the previous two recommendations,
the I/0 logic must feed the I/O pin without any intervening logic.

In Figure 7-13, for the software to implement all three registers in the I/O
element along with the tri-state logic, all the I/O logic must be defined
inside the same partition. The logic connected to the registers can occur
in the same partition or any other partition; only the I/O registers must
be grouped with the tri-state logic definition. The bidirectional I/O port
of the partition must be directly connected to the bidirectional device pin
at the top level. The signal can go through several partition boundaries if
necessary, as long as the connection path contains no logic.

Altera Corporation
May 2008

Creating Design Partitions: Design Guidelines

Figure 7-13. Including All Bidirectional /0 Registers in the Same Partition

Top
Output Enable Register
D Q
Output
Register Tri-State
Logic Logic Bidir.
to/from D Q > pin
any ‘
partition
L b a
Input
Register Partition

Bidirectional logic is within one partition, and 1/O logic directly feeds I/O pin

Altera Corporation
May 2008

Summary of Guidelines Related to Logic Optimization Across Partitions

Following the guidelines presented in this section will ensure that your
design does not require any logic optimization across partitions:

Keep logic in the same partition for optimization and merging
Keep constants in the same partition as logic

Avoid unconnected partition I/O

Avoid signal driving multiple partition I/O, or connecting I/O
together

Invert clocks in destination partitions

Do not use internal tri-states

Include all tri-state output logic in the same partition

Include all I/O registers in the same partition

Remember that these guidelines are not strict rules to implement an
incremental compilation flow, but can improve the quality of results.
When creating source design code, keep these guidelines in mind and
organize your HDL code to support good partition boundaries. For
designs that are already complete, assess whether assigning a partition
affects the resource utilization or timing performance of a design block as
compared to the flat design, and make the appropriate changes to your
design or hierarchy to improve your results.

7-23

Quartus Il Handbook, Volume 1

Creating Design
Partitions:
Consider
Additional
Design
Suggestions

7-24

This section includes several additional design practices that may
improve success in incremental compilation flows, if they are applicable
to your design:

“Balance Partition Resources if Required” on page 7-24

“Assign Virtual Pins in Bottom-Up Flows” on page 7-27

“Perform Timing Budgeting if Required” on page 7-27

“Consider a Cascaded Reset Structure” on page 7-28

“Drive Clocks Directly in Bottom-Up Flows” on page 729
“Recreate PLLs for Lower-Level Partitions if Required in Bottom-Up
Flows” on page 7-30

Balance Partition Resources if Required

When using incremental compilation, the software synthesizes each
partition separately, with no data about the resources used in other
partitions. This means that device resources could be overused in the
individual partitions during synthesis, and thus the design may not fit in
the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software places and
routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level.

To avoid these effects, you may have to perform manual resource
balancing across partitions. This is more applicable to bottom-up design
flows, because top-down compilation usually handles resource balancing
without any user intervention.

RAM and DSP Blocks

In the standard synthesis flow, when DSP blocks or RAM blocks are
overused, the Quartus II Compiler can perform automated resource
balancing and convert some of the logic into regular logic cells. Without
data about resources used in other partitions, it is possible for the logic in
each separate partition to maximize the use of a particular device
resource, such that the design does not fit after all the partitions are
merged.

In such a case, you may be able to manually balance the resources. You
can use the Quartus II synthesis options to control inference of
megafunctions that use the DSP or RAM blocks. You can also use the
MegaWizard® Plug-In Manager to customize your RAM or DSP
megafunctions to use regular logic instead of the dedicated hardware
blocks.

Altera Corporation
May 2008

Creating Design Partitions: Consider Additional Design Suggestions

Altera Corporation
May 2008

To balance DSP resources for each partition, use the Maximum DSP
Block Usage option to specify the maximum number of DSP blocks that
the software can use in the specified partition. You can set this option
globally for all partitions. To set the option for all partitions, on the
Assignments menu, click Settings. Under Category, select Analysis &
Synthesis Settings. Click More Settings, and in the Existing option
settings list, select Maximum DSP Block Usage. You can also set the
option for a specific partition using the Assignment Editor. Select the
assignment name “Maximum DSP Block Usage”, apply it to the root
entity of a partition, and set an integer as the value. The partition-specific
assignment overrides the global assignment, if any. However, each
partition that does not have a partition-specific “Maximum DSP Block
Usage” assignment can use the number of DSP blocks set by the global
assignment. Be aware that this behavior can lead to over-allocation of
DSP blocks, eventually resulting in a no-fit error from the Fitter, as
mentioned earlier.

For more information about resource balancing when using Quartus II
synthesis, refer to the “Megafunction Inference Control” section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more tips about resource balancing and reducing resource
utilization, refer to the appropriate “Resource Utilization Optimization
Techniques” section in the Area and Timing Optimization chapter in
volume 2 of the Quartus II Handbook.

It is often helpful to create a LogicLock region to isolate each partition’s
placement, especially in bottom-up flows, to minimize the chance that the
logic in more than one partition uses the same logic resource. However,
there are situations in which partition placement may still cause conflicts
at the top level. For example, you can design a partition one way in a
lower-level design (such as using an M-RAM memory block) and then
instantiate it in two different ways in the top level (such as one using an
M-RAM block and another using an M4K block). In this case, you can
export a post-fit netlist with no placement information from the
lower-level design and allow the software to refit the logic at the top level.

Global Routing Signals

If your design is very complex and has many clocks, you may have to
allocate global routing resources. In most cases, you do not have to
allocate routing because the software finds the best solution for the global
signals.

Global routing signals can cause conflicts when multiple projects are
imported into a top-level design. The Quartus II software automatically
promotes high fan-out signals to use global routing resources available in
the device. Lower-level partitions can use the same global routing

7-25

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Quartus Il Handbook, Volume 1

7-26

resources, thus causing conflicts at the top level. In addition, LAB
placement depends on whether the inputs to the logic cells within the
LAB are using a global clock signal. Therefore, problems can occur if a
design does not use a global signal in the lower-level design, but does use
a global signal in the top-level design.

To avoid these problems, the project lead can first determine which
partitions will use which type of global routing signals. Each designer of
a lower-level partition can then assign the appropriate type of global
signals manually and prevent other signals from using global routing
resources, or set a maximum number of clocks for the partition.

Use the Global Signal assignment to force or prevent the use of a global
routing line. You can also assign certain types of global clock resources in
some device families, such as regional clocks that cover only part of the
device. Alternately, designers of lower-level partitions can specify the
number of clocks allowed in the project using the Maximum Clocks
Allowed options. Choose the number of clocks of any type, or use the
Maximum Global Clocks Allowed, Maximum Regional Clocks
Allowed, and Maximum Periphery Clocks Allowed options to restrict
the number of clock resources of a given type in the project.

You can view the resource coverage of regional clocks in the Chip
Planner, and then align LogicLock regions that constrain partition
placement with available global clock routing resources. For example, if
the LogicLock region for a particular partition is limited to one device
quadrant, that partition’s clock can use a regional clock routing type that
covers only one device quadrant. If you have all partition logic available,
the project lead can compile the entire design at the top level with
floorplan assignments to allow the use of regional clocks that span only a
part of the chip. You can use the Fitter’s results to make assignments
when optimizing the lower-level partitions in separate Quartus II
projects.

If you want to disable the automatic global promotion performed in the
Fitter, turn off the Auto Global Clock and Auto Global Register Control
Signals options. On the Assignments menu, click Settings. On the Fitter
Settings page, click More Settings and change the settings to Off.

If you are performing a bottom-up flow using design partition scripts, the
software can automatically write the commands to pass global
constraints and turn off the automatic options. For more information,
refer to “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 7-4.

Altera Corporation
May 2008

Creating Design Partitions: Consider Additional Design Suggestions

Altera Corporation
May 2008

Alternatively, to avoid problems when importing, direct the Fitter to
discard the placement and routing of the imported netlist by setting the
Fitter preservation level property of the partition to Netlist Only. With
this option, the Fitter reassigns all the global signals for this particular
partition when compiling the top-level design.

Assign Virtual Pins in Bottom-Up Flows

Virtual pins map lower-level design I/Os to internal cells. Use them
when the number of I/Os on a lower-level design exceeds the device I/O
count, and to increase the timing accuracy of cross-partition paths.

Make a Virtual Pin assignment in the Assignment Editor for lower-level
design I/Os that will become internal nodes in the top level. Leave clock
pins mapped to I/O pins to ensure proper routing.

You can specify locations for the virtual pins that correspond to the
placement of other partitions. You can also make timing assignments to
the virtual pins to define a timing budget, as described in the following
section.

Virtual pins are created automatically from the top-level design if you use
the Generate Bottom-Up Design Partition Scripts command. The scripts
place the virtual pins to correspond with other partitions’ placement from
the top-level design. Refer to “Generating Bottom-Up Design Partition
Scripts for Project Management” on page 7-4 for details.

Perform Timing Budgeting if Required

If you optimize lower-level partitions independently and import them to
the top level, or compile with empty partitions, any unregistered paths
that cross between partitions are not optimized as an entire path. In these
cases, the Compiler has no information about the placement of the logic
that connects to the I/O ports. If the logic in one partition is placed far
away from logic in another partition, the routing delay between the logic
can lead to problems in meeting the timing requirements. You can reduce
this effect by ensuring that input and output ports of the partitions are
registered whenever possible.

To ensure that the Compiler correctly optimizes the input and output
logic in each partition, you may be required to perform some manual
timing budgeting. For each unregistered timing path that crosses
between partitions, make timing assignments on the corresponding I/O
path in each partition to constrain both ends of the path to the budgeted
timing delay. Assigning a timing budget for each part of the connection
ensures that the Compiler optimizes the paths appropriately.

7-27

Quartus Il Handbook, Volume 1

7-28

When performing manual timing budgeting in a lower-level partition for
I/0O ports that become internal partition connections in a top-level design,
you can assign location and/or timing constraints to the virtual pin that
represents each connection to further improve the quality of the timing
budget. Refer to the previous section for a description of virtual pins.

If you are performing a bottom-up flow using the design partition scripts,
the software can write I/O timing budget constraints automatically for
virtual pins. Refer to “Generating Bottom-Up Design Partition Scripts for
Project Management” on page 7—4 for details.

Consider a Cascaded Reset Structure

Designs typically have a global asynchronous reset signal where a
top-level signal feeds all partitions. To minimize skew for the high
fan-out signal, the global reset signal is typically placed onto a global
routing resource.

In some cases, having one global reset signal can lead to recovery and
removal time problems. This issue is not specific to incremental flows; it
could be applicable in any large high-speed design. For incremental
flows, the global reset signal also creates a timing dependency between
the Top partition and lower-level partitions.

For incremental compilation, minimizing the impact of global structures
is helpful. To isolate each partition, consider adding reset synchronizers.
By using cascaded reset structures, the design intent is to reduce the
inter-partition fan-out of the reset signal, thereby minimizing the effect of
the global signal. Reducing the fan-out of the global reset signal also
provides more flexibility in routing the cascaded signals, and may help
recovery and removal times in some cases.

This suggestion can help in large designs, regardless of whether you are
using incremental compilation. However, if one global signal can feed all
the logic in its domain and meet recovery and removal times, you
probably do not need to follow this recommendation. It is more relevant
for high-performance designs where meeting timing on the reset logic
can be challenging. Isolating each partition and allowing more flexibility
in global routing structures is an additional advantage in incremental
flows.

If you add additional reset synchronizers to your design, it adds latency
to the reset path, so be sure that this is acceptable in your design. In
addition, parts of the design may come out of reset in different clock
cycles. You can balance the latency or add hand-shaking logic between
partitions, if necessary, to accommodate these differences.

Altera Corporation
May 2008

Creating Design Partitions: Consider Additional Design Suggestions

Figure 7-14 shows a cascaded reset structure. The signal is first
synchronized as it comes on the chip, following good synchronous design
practices. This logic means the design asynchronously resets, but
synchronously releases from reset to avoid any race conditions or
metastability problems. Then, to minimize the impact of global
structures, the circuit employs a divide-and-conquer approach for the
reset structure. By implementing a cascaded reset structure, each
partition’s reset paths are independent. This reduces the effect of
inter-partition dependency because the inter-partition reset signals
become false paths for timing analysis. In some cases, the partition’s reset
signal can be placed on local lines to reduce the delay added by routing
to a global routing line. In other cases, the signal can be routed on a
regional or quadrant clock signal.

Figure 7-14. Cascaded Reset Structure

False Timing
Paths

Top
veec
L o aF4p a
A_Reset
A CLRN CLRN
VCC Q Q
T oldo a l |
vCce
CLRN CLRN Lo o—p a
B_Reset
Reset
B CLRN CLRN
| I

Altera Corporation
May 2008

Altera suggests this circuit as one that may help you achieve timing
closure and partition independence for your global reset signal. Evaluate
the circuit and consider how it works for your design.

Drive Clocks Directly in Bottom-Up Flows

In bottom-up flows, drive partition clock inputs directly with device
clock input pins.

Connecting the clock signal directly avoids any timing analysis
difficulties with gated clocks. Clock gating is never recommended for
FPGA designs because of potential glitches and clock skew. Clock gating
can cause trouble especially in bottom-up flows because the lower-level

7-29

Quartus Il Handbook, Volume 1

partitions have no information about any gating that takes place at the
top level or in another partition. If a gated clock is required in a partition,
perform the gating within that partition, as described for clock inversion
in the “Invert Clocks in Destination Partitions”section.

Direct connections to input clock pins also allows design partition scripts
to send constraints from the top-level device pin to the lower-level
partitions.

Recreate PLLs for Lower-Level Partitions if Required in
Bottom-Up Flows

If you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the
multiplication, phase shift, or compensation delays for the PLL. To
accommodate the PLL timing, you can make appropriate timing
assignments in your lower-level Quartus II project to ensure that clocks
are not left unconstrained or constrained with an incorrect frequency.
Alternately, you can manually duplicate the top-level PLL (or other
derived clock logic) in the lower-level design file to ensure that you have
the correct PLL parameters and clock delays for complete, accurate
timing analysis.

Include a copy of the top-level PLL in your lower-level project as shown
in Figure 7-15, and create a design partition for the rest of the lower-level
design logic that will be exported to the top level. When the design is
complete, you can export just the lower-level partition, without exporting
any auxiliary PLL components to the top-level design. When you use the
feature to export a partition within a project, the software exports any
hierarchy under the specified partition into the Quartus II Exported
Partition (.qxp) file but does not include logic defined outside the
partition (the PLL in this example).

Figure 7-15. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device
Pins

_Top Partition Virtual Virtual
in Lower-Level Input

; P Output
Project Pins

Pins
Lower-Level

Partition
PLL From 2 ©

Top-Level to be Outputs to
Design Exported Device Pins

7-30

Altera Corporation
May 2008

Checking Partition Quality

Checking
Partition Quality

Altera Corporation
May 2008

This section provides an overview of some tools you can use as you make
partitions in the Quartus II software. Take advantage of these tools to
assess your partition quality, and use the information to improve your
design or assignments as required to achieve the best results.

Design Partition Planner

The Design Partition Planner allows you to view design connectivity and
hierarchy, and can assist you in creating effective design partitions that
follow the guidelines in this document. You can also use the Design
Partition Planner to optimize design performance, by isolating and
resolving failing paths on a partition-by-partition basis.

You can use the Design Partition Planner to see connectivity between
entities in a design, and to see a graphical representation of the hierarchy
of entities in a design. Use the following steps to view a design:

1. Openacompiled design in the Design Partition Planner. The design
is displayed as a single top-level design entity, containing its
lower-level instances.

2. To show connectivity between instances, begin extracting instances
from the top-level entity by dragging them into the surrounding
white space, or by right-clicking an instance and clicking Extract
from Parent on the Shortcut menu.

When you extract instances, connection bundles are drawn between
each instance, showing the number of connections between them.

3. To customize the appearance of connection bundles, to display
connection bundles containing failing paths in red, or to set
thresholds for connection counts, click Bundles Configuration on
the View menu, and set the necessary options in the Bundles
Configuration dialog box.

4. To switch between connectivity display mode and hierarchical
display mode, click Hierarchy Display on the View menu.

5. To switch temporarily to a view-only hierarchy display, click and
hold the hierarchy icon in the top left corner of any entity.

Figure 7-16 shows the Design Partition Planner with instances extracted
from the top level.

7-31

Quartus Il Handbook, Volume 1

Figure 7-16. Design Partition Planner with Instances Extracted from the Top Level

“& Design Partition Planner

5 @GP &l

B o? B,

1iCr Biank1

30% of total desi...
Mo Children

22% of total ...

31% of total desi...
1 Chil:

padder

7-32

To optimize design performance, it is desirable to confine failing paths
within individual design partitions, so that there are no failing paths
passing between partitions, as discussed in earlier sections. The following
steps allow you to view the critical timing paths from a TimeQuest
Timing Analysis:

1. Open the TimeQuest Timing Analyzer and perform a timing
analysis on the design.

2. In the Design Partition Planner, click Reload Timing Data on the
View menu.

In the top-level entity, child entities containing failing paths are marked
by a small red dot in the upper right corner of the entity box.

Altera Corporation
May 2008

Checking Partition Quality

Altera Corporation
May 2008

For more details about how to use the Design Partition Planner to
analyze your design and create partitions, refer to “Using the Design
Partition Planner” in the Quartus II Help.

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your
design follows the recommendations for creating design partitions that
are presented in this document.

On the Tools menu, point to Advisors and click Incremental
Compilation Advisor. Recommendations are split into General
Recommendations that apply to all compilation flows and Bottom-Up
Design Recommendations that apply to bottom-up design
methodologies. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action
required to make the suggested change.

To check whether the design follows the recommendations, go to the
Timing Independent Recommendations page or the Timing
Dependent Recommendations page (for the TimeQuest Timing
Analyzer or the Classic Timing Analyzer), and click Check
Recommendations. For large designs, these operations can take a few
minutes.

After you check the design, a symbol appears next to each
recommendation that indicates whether or not your design follows that
particular recommendation. Refer to the Legend on the How to use the
Incremental Compilation Advisor page in the Incremental Compilation
Advisor for more information.

In some items, there is a link to the appropriate Quartus II settings page
where you can make a suggested change to assignments or settings. For
many items, if your design does not follow the recommendation, the
Check Recommendations operation creates a table that lists any nodes or
paths in the design that could be improved.

For example, if not all of the partition I/O ports follow the Register All
Ports recommendation, the Incremental Compilation Advisor displays a
list of unregistered ports with the partition name and the source and
destination nodes for the port. When the Incremental Compilation
Adpvisor provides a list of nodes, you can right-click on a node and click
Locate to cross-probe to other Quartus II features such as the RTL Viewer,
Chip Planner, or the design source code in the text editor.

7-33

Quartus Il Handbook, Volume 1

Il The first time you open the RTL or Technology Map Viewer, a
preprocessor stage runs. This preprocessor resets the
Incremental Compilation Advisor, so you must rerun the Check
Recommendations process. Alternatively, you can open the
appropriate netlist viewer before you use the Incremental
Compilation Advisor if you want to locate nodes in the viewer.

Locate Design Instance in the Floorplan

After the first compilation of a complete design with no partitions and no
LogicLock regions, you can view where the Fitter placed the logic for a
specific design instance.

From the Project Navigator, right-click on an instance, point to Locate,
and click Locate in Chip Planner (Floorplan & Chip Editor). The
instance is highlighted in a dark blue color.

This information can help you understand the natural groupings between
design instances in the flat design, which can help you decide which
instances should remain grouped together within a single partition and
possibly LogicLock region, and which instances are independently
placed.

Floorplan Partition Coloring

After making a set of partition assignments, it can be useful to view how
the partitions are placed in the device. The Chip Planner can display
nodes for each partition in a different color.

To take advantage of this feature, you can assign many instances as
partitions and then compile to view the natural placement grouping. This
information can help you decide which instances should be grouped
together within one partition, and which ones make good independent
partitions.

After compilation, in the Chip Planner Task list, choose Partition
Display (Assignment), as shown in Figure 7-17. In this figure, you can
see that the three different-colored partitions are grouped in three fairly
independent areas of the device.

7-34 Altera Corporation
May 2008

Checking Partition Quality

Figure 7-17. Partition Display in the Chip Planner

’%" Chip Planner
Device: EPISESOF4B4C2 Task: [Pastibon Dizplay Assigrm = | 8

B E 0GP d

2

as
B
e

b

Al

Partition Statistics Report

You can view statistics about design partitions in the Partition Merge
Partition Statistics compilation report and the Statistics tab in the
Design Partitions Properties dialog box. These reports are useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the full top-level design in a bottom-up
compilation flow, to ensure that the partitions meet the guidelines
discussed in this document.

The Partition Statistics page under the Partition Merge folder of the

Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins and how many

Altera Corporation 7-35
May 2008

Quartus Il Handbook, Volume 1

7-36

are registered. This report also lists how many ports are unconnected, or
driven by a constant VCC or GND. You can use this information to assess
whether you have followed the guidelines for partition boundaries.

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box. Click Show All Partitions to view all the partitions
in the same report. The Design Partition Properties report also shows
statistics for the Internal Congestion: Total Connections and Registered
Connections. This represents how many signals are connected within the
partition. It then lists the inter-partition connections for each partition,
which helps you see how partitions are connected to each other.

Ensure Partition Assignments Don't Impact the Quality of
Results

There is often a trade-off between compilation time and quality of results
when you vary the number of partitions in a project. You can ensure that
you limit any negative effect on the quality of results by following an
iterative methodology during the partitioning process. In any
incremental compilation flow in which you can compile the source code
for every partition during the partition planning phase, Altera
recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no
location or LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the
Processing menu, point to Start and click Start Early Timing
Estimate.

=
@

You must perform Analysis and Synthesis before performing an
Early Timing Estimate. If incremental compilation is already
turned on, you must also perform Partition Merge.

To run a full compilation instead of the Early Timing Estimate,
on the Processing menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fyax,
area, and so forth).

4. Create design partitions following the guidelines described in this
chapter.

5. Perform another Early Timing Estimate or a full compilation.

Altera Corporation
May 2008

Introduction to Design Floorplans

Introduction to

Design
Floorplans

Altera Corporation
May 2008

6. Record the quality of results from the Compilation Report. If the
quality of results is significantly worse than those obtained in the
previous compilation, repeat Step 4 through Step 6 to change your
partition assignments and use a different partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat Step 4
through Step 6 by further dividing a large partition into several
smaller partitions. Doing so improves compilation time in future
incremental compilations. You can repeat this step until you achieve
a good trade-off point (that is, all critical paths are localized within
partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

A floorplan represents the layout of the physical resources on the device.
The expressions “creating a design floorplan” and “floorplanning”
describe the process of mapping the logical design hierarchy onto
physical regions in the device floorplan.

In the Quartus Il software, LogicLock regions are used to constrain blocks
of a design to a particular region of the device. LogicLock regions
represent a rectangular area of the device with a user-defined or
Fitter-defined size and location on the device layout.

For more information about design floorplans and LogicLock regions,
refer to the Analyzing and Optimizing the Design Floorplan chapter in
volume 2 of the Quartus II Handbook.

The Difference between Logical Partitions and Physical Regions

Design partitions are “logical” entities based on the design hierarchy.
LogicLock regions are “physical” placement assignments that constrain
logic to a rectangular region on the device.

It is a common misconception that logic from a design partition is always
grouped together on the device when you are using incremental
compilation. This is not true. Logic from a partition can be placed
anywhere in the device if it is not constrained to a LogicLock region. A
logical design partition does not refer to any physical area of the device
and does not directly control where instances are placed on the device.

If you want to control the placement of the logic from a design partition,
and isolate it to a particular part of the device, you can assign the logical
design partition to a physical region in the device floorplan using a
LogicLock region assignment. Creating a design floorplan by assigning

7-37

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Quartus Il Handbook, Volume 1

7-38

design partitions to LogicLock regions is recommended to improve the
quality of results and avoid placement conflicts in many situations for
incremental compilation. Refer to the following section for details.

Another misconception is that LogicLock assignments are used to
preserve placement results for incremental compilation. This is also not
true. LogicLock regions only constrain logic to a physical region of the
device. Incremental compilation does not use LogicLock assignments or
any location assignments to preserve the placement results; it simply
reuses the results stored in the database netlist from the previous
compilation.

Why Create a Floorplan?

Floorplan location planning can be important for a design that uses full
incremental compilation, for the following two reasons:

B To avoid resource conflicts between partitions, predominantly in
bottom-up flows

B To ensure a good quality of results when recompiling individual
partitions in top-down flows

Why Create a Floorplan in Bottom-Up Flows?

Creating a design floorplan is required if you want to preserve placement
for lower-level partitions in a bottom-up flow to avoid resource conflicts
between partitions.

Location assignments for each partition ensure that there are no
placement conflicts between different partitions. If there are no
LogicLock region assignments, or if LogicLock regions are set to auto-size
or floating, no device resources are specifically allocated for the logic
associated with the region. If you do not clearly define this resource
budget, logic placement can conflict when you import the partitions in a
bottom-up flow.

Why Create a Floorplan in Top-Down Flows?

Creating a floorplan is highly recommended for timing-critical partitions
to maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions in a
top-down flow. The logic for partitions that are not timing-critical (such
as simple top-level glue logic) can be placed anywhere in the device on
each recompilation if that is best for your design.

Altera Corporation
May 2008

Introduction to Design Floorplans

Design floorplan assignments prevent the situation in which the Fitter
must place a partition in an area of the device where most resources are
already used by other partitions. A LogicLock region provides a
reasonable region to re-place logic after a change, so the Fitter does not
have to scatter logic throughout the available space in the device.

Figure 7-18 illustrates the problems associated with refitting designs that
do not have floorplan location assignments. It shows the initial placement
of a four-partition design (P1-P4) without any floorplan location
assignments. The second part of the figure shows the device if a change
occurs to P3. After removing the logic for the changed partition, the Fitter
must replace and reroute the new logic for P3 using the scattered white
space shown in the figure. The placement of the post-fit netlists for other
partitions forces the Fitter to implement P3 with the device resources that
have not already been used.

Figure 7-18. Representation of Device Floorplan without Location Assignments

Change in P3——>

No floorplan assignments: Device has 4 partitions Device after removing changed partition P3:
and the logic is placed throughout New P3 must be placed in empty areas

Altera Corporation
May 2008

The Fitter must work harder because of the more difficult physical
constraints, and as a result, compilation time often increases. The Fitter
might not be able to find any legal placement for the logic in partition P3,
even if it could in the initial compilation. In addition, if the Fitter can find
a legal placement, the quality of results often decreases in these cases,
sometimes dramatically, because the new partition is now scattered
throughout the device.

Figure 7-19 shows the initial placement of a four-partition design with
floorplan location assignments. Each partition has been assigned to a
LogicLock region. The second part of the figure shows the device after
partition P3 is removed. This placement presents a much more reasonable
task to the Fitter and yields better results.

7-39

Quartus Il Handbook, Volume 1

Figure 7-19. Representation of Device Floorplan with Location Assignments

P3

Change in P3—>

With floorplan location assignments: Device has 4 Device after removing changed partition P3:

partitions placed in 4 LogicLock regions Much easier to place new P3 partition in empty area

7-40

Altera recommends that you create a LogicLock floorplan assignment for
any timing-critical blocks that will be recompiled as you make changes to
the design.

When to Create a Floorplan

You can create a floorplan at different stages of the design flow. This
section describes two major categories of floorplans based on the design
stage: early floorplan and late floorplan.

Regardless of when you create the floorplan, it is important that you plan
early to incorporate partitions into the design, and ensure that each
design partition follows the partitioning guidelines. These guidelines will
help ensure better results when you start creating floorplan location
assignments.

Early Floorplan

An early floorplan is created before the design stage. You can plan an
early floorplan at the top level of a team-based design to give each
designer a portion of chip. Doing so allows each designer to create the
logic for their design partition without conflicting with other logic. Each
design partition can be implemented independently and integrated later
in the top-level project.

You can use an early floorplan as a rough draft of a floorplan for
top-down flows as well, to roughly divide up the design partitions into
LogicLock regions while iterating through the design cycle.

Altera Corporation
May 2008

Creating a Design Floorplan: Placement Guidelines

Creating a
Design

Floorplan:
Placement
Guidelines

Altera Corporation
May 2008

In a top-down flow, or after you have integrated the first version of all
design partitions in a bottom-up flow, you can use the design information
and Quartus II features to tune and improve the floorplan, as described
in the following section.

Late Floorplan

A late floorplan is created or modified after the design has been created,
when the code is close to complete and the design structure is likely to
remain stable. When the design is complete, you can take advantage of
the Quartus II analysis features to check the floorplan quality. To tune the
floorplan, you can perform iterative compilations as needed and assess
the results of different assignments.

=" It may not be possible to create a good-quality late floorplan if
you have not planned for the partitions in the early stages of the
design.

The following guidelines are key to creating a good design floorplan:

B Capture correct resources in each region
B Use good region placement to maintain design performance
compared to flat compilation

It is a common misconception that creating a floorplan will enhance
timing performance, as compared to a flat compilation with no location
assignments. This may be true with other tools, but is not generally true
in the Quartus II software. The Quartus II Fitter does not usually require
guidance to get optimal results for a full design.

Floorplan assignments can help maintain good performance when
designs change incrementally, as described in “Why Create a Floorplan in
Top-Down Flows?” on page 7-38. However, bad placement assignments
can often hurt performance results, as compared to a flat compilation,
because the assignments limit the options for the Fitter. Investing some
time to find good region placement is required to match the performance
of a full flat compilation.

Use the following general strategy to create a floorplan:

1. Divide the design into partitions.

2. Assign the partitions to LogicLock Regions.

3. Compile the design.

7-41

Quartus Il Handbook, Volume 1

7-42

4. Analyze the results.
5. Modify the placement and size of regions as required.

You may have to iterate through these steps several times to find the best
combination of design partitions and LogicLock regions that meet the
design’s resource and timing goals.

For details about performing these steps, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Assigning Partitions to LogicLock Regions

To create a full floorplan: Create a LogicLock region for each partition
(including the top-level) to assign all logic to a place in the device.

To create a partial floorplan: Create a LogicLock region for any critical or
often-changing partitions.

Before compiling the design with new LogicLock assignments, ensure the
affected partitions’ Netlist Type is set so that the Fitter does not reuse
previous placement results.

In most cases, each LogicLock region should contain logic from only one
partition. This organization helps prevent resource conflicts in a
bottom-up design and can lead to better performance preservation when
locking down parts of a project in a top-down design.

The software is flexible and does allow exceptions to this rule. For
example, you can place more than one partition in the same LogicLock
region if the partitions are tightly connected. For best results, ensure that
you recompile all such partitions every time the logic in one partition
changes. In addition, if a partition contains multiple lower-level entities,
you can place those entities in different areas of the device with multiple
LogicLock regions (even though they are defined in the same partition).

You can use the Reserved LogicLock option to ensure that you avoid any
conflicts with other logic which is not locked into any LogicLock region.
This option prevents other logic from being placed in the region, and is
useful if you have empty partitions at any point during your design flow,
so that you can reserve space in the floorplan. Do not make reserved
regions too large, to prevent unused area, because no other logic can be
placed in a region with the Reserved LogicLock option.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Creating a Design Floorplan: Placement Guidelines

Altera Corporation
May 2008

How to Size and Place Regions

In an early floorplan, assign physical locations based on design
specifications. Use information about the connections between partitions,
the partition size, and the type of device resources required.

In a late floorplan when the design is complete, you can use Fitter-chosen
regions as a guideline. Start with the default Auto size and Floating origin
location. After compilation, lock the size and origin location. Instead of a
full compilation, you can use the Start Early Timing Estimate command
to perform a fast placement.

Alternately, in a late floorplan, you can specify the size based on the
synthesis results and use Fitter-chosen locations. Right-click on a region
in the LogicLock Regions dialog box, and choose Set to Estimated Size.
Like the previous option, start with Floating origin location. After
compilation, lock the origin location. Again, instead of a full compilation,
you can use the Start Early Timing Estimate command to perform a fast
placement. You can also enable the Fast Synthesis Effort setting to
reduce synthesis time.

After a compilation or early timing estimate, you should save the Fitter’s
size and/or origin location. Click on each LogicLock region in the
LogicLock Regions Window while holding the Ctrl key to select all
regions (including the top-level region). Right-click on the last selected
LogicLock region and click Set Size and Origin to Previous Fitter
Results.
=" Itis important that you use the Fitter-chosen locations only as a
starting point to give the regions a good fixed size and location.
Ensure that all LogicLock regions in the design have a fixed size
and have their origin locked to a specific location on the chip. On
average, regions with fixed size and location yield better timing
performance than auto-sized regions.

Modifying Region Size and Origin

After you have saved the Fitter’s results from an initial compilation for a
late floorplan, modify the regions using your knowledge of the design to
set a specific size and location. If you have a good understanding of how
the design fits together, you can often improve upon the regions placed
in the initial compilation. In an early floorplan, you can use the guidelines
in this section to set the size and origin, even though there is no initial
Fitter placement for a basis.

7-43

Quartus Il Handbook, Volume 1

7-44

The easiest way to move and resize regions is to drag the region location
and borders in the Chip Planner. Ensure you select the User-Defined
region in the floorplan (as opposed to the Fitter-Placed region from the
last compilation) so that you can change the region.

Generally, you can keep the Fitter-determined relative placement of the
regions, but make adjustments if required to meet timing performance. If
you find that the Early Timing Estimate did not result in good relative
placements, try performing a full compilation so that the Fitter can
optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure
they are placed near each other to improve timing performance. By
placing connected regions near each other, the Fitter has more
opportunity to optimize inter-region paths when both partitions are
recompiled. Reducing the criticality of inter-region paths also allows the
Fitter more flexibility when placing the other logic in each region.

If resource utilization is low in the overall device, enlarge the regions.
Doing so usually improves the final results because it gives the Fitter
more freedom to place additional or modified logic added to the partition
during future incremental compilations. It also allows room for
optimizations such as pipelining and physical synthesis logic
duplication.

Try to have each region evenly full, with the same ”fullness” that the
complete design would have without LogicLock regions. As a very rough
suggestion, try to have each region approximately 75% full.

Allow more area for regions that are densely populated, because overly
congested regions can lead to poor results. Allow more empty space for
timing-critical partitions to improve results. However, do not make
regions too large for their logic. Regions that are too large can result in
wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions
if all partitions are assigned to regions.

Regions should not overlap in the device floorplan. This is a requirement
in bottom-up flows and a recommendation in top-down flows. In a
bottom-up flow, if two partitions are allocated an overlapping portion of
the chip, each may independently claim some common resources in this
region. This will lead to resource conflicts when importing bottom-up
results into a final top-level design. In a top-down flow, overlapping
regions give more difficult constraints to the Fitter and can lead to
reduced quality of results.

Altera Corporation
May 2008

Creating a Design Floorplan: Placement Guidelines

Altera Corporation
May 2008

You can create hierarchical LogicLock regions to ensure that the logic in
a child partition is physically placed inside the LogicLock region for its
parent partition. This can be useful when the parent partition does not
contain registers at the boundary with the lower-level child partition and
has a lot of signal connectivity. To create a hierarchical relationship
between regions in the LogicLock Regions Window, drag and drop the
child region to the parent region.

1/0 Connections

Consider I/O timing when placing regions. Using I/O registers can
minimize I/O timing problems, and using boundary registers on
partitions can minimize problems connecting regions or partitions.
However, I/O timing might still be a concern. It is most important for
bottom-up flows where each partition is compiled independently,
because the Fitter can optimize the placement for paths between
partitions if the partitions are compiled at the same time.

Place regions close to the appropriate I/0, if necessary. For example,
DDR memory interfaces have very strict placement rules to meet timing
requirements. Incorporate any specific placement requirements into your
floorplan as required. It is best to create LogicLock regions for internal
logic only, and provide pin location assignments for external device I/O
pins (instead of including the I/O cells in a LogicLock region to control
placement).

LogicLock Resource Exclusions

You can exclude certain resource types from a LogicLock region to
manage the ratio of logic to dedicated DSP and RAM resources in the
region.

If your design contains memory or digital signal processing (DSP)
elements, you may want to exclude these elements from the LogicLock
region. LogicLock resource exceptions prevent elements of certain types
from being assigned to a region. Therefore, those elements are not
required to be placed inside the region boundaries. Note that the option
does not prevent them from being placed inside the region boundaries
unless the region’s Reserved property is turned on.

Resource exceptions are useful in cases where it is difficult to place
rectangular regions for design blocks that contain memory and DSP
elements, because of their placement in columns throughout the device
floorplan. Exclude RAMs, DSPs, or logic cells to give the Fitter more
flexibility with region sizing and placement. Excluding RAM or DSP
elements can help to resolve no-fit errors that are caused by regions
spanning too many resources, especially for designs that are

7-45

Quartus Il Handbook, Volume 1

memory-intensive, DSP-intensive, or both. Figure 7-20 shows an
example of a design with an odd-shaped region to accommodate DSP
blocks for a region that does not contain very much logic. The right side
of the figure shows the result after excluding DSP blocks from the region.
The region can be placed more easily without wasting logic resources.
The DSP blocks are placed outside the region.

Figure 7-20. LogicLock Resource Exclusion Example

Exclude DSP
.~ blocks from .
LogicLock region |

= =
s 32 z g 2
3 : g 5 = é
L2 ERT L2 BT
DSP blocks force Allows better shape, easier
odd-shaped region placement, and less unused

logic resources

7-46

To view any resource exceptions, right-click in the LogicLock Regions
Window and click Properties. In the LogicLock Region Properties dialog
box, highlight the design element (module/entity) in the Members box
and click Edit. To set up a resource exception, click the browse button
under Excluded element types, then turn on the design element types to
be excluded from the region. You can choose to exclude combinational
logic or registers from logic cells, or any of the sizes of TriMatrix™
memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it’s
within the same design partition), you can assign the entity to a separate
LogicLock region to constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to
reserve specific resources for logic that will be added to the design.

Altera Corporation
May 2008

Checking Floorplan Quality

Checking
Floorplan
Quality

Altera Corporation
May 2008

Creating Non-Rectangular Regions

To constrain placement to non-rectangular areas of the device, you can
limit entity placement to a sub-area of a LogicLock region. To do so,
construct a LogicLock hierarchy by creating child regions inside of parent
regions, and then use the Reserved option to control which logic can be
placed inside these child regions.

Setting a region’s Reserved option to On prevents the Fitter from placing
nodes that are not assigned to the region inside the boundary of the
region. Setting a region’s Reserved option to Limited prevents the Fitter
from placing nodes that are assigned to the immediate parent LogicLock
region’s hierarchy inside the boundary of the region. Any other logic can
be placed inside the region. To create non-rectangular regions for a
specific entity, you can place child LogicLock regions inside a parent
region and set the Reserved setting of the child regions to Limited. The
child region prevents the parent region hierarchy from using that area of
the device floorplan, but leaves it open for the rest of the design,. You can
assign other LogicLock regions to cover that area of the device if required.

For more information and examples of creating non-rectangular regions
with the Reserved property, refer to Examples of Using Limited Reserved
Status to Constrain LogicLock Location Assignments in the Quartus II Help.

This section provides an overview of tools that you can use as you create
a floorplan in the Quartus II software. Take advantage of these tools to
assess your floorplan quality and use the information to improve your
design or assignments as required to achieve the best results.

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your
design follows the recommendations for creating floorplan location
assignments that are presented in this document. Refer to the previous
section on the Incremental Compilation Advisor on page 7-33 for more
information.

LogicLock Region Resource Estimates

You can view resource estimates included in a LogicLock region to
determine the region’s resource coverage. You can use this estimate
before compilation to check region size. Using this estimate helps ensure
adequate resources when you are sizing or moving regions.

7-47

Quartus Il Handbook, Volume 1

7-48

Right-click in the LogicLock Regions Window, choose Properties, and
select the Size & Origin tab. Specify a Size and an Origin to see the
Available resources estimate in the dialog box.

LogicLock Region Properties Statistics Report

The LogicLock Region Properties Statistics are similar to the Design
Partition Properties described in “Partition Statistics Report” on
page 7-35, but include resource usage details after compilation.

The statistics report the number of resources used and the total resources
covered by the region. The statistics also list the number of I/O
connections and how many I/Os are registered (good), as well as the
number of internal connections and the number of inter-region
connections (bad).

Right-click in the LogicLock Regions Window, choose Properties and
select the Statistics tab. Click Show All Regions to see all regions
displayed in the same report.

Critical Path Display

The Critical Path Display option shows the most critical paths from the
Timing Analyzer report in the Chip Planner floorplan view. You can
specify a threshold for which paths to highlight in the Chip Planner. Use
this information to identify inter-region critical paths and improve your
partition or floorplan assignments.

Locate the Quartus Il TimeQuest Timing Analyzer Path in Chip
Planner

In the TimeQuest user interface, you can locate a specific path in the Chip
Planner to view its placement. Perform a report timing operation (for
example, report timing for all paths with less than 0 ns slack). Right-click
in the detailed path report (Data Path tab) for a specific path and choose
Locate Path. Click OK to choose the Chip Planner.

Inter-Region Connection Bundles

The Chip Planner can display bundles of connections between LogicLock
regions, with filtering options that allow you to choose the relevant data
for display. These bundles can help you visualize how many connections
there are between each LogicLock region, to improve floorplan
assignments, or to change partition assignments if required.

Altera Corporation
May 2008

Checking Floorplan Quality

Altera Corporation
May 2008

With the Chip Planner open, on the View menu, choose Generate
Inter-region Bundles.

Routing Utilization

The Chip Planner includes a mode to display a “thermal map” of routing
congestion. This display helps identify areas of the chip that are too
tightly packed.

In the Chip Planner, click the Layer Settings icon next to the Task list.
Change the Background Color Map to Routing Utilization (the default is
Block Utilization).

The darker-colored LAB blocks indicate higher routing congestion. Move
your mouse pointer over a LAB to see a tool tip that reports the logic and
routing utilization information.

Ensure Floorplan Assignments Don’t Impact Quality of Results

The end results of design partitioning and floorplan creation differ from
design to design. However, it is important to evaluate your results to
ensure that your scheme is successful. Compare the results before
creating your floorplan location assignments to the results after doing so.
Consider using another scheme if any of the following guidelines are not
met:

B Youshould see no degradation in fy;5x after the design is partitioned
and floorplan location assignments are created. In many cases, a
slight increase in fy5x is possible

B The area increase should be no more than 5% after the design is
partitioned and floorplan location assignments are created

B The time spent in the routing stage should not significantly increase

The amount of compilation time spent in the routing stage is reported in
the Messages window by an Info message that indicates the elapsed time
for Fitter routing operations. If you notice a dramatic increase in routing
time, the floorplan location assignments may be creating substantial
routing congestion. In this case, decrease the number of LogicLock
regions. Doing so typically reduces the compilation time in subsequent
incremental compilations and may also improve design performance.

7-49

Quartus Il Handbook, Volume 1

Recommended
Design Flows
and Application
Examples

7-50

This section provides design flows for partitioning and creating a design
floorplan during common timing closure and team-based design
scenarios. Each flow describes the situation in which it should be used,
and gives a step-by-step description of the commands required to
implement the flow.

Create a Floorplan for the Entire Design in a Top-Down Flow

Use this flow for top-down incremental compilation designs in which
you would like to assign a floorplan location for each design block that is
assigned as a separate partition. This is the standard floorplan procedure
described in the Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. A full floorplan
ensures that partitions do not interact as they are changed and
recompiled—each partition has its own area of the device floorplan.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source File
or Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level
entity, which is automatically considered a partition).

3. On the Processing menu, point to Start and click Start Early Timing
Estimate to place auto-sized, floating-location LogicLock regions.
= You must perform Analysis and Synthesis and Partition Merge
before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate,
on the Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and
click on each LogicLock region while holding the Ctrl key to select
all regions (including the top-level region).

5. Right-click on the last selected LogicLock region, and click Set Size
and Origin to Previous Fitter Results.

6. If required, modify the size and location with the LogicLock
Regions Window or the Chip Planner. For example, make the
regions bigger to fill up the device and allow for future logic
changes.

Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Recommended Design Flows and Application Examples

Altera Corporation
May 2008

7. On the Processing menu, point to Start, and click Start Early
Timing Estimate to estimate the timing performance of your design
with these LogicLock regions.

8. Repeat Steps 6 and 7 until you are satisfied with the quality of
results for your design floorplan. On the Processing menu, click
Start Compilation to run a full compilation.

Create a Floorplan as the Project Lead in a Bottom-Up Flow

Use this approach when you have several lower-level subdesigns that
will be implemented separately by different designers. The subdesign
designers want to optimize their designs independently and pass the
results on to you, the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. Consider the partitioning
guidelines in this chapter while determining the design hierarchy.

3. Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

4. Make design partition assignments for each major subdesign and
set the Netlist Type for each design partition that will be imported
to Empty in the Design Partitions window.

5. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications. Use the guidelines
described in this chapter to choose a size and location for each
LogicLock region.

6. On the Project menu, click Generate Bottom-Up Design Partition

Scripts, or run the script generator from a Tcl prompt or the
command prompt.

7-51

Quartus Il Handbook, Volume 1

7. Make changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock regions, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

8. Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles,
provide the makefile for each partition.

Create a Floorplan Assignment for One Design Block with
Difficult Timing

Use this flow when you have one timing-critical design block that
requires more optimization than the rest of your design. You can take
advantage of incremental compilation to reduce your compilation time
without creating a full design floorplan.

In this scenario, there may be no need to create floorplan assignments for
the entire design. You can create a region to constrain the location of your
critical design block, and allow the rest of the logic to be placed anywhere
else in the device. Use the following general methodology:

1. Divide up your design into partitions to reduce compilation time.
Consider the guidelines in this chapter while determining the
partition boundaries. Ensure that you isolate the timing-critical logic
in a separate design partition.

2. Define a LogicLock region for the timing-critical design partition.
Ensure that you capture the correct amount of device resources in
the region. Turn on the Reserved property to prevent any other
logic from being placed in the region.

e If the design block is not complete, reserve space in the design
floorplan based on your knowledge of the design specifications,
connectivity between design blocks, and estimates of the size of
the partition based on any initial implementation numbers.

e If the critical design block has initial source code ready, compile
the design as in the scenario “Create a Floorplan for the Entire
Design in a Top-Down Flow” on page 7-50 to place the
LogicLock region. Save the Fitter-determined size and origin,
then enlarge the region to provide more flexibility and allow for
future design changes.

7-52 Altera Corporation
May 2008

Potential Issues with Creating Partitions and Floorplan Assignments

Potential Issues
with Creating
Partitions and
Floorplan
Assignments

Altera Corporation
May 2008

3. As the rest of the design is completed, and the device fills up, the
timing-critical region has a reserved area of the floorplan. When you
make changes to the design block, the logic can be re-placed in the
same part of the device, which helps ensure good quality of results.

There are some limitations and restrictions on using incremental
compilation and using certain design flows with certain Altera features.

I Refer to the Quartus I Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II
Handbook for complete details about restrictions and limitations.

Consider documented limitations and restrictions as you plan your
design flow and select partitions. Most limitations and restrictions do not
affect most users, but it is helpful to know if you must modify your
partitions or design flow to accommodate certain restrictions.

There are also possible utilization effects due to partitioning and creating
a floorplan. These are described in the following subsections. Consider
these effects if your design is close to using all of the device resources
before adding partition or floorplan assignments.

Logic and Resource Utilization Effects

Partitions can increase resource utilization due to cross-partition
optimization limitations. Floorplan assignments can increase resource
utilization because regions sometimes lead to unused logic. Follow the
recommendations in this document to reduce these effects.

If your device is very full with the flat version of design, you might not be
able to use a complete incremental flow for the entire design. You can use
a “partial” incremental flow instead to get compilation time and
performance preservation benefits for key parts of the design. Focus on
creating partitions and floorplan assignments for timing-critical or
often-changing blocks to get the most benefit out of the feature.

Routing Utilization Effects

Partitions and floorplan assignments typically increase routing
utilization compared to a flat design. Follow the recommendations in this
document to reduce the effect.

If long compilation times are due to routing congestion, you might not be
able to use incremental flows to reduce compilation time. Focus on
creating partitions and floorplan assignments for parts of the design that
are not routing-critical to get some benefit.

7-53

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Quartus Il Handbook, Volume 1

You can also use incremental compilation to lock routing for
routing-critical blocks only (with other partitions empty), and then
compile the rest of the design after the critical block meets its
requirements.

Review the Fitter Messages to check how much time is spent during
routing optimizations and to see the percentage of routing utilization.
This information will help highlight any routing issues.

COn (M | USiO n Incremental compilation provides a number of benefits, especially to
large, complex designs. To take advantage of the feature, it is worth
spending some time to create quality partition and floorplan
assignments.

Follow the guidelines to set up your design hierarchy and source code for
incremental compilation. Keep partitions independent of each other and
do not rely on any cross-boundary logic optimizations.

Floorplan location assignments are required for bottom-up flows and are
recommended for timing-critical partitions in top-down flows. Follow
the guidelines to create and modify LogicLock regions to create good
placement assignments for your design partitions.

Take advantage of the numerous Quartus II software tools to assess
partition quality and analyze the floorplan to make good partition and
LogicLock location assignments. Remember that you do not have to
follow all the guidelines exactly to implement an incremental compilation
design flow, but following the guidelines as closely as possible will
maximize your chances of success.

Referenced This chapter references the following documents:

Documents B Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

B Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

B Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

7-54 Altera Corporation
May 2008

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Revision History

Revision H istorv The following table shows the revision history for this chapter.

Date and D_ocument Changes Made Summary of Changes
Version
May 2007 Initial release. This content of this chapter is based
v8.0.0 on information in Application Note
470.
Altera Corporation 7-55

May 2008

Quartus Il Handbook, Volume 1

7-56 Altera Corporation
May 2008

A |:| E DY/A Section lll. Synthesis

®

Altera Corporation

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become an
important part of the design flow. In the Quartus® Il software you can use
the Analysis and Synthesis module of the Compiler to analyze your
design files and create the project database. You can also use other EDA
synthesis tools to synthesize your designs, and then generate EDIF netlist
files or VQM files that can be used with the Quartus II software. This
section explains the options that are available for each of these flows, and
how they are supported in the Quartus II, version 8.0 software.

This section includes the following chapters:

Chapter 8, Quartus II Integrated Synthesis

Chapter 9, Synplicity Synplify and Synplify Pro Support
Chapter 10, Mentor Graphics Precision RTL Synthesis Support
Chapter 11, Mentor Graphics LeonardoSpectrum Support
Chapter 12, Analyzing Designs with Quartus II Netlist Viewers

I8= For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section Ill-i

Synthesis Quartus Il Handbook, Volume 1

Section lll-ii Altera Corporation

Z;\l |:| —E D)/A 8. Quartus Il Integrated

Synthesis

®

QI151008-8.0.0

Introduction

Altera Corporation
May 2008

As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports VHDL and Verilog HDL, as well
as Altera®-speciﬁc design entry languages, and provides options to
control the synthesis process. With this synthesis support, the Quartus II
software provides a complete, easy-to-use solution.

This chapter documents the design flow and language support in the
Quartus I software. It explains how you can use incremental compilation
to reduce your compilation time, and how you can improve synthesis
results with Quartus II synthesis options and by controlling the inference
of architecture-specific megafunctions. This chapter also explains some of
the node-naming conventions used during synthesis to help you better
understand your synthesized design, and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying
all the options and settings described are also provided.

This chapter contains the following sections:

“Design Flow” on page 8-2

“Language Support” on page 8-5

“Incremental Synthesis and Incremental Compilation” on page 8-24
“Quartus II Synthesis Options” on page 8-25

“Analyzing Synthesis Results” on page 8-77

“Analyzing and Controlling Synthesis Messages” on page 8-78
“Node-Naming Conventions in Quartus II Integrated Synthesis” on
page 8-83

B “Scripting Support” on page 8-90

This chapter provides examples of how to use attributes described within
the chapter, but does not cover specific coding examples.

For examples of Verilog HDL and VHDL code synthesized for specific
logic functions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about coding with
primitives that describe specific low-level functions in Altera devices,
refer to the Designing With Low-Level Primitives User Guide.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

Quartus Il Handbook, Volume 1

Design Flow

8-2

The Quartus II Analysis and Synthesis process includes Quartus II
integrated synthesis, which fully supports Verilog HDL and VHDL
languages as well as Altera-specific languages, and supports major
features in the SystemVerilog language (refer to “Language Support” on
page 8-5 for details). This stage of the compilation flow performs logic
synthesis to optimize design logic, and performs technology mapping to
implement the design logic using device resources, such as logic elements
(LEs) or adaptive logic modules (ALMs) and other dedicated logic blocks.
This stage also generates the single project database that integrates all the
design files in a project (including any netlists from third-party synthesis
tools).

You can use the Analysis and Synthesis stage of the Quartus II
compilation to perform any of the following levels of Analysis and
Synthesis:

B Analyze Current File—Parse the current design source file to check
for syntax errors. This command does not report on many semantic
errors that require further design synthesis. On the Processing menu,
click Analyze Current File.

B Analysis & Elaboration—Check a design for syntax and semantic
errors and perform elaboration to identify the design hierarchy. On
the Processing menu, point to Start, then click Start Analysis &
Elaboration.

B Analysis & Synthesis—Perform complete Analysis and Synthesis
on a design, including technology mapping. On the Processing
menu, point to Start, then click Start Analysis & Synthesis. This is
the most commonly used command and is part of the full
compilation flow.

The Quartus II design and compilation flow using Quartus II integrated
synthesis is made up of the following steps:

1. Create a project in the Quartus II software, and specify the general
project information, including the top-level design entity name. On
the File menu, click New Project Wizard.

2. Create design files in the Quartus II software or with a text editor.
3. On the Project menu, click Add/Remove Files in Project and add all

design files to your Quartus II project using the Files page of the
Settings dialog box.

Altera Corporation
May 2008

Design Flow

Altera Corporation
May 2008

4. Specify compiler settings that control the compilation and
optimization of the design during synthesis and fitting. For
synthesis settings, refer to “Quartus II Synthesis Options” on
page 8-25. Add timing constraints to specify the timing
requirements.

5. Compile the design in the Quartus II software. To synthesize the
design, on the Processing menu, point to Start, and click Start
Analysis & Synthesis.

= On the Processing menu, click Start Compilation to run a
complete compilation flow including placement, routing,
creation of a programming file, and timing analysis.

6. After obtaining synthesis and place-and-route results that meet
your needs, program or configure the Altera device.

The software provides netlists that allow you to perform functional
simulation and gate-level timing simulation in the Quartus II simulator
or a third-party simulator, perform timing analysis in a third-party timing
analysis tool in addition to the TimeQuest Timing Analyzer or Classic
Timing Analyzer, and/or perform formal verification in a third-party
formal verification tool. The Quartus II software also provides many
additional analysis and debugging features.

For more information about creating a project, compilation flow, and
other features in the Quartus II software, refer to the Quartus II Help.
For an overall summary of Quartus II features, refer to the Introduction to
the Quartus II Software manual.

8-3

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Quartus Il Handbook, Volume 1

Figure 8-1 shows the basic design flow using Quartus II integrated

synthesis.

Figure 8-1. Quartus Il Design Flow Using Quartus Il Integrated Synthesis

VerilogHDL ~ VHDL AHDL BDF

dpdydnd

Functional/RTL
Simulation
’ A Gate-Level
Constraints . . -
) Analysis & Synthesis Functional
& Settings . .
Simulation
Post Synthesis
Internal Simulation File
Synthesis (.vho/.vo)
Netlist
/
Consiraints Fitter Assembler Timing Gate-Level Timing
& Settings Analyzer Simulation
Post
Y Place-and-Route
Simulation File
(.vho/.vo)
. A Formal Verification
No Timing & Area Using Source Code as
Resqut!r?mgsts Golden Netlist, and VO
atisfied? ; ;
Place-and-Route as Revised Netlist
Formal Verification File
(.vo)
J Yes
Configuration/

Programming
Files (.sof/.pof)

(Configure/Program Device)

Notes to Figure 8-1:
Altera HDL

The Block Design File (.bdf) contains the design schematic.

Altera Corporation
May 2008

Language Support

Language
Support

Altera Corporation
May 2008

This section explains the Quartus II software’s integrated synthesis
support for HDL and schematic design entry, as well as graphical state
machine entry, and explains how to specify the Verilog HDL or VHDL
language version used in your design. It also documents language
features such as Verilog HDL macros, initial constructs and memory
system tasks, and VHDL libraries. “Design Libraries” on page 8-15
describes how to compile and reference design units in different custom
libraries and “Using Parameters/Generics” on page 8-20 describes how
to use parameters or generics and how to pass them between different
languages.

To ensure that the software reads all associated project files, add each file
to your Quartus II project. To add files to your project in the Quartus II
GUI, on the Project menu, click Add/Remove Files In Project. Design
files can be added to the project in any order. You can mix all supported
languages and netlists generated by third-party synthesis tools in a single
Quartus II project.

Verilog HDL Support

The Quartus II compiler’s Analysis and Synthesis module supports the
following Verilog HDL standards:

B Verilog-1995 (IEEE Standard 1364-1995)

B Verilog-2001 (IEEE Standard 1364-2001)

B SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs
are supported)

For complete information about specific Verilog HDL syntax features
and language constructs, refer to the Quartus II Help.

The Quartus II compiler uses the Verilog-2001 standard by default for
files that have the extension .v, and the SystemVerilog standard for files

that have the extension .sv.

Ils~ The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard unless otherwise specified.

To specify a default Verilog HDL version for all files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select Verilog HDL Input.

8-5

Quartus Il Handbook, Volume 1

3. On the Verilog HDL Input page, under Verilog version, select the
appropriate Verilog HDL version, then click OK.

You can override the default Verilog HDL version for each Verilog HDL
design file by performing the following steps:

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
the Properties button.

3. Inthe HDL Version list, select SystemVerilog_2005, Verilog_2001,
or Verilog_1995 and click OK.

You can also control the Verilog HDL version inside a design file using the
VERILOG_INPUT_VERSION synthesis directive, as shown in

Example 8-1. This directive overrides the default HDL version and any
HDL version specified in the File Properties dialog box.

Example 8-1. Controlling the Verilog HDL Input Version with a Synthesis Directive
// synthesis VERILOG_INPUT_VERSION <language version>

8-6

The variable <language version> takes one of the following values:

B VERILOG 1995
B VERILOG 2001
B SYSTEMVERILOG 2005

When the software reads a VERILOG_INPUT VERSION synthesis
directive, the current language version changes as specified until the end
of the file, or until the next VERILOG_INPUT_VERSION directive is
reached.

I'=" You cannot change the language version in the middle of a
Verilog HDL module.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8-30.

If you use scripts to add design files, you can use the -HDL_VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8-91.

Altera Corporation
May 2008

Language Support

Altera Corporation
May 2008

The Quartus II software support for Verilog HDL is case-sensitive in
accordance with the Verilog HDL standard. The Quartus II software
supports the compiler directive ~define, in accordance with the Verilog
HDL standard.

The Quartus II software supports the include compiler directive to
include files with absolute paths (with either “/” or “\” as the separator),
or relative paths (relative to project root, user libraries, or current file
location). When searching for a relative path, the Quartus II software
initially searches relative to the project directory. If the software cannot
find the file, it then searches relative to all user libraries, and finally
relative to the directory location of the current file.

Verilog-2001 Support

The Quartus II software does not support Verilog-2001 libraries and
configurations.

SystemVerilog Support

The Quartus II software supports the following SystemVerilog
constructs:

B Parameterized interfaces, generic interfaces, and modport
constructs

Packages

Extern module declarations

Built-in data types logic, bit, byte, shortint, longint, int
Unsized integer literals ‘0, 1, ‘'x, ‘'z, *X,and ' Z

Structure data types using struct

Ports and parameters with unrestricted data types

User-defined types using typedef

Global declarations of task/functions/parameters/types (does not
support global variables)

Coding constructs always_comb, always_latch, always_ff
Continuous assignments to nodes other than nets, and procedural
assignments to nodes other than reg

Enumeration methods First, Last, Next (n), Prev (n), Num,
and Name

Assignment operators +=, -=, *=, /=, %=, &=, |=, "=, <<=, >>=,
<<<=,and >>>=

Increment ++ and decrement - -

Jump statements return, break, and continue

Enhanced for loop (declare loop variables inside initial condition)
Do-while loop and local loop constructs

Assignment patterns

Keywords unique and priority in case statements

8-7

Quartus Il Handbook, Volume 1

Default values for function/task arguments

Closing labels

Extensions to directives ‘define and ‘include
Expression size system function $bits

Array query system functions $dimensions,

Sunpacked dimensions, $left, $Sright, $high, $low,
$increment, Ssize

Packed array (include multidimensional packed array)
Unpacked array (include single-valued range dimension)
Implicit port connections with .name and .*

Quartus II integrated synthesis also parses, but otherwise ignores,
SystemVerilog assertions.

'~ Designs written to comply with the Verilog-2001 standard may
not compile successfully using the SystemVerilog setting
because the SystemVerilog standard adds a number of new
reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Initial Constructs and Memory System Tasks

The Quartus II software infers power-up conditions from Verilog HDL
initial constructs. The software creates power-up settings for
variables, including RAM blocks. If the Quartus II software encounters
non-synthesizable constructs in an initial block, it generates an error.
To avoid such errors, enclose non-synthesizable constructs (such as those
intended only for simulation) in translate_off and translate_on
synthesis directives, as described in “Translate Off and On / Synthesis Off
and On” on page 8-69. Synthesis of initial constructs enables the
power-up state of the synthesized design to match, as closely as possible,
the power-up state of the original HDL code in simulation.

= Initial blocks do not infer power-up conditions in some
third-party EDA synthesis tools. If you are converting between
synthesis tools, ensure that your power-up conditions are set
correctly.

Quartus II integrated synthesis supports the $readmemb and
$readmemh system tasks to initialize memories. Example 8-2 shows an
initial construct that initializes an inferred RAM with $readmemb.

8-8 Altera Corporation
May 2008

Language Support

Example 8-2. Verilog HDL Code: Initializing RAM with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
Sreadmemb ("ram.txt", ram) ;
end

When creating a text file to use for memory initialization, specify the
address using the format @<location> on a new line, then specify the
memory word such as 110101 or abcde on the next line. Example 8-3
shows a portion of a memory initialization file for the RAM in
Example 8-2.

Example 8-3. Text File Format: Initializing RAM with the readmemb Command
@0
00000000
@1
00000001
@2
00000010
@e
00001110
ef
00001111

Verilog HDL Macros

The Quartus II software fully supports Verilog HDL macros, which you
can define with the ~define compiler directive in your source code. You
can also define macros in the GUI or on the command line.

Setting a Verilog HDL Macro Default Value in the GUI

To specify a macro in the GUI, on the Assignments menu, click Settings.
Under Category, expand Analysis & Synthesis Settings and click
Verilog HDL Input. Under Verilog HDL macro, type the macro name in
the Name box, the value in the Setting box, and click Add.

Setting a Verilog HDL Macro Default Value on the Command Line
To set a default value for a Verilog HDL macro on the command line, use
the --verilog macro option, as shown in Example 8—4.

Example 8-4. Command Syntax for Specifying a Verilog HDL Macro
quartus_map <Design name> --verilog macro= "<Macro Name>=<Macro Setting>" +

Altera Corporation 8-9
May 2008

Quartus Il Handbook, Volume 1

The command in Example 8-5 has the same effect as specifying
“define a 2 in the Verilog HDL source code.

Example 8-5. Specifying a Verilog HDL Macro a =2

quartus_map my design --verilog macro="a=2" ¢

To specify multiple macros, you can repeat the option more than once, as
in Example 8-6.

Example 8-6. Specifying Verilog HDL Macros a=2 and b =3

quartus_map my design --verilog macro="a=2" --verilog macro="b=3" ¢

8-10

VHDL Support

The Quartus II compiler’s Analysis and Synthesis module supports the
following VHDL standards:

B VHDL 1987 (IEEE Standard 1076-1987)
B VHDL 1993 (IEEE Standard 1076-1993)

For information about specific VHDL syntax features and language
constructs, refer to the Quartus II Help.

The Quartus II compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

Il=~ The VHDL code samples provided in this document follow the
VHDL 1993 standard.

To specify a default VHDL version for all files, perform the following
steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select VHDL Input.

3. Onthe VHDL Input page, under VHDL version, select the
appropriate version, then click OK.

You can override the default VHDL version for each VHDL design file by
performing the following steps:

Altera Corporation
May 2008

Language Support

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
Properties.

3. In the HDL version list, select VHDL93 or VHDLS87 and click OK.

You can also specify the VHDL version for each design file using the
VHDL_INPUT VERSION synthesis directive, as shown in Example 8-7.
This directive overrides the default HDL version and any HDL version
specified in the File Properties dialog box.

Example 8-7. Controlling the VHDL Input Version with a Synthesis Directive
--synthesis VHDL_INPUT_VERSION <language version>

Altera Corporation
May 2008

The variable <language version> takes one of the following values:

| VHDL87
| VHDLO93

When the software reads a VHDL._ INPUT VERSION synthesis directive, it
changes the current language version as specified until the end of the file,
or until it reaches the next VHDL._INPUT_ VERSION directive.

'~ You cannot change the language version in the middle of a
VHDL design unit.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8-30.

If you use scripts to add design files, you can use the —HDL._VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8-91.

The Quartus II software reads default values for registered signals
defined in the VHDL code and converts the default values into power-up
level settings. This enables the power-up state of the synthesized design
to match, as closely as possible, the power-up state of the original HDL
code in simulation.

8-11

Quartus Il Handbook, Volume 1

8-12

VHDL Standard Libraries and Packages

The Quartus II software includes the standard IEEE libraries and a
number of vendor-specific VHDL libraries. For information about
organizing your own design units into custom libraries, refer to “Design
Libraries” on page 8-15.

The IEEE library includes the standard VHDL packages

std logic_1164,numeric_std, numeric_bit,and math real.
The STD library is part of the VHDL language standard and includes the
packages standard (included in every project by default) and textio.
For compatibility with older designs, the Quartus II software also
supports the following vendor-specific packages and libraries:

B Synopsys packages such as std_logic_arithand
std_logic_unsigned in the IEEE library

B Mentor Graphics® packages such as std_logic_arith in the
ARITHMETIC library

B Altera primitive packages altera_primitives_components
(for primitives such as GLOBAL and DFFE) and maxplus2 (for legacy
support of MAX+PLUS® II primitives) in the ALTERA library

B Altera megafunction packages altera mf_components and
stratixgx_mf_components in the ALTERA_MEF library (for
Altera-specific megafunctions including LCELL), and
lpm_components in the LPM library for library of parameterized
modules (LPM) functions.

For a complete listing of library and package support, refer to the
Quartus II Help.

Ils~ Beginning with the Quartus II software version 5.1, you should
import component declarations for Altera primitives such as
GLOBAL and DFFE from the
altera primitives_ components package and not the
altera mf components package.

VHDL wait Constructs

The Quartus II software supports only a single VHDL wait until
statement in a process block. Other VHDL wait constructs, such as wait
for,orwait on statements, or processes with multiple wait
statements, are not synthesizable.

Altera Corporation
May 2008

Language Support

Example 8-8 is a VHDL code example of a supported wait until
construct.

Example 8-8. VHDL Code: Supported wait until Construct
architecture dff arch of 1ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1l"');
Q <= Dy
Qbar <= not D;
end process output;
end dff arch;

Example 8-9 is a VHDL code example of unsupported wait for
construct. Process block with wait for, orwait on statement is not
synthesizable.

Example 8-9. VHDL Code: Unsupported wait for Construct

process

begin
CLK <= '0"';
wait for 20 ns;
CLK <= '1"';

wait for 12 ns;
end process;

Process block with multiplewait until statements is notsynthesizable.
Example 8-10 shows an example of multiple wait until statements in
a process block.

Example 8-10. Multiple wait until Statements in a Process Block
output: process begin

wait until (CLK'event and CLK='1l");

Q <= D;

Qbar <= not D;

wait until (CLK'event and CLK='0"') ;
Q <= 0;
Qbar <= 1;

end process output;

AHDL Support

The Quartus II compiler’s Analysis and Synthesis module fully supports
the Altera Hardware Description Language (AHDL).

Altera Corporation 8-13
May 2008

Quartus Il Handbook, Volume 1

AHDL designs use Text Design Files (.tdf). You can import AHDL
Include Files (.inc) into a Text Design File with an AHDL include
statement. Altera provides AHDL Include Files for all megafunctions
shipped with the Quartus II software.

«o For information about specific AHDL syntax features and language
constructs, refer to the Quartus II Help.

Il=" The AHDL language does not support the synthesis directives
or attributes described in this chapter.

Schematic Design Entry Support

The Quartus II compiler’s Analysis and Synthesis module fully supports
Block Design Files (.bdf) for schematic design entry.

You can use the Quartus II software’s Block Editor to create and edit
Block Design Files and open Graphic Design Files (.gdf) imported from
the MAX+PLUS II software. Use the Symbol Editor to create and edit
Block Symbol Files (.bsf) and open MAX+PLUS II Symbol Files (.sym).
You can read and edit these legacy MAX+PLUS II formats with the
Quartus II Block and Symbol Editors; however, the Quartus II software
saves them as .bdf or .bsf files.

«® For information about creating and editing schematic designs, refer to
the Quartus II Help.

I Schematic entry methods do not support the synthesis
directives or attributes described in this chapter.

State Machine Editor

The Quartus II software supports graphical state machine entry. To create
a new finite state machine (FSM) design, on the File menu, click New. In
the New dialog box, expand the Design Files list and choose State
Machine File.

In the editor, you can use the State Machine Wizard to step you through
the state machine creation. Click the State Machine Wizard icon. Specify
the reset information, define the input ports, states, and transitions, and
then define the output ports and output conditions. Click Finish to create
the state machine diagram.

You can also create the state machine diagram using the editor GUI. Use
the icons or right-click menu options to insert new input and output
signals and create states in the schematic display. To specify transitions,
select the Transition Tool and click on the source state, then drag the

8-14 Altera Corporation
May 2008

Language Support

Altera Corporation
May 2008

mouse to the destination state. Double-click on a transition to specify the
transition equation, using a syntax that conforms to Verilo