
Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation 1111111111

373373373373373

11.111.111.111.111.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
Pulse code modulation (PCM) is a method of digitizing or quantizing an
analog waveform that is used primarily in the transmission of speech
signals, for example, in telephone communication. As in any analog-to-
digital (A/D) conversion, the quantization process produces an estimate
of the signal sample, possibly introducing an error into the digital
representation because of the finite number of bits available to represent
the value. In theory, this error can be made insignificant by representing
the estimate with a large number of bits (high precision). In practice,
however, there must be tradeoff between the amount of error and the size
of the data representation. The goal is to quantize the data in the smallest
number of bits that results in a tolerable error. In the case of speech
signals, a linear quantization with 13 or 14 bits is the minimum required to
produce a digital representation of the full range of speech signals
accurately.

The number of bits required is reduced to eight in the CCITT
recommendation G.711 by exploiting a nonlinear characteristic of human
hearing. The human ear is more sensitive to quantization noise in small
signals than to noise in large signals. G.711 applies a non-uniform
(logarithmic) quantization function to adjust the data size in proportion to
the input signal. Thus, smaller signals are approximated with greater
precision.

Two quantization functions, or encoding laws, are defined by G.711: µ-law
and A-law. In most cases, the United States and Japan use µ-law, whereas
Europe uses A-law. The ADSP-2100 implementations of PCM encoder and
decoder for both laws are provided in this chapter. In each case,
algorithmic versions of the encoder and decoder are provided. In theory,
the decoder could also be implemented by table lookup, which provides
faster conversion at the cost of additional memory. This implementation is
straightforward and is not described here.

1111111111

374374374374374

Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

In practice, an inexpensive codec is often used to perform the A/D
conversion. The following routines accept encoded speech samples from a
codec and generate a linear sample (decoding), and prepare a linear
sample for output to a codec (encoding).

11.211.211.211.211.2 PULSE CODE MODULATION USING PULSE CODE MODULATION USING PULSE CODE MODULATION USING PULSE CODE MODULATION USING PULSE CODE MODULATION USING µ-LAW-LAW-LAW-LAW-LAW
Rather that taking the logarithm of the linear input directly, which can be
difficult, µ-law PCM matches a logarithmic curve with a piecewise linear
approximation. Eight straight line segments along the curve produce a
close approximation to the logarithmic function. Each of these lines is
called a segment. A sample value is represented by its segment and its
position within the segment.

The CCITT recommendation provides a µ-law conversion table. This table
has several regular characteristics, however, so that the conversion can be
implemented without storing the entire table. The PCM value is in signed-
magnitude format, so the conversion table for negative numbers is the
same as for positive numbers except for the sign. In addition, adding 33 to
the segment endpoints produces boundaries at even powers of two.

The format of the µ-law PCM 8-bit word consists of three parts. The most
significant bit (MSB) is the sign bit, the next three bits contain the segment
number, and the last four bits indicate the position within the segment. All
bits of the number are inverted from their actual values to increase the
density of 1s, (because speech is typically low-energy) a property that can
be used by error-correcting circuitry on transmission lines.

11.2.111.2.111.2.111.2.111.2.1 µ-Law PCM Encoder-Law PCM Encoder-Law PCM Encoder-Law PCM Encoder-Law PCM Encoder
The ADSP-2100 µ-law encoder subroutine, shown in Listing 11.1, is based
on the CCITT recommendation G.711. The only deviation from G.711 is
the input format. Because the ADSP-2100 is optimized for full fractional
numbers (1.15 format), the subroutine accepts input in 1.15 format, instead
of the integer format specified in G.711. To use this routine with integer
input values, you would shift the input two bits to the left, maintaining
the sign, before calling the routine.

The u_compress routine adds 132 (33 shifted left two bits) to the absolute
value of the input, then normalizes the result. The most significant non-
sign bit is zeroed by exclusive-ORing it with H#4000. The position within
the segment is equal to the six MSBs of this number (the two MSBs are
zero, giving the four bits). A 10-bit right shift moves these bits to the
proper position.

1111111111Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

 375 375 375 375 375

The sign of the output word is generated by testing the sign of the original
input, which is stored in the AS flag of the ASTAT register by the absolute
value instruction at the start of the routine. The AR register is cleared to
all zeros if the sign is positive or set to H#4000 if the sign is negative. This
value is shifted to the right seven bits and ORed with the position bits.

The segment number is generated by adding seven to the number of bits
the input value was shifted for normalization (stored in the SE register).
This number is shifted to the left four bits to move it into the proper
position to be ORed with the sign and position bits.

The last step in the encoding process is to invert all bits. This is
accomplished with the NOT instruction. The eight LSBs of the AR register
hold the encoded PCM value.

.MODULE/ROM u_compression;
{

Linear to u-law Compression Subroutine

Calling parameters:
AR = Input linear value

Returns with:
AR = 8-bit u-law value (with all bits inverted)

Altered Registers:
AX0,AY0,AR,SE,SR

Computation Time:
18 cycles

}

.ENTRY u_compress;

u_compress: AR=ABS AR; { Absolute value }
AY0=132;
AR=AR+AY0;
SR1=32636; {This instruction and the next can}
IF AV AR=PASS SR1; {be removed if input ≤ 32636}
SE=EXP AR (HI);
SR=NORM AR (LO); { Normalize input }
AY0=H#4000;
AR=SR0 XOR AY0; { clear NMSB }
SR=LSHIFT AR BY -10 (LO); { position bits }
AX0=SE, AR=PASS AY0;

(listing continues on next page)

1111111111

376376376376376

Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

IF POS AR=PASS 0;
SR=SR OR LSHIFT AR BY -7 (LO); { sign bit }
AY0=7;
AR=AX0+AY0;
SR=SR OR LSHIFT AR BY 4 (LO); { segment bits }
AR=NOT SR0; { Invert all bits }
RTS;

.ENDMOD;

Listing 11.1 Listing 11.1 Listing 11.1 Listing 11.1 Listing 11.1 µ-Law Encoder-Law Encoder-Law Encoder-Law Encoder-Law Encoder

11.2.211.2.211.2.211.2.211.2.2 µ-Law PCM Decoder-Law PCM Decoder-Law PCM Decoder-Law PCM Decoder-Law PCM Decoder
The µ-law PCM decoder expands data received from a transmission line
or a codec to the linear domain. The u_expand routine decodes a PCM
value, requiring 18 cycles to produce a result.

As in the encoder, the only deviation from G.711 is the format of the linear
output data. Because the ADSP-2100 is optimized for full fractional data,
the output is in 1.15 format, rather than the integer format described in
G.711. If integer values are required, you should arithmetically shift the
decoder output two bits to the right or remove the shift-by-2 instruction at
the end of each routine.

The u_expand routine, shown in Listing 11.2, masks out the upper eight
bits of the PCM input value and inverts all of the remaining lower eight
bits. The segment number is moved, in integer format, from the input
word to the SE register. To determine the sign of the input number,
H#FF80 is added to the input value. If the sign bit is set, a number greater
than zero results; otherwise, the result is a number less than zero.

Control passes to the negval block if the input number was negative or
posval block if it was positive. In the negval block the input number
(position bits only, no sign or segment bits) is added to itself, effectively
shifting the value one bit to the left, then added to 33. The value is shifted
by the segment number and stored in the SE register. The shifted value is
subtracted from 33 (the same as subtracting 33 from the shifted value and
negating the result). Then the number is shifted two bits to the left to place
it in 1.15 format.

In the posval block, the input number (position bits only) is added to itself,
effecting a one-bit left shift. After 33 is added to this value, the result is
shifted by the segment number, in the SE register. Then 33 is subtracted
from the value, and the result is shifted into 1.15 format, producing a
linear value.

1111111111Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

 377 377 377 377 377

.MODULE/ROM u_law_expansion;
{

This routine determines the 14-bit linear PCM value (right-
justified) from the 8-bit (right-justified) log (u-law)
value.

Calling parameters:
AR = 8-bit u-law value

Return values:
AR = 16-bit linear value (right-justified)

Altered Registers:
AR,AF,AX0,AY0,SR,SE

Computation Time:
17 Cycles

}

.ENTRY u_expand;

u_expand: AY0=H#FF; { mask unwanted bits }
AF=AR AND AY0, AX0=AY0;
AF=AX0 XOR AF; { invert bits }
AX0=H#70;
AR=AX0 AND AF; { isolate segment bits }
SR=LSHIFT AR BY -4 (LO); { shift to LSBs }
SE=SR0, AR=AR XOR AF; { remove segment bits }
AY0=H#FF80;
AF=AR+AY0;
IF LT JUMP posval; { determine sign }

negval: AR=PASS AF;
AR=AR+AF; { shift left one bit }
AY0=33;
AR=AR+AY0; { add segment offset }
SR=ASHIFT AR (LO); { position bits }
AR=AY0-SR0; { remove segment offset }
RTS;

(listing continues on next page)

1111111111

378378378378378

Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

posval: AF=PASS AR;
AR=AR+AF; { shift left one bit }
AY0=33;
AR=AR+AY0; { add segment offset }
SR=ASHIFT AR (LO);
AR=SR0-AY0; { remove segment offset }
RTS;

.ENDMOD;

Listing 11.2 Listing 11.2 Listing 11.2 Listing 11.2 Listing 11.2 µ-Law Decoder-Law Decoder-Law Decoder-Law Decoder-Law Decoder

11.311.311.311.311.3 PULSE CODE MODULATION USING A-LAWPULSE CODE MODULATION USING A-LAWPULSE CODE MODULATION USING A-LAWPULSE CODE MODULATION USING A-LAWPULSE CODE MODULATION USING A-LAW
A-law PCM uses the same approach as µ-law PCM in approximating the
logarithmic curve using eight line segments. In A-law conversion,
however, the segment endpoints are at even powers of two, rather than
offset by 33. On output, only the even bits of the encoded number are
inverted in A-law. Otherwise, the conversion is the same. The format of
the 8-bit A-law PCM word is the same as the µ-law format; the most
significant bit (MSB) is the sign bit, the next three bits contain the segment
number, and the last four bits indicate the position within the segment.

11.3.111.3.111.3.111.3.111.3.1 A-Law PCM EncoderA-Law PCM EncoderA-Law PCM EncoderA-Law PCM EncoderA-Law PCM Encoder
The ADSP-2100 A-law encoder, shown in Listing 11.3, is based on the
CCITT recommendation G.711. The only deviation from G.711 is the input
format. The encoder accepts its input in full fractional format (1.15),
instead of the integer format specified G.711, because the ADSP-2100 is
optimized for this numeric format. To use this routine with integer input
values, you would shift the input three bits to the left (A-law requires a 3-
bit shift because it is normalized to 13 bits), maintaining the sign, before
calling the routine.

The zero segment values in A-law companding are computed in a slightly
different fashion than those of other segments. If the input is less than 128,
the segment value is simply the input downshifted by four bits. A test at
the beginning of the a_compress routine determines whether the input is
less than 128 and the routine branches accordingly.

For values in all other segments, the routine determines the exponent of
the absolute value of the input using the EXP instruction. The segment

1111111111Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

 379 379 379 379 379

value is the value in SE plus seven. After normalization, the most
significant non-sign bit is removed by exclusive-ORing with H#4000. The
four bits of the segment are positioned by shifting to the right ten bits. The
sign and segment bits are determined in the same way as with µ-law
encoding.

The final step of the compression process is to invert the even bits of the
output. This is accomplished by exclusive-ORing the output with H#55.

.MODULE a_law_compression;

{ This routine determines the 8-bit A-law value from the
16-bit (left-justified) linear input.

 Calling Parameters
AR=16-bit (left-justified) linear input

 Return Values
AR=8-bit log (A-law) value with even bits

inverted

Altered Registers
AR, AF, AXO, AY0, SR, SE

Computation Time
19 cycles

}

.ENTRY a_compress;

a_compress: AR=ABS AR; {Take absolute value}
AY0=127; {Check for zero segment}
AF=AR-AY0;
IF GT JUMP upper_seg;
SR=LSHIFT AR BY -4 (LO);
AR=H#4000;
IF NEG AR=PASS 0;
SR=SR OR LSHIFT AR BY -7 (LO);
AY0=H#55;
AR=SR0 XOR AY0;

(listing continues on next page)

1111111111

380380380380380

Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

RTS;
upper_seg: SE=EXP AR (HI); {Find exponent
adjustment}

AX0=SE, SR=NORM AR (LO); {Normalize input}
AY0=H#4000;
AR=SR0 XOR AY0; {Remove first significant

bit}
SR=LSHIFT AR BY -10 (LO); {Shift position bits}
AR=PASS AY0;
IF NEG AR=PASS 0; {Create sign bit}
SR=SR OR LSHIFT AR BY -7 (LO); {Position sign bit}
AY0=7;
AR=AX0+AY0; {Compute segment}
IF LT AR=PASS 0;
SR=SR OR LSHIFT AR BY 4 (LO);{Position segment bits}
AY0=H#55;
AR=SR0 XOR AY0; {Invert bits}
RTS;

.ENDMOD;

Listing 11.3 A-Law EncoderListing 11.3 A-Law EncoderListing 11.3 A-Law EncoderListing 11.3 A-Law EncoderListing 11.3 A-Law Encoder

11.3.211.3.211.3.211.3.211.3.2 A-Law PCM DecoderA-Law PCM DecoderA-Law PCM DecoderA-Law PCM DecoderA-Law PCM Decoder
The a_expand routine decodes an A-law PCM value, requiring 18 cycles to
produce a result. As in the encoder, the only deviation from the standard
is the format of the linear output data, which is 1.15 format rather than the
integer format as described in G.711. If integer outputs are required,
arithmetically shift the decoder output two bits to the right or remove the
shift-by-3 instruction at the end of each routine.

The a_expand routine, shown in Listing 11.4, ORs the shifted input value
with H#00080800 in the SR register (32-bit register). This simultaneously
sets the LSB of the interval and sets the sign bit (takes the absolute value
of) the input code word. Also, the 12-bit shift of the input places the
segment value in SR1, and the interval in SR0. This value is used to shift
the position bits to their proper location.

The sign of the input is determined by adding H#FF80 to it. If the input is
negative, the result is greater than zero, and the linear value is negated. In

1111111111Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

 381 381 381 381 381

some cases it is necessary to add the interval MSB (32) that was removed
during compression. Either 32 or 0 is stored in AF and ORed with the
interval bits.

.MODULE A_Law_Expansion;
{

This routine determines the 16-bit (left-justified)
linear value from an 8-bit log (a-law) input

Calling Parameters
AR = 8-bit log (a-law) value

Return Values
AR = 16-bit linear output

Altered Registers
AR, AF, AX0, AY0,
SR, SE

Cycle Count
19 Cycles

}

.ENTRY a_expand;

a_expand: AY0=H#0055; {Set mask for inversion}
AR=AR XOR AY0; {Even bit inversion}
SR1=H#0008; {Always set sign bit}
SR0=H#0800; {Set LSB of interval}
SR=SR OR LSHIFT AR
BY 12 (LO); {Isolate segment,

interval}
AY0=32;
AX0=AR, AF=PASS AY0;
AY0=9; {Segment bias}
AR=SR1-AY0; {Determine shift value}
IF LT AF=PASS 0; {No extra MSB bit}
IF EQ AR=PASS 0; {No less then zero bits}

(listing continues on next page)

1111111111

382382382382382

Pulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code ModulationPulse Code Modulation

SR=LSHIFT SR0 BY -11 (LO);{Isolate Interval}
SE=AR, AR=SR0 OR AF; {Add bit if necessary}
SR=LSHIFT AR (LO); {Position output}
SR=LSHIFT SR0 BY 3 (LO);

AY0=H#FF80;
AR=SR0, AF=AX0+AY0; {Is sign bit set?}
IF LT AR=-SR0; {Yes, invert word}
RTS;

.ENDMOD;

Listing 11.4 A-Law DecoderListing 11.4 A-Law DecoderListing 11.4 A-Law DecoderListing 11.4 A-Law DecoderListing 11.4 A-Law Decoder

	Pulse Code Modulation
	11.1 Overview
	11.2 Pulse Code Modulation Using u-Law
	11.2.1 u-Law PCM Encoder
	11.2.2 u-Law PCM Decoder

	11.3 Pulse Code Modulation Using A-Law
	11.3.1 A-Law PCM Encoder
	11.3.2 A-Law PCM Decoder

