
VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-1
for Blackfin Processors

4 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library which contains a broad
collection of functions that are commonly required by signal processing
applications. The services provided by the DSP run-time library include
support for general-purpose signal processing such as companders, filters,
and Fast Fourier Transform (FFT) functions. All these services are Analog
Devices extensions to ANSI standard C. These support functions are in
addition to the C/C++ run-time library functions that are described in
Chapter 3, “C/C++ Run-Time Library” (The library also contains func-
tions called implicitly by the compiler, for example div32.)

For more information about the algorithms on which many of the DSP
run-time library’s math functions are based, see Cody, W. J. and W.
Waite, Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980.

In addition to containing the user-callable functions described in
this chapter, the DSP run-time library also contains compiler sup-
port functions which perform basic operations on integer and
floating-point types that the compiler might not perform in-line.
These functions are called by compiler generated code to imple-
ment, for example, basic type conversions, floating-point
operations, etc. Note that the compiler support functions should
not be called directly from user code.

DSP Run-Time Library Guide

4-2 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

This chapter contains:

• “DSP Run-Time Library Guide” on page 4-2
contains information about the library and provides a description
of the DSP header files that are included with this release of the
ccblkfn compiler.

• “DSP Run-Time Library Reference” on page 4-46
contains the complete reference for each DSP run-time library
function provided with this release of the ccblkfn compiler.

DSP Run-Time Library Guide
The DSP run-time library contains functions that you can call from your
source program. This section describes how to use the library and provides
information about:

• “Linking DSP Library Functions”

• “Working With Library Source Code” on page 4-4

• “Library Attributes” on page 4-4

• “DSP Header Files” on page 4-5

• “Measuring Cycle Counts” on page 4-36

Linking DSP Library Functions
The DSP run-time library is located under the VisualDSP++ installation
directory in the subdirectory Blackfin/lib. Different versions of the
library are supplied and catalogued in Table 4-1.

Versions of the DSP run-time library containing 532 in the library file-
name have been built to run on any of the ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537,

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-3
for Blackfin Processors

DSP Run-Time Library

ADSP-BF538, or ADSP-BF539 processors. Versions of the DSP run-time
library containing 535 in the library filename have been built to run on
any of of the ADSP-BF535, AD65xx, or AD69xx processors. Versions of
the DSP run-time library containing 561 in the library filename have been
built to run on either the ADSP-BF561 or ADSP-BF566 processors.

Versions of the library whose file name end with a y (for example,
libdsp532y.dlb) have been built with the compiler’s -si-revision switch
and include all available compiler workarounds for hardware anomalies.
(See “-si-revision version” on page 1-64.)

When an application calls a DSP library function, the call creates a refer-
ence that the linker resolves. One way to direct the linker to the library’s
location is to use the default Linker Description File
(<your_target>.ldf). If a customized .ldf file is used to link the applica-
tion, then the appropriate DSP run-time library should be added to the
.ldf file used by the project.

Instead of modifying a customized .ldf file, the -l switch (see
“-l library” on page 1-40) can be used to specify which library
should be searched by the linker. For example, the -ldsp532 switch
adds the library libdsp532.dlb to the list of libraries that the linker
examines. For more information on .ldf files, see the VisualDSP++
4.5 Linker and Utilities Manual.

Table 4-1. DSP Library Files

Blackfin/lib Directory Description

libdsp532.dlb
libdsp535.dlb
libdsp561.dlb

DSP run-time library

libdsp532y,dlb
libdsp535y.dlb
libdsp561y.dlb

DSP run-time library built with the -si-revision flag specified
(For more information, see “-si-revision version” on page 1-64.).

DSP Run-Time Library Guide

4-4 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Working With Library Source Code
The source code for the functions in the DSP run-time library is provided
with your VisualDSP++ software. By default, the libraries are installed in
the directory Blackfin/lib and the source files are copied into the direc-
tory Blackfin/lib/src. Each function is kept in a separate file. The file
name is the name of the function with .asm or .c extension. If you do not
intend to modify any of the run-time library functions, you can delete this
directory and its contents to conserve disk space.

The source code is provided so specific functions can be customized as a
user requires. To modify these files, proficiency in Blackfin assembly lan-
guage and an understanding of the run-time environment is needed.

Refer to “C/C++ Run-Time Model and Environment” on page 1-281 for
more information.

Before making any modifications to the source code, copy it to a file with
a different file name and rename the function itself. Test the function
before you use it in your system to verify that it is functionally correct.

Analog Devices only supports the run-time library functions as
provided.

Library Attributes
The DSP run-time library contains the same attributes as the C/C++
run-time library. For more information, see “Library Attributes” in
Chapter 3, C/C++ Run-Time Library.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-5
for Blackfin Processors

DSP Run-Time Library

DSP Header Files
The DSP header files contains prototypes for all the DSP library func-
tions. When the appropriate #include preprocessor command is included
in your source, the compiler uses the prototypes to check that each func-
tion is called with the correct arguments. The DSP header files included
in this release of the ccblkfn compiler are:

• “complex.h – Basic Complex Arithmetic Functions”

• “cycle_count.h – Basic Cycle Counting” on page 4-9

• “cycles.h – Cycle Counting with Statistics” on page 4-9

• “filter.h – Filters and Transformations” on page 4-9

• “math.h – Math Functions” on page 4-14

• “matrix.h – Matrix Functions” on page 4-17

• “stats.h – Statistical Functions” on page 4-24

• “vector.h – Vector Functions” on page 4-24

• “window.h – Window Generators” on page 4-27

complex.h – Basic Complex Arithmetic Functions

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double,
complex_long_double, and complex_fract16.

The complex functions defined in this header file are listed in Table 4-2
on page 4-7. All the functions that operate in the complex_fract16 data
type will use saturating arithmetic.

DSP Run-Time Library Guide

4-6 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The following structures are used to represent complex numbers in rectan-
gular coordinates:

typedef struct

{

float re;

float im;

} complex_float;

typedef struct

{

double re;

double im;

} complex_double;

typedef struct

{

long double re;

long double im;

} complex_long_double;

typedef struct

{

fract16 re;

fract16 im;

} complex_fract16;

Details of the basic complex arithmetic functions are included in “DSP
Run-Time Library Reference” starting on page 4-46.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-7
for Blackfin Processors

DSP Run-Time Library

Table 4-2. Complex Functions

Description Prototype

Complex
Absolute Value

double cabs (complex_double a)
float cabsf (complex_float a)
long double cabsd (complex_long_double a)
fract16 cabs_fr16 (complex_fract16 a)

Complex Addition complex_double cadd
(complex_double a, complex_double b)

complex_float caddf
(complex_float a, complex_float b)

complex_long_double caddd
(complex_long_double a, complex_long_double b)

complex_fract16 cadd_fr16
(complex_fract16 a, complex_fract16 b)

Complex Subtraction complex_double csub
(complex_double a, complex_double b)

complex_float csubf
(complex_float a, complex_float b)

complex_long_double csubd
(complex_long_double a, complex_long_double b)

complex_fract16 csub_fr16
(complex_fract16 a, complex_fract16 b)

Complex Multiply complex_double cmlt
(complex_double a, complex_double b)

complex_float cmltf
(complex_float a, complex_float b)

complex_long_double cmltd
(complex_long_double a, complex_long_double b)

complex_fract16 cmlt_fr16
(complex_fract16 a, complex_fract16 b)

Complex Division complex_double cdiv
 (complex_double a, complex_double b)
complex_float cdivf

(complex_float a, complex_float b)
complex_long_double cdivd

(complex_long_double a, complex_long_double b)
complex_fract16 cdiv_fr16

(complex_fract16 a, complex_fract16 b)

DSP Run-Time Library Guide

4-8 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Get Phase of a
Complex Number

double arg (complex_double a)
float argf (complex_float a)
long double argd (complex_long_double a)
fract16 arg_fr16 (complex_fract16 a)

Complex Conjugate complex_double conj (complex_double a)
complex_float conjf (complex_float a)
complex_long_double conjd (complex_long_double a)
complex_fract16 conj_fr16 (complex_fract16 a)

Convert Cartesian to
Polar Coordinates

double cartesian (complex_double a, double* phase)
float cartesianf (complex_float a, float* phase)
long double cartesiand

(complex_long_double a, long_double* phase)
fract16 cartesian_fr16 (complex_fract16 a, fract16*
phase)

Convert Polar to
Cartesian Coordinates

complex_double polar
(double mag, double phase)

complex_float polarf
(float mag, float phase)

complex_long_double polard
(long double mag, long double phase)

complex_fract16 polar_fr16
(fract16 mag, fract16 phase)

Complex
Exponential

complex_double cexp (double a)
complex_long_double cexpd (long double a)
complex_float cexpf (float a)

Normalization complex_double norm (complex_double a)
complex_long_double normd (complex_long_double a)
complex_float normf (complex_float a)

Table 4-2. Complex Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-9
for Blackfin Processors

DSP Run-Time Library

cycle_count.h – Basic Cycle Counting

The cycle_count.h header file provides an inexpensive method for bench-
marking C-written source by defining basic facilities for measuring cycle
counts. The facilities provided are based upon two macros, and a data type
which are described in more detail in the section “Measuring Cycle
Counts” on page 4-36.

cycles.h – Cycle Counting with Statistics

The cycles.h header file defines a set of five macros and an associated
data type that may be used to measure the cycle counts used by a section
of C-written source. The macros can record how many times a particular
piece of code has been executed and also the minimum, average, and max-
imum number of cycles used. The facilities that are available via this
header file are described in the section “Measuring Cycle Counts” on
page 4-36.

filter.h – Filters and Transformations

The filter.h header file contains filters used in signal processing. It also
includes the A-law and µ-law companders that are used by voice-band
compression and expansion applications.

This header file also contains functions that perform key signal processing
transformations, including FFTs and convolution.

Various forms of the FFT function are provided by the library correspond-
ing to radix-2, radix-4, and two-dimensional FFTs. The number of points
is provided as an argument. The header file also defines a complex FFT
function that has been implemented using an optimized radix-4 algo-
rithm. However, this function, cfftf_fr16, has certain requirements that

DSP Run-Time Library Guide

4-10 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

may not be appropriate for some applications. The twiddle table for the
FFT functions is supplied as a separate argument and is normally calcu-
lated once during program initialization.

The cfftf_fr16 library function makes use of the M3 register. The
M3 register may be used by an emulator for context switching. Refer
to the appropriate emulator documentation.

Library functions are provided to initialize a twiddle table. A table can
accommodate several FFTs of different sizes by allocating the table at
maximum size, and then using the stride argument of the FFT function to
specify the step size through the table. If the stride argument is set to 1,
the FFT function uses all the table; if the FFT uses only half the number
of points of the largest, the stride is 2.

The functions defined in this header file are listed in Table 4-3 and
Table 4-4 and are described in detail in “DSP Run-Time Library Refer-
ence” on page 4-46.

Table 4-3. Filter Library

Description Prototype

Finite Impulse
Response Filter

void fir_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)

Infinite Impulse
Response Filter

void iir_fr16
(const fract16 input[], fract16 output[],

int length, iir_state_fr16 *filter_state)

Direct Form I Infinite
Response Filter

void iirdf1_fr16
(const fract16 input[], fract16 output[],

int length, iirdf1_fr16_state *filter_state)

FIR Decimation Filter void fir_decima_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-11
for Blackfin Processors

DSP Run-Time Library

FIR Interpolation Filter void fir_interp_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)

Complex Finite Impulse
Response Filter

void cfir_fr16
(const complex_fract16 input[],
complex_fract16 output[],
int length, cfir_state_fr16 *filter_state)

Convert Coefficients for
DF1 IIR

void coeff_iirdf1_fr16
(const float acoeff[], const float bcoeff[],

fract16 coeff[], int nstages)

Table 4-4. Transformational Functions

Description Prototype

Fast Fourier Transforms

Generate FFT Twiddle
Factors

void twidfft_fr16
(complex_fract16 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Radix-2 FFT

void twidfftrad2_fr16
(complex_fract16 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Radix-4 FFT

void twidfftrad4_fr16
(complex_fract16 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for 2-D FFT

void twidfft2d_fr16
(complex_fract16 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Optimized
FFT

void twidfftf_fr16
(complex_fract16 twiddle_table[], int fft_size)

Table 4-3. Filter Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-12 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

N Point Radix-2
Complex Input FFT

void cfft_fr16
(const complex_fract16 *input,

complex fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table, int

twiddle_stride, int fft_size,
const complex_fract16 *twiddle_table, int

twiddle_stride, int fft_size,
int block_exponent, int scale_method)

N Point Radix-2
Real Input FFT

void rfft_fr16
(const fract16 *input, complex_fract16 *temp,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

N Point Radix-2
Inverse FFT

void ifft_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

N Point Radix-4
Complex Input FFT

void cfftrad4_fr16
(const complex_fract16 *input,

complex fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

N Point Radix-4
Real Input FFT

void rfftrad4_fr16
(const fract16 *input, complex_fract16 *temp,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-13
for Blackfin Processors

DSP Run-Time Library

N Point Radix-4
Inverse Input FFT

void ifftrad4_fr16
(const complex_fract *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Fast N point Radix-4
Complex Input FFT

void cfftf_fr16
(const complex_fract16 *input,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

Nxn Point 2-D
Complex Input FFT

void cfft2d_fr16
(const complex_fract16 *input,

complex fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Nxn Point 2-D
Real Input FFT

void rfft2d_fr16
(const fract16 *input, complex_fract16 *temp,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Nxn Point 2-D
Inverse FFT

void ifft2d_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Convolutions

Convolution void convolve_fr16
(const fract16 input_x[], int length_x,

const fract16 input_y[], int length_y,
fract16 output[])

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-14 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

math.h – Math Functions

The standard math functions have been augmented by implementations
for the float and long double data type, and in some cases, for the
fract16 data type.

Table 4-5 provides a summary of the functions defined by the math.h
header file. Descriptions of these functions are given under the name of
the double version in “C Run-Time Library Reference” on page 3-60.

This header file also provides prototypes for a number of additional math
functions—clip, copysign, max, and min, and an integer function,
countones. These functions are described in “DSP Run-Time Library Ref-
erence” on page 4-46.

2-D Convolution void conv2d_fr16
(const fract16 *input_x, int rows_x, int columns_x,

const fract16 *input_y, int rows_y, int columns_y,
fract16 *output)

2-D Convolution
3x3 Matrix

void conv2d3x3_fr16
(const fract16 *input_x, int rows_x, int columns_x,

const fract16 input_y [3] [3], fract16 *output)

Compression/Expansion

A-law compression void a_compress
(const short input[], short output[], int length)

A-law expansion void a_expand
(const short input[], short output[], int length)

µ-law compression void mu_compress
(const short input[], short output[], int length)

µ-law expansion void mu_expand
(const char input[], short output[], int length)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-15
for Blackfin Processors

DSP Run-Time Library

Table 4-5. Math Library

Description Prototype

Absolute Value double fabs (double x)
float fabsf (float x)
long double fabsd (long double x)

Anti-log double alog (double x)
float alogf (float x)
long double alogd (long double x)

Base 10 Anti-log double alog10 (double x)
float alog10f (float x)
long double alog10d (long double x)

Arc Cosine double acos (double x)
float acosf (float x)
long double acosd (long double x)
fract16 acos_fr16 (fract16 x)

Arc Sine double asin (double x)
float asinf (float x)
long double asind (long double x)
fract16 asin_fr16 (fract16 x)

Arc Tangent double atan (double x)
float atanf (float x)
long double atand (long double x)
fract16 atan_fr16 (fract16 x)

Arc Tangent of Quotient double atan2 (double x, double y)
float atan2f (float x, float y)
long double atan2d (long double x, long double y)
fract16 atan2_fr16 (fract16 x, fract16 y)

Ceiling double ceil (double x)
float ceilf (float x)
long double ceild (long double x)

Cosine double cos (double x)
float cosf (float x)
long double cosd (long double x)
fract16 cos_fr16 (fract16 x)

DSP Run-Time Library Guide

4-16 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Cotangent double cot (double x)
float cotf (float x)
long double cotd (long double x)

Hyperbolic Cosine double cosh (double x)
float coshf (float x)
long double coshd (long double x)

Exponential double exp (double x)
float expf (float x)
long double expd (long double x)

Floor double floor (double x)
float floorf (float x)
long double floord (long double x)

Floating-Point Remainder double fmod (double x, double y)
float fmodf (float x, float y)
long double fmodd (long double x, long double y)

Get Mantissa and Exponent double frexp (double x, int *n)
float frexpf (float x, int *n)
long double frexpd (long double x, int *n)

Is Not A Number? int isnanf (float x)
int isnan (double x)
int isnand (long double x)

Is Infinity? int isinff (float x)
int isinf (double x)
int isinfd (long double x)

Multiply by Power of 2 double ldexp(double x, int n)
float ldexpf(float x, int n)
long double ldexpd (long double x, int *n)

Natural Logarithm double log (double x)
float logf (float x)
long double logd (long double x)

Logarithm Base 10 double log10 (double x)
float log10f (float x)
long double log10d (long double x)

Table 4-5. Math Library (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-17
for Blackfin Processors

DSP Run-Time Library

matrix.h – Matrix Functions

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See “complex.h – Basic Complex Arithmetic Functions” on page 4-5 for
definitions of the complex types.

Get Fraction and Integer double modf (double x, double *i)
float modff (float x, float *i)
long double modfd (long double x, long double *i)

Power double pow (double x, double y)
float powf (float x, float y)
long double powd (long double x, long double y)

Reciprocal Square Root double rsqrt (double x)
float rsqrtf (float x)
long double rsqrtd (long double x)

Sine double sin (double x)
float sinf (float x)
long double sind (long double x)
fract16 sin_fr16 (fract16 x)

Hyperbolic Sine double sinh (double x)
float sinhf (float x)
long double sinhd (long double x)

Square Root double sqrt (double x)
float sqrtf (float x)
long double sqrtd (long double x)
fract16 sqrt_fr16 (fract16 x)

Tangent double tan (double x)
float tanf (float x)
long double tand (long double x)
fract16 tan_fr16 (fract16 x)

Hyperbolic Tangent double tanh (double x)
float tanhf (float x)
long double tanhd (long double x)

Table 4-5. Math Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-18 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The matrix functions defined in the matrix.h header file are listed in
Table 4-6. All the matrix functions that operate on the complex_fract16
data type use saturating arithmetic.

Table 4-6. Matrix Functions

Description Prototype

Real Matrix +
Scalar Addition

void matsadd
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matsaddf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsaddd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matsadd_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

Real Matrix –
Scalar Subtraction

void matssub
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matssubf
(const float *matrix, float scalar,

int rows, int columns, float *out)
void matssubd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matssub_fr16
(const fract16 *matrix, fract16 scalar,

int rows, int columns, fract16 *out)

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-19
for Blackfin Processors

DSP Run-Time Library

Real Matrix *
Scalar Multiplication

void matsmlt
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matsmltf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsmltd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matsmlt_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

Real Matrix +
Matrix Addition

void matmadd
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmaddf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmaddd
(const long double *matrix_a, const long double

*matrix_b,
int rows, int columns, long double *out)

void matmadd_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,

int rows, int columns, fract16 *out)

Real Matrix –
Matrix Subtraction

void matmsub
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmsubf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmsubd
(const long double *matrix_a, const long double

*matrix_b,
int rows, int columns, long double *out)

void matmsub_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,

int rows, int columns, fract16 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-20 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Matrix *
Matrix Multiplication

void matmmlt
(const double *matrix_a, int rows_a, int columns_a,

const double *matrix_b, int columns_b, double
*out)
void matmmltf

(const float *matrix_a, int rows_a, int columns_a,
const float *matrix_b, int columns_b, float *out)

void matmmltd
(const long double *matrix_a, int rows_a, int

columns_a,
const long double *matrix_b, int columns_b, long

double *out)
void matmmlt_fr16

(const fract16 *matrix_a, int rows_a, int
columns_a,

const fract16 *matrix_b, int columns_b, fract16
*out)

Complex Matrix +
Scalar Addition

void cmatsadd
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsaddf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsaddd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsadd_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-21
for Blackfin Processors

DSP Run-Time Library

Complex Matrix –
Scalar Subtraction

void cmatssub
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatssubf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatssubd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatssub_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

Complex Matrix *
Scalar Multiplication

void cmatsmlt
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsmltf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsmltd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsmlt_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-22 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Matrix +
Matrix Addition

void cmatmadd
(const complex_double *matrix_a,

const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmaddf
(const complex_float *matrix_a,

const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmaddd
(const complex_long_double *matrix_a,

const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmadd_fr16
(const complex_fract16 *matrix_a,

const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

Complex Matrix –
Matrix Subtraction

void cmatmsub
(const complex_double *matrix_a,

const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmsubf
(const complex_float *matrix_a,

const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmsubd
(const complex_long_double *matrix_a,

const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmsub_fr16
(const complex_fract16 *matrix_a,

const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-23
for Blackfin Processors

DSP Run-Time Library

In most of the function prototypes:

*matrix_a is a pointer to input matrix matrix_a [] []

*matrix_b is a pointer to input matrix matrix_b [] []

Complex Matrix *
Matrix Multiplication

void cmatmmlt
(const complex_double *matrix_a,

int rows_a, int columns_a,
const complex_double *matrix_b,
int columns_b, complex_double *out)

void cmatmmltf
(const complex_float *matrix_a,

int rows_a, int columns_a,
const complex_float *matrix_b, int columns_b,
complex_float *out)

void cmatmmltd
(const complex_long_double *matrix_a,

int rows_a, int columns_a,
const complex_long_double *matrix_b,
int columns_b, complex_long_double *out)

void cmatmmlt_fr16
(const complex_fract16 *matrix_a, int rows_a

int columns_a, const complex_fract16 *matrix_b,
int columns_b, complex_fract16 *out)

Transpose void transpm
(const double *matrix, int rows, int columns,

double *out)
void transpmf

(const float *matrix, int rows, int columns,
float *out)

void transpmd
(const long double *matrix, int rows,

int columns, long double *out)
void transpm_fr16

(const fract16 *matrix, int rows, int columns,
fract16 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-24 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

scalar is an input scalar

rows is the number of rows

columns is the number of columns

*out is a pointer to output matrix out [] []

In the matrix*matrix functions, rows_a and columns_a are the dimensions
of matrix a and rows_b and columns_b are the dimensions of matrix b.

The functions described by this header assume that input array arguments
are constant; that is, their contents do not change during the course of the
routine. In particular, this means the input arguments do not overlap with
any output argument.

stats.h – Statistical Functions

The statistical functions defined in the stats.h header file are listed in
Table 4-7 and are described in detail in “DSP Run-Time Library Refer-
ence” on page 4-46.

vector.h – Vector Functions

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations. See
“complex.h – Basic Complex Arithmetic Functions” on page 4-5 for defi-
nitions of the complex types.

The functions defined in the vector.h header file are listed in Table 4-8.
All the vector functions that operate on the complex_fract16 data type use
saturating arithmetic.

In the Prototype column, vec[], vec_a[] and vec_b[] are input vectors,
scalar is an input scalar, out[] is an output vector, and sample_length is
the number of elements.The functions assume that input array arguments
are constant; that is, their contents will not change during the course of

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-25
for Blackfin Processors

DSP Run-Time Library

Table 4-7. Statistical Functions

Description Prototype

Autocoherence void autocohf
(const float samples[], int sample_length, int lags,

 float out[])
void autocoh

(const double samples[], int sample_length, int lags,
 double out[])

void autocohd
(const long double samples[], int sample_length,

int lags, long double out[])
void autocoh_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

Autocorrelation void autocorrf
(const float samples[], int sample_length, int lags,

float out[])
void autocorr

(const double samples[], int sample_length, int lags,
double out[])

void autocorrd
(const long double a[], int sample_length, int lags,

long double out[])
void autocorr_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

Cross-coherence void crosscohf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscoh

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscohd
(const long double samples_a[],

const long double samples_b[], int sample_length
int lags, long double out[])

void crosscoh_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])

DSP Run-Time Library Guide

4-26 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Cross-correlation void crosscorrf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscorr

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscorrd
(const long double samples_a[],

const long double samples_b[], int sample_length,
int lags, long double out[])

void crosscorr_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])

Histogram void histogramf
(const float samples_a[], int out[],

float max_sample, float min_sample,
int sample_length, int bin_count)

void histogram
(const double samples_a[], int out[],

double max_sample, double min_sample,
int sample_length, int bin_count)

void histogramd
(const long double samples_a[], int out[],

long double max_sample, long double min_sample,
int sample_length, int bin_count)

void histogram_fr16
(const fract16 samples_a[], int out[],
fract16 max_sample, fract16 min_sample,
int sample_length, int bin_count)

Mean float meanf (const float samples[], int sample_length)
double mean (const double samples[], int sample_length)
long double meand

(const long double samples[], int sample_length)
fract16 mean_fr16

(const fract16 samples[], int sample_length)

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-27
for Blackfin Processors

DSP Run-Time Library

the routine. In particular, this means the input arguments do not overlap
with any output argument. In general, better run-time performance is
achieved by the vector functions if the input vectors and the output vector
are in different memory banks. This structure avoids any potential mem-
ory bank collisions.

window.h – Window Generators

The window.h header file contains various functions to generate windows
based on various methodologies. The functions defined in the window.h
header file are listed in Table 4-9 and are described in detail in “DSP
Run-Time Library Reference” on page 4-46.

Root Mean Square float rmsf (const float samples[], int sample_length)
double rms (const double samples[], int sample_length)
long double rmsd
(const long double samples[], int sample_length)

fract16 rms_fr16
(const fract16 samples[], int sample_length)

Variance float varf (const float samples[], int sample_length)
double var (const double samples[], int sample_length)
long double vard

(const long double samples[], int sample_length)
fract16 var_fr16

(const fract16 samples[], int sample_length)

Count Zero Crossing int zero_crossf
(const float samples[], int sample_length)

int zero_cross
(const double samples[], int sample_length)

int zero_crossd
(const long double samples[], int sample_length)

int zero_cross_fr16
(const fract16 samples[], int sample_length)

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-28 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 4-8. Vector Functions

Description Prototype

Real Vector +
Scalar Addition

void vecsadd
(const double vec[], double scalar,

double out[], int length)
void vecsaddd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsaddf
(const float vec[], float scalar,

float out[], int length)
void vecsadd_fr16
(const fract16 vec[], fract16 scalar,

fract16 out[], int length)

Real Vector –
Scalar Subtraction

void vecssub
(const double vec[], double scalar,

double out[], int length)
void vecssubd

(const long double vec[], long double scalar,
long double out[], int length)

void vecssubf
(const float vec[], float scalar,

float out[], int length)
void vecssub_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

Real Vector *
Scalar Multiplication

void vecsmlt
(const double vec[], double scalar,

double out[], int length)
void vecsmltd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsmltf
(const float vec[], float scalar,

float out[], int length)
void vecsmlt_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-29
for Blackfin Processors

DSP Run-Time Library

Real Vector +
Vector Addition

void vecvadd
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvaddd

(const long double vec_a[],
const long double vec_b[],
long double out[], int length)

void vecvaddf
(const float vec_a[], const float vec_b[],

float out[], int length)
void vecvadd_fr16

(const fract16 vec_a[], const fract16 vec_b[],
fract16 out[], int length)

Real Vector –
Vector Subtraction

void vecvsub
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvsubd

(const long double vec_a[], const long double
vec_b[],

long double out[], int length)
void vecvsubf

(const float vec_a[], const float vec_b[],
float out[], int length)

void vecvsub_fr16
(const fract16 vec_a[],

const fract16 vec_b[],
fract16 vec_b[], fract16 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-30 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Vector *
Vector Multiplication

void vecvmlt
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvmltd

(const long double vec_a[], const long double
vec_b[],

long double out[], int length)
void vecvmltf

(const float vec_a[], const float vec_b[],
float out[], int length)

void vecvmlt_fr16
(const fract16 vec_a[], const fract16 vec_b[],

fract16 out[], int length)

Maximum Value of
Vector Elements

double vecmax (const double vec[], int length)
long double vecmaxd

(const long double vec[], int length)
float vecmaxf (const float vec[], int length)
fract16 vecmax_fr16
(const fract16 vec[], int length)

Minimum Value of
Vector Elements

double vecmin (const double vec[], int length)
long double vecmind

(const long double vec[], int length)
float vecminf (const float vec[], int length)
fract16 vecmin_fr16(const fract16 vec[], int length)
fract16 vecmin_fr16(const fract16 vec[], int length)

Index of Maximum Value
of Vector Elements

int vecmaxloc (const double vec[], int length)
int vecmaxlocd

(const long double vec[], int length)
int vecmaxlocf(const float vec[], int length);
int vecmaxloc_fr16

(const fract16 vec[], int length)

Index of Minimum Value
of Vector Elements

int vecminloc (const double vec[], int length)
int vecminlocd(const long double vec[], int length)
int vecminlocf (const float vec[], int length)
int vecminloc_fr16(const fract16 vec[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-31
for Blackfin Processors

DSP Run-Time Library

Complex Vector +
Scalar Addition

void cvecsadd
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecsaddd
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecsaddf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecsadd_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

Complex Vector –
Scalar Subtraction

void cvecssub
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecssubd
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecssubf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecssub_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-32 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Vector *
Scalar Multiplication

void cvecsmlt(
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecsmltd(
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecsmltf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecsmlt_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

Complex Vector + Vector
Addition

void cvecvadd
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvaddd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvaddf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvadd_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-33
for Blackfin Processors

DSP Run-Time Library

Complex Vector –
Vector Subtraction

void cvecvsub
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvsubd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvsubf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvsub_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

Complex Vector *
Vector Multiplication

void cvecvmlt
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvmltd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvmltf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvmlt_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-34 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

For all window functions, a stride parameter window_stride can be used
to space the window values. The window length parameter window_size
equates to the number of elements in the window. Therefore, for a
window_stride of 2 and a window_length of 10, an array of length 20 is
required, where every second entry is untouched.

Real Vector Dot Product double vecdot
(const double vec_a[],

const double vec_b[], int length)
long double vecdotd

(const long double vec_a[],
const long double vec_b[], int length)

float vecdotf
(const float vec_a[],

const float vec_b[], int length)
fract16 vecdot_fr16

(const fract16 vec_a[],
const fract16 vec_b[], int length)

Complex Vector Dot
Product

complex_double cvecdot
(const complex_double vec_a[],

const complex_double vec_b[], int length)
complex_long_double cvecdotd

(const complex_long_double vec_a[],
const complex_long_double vec_b[],
int length)

complex_float cvecdotf
(const complex_float vec_a[],

const complex_float vec_b[], int length)
complex_fract16 cvecdot_fr16

(const complex_fract16 vec_a[],
const complex_fract16 vec_b[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-35
for Blackfin Processors

DSP Run-Time Library

Table 4-9. Window Generator Functions

Description Prototype

Generate Bartlett
Window

void gen_bartlett_fr16
(fract16 bartlett_window[],

int window_stride, int window_size)

Generate Blackman
Window

void gen_blackman_fr16
(fract16 blackman_window[],

int window_stride, int window_size)

Generate Gaussian
Window

void gen_gaussian_fr16
(fract16 gaussian_window[],
float alpha, int window_stride, int window_size)

Generate Hamming
Window

void gen_hamming_fr16
(fract16 hamming_window[],

int window_stride, int window_size)

Generate Hanning
 Window

void gen_hanning_fr16
(fract16 hanning_window[],

int window_stride, int window_size)

Generate Harris
Window

void gen_harris_fr16
(fract16 harris_window[],

int window_stride, int window_size)

Generate Kaiser
Window

void gen_kaiser_fr16
(fract16 kaiser_window[],

int window_stride, int window_size)

Generate Rectangular
Window

void gen_rectangular_fr16
(fract16 rectangular_window[],

int window_stride, int window_size)

Generate Triangle
Window

void gen_triangle_fr16
(fract16 triangle_window[],

int window_stride, int window_size)

Generate Vonhann
Window

void gen_vonhann_fr16
(fract16 vonhann_window[],

int window_stride, int window_size)

DSP Run-Time Library Guide

4-36 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Measuring Cycle Counts
The common basis for benchmarking some arbitrary C-written source is
to measure the number of processor cycles that the code uses. Once this
figure is known, it can be used to calculate the actual time taken by multi-
plying the number of processor cycles by the clock rate of the processor.
The run-time library provides three alternative methods for measuring
processor counts. Each of these methods is described in the following
sections:

• “Basic Cycle Counting Facility” on page 4-36

• “Cycle Counting Facility with Statistics” on page 4-38

• “Using time.h to Measure Cycle Counts” on page 4-41

• “Determining the Processor Clock Rate” on page 4-43

• “Considerations when Measuring Cycle Counts” on page 4-44

Basic Cycle Counting Facility

The fundamental approach to measuring the performance of a section of
code is to record the current value of the cycle count register before exe-
cuting the section of code, and then reading the register again after the
code has been executed. This process is represented by two macros that are
defined in the cycle_count.h header file; the macros are:

START_CYCLE_COUNT(S)

STOP_CYCLE_COUNT(T,S)

The parameter S is set by the macro START_CYCLE_COUNT to the current
value of the cycle count register; this value should then be passed to the
macro STOP_CYCLE_COUNT, which will calculate the difference between the
parameter and current value of the cycle count register. Reading the cycle

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-37
for Blackfin Processors

DSP Run-Time Library

count register incurs an overhead of a small number of cycles and the
macro ensures that the difference returned (in the parameter T) will be
adjusted to allow for this additional cost. The parameters S and T must be
separate variables; they should be declared as a cycle_t data type which
the header file cycle_count.h defines as:

typedef volatile unsigned long long cycle_t;

The header file also defines the macro:

 PRINT_CYCLES(STRING,T)

which is provided mainly as an example of how to print a value of type
cycle_t; the macro outputs the text STRING on stdout followed by the
number of cycles T.

The instrumentation represented by the macros defined in this section is
only activated if the program is compiled with the –DDO_CYCLE_COUNTS
switch. If this switch is not specified, then the macros are replaced by
empty statements and have no effect on the program.

The following example demonstrates how the basic cycle counting facility
may be used to monitor the performance of a section of code:

#include <cycle_count.h>

#include <stdio.h>

extern int

main(void)

{

cycle_t start_count;

cycle_t final_count;

START_CYCLE_COUNT(start_count)

Some_Function_Or_Code_To_Measure();

STOP_CYCLE_COUNT(final_count,start_count)

DSP Run-Time Library Guide

4-38 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

PRINT_CYCLES("Number of cycles: ",final_count)

}

The run-time libraries provide alternative facilities for measuring the per-
formance of C source (see “Cycle Counting Facility with Statistics” on
page 4-38 and “Using time.h to Measure Cycle Counts” on page 4-41);
the relative benefits of this facility are outlined in “Considerations when
Measuring Cycle Counts” on page 4-44.

The basic cycle counting facility is based upon macros; it may therefore be
customized for a particular application if required, without the need for
rebuilding the run-time libraries.

Cycle Counting Facility with Statistics

The cycles.h header file defines a set of macros for measuring the perfor-
mance of compiled C source. As well as providing the basic facility for
reading the cycle count registers of the Blackfin architecture, the macros
also have the capability of accumulating statistics that are suited to record-
ing the performance of a section of code that is executed repeatedly.

If the switch -DDO_CYCLE_COUNTS is specified at compile-time, then the
cycles.h header file defines the following macros:

• CYCLES_INIT(S)
a macro that initializes the system timing mechanism and clears the
parameter S; an application must contain one reference to this
macro.

• CYCLES_START(S)
a macro that extracts the current value of the cycle count register
and saves it in the parameter S.

• CYCLES_STOP(S)
a macro that extracts the current value of the cycle count register
and accumulates statistics in the parameter S, based on the previous
reference to the CYCLES_START macro.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-39
for Blackfin Processors

DSP Run-Time Library

• CYCLES_PRINT(S)

a macro which prints a summary of the accumulated statistics
recorded in the parameter S.

• CYCLES_RESET(S)

a macro which re-zeros the accumulated statistics that are recorded
in the parameter S.

The parameter S that is passed to the macros must be declared to be of the
type cycle_stats_t; this is a structured data type that is defined in the
cycles.h header file. The data type has the capability of recording the
number of times that an instrumented part of the source has been exe-
cuted, as well as the minimum, maximum, and average number of cycles
that have been used. If an instrumented piece of code has been executed
for example, 4 times, the CYCLES_PRINT macro would generate output on
the standard stream stdout in the form:

AVG : 95

MIN : 92

MAX : 100

CALLS : 4

If an instrumented piece of code had only been executed once, then the
CYCLES_PRINT macro would print a message of the form:

CYCLES : 95

If the switch -DDO_CYCLE_COUNTS is not specified, then the macros
described above are defined as null macros and no cycle count information
is gathered. To switch between development and release mode therefore
only requires a re-compilation and will not require any changes to the
source of an application.

DSP Run-Time Library Guide

4-40 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The macros defined in the cycles.h header file may be customized for a
particular application without the requirement for rebuilding the run-time
libraries.

An example that demonstrates how this facility may be used is:

#include <cycles.h>

#include <stdio.h>

extern void foo(void);

extern void bar(void);

extern int

main(void)

{

cycle_stats_t stats;

int i;

CYCLES_INIT(stats)

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats)

foo();

CYCLES_STOP(stats)

}

printf("Cycles used by foo\n");

CYCLES_PRINT(stats)

CYCLES_RESET(stats)

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats)

bar();

CYCLES_STOP(stats)

}

printf("Cycles used by bar\n");

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-41
for Blackfin Processors

DSP Run-Time Library

CYCLES_PRINT(stats)

}

This example might output:

Cycles used by foo

AVG : 25454

MIN : 23003

MAX : 26295

CALLS : 16

Cycles used by bar

AVG : 8727

MIN : 7653

MAX : 8912

CALLS : 16

Alterative methods of measuring the performance of compiled C source
are described in the sections “Basic Cycle Counting Facility” on page 4-36
and “Using time.h to Measure Cycle Counts” on page 4-41. Also refer to
“Considerations when Measuring Cycle Counts” on page 4-44 which pro-
vides some useful tips with regards to performance measurements.

Using time.h to Measure Cycle Counts

The time.h header file defines the data type clock_t, the clock function,
and the macro CLOCKS_PER_SEC, which together may be used to calculate
the number of seconds spent in a program.

DSP Run-Time Library Guide

4-42 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

In the ANSI C standard, the clock function is defined to return the num-
ber of implementation dependent clock “ticks” that have elapsed since the
program began, and in this version of the C/C++ compiler the function
returns the number of processor cycles that an application has used.

The conventional way of using the facilities of the time.h header file to
measure the time spent in a program is to call the clock function at the
start of a program, and then subtract this value from the value returned by
a subsequent call to the function. This difference is usually cast to a float-
ing-point type, and is then divided by the macro CLOCKS_PER_SEC to
determine the time in seconds that has occurred between the two calls.

If this method of timing is used by an application then it is important to
note that:

• the value assigned to the macro CLOCKS_PER_SEC should be inde-
pendently verified to ensure that it is correct for the particular
processor being used (see “Determining the Processor Clock Rate”
on page 4-43),

• the result returned by the clock function does not include the
overhead of calling the library function.

A typical example that demonstrates the use of the time.h header file to
measure the amount of time that an application takes is shown below.

#include <time.h>

#include <stdio.h>

extern int

main(void)

{

volatile clock_t clock_start;

volatile clock_t clock_stop;

double secs;

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-43
for Blackfin Processors

DSP Run-Time Library

clock_start = clock();

Some_Function_Or_Code_To_Measure();

clock_stop = clock();

secs = ((double) (stop_time - start_time))

/ CLOCKS_PER_SEC;

printf("Time taken is %e seconds\n",secs);

}

The header files cycles.h and cycle_count.h define other methods for
benchmarking an application—these header files are described in the sec-
tions “Basic Cycle Counting Facility” on page 4-36 and “Cycle Counting
Facility with Statistics” on page 4-38, respectively. Also refer to “Consid-
erations when Measuring Cycle Counts” on page 4-44 which provides
some guidelines that may be useful.

Determining the Processor Clock Rate

Applications may be benchmarked with respect to how many processor
cycles that they use. However, more typically applications are bench-
marked with respect to how much time (for example, in seconds) that they
take.

To measure the amount of time that an application takes to run on a
Blackfin processor usually involves first determining the number of cycles
that the processor takes, and then dividing this value by the processor’s
clock rate. The time.h header file defines the macro CLOCKS_PER_SEC as
the number of processor “ticks” per second. On Blackfin processors, it is
set by the run-time library to one of the following values in descending
order of precedence:

• via the compile-time switch -DCLOCKS_PER_SEC=<definition>.
Because the time_t type is based on the long long int data type, it
is recommended that the value assigned to the symbolic name

DSP Run-Time Library Guide

4-44 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

CLOCKS_PER_SEC is defined as the same data type by qualifying the
value with the LL (or ll) suffix (for example,
-DCLOCKS_PER_SEC=60000000LL).

• via the System Services Library

• via the Processor speed box in the VisualDSP++ Project Options
dialog box, Compile tab, Processor (1) category

• from the cycles.h header file

If the value of the macro CLOCKS_PER_SEC is taken from the cycles.h
header file, then be aware that the clock rate of the processor will usually
be taken to be the maximum speed of the processor, which is not necessar-
ily the speed of the processor at RESET.

Considerations when Measuring Cycle Counts

The run-time library provides three different methods for benchmarking
C-compiled code. Each of these alternatives are described in the sections:

• “Basic Cycle Counting Facility” on page 4-36
The basic cycle counting facility represents an inexpensive and rela-
tively inobtrusive method for benchmarking C-written source
using cycle counts. The facility is based on macros that factor-in
the overhead incurred by the instrumentation. The macros may be
customized and they can be switched either or off, and so no source
changes are required when moving between development and
release mode. The same set of macros is available on other plat-
forms provided by Analog Devices.

• “Cycle Counting Facility with Statistics” on page 4-38
This is a cycle-counting facility that has more features than the
basic cycle counting facility described above. It is therefore more
expensive in terms of program memory, data memory, and cycles
consumed. However, it does have the ability to record the number
of times that the instrumented code has been executed and to cal-

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-45
for Blackfin Processors

DSP Run-Time Library

culate the maximum, minimum, and average cost of each iteration.
The macros provided take into account the overhead involved in
reading the cycle count register. By default, the macros are
switched off, but they are switched on by specifying the
-DDO_CYCLE_COUNTS compile-time switch. The macros may also be
customized for a specific application. This cycle counting facility is
also available on other Analog Devices architectures.

• “Using time.h to Measure Cycle Counts” on page 4-41
The facilities of the time.h header file represent a simple method
for measuring the performance of an application that is portable
across a large number of different architectures and systems. These
facilities are based around the clock function.

The clock function however does not take into account the cost
involved in invoking the function. In addition, references to the
function may affect the code that the optimizer generates in the
vicinity of the function call. This method of benchmarking may
not accurately reflect the true cost of the code being measured.

This method is more suited to benchmarking applications rather
than smaller sections of code that run for a much shorter time
span.

When benchmarking code, some thought is required when adding
timing instrumentation to C source that will be optimized. If the
sequence of statements to be measured is not selected carefully, the
optimizer may move instructions into (and out of) the code region
and/or it may re-site the instrumentation itself, thus leading to dis-
torted measurements. It is therefore generally considered more
reliable to measure the cycle count of calling (and returning from)
a function rather than a sequence of statements within a function.

It is recommended that variables that are used directly in bench-
marking are simple scalars that are allocated in internal memory

DSP Run-Time Library Reference

4-46 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

(be they assigned the result of a reference to the clock function, or
be they used as arguments to the cycle counting macros). In the
case of variables that are assigned the result of the clock function,
it is also recommended that they be defined with the volatile key-
word.

The cycle count registers of the Blackfin architecture are called the
CYCLES and CYCLES2 registers. These registers are 32-bit registers.
The CYCLES register is incremented at every processor cycle; when it
wraps back to zero the CYCLES2 register is incremented. Together
these registers represent a 64-bit counter that is unlikely to wrap
around to zero during the timing of an application.

DSP Run-Time Library Reference
This section provides descriptions of the DSP run-time library functions.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-47
for Blackfin Processors

DSP Run-Time Library

Reference Format

Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and Purpose of the function

Synopsis – Required header file and functional prototype; when
the functionality is provided for several data types (for example,
float, double, long double or fract16), several prototypes are
given

Description – Function specification

Algorithm – High-level mathematical representation of the
function

Domain – Range of values supported by the function

Notes – Miscellaneous information

For some functions, the interface is presented using the “K&R”
style for ease of documentation. An ANSI C prototype is provided
in the header file.

DSP Run-Time Library Reference

4-48 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

a_compress

A-law compression

Synopsis

#include <filter.h>

void a_compress(const short input[], short output[], int length);

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by output.

Algorithm

C(k)=a-law compression of A(k) for k = 0 to length-1

Domain

Content of input array: –4096 to 4095

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-49
for Blackfin Processors

DSP Run-Time Library

a_expand

A-law expansion

Synopsis

#include <filter.h>

void a_expand (const short input[], short output[], int length);

Description

The a_expand function inputs a vector of 8-bit compressed speech samples
and expands them according to ITU recommendation G.711. Each input
value is expanded to a linear 13-bit signed sample in accordance with the
A-law definition and is returned in the vector pointed to by output.

Algorithm

C(k)=a-law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: 0 to 255

DSP Run-Time Library Reference

4-50 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

alog

anti-log

Synopsis

#include <math.h>

float alogf (float x);

double alog (double x);

long double alogd (long double x);

Description

The alog functions calculate the natural (base e) anti-log of their argu-
ment. An anti-log function performs the reverse of a log function and is
therefore equivalent to exponentiation.

The value HUGE_VAL is returned if the argument x is greater than the func-
tion’s domain. For input values less than the domain, the functions return
0.0.

Algorithm

c = ex

Domain

x = [–87.33 , 88.72] for alogf()

x = [–708.39 , 709.78] for alogd()

Example

#include <math.h>

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-51
for Blackfin Processors

DSP Run-Time Library

double y;

y = alog(1.0); /* y = 2.71828... */

See Also

alog10, exp, log, pow

DSP Run-Time Library Reference

4-52 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

alog10

base 10 anti-log

Synopsis

#include <math.h>

float alog10f (float x);

double alog10 (double x);

long double alog10d (long double x);

Description

The alog10 functions calculate the base 10 anti-log of their argument. An
anti-log function performs the reverse of a log function and is therefore
equivalent to exponentiation. Therefore, alog10(x) is equivalent to
exp(x * log(10.0)).

The value HUGE_VAL is returned if the argument x is greater than the func-
tion’s domain. For input values less than the domain, the functions return
0.0.

Algorithm

c = e(x * log(10.0))

Domain

x = [–37.92 , 38.53] for alog10f()

x = [–307.65 , 308.25] for alog10d()

Example

#include <math.h>

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-53
for Blackfin Processors

DSP Run-Time Library

double y;

y = alog10(1.0); /* y = 10.0 */

See Also

alog, exp, log10, pow

DSP Run-Time Library Reference

4-54 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

arg

get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

long double argd (complex_long_double a);

fract16 arg_fr16 (complex_fract16 a);

Description

These functions compute the phase associated with a Cartesian number,
represented by the complex argument a, and return the result.

Refer to the description of the polar_fr16 function which explains
how a phase, represented as a fractional number, is interpreted in
polar notation (see “polar” on page 4-139).

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for argf()

–1.7 x 10308 to +1.7 x 10308 for argd()

–1.0 to +1.0 for arg_fr16()

c atan a
a

=
⎛
⎝
⎜

⎞
⎠
⎟

Im()
Re()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-55
for Blackfin Processors

DSP Run-Time Library

Note

Im (a) /Re (a) < =1 for arg_fr16 ()

DSP Run-Time Library Reference

4-56 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

autocoh

autocoherence

Synopsis

#include <stats.h>

void autocohf (const float samples[],

int sample_length,

int lags,

float coherence[]);

void autocoh (const double samples[],

int sample_length,

int lags,

double coherence[]);

void autocohd (const long double samples[],

int sample_length,

int lags,

long double coherence[]);

void autocoh_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 coherence[]);

Description

The autocoh functions compute the autocoherence of the input vector
samples[], which contain sample_length values. The autocoherence of an
input signal is its autocorrelation minus its mean squared. The functions
return the result in the output array coherence[] of length lags.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-57
for Blackfin Processors

DSP Run-Time Library

Algorithm

where k={0,1,...,lags-1} and a is the mean value of input vector a.

Domain

–3.4 x 1038 to +3.4 x 1038 for autocohf()

–1.7 x 10308 to +1.7 x 10308 for autocohd()

–1.0 to 1.0 for autocoh_fr16()

∑
−−

=
+ −∗=

1

0

2)()(*1 kn

j
kjjk aaa

n
c

DSP Run-Time Library Reference

4-58 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

autocorr

autocorrelation

Synopsis

#include <stats.h>

void autocorrf (const float samples[],

int sample_length,

int lags,

float correlation[]);

void autocorr (const double samples[],

int sample_length,

int lags,

double correlation[]);

void autocorrd (const long double samples[],

int sample_length,

int lags,

long double correlation[]);

void autocorr_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 correlation[]);

Description

The autocorr functions perform an autocorrelation of a signal. Autocorre-
lation is the cross-correlation of a signal with a copy of itself. It provides
information about the time variation of the signal. The signal to be auto-

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-59
for Blackfin Processors

DSP Run-Time Library

correlated is given by the samples[] input array. The number of samples
of the autocorrelation sequence to be produced is given by lags. The
length of the input sequence is given by sample_length.

Autocorrelation is used in digital signal processing applications such as
speech analysis.

Algorithm

where a=samples; k = {0,1,...,m-1}; m is the number of lags; n is the size
of the input vector samples.

Domain

–3.4 x 1038 to +3.4 x 1038 for autocorrf()

–1.7 x 10308 to +1.7 x 10308 for autocorrd()

–1.0 to + 1.0 for autocorr_fr16()

c
n

a ak j j k
j

n k

= +
=

− −

∑1
0

1

* (*)

DSP Run-Time Library Reference

4-60 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cabs

complex absolute value

Synopsis

#include <complex.h>

float cabsf (complex_float a);

double cabs (complex_double a);

long double cabsd (complex_long_double a);

fract16 cabs_fr16 (fract16 a);

Description

The cabs functions compute the complex absolute value of a complex
input and return the result.

Algorithm

Domain

Re 2 (a) + Im2 (a) <= 3.4 x 10 38 for cabsf()

Re 2 (a) + Im2 (a) <= 1.7 x 10 308 for cabsd()

Re 2 (a) + Im2 (a) <= 1.0 for cabs_fr16()

Note

The minimum input value for both real and imaginary parts can be less
than 1/256 for cabs_fr16 but the result may have bit error of 2–3 bits.

 c a a= +Re () Im ()2 2

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-61
for Blackfin Processors

DSP Run-Time Library

cadd

complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b);

complex_double cadd (complex_double a, complex_double b);

complex_long_double caddd (complex_long_double a,

 complex_long_double b);

complex_fract16 cadd_fr16 (complex_fract16 a, complex_fract16 b);

Description

The cadd functions compute the complex addition of two complex inputs,
a and b, and return the result.

Algorithm

Re(c) = Re(a) + Re(b)

Im(c) = Im(a) + Im(b)

Domain

–3.4 x 1038 to +3.4 x 1038 for caddf()

–1.7 x 10308 to +1.7 x 10308 for caddd()

–1.0 to +1.0 for cadd_fr16()

DSP Run-Time Library Reference

4-62 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cartesian

convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);

double cartesian (complex_double a, double *phase);

long double cartesiand (complex_long_double a,

 long double *phase);

fract16 cartesian_fr16 (complex_fract16 a, fract16 *phase);

Description

The cartesian functions transform a complex number from Cartesian
notation to polar notation. The Cartesian number is represented by the
argument a that the function converts into a corresponding magnitude,
which it returns as the function’s result, and a phase that is returned via
the second argument phase.

Refer to the description of the polar_fr16 function which explains
how a phase, represented as a fractional number, is interpreted in
polar notation (see “polar” on page 4-139).

Algorithm

magnitude = cabs(a)

phase = arg(a)

Domain

-3.4 x 1038 to +3.4 x 1038 for cartesianf()

–1.7 x 10308 to +1.7 x 10308 for cartesiand()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-63
for Blackfin Processors

DSP Run-Time Library

-1.0 to +1.0 for cartesian_fr16()

Example

#include <complex.h>

complex_float point = {-2.0 , 0.0};

float phase;

float mag;

mag = cartesianf (point,&phase); /* mag = 2.0, phase = π */

DSP Run-Time Library Reference

4-64 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cdiv

complex division

Synopsis

#include <complex.h>

complex_float cdivf (complex_float a, complex_float b);

complex_double cdiv (complex_double a, complex_double b);

complex_long_double cdivd (complex_long_double a,

 complex_long_double b);

complex_fract16 cdiv_fr16 (complex_fract16 a, complex_fract16 b);

Description

The cdiv functions compute the complex division of complex input a by
complex input b, and return the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for cdivf()

–1.7 x 10308 to +1.7 x 10308 for cdivd()

–1.0 to 1.0 for cdiv_fr16()

)(Im)(Re
)Re(*)Im()Im(*)Re()Im(

)(Im)(Re
)Im(*)Im()Re(*)Re()Re(

22

22

bb
ababc

bb
babac

+
−

=

+
+

=

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-65
for Blackfin Processors

DSP Run-Time Library

cexp

complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (float x);

complex_double cexp (double x);

complex_long_double cexp (long double x);

Description

The cexp functions compute the complex exponential of real input x and
return the result.

Algorithm

Re(c) = cos(x)

Im(c) = sin(x)

Domain

x = [–102940 ... 102940] for cexpf ()

x = [-8.433e8 ... 8.433e8] for cexpd ()

DSP Run-Time Library Reference

4-66 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cfft

n point radix-2 complex input FFT

Synopsis

#include <filter.h>

void cfft_fr16(const complex_fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. By allocating these arrays in different mem-
ory banks, any potential data bank collisions are avoided, thus improving
run-time performance. If the input data can be overwritten, the optimum
memory usage can be achieved by also specifying the input array as the
output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The function
twidfftrad2_fr16 may be used to initialize the array. If the twiddle table
contains more factors than needed for a particular call on cfft_fr16, then
the stride factor has to be set appropriately; otherwise it should be set to 1.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-67
for Blackfin Processors

DSP Run-Time Library

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function scales the output by 1/fft_size.

Algorithm

When the sequence length n is a power of 4, the cfftrad4 algorithm is
also available.

Domain

Input sequence length n must be a power of 2 and at least 8.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

DSP Run-Time Library Reference

4-68 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cfftf

fast N-point radix-4 complex input FFT

Synopsis

#include <filter.h>

void cfftf_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The cfftf_fr16 function transforms the time domain complex input sig-
nal sequence to the frequency domain by using the accelerated version of
the “Discrete Fourier Transform” known as a “Fast Fourier Transform” or
FFT. It “decimates in frequency” using an optimized radix-4 algorithm.

The size of the input array input and the output array output is fft_size
where fft_size represents the number of points in the FFT. The
cfftf_fr16 function has been designed for optimum performance and
requires that the input array input be aligned on an address boundary that
is a multiple of four times the FFT size. For certain applications, this
alignment constraint may not be appropriate; in such cases, the applica-
tion should call the cfftrad4_fr16 function (“cfftrad4” on page 4-71)
instead, with no loss of facility (apart from performance).

The number of points in the FFT, fft_size, must be a power of 4 and must
be at least 16.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr16 (see on page 4-156) may be used to

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-69
for Blackfin Processors

DSP Run-Time Library

initialize the array. If the twiddle table contains more factors than required
for a particular FFT size, then the stride factor twiddle_stride has to be
set appropriately; otherwise it should be set to 1.

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as either the input array or the twiddle table, as the per-
formance of the function may otherwise degrade due to data bank
collisions.

The function uses static scaling of intermediate results to prevent overflow
and the final output therefore is scaled by 1/fft_size.

This library function makes use of the M3 register. The M3 register
may be used by an emulator for context switching. Refer to the
appropriate emulator documentation.

Algorithm

The cfft_fr16 function (see “cfft” on page 4-66), which uses a radix-2
algorithm, must be used when the FFT size, n, is only a power of 2.

Domain

The number of points in the FFT must be a power of 4 and must be at
least 16.

Example

#include <filter.h>

#define FFTSIZE 64

#pragma align 256

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

DSP Run-Time Library Reference

4-70 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

segment ("seg_1") complex_fract16 input[FFTSIZE];

#pragma align 4

segment ("seg_2") complex_fract16 output[FFTSIZE];

#pragma align 4

segment ("seg_3") complex_fract16 twid[(3*FFTSIZE)/4];

twidfftf_fr16(twid,FFTSIZE);

cfftf_fr16(input,

output,

twid,1,FFTSIZE);

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-71
for Blackfin Processors

DSP Run-Time Library

cfftrad4

n point radix-4 complex input FFT

Synopsis

#include <filter.h>

void cfftrad4_fr16 (const complex_fract16 input[],

 complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

 int twiddle_stride,

int fft_size,

 int block_exponent,
 int scale_method);

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-4 Fast Fourier Transform. The
cfftrad4_fr16 function “decimates in frequency” by the radix-4 FFT
algorithm.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. Memory bank collisions, which have an
adverse effect on run-time performance, may be avoided by allocating all
input and working buffers to different memory banks. If the input data
can be overwritten, the optimum memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 twiddle coefficients. The function
twidfftrad4_fr16 may be used to initialize the array. If the twiddle table

DSP Run-Time Library Reference

4-72 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

contains more coefficients than needed for a particular call on
cfftrad4_fr16, then the stride factor has to be set appropriately; other-
wise it should be set to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by dividing the input by
fft_size.

Algorithm

When the sequence length, n=fft_size, is not a power of 4, the radix-2
method must be used. See “cfft” on page 4-66.

Domain

Input sequence length fft_size must be a power of 4 and at least 16.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-73
for Blackfin Processors

DSP Run-Time Library

cfft2d

n x n point 2-D complex input FFT

Synopsis

#include <filter.h>

void cfft2d_fr16(const complex_fract16 *input

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function computes the two-dimensional Fast Fourier Transform
(FFT) of the complex input matrix input[fft_size][fft_size] and
stores the result to the complex output matrix
output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. Memory bank collisions,
which have an adverse effect on run-time performance, may be avoided by
allocating all input and working buffers to different memory banks. If the
input data can be overwritten, the optimum memory usage can be
achieved by also specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors. The function twidfft2d_fr16
may be used to initialize the array. If the twiddle table contains more fac-
tors than needed for a particular call on cfft2d_fr16, then the stride
factor has to be set appropriately; otherwise it should be set to 1.

DSP Run-Time Library Reference

4-74 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function scales the output by fft_size*fft_size.

Algorithm

where i={0,1,...,n-1}; j={0,1,2,...,n-1}; a=input; c=output; n=fft_size

Domain

Input sequence length fft_size must be a power of 2 and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,) * (* *) /= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-75
for Blackfin Processors

DSP Run-Time Library

cfir

complex finite impulse response filter

Synopsis

#include <filter.h>

void cfir_fr16(const complex_fract16 input[],

 complex_fract16 output[],

int length,

 cfir_state_fr16 *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

int k; /* Number of coefficients */

complex_fract16 *h; /* Filter coefficients */

complex_fract16 *d; /* Start of delay line */

complex_fract16 *p; /* Read/write pointer */

} cfir_state_fr16;

Description

The cfir_fr16 function implements a complex finite impulse response
(CFIR) filter. It generates the filtered response of the complex input data
input and stores the result in the complex output vector output.

The function maintains the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro cfir_init, in the filter.h header file, is available to
initialize the structure.

It is defined as:

DSP Run-Time Library Reference

4-76 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

#define cfir_init(state, coeffs, delay, ncoeffs) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of complex filter coefficients and their values. A
pointer to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients.

Each filter should have its own delay line which is a vector of type
complex_fract16 and whose length is equal to the number of coefficients.
The vector should be cleared to zero before calling the function for the
first time and should not otherwise be modified by the user program. The
structure member filter_state->d should be set to the start of the delay
line, and the function uses filter_state->p to keep track of its current
position within the vector.

Algorithm

where x=input; y=output; n=fft_size

Domain

–1.0 to +1.0

∑
−

=

=−=
1

0
..1,0)(*)()(

k

j
niforjixjhky

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-77
for Blackfin Processors

DSP Run-Time Library

clip

clip

Synopsis

#include <math.h>

int clip (int parm1, int parm2);

long int lclip (long int parm1, long int parm2);

long long int llclip (long long int parm1,

long long int parm2);

float fclipf (float parm1, float parm2);

double fclip (double parm1, double parm2);

long double fclipd (long double parm1, long double parm2);

fract16 clip_fr16 (fract16 parm1, fract16 parm2);

Description

The clip functions return the first argument if it is less than the absolute
value of the second argument; otherwise they return the absolute value of
the second argument if the first is positive, or minus the absolute value if
the first argument is negative.

Algorithm

If (|parm1| < |parm2|)

return (parm1)

else

return (|parm2| * signof(parm1))

Domain

Full range for various input parameter types.

DSP Run-Time Library Reference

4-78 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cmlt

complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b);

complex_double cmlt (complex_double a, complex_double b);

complex_long_double cmltd (complex_long_double a,

complex_long_double b);

complex_fract16 cmlt_fr16 (complex_fract16 a, complex_fract16 b);

Description

The cmlt functions compute the complex multiplication of two complex
inputs, a and b, and return the result.

Algorithm

Re(c) = Re(a) * Re(b) - Im(a) * Im(b)

Im(c) = Re(a) * Im(b) + Im(a) * Re(b)

Domain

–3.4 x 1038 to +3.4 x 1038 for cmltf()

–1.7 x 10308 to +1.7 x 10308 for cmltd()

–1.0 to 1.0 for cmlt_fr16()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-79
for Blackfin Processors

DSP Run-Time Library

coeff_iirdf1

convert coefficients for DF1 IIR filter

Synopsis

#include <filter.h>

void coeff_iirdf1_fr16 (const float acoeff[],

const float bcoeff[],

fract16 coeff[], int nstages);

Description

The coeff_iirdf1_fr16 function transforms a set of A-coefficients and a
set of B-coefficients into a set of coefficients for the iirdf1_fr16 function
(see on page 4-156), which implements an optimized, direct form 1 infi-
nite impulse response (IIR) filter.

The A-coefficients and the B-coefficients are passed into the function via
the floating-point vectors acoeff and bcoeff, respectively. The A0 coeffi-
cients are assumed to be 1.0, and all other A-coefficients must be scaled
according; the A0 coefficients should not be included in the vector aco-
effs. The number of stages in the filter is given by the parameter nstages,
and therefore the size of the acoeffs vector is 2*nstages and the size of
the bcoeffs vector is (2*nstages) + 1.

The values of the coefficients that are held in the vectors acoeffs
and bcoeffs must be in the range of [LONG_MIN, LONG_MAX], that is
they must not be less than -2147483648, or greater than
2147483647.

The coeff_iirdf1_fr16 function scales the coefficients and stores them in
the vector coeff. The function also stores the appropriate scaling factor in
the vector which the iirdf1_fr16 function will then apply to the filtered
response that it generates (thus eliminating the need to scale the output
generated by the IIR function). The size of coeffs array should be
(4*nstages) + 2.

DSP Run-Time Library Reference

4-80 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The A-coefficients and the B-coefficients represent the numerator and
denominator coefficients of H(z), where H(z) is defined as:

If any of the coefficients are greater than 0.999969 (the largest floating-
point value that can be converted to a value of type fract16), then all the
A-coefficients and all the B-coefficients are scaled to be less than 1.0. The
coefficients are stored into the vector coeffs in the following order:

[b0 , -a01 , b01 , -a02, b02, ... ,

-an1 , bn1 , -an2 , bn2 , scale factor]

where n is the number of stages.

Note that the A-coefficients are negated by the function.

Domain

acoeff, bcoeff = [LONG_MIN, LONG_MAX] where LONG_MIN and LONG_MAX
are macros that are defined in the limits.h header file

H z() B z()
A z()
------------=

b1 b2z
1– … bm 1+ z m–+ + +

a1 a2z 1– … am 1+ z m–+ + +
---=

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-81
for Blackfin Processors

DSP Run-Time Library

conj

complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a);
complex_double conj (complex_double a);
complex_long_double conjd (complex_long_double a);
complex_fract16 conj_fr16 (complex_fract16 a);

Description

The conj functions conjugate the complex input a and return the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

–3.4 x 1038 to +3.4 x 1038 for conjf()

–1.7 x 10308 to +1.7 x 10308 for conjd()

–1.0 to 1.0 for conj_fr16()

DSP Run-Time Library Reference

4-82 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

convolve

convolution

Synopsis

#include <filter.h>

void convolve_fr16(const fract16 input_x[],
 int length_x,

const fract16 input_y[],

int length_y,

fract16 output[]);

Description

This function convolves two sequences pointed to by input_x and
input_y. If input_x points to the sequence whose length is length_x and
input_y points to the sequence whose length is length_y, the resulting
sequence pointed to by output has length length_x + length_y – 1.

Algorithm

Convolution between two sequences input_x and input_y is described as:

for n = 0 to clen1 + clen2-2.
(Values for cin1[j] are considered to be zero for j < 0 or j > clen1-1).
where cin1 =input_x
 cin2 =input_y
 cout =output
 clen1=length_x
 clen2=length_y

[] ()[] ()[]∑
−

=

−−•−−+=
12

0
12 1

clen

k
kclen2cin2clenkn1cinncout

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-83
for Blackfin Processors

DSP Run-Time Library

Example

Here is an example of a convolution where input_x is of length 4 and
input_y is of length 3. If we represent input_x as “A” and input_y as “B”,
the elements of the output vector are:

{A[0]*B[0],

A[1]*B[0] + A[0]*B[1],

A[2]*B[0] + A[1]*B[1] + A[0]*B[2],

A[3]*B[0] + A[2]*B[1] + A[1]*B[2],

A[3]*B[1] + A[2]*B[2],

A[3]*B[2]}

Domain

–1.0 to +1.0

DSP Run-Time Library Reference

4-84 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

conv2d

2-D convolution

Synopsis

#include <filter.h>

void conv2d_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

 const fract16 *input_y,

int rows_y,

 int columns_y,

 fract16 *output);

Description

The conv2d function computes the two-dimensional convolution of input
matrix input_x of size rows_x*columns_x and input_y of size
rows_y*columns_y and stores the result in matrix output of dimension
(rows_x + rows_y-1) x (columns_x + columns_y-1).

A temporary work area is allocated from the run-time stack that the
function uses to preserve accuracy while evaluating the algorithm.
The stack may therefore overflow if the sizes of the input matrices
are sufficiently large. The size of the stack may be adjusted by mak-
ing appropriate changes to the .LDF file

Algorithm

The two-dimensional convolution of min1[mrow1][mcol1] and
min2[mrow2][mcol2] is defined as:

[] () ()]1 ,1[] ,[,
12

0

12

0

j2mrowi2mcolmin2jricmin1rcmout
mcol

i

mrow

j

−−−−•++= ∑ ∑
−

=

−

=

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-85
for Blackfin Processors

DSP Run-Time Library

for c = 0 to mcol1+mcol2-1 and r = 0 to mrow2-1

Domain

–1.0 to +1.0

DSP Run-Time Library Reference

4-86 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

conv2d3x3

2-D convolution with 3 x 3 matrix

Synopsis

#include <filter.h>

void conv2d3x3_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

 const fract16 *input_y,

 fract16 *output);

Description

The conv2d3x3 function computes the two-dimensional circular convolu-
tion of matrix input_x (size [rows_x][columns_x]) with matrix input_y
(size [3][3]).

Algorithm

Two-dimensional input matrix input_x is convolved with input matrix
input_y, placing the result in a matrix pointed to by output.

for c = 0 to mcol1+2 and r = 0 to mrow1+2, where min1=input_x;
min2=input_y; mcol1=columns_x; mrow1=rows_x; mout=output

Domain

–1.0 to +1.0

[]]2 ,2[] ,[,
2

0

2

0
jimin2jricmin1rcmout

i j
−−•++= ∑ ∑

= =

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-87
for Blackfin Processors

DSP Run-Time Library

copysign

copysign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2);

double copysign (double parm1, double parm2);
long double copysignd (long double parm1, long double parm2);
fract16 copysign_fr16 (fract16 parm1, fract16 parm2);

Description

The copysign functions copy the sign of the second argument to the first
argument.

Algorithm

return (|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used.

DSP Run-Time Library Reference

4-88 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

cot

cotangent

Synopsis

#include <math.h>

float cotf (float a);
double cot (double a);
long double cotd (long double a);

Description

These functions calculate the cotangent of their argument a, which is
measured in radians. If a is outside of the domain, the functions return 0.

Algorithm

 c = cot(a)

Domain

 x = [–9099 ... 9099] for cotf()

x = [-4.21657e8 ... 4.21657e8] for cotd()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-89
for Blackfin Processors

DSP Run-Time Library

countones

count one bits in word

Synopsis

#include <math.h>

int countones(int parm);
int lcountones(long parm);
int llcountones(long long int parm);

Description

The countones functions count the number of one bits in the argument
parm.

Algorithm

where N is the number of bits in parm.

∑
−

=

=
1

0

][
N

j

parmofjbitreturn

DSP Run-Time Library Reference

4-90 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

crosscoh

cross-coherence

Synopsis

#include <stats.h>

void crosscohf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float coherence[]);

void crosscoh (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double coherence[]);

void crosscohd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double coherence[]);

void crosscoh_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 coherence[]);

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-91
for Blackfin Processors

DSP Run-Time Library

Description

The crosscoh functions compute the cross-coherence of two input vectors
samples_x[] and samples_y[]. The cross-coherence is the cross-correla-
tion minus the product of the mean of samples_x and the mean of
samples_y. The length of the input vectors is given by sample_length.
The functions return the result in the array coherence with lags elements.

Algorithm

where k = {0,1,...,lags-1}; a=samples_x; b=samples_y; c=coherence; a is
the mean value of input vector a; b is the mean value of input vector b.

Domain

–3.4 x 1038 to +3.4 x 1038 for crosscohf ()

–1.7 x 10308 to +1.7 x 10308 for crosscohd ()

–1.0 to +1.0 for crosscoh_fr16 ()

∑
−−

=
+ −=

1

0
)*()*(*1 kn

j
kjjk baba

n
c

DSP Run-Time Library Reference

4-92 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

crosscorr

cross-correlation

Synopsis

#include <stats.h>

void crosscorrf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float correlation[]);

void crosscorr (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double correlation[]);

void crosscorrd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double correlation[]);

void crosscorr_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 correlation[]);

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-93
for Blackfin Processors

DSP Run-Time Library

Description

The crosscorr functions perform a cross-correlation between two signals.
The cross-correlation is the sum of the scalar products of the signals in
which the signals are displaced in time with respect to one another. The
signals to be correlated are given by the input vectors samples_x[] and
samples_y[]. The length of the input vectors is given by sample_length.
The functions return the result in the array correlation with lags
elements.

Cross-correlation is used in signal processing applications such as speech
analysis.

Algorithm

where k = {0,1,...,lags-1}; a=samples_x; b=samples_y; n=sample_length

Domain

–3.4 x 1038 to +3.4 x 1038 for crosscorrf ()

–1.7 x 10308 to +1.7 x 10308 for csubd ()

–1.0 to +1.0 for crosscorr_fr16 ()

c
n

a bk j j k
j

n k

= +
=

− −

∑1
0

1

* (*)

DSP Run-Time Library Reference

4-94 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

csub

complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (complex_float a, complex_float b);

complex_double csub (complex_double a, complex_double b);

complex_long_double csubd (complex_long_double a,

complex_long_double b);

complex_fract16 csub_fr16 (complex_fract16 a, complex_fract16 b);

Description

The csub functions compute the complex subtraction of two complex
inputs, a and b, and return the result.

Algorithm

Re(c) = Re(a) – Re(b)

Im(c) = Im(a) – Im(b)

Domain

–3.4 x 1038 to +3.4 x 1038 for csubf ()

–1.7 x 10308 to +1.7 x 10308 for csubd ()

–1.0 to 1.0 for csub_fr16 ()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-95
for Blackfin Processors

DSP Run-Time Library

fir

finite impulse response filter

Synopsis

#include <filter.h>

void fir_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

fract16 *h, /* filter coefficients */

fract16 *d, /* start of delay line */

fract16 *p, /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_fr16 function implements a finite impulse response (FIR) filter.
The function generates the filtered response of the input data input and
stores the result in the output vector output. The number of input sam-
ples and the length of the output vector are specified by the argument
length.

The function maintains the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

DSP Run-Time Library Reference

4-96 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs. index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member filter_state->d should be set to
the start of the delay line, and the function uses filter_state->p to keep
track of its current position within the vector.

The structure member filter_state->l is not used by fir_fr16. This
field is normally set to an interpolation/decimation index before calling
either the fir_interp_fr16 or fir_decima_fr16 functions.

Algorithm

where x=input; y=output

1,...1,0for)(*)()(
1

0
−=−=∑

−

=

nijixjhiy
k

j

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-97
for Blackfin Processors

DSP Run-Time Library

Domain

–1.0 to +1.0

DSP Run-Time Library Reference

4-98 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

fir_decima

FIR decimation filter

Synopsis

#include <filter.h>

void fir_decima_fr16(const fract16 input[],

 fract16 output[],

 int length,

fir_state_fr16 *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_decima_fr16 function performs an FIR-based decimation filter.
It generates the filtered decimated response of the input data input and
stores the result in the output vector output. The number of input sam-
ples is specified by the argument length, and the size of the output vector
should be length/l where l is the decimation index.

The function maintains the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-99
for Blackfin Processors

DSP Run-Time Library

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in
filter_state->h, and filter_state->k should be set to the number of
coefficients. The decimation index is supplied to the function in
filter_state->l.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member filter_state->d should be set to
the start of the delay line, and the function uses filter_state->p to keep
track of its current position within the vector.

Algorithm

where i = 0,1,...,(n/l) - 1; x=input; y=output

Domain

–1.0 to + 1.0

∑
−

=

−=
1

0
)(*)*()(

k

j
jhjlixiy

DSP Run-Time Library Reference

4-100 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

void fir_interp_fr16(const fract16 input[],

fract16 output[],

 int length,

 fir_state_fr16 *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_interp_fr16 function performs an FIR-based interpolation filter.
It generates the interpolated filtered response of the input data input and
stores the result in the output vector output. The number of input sam-
ples is specified by the argument length, and the size of the output vector
should be length*l where l is the interpolation index.

The filter characteristics are dependent upon the number of polyphase fil-
ter coefficients and their values, and on the interpolation factor supplied
by the calling program.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-101
for Blackfin Processors

DSP Run-Time Library

 The fir_interp_fr16 function assumes that the coefficients are stored in
the following order:

coeffs[(np * ncoeffs) + nc]

where: np = {0, 1, ..., nphases-1}

nc = {0, 1, ..., ncoeffs-1}

In the above syntax, nphases is the number of polyphases and ncoeffs is
the number of coefficients per polyphase. A pointer to the coefficients is
passed into the fir_interp_fr16 function via the argument
filter_state, which is a structured variable that represents the filter state.
This structured variable must be declared and initialized before calling the
function. The filter.h header file contains the macro fir_init that can
be used to initialize the structure and is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The interpolation factor is supplied to the function in filter_state->l. A
pointer to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients per
polyphase filter.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients in each polyphase.
The vector should be cleared to zero before calling the function for the
first time and should not otherwise be modified by the user program. The
structure member filter_state->d should be set to the start of the delay
line, and the function uses filter_state->p to keep track of its current
position within the vector.

DSP Run-Time Library Reference

4-102 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

where i = 0,1,...,n-1; m = 0,1,...,l-1; x=input; y=output

Domain

–1.0 to +1.0

Example

#include <filter.h>

#define INTERP_FACTOR 5

#define NSAMPLES 50

#define TOTAL_COEFFS 35

#define NPOLY INTERP_FACTOR

#define NCOEFFS (TOTAL_COEFFS/NPOLY)

/* Coefficients */

fract16 coeffs[TOTAL_COEFFS];

/* Input, Output, Delay Line, and Filter State */

fract16 input[NSAMPLES], output[INTERP_FACTOR*NSAMPLES];

fract16 delay[NCOEFFS];

fir_state state;

/* Utility Variables */

int i;

∑
−

=

+−=+
1

0
)*(*)()*(

k

j
jkmhjixmliy

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-103
for Blackfin Processors

DSP Run-Time Library

/* Initialize the delay line */

for (i = 0; i < NCOEFFS; i++)

delay[i] = 0;

/* Initialize the filter state */

fir_init (state, coeffs, delay, NCOEFFS, INTERP_FACTOR);

/* Call the fir_interp_fr16 function */

fir_interp_fr16 (input, output, NSAMPLES, &state);

DSP Run-Time Library Reference

4-104 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_bartlett

generate Bartlett window

Synopsis

#include <window.h>

void gen_bartlett_fr16(fract16 bartlett_window[],

 int window_stride,

int window_size);

Description

This function generates a vector containing the Bartlett window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector bartlett_window. The length of the output vec-
tor should therefore be window_size*window_stride.

The Bartlett window is similar to the Triangle window (see
on page 4-114) but has the following different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of
an N+2 Bartlett window equals an N Triangle window.

• For even n, the Bartlett window is still the convolution of two rect-
angular sequences. There is no standard definition for the Triangle
window for even n; the slopes of the Triangle window are slightly
steeper than those of the Bartlett window.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-105
for Blackfin Processors

DSP Run-Time Library

Algorithm

where w=bartlett_window; N=window_size; n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

w n
n N

N[] = −
−

−

−
1

1
2
1

2

DSP Run-Time Library Reference

4-106 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_blackman

generate Blackman window

Synopsis

#include <window.h>

void gen_blackman_fr16(fract16 blackman_window[],

int window_stride,

 int window_size);

Description

This function generates a vector containing the Blackman window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector blackman_window. The length of the output vec-
tor should therefore be window_size*window_stride.

Algorithm

where N=window_size; w= blackman_window; n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

w n n
N

n
N

[] . . cos . cos= −
−

⎛
⎝⎜

⎞
⎠⎟
+

−
⎛
⎝⎜

⎞
⎠⎟

0 42 05 2
1

0 08 4
1

π π

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-107
for Blackfin Processors

DSP Run-Time Library

gen_gaussian

generate Gaussian window

Synopsis

#include <window.h>

void gen_gaussian_fr16(fract16 gaussian_window[],

 float alpha,

int window_stride,

int window_size);

Description

This function generates a vector containing the Gaussian window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector gaussian_window. The length of the output vec-
tor should therefore be window_size*window_stride.

The parameter alpha is used to control the shape of the window. In gen-
eral, the peak of the Gaussian window will become narrower and the
leading and trailing edges will tend towards zero the larger that alpha
becomes. Conversely, the peak will get wider and wider the more that
alpha tends towards zero.

Algorithm

where w=gaussian_window; N=window_size; n= {0, 1, 2, ..., N-1}; α is an
input parameter.

w n
n N

N() exp
/ /

/= −
− −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2 1 2
2

2

α

DSP Run-Time Library Reference

4-108 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

window_stride > 0; window_size > 0; α > 0.0

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-109
for Blackfin Processors

DSP Run-Time Library

gen_hamming

generate Hamming window

Synopsis

#include <window.h>

void gen_hamming_fr16(fract16 hamming_window[],

 int window_stride,

int window_size);

Description

This function generates a vector containing the Hamming window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector hamming_window. The length of the output vector
should therefore be window_size*window_stride.

Algorithm

where w=hamming_window; N=window_size; n= {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

w n n
N

[] . . cos= −
−

⎛
⎝⎜

⎞
⎠⎟

054 0 46 2
1

π

DSP Run-Time Library Reference

4-110 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_hanning

generate Hanning window

Synopsis

#include <window.h>

void gen_hanning_fr16(fract16 hanning_window[],

int window_stride,

int window_size);

Description

This function generates a vector containing the Hanning window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector hanning_window. The length of the output vector
should therefore be window_size*window_stride. This window is also
known as the Cosine window.

Algorithm

where N=window_size; w=hanning_window; n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

1
2cos5.05.0][

N
nnw π

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-111
for Blackfin Processors

DSP Run-Time Library

gen_harris

generate Harris window

Synopsis

#include <window.h>

void gen_harris_fr16(fract16 harris_window[],

int window_stride,

 int window_size);

Description

This function generates a vector containing the Harris window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector harris_window. The length of the output vector
should therefore be window_size*window_stride. This window is also
known as the Blackman-Harris window.

Algorithm

where N=window_size; w=harris_window; n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟
⎠
⎞

⎜
⎝
⎛

−
−=

1
6cos*01168.0

1
4cos*14128.0

1
2cos*48829.035875.0][

N
n

N
n

N
nnw πππ

DSP Run-Time Library Reference

4-112 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_kaiser

generate Kaiser window

Synopsis

#include <window.h>

void gen_kaiser_fr16(fract16 kaiser_window[],

float beta,

 int window_stride,

int window_size);

Description

This function generates a vector containing the Kaiser window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector kaiser_window. The length of the output vector
should therefore be window_size*window_stride. The β value is specified
by parameter beta.

Algorithm

where N=window_size; w=kaiser_window; n = {0, 1, 2, ..., N-1}; α = (N -
1) / 2; I0(β) represents the zeroth-order modified Bessel function of the
first kind.

Domain

a > 0; N > 0; β > 0.0

()
w n

I n

I
[]

/

=

−
−⎡

⎣⎢
⎤
⎦⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥0

2 1 2

0

1β α
α

β

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-113
for Blackfin Processors

DSP Run-Time Library

gen_rectangular

generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular_fr16(fract16 rectangular_window[],

int window_stride,

 int window_size);

Description

This function generates a vector containing the Rectangular window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector rectangular_window. The length of the output
vector should therefore be window_size*window_stride.

Algorithm

rectangular_window[n] = 1

where N=window_size; n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

DSP Run-Time Library Reference

4-114 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_triangle

 generate triangle window

Synopsis

#include <window.h>

void gen_triangle_fr16(fract16 triangle_window[],

int window_stride,

int window_size);

Description

This function generates a vector containing the Triangle window. The
length of the window required is specified by the parameter window_size,
and the parameter window_stride is used to space the window values
within the output vector triangle_window.

Refer to the Bartlett window (on page 4-104) regarding the relationship
between it and the Triangle window.

Algorithm

For even n, the following equation applies.

where N=window_size; w=triangle_window; n = {0, 1, 2, ..., N-1}

For odd n, the following equation applies.

w n

n
N

n N

N n
N

n N
[] =

+
<

− −
>

⎧

⎨
⎪

⎩
⎪

2 1 2

2 2 1 2

w n

n
N

n N

N n
N

n N
[] =

+
+

<

−
+

>

⎧

⎨
⎪

⎩
⎪

2 2
1

2

2 2
1

2

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-115
for Blackfin Processors

DSP Run-Time Library

where n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0; N > 0

DSP Run-Time Library Reference

4-116 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_vonhann

generate Von Hann window

Synopsis

#include <window.h>

void gen_vonhann_fr16(fract16 vonhann_window[],

int window_stride,

int window_size);

Description

This function is identical to the Hanning window (see on page 4-110).

Domain

window_stride > 0; window_size > 0

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-117
for Blackfin Processors

DSP Run-Time Library

histogram

histogram

Synopsis

#include <stats.h>

void histogramf (const float samples[],

int histogram[],

float max_sample,

float min_sample,

int sample_length,

int bin_count);

void histogram (const double samples[]

int histogram[],

double max_sample,

double min_sample,

int sample_length,

int bin_count);

void histogramd (const long double samples[],

int histogram[],

long double max_sample,

long double min_sample

int sample_length,

int bin_count);

void histogram_fr16 (const fract16 samples[],

int histogram[],

fract16 max_sample,

fract16 min_sample,

int sample_length,

int bin_count);

DSP Run-Time Library Reference

4-118 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Description

The histogram functions compute a histogram of the input vector
samples[] that contains nsamples samples, and store the result in the
output vector histogram.

The minimum and maximum value of any input sample is specified by
min_sample and max_sample, respectively. These values are used by the
function to calculate the size of each bin as (max_sample – min_sample) /
bin_count, where bin_count is the size of the output vector histogram.

Any input value that is outside the range [min_sample, max_sample)
exceeds the boundaries of the output vector and is discarded.

To preserve maximum performance while performing
out-of-bounds checking, the histogram_fr16 function allocates a
temporary work area on the stack. The work area is allocated with
(bin_count + 2) elements and the stack may therefore overflow if
the number of bins is sufficiently large. The size of the stack may
be adjusted by making appropriate changes to the .LDF file.

Algorithm

Each input value is adjusted by min_sample, multiplied by
1/sample_length, and rounded. The appropriate bin in the output vector
is then incremented.

Domain

–3.4 x 1038 to +3.4 x 1038 for histogramf ()

–1.7 x 10308 to +1.7 x 10308 for histogramd ()

–1.0 to +1.0 for histogram_fr16 ()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-119
for Blackfin Processors

DSP Run-Time Library

ifft

N-point radix-2 inverse FFT

Synopsis

#include <filter.h>

void ifft_fr16(const complex_fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_size,

int fft_size,

int block_exponent

int scale_method);

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. To avoid potential data bank collisions the
input and temporary buffers should be allocated in different memory
banks; this results in improved run-time performance. If the input data
can be overwritten, the optimum memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle coefficients. The function
twidfftrad2_fr16 may be used to initialize the array. If the twiddle table
contains more coefficients than needed for a particular call on ifft_fr16,
then the stride factor has to be set appropriately; otherwise it should be set
to 1.

DSP Run-Time Library Reference

4-120 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function scales the output by 1/fft_size.

Algorithm

The implementation uses core FFT functions. To get the inverse effect,
the function first swaps the real and imaginary parts of the input, performs
the direct radix-2 transformation, and finally swaps the real and imaginary
parts of the output.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

Example

/* Compute IFFT(CFFT(X)) = X */

#include <filter.h>

#define N_FFT 64

complex_fract16 in[N_FFT];

complex_fract16 out_cfft[N_FFT];

complex_fract16 out_ifft[N_FFT];

complex_fract16 temp[N_FFT];

complex_fract16 twiddle[N_FFT/2];

void ifft_fr16_example(void)

{

int i;

/* Generate DC signal */

for(i = 0; i < N_FFT; i++)

x n
N

X k W
k

N

N
nk() ()=

=

−
−∑1

0

1

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-121
for Blackfin Processors

DSP Run-Time Library

{

in[i].re = 0x100;

in[i].im = 0x0;

}

/* Populate twiddle table */

twidfftrad2_fr16(twiddle, N_FFT);

/* Compute Fast Fourier Transform */

cfft_fr16(in, temp, out_cfft, twiddle, 1, N_FFT, 0, 0);

/* Reverse static scaling applied by cfft_fr16() function

Apply the shift operation before the call to the

ifft_fr16() function only if all the values in out_cfft

= 0x100. Otherwise, perform the shift operation after the

ifft_fr16() function has been computed.

*/

for(i = 0; i < N_FFT; i++)

{

out_cfft[i].re = out_cfft[i].re << 6; /* log2(N_FFT) = 6 */

out_cfft[i].im = out_cfft[i].im << 6;

}

/* Compute Inverse Fast Fourier Transform

The output signal from the ifft function will be the same

as the DC signal of magnitude 0x100 which was passed into

the cfft function.

*/

ifft_fr16(out_cfft, temp, out_ifft, twiddle, 1, N_FFT, 0, 0);

}

DSP Run-Time Library Reference

4-122 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

ifftrad4

N-point radix-4 inverse input FFT

Synopsis

#include <filter.h>

void ifftrad4_fr16(const complex_float *input,

 complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

 int block_exponent,

int scale_method);

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-4 Inverse Fast Fourier
Transform.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. Memory bank collisions, which have an
adverse effect on run-time performance, may be avoided by allocating all
input and working buffers to different memory banks. If the input data
can be overwritten, the optimum memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3/4fft_size twiddle factors. The function
twidfftrad4_fr16 may be used to initialize the array. If the twiddle table

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-123
for Blackfin Processors

DSP Run-Time Library

contains more factors than needed for a particular call on ifftrad4_fr16,
then the stride factor has to be set appropriately; otherwise it should be set
to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by first dividing the input
by fft_size.

Algorithm

The implementation uses core FFT functions. To get the inverse effect,
the function first swaps the real and imaginary parts of the input, performs
the direct radix-4 transformation, and finally swaps the real and imaginary
parts of the output.

Domain

Input sequence length fft_size must be a power of 4 and at least 16.

x n
N

X k W
k

N

N
nk() ()=

=

−
−∑1

0

1

DSP Run-Time Library Reference

4-124 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

ifft2d

n x n point 2-D inverse input FFT

Synopsis

#include <filter.h>

void ifft2d_fr16(const complex_float *input,

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

 int block_exponent,

 int scale_method);

Description

This function computes a two-dimensional Inverse Fast Fourier Trans-
form of the complex input matrix input[fft_size][fft_size] and stores
the result to the complex output matrix output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. Memory bank collisions,
which have an adverse effect on run-time performance, may be avoided by
allocating all input and working buffers to different memory banks. If the
input data can be overwritten, the optimum memory usage can be
achieved by also specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors. The function twidfft2d_fr16
may be used to initialize the array. If the twiddle table contains more fac-
tors than needed for a particular call on ifft2d_fr16, then the stride
factor has to be set appropriately; otherwise it should be set to 1.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-125
for Blackfin Processors

DSP Run-Time Library

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function performs static scaling by dividing the input by
fft_size*fft_size.

Algorithm

where i={0,1,...,n-1}; j={0,1,2,...,n-1}

Domain

Input sequence length fft_size must be a power of 2 and at least 16.

c i j
n

a k l e j i k j l n

l

n

k

n

(,) (,) * (* *)/= +

=

−

=

−

∑∑1
2

2

0

1

0

1
π

DSP Run-Time Library Reference

4-126 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

iir

infinite impulse response filter

Synopsis

#include <filter.h>

void iir_fr16(const fract16 input[],

fract16 output[],

int length,

iir_state_fr16 *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

int k; /* number of biquad stages */

} iir_state_fr16;

Description

The iir_fr16 function implements a biquad, transposed direct form II,
infinite impulse response (IIR) filter. It generates the filtered response of
the input data input and stores the result in the output vector output. The
number of input samples and the length of the output vector are specified
by the argument length.

The function maintains the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iir_init, defined in the filter.h header file, is
available to initialize the structure and is defined as:

#define iir_init(state, coeffs, delay, stages) \

(state).c = (coeffs); \

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-127
for Blackfin Processors

DSP Run-Time Library

(state).d = (delay); \
(state).k = (stages)

The characteristics of the filter are dependent upon filter coefficients and
the number of stages. Each stage has five coefficients which must be stored
in the order A2, A1, B2, B1, and B0. The value of A0 is implied to be 1.0 and
A1 and A2 should be scaled accordingly. This requires that the value of the
A0 coefficient be greater than both A1 and A2 for all the stages. The func-
tion iirdf1_fr16 (see on page 4-128) implements a direct form I filter,
and does not impose this requirement; however, it does assume that the A0
coefficients are 1.0.

A pointer to the coefficients should be stored in filter_state->c, and
filter_state->k should be set to the number of stages.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to twice the number of stages. The vector
should be initially cleared to zero and should not otherwise be modified by
the user program. The structure member filter_state->d should be set
to the start of the delay line.

Algorithm

where

where m = {0, 1, 2, ..., length-1}

Domain

–1.0 to +1.0

H z
B B z B z

A z A z
() =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21

mmmm

mmmm

DBDBDBY
DADAXD

**

01122

1122

++=
−−=

−−

−−

DSP Run-Time Library Reference

4-128 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

iirdf1

direct form I impulse response filter

Synopsis

#include <filter.h>

void iirdf1_fr16(const fract16 input[],

fract16 output[],

int length,

iirdf1_fr16_state *filter_state);

The function uses the following structure to maintain the state of the
filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

int k; /* 2*number of biquad stages + 1 */

} iirdf1_fr16_state;

Description

The iirdf1_fr16 function implements a biquad, direct form I, infinite
impulse response (IIR) filter. It generates the filtered response of the input
data input and stores the result in the output vector output. The number
of input samples and the length of the output vector is specified by the
argument length.

The function maintains the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iirdf1_init, defined in the filter.h header file, is
available to initialize the structure.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-129
for Blackfin Processors

DSP Run-Time Library

The macro is defined as:

#define iirdf1_init(state, coeffs, delay, stages) \

(state).c = (coeffs); \
(state).d = (delay); \
(state).p = (delay); \
(state).k = (2*(stages)+1)

The characteristics of the filter are dependent upon the filter coefficients
and the number of biquad stages. The A-coefficients and the B-coefficients
for each stage are stored in a vector that is addressed by the pointer
filter_state->c. This vector should be generated by the
coeff_iirdf1_fr16 function (see “coeff_iirdf1” on page 4-79). The vari-
able filter_state->k should be set to the expression (2*stages) + 1.

Both the iirdf1_fr16 and iir_fr16 functions assume that the
value of the A0 coefficients is 1.0, and that all other A-coefficients
have been scaled according. For the iir_fr16 function, this also
implies that the value of the A0 coefficient is greater than both the
A1 and A2 for all stages. This restriction does not apply to the
iirdf1_fr16 function because the coefficients are specified as float-
ing-point values to the coeff_iirdf1_fr16 function.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to (4 * stages) + 2. The vector should be ini-
tially cleared to zero and should not otherwise be modified by the user
program. The structure member filter_state->d should be set to the
start of the delay line, and the function uses filter_state->p to keep
track of its current position within the vector. For optimum performance,
coefficient and state arrays should be allocated in separate memory blocks.

The iirdf1_fr16 function will adjust the output by the scaling factor that
was applied to the A-coefficients and the B-coefficients by the
coeff_iirfd1_fr16 function.

DSP Run-Time Library Reference

4-130 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

where:

V = B0 * x(i) + B1 * x(i-1) + B2 * x(i-2)

y(i) = V + A1 * y(i-1) + A2 * y(i-2)

where i = {0, 1, .., length-1}

 x = input

 y = output

Domain

-1.0 to +1.0

Example

#include <filter.h>

#define NSAMPLES 50

#define NSTAGES 2

/* Coefficients for the coeff_iirdf1_fr16 function */

const float a_coeffs[(2 * NSTAGES)] = { . . . };

const float b_coeffs[(2 * NSTAGES) + 1] = { . . . };

/* Coefficients for the iirdf1_fr16 function */

fract16 df1_coeffs[(4 * NSTAGES) + 2];

/* Input, Output, Delay Line, and Filter State */

H z
B Bz B z

Az A z
() =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-131
for Blackfin Processors

DSP Run-Time Library

fract16 input[NSAMPLES], output[NSAMPLES];

fract16 delay[(4 * NSTAGES) + 2];

iirdf1_fr16_state state;

int i;

/* Initialize filter description */

iirdf1_init (state,df1_coeffs,delay,NSTAGES);

/* Initialize the delay line */

for (i = 0; i < ((4 * NSTAGES) + 2); i++)

delay[i] = 0;

/* Convert coefficients */

coeff_iirdf1_fr16 (a_coeffs,b_coeffs,df1_coeffs,NSTAGES);

/* Call the function */

iirdf1_fr16 (input,output,NSAMPLES,&state);

DSP Run-Time Library Reference

4-132 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

max

maximum

Synopsis

#include <math.h>

int max (int parm1, int parm2);

long int lmax (long int parm1, long int parm2);

long long int llmax (long long int parm1, long long int parm2);

float fmaxf (float parm1, float parm2);

double fmax (double parm1, double parm2);
long double fmaxd (long double parm1, long double parm2);

fract16 max_fr16 (fract16 parm1, fract16 parm2);

Description

These functions return the larger of their two arguments.

Algorithm

if (parm1 > parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-133
for Blackfin Processors

DSP Run-Time Library

mean

mean

Synopsis

#include <stats.h>

float meanf(const float samples[],

int sample_length);

double mean(const double samples[],

int sample_length);

long double meand(const long double samples[],

int sample_length);

fract16 mean_fr16(const fract16 samples[],

int sample_length);

Description

These functions return the mean of the input array samples[]. The num-
ber of elements in the array is sample_length.

Algorithm

Error Conditions

The mean_fr16 function can be used to compute the mean of up to 65535
input data with a value of 0x8000 before the sum ai saturates.

c
n

ai
i

n

=
=

−

∑1
0

1

* ()

DSP Run-Time Library Reference

4-134 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

–3.4 x 1038 to +3.4 x 1038 for meanf ()

–1.7 x 10308 to +1.7 x 10308 for meand ()

–1.0 to +1.0 for mean_fr16 ()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-135
for Blackfin Processors

DSP Run-Time Library

min

minimum

Synopsis

#include <math.h>

int min (int parm1, int parm2);

long int lmin (long int parm1, long int parm2);
long long int llmin (long long int parm1, long long int parm2);

float fminf (float parm1, float parm2);

double fmin (double parm1, double parm2);
long double fmind (long double parm1, long double parm2);

fract16 min_fr16 (fract16 parm1, fract16 parm2);

Description

These functions return the smaller of their two arguments.

Algorithm

if (parm1 < parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters used.

DSP Run-Time Library Reference

4-136 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

mu_compress

µ-law compression

Synopsis

#include <filter.h>

void mu_compress(const short input[],

short output[],

int length);

Description

This function takes a vector of linear 14-bit signed speech samples and
performs µ-law compression according to ITU recommendation G.711.
Each sample is compressed to 8 bits and is returned in the vector pointed
to by output.

Algorithm

C(k)= mu_law compression of A(k) for k = 0 to length-1

Domain

Content of input array: –8192 to 8191

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-137
for Blackfin Processors

DSP Run-Time Library

mu_expand

µ-law expansion

Synopsis

#include <filter.h>

void mu_expand(const short input[],

short output[],

int length);

Description

This function inputs a vector of 8-bit compressed speech samples and
expands them according to ITU recommendation G.711. Each input
value is expanded to a linear 14-bit signed sample in accordance with the
µ-law definition and is returned in the vector pointed to output.

Algorithm

C(k)= mu_law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: 0 to 255

DSP Run-Time Library Reference

4-138 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

norm

normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a);

complex_double norm (complex_double a);

complex_long_double normd (complex_long_double a);

Description

These functions normalize the complex input a and return the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for normf ()

–1.7 x 10308 to +1.7 x 10308 for normd ()

Re()
Re()

Re () Im ()

Im()
Im()

Re () Im ()

c
a

a a

c
a

a a

=
+

=
+

2 2

2 2

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-139
for Blackfin Processors

DSP Run-Time Library

polar

construct from polar coordinates

Synopsis

#include <complex.h>

complex_float polarf(float magnitude,

float phase);

complex_double polar(double magnitude,

double phase);

complex_long_double polard(long double magnitude,

long double phase);

complex_fract16 polar_fr16(fract16 magnitude,

fract16 phase);

Description

These functions transform the polar coordinate, specified by the argu-
ments magnitude and phase, into a Cartesian coordinate and return the
result as a complex number in which the x-axis is represented by the real
part, and the y-axis by the imaginary part. The phase argument is inter-
preted as radians.

For the polar_fr16 function, the phase must be scaled by 2π and must be
in the range [0x8000, 0x7ff0]. The value of the phase may be either pos-
itive or negative. Positive values are interpreted as an anti-clockwise
motion around a circle with a radius equal to the magnitude as shown in
Table 4-10.

Table 4-11 shows how negative values for the phase argument are inter-
preted as a clockwise movement around a circle.

DSP Run-Time Library Reference

4-140 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

Re(c) = r*cos(θ)

Im(c) = r*sin(θ)

where θ is the phase; r is the magnitude

Domain

phase = [–4.3e7 ... 4.3e7] for polarf()

magnitude = –3.4 x 1038 ... +3.4 x 1038 for polarf()

phase = [–8.4331e8 ... 8.4331e8] for polard()

magnitude = –1.7 x 10308 to +1.7 x 10308 for polard()

Table 4-10. Positive Phases for polar_fr16

Phase Radians

 0.0 0

0.25(0x2000) π/2

0.50(0x4000) π

0.75(0x6000) 3/2π

0.999(0x7ff0) <2π

Table 4-11. Negative Phases for polar_fr16

Phase Radians

-0.25(0xe000) 3/2π

-0.50(0xc000) π

-0.75(0xa000) π/2

-1.00(0x8000) 2 π

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-141
for Blackfin Processors

DSP Run-Time Library

phase = [–1.0 ...+0.999969] for polar_fr16()

magnitude = [–1.0 ... 1.0) for polar_fr16()

DSP Run-Time Library Reference

4-142 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <complex.h>

#define PI 3.14159265

complex_fract16 point;

float phase_float;

fract16 phase_fr16;

fract16 mag_fr16;

phase_float = PI;

phase_fr16 = (phase_float / (2*PI)) * 32768.0;

mag_fr16 = 0x0200;

point = polar_fr16 (mag_fr16,phase_fr16);

/* point.re = 0xfe00 */

/* point.im = 0x0000 */

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-143
for Blackfin Processors

DSP Run-Time Library

rfft

N-point radix-2 real input FFT

Synopsis

#include <filter.h>

void rfft_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,
int fft_size,

int block_exponent,

int scale_method);

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-2 FFT. The function takes
advantage of the fact that the imaginary part of the input equals zero,
which in turn eliminates half of the multiplications in the butterfly.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. Memory bank collisions, which have an
adverse effect on run-time performance, may be avoided by allocating all
input and working buffers to different memory banks. If the input data
can be overwritten, the optimum memory usage can be achieved by also
specifying the input array as the output array, provided that the memory
size of the input array is at least 2*fft_size.

DSP Run-Time Library Reference

4-144 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The function
twidfftrad2_fr16 may be used to initialize the array. If the twiddle table
contains more factors than needed for a particular call on rfft_fr16, then
the stride factor has to be set appropriately; otherwise it should be set to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by dividing the input by
1/fft_size.

Algorithm

See “cfft” on page 4-66 for more information.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-145
for Blackfin Processors

DSP Run-Time Library

rfftrad4

N-point radix-4 real input FFT

Synopsis

#include <filter.h>

void rfftrad4_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-4 Fast Fourier Transform. The
rfftrad4_fr16 function takes advantage of the fact that the imaginary
part of the input equals zero, which in turn eliminates half of the multipli-
cations in the butterfly.

The size of the input array input, the output array out, and the temporary
working buffer temp is fft_size, where fft_size represents the number
of points in the FFT. To avoid potential data bank collisions, the input
and temporary buffers should reside in different memory banks. This
results in improved run-time performance. If the input data can be over-
written, the optimum memory usage can be achieved by also specifying
the input array as the output array, provided that the memory size of the
input array is at least 2*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 twiddle factors. The function
twidfftrad4_fr16 may be used to initialize the array. If the twiddle table

DSP Run-Time Library Reference

4-146 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

contains more factors than needed for a particular call on rfftrad4_fr16,
then the stride factor has to be set appropriately; otherwise it should be set
to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by dividing the input by
fft_size.

Algorithm

See “cfftrad4” on page 4-71 for more information.

Domain

Input sequence length fft_size must be a power of 4 and at least 16.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-147
for Blackfin Processors

DSP Run-Time Library

rfft2d

n x n point 2-D real input FFT

Synopsis

#include <filter.h>

void rfft2d_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function computes a two-dimensional Fast Fourier Transform of the
real input matrix input[fft_size][fft_size], and stores the result to the
complex output matrix output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. Improved run-time perfor-
mance can be achieved by allocating the input and temporary arrays in
separate memory banks; this avoids any memory bank collisions. If the
input data can be overwritten, the optimum memory usage can be
achieved by also specifying the input array as the output array, provided
that the memory size of the input array is at least 2*fft_size*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle coefficients. The function
twidfft2d_fr16 may be used to initialize the array. If the twiddle table

DSP Run-Time Library Reference

4-148 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

contains more coefficients than needed for a particular call on
rfft2d_fr16, then the stride factor has to be set appropriately; otherwise it
should be set to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function scales the output by fft_size*fft_size.

Algorithm

where i={0,1,...,n-1}; j={0,1,2,...,n-1}

Domain

Input sequence length fft_size must be a power of 2 and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,) * (* *) /= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-149
for Blackfin Processors

DSP Run-Time Library

rms

root mean square

Synopsis

#include <stats.h>

float rmsf(const float samples[],

int sample_length);

double rms(const double samples[],

int sample_length);

long double rmsd(const long double samples[],

int sample_length);

fract16 rms_fr16(const fract16 samples[],

int sample_length);

Description

These functions return the root mean square of the elements within the
input vector samples[]. The number of elements in the vector is
sample_length.

Algorithm

where a=samples; n=sample_length

c
a

n

i
i

n

= =

−

∑ 2

0

1

DSP Run-Time Library Reference

4-150 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

–3.4 x 1038 to +3.4 x 1038 for rmsf ()

–1.7 x 10308 to +1.7 x 10308 for rmsd ()

–1.0 to +1.0 for rms_fr16 ()

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-151
for Blackfin Processors

DSP Run-Time Library

rsqrt

reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float a);

double rsqrt (double a);
long double rsqrtd (long double a);

Description

These functions calculate the reciprocal of the square root of the number
a. If a is negative, the functions return 0.

Algorithm

Domain

 0.0 ... 3.4 x 1038 for rsqrtf ()

0.0 ... +1.7 x 10308 for rsqrtd ()

DSP Run-Time Library Reference

4-152 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftrad2

generate FFT twiddle factors for radix-2 FFT

Synopsis

#include <filter.h>

void twidfftrad2_fr16(complex_fract16 twiddle_table[],

int fft_size);

Description

This function calculates complex twiddle coefficients for a radix-2 FFT
with fft_size points and returns the coefficients in the vector
twiddle_table. The vector twiddle_table, known as the twiddle table, is
normally calculated once and is then passed to an FFT function as a sepa-
rate argument. The size of the table must be at least 1/2N, where N is the
number of points in the FFT.

FFTs of different sizes can be accommodated with the same twiddle table.
Simply allocate the table at the maximum size. Each FFT has an addi-
tional parameter, the “stride” of the twiddle table. To use the whole table,
specify a stride of 1. If the FFT uses only half the points of the largest
FFT, the stride should be 2 (this takes only every other element).

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients. The samples are:

where n=fft_size; k = {0, 1, 2, ..., n/2 - 1}

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

⎟
⎠
⎞

⎜
⎝
⎛−= k

n
kimtwid π2sin)(_

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-153
for Blackfin Processors

DSP Run-Time Library

Domain

The FFT length fft_size must be a power of 2 and at least 8.

DSP Run-Time Library Reference

4-154 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftrad4

generate FFT twiddle factors for radix-4 FFT

Synopsis

#include <filter.h>

void twidfftrad4_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfft_fr16(complex_fract16 twiddle_table[],

int fft_size);

Description

The twidfftrad4_fr16 function initializes a table with complex twiddle
factors for a radix-4 FFT. The number of points in the FFT are defined by
fft_size, and the coefficients are returned in the twiddle table
twiddle_table.

The size of the twiddle table must be at least 3*fft_size/4, the length of
the FFT input sequence. A table can accommodate several FFTs of differ-
ent sizes by allocating the table at maximum size, and then using the stride
argument of the FFT function to specify the step size through the table.

If the stride is set to 1, the FFT function uses all the table; if your FFT has
only a quarter of the number of points of the largest FFT, the stride
should be 4.

For efficiency, the twiddle table is normally generated once during pro-
gram initialization and is then supplied to the FFT routine as a separate
argument.

The twidfft_fr16 routine is provided as an alternative to the
twidfftrad4_fr16 routine and performs the same function.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-155
for Blackfin Processors

DSP Run-Time Library

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients.

The samples generated are:

where n=fft_size; k = {0, 1, 2, ..., ¾n - 1}

Domain

The FFT length fft_size must be a power of 4 and at least 16.

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

twid im k
n

k_ () sin= ⎛
⎝⎜

⎞
⎠⎟

2π

DSP Run-Time Library Reference

4-156 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftf_fr16

generate FFT twiddle factors for a fast FFT

Synopsis

#include <filter.h>

void twidfftf_fr16(complex_float twiddle_table[],

int fft_size);

Description

The twidfftf_fr16 function generates complex twiddle factors for the fast
radix-4 FFT function cfftf_fr16 (on page 4-154), and stores the coeffi-
cients in the vector twiddle_table. The vector twiddle_table, known as
the twiddle table, is normally calculated once and is then passed to the fast
FFT as a separate argument. The size of the table must be 3/4N, where N is
the number of points in the FFT.

The same twiddle table may be used to calculate FFTs of different sizes
provided that the table is generated for the largest FFT. Each FFT func-
tion has a stride parameter that the function uses to stride through the
twiddle table. Normally, this stride parameter is set to 1, but to generate a
smaller FFT, the argument should be scaled appropriately. For example, if
a twiddle table is generated for an FFT with N points, then the same twid-
dle table may be used to generate a N/4-point FFT, provided that the
stride parameter is set to 4, or a N/8-point FFT, if the parameter is set to
8.

The twiddle table generated by the twidfftf_fr16 function is not
compatible with the twiddle table generated by the
twidfftrad4_fr16 function (see on page 4-156).

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-157
for Blackfin Processors

DSP Run-Time Library

Algorithm

The function calculates a lookup table of complex twiddle factors. The
coefficients generated are:

where n=fft_size; k = {0, 1, 2, ..., 3/4n – 1}

Domain

The number of points in the FFT must be a power of 4 and must be at
least 16.

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

twid im k
n

k_ () sin= ⎛
⎝⎜

⎞
⎠⎟

2π

DSP Run-Time Library Reference

4-158 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfft2d

generate FFT twiddle factors for 2-D FFT

Synopsis

#include <filter.h>

void twidfft2d_fr16 (complex_fract16 twiddle_table[],

int fft_size);

Description

The twidfft2d_fr16 function generates complex twiddle factors for a 2-D
FFT. The size of the FFT input sequence is given by the argument
fft_size and the function writes the twiddle factors to the vector
twiddle_table, known as the twiddle table.

The size of the twiddle table must be at least fft_size, the number of
points in the FFT. Normally, the table is only calculated once and is then
passed to an FFT function as an argument. A twiddle table may be used to
generate several FFTs of different sizes by initializing the table for the
largest FFT and then using the stride argument of the FFT function to
specify the step size through the table. For example, to generate the largest
FFT, the stride is set to 1, and to generate an FFT of half this size the
stride is set to 2.

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-159
for Blackfin Processors

DSP Run-Time Library

The samples generated are:

where n=fft_size; k = {0, 1, 2, ..., n-1}

Domain

The FFT length fft_size must be a power of 2 and at least 16.

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

twid im k
n

k_ () sin= ⎛
⎝⎜

⎞
⎠⎟

2π

DSP Run-Time Library Reference

4-160 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

var

variance

Synopsis

#include <stats.h>

float varf(const float samples[],

int sample_length);

double var(const double samples[],

int sample_length);

long double vard(const long double samples[],

int sample_length);

fract16 var_fr16(const fract16 samples[],

int sample_length);

Description

These functions return the variance of the elements within the input vec-
tor samples[]. The number of elements in the vector is sample_length.

Error Conditions

The var_fr16 function can be used to compute the mean of up to 65535
input data with a value of 0x8000 before the sum ai saturates.

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-161
for Blackfin Processors

DSP Run-Time Library

Algorithm

where a=samples; n=sample_length

Domain

–3.4 x 1038 to +3.4 x 1038 for varf()

–1.7 x 10308 to +1.7 x 10308 for vard()

–1.0 to +1.0 for var_fr16()

c
n a a

n n

i
i

n

i
i

n

=
−

−
=

−

=

−

∑ ∑* ()

()

2

0

1

0

1
2

1

DSP Run-Time Library Reference

4-162 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

zero_cross

count zero crossings

Synopsis

#include <stats.h>

int zero_crossf (const float samples[],

int samples_length);

int zero_cross (const double samples[],

int samples_length);

int zero_crossd (const long double samples[],

int samples_length);

int zero_cross_fr16 (fract16 samples[],

int samples_length);

Description

The zero_cross functions return the number of times that a signal repre-
sented in the input array samples[] crosses over the zero line. If all the
input values are either positive or zero, or they are all either negative or
zero, then the functions return a zero.

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, this example gives you a basic understanding.

if (a(i) > 0 && a(i+1) < 0)|| (a(i) < 0 && a(i+1) > 0)

the number of zeros is increased by one

VisualDSP++ 4.5 C/C++ Compiler and Library Manual 4-163
for Blackfin Processors

DSP Run-Time Library

 Domain

–3.4 x 1038 to +3.4 x 1038 for zero_crossf ()

–1.7 x 10308 to +1.7 x 10308 for zero_crossd ()

–1.0 to +1.0 for zero_cross_fr16 ()

DSP Run-Time Library Reference

4-164 VisualDSP++ 4.5 C/C++ Compiler and Library Manual
for Blackfin Processors

	4 DSP Run-Time Library
	DSP Run-Time Library Guide
	Linking DSP Library Functions
	Working With Library Source Code
	Library Attributes
	DSP Header Files
	complex.h - Basic Complex Arithmetic Functions
	cycle_count.h - Basic Cycle Counting
	cycles.h - Cycle Counting with Statistics
	filter.h - Filters and Transformations
	math.h - Math Functions
	matrix.h - Matrix Functions
	stats.h - Statistical Functions
	vector.h - Vector Functions
	window.h - Window Generators

	Measuring Cycle Counts
	Basic Cycle Counting Facility
	Cycle Counting Facility with Statistics
	Using time.h to Measure Cycle Counts
	Determining the Processor Clock Rate
	Considerations when Measuring Cycle Counts

	DSP Run-Time Library Reference
	a_compress
	a_expand
	alog
	alog10
	arg
	autocoh
	autocorr
	cabs
	cadd
	cartesian
	cdiv
	cexp
	cfft
	cfftf
	cfftrad4
	cfft2d
	cfir
	clip
	cmlt
	coeff_iirdf1
	conj
	convolve
	conv2d
	conv2d3x3
	copysign
	cot
	countones
	crosscoh
	crosscorr
	csub
	fir
	fir_decima
	fir_interp
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	ifft
	ifftrad4
	ifft2d
	iir
	iirdf1
	max
	mean
	min
	mu_compress
	mu_expand
	norm
	polar
	rfft
	rfftrad4
	rfft2d
	rms
	rsqrt
	twidfftrad2
	twidfftrad4
	twidfftf_fr16
	twidfft2d
	var
	zero_cross

