
Debug-56K

Debugger for the Motorola Digital Signal Processors

A Product of Domain Technologies, Inc.

2 Debug-56K User Manual

Debug-56K User�s Guide, Version 3.00
January 13, 1998

DSPs supported by this software:
DSP560xx
DSP561xx
DSP563xx
DSP566xx
DSP568xx
MC68356 (DSP side)

Trademarks:
IBM PC, XT, AT are trademarks of International Business
Machines Corporation.
OnCE is a trademark of Motorola, Inc.
Windows, Microsoft Windows, and Windows 95 are trademarks of Microsoft Inc.

Domain Technologies, Inc.
1700 Alma Dr., Suite 495
Plano, Texas 75075
Tel.: (972) 578-1121
Fax: (972) 578-1086
E-mail: support@domaintec.com
Web page: http://www.domaintec.com

Disclaimer of Warranty

This software package is provided on an �AS IS� basis and without warranty. In no event shall Domain

Technologies be liable for incidental or consequential damages arising from the use of this software.

This disclaimer of warranty extends to LICENSEE, to LICENSEE�s customers or users of products and

is in lieu of all warranties whether expressed, implied, or statutory, including implied warranties of

merchantability or fitness for a particular purpose. Domain Technologies does not warrant that software

furnished hereunder is free of infringement of any third party patents, copyrights, or trade secrets.

TABLE OF CONTENTS

CHAPTER 1 - GENERAL INFORMATION 7

1.1 - Introduction . 7

1.2 - Introduction to this Manual. 7

1.3 - Debuggers� Features . 7

1.4 - Installation of the Debugger Software 7

1.5 - Command Line Parameters . 8

CHAPTER 2 - TUTORIAL . 9

2.1 - Start Debug-56K . 9

2.2 - Observe the Data Window . 9

2.3 - Observe the Unassemble Window 9

2.4 - Observe the Registers Window 10

2.5 - Observe the Command Window 10

2.6 - Move Around the Screen . 10

2.7 - Change Memory . 10

2.8 - Load the Assembly Language Program 10

2.9 - Run the DSP Program . 10

2.10 - Stop the DSP . 11

2.11 - Do Single Step . 11

2.12 - Do Continuous Step . 11

2.13 - Do Multiple instructions . 11

2.14 - Set a Breakpoint . 11

2.15 - Remove the Breakpoint . 12

2.16 - Change the Radix of the Data Window 12

2.17 - Open More Data Windows . 12

2.18 - Graphics . 12

2.19 - Change a Register Value . 12

2.20 - Display the Symbols . 13

2.21 - Use the Symbols Window . 13

2.22 - Use the Symbols from the Command Window 13

2.23 - Try the Evaluator . 13

2.24 - Set Watches. 13

2.25 - Get Help . 14

2.26 - Get Command Sensitive Help 14

2.27 - Edit Commands in the Command Window 14

2.28 - Open More Windows . 14

2.29 - Exit Debug-56K . 14

2.30 - Debug a C program . 15

C
O

N
T
E
N

T
S

CHAPTER 3 - USING THE DEBUGGER 17

3.1 - About This Chapter . 17

3.2 - Command Line Parameters . 17

3.3 - Description of the pull-down menus 18

3.4 - Description of the Tool-bar . 24

3.5 Description of the Resource Windows 27

3.6 - Status/Help Line . 31

3.7 - Function Keys . 31

3.9 - Source Level Debugging . 34

3.10 - Debugging C Software . 34

3.11 - Macro Commands . 35

3.12 - Editing inside a Resource Window 35

CHAPTER 4 - COMMANDS . 37

4.1 - Command Entry . 37

4.2 - Command Help . 37

4.3 - Command Entry Rules . 37

4.4 - Command Help Rules . 38

4.5 - Command Editor . 38

4.6 - Macro Commands . 39

4.7 - List of Commands . 41

ALIAS. 43

ASSEMBLE . 44

BREAK . 45

CFORCE . 49

CHANGE . 50

CONFIG . 51

COPY. 52

DISSASEMBLE. 53

DISPLAY . 54

EMI . 55

EVALUATE . 56

FORCE . 57

GO . 58

HELP . 59

INPUT . 60

JUMP . 63

LOAD . 64C
O

N
T
E
N

T
S

LOG . 65

OUTPUT . 66

PATH . 69

QUIT . 70

RADIX . 71

REFRESH . 72

RETURN . 73

SAVE . 74

STEP . 75

SYMBOL . 76

TIME . 77

TRACE . 78

UNALIAS . 79

UNASSEMBLE . 80

USE. 81

VARIABLE . 82

VERSION. 83

VIEW . 84

WAIT . 85

WATCH. 86

? . 87

C
O

N
T
E
N

T
S

6 Debug-56K User Manual

CHAPTER 1 - GENERAL INFORMATION

1.1 - Introduction

Debug-56K is a debugger for the MotorolaTM 16 and 24 bit Digital Signal Processors. This product
and this manual can be used with any of Motorola�s 16-bit and 24-bit DSPs.

1.2 - Introduction to this Manual

This manual covers the functionality of Debug-56K with any of Motorola�s 16 and 24 bit DSP, the
examples and the commands provided are specific to the 24-bit DSP56002 DSP. A tutorial chapter
walks the user through the majority of the features provided by the debugger.

Debug-56K is a hardware independent debugger designed to run on more than one hardware
platform. A separate manual describing the specific hardware platform is provided along with this
manual.

1.3 - Debuggers’ Features

Source level C, assembly, and mixed debugging
On-screen editing
Built-in assembler/disassembler
Multiple memory display modes
Graphic display of memory
Up to 10 data windows
Up to 128 software breakpoints
True real-time hardware breakpoint
Tool-bar for speedy debugging
User definable buttons
Dedicated window for symbols
Adjustable font sizes

1.4 - Installation of the Debugger Software

To install the software do the following:

Debug-56K User Manual 7

General Information

1

1. Insert diskette in the floppy drive and execute INSTALL.EXE.

2. Select the destination directory if different from the default directory.

3. Read the README.TXT file if you are installing the debugger for the first time. The
README.TXT file provides information not available in this manual.

1.5 - Command Line Parameters

You may need to set one or more command line parameters before executing the debugger to define
the debugger�s mode of operation. The command line parameters are set in the program properties
window. The following is a list of the debugger�s command line parameters.

-H Help, list the command line parameters

-Q Disable sorting of the symbol tables

-D Set the debugger in demonstration mode

-I Initialize to the default screen settings

-G Specify a screen configuration file name

-F Do not strip leading �F� from the symbols

-Sx Set the stack memory space

-Pn Set the base port address of the PC card.

-Kn Set the multiplier of the DSP�s Phase Locked Loops (PLL)

-Cn Set the RS-232 port number (C1, C2, C3, ...)

-Vn Specify the target DSP

A detailed description of the command line parameters is provided in Chapter 3.

8 Debug-56K User Manual

General Information

1

CHAPTER 2 - TUTORIAL

This chapter will guide you through most of Debug-56K. The tutorial uses the DSP demonstration
programs supplied with this software.

2.1 - Start Debug-56K

Invoke Debug-56K with the -I command line options, -I stands for initial screen settings.
After invoking Debug-56K the screen becomes divided into four windows: the command window, the
unassemble window, the data, and the registers window.
The pull-down menus and the tool-bar appear at the top of the screen, the status line is the last line of
the screen. The command window is now the window selected, this means that key strokes will be
placed inside the command window.

2.2 - Observe the Data Window

The data window is used to display DSP data. The upper border of the data window has 3 elements:

1. The window name (Data)

2. The radix of the window (HEX for hexadecimal)

3. The label or the address of the first element inside the window. This field is currently
empty because no label is available.

Inside the window, the left most column is the address space (X, Y, P, or L), followed by the address
(in HEX). The body of the window is the data.

2.3 - Observe the Unassemble Window

The unassemble window is used to display the DSP program. The upper border of the unassemble
window has 3 elements:

1. The window name

2. The program display mode (ASM for reverse assembly)

3. The name of the source file. This applies when the unassemble
window is placed in the source mode or the mixed mode.

Debug-56K User Manual 9

Tutorial

2

2.4 - Observe the Registers Window

The registers window displays the DSP�s internal registers. The radix is displayed on the upper border
of the window. The DALU (Data Arithmetic-Logic Unit) registers are displayed either as a whole
registers or as separate sub-registers. All the registers are displayed in hexadecimal. Registers A, B,
X, and Y can be displayed hex, dec, fra.

2.5 - Observe the Command Window

The command window is used to enter commands. The radix [HEX] means that numbers entered with
commands are treated as hexadecimal numbers.

2.6 - Move Around the Screen

Click inside the data window, this will select the data window, now use the cursor control keys or the
mouse to move the cursor inside the data window. Select the unassemble window, select the
registers window, select the command window.

2.7 - Change Memory

There are two basic ways to change a value: You can either use the CHANGE command from the
command window, or do on-screen editing. To use the CHANGE command, select the command
window then enter the following at the prompt:
CHANGE X:0 $123456 - This changes data memory location 0 to 123456 hex.
To do on-screen editing, select the data window, move the editing cursor to memory location 0 and
type
654321 - This will change memory location at address 0 to 654321 hexadecimal.

2.8 - Load the Assembly Language Program

If you are using a 16-bit DSP load the program DEMO1_16.CLD. If you are using a 24-BIT DSP then
load the programDEMO1_24.CLD. Youmay load the program by using the File pull downmenu or by
using the LOAD command.

2.9 - Run the DSP Program

Run the DSP by clicking on the GO button (Green arrow picture). You can also run the DSP by
entering the GO command from the command window or by pressing function key F5.
Enable the automatic screen update mode by clicking on the update button (DSP package picture). In
this mode the DSP is interrupted regularly to refresh the screen.

10 Debug-56K User Manual

Tutorial

2

2.10 - Stop the DSP

Stop the DSP by clicking on the stop button (Stop sign picture). You can also use the FORCE Break
command from the command window or the function key Shift-F5 to stop the DSP.

2.11 - Do Single Step

Make sure the DSP is in stop mode, then perform a single step by clicking on the single step button
(magnifier with steps picture). You can also use the STEP command or F8 to perform a single step.

2.12 - Do Continuous Step

No button is available for continuous step, use the
Cont step pull-down menu to put the DSP in the continuous step mode. The continuous step mode
performs repeated single steps, with a full screen refresh after every instruction.

2.13 - Do Multiple instructions

Stop the DSP. Execute the command STEP 9. This will cause the DSP to execute 9 instructions
without any interruption. After the 9th instructions, the DSP is stopped and the screen is updated.

2.14 - Set a Breakpoint

Set a breakpoint, you can set the breakpoint in one of three ways:

1. Place the cursor at the instruction in the unassamble window and
<double-click-left-mouse-button>.

2. Use the BREAK command from the command window.

3. Place the cursor at instruction and press function key F9.

Run the DSP with the breakpoint set. The DSP runs and then stops when the program counter
reaches the instruction with the breakpoint.

Debug-56K User Manual 11

Tutorial

2

2.15 - Remove the Breakpoint

Remove the breakpoint that was set previously, you can remove the breakpoint in one of four ways:

1. Place the cursor at the instruction with a breakpoint and <double-click-LMB>

2. Use the BREAK command from the command window.

3. Place the cursor at the instruction with the breakpoint and press function key F9.

4. Use the pull-down menu (Breakpoint, Display, Delete) or (Breakpoint, Clear).

2.16 - Change the Radix of the Data Window

Select the data window and then click on the type button (Capital T picture), this will change the radix
of the data window. Change the radix of the data window again by clicking on the type button
repeatedly. You may also use F2 to change the radix.

2.17 - Open More Data Windows

Debug-56K allows the user to have up to 10 data windows opened simultaneously. One data window
is open at this point, open a new data window by clicking on <View, Data> from the pull-downmenu.

2.18 - Graphics

To display a block of memory graphically, first select a data window, then click on the graphics button
(sine wave picture). The graphics button is placed on the tool-bar only when the data window is
selected.

2.19 - Change a Register Value

You can change a register value in one of two ways:

1. Use the change command

2. On-screen editing

12 Debug-56K User Manual

Tutorial

2

2.20 - Display the Symbols

Stop the DSP, load the DSP program again if necessary. Use the pull-down menu mbol, Display to
display the program�s symbols. You can also display the symbols by executing the SYMBOL
command.

2.21 - Use the Symbols Window

From the symbols window, you may select a symbol and then perform a function on the selected
symbol.

Set a breakpoint at LOOP by selecting the symbol LOOP and then clicking on the BREAK button.

Place VALUE_A0 in the watch window by selecting the symbol VALUE_A0 and then clicking on the
Watch button.

2.22 - Use the Symbols from the Command Window

Select the command window, perform the following commands:

CHANGE VALUE_A0 $1234

COPY VALUE_A0 VALUE_A1

WATCH VALUE_A0

2.23 - Try the Evaluator

Select the command window, perform the following commands:

? VALUE_A0 + VALUE_A1 + VALUE_A2

EVALUATE R0 = $100 + $126

2.24 - Set Watches

Select the command window, perform the following commands:

WATCH R0

Debug-56K User Manual 13

Tutorial

2

WATCH VALUE_A0

WATCH X:0

2.25 - Get Help

Debug-56K under Microsoft Windows has extensive built-in help. Press the function key F1 or use the
pull-down menu (Help) to get help.

2.26 - Get Command Sensitive Help

In the command window type COPY followed by a space. This will display help on the COPY
command in the help line.

2.27 - Edit Commands in the Command Window

The command window has a built-in history buffer to remember previously entered commands. Use
the cursor control keys or the mouse to scroll through past commands.

2.28 - Open More Windows

Open the Flags Window. The flags window displays the status register�s flags in a binary format

Open the Watch Window. The Watch Window displays user-defined watch variables.

2.29 - Exit Debug-56K

Use the pull-down menu <File, Quit> to exit from Debug-56K. You can also use QUIT command to
exit from Debug-56K. The screen configuration is saved automatically.

14 Debug-56K User Manual

Tutorial

2

2.30 - Debug a C program

If you are using a 16-bit DSP load the program DEMO2_16.CLD. If you are using a 24-BIT DSP then
load the program DEMO2_24.CLD. Experiment with the following:

- Set a breakpoint on a C line
- Run the C program
- Single step the C program
- Display program in the reverse assembly mode
- Display program in source mode
- Display program in the mixed mode
- Set in automatic screen update mode and run DSP
- Display the symbols
- Examine memory at the sine waves
- Display the sine waves graphically
- Open the watch window
- Place an array in the watch window
- Place a data structure in the watch window
- Zoom the data structure
- Open the local variables window
- Single step and examine the contents of the local variables window

Debug-56K User Manual 15

Tutorial

2

16 Debug-56K User Manual

Tutorial

2

CHAPTER 3 - USING THE DEBUGGER

3.1 - About This Chapter

This chapter provides a description of the debugger user interface. Commands are described in
Chapter 4.

3.2 - Command Line Parameters

Command line parameters are used to control the debugger�s mode of operation. These parameters
are set by using the Microsoft Windows program properties window before the debugger is executed.
The following is a description of the command line parameters.

-h description of all command line parameters

-q Disable sorting of the symbol table (normally the debugger automatically sorts the
symbol table).

-d Set the debugger in demonstration mode (no target hardware is present). In this
mode the DSP memory is simulated on the PC. DSP code may be loaded in the
demonstration mode but the code may not be executed.

-l Initialize screen settings to the default settings. If -I is omitted, the screen settings are
read from the file DBG56KW.CFG.

-g Specify a screen configuration file name (default:DBG56KW.CFG). This feature
allows the user to have multiple screen configuration files.

-f Instructs the debugger not to strip the leading �F� from the symbols when the symbols
are loaded from the symbols table.

-sx Set the stack memory space to l, x, or y. Default is -sy for 24-bit DSPs. Default is -sx
for 24-bit DSPs.

-pn Set the base port address of the PC card. This parameter is applicable only when the
target DSP is on a card residing inside the PC chassis. The default base port address
is set to -P240.

-kn Set the multiplier of the DSP�s phase locked loops. This is applicable for the
DSP56002 only.

-cn Set the RS-232 port (c1, c2, c3, ...). If this parameter is omitted, the debugger scans
all the RS-232 ports to find the attached hardware. This parameter is applicable only
when the PC�s serial port is used to control the DSP.

Debug-56K User Manual 17

Using the Debugger

3

-vn Specify the target DSP. The following are the options available:
-v1 for DSP56001 and DSP56002
-v2 for DSP56004 and DSP56007
-v3 for DSP56003 and DSP56005
-v4 for DSP56156-v5 for DSP56166
-v6 for DSP56301
-v7 for DSP56303
-v8 for DSP56603

No parameter is needed for the DSP568xx processors.

Example

C:\DBG56K\DBG56K.EXE -d -I
Run Debug-56K in demonstration mode, default screen settings.

3.3 - Description of the pull-down menus

The pull-down menus are used to perform a wide range of commands, functions, and settings. The
following is a description of the Debug-56K pull-down menus and options.

3.3.1 - File Menu

Load Load a DSP file into the target DSP memory. The DSP memory can be
internal or external to the DSP. The memory space can be X, Y or P. The
file formats supported are OMF, COFF, and IEEE-695. Load also loads the
symbols for symbolic debugging and source file line information for source
level debugging.
To make source level debugging and symbolic debugging possible, the -g
switch must be specified when executing the compilation tools. The load
files have the following extensions:
.LODOMF files.
.CLDCOFF files.
.ABSIEEE-695 files.
The symbols are sorted automatically by the debugger, unless specified
otherwise by the -q command line parameter. The leading �F� is stripped
from the symbols unless otherwise specified by the -f command line
parameter.
debugger automatically resets the DSP upon load unless otherwise
specified by the pull down menu <Config, Reset On Load>.

18 Debug-56K User Manual

Using the Debugger

3

Open Module Open a source code module. This opens the selected source code module
and places it in the unassemble window. Opening a source code module is
applicable in source level debugging only.

View Place an ASCII file in the view window; this is helpful when the user needs to
browse a text file. The file being viewed can not be edited.

Exit Exit Debug-56K. The screen configuration is saved automatically and The
DSP�s state is left intact upon exit. Source line information and symbolic
information is lost upon exit.

Files List List of most recently loaded files. A single click on a file name automatically
loads the file to the DSP. The list is empty if no files have been previously
loaded.

3.3.2 - View Menu

Cache Open the cache window. The cache window can be opened only when the
DSP being used has internal program cache.

Calls Open the calls history window. The calls window can be opened when C
programs are debugged at the source level.

Cmd Open the command window.

Data Open a data window. Up to 10 data windows may be opened
simultaneously.

DMA Open the DMA status window. The DSP window can be opened only when
the DSP being used has an internal DMA controller.

Flags Open the flags window.

I/O Open the peripheral registers window.

Local Open the C local variables window.

Once Open the OnCE registers window.

Reg Open the ALU registers window.

Debug-56K User Manual 19

Using the Debugger

3

Stack Open the stack window.

Trace Open the trace window. The tracw window can be opened only when the
DSP being used has an internal trace buffer.

Unasm Open the unassemble window.

View Open the ASCII file view window. This window stays empty until an ASCII
file is viewed. If a view window is closed and then reopened, the previously
viewed ASCII is automatically placed in the view window. A file placed in the
view window may not be edited.

Watch Open the variable watch window. The watch window remains empty until
variables are placed in it. If a watch window is closed and then reopened,
the previously watched variables are automatically placed in the watch
window.

3.3.3 - Run Menu

Run Run the DSP from program counter value.

Stop Stop the DSP.

Step Perform a single step.

Jump Perform a Jump. Jump is similar to single step, except subroutine calls are
treated as one instruction.

Cont Step Step continuously.

Cont Jump Jump continuously. In this mode subroutine calls are treated as one
instruction.

Update Toggle the automatic screen update mode. If the DSP is started while the
debugger is in the automatic update mode, the debugger�s screen is
updated continuously.

Reset Reset the DSP.

20 Debug-56K User Manual

Using the Debugger

3

3.3.4 - Symbols Menu

Display Display the symbols in the symbols window. When the symbols are
displayed, a symbol can be selected and then a function can be applied to it.
The following are the functions that can be performed on a symbol:

Button: Description:
Unassemble Unassemble memory at symbol
Display Display memory at symbol
Watch Watch at symbol
Go To Run the DSP to instruction
Break Toggle a breakpoint at symbol
Close Close the symbol window

Clear Clear all the symbols. This will put the debugger in the non-symbolic mode
of operation.

Load Load symbols from a program file, all the DSP memory and resources are
left intact.

Load On Start If this flag is set, the symbols are loaded automatically when Debug-56K is
started.

Files List List of most recently loaded files.

3.3.5 - Breakpoint Menu

Display Display all the breakpoints set. A breakpoint can be selected and then
cleared. The close button closes the breakpoint window.

Clear Clear all breakpoints.

Load Load breakpoints from a breakpoint file. The breakpoint file is independent
of the source and load files. The file name extension for breakpoint files is
.BRK.

Save Save breakpoints into a breakpoint file. The breakpoint file is independent of
the source and load files. The file name extension for breakpoint files is
.BRK.

Hard Break Set a hardware breakpoint.

Debug-56K User Manual 21

Using the Debugger

3

3.3.6 - Config Menu

Case Sens Case sensitivity on/off. This feature is especially helpful when working with
programs with a large set of symbols. If off, case sensitivity is ignored by the
debugger. Example: MAIN() will be treated as main().

Colors Set the windows colors. The colors of individual windows are changed
independently or in a group. After being set, the windows colors are saved
automatically upon exit from Debug-56K.

Font Set the screen font.

Comm baud Set the baud rate. This is applicable when the PC controls the DSP through
an RS-232 port.

CommandWin Options and settings for the command window. The following are the
Command Window�s sub-menus:

Clear History: Clear the history buffer
History Size: Set the size of the history buffer
Save Commands: Save the commands to a file
Save History: Save the history buffer to a file
Set Prompt: Set the command line prompt

I/O Port Set the PC card�s I/O base address. This setting is applicable when the
debugger is interfacing with the DSP through the DSP�s host port.

Quick menu Configure the tool-bar. The tool-bar may be placed vertically, horizontally, it
may be placed in the large or small format. The tool-bar may also be
removed from the screen.

Refresh rate Set theminimum automatic screen refresh rate. This sets the screen refresh
rate when the DSP is running in the automatic screen refresh mode. The
refresh rate also depends on other factors including the number of data
windows opened, the size of the data windows, the speed of the host
computer, and the speed of the serial link.

Reset on load Reset the DSP before a load. In the default mode, the DSP is not reset
before a load.

Reset on start In the normal mode, when Debug-56K is invoked, the DSP is reset
automatically. If this switch is turned off, the DSP is kept in it�s current state
after invoking Debug-56K.

22 Debug-56K User Manual

Using the Debugger

3

Reverse ASCII When on, bytes are swapped before they are displayed in an ASCII data
window.

Tab size Set the tab size. The tab size value is used to translate a tab into the
specified number of spaces. The tab size affects the view window only.

Verify Memory If this flag is set, all memory writes by the debugger to the DSP are verified.

3.3.7 - Window Menu

Cascade Place the resource windows in cascade.

Tile Tile the resource windows.

Horizontal Tile the resource windows horizontally.

Vertical Tile the resource windows vertically.

Arrange icons Arrange the resource windows icons.

Close all Close all the opened resource windows.

Windows List List of all the opened resource windows.

3.3.8 - Help Menu

Index Get the help index.

Topic search Search help for a topic.

Using help How to use the help.

About Information about Debug-56K.

3.4 - Description of the Tool-bar

Debug-56K User Manual 23

Using the Debugger

3

The Tool-bar provides a quick and convenient way to enter many of the most often used commands.
The following is a detailed description of the Tool-bar buttons.

3.4.1 - Go Button

Run the DSP from the program counter. The GO command and the pull-down
menu can also be also used to run the DSP from the program counter.

3.4.2 - Stop Button

Stop the DSP. The FORCE B command and the pull-down menu can also be
used to stop the DSP. The debugger�s screen is refreshed after the stop is
completed.

3.4.3 - Step Button

Single step, this executes a single DSP instruction. The STEP command and
the pull-down menu can also be used to perform a single step. The
debugger�s screen is refreshed after the step.

3.4.4 - Jump Button

Perform a Jump. JUMP is similar to STEP, except that a subroutine call is
treated as one instruction. The JUMP command and the pull-down menu can
also be used to perform a jump. The debugger�s screen is refreshed after the
jump.

24 Debug-56K User Manual

Using the Debugger

3

3.4.5 - Automatic Update Button

Toggle the automatic screen update mode (on/off). In the automatic screen
update mode, and when the DSP is running, the DSP is interrupted periodically
to update the data windows and the registers window.Other resource windows
are not updated. The CONFIG command and the pull-down menu can also be
used to toggle the automatic update mode.

3.4.6- Reset DSP Button

Reset the DSP. The FORCE R command and the pull-down menu can also be
used to reset the DSP.The debugger�s screen is refreshed after the reset.

3.4.7 - Radix Button

Change the radix of the selected window. This button can be used to change
the radix of a data window, the registers window, or the command window. The
button is not displayed if other windows are selected. The radix of the window is
displayed on the upper border of that window. The RADIX command can also
be used to change the radix of the command window. Following are the
available radices:

Data windows: Hex, Dec, Fra, Asc, Bin

Graphical Data windows: Hex, Dec, Fra

Registers window: Hex, Dec, Fra

Command window: Hex, Dec, Fra, Bin

Flags window: Bin

All other windows: Hex

The radix of the registers window affects the display of registers X, X0, X1, Y, Y0, Y1, A, B only, All
other registers in the registers window are always displayed and edited in Hex.

The RADIX command may also be used to change the default radix of the command window.

Debug-56K User Manual 25

Using the Debugger

3

3.4.8 - Graph Button

The graph button is used to display the selected data window graphically. A
graph may be scrolled, scaled, sized, and moved. The Up/Down arrow keys
are used to change the vertical graph scaling. A graph can have a hex, dec, or
fra radix. One or more data windows can be displayed graphically. The graph
button is placed on the screen only when a data window is selected. The
DISPLAY command may also be used to toggle the graphics mode (on/off).

3.4.9 - Reverse Assembly Mode Button

Put the unassemble window in the reverse assembly mode. In the unassemble
mode, the DSP�s memory is reverse assembled and then placed in the
unassemble window. The reverse assembly mode button is placed on the
screen only if the unassemble window is the window selected. The
UNASSEMBLE command may also be used to change the display mode.
On-screen editing of the DSP code is permitted in this mode.

3.4.10 - Source Mode Button

Put the unassemble window in the source mode. In this mode the DSP code is
read from the source text file and then placed in the unassemble window. The
sourcemode button is placed on the screen only when the unassemble window
is selected. If the source line information is not found by the debugger this
button is not displayed. The UNASSEMBLE command may also be used to
change the display mode. On-screen editing of the DSP program is not
permitted in the source mode.

26 Debug-56K User Manual

Using the Debugger

3

3.4.11 - Mixed Mode Button

3.5 Description of the Resource Windows

3.5.1 - The Cache Window

The cache window is used to display the DSP�s instruction cache registers. This window is applicable
only for DSPs with internal instruction cache.

Tag registers TAG0 to TAG 7 with their respective RLU and LOCK bits are displayed in the cache
window. The tag registers are displayed in hexadecimal, the RLU and LOCK bits are displayed in
binary. The cache registers window is organized into the following columns:

TAG# 24-bit Tag register RLU bit LOCK bit

3.5.2 - The Calls Window

The calls window displays the calls history for C function. The contents of the calls window are
updated automatically when a subroutine is called or when a subroutine is returned from. The calls
window is applicable only for C source level debugging.

3.5.3 - The Command Window

The command window is used to enter commands. Commands are entered at the prompt when the
command window is selected.

A history buffer is built into the command window, a past command may be executed or edited prior to
execution. The user may use themouse or the keyboard�s cursor movement keys to scroll through the
history buffer.

An editor is built into the command window. The user may use the mouse or the keyboard�s cursor
movement keys to edit a command.

The valid radices for the command window are Hex, Dec, Bin, and Fra. The radix of the command
window may be changed with the RADIX command or by pressing the T button of the tool-bar.

Debug-56K User Manual 27

Using the Debugger

3

Put the unassemble window in the mixed mode. In the mixed mode, reverse
assembly and source instructions are interlaced in the unassemble window. The
mixed mode button is displayed on the screen only when an unassemble window is
selected. If the source line information is not found by the debugger this button is not
displayed. The UNASSEMBLE command may also be used to change the
displayed mode. On-screen editing of the DSP program is not permitted in the
mixed mode.

The pull down menu (config, command) provides a number of functions to program the command
window.

Refer to the description of the pull-down menus and to Chapter 4 for further description of the
command window.

3.5.4 - The Data Window(s)

Data windows are used to display DSP memory. Up to 10 data windows may be opened
simultaneously. X: Y: P: or L: memory may be displayed and edited in a data window. Internal as well
as external memory may be displayed in a data window.

The left hand side of a data window is the address column, always in Hex. The upper border of the
window has the window name, the radix, and the symbolic location of the first address inside the
window (if a symbol exists). The body of the window has the values of the memory locations.

A data window may be displayed and edited in Hex, Dec, Fra, Bin, and ASCII. A data window may be
displayed graphically in Hex, Dec, and Fra. The data and the address may be edited on-screen.

3.5.5 - The DMA Window

The DMA window displays registers specific to the DMA controllers. This window is applicable only to
DSPs with internal DMA controllers.

3.5.6 - The Flags Window

The flags window is used to display and edit the DSP�s status registers in binary format. Although the
status register in the registers window provides the same information, the flags window provides a
convenient way to read and edit individual flags.

3.5.7 - The I/O Window

The I/O Peripherals window is used to display and edit the DSP�s I/O peripheral registers.
Non-readable registers are not displayed. Non-writable registers can not be edited. Registers that
change the DSP�s status when read are not displayed. All values are displayed and edited in Hex.

28 Debug-56K User Manual

Using the Debugger

3

3.5.8 - The Local Variables Window

The local variables window is used to display the C local variables. The C local variables are placed
and removed automatically by the debugger. The local variables window is applicable only in C
source level debugging.

3.5.9 - The OnCE Window

The OnCE window is used to display the OnCE port registers. The values are displayed in
hexadecimal.

3.5.10 - The Registers Window

The registers window is used to display and edit the DSP�s internal registers. Registers X, X0, X1, Y,
Y0, Y1, A and B can be displayed and edited in Fra, Dec, or Hex. All other registers are displayed and
edited only in Hex.

3.5.11 - The Stack Window

The stack window is used to display and edit the stack. The stack values are displayed and edited in
Hex.

3.5.12 - The Trace Window

The trace window is used to display the instruction discontinuity trace buffer. The trace window is
applicable only for DSPs with an internal instruction discontinuity trace buffer.

3.5.13 - The Unassemble Window(s)

The Unassemble window is used to display and edit the DSP programs. The unassemble window can
be displayed in one of three modes:

Mode: Description:
ASM Program displayed in reverse assembly mode.
SRC Program displayed in source mode.
MIX Program displayed in mixed mode (reverse assembly

and source)

The source program must be compiled, assembled, and linked with he -g switch in order for the SRC
and the MIX modes to function. On-screen editing is valid in the ASMmode. The unassembe window
is organized into the following columns, described from left to right.

Debug-56K User Manual 29

Using the Debugger

3

Column: Description:
Breakpoint type: Breakpoint type, or blank if a breakpoint is not set at that

instruction.
Address: Memory space indicator followed by the address. X or P

memory may be placed in the unassemble window.
Opcode: Opcode of the instruction, displayed in Hex.
Second opcode: Second word of a two word instruction, displayed in Hex.
Mnemonic: The DSP instruction
Breakpoint #: Breakpoint number (0 to 128), or blank if a breakpoint is

not set at that instruction.

3.5.14 - The View Window

The view window is used to display ASCII text files. Use the pull-downmenu <view, view> to open the
view window.
Use the pull down menu <file, view> or the VIEW command to place a text file in the view window.
Editing of the text file is not allowed inside the view window.

3.5.15 - The Watch Window

The watch window is used to conveniently group variables for examination and editing. A memory
location, a register, or a data structure may be placed in the watch window. Watched variables can be
displayed in Hex, Dec, Bin, or Fra. A variable may be placed in the watch window by using one of the
following three techniques:

1. Use the WATCH command

2. Use the symbols window

3. Place the cursor in the watch window and press the insert key.

A variable may be removed from the watch window by using one of the following two techniques:

1. Use the WATCH command

2. Place the cursor in the watch window on the variable to remove and press the delete
key.

Variables placed in the watch window may be edited. To edit a watch variable place the cursor in the
watch window, on the variable to edit, then press the space bar or the right mouse button.

Arrays and data structures placed in the watch window may be expanded and compressed. To
expand or compress a data structure or an array, place the cursor on the name and double click the
left mouse button, or press enter key, right mouse key, or the space key.

30 Debug-56K User Manual

Using the Debugger

3

Information on the WATCH command is provided in Chapter 4.

3.6 - Status/Help Line

The last line of the display is the Status/Help line. The status/help line is used to display the following:

1. The DSP�s program counter value

2. Command sensitive help when a command is being entered

3. List of all available commands when the command window is selected and the space
bar is pressed.

3.7 - Function Keys

The keyboard�s function keys provide the user with a convenient way to perform some of the most
frequently used commands. Function key usage is optional since the tool bar and the pull-down
menus provide the same functionality. The following is a description of the function keys.

3.7.1- F1 - Help

F1 displays help.

3.7.2 - F2 - Toggle Radix or Display Mode

For the data windows, the registers window, and the command window, function key F2 toggles the
radix. For the unassemble window, function key F2 toggles the program display mode. F2 has no
affect on all other window. The specific window must be selected before using F2.

3.7.3 - F3 - Display Data Graphically

F3 toggles the graphic display of a data window (on/off). F3 has no affect on all other windows. A
data window must be selected before pressing F3.

Debug-56K User Manual 31

Using the Debugger

3

3.7.4 - F5 - Go

F5 starts the DSP from the current program counter.

3.7.5 - Shift-F5 - Stop

Shift-F5 stops the DSP.

3.7.6 - F6 - Select Next Window

F6 selects the next window. The current window is deselected and the next window is selected. The
opened windows are numbered in a logical order.

3.7.7 - Shift-F6 - Automatic Screen Update

Shift-F6 toggles the automatic screen update mode (on/off). In the automatic screen update mode,
when the DSP is started, the DSP is interrupted periodically to refresh the data and the registers
windows.

3.7.8 - F7 - Go to Cursor

F7 causes the execution of the DSP program until the program counter reaches the instruction at the
cursor. The unassemble window must be selected before pressing F7.

3.7.9 - F8 - Single Step

F8 causes a single DSP instruction to be executed.

3.7.10 - Shift-F8 - Run in Continuous Step

Shift-F8 toggles the continuous step mode (on/off). This runs the DSP with a complete screen refresh
after every DSP instruction. The speed of execution depends on the number of windows opened, the
speed of the PC, the speed of the link between the PC and the DSP, and the speed of the target
hardware.

3.7.11 - F9 - Toggle a Breakpoint

When the unassemble window is selected, F9 sets/clears a breakpoint. To set a breakpoint with F9
move the cursor to the DSP instruction of choice and press F9. To remove the breakpoint with F9
move the cursor to the instruction with the breakpoint and press F9.

32 Debug-56K User Manual

Using the Debugger

3

3.7.12 - F10 - Jump

F10 instructs the DSP to execute one instruction while treating a subroutine as one instruction. This is
similar to single-step with the exception that when a subroutine call is reached the whole subroutine is
executed.

3.7.13 - Shift-F10 - Run in Continuous jump

Shift-F10 toggles the continuous jump mode (on/off). This runs the DSP but it causes a complete
screen refresh after every DSP instruction, while treating a subroutine call as one instruction. The
speed of execution depends on the number of windows opened, the speed of the PC, the speed of the
link between the PC and the DSP, and the speed of the target hardware.

3.8 - Symbols and Symbolic Debugging

Symbolic debugging is available for C and assembly language programs. To enable symbolic
debugging, the source files must be prepared with the -g switch when executing the compilation tools.
Symbolic debugging is supported by COFF and IEEE-695 files.

In symbolic debugging, the user can refer to a variable by the variable�s name instead of the variable�s
numerical address. The variables are named by the user in the source files.

The following are a few examples of symbol usage:

Example 1 BREAK START
Set a breakpoint at START

Example 2 DISPLAY VALUE_A0
Display memory at VALUE_A0

Example 3 GO main
Change PC to main then start the DSP

Symbolic debugging is possible only when the debugger finds the symbols. A menu specific for
symbols is available in Debug-56K. The symbol menu can be used to display the symbols, clear the
symbols, and load symbols from a file. A flag may be set to instruct the debugger to load symbols
upon starting the debugger.

Symbols are displayed in the symbols window. In the symbol window the user can select a symbol
and apply a command to that selected symbol. The following are the commands that may be applied
to a selected symbol:

Debug-56K User Manual 33

Using the Debugger

3

Button: Description:
Unassemble Unassemble at symbol
Display Display memory at symbol
Watch Place variable in the watch window
Go To Execute from program counter until instruction at the

symbol.
Break Set a breakpoint at symbol

3.9 - Source Level Debugging

Source level debugging allows the user to see the DSP programs in the unassemble window exactly
as they appears in the source files. Source level debugging is available for DSP programs written in C
or assembly language.

In source level debugging, Debug-56K automatically reads the object files, the source code files, and
the information that links the object files to the source flies.

To enable source level debugging, the source files must be prepared with the -g command line switch
when executing the compilation tools, Debug-56K must also be able to find the source files.

Assembly and C source level debugging is supported by COFF and IEEE-695 files.

3.10 - Debugging C Software

To debug C programs with Debug-56K, the source files must be prepared with the -g switch when
executing the compilation tools, Debug-56Kmust also be able to find the source files. The commands
and operations available for assembly language debugging are also available for C debugging.

The local variables window is a C specific window, it is used to display the C local variables. The local
variables are placed and removed automatically by the debugger. Arrays and structures inside the
local variables window may be expanded and compressed, variables may be edited.

The calls window is a C specific window, it is used to display the C calls history.

C source level debugging is supported by COFF files and IEEE-695 files

34 Debug-56K User Manual

Using the Debugger

3

3.11 - Macro Commands

Debug-56K allows the user to group a number of commands in a macro command file for batch
processing. Refer to Chapter 4 for further information on commands and macro command files.

3.12 - Editing inside a Resource Window

To edit inside a resource window, place the cursor at the variable to be edited then type the new value
over the old value. Press the Enter key to accept the new value, press the Esc key to restore the old
value.

Debug-56K User Manual 35

Using the Debugger

3

36 Debug-56K User Manual

Using the Debugger

3

CHAPTER 4 - COMMANDS

4.1 - Command Entry

Commands are entered in the command window at the command line prompt.

4.2 - Command Help

The last line of the screen displays command sensitive help. Pressing the space bar displays all the
commands available.

4.3 - Command Entry Rules

- Only one, two, or three letters of a command need to be typed when entering a command. This
feature is designed to reduce the number to keystrokes needed to enter a command.

Example: C PC 0

is equivalent to: CHANGE PC 0

-The radix of the command window determines the default input radix. This affects constants as well
as addresses being entered. The default radix may be overwritten by preceding a number by: � for
decimal, $ for hexadecimal, and % for binary.

-A block of memory may be specified in two ways:

Format 1: Thememory block is defined by the starting address and the ending address
of the block:

Syntax: start_address..end_address

Example: CHANGE X:0..$FF $1234
Will change memory locations 0 to $FF to $1234

Format 2: The memory block is defined by the starting address of the block and the
number of words in the block.

Syntax: start_address#number_of_words

Example: CHANGE X:0#100 $1234
Will change 100 memory locations starting at 0 to 100 to $1234)

- A register block defines a block of DSP registers The block of registers is defined by the first register
and the last register of the block.

Debug-56K User Manual 37

Commands

4

Syntax: start_register..end_register
Register blocks possible:
X0..X1,
Y0..Y1,
A0..A2,
B0..B2,
R0..R7,
N0..N7,
M0..M7,

Example: CHANGE R0..R7 $1234
Will change registers R0, R1, ..R7 to $1234.

4.4 - Command Help Rules

The last line displays command specific help when a command is being entered. The following is the
command help convention:

- A list of the commands is made available by pressing the space bar repeatedly.

- The highlighted part of a command name indicates the least letters that need to be types when
entering a command.

- Parameters between brackets [] are for optional parameters.

Example: GO [address]

- Parameters between parentheses () are for descriptive purposes only.

Example: COPY (from) address_block (to) address

- A bar | is used to separate a list of possible command parameters.

Example: FORCER | B | RU

4.5 - Command Editor

To speed-up commands entry, the command window has a built-in command editor with a command
history buffer. The mouse and the following keys may be used when a command is being entered or
edited.

38 Debug-56K User Manual

Commands

4

Key: Description:

­ ¯ Scroll the command history

_ _ Move cursor left and right

Ins Toggle insert mode on/off

Del Delete a character

Home Move to beginning of command line

End Move to end of command line

Esc Delete changes

Enter Accept and execute command

The vertical scroll-bar can also be used to scroll through the command history buffer.
The pull down menu (config, command) can be used to program the command window.

4.6 - Macro Commands

A number of commands may be grouped in a command file and then executed automatically. The
Macro command opens a file of commands MacroName(.CMD) and process the commands in that
file. The macro command file can have any combination of valid commands. The commands are read,
processed, and executed one at a time. Commands are delimited by a carriage return or a semicolon.
Text after a semicolon is ignored and can be used as a command.

A macro command file can have variable parameters. Variable parameters are identified by a
circumflex sign followed by a number (^1, ^2, ...). Variable parameters are replaced with their numeric
values when the macro is invoked.

Debug-56K User Manual 39

Commands

4

Example

Radix hex ;change radix to hexadecimal
wait break ;wait until DSP enters debug mode
change x:80#10 0 ;clear 16 memory locations
go ;run the DSP
force b ;stop the DSP
wait break ;wait until DSP enters debug mode
step ;single step the DSP
wait break ;wait until DSP enters debug mode
break p:7C ;set a breakpoint at PC=7C
go ;run the DSP
wait break ;wait until DSP gets in debug

;mode

Macro commands are especially helpful when performing automated system tests.

40 Debug-56K User Manual

Commands

4

4.7 - List of Commands

Command: Brief Description:

ALIAS Define custom command string

ASSEMBLE Define custom command string

BREAK Breakpoint operations

CFORCE Reset the emulator

CHANGE Change register or memory value(s)

CONFIG Set system configuration options

COPY Copy a memory block

DISASSEMBLE Disassemble memory

DISPLAY Display memory

EMI Define EMI parameters

EVALUATE Evaluate expression

FORCE Reset or stop DSP

GO Execute DSP program

HELP Display help

INPUT Assign input file

JUMP Jump over a subroutine call

LOAD Load DSP program

LOG Log information

OUTPUT Assign output file

PATH Define directory path

QUIT Quit Debug-56K

RADIX Change radix of command window

REFRESH Toggle screen refresh (on/off)

RETURN Execute until RETURN instruction

Debug-56K User Manual 41

Commands

4

SAVE Save DSP memory to file

STEP Single step DSP program

SYMBOL Display symbols

TRACE Trace through DSP program

TIME Display execution time

UNALIAS Remove alias

UNASSEMBLE Unassemble memory

USE Use different directory to search for source files

VARIABLE Define a new variable

VERSION Display Debug-56K software version and mode

VIEW Open an ASCII text file for viewing

WAIT Wait specified time

WATCH Place variable in the watch window

? Evaluate expression

42 Debug-56K User Manual

Commands

4

Syntax ALIAS [name | key [,"string"]]

Description The ALIAS command is used to assign a name to a set of keystrokes, it is
usually used to rename commands or to pack multiple commands into one
command.

The ALIAS command generates an alias button on the tool-bar if name is
preceded by the ! character. A large button can hold up to three characters,
a small button can hold one character.

name A name representing the alias. The name is optional. The ALIAS command
generates a button for mouse usage if the name is preceded by !

key A function key representing the alias The following is a list of the function
keys supported:

F1..F12 F1 to F12
SF1..SF12 Shift-F1 to Shift-F12
AF1..AF12 Alt-F1 to Alt-F12
CF1..CF12 Ctrl-F1 to Ctrl-F12

�string� String function to be executed when the alias is called. Multiple commands
can be defined within one alias definition. Multiple commands are separated
by a semicolon. Command parameters are identified by a circumflex sign
followed by a number (^1, ^2, ...).
If �command string� is omitted, the alias definition for that name or key is
displayed. If name, key, and command string are omitted, all defined
aliases are displayed.

Example 1 ALIAS prgload �FORCE R; LOAD ^1; GO�

�prgload� resets the DSP, loads the specified file, and then runs the DSP

Example 2 ALIAS AF2
Display the alias definition of Alt-F2

Example 3 ALIAS
Display all alias definitions

Example 4 ALIAS !1st “change PC 0"
Generate a tool-bar button for the command �change PC 0"

Debug-56K User Manual 43

Commands

4

ALIAS Define Custom Command String

Syntax ASSEMBLE [address] [instruction]

Description Assembles one DSP instruction.

addr Address of the memory location to assemble. The address may be in the X:
Y: or P: space. The address is optional. If the address is omitted, the current
program counter value is used.

Instr Instruction to be assembled. The instruction is optional, if the instruction is
entered that instruction is assembled and the DSP�s memory is updated. If
the instruction is omitted, the unassemble window is selected and the cursor
is placed at the specified address.

If the address and the instruction are omitted, the unassemble window is selected and the cursor is
placed at the instruction equal to the program counter.

Example 1 A P:$100 ADD A,B
Assemble the instruction �ADD A,B� and place opcode in memory location
P:$100.

Example 2 A
Assemble at the address equal to the program counter

Example 3 A START_PROGRAM
Assemble at address labeled START_PROGRAM

44 Debug-56K User Manual

Commands

4

ASSEMBLE On-Screen Assembler

Syntax BREAK [breakpoint_number] [OFF] [break_access]
[break_type] [break_address] [break_block]
[break_count] [expression] [S]

Description The BREAK command sets, removes, and displays breakpoints. Many
types of breakpoints are supported:
- Software breakpoints (unconditional)
- Software breakpoints (conditional)
- Software breakpoints (with expressions)
- Hardware breakpoint (with a count)
- Hardware breakpoint (without count)
- Hardware breakpoint (with a range)
- Hardware breakpoint (without a range)
- Hardware breakpoint (on read)
- Hardware breakpoint (on write)
- Hardware breakpoint (on read or write)

The simplest and most commonly used breakpoint is the unconditional
software breakpoint, with the following simplified syntax.

BREAK [breakpoint_number] [OFF] [break_address]
BREAK with no arguments displays all breakpoints set.

Parameters for software breakpoints:
brk# breakpoint_number is a number between 1 and 128 for software

breakpoints and 0 for the hardware breakpoint. This number is incremented
automatically for software breakpoints, or it can be specified by the user.

OFF Off removes the breakpoint at the breakpoint number. If a breakpoint
number is not entered, all hardware and software breakpoints are removed.

S Start the DSP automatically after the breakpoint is reached.
brkAddr break_address is the address of the breakpoint. The address may be X:, Y:,

P:, or a symbol.

Debug-56K User Manual 45

Commands

4

BREAK Breakpoint Operations

Example 1 BREAK P:$100
Set a software breakpoint at program memory 100 hex

Example 2 BREAK START_PROGRAM
Set a software breakpoint on program memory instruction labeled
START_PROGRAM

Example 3 BREAK
Display all currently set breakpoints (hardware as well as software).

Example 4 BREAK OFF
Remove all breakpoints

Example 5 BREAK OFF 2
Remove breakpoint number 2

Parameters for hardware breakpoints:
[brk_acc] break_access is used to set a hardware breakpoint on memory read(r),

write(w), or access(rw). Break access can not be used with software
breakpoints. If a break access is specified, the breakpoint is automatically is
treated as a hardware breakpoint. break_access applies only to break
_types xa, ya, and pa.

Break_access: Meaning:

R break on memory read
w break on memory write
rw break on memory read or write

Brk_typ Break type determines the breakpoint type. There are 8 types of hardware
breakpoints and 16 types of software breakpoints. The following are the
hardware breakpoint types, they apply to the 24 bit DSPs only, please refer
to the help screen for other DSPs.

Break_type: Meaning:
pcf Break on program memory fetch.
pcm Break on program memory move.
pcfm Break on program memory read/write.
pce Break on executed fetches only.
pa Break on P memory access
xa Break on X memory access
ya Break on Y memory access

The following are the 16 types of conditional software breakpoints. The
software breakpoint types are based on the value of the Condition Code
Register (CCR). To set a conditional software breakpoint, Debug-56K
replaces your DSP instruction with a DEBUGcc instruction, thus the DSP
program may be contaminated. break_type applies only to break_access r,
w, and rw.

46 Debug-56K User Manual

Commands

4

Type: Meaning: Condition code:

CC carry clear C=0

CS carry set C=1

EC extension clear E=0

EQ equal Z=1

ES extension set E=1

GE greater or equal N xor V = 0

GT greater than Z or (N xor V)=0

LC limit clear L=0

LE Less or equal Z or (N xor V)=1

LS Lower or same Z or C=1

LT less than N and V = 1

MI minus N = 1

NE not equal Z=0

NR normalized Z or (not N & not E)=1

PL plus N=0

NN not normalized Z or (not N and not E)=0

[brkCnt] Break count specifies the number of times the condition must be satisfied
before a hardware breakpoint is reached. The break_count does not apply
for software breakpoints. If the count is not specified, it defaults to one.

For 24-bit DSPs break_count may be greater than 0 and less than
$1000000. For the DSP561xx break_count may be greater than 0 and less
than $10000. For the DSP568xx break_count may be greater than 0 and
less than $100.

[addrBl] address_block specifies an address range for hardware breakpoints.
break_block can not be used with software breakpoints. The address range
may be X: Y: P: or a symbol.

T[expr] Break expression allows the break at a breakpoint only if a condition is
satisfied. The DSP is stopped, the expression is evaluated while the DSP is
stopped. If the expression is not satisfied, the DSP is started again. If the
expression is satisfied, the DSP stays halted. The format of T[expression] is
as follows: T(val1?val2)

Val1 and Val2 can be one of following:

Debug-56K User Manual 47

Commands

4

Immediate value (number preceded by �#�)
Register
Memory location

Tests supported (?): , =, ==, !=

Spaces within test syntax are not permitted.

Other Breakpoint Rules:

1. The default breakpoint is a software breakpoint.

2. Only one hardware breakpoint may be set at a time.

3. Up to 128 software breakpoints may be set simultaneously.

4. You may use the function key F9 to set and clear unconditional software
breakpoints.

5. Youmay use themouse to set and clear unconditional software breakpoints.

6. You may use the pull-down menu to display, clear, save, or load
breakpoints.

Example 6 BREAK pcf PLAYABLE#$20
Break on program memory fetch and execution of the instruction at range of
instructions between PLAYABLE and PLAYABLE+32 (hardware breakpoint)

Example 7 BREAK pcm P:LABEL_1..P:LABEL_2 7
Break when programmemory location between P:LABEL_1 and P:LABEL_2
is written to 7 times (hardware breakpoint).

Example 8 BREAK pcm P:LABEL_1 7
Break when program memory location P:LABEL_1 is accessed 7 times
(hardware breakpoint).

Example 9 BREAK rw xa X:100 200
Break when data memory location 100 is accessed 200 times (hardware
breakpoint).

Example 10 BREAK P:$228 T(AM_VALUE#$1000)
Set a breakpoint at address P:228 and enter debug mode if the value of
AM_VALUE is greater than $1000 (software breakpoint).

Example 11 BREAK LOOP T(X0!=Y:$1200)
Set a breakpoint at program address labeled �LOOP� and enter debug mode
if the value of register X0 is not equal to memory location Y:$1200 (software
breakpoint).

48 Debug-56K User Manual

Commands

4

Syntax CFORCE R

Description Reset the emulator hardware unit. The CFORCE command is applicable
only when Debug-56K is used with an external emulation unit.

Example 1 CFORCE R
Reset the emulator

Debug-56K User Manual 49

Commands

4

CFORCE Reset the Emulator

Syntax CHANGE [register] | [register_block] | [address] |

[address_block] (to) value

Description Change a register, a register block, a memory, or amemory block to value.

reg A register
reg_blk A block of registers
addr A memory location
addr_blk A block of memory
value The change value

Example 1 CHANGE X:0 10
Change data memory location X:0 to 10

Example 2 CHANGE LABEL_1..LABEL_2 10
Change memory locations from LABEL_1 to LABEL_2 to 10

Example 3 CHANGE X:0#100 1234
Change 100 data memory locations starting at address X:0 to 1234

Example 4 CHANGE A2 10
Change register A2 to 10

Example 5 CHANGE R0..R3 10
Change register R0, R1, R2, and R3 to 10

50 Debug-56K User Manual

Commands

4

CHANGE Change Register or Memory

Syntax CONFIG Refresh n | Tab n | Reset {On|Off} |
Sens {On|Off} | Verify {On|Off} | Update {On|Off}

Description The Config command is used to set the system options. The CONFIG
command is especially helpful when used with macro command files.

Refresh: Sets the minimum time delay (in ms) between screen refreshes in the
continuous update mode.

Tab: Sets the number of spaces for a tab character. This applies when displaying
ASCII text files in the view window.

Reset: When set, the DSP is automatically reset before a program load. The default
is off.

Sens: Enables or disables case sensitivity for symbols entry. The default is on.
Verify: Enables or disables memory verify after memory writes. Default is off.
Update: Enables or disables the data and registers windows updates when the DSP

is running. Default is OFF.

Example 1 CONFIG ref ‘2000
Sets refresh interval time to 2000 ms (2 s)

Example 2 CONFIG update on
Turn automatic update ON.

Debug-56K User Manual 51

Commands

4

CONFIG Set System Configuration Options

Syntax COPY (from) address_block (to) address

Description Copy a block of memory.

addrBlk The block of memory to be copied.
addr The starting address of the second block.

Example 1 COPY X:0..100 P:0
Copy data memory block X:0 to X:100 into program
memory starting at p:0

Example 2 COPY LABEL_1..LABEL_2 LABEL_3
Copy memory block LABEL_1 to LABEL_2 into memory block starting at
LABEL_3.

Example 3 COPY X:0#100 X:200
Copy 100 memory locations starting at data memory location 0 into data
memory location starting at 200.

52 Debug-56K User Manual

Commands

4

COPY Copy a Memory Block

Syntax DISASSEMBLE [address] [-mode]

Description Disassembles memory (program or data) in the unassemble window.

addr The starting address. If address is omitted, the window is scrolled down by
one page.

-mode mode specifies the program displaymode. Threemodes are available are:

Mode: Description:
Asm Reverse assembly mode
Src Source mode
Mix Mixed mode (ASM and SRC interlaced)

If the mode is omitted, the current mode is used.

Example 1 DISASSEMBLE LABEL_1 -mix
Disassemble from memory location LABEL_1 in mixed mode

Example 2 DISASSEMBLE X:100
Disassemble from memory location X:100

Example 3 DI P:100
Disassemble from memory location P:100

Example 4 DI
Scroll the unassemble window down by one page

Debug-56K User Manual 53

Commands

4

DISSASEMBLE Disassemble Memory

Syntax DISPLAY [address] [-radix] [-mode]

Description The DISPLAY command displays program or data memory in a data
window. If more than one data window is open, the data is displayed in the
window that was last selected.

addr The starting address of the window. If [address] is not specified, the window
is scrolled down by one page.

-radix Specifies the data display radix. The valid radices are:

Radix: Description:
-d Decimal
-h Hexadecimal
-b Binary
-f Fractional
-a ASCII

If the radix is omitted, the current radix is used.

[-mode] Specifies the data display mode. The valid modes are:

Mode: Description:
-t Text
-g Graph

If the mode is omitted, the current mode is used.

Example 1 DISPLAY LABEL_1
Display from memory location LABEL_1

Example 2 DISPLAY L:100 -b
Display from memory location L:100 in binary format

Example 3 DISPLAY P:100 -d -g
Display from memory location P:100 in graphics with a decimal axis.

54 Debug-56K User Manual

Commands

4

DISPLAY Display Memory

Syntax EMI [-Wx] [-Lx]

Description The EMI command displays or sets the External Memory Interface access
parameters. This command is applicable for DSPs with dynamic memory
support (DSP56004, DSP56007, etc.)

-Wx Set the EMI data bus width. Two selections are available:
4 bit data bus: -w0
8 bit data bus: -w1

-Lx Set the EMI data word length. Four options are available:
8 bit data word: -L0
16 bit data word: -L1
24 bit data word: -L2
16 bit data word, 24 bit address: -L3

Debug-56K User Manual 55

Commands

4

EMI Set EMI Parameters

Syntax EVALUATE ([lvalue =] rvalue)

Description The EVALUATE command is used to evaluate expressions or to set a
variable, a memory location, or a register. This command may be used with
C and assembly language variables and constants.

lvalue = Left Value. The left value and the equal sign are optional. They are used
when a variable or a memory location are set.

rvalue Right Value. The right value is the expression to evaluate.

The EVALUATE command is similar to the ? command, except the ?
command displays the result in the command window.

Example 1 EVALUATE R0 = $100
Set register R0 to 100 hex

Example 2 EVALUATE R2 = (R0+R1) * 3
Evaluate the expression, set R2 to the result

Example 3 EVALUATE value_1 = value_2/value_3
Evaluate the expression, set value_1 to the result

Example 4 EVALUATE FILTER[100] = 0
Clear the 101�s element of the array FILTER

56 Debug-56K User Manual

Commands

4

EVALUATE Evaluate Expression

Syntax FORCE R | B | RU

Description Force the DSP

R Reset DSP and enter debug mode
B Stop DSP and enter debug mode
RU Toggle the DSP�s reset line

Example 1 FORCE R
Reset DSP and enter debug mode

Example 2 FORCE B
Stop DSP and enter debug mode

Example 3 FORCE through
Toggle the DSP�s reset line

Debug-56K User Manual 57

Commands

4

FORCE Reset or Break DSP

Syntax GO [address]

Description The GO command runs the DSP.

addr Starting address. If [address] is omitted, the program executes from the
current program counter. If the address is specified, the program counter is
changed to the address by the debugger before the DSP is started.

Example 1 GO
Start DSP.

Example 2 GO LABEL_1
Start DSP from program memory location LABEL_1.

Example 3 GO P:$100
Start DSP from program memory location 100 hex.

58 Debug-56K User Manual

Commands

4

GO Execute DSP Program

Syntax HELP [command]

Description Start Help.

comm if [command] specified, help is displayed for the specific command.

Example 1 HELP
Display the help screen.

Example 2 HELP BREAK
Display the help for the BREAK command.

Debug-56K User Manual 59

Commands

4

HELP Display Help Screen

Syntax INPUT [#(file_number)] [address] OFF | TERM | filename [-dec | -fra | -hex]

Description The input command is used to open a text file and use the file to pass data to
the target DSP chip. The data is passed to the target DSP when the user�s
program reaches a software breakpoint. The text file lists the data
sequentially.

The INPUT command with no parameters displays all open input files.

file# file_number is the number of the file opened (multiple files can be opened
simultaneously). The file number is optional, the range is 1 to 99.

addr address is the address where the DSP breakpoint is halted in order to
perform the file input (always in the P: space). Assigning the address of the
DEBUG instruction in INPUT command defines direction of the data transfer
when user program reaches DEBUG opcode. The address is optional if one
of the direction bits in register R1 is set.

OFF closes an opened input file. If a file is not specified, all opened files are
closed.

TERM uses the terminal/keyboard (instead of a text file) to input data to the target
DSP.

fname is the name of the file used for data input.
-dec specifies decimal data representation
-fra specifies fractional data representation
-hex specifies hexadecimal data representation. This is the default.

Parameters specified by the user�s DSP program.

Since multiple files can be opened, your DSP program must specify the file
number, this is accomplished by placing the file number in the most
significant 8 bits of register X0.

The user program must specify the number of words to transfer, this is
accomplished by placing that number in the low 16 bits of register X0. The
low 8 bits of register X0 are used for the DSP56100.

The user program must also specify the address where the data will be
placed. This is accomplished by placing that address in register R0.

The user program must specify the address space (P:, X: or Y:) where the
data will be placed. This is accomplished by placing a value in the register
R1. A 0 is used for P:, 1 for X: and 2 for Y: memory space.

The direction of the data transfer may be specified (optional) by placing a
flag in register R1. If the most significant bit (8000 hex) is 1, the direction is
into the DSP. If the 14th bit (4000 hex) of R1 is 1, direction is out of the DSP.
If neither bits are set, the address of the DEBUG instruction is used.

60 Debug-56K User Manual

Commands

4

INPUT Assign Input File

The breakpoint must reached by a user induced DEBUG instruction.

Details on the text file

The text file is always ASCII, with the data listed sequentially. Debug-56K
provides ways to simplify the file editing (for example if one word must be
send to the DSP repeatedly, you can have a repeat code instead of typing an
infinitely long file.

The following are the codes that may be used in the ASCII file

Specifies the number of times a data word is repeated.

() Parenthesis are used to group words. If parenthesis are preceded by # the
whole group is repeated. If # doest not precede the parenthesis, the group of
words is repeated indefinitely.

Example 1 0.1 0.2 0.3 0.4
Send data words 0.1, 0.2, 0.3, 0.4.

Example 2 0.1#10
Send the data words 0.1 10 times.

Example 3 0.1 0.2)#10
Send 0.1, 0.2, 0.1, 0.2

Example 4 7fff)a
Send 7fff indefinitely

Example 5 1 2 3 5#2 (10 20)#3 (10)
send 1, 2, 3, 5, 5, 10, 20, 10, 20, 10, 20, 10, 10, 10, 10, ...

Examples on entering the input command

Example 1 INPUT
Display all currently open input files.

Example 2 INPUT #1 P:100 DATA.IO -dec
Open �DATA.IN� file, label it file number 1, and send the data to the DSP
when the breakpoint at address P:100 is reached. Data in �DATA.IO� is in
decimal.

Example 3 INPUT P:100 DATA.IN2
Open �DATA.IN2" file, label the file automatically, and send the data to the
DSP when the breakpoint at address P:100 is reached. Data in �DATA.IN" is
in hexadecimal.

Example 4 INPUT P:100 TERM
When the breakpoint at P:100 is reached, read data from the terminal
(keyboard) and send it to the DSP.

Debug-56K User Manual 61

Commands

4

Examples of DSP code to support the INPUT command

Example 1

MOVE $010010,X0 ; 16 WORDS FROM FILE NUMBER 1
MOVE $0000,R0 ; PLACE DATA AT ADDRESS 0
MOVE $0001,R1 ; PLACE THE DATA IN SPACE X:
DEBUG ; BREAK AND ENTER THE DEBUG MODE

Example 2

MOVE $020012,X0 ; 18 WORDS FROM FILE NUMBER 2
MOVE $0020,R0 ; PLACE DATA AT ADDRESS 20
MOVE $0000,R1 ; PLACE THE DATA IN SPACE P:
DEBUG ; BREAK AND ENTER THE DEBUG MODE

Example 3

MOVE $030080,X0 ; 128 WORDS FROM FILE NUMBER 3
MOVE $0200,R0 ; PLACE DATA AT ADDRESS 200 HEX
MOVE $8002,R1 ; PLACE THE DATA IN SPACE Y:

; (INPUT DIRECTION)
DEBUG ; BREAK AND ENTER THE DEBUG MODE

62 Debug-56K User Manual

Commands

4

Syntax JUMP

Description JUMP instructs the DSP to execute one instruction while treating a
subroutine as one instruction. This is similar to single-step with the
exception that when a subroutine call is reached the whole subroutine is
executed.

If the DSP reaches a breakpoint inside the subroutine, it will enter the debug
mode before completing the subroutine call.

Example 1 JUMP
Execute jump.

Debug-56K User Manual 63

Commands

4

JUMP Jump Over Subroutine Calls

Syntax LOAD [filename] [.CLD] [.LOD] [-S]

Description The LOAD command loads a program file generated by the Motorola
assembler/linker into the DSP�s memory. The DSPmemory can be internal
or external. Thememory space can be X: Y: P: or L: The file is read from the
default directory (see the PATH and USE commands).

To enable symbolic debugging and source level debugging, the switch -g
must be entered when executingMotorola�s compilation tools. If the symbols
are not found, the debugger enters the non-symbolic mode of operation. If
the source line information is not found, the debugger enters the non-soure
level mode of operation.

.CLD COFF filename extension.

.LOD OMF filename extension.

.ABS IEEE-695 filename extension.
-S Load the symbols only.

Example 1 LOAD DEMO1.LOD

Load the file DEMO1.LOD (OMF format) from the default path.

Example 2 LOAD DEMO3.CLD

Load the file DEMO3.CLD (COFF format) from the default path.

Example 3 LOAD C:\PROGRAMS\DEMO3.CLD -s

Load the symbols from C:\PROGRAMS\DEMO3.CLD.

64 Debug-56K User Manual

Commands

4

LOAD Load DSP Program

Syntax LOG ON [filename[.LOG]] | OFF | memAddress_block |
UNA_address_block | REG [reg_name] ONCE

Description The LOG command is used to log information to the log file.

ON fname Opens a log file. If the file already exists, information is appended to the file.
The current date and time are written to the log file after it is opened. Default
file extension is .LOG

OFF Closes the log file. The current date and time is written to the file before it is
closed.

memAddrBlk Memory block to save to the file.

REG[reg_name] REG saves all registers to the file. If a register name is specified, only that
register is saved.

UNA_addrBlk Block of instructions to save to the file.

ONCE Save the OnCE registers to the file.

Example 1 LOG ON session5

Start logging to file SESSION5.LOG

Example 2 LOG MEM X:$40#$20

Save memory locations X:40 to x:60 to log file

Example 3 LOG REG

Save registers to log file

Example 4 LOG REG R0

Save register R0 to log file to log file

Example 5 LOG OFF

Close the log file

Debug-56K User Manual 65

Commands

4

LOG Log Information

Syntax OUTPUT [#(file number)] [address] OFF | TERM | filename [-dec | -fra | -hex]
[-Ovr] [-col_cnt]

Description The output command is used to open a text file and use the file to save data
passed from the target DSP chip. The data is passed to the file when the
user�s DSP program reaches a software breakpoint.

The OUTPUT command with no parameters displays all open output files.

file# is the number of a file opened (multiple files can be opened simultaneously).
The file number is optional, the range is 1 to 99. The ASCII text file lists the
data sequentially.

addr is the address of the debug instruction (always in the P: space). The address
is optional if one of the direction bits in register R1 is set.

OFF closes an opened output file. If a file is not specified, all opened files are
closed.

TERM uses the terminal/monitor (instead of a text file), and display the data.
fname is the name of the file used for data output.
-dec specifies decimal data representation
-fra specifies fractional data representation
-hex specifies hexadecimal data representation. This is the default.
-Ovr Over-write file if the file exists.
-col_cnt Column count

Parameters specified by the user�s DSP program.

Since multiple files can be opened, your DSP program must specify the file
number, this is accomplished by placing the file number in the most
significant 8 bits of register X0.

The user program must specify the number of words to transfer, this is
accomplished by placing that number in the low 16 bits of register X0. 8 bits
are used for the DSP56100.

The user program must also specify the address where the data will be read
from. This is accomplished by placing that address in register R0. The user
program must specify the address space (P:, X: or Y:) where the data will be
placed. This is accomplished by placing a value in the register R1. A 0 is
used for P:, 1 for X: and 2 for Y: memory space.

The direction of the data transfer may be specified (optional) by placing a
flag in register R1. If the most significant bit (8000 hex) is 1, the direction is
into the DSP. If the 14th bit (4000 hex) of R1 is 1, direction is out of the DSP.
If neither bits are set, the address of the DEBUG instruction is used.

The breakpoint must reached by a user induced DEBUG instruction.

66 Debug-56K User Manual

Commands

4

OUTPUT Assign Output File

Details on the text file

The text file is always ASCII, with the data listed sequentially, in the format
specified but the OUTPUT command.

Examples on entering the input command

Example 1 OUTPUT

Display all currently open output files.

Example 2 OUTPUT #1 P:100 DATA.OUT -rd

Open �DATA.OUT� file, label it file number 1, and use the file to save data
when the breakpoint at address P:100 is reached. Data is saved in decimal.

Example 3 OUTPUT P:100 DATA.OUT

Open �DATA.OUT� file, label the file automatically, and send the data to the
file when the breakpoint at address P:100 is reached. Data in �DATA.OUT�
is in hexadecimal.

Example 4 OUTPUT P:100 TERM

When the breakpoint at P:100 is reached, read data from the DSP and send
it to the terminal (screen).

Examples DSP code to support the OUTPUT command
Example 1

MOVE $010010,X0 ; 16 WORDS to FILE NUMBER 1
MOVE $0000,R0 ; READ DATA FROM ADDRESS 0
MOVE $0001,R1 ; READ DATA FROM SPACE X:
DEBUG ; BREAK AND ENTER THE DEBUG MODE

Example 2

MOVE $020012,X0 ; 18 WORDS to FILE NUMBER 2
MOVE $0020,R0 ; READ DATA AT ADDRESS $20
MOVE $0000,R1 ; READ DATA FROM SPACE P:
DEBUG ; BREAK AND ENTER THE DEBUG MODE

Debug-56K User Manual 67

Commands

4

Example 3

MOVE $030080,X0 ; 128 WORDS to FILE NUMBER 3
MOVE $0200,R0 ; READ DATA AT ADDRESS $200
MOVE $4002,R1 ; READ DATA FROM SPACE Y:

; (OUTPUT DIRECTION)
DEBUG ; BREAK AND ENTER THE DEBUG MODE

68 Debug-56K User Manual

Commands

4

Syntax PATH [pathname]

Description The PATH command sets the default directory for file read and file write
operations.

pathname String defining the default directory. If pathname is omitted, the current path
is displayed (if it was previously set). See also the USE command.

Example 1 PATH D:\56002\PROGRAMS\

SET the default directory to D:\56002\PROGRAMS\

Example 2 PATH

Display the default directory path

Debug-56K User Manual 69

Commands

4

PATH Define directory path

Syntax QUIT

Description The QUIT command terminates Debug-56K. When QUIT is executed, the
DSP is left in it�s current state and the screen configuration is automatically
saved in the screen configuration file.

Upon reentry to Debug-56K, the screen configuration is read automatically
from the screen configuration file.

Example 1 QUIT

Quit Debug-56K

70 Debug-56K User Manual

Commands

4

QUIT Quit Debug-56K

Syntax RADIX B(binary) | D(decimal) | F(fractional) | H(hexadecimal)

Description The RADIX command changes the default radix of the command window.
The following are the available options:

Radix: Description:
b Binary
d Decimal
f fractional
h Hexadecimal

All constants (data and addresses) entered in radix may be overwritten if
one of the following characters precedes a number:

$ for hexadecimal numbers (example $7fffff)

� for decimal numbers (example �5000)

% for binary numbers (example %10101011)

The RADIX command can not be used to change the radix of a data or a
register window.

Example 1 RADIX H

Set command window�s default radix to hexadecimal

Debug-56K User Manual 71

Commands

4

RADIX Change Radix of Command Window

Syntax REFRESH [ON | OFF]

Description In normal operation, the debugger�s screen is refreshed when the DSP is
halted. Screen refreshes can be disabled with the refresh command.
Disabling screen refreshes may be helpful with slow systems with high
screen refresh times.

ON Enable screen refreshes
OFF Disable screen refreshes

The refresh command without On or Off refreshes the screen.

Upon a refresh, the DSP�s resources are uploaded by the debugger and
displayed on the screen.

Example 1 REFRESH OFF

Disable screen refreshes

Example 2 REFRESH ON

Enable screen refreshes

Example 3 REFRESH

Refresh screen

72 Debug-56K User Manual

Commands

4

REFRESH Toggle Screen Refresh On/Off

Syntax RETURN

Description Run the DSP until a RETURN instruction is reached. The DSP is stopped
when a RET instruction is reached.

Example 1 RETURN

Execute DSP, stop when a RET instruction is reached.

Debug-56K User Manual 73

Commands

4

RETURN Execute Until RETURN Instruction

Syntax SAVE addr_block [addr_block] [addr_block] ...filename[.LOD]
[-hex | -dec | -fra | -bin] [-App | -Ovr] [-col_cnt]

Description The SAVE command saves one or more blocks of memory into a text file.
The file format is compatible with files generated by the Motorola
assembler/linker. Program as well as data memory can be saved. Memory
can be internal or external to the DSP.

If the file directory is not specified, the file is read from the default directory
(see the PATH and USE commands). If the file extension is not specified, it
is automatically assumed to be .LOD

Symbols are not saved with the SAVE command.

addrBlck Address block
addrBlk Additional address block(s)
fname File name, default extension is .LOD
-App|-Ovr Append to file, over-write if file exists
-col_cnt Column count

Example 1 SAVE X:0..90 DATA.001

Save memory locations X:0 to X:90 into file �DATA.001"

Example 2 SAVE X:0..90 P:0..100 DATA1

Save memory locations X:0 to x:90 and memory locations P:0 to P:100 into
file �DATA1.OUT�

74 Debug-56K User Manual

Commands

4

SAVE Save DSP Memory to File

Synatx STEP [count]

Description The STEP command instructs the DSP to execute a number of instructions
and then enter the debug mode. The instruction(s) execute from the current
value of the program counter.

count Number of DSP instructions to execute. If [count] is not specified, one
instruction is executed.

Example 1 STEP

Execute one DSP instruction and enter the debug mode.

Example 2 STEP 5

Execute 5 DSP instructions and enter the debug mode.

Debug-56K User Manual 75

Commands

4

STEP Step DSP Program

Syntax SYMBOL [symbol or part of symbol name]

Description The SYMBOL command displays the symbols. The symbols are displayed
in alphabetic order. Symbols are case sensitive unless the case sensitivity
is turned off.

symbol If omitted, all the symbols are displayed. If specified, only the symbols
starting with [symbol or part of symbol name] are displayed. It will match all
the symbols starting with the specified string

Example 1 SYMBOL

Display all symbols

Example 2 SYMBOL La

Display all symbols starting with La

76 Debug-56K User Manual

Commands

4

SYMBOL Display Symbol Table

Syntax TIME

Description The TIME command can be used to measure the execution time of a DSP
program. A timer is automatically cleared and started when the GO
command is executed, the same timer is automatically stopped when the
DSP is stopped. The TIME command displays the value of that counter.
The resolution of the timer is 1 µs. For proper timer operation, the program
should be run for more than 50 µs.

The TIME command is available when the debugger is used with Domain
Technologies� LINK-56K emulator. The TIME command may not be
supported under other hardware platforms.

Example 1 TIME

Display the timer value

Debug-56K User Manual 77

Commands

4

TIME Display Execution Time

Syntax TRACE [count]

Description The TRACE command executes a single or multiple DSP instructions with a
full screen refresh after every instruction.

count Number of instructions to execute. If [count] is omitted, one instruction is
executed.

Example 1 TRACE

Execute one DSP instruction and update screen

Example 2 TRACE 10

Execute 10 DSP instructions with a screen update after every instruction

78 Debug-56K User Manual

Commands

4

TRACE Trace Through DSP Program

Syntax UNALIAS name | Key

Description The UNALIAS command removes a previously defined alias. Aliases are
defined with he ALIAS command.

name Name of the alias to remove.
key Function key of the alias to remove.

Either name or key must be defined.

Example 1 UNALIAS prgload

Remove �PRGLOAD� alias

Example 1 UNALIAS F1

Remove alias at function key F1

Debug-56K User Manual 79

Commands

4

UNALIAS Remove Custom Command String

Syntax UNSASSEMBLE [address] [-mode]

Description Unassemble memory in the unassemble window.

addr Address of the first memory location to unassemble. The address may be in
the X, Y, or P space. The address is optional. If the address is omitted, the
unassemble window is scrolled down by one page.

-mode mode specifies the program display mode. Three modes available are:

Mode: Description:
ASM Reverse assembly mode
SRC Source mode
MIX Mixed mode (ASM and SRC interlaced)

If the mode is omitted, the current mode is used.

Example 1 UNASSEMBLE LABEL_1

Disassemble from memory location LABEL_1

Example 2 UNASSEMBLE

Scroll the Unassemble window down by one page

80 Debug-56K User Manual

Commands

4

UNASSEMBLE Unassemble Memory

Syntax USE [path string [-r]]

Description The USE command specifies an additional directory to be searched to locate
the source files. Multiple directories can be specified. If no parameters are
specified, all defined directories will be listed.

-r will remove the directory from the search list.

Example 1 USE d:\dsp\source\coeff

Use additional directory while locating source file

Debug-56K User Manual 81

Commands

4

USE Use Different Directory

Syntax VARIABLE name

Description The variable command defines a variable at the debugger level. The
variable defined may then be used for temporary storage.

name The name of the variable defined

Example 1 VARIABLE PC_STORAGE ; define a new variable

? PC_STORAGE = PC ; save PC value

GO ; start DSP

FORCE R ; stop DSP

? PC = PC_STORAGE ; restore PC value

82 Debug-56K User Manual

Commands

4

VARIABLE Define a New Variable

Syntax VERSION

Display the Debug-56K version number.

Example 1 VER

Will display the Debug-56K version number.

Debug-56K User Manual 83

Commands

4

VERSION Display Debug-56K�s version

Syntax VIEW OFF | filename [line #]

Description Display an ASCII file in the view window.

OFF Remove the viewed file
fname Name of the file to display. If a directory is not specified within the file name,

the default directory is used (see the PATH and USE commands).
line # Display from line number. If not specified, the file is displayed from the first

line.

Example 1 VIEW DEMO1.ASM 10

Display the file DEMO1.ASM in the view window starting at line 10.

84 Debug-56K User Manual

Commands

4

VIEW Open an ASCII Text File

Syntax WAIT [time | BREAK]

Description Wait a number of seconds. This command is helpful when executing macro
command files. The wait can be aborted by pressing any key.

time Wait time in seconds. If time is omitted, the wait is indefinite.
BREAK Wait until the DSP gets in the debug mode of operation.

Example 1 WAIT 12

Wait for 12 seconds.

Example 2 WAIT break

Wait until the DSP enters debug mode.

Debug-56K User Manual 85

Commands

4

WAIT Wait Specified Time

Syntax WATCH expression, [label], [-mode] [-r]

Description The WATCH command places a variable in the watch window.

expr Expression defining the locations to place in the watch window.
label Label of the variable to watch
mode The mode specifies the radix used for the display. Available formats are:

hex, dec, fra, bin. The default is hex.
-r Is used to remove the variable from the watch window. If [address] is not

specified, all the watched variables are removed.

Example 1 WATCH X:$0000

Place memory location at X:0000 in the watch window.

Example 2 WATCH AM_VALUE -fra

Place memory location at AM_VALUE in the watch window, display in
fractional.

Example 3 WATCH P:$0000 -r

Remove P:$0000 from the watch window.

Example 3 WATCH -r

Remove all watched variables.

86 Debug-56K User Manual

Commands

4

WATCH Place Variable in Watch Window

Syntax ? ([lvalue =] rvalue)

Description The ? command is used to evaluate expressions. The result of the
expression evaluation is displayed in the command window. The ?
command can also be used to change the value of a variable, a memory
location, or a register. The ? command may be used with C and assembly
language variables and constants.

lvalue = Left Value. The left value and the equal sign are optional, they are used
when a variable or a memory location are modified.

rvalue Right Value. The right value is the expression to evaluate.

The ? command is similar to the EVALUATE command, except the
EVALUATE command does not display the evaluated value.

Example 1 ? R0 = $100

Set register R0 to 100 hex, display new R0

Example 2 ? A

Display the value of register A

Example 3 ? R2 = (R0+R1) * 3

Evaluate the expression, set R2 to the result, display new R2

Example 4 ? value_1 = value_2/value_3

Evaluate the expression, set value_1 to the result, display new value_1

Example 5 ? FILTER[100] = 0

Clear the 101�s element of the array FILTER, display new 101�s element of
array FILTER.

Debug-56K User Manual 87

Commands

4

? Evaluate Expression

88 Debug-56K User Manual

Commands

4

Index

! ?, 87

A automatic screen update, 25

ALIAS, 43

alias button, 43

ASSEMBLE, 44

B base port address, 17, 46, 47

Break access, 46

Break count , 47

Break expression, 47

Break type , 46

Breakpoint, 21

C Command, 17, 27

cache, 27

calls, 27

case sensitivity, 51

CFORCE, 49

CHANGE, 50

Command line parameters, 17

Config, 22

CONFIG, 51

COPY, 52

D demonstration mode, 17, 28, 53

Data, 28

DISPLAY, 54

DISSASEMBLE, 53

DMA, 28

E EMI, 55

EVALUATE, 56

F File, 18, 31

flags, 28

FORCE, 57

function key, 43

G graph, 26

Debug-56K User�s Guide 89

Index

I
N

D
E
X

GO, 58

H Help, 23

hardware breakpoints, 46

HELP, 59

I Initialize screen settings, 17

I/O Peripherals , 28

INPUT, 60

J Jump, 24

JUMP, 63

L local variables, 29

LOAD, 64

LOG, 65

M mixed mode, 27

Macro Commands, 39

memory verify , 51

O OnCE , 29

OUTPUT, 66

P PATH, 69

Q QUIT, 70

R Run, 20, 24

radix, 25

RADIX, 71

REFRESH, 72

registers, 29

Reset, 25

RETURN, 73

reverse assembly mode, 26

S screen configuration, 17, 33, 34, 75

SAVE, 74

screen refresh, 51

Single step, 24

software breakpoints, 45

Source level debugging, 34

source mode, 26

stack , 29

90 Debug 56K User�s Guide

Index

I

N

D

E

X

stack memory space, 17

STEP, 75

Stop, 24

SYMBOL, 76

Symbolic debugging, 33

Symbols, 21

T trace, 29, 78

tab character, 51

TIME, 77

TRACE, 78

trace window, 29

U UNALIAS, 79

UNASSEMBLE, 80

USE, 81

V View, 19

VARIABLE, 82

Variable parameters , 39

VERSION, 83

VIEW, 84

W Window, 23

WAIT, 85

WATCH, 86

windows updates, 51

Debug-56K User�s Guide 91

Index

I
N

D
E
X

92 Debug 56K User�s Guide

Index

I

N

D

E

X

	Table of Contents
	CHAPTER 1 - GENERAL INFORMATION	7
	1.1 - Introduction	7
	1.2 - Introduction to this Manual	7
	1.3 - Debuggers™ Features	7
	1.4 - Installation of the Debugger Software	7
	1.5 - Command Line Parameters	8

	CHAPTER 2 - TUTORIAL	9
	2.1 - Start Debug-56K	9
	2.2 - Observe the Data Window	9
	2.3 - Observe the Unassemble Window	9
	2.4 - Observe the Registers Window	10
	2.5 - Observe the Command Window	10
	2.6 - Move Around the Screen	10
	2.7 - Change Memory 	10
	2.8 - Load the Assembly Language Program	10
	2.9 - Run the DSP Program	10
	2.10 - Stop the DSP	11
	2.11 - Do Single Step	11
	2.12 - Do Continuous Step	11
	2.13 - Do Multiple instructions	11
	2.14 - Set a Breakpoint 	11
	2.15 - Remove the Breakpoint	12
	2.16 - Change the Radix of the Data Window	12
	2.17 - Open More Data Windows	12
	2.18 - Graphics	12
	2.19 - Change a Register Value	12
	2.20 - Display the Symbols	13
	2.21 - Use the Symbols Window	13
	2.22 - Use the Symbols from the Command Window	13
	2.23 - Try the Evaluator	13
	2.24 - Set Watches	13
	2.25 - Get Help	14
	2.26 - Get Command Sensitive Help	14
	2.27 - Edit Commands in the Command Window	14
	2.28 - Open More Windows	14
	2.29 - Exit Debug-56K	14
	2.30 - Debug a C program 	15

	CHAPTER 3 - USING THE DEBUGGER	17
	3.1 - About This Chapter	17
	3.2 - Command Line Parameters	17
	3.3 - Description of the pull-down menus	18
	3.4 - Description of the Tool-bar	24
	3.5 Description of the Resource Windows	27
	3.6 - Status/Help Line 	31
	3.7 - Function Keys 	31
	3.9 - Source Level Debugging 	34
	3.10 - Debugging C Software 	34
	3.11 - Macro Commands 	35
	3.12 - Editing inside a Resource Window 	35

	CHAPTER 4 - COMMANDS	37
	4.1 - Command Entry	37
	4.2 - Command Help	37
	4.3 - Command Entry Rules	37
	4.4 - Command Help Rules	38
	4.5 - Command Editor	38
	4.6 - Macro Commands	39
	4.7 - List of Commands	41
	ALIAS	43
	ASSEMBLE 	44
	BREAK	45
	CFORCE	49
	CHANGE	50
	CONFIG	51
	COPY	52
	DISSASEMBLE	53
	DISPLAY	54
	EMI	55
	EVALUATE	56
	FORCE	57
	GO	58
	HELP	59
	INPUT	60
	JUMP	63
	LOAD	64
	LOG	65
	OUTPUT	66
	PATH	69
	QUIT	70
	RADIX	71
	REFRESH	72
	RETURN	73
	SAVE	74
	STEP	75
	SYMBOL	76
	TIME	77
	TRACE	78
	UNALIAS	79
	UNASSEMBLE	80
	USE	81
	VARIABLE	82
	VERSION	83
	VIEW	84
	WAIT	85
	WATCH	86
	?	87

	Index
	!
	?, 87	

	A
	automatic screen update, 25	
	ALIAS, 43	
	alias button, 43	
	ASSEMBLE, 44	

	B
	base port address, 17, 46, 47	
	Break access, 46	
	Break count , 47	
	Break expression, 47	
	Break type , 46	
	Breakpoint, 21	

	C
	Command, 17, 27	
	cache, 27	
	calls, 27	
	case sensitivity, 51	
	CFORCE, 49	
	CHANGE, 50	
	Command line parameters, 17	
	Config, 22	
	CONFIG, 51	
	COPY, 52	

	D
	demonstration mode, 17, 28, 53	
	Data, 28	
	DISPLAY, 54	
	DISSASEMBLE, 53	
	DMA, 28	

	E
	EMI, 55	
	EVALUATE, 56	

	F
	File, 18, 31	
	flags, 28	
	FORCE, 57	
	function key, 43	

	G
	graph, 26	
	GO, 58	

	H
	Help, 23	
	hardware breakpoints, 46	
	HELP, 59	

	I
	Initialize screen settings, 17	
	I/O Peripherals , 28	
	INPUT, 60	

	J
	Jump, 24	
	JUMP, 63	

	L
	local variables, 29	
	LOAD, 64	
	LOG, 65	

	M
	mixed mode, 27	
	Macro Commands, 39	
	memory verify , 51	

	O
	OnCE , 29	
	OUTPUT, 66	

	P
	PATH, 69	

	Q
	QUIT, 70	

	R
	Run, 20, 24	
	radix, 25	
	RADIX, 71	
	REFRESH, 72	
	registers, 29	
	Reset, 25	
	RETURN, 73	
	reverse assembly mode, 26	

	S
	screen configuration, 17, 33, 34, 75	
	SAVE, 74	
	screen refresh, 51	
	Single step, 24	
	software breakpoints, 45	
	Source level debugging, 34	
	source mode, 26	
	stack , 29	
	stack memory space, 17	
	STEP, 75	
	Stop, 24	
	SYMBOL, 76	
	Symbolic debugging, 33	
	Symbols, 21	

	T
	 trace, 29, 78	
	tab character, 51	
	TIME, 77	
	TRACE, 78	
	trace window, 29	

	U
	UNALIAS, 79	
	UNASSEMBLE, 80	
	USE, 81	

	V
	View, 19	
	VARIABLE, 82	
	Variable parameters , 39	
	VERSION, 83	
	VIEW, 84	

	W
	Window, 23	
	WAIT, 85	
	WATCH, 86	
	windows updates, 51	

