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13.113.113.113.113.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
In high-speed data communication systems, there often arises the need for
digital signal processing techniques. In the implementation of medium-
speed (up to 2400 bps) to high-speed (4800 bps and higher) modems,
certain effects of the limited-bandwidth communications channel
(typically a voice-band telephone line) present themselves as obstacles.
The most notable of these effects is intersymbol interference, which is the
“smearing together” of the transmitted symbols over a time-dispersive
channel (Lucky, et al, 1968). This effect is a problem in virtually all pulse-
modulation systems, including pulse-amplitude modulation (PAM),
frequency-shift keying (FSK), phase-shift keying (PSK), and quadrature-
amplitude modulation (QAM) systems.

The basic action in most methods of reducing the effects of intersymbol
interference is to pass the received signal through a filter that
approximates the inverse transfer function of the communications
channel; this process is called equalization. The implementation of an
equalizer usually depends upon the speed of the modem. For medium-
speed modems (generally PSK) “compromise” equalization is often
adequate. Compromise equalization is performed using a short
transversal filter with fixed coefficients that compensate for a wide range
of channel characteristics. High-speed modems (generally QAM) usually
require adaptive equalization using an adaptive filter to compensate for
the excessively wide range of channel characteristics encountered in the
switched telephone network (Qureshi, 1982).

13.213.213.213.213.2 SP COMPLEX-VALUED TRANSVERSAL FILTERSP COMPLEX-VALUED TRANSVERSAL FILTERSP COMPLEX-VALUED TRANSVERSAL FILTERSP COMPLEX-VALUED TRANSVERSAL FILTERSP COMPLEX-VALUED TRANSVERSAL FILTER
In the implementation of PSK and QAM modems, two double-sideband
suppressed-carrier AM signals are sent by the transmitter and separated
at the receiver. Orthogonal (quadrature) carrier signals are used for
modulation and demodulation. It is customary to represent the in-phase
and quadrature components of the received signal as the real and
imaginary parts of a complex signal. Thus, the equalizer will operate upon
this complex signal in order to reduce the effects of intersymbol
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interference. In practice, the equalizer may be inserted either before
(passband equalization) or after (baseband equalization) the
demodulation of the received signal (Qureshi, 1982).

The subroutine shown in Listing 13.1 presents an FIR filter routine for
complex-valued data and coefficients that could be used to implement an
equalizer. This routine implements the same sum-of-products operation as
the nonadaptive (fixed-coefficient) FIR filter presented in Chapter 5; it has
been modified to operate upon complex values. The filter is described by
the equation on the next page.

N–1

y(n) =  ∑  hk x(n–k)
k = 0

The first loop, realloop, computes the real output by computing the sum of
products of the real data values and the real coefficients, and subtracting
the sum of products of the imaginary data values and the imaginary
coefficients. The second loop, imagloop, is similar in that it computes the
imaginary output as the sum of products of the real data values and the
imaginary coefficients, added to the sum of products of the imaginary
data values and the real coefficients. The outputs in both cases are
rounded and conditionally saturated.

.MODULE cfir_sub;

{ Single-Precision Complex FIR Filter Subroutine

Calling Parameters
I0 —> Oldest data value in real delay line (Xr’s)
L0 = filter length (N)
I1 —> Oldest data value in imaginary delay line (Xi’s)
L1 = filter length (N)
I4 —> Beginning of real coefficient table (Hr’s)
L4 = filter length (N)
I5 —> Beginning of imaginary coefficient table (Hi’s)
L5 = filter length (N)
M0,M4 = 1
AX0 = filter length minus one (N-1)
CNTR = filter length minus one (N-1)
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Return Values
I0 —> Oldest data value in real delay line
I1 —> Oldest data value in imaginary delay line
I4 —> Beginning of real coefficient table
I5 —> Beginning of imaginary coefficient table
SR1 = real output (rounded and conditionally saturated)
MR1 = imaginary output (rounded and conditionally saturated)

Altered Registers
MX0,MY0,MR,SR1

Computation Time
2 × (N-1) + 2 × (N-1) + 13 + 8 cycles

All coefficients and data values are assumed to be in 1.15 format.
}

.ENTRY cfir;

cfir: MR=0, MX0=DM(I1,M0), MY0=PM(I5,M4);
DO realloop UNTIL CE;
     MR=MR-MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4); {Xi × Hi}

realloop:    MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I5,M4); {Xr × Hr}
MR=MR-MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4); {Last Xi × Hi}
MR=MR+MX0*MY0(RND); {Last Xr × Hr}
IF MV SAT MR;
SR1=MR1; {Store Yr}
MR=0, MX0=DM(I0,M0), MY0=PM(I5,M4);
CNTR=AX0;
DO imagloop UNTIL CE;
     MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I4,M4); {Xr × Hi}

imagloop:    MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I5,M4); {Xi × Hr}
MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I4,M4); {Xr × Hi}
MR=MR+MX0*MY0(RND); {Xi × Hr}
IF MV SAT MR; {MR1=Yi}
RTS;

.ENDMOD;

Listing 13.1  Single-Precision Complex FIR FilterListing 13.1  Single-Precision Complex FIR FilterListing 13.1  Single-Precision Complex FIR FilterListing 13.1  Single-Precision Complex FIR FilterListing 13.1  Single-Precision Complex FIR Filter
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13.313.313.313.313.3 COMPLEX-VALUED STOCHASTIC GRADIENTCOMPLEX-VALUED STOCHASTIC GRADIENTCOMPLEX-VALUED STOCHASTIC GRADIENTCOMPLEX-VALUED STOCHASTIC GRADIENTCOMPLEX-VALUED STOCHASTIC GRADIENT
As mentioned previously, non-adaptive or compromise equalization is
usually only adequate in medium-speed modems. High-speed modems
require the equalizer coefficients to be adapted because of changing
channel characteristics. In fact, even many 2400-bps modems incorporate
adaptive equalization.

Although many adaptive filtering algorithms exist, virtually all adaptive
equalizers in high-speed modems utilize the stochastic gradient (SG)
algorithm (described in Chapter 5). This is primarily because it generally
provides adequate performance and requires the least computation for a
given filter order as compared to the other adaptive algorithms. Using the
SG algorithm, filter coefficients at time T, cj(T), are adapted through the
following equation:

cj(T + 1) = cj(T) + ßec(T) y*(T – j + 1)

In this equation, ec(T) is the estimation error formed by the difference
between the signal it is desired to estimate, d(T), and a weighted linear
combination of the current and past input values y(T).

n

ec(T) = d(T) –  ∑   cj(T) y(T – j + 1)
j = 1

The value y(T – j + 1) represents the past value of the input signal
“contained” in the jth tap of the transversal filter. For example, y(T), the
present value of the input signal, corresponds to the first tap and y(T – 42)
corresponds to the forty-third filter tap. The step size ß controls the “gain”
of the adaptation.

The coefficients are usually adapted during some training period after
connection has been established. This involves the transmission of some
known training sequence to the modem, during which time the equalizer
adapts its coefficients according to a synchronized version of the received
training sequence. Upon completion of the training period, slight
variations in the channel characteristics may be tracked by performing the
adaptation based on the estimate of the received symbol. This is referred
to as decision-directed adaptation, and in some cases it is relied upon to
perform the initial adaptation as well.
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A subroutine for performing adaptation of complex FIR filter coefficients
according to the stochastic gradient algorithm is given in Listing 13.2. In
this subroutine, the cache memory is utilized very effectively, since four
program memory accesses are made each time through the loop.

.MODULE csg_sub;

{ Single-Precision Complex SG Update Subroutine

Calling Parameters
I0 —> Oldest data value in real delay line L0 = N
I1 —> Oldest data value in imag delay line L1 = N
I4 —> Beginning of real coefficient table L4 = N
I5 —> Beginning of imag coefficient table L5 = N
MX0 = real part of Beta × Error
MX1 = imag part of Beta × Error
M0,M5 = 1
M4=0
M1= -1
CNTR = Filter length (N)

Return Values
Coefficients updated
I0 —> Oldest data value in real delay line
I1 —> Oldest data value in imaginary delay line
I4 —> Beginning of real coefficient table
I5 —> Beginning of imaginary coefficient table

Altered Registers
MY0,MY1,MR,SR,AY0,AY1,AR

Computation Time
6 × N + 10 cycles

All coefficients and data values are assumed to be in 1.15 format.
}

(listing continues on next page)
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.ENTRY csg;

csg: MY0=DM(I0,M0); {Get Xr}
MR=MX0*MY0(SS), MY1=DM(I1,M0); {Er × Xr, get Xi}
DO adaptc UNTIL CE;
   MR=MR+MX1*MY1(RND), AY0=PM(I4,M4); {Ei × Xi, get Hr}
   AR=AY0-MR1, AY1=PM(I5,M4); {Hr-Er × Xr+Ei × Xi, get Hi}
   PM(I4,M5)=AR, MR=MX1*MY0(SS); {Store Hr, Er × Xi}
   MR=MR-MX0*MY1(RND), MY0=DM(I0,M0); {Ei × Xr, get Xr}
   AR=AY1-MR1, MY1=DM(I1,M0); {Hi-Er × Xi-Ei × Xr, get Xi}

adaptc:    PM(I5,M5)=AR, MR=MX0*MY0(SS); {Store Hi, Er × Xr}
MODIFY(I0,M1);
MODIFY(I1,M1);
RTS;

.ENDMOD;

Listing 13.2  Single-Precision Complex Stochastic GradientListing 13.2  Single-Precision Complex Stochastic GradientListing 13.2  Single-Precision Complex Stochastic GradientListing 13.2  Single-Precision Complex Stochastic GradientListing 13.2  Single-Precision Complex Stochastic Gradient

13.413.413.413.413.4 EUCLIDEAN DISTANCEEUCLIDEAN DISTANCEEUCLIDEAN DISTANCEEUCLIDEAN DISTANCEEUCLIDEAN DISTANCE
In the receiver of a high-speed modem, some method must be established
for determining to which values from the space of possibilities the real
and imaginary parts of the received sample correspond. In some QAM
modems with large signal constellations, this can be a rather non-trivial
process. For example, the CCITT V.29 standard calls for a 16-point signal
constellation. One means of determining the value of samples is the
Euclidean distance measure. This method involves computing the
distance (error) between the received sample value and all possible
candidates for the transmitted sample, given the signal constellation. The
error is given by the following equation:

e(j) = ((xr – cr (j))
2 + (xi – ci (j))

2)1/2

In this equation, the error e(j) is the distance between the received signal
value, x, and the jth signal constellation value, c, in the real-imaginary
plane. The value of j for which e(j) is minimum then selects the
constellation point.

A subroutine for computing the Euclidean distance is shown in Listing
13.3. The ptloop loop is executed once for each point in the given signal
constellation. The (squared) distance between x and each point is
computed. AF is loaded with this value if it is less than the previous
minimum, and the index corresponding to that constellation value
(obtained from the current CNTR value) is stored in SI. After all distances
have been computed, SI contains the index of the point that corresponds
to the minimum e(j). This index can be used to select the constellation
value.
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.MODULE dist_sub;

{ Euclidean Distance Subroutine

Calling Parameters
I1 —> Start of constellation (C) table
AX0 contains Xr
AX1 contains Xi
L1 = length of constellation table
M0 = 1
M1 = -1
CNTR = length of constellation table

Return Values
SI contains the decision index j
AF contains the minimum distance (squared)
I1 —> Beginning of constellation table

Altered Registers
AY0,AY1,AF,AR,MX0,MY0,MY1,MR,SI

Computation Time
10 × N + 5 (maximum)

}

.ENTRY dist;

dist: AY0=32767;                      {Init min distance to largest possible value}
AF=PASS AY0, AY0=DM(I1,M0);     {Get Cr}
DO ptloop UNTIL CE;
   AR=AX0-AY0, AY1=DM(I1,M0);   {Xr-Cr, Get Ci}
   MY0=AR, AR=AX1-AY1;          {Copy Xr-Cr, Xi-Ci}
   MY1=AR;                      {Copy Xi-Ci}
   MR=AR*MY1(SS), MX0=MY0;      {(Xi-Ci) 2, Copy Xr-Cr}
   MR=MR+MX0*MY0 (RND);         {(Xr-Cr) 2}
   AR=MR1-AF;                   {Compare with previous minimum}
   IF GE JUMP ptloop;
   AF=PASS MR1;                 {New minimum if MR1<AF}
   SI=CNTR;                     {Record the constellation index}

ptloop:    AY0=DM(I1,M0);
MODIFY(I1,M1);                  {Point back to beginning of table}
RTS;

.ENDMOD;

Listing 13.3  Euclidean DistanceListing 13.3  Euclidean DistanceListing 13.3  Euclidean DistanceListing 13.3  Euclidean DistanceListing 13.3  Euclidean Distance
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