
MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing 1717171717

553553553553553

17.117.117.117.117.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
Complex signal processing applications may demand higher performance
than a single DSP processor can provide. When a single processor falls
short, a multiprocessor architecture may boost throughput. However, the
law of diminishing returns applies. As more processors are added,
additional computation time is spent in interprocessor communication,
degrading the overall performance for each processor. Four processors,
for example, cannot deliver four times the computation power of one
processor. A processor pair almost doubles the speed of a single processor
while keeping the architecture and interprocessor coordination as simple
as possible. This chapter develops a processor-pair architecture, based on
a dual-port RAM. The design is easy to implement and provides a
significant computational boost over a single processor.

17.217.217.217.217.2 SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURESOFTWARE ARCHITECTURESOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE
To complement the hardware design, a hypothetical application is
presented. Data is input and low-pass filtered by one processor, then the
second processor determines the peak location within a filtered window.
Although the software implementation is simplistic, it shows a technique
for programming in a multiprocessing environment: alternating buffers
and flags.

The alternating buffers in this application are two identical buffers located
in dual-port RAM so both processors can access them. The first processor
fills buffer 1 with information, while the second processes the information
in buffer 2. Each buffer has a flag that indicates completion of operations
on that buffer. When processor 1 has finished its operations on the buffer
data, it sets the flag, signaling processor 2 to begin operations on that
buffer. The sequence of operations is shown in Figure 17.1, on the next
page.

The alternating buffer scheme is easier to implement than a single buffer
scheme. If only one buffer were used, careful timing analysis or extensive
handshaking would be required to ensure that the processors did not use
old or invalid data.

1717171717

554554554554554

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

Processor 1 (Filter)Processor 1 (Filter)Processor 1 (Filter)Processor 1 (Filter)Processor 1 (Filter) Processor 2 (Peak Locator)Processor 2 (Peak Locator)Processor 2 (Peak Locator)Processor 2 (Peak Locator)Processor 2 (Peak Locator)

Initialize flags, coefficients Initialize pointers
delay line, pointers

Perform low pass filter Check flag 1; wait if not set
operation on data in
buffer 1

Set flag 1
Check flag 1; if set, perform

Perform low pass filter peak locating operation on
operation on data in data in buffer 1
buffer 2

Clear flag 1
Set flag 2

Check flag 2; if set, perform
Perform low pass filter peak locating operation on
operation on data in data in buffer 2
buffer 1

Clear flag 2
Set flag 1; etc.

Check flag 1; etc.

Figure 17.1 Alternating Buffers and FlagsFigure 17.1 Alternating Buffers and FlagsFigure 17.1 Alternating Buffers and FlagsFigure 17.1 Alternating Buffers and FlagsFigure 17.1 Alternating Buffers and Flags

17.317.317.317.317.3 HARDWARE ARCHITECTUREHARDWARE ARCHITECTUREHARDWARE ARCHITECTUREHARDWARE ARCHITECTUREHARDWARE ARCHITECTURE
This system includes two ADSP-2100s, each with its own private
memories. Private memories are accessible to one processor only.
Common memory is accessed by both. Figure 17.2 shows a block diagram
of the system.

Each processor has a private memory of 32K of 24-bit program memory
and 14K of 16-bit data memory. In addition, 2K of 16-bit dual-port RAM is
shared by both processors. This area of memory allows inter-processor
communication and data transfers.

17.3.117.3.117.3.117.3.117.3.1 Using Dual-Port MemoryUsing Dual-Port MemoryUsing Dual-Port MemoryUsing Dual-Port MemoryUsing Dual-Port Memory
The 2K x 8-bit dual-port RAMs used in this design are the IDT7132 and
the IDT7142 produced by Integrated Device Technology. A useful feature
of the IDT7132 is its on-chip arbitration support. The IDT7142 acts as a

1717171717MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

555555555555555

Processor 1

Common

Data

Memory

Data Memory

PMA

PMD
Program
Memory

DMA

DMDADSP-2100

DMACK

Private
Data

Memory PMA

PMD
Program
Memory

DMA

DMD ADSP-2100

DMACK

Private
Data

Memory

Processor 2

BUSYBUSY
L R

Figure 17.2 Processor Pair Block DiagramFigure 17.2 Processor Pair Block DiagramFigure 17.2 Processor Pair Block DiagramFigure 17.2 Processor Pair Block DiagramFigure 17.2 Processor Pair Block Diagram

slave chip to the IDT7132 and does not require arbitration circuitry. Most
memory accesses can be completed without arbitration, but contention
situations require arbitration. Contention occurs if both processors are
writing the memory at the same time or if one processor is writing while
the other is reading. A simultaneous read by both processors does not
cause contention.

Without arbitration, simultaneous writes to a location result in an
indeterminate value. The actual value stored is dependent on component
timing and other variables.

A simultaneous read/write might occur when one processor is updating
variables that the other processor is using in its computations. When one
processor is reading a location the other is writing, the result without
arbitration depends on the timing of the individual components. The
result of the read might be the old value, the new value, or something in
between.

The on-chip arbitration of the IDT7132 prohibits simultaneous access of a
single memory location. The arbiter circuit consists of two address
comparators and two BUSY output signals, one signal for each side of the
dual-port memory. If both addresses are equal (and CE for that memory is
active) the processor whose address arrived last is held with the BUSY
signal. With the BUSY output of the RAM connected to the DMACK input
of the corresponding ADSP-2100, the ADSP-2100 will insert wait states
while the other ADSP-2100 completes a memory access. In this way, the
access for one side is delayed.

1717171717

556556556556556

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

When programming in this environment, it is important to be aware of the
delay that can occur from contention. Wherever possible, contention
should be avoided. One way to avoid contention is to synchronize
program flow using the flags in software, so both processors do not access
the same buffer concurrently. In the example software shown in this
chapter, the alternating buffer scheme prevents the processors from
trying to access the same data. Contention can occur only if both
processors try to access the same flag.

17.3.217.3.217.3.217.3.217.3.2 Dual-Port Memory InterfaceDual-Port Memory InterfaceDual-Port Memory InterfaceDual-Port Memory InterfaceDual-Port Memory Interface
Two 2K x 8-bit dual-port RAM chips are shared between the two ADSP-
2100s. This memory is used to transfer information between the two
processors. The lowest 2K of data memory space on each processor
(locations 0000-2048) is dual-ported. Additional dedicated memory can be
added to each processor as needed; decoding is provided for a full 16K of
data memory. If your application requires less memory, only include the
amount you require. Additional dual-port memory can be used in place of
private memory as needed.

The eleven low address bits (DMA0-DMA10) of each processor are
connected to either the left-side or right-side address bits of the dual-port
memory. The upper three address lines (DMA11-DMA14) are connected
to a 1-of-8 decoder to determine which memory bank is enabled. Each
BUSY output from the dual-port memory is connected directly to the
DMACK input of the corresponding ADSP-2100. When contention occurs,
the memory’s arbitration circuitry pulls one of the BUSY lines low.

17.3.317.3.317.3.317.3.317.3.3 Decoder TimingDecoder TimingDecoder TimingDecoder TimingDecoder Timing
Because the memory consists of multiple 2K blocks of memory, a 1-of-8
decoder is necessary to produce the appropriate chip enable (CE) signal
for each memory chip. The delay incurred by decoding the address bits is
important because the BUSY output delay from the IDT7132 is relative to
CE, and BUSY must be returned to the DMACK input of the ADSP-2100
well before the end of the access cycle.

The CE-to-BUSY delay of the IDT7132 is 30ns (for a 45ns part). The ADSP-
2100 has three timing requirements for DMACK. DMACK must be
returned a specified time after DMA becomes stable (#75 timing
parameter from the ADSP-2100 Data Sheet). During a read cycle, DMACK
must be returned a specified time after DMRD goes low (#74). During a
write cycle, DMACK must be returned a specified time after DMWR goes
low (#99). Calculations for each of these three requirements determine the
maximum permissable decoder delay, as shown in Figure 17.3. The
decoder must be faster than the minimum value of all three.

1717171717MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

557557557557557

ADSP-2100
DMA

Address
Decoder
CE (to
IDT7132)

IDT7132
BUSY (to
ADSP-2100
DMACK)

decoder
delay

30ns

#75 maximum ADSP-2100
DMA

Address
Decoder
CE (to
IDT7132)

IDT7132
BUSY (to
ADSP-2100
DMACK)

decoder
delay

30ns

#74 maximum

ADSP-2100
DMRD

#68 minimum

ADSP-2100
DMA

Address
Decoder
CE (to
IDT7132)

IDT7132
BUSY (to
ADSP-2100
DMACK)

decoder
delay

30ns

#99 maximum

ADSP-2100
DMWR

#79 minimum

Requirement 1 Requirement 2

Requirement 3

Figure 17.3 Calculating Decoder Delay RequirementFigure 17.3 Calculating Decoder Delay RequirementFigure 17.3 Calculating Decoder Delay RequirementFigure 17.3 Calculating Decoder Delay RequirementFigure 17.3 Calculating Decoder Delay Requirement

1717171717

558558558558558

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

Requirement 1, for the DMA to DMACK specification (#75), determines
the maximum decoder delay as follows:

(DMACK to DMA Valid) – BUSY Delay

or

#75 – 30ns

Requirement 2, for the DMRD to DMACK specification (#74), must
include the DMA to DMRD delay (#68). The maximum decoder delay is
determined as follows:

(DMA to DMRD) + (DMRD to DMACK) – BUSY delay

or

#68 + #74 – 30ns

Likewise, Requirement 3 for the DMWR to DMACK specification (#99),
must include the DMA to DMWR delay (#79).

(DMA to DMWR) + (DMWR to DMACK) – BUSY delay

or

#79 + #99 – 30ns

For an 8MHz ADSP-2100, the minimum value of all three calculations is
7ns. The 74FCT138A 1-of-8 CMOS decoder has a 6ns maximum delay,
providing the necessary speed to use the 45ns dual-port memory.

17.417.417.417.417.4 SYNCHRONIZING MULTIPLE ADSP-2100SSYNCHRONIZING MULTIPLE ADSP-2100SSYNCHRONIZING MULTIPLE ADSP-2100SSYNCHRONIZING MULTIPLE ADSP-2100SSYNCHRONIZING MULTIPLE ADSP-2100S
Although processor clock synchronization is not absolutely necessary in a
multiprocessor environment, it is advisable. Synchronization ensures that
both processors are executing the same internal phase at the same time.

In a system which contains more than one ADSP-2100, synchronization is
guaranteed if the processors share a common clock and a common RESET
signal. When the RESET line is asserted, both ADSP-2100s become
synchronized so that their internal clock phases are the same.

1717171717MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

559559559559559

17.517.517.517.517.5 DEVELOPMENT TOOLSDEVELOPMENT TOOLSDEVELOPMENT TOOLSDEVELOPMENT TOOLSDEVELOPMENT TOOLS
The ADSP-2100 Development Tools can be used with multiprocessing
architectures. Following a few guidelines in writing the software ensures
proper operation. Each part of the Development Tools that requires
special consideration is described below.

17.5.117.5.117.5.117.5.117.5.1 System BuilderSystem BuilderSystem BuilderSystem BuilderSystem Builder
The System Architecture file for the system presented in this chapter is
shown in Listing 17.1. The program memory space is allocated with 16K of
memory for instructions and 16K for data. The data memory space is also
divided into two blocks. The lowest 2K is the dual-port memory that
shared by both processors. Each processor has an additional 14K of
private data memory.

Both processors use the same architecture file in this example. In other
applications, each processor might have different memory requirements.
The dual-port memory could be mapped into different locations on each
processor. For example, one processor could map the dual-port memory
in the 0 to 2K range, while the other maps the common memory in the 14K
to 16K range.

.SYSTEM multiprocessor;

{Program Memory Section}
.SEG/ROM/ABS=0/PM/CODE code_area[H#4000];
.SEG/RAM/ABS=H#4000/PM/DATA data_area[H#4000];

{Data Memory Section}
.SEG/RAM/ABS=0/DM/DATA common_memory[H#0800];
.SEG/RAM/ABS=H#800/DM/DATA private_memory[H#3800];

.ENDSYS;

Listing 17.1 System Architecture FileListing 17.1 System Architecture FileListing 17.1 System Architecture FileListing 17.1 System Architecture FileListing 17.1 System Architecture File

17.5.217.5.217.5.217.5.217.5.2 AssemblerAssemblerAssemblerAssemblerAssembler
Two common arrays and associated flags store the filtered data. They are
declared in each processor’s main routine (shown in Listings 17.2 and
17.3).

The absolute (ABS) directive causes the variable to be stored in the
absolute location specified in the code. Without the ABS directive, the

1717171717

560560560560560

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

Linker is free to place data anywhere in available memory. The Linker
places variables in contiguous areas of memory if their declarations are all
on the same line.

Because the dual-port memory is defined in both processors’ data memory
space, the processors must not have conflicting allocations in shared
memory. The best way to avoid this is to dedicate sections of the dual-port
memory not needed for communication to one processor only. This can be
done by allocating a dummy array in one processor’s code over the range
of memory dedicated to the other processor.

Listing 17.2 shows the variable declarations for the filter processing
module. This code executes an FIR filter on the data. The output of the
filter is stored in one of the two data arrays. When the array is full, the
appropriate full_flag is set, informing the peak processor to start its
operations. The filter processor can then filter another window of data
into the alternate data array.

The Linker is free to place additional variables anywhere in the
unallocated areas. No contention can occur within the common memory,
because it is entirely allocated to one processor or the other.

.MODULE data_filter;

.INCLUDE <const.h>;

{Dual Port Memory Declarations}
.VAR/DM/RAM/ABS=0 full_flag_1, data_1[256];
.VAR/DM/RAM/ABS=256 reserved_for_peak_module[767];

.VAR/DM/RAM/ABS=1024 full_flag_2, data_2[256];

{Private Memory Declarations}
.VAR/PM/RAM/CIRC coefficient[taps];
.VAR/DM/RAM/CIRC delay[taps];

.INIT coefficient : <coeff.dat>;

.INIT full_flag_1 : 0;

.INIT full_flag_2 : 0;

1717171717MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

561561561561561

I0=^delay; L0=%delay;
I4=^coefficient; L4=%coefficient;
I1=^data_1; L1=0;
M0=0; M1=1; M4=1;

main: I1=^data_1;
CALL zero_delay;
CALL do_filter;
AX0=H#FFFF;
DM(full_flag_1)=AX0;
I1=^data_2;
CALL zero_delay;
CALL do_filter;
AX0=H#FFFF;
DM(full_flag_2)=AX0;
JUMP main; {continue loop}

zero_delay: CNTR=%delay;
AX0=0;
DO zero_it UNTIL CE:

zero_it: DM(I0,M1)=AX0;
RTS;

do_filter: CNTR=%data_1;
DO filter_data UNTIL CE;
 CNTR=taps-1;
 SI=DM(I1,M0);
 DM(I0,M1)=SI;
 MR=0, MX0=DM(I0,M1), MY0=PM(I4,M4);
 DO tap_loop UNTIL CE;

tap_loop: MR=MX0*MY0 (SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 MR=MX0*MY0 (SS);
 IF MV SAT MR;

filter_data: DM(I1,M1)=MR1;

RTS;

.ENDMOD;

Listing 17.2 Source Code for Filter ProcessorListing 17.2 Source Code for Filter ProcessorListing 17.2 Source Code for Filter ProcessorListing 17.2 Source Code for Filter ProcessorListing 17.2 Source Code for Filter Processor

1717171717

562562562562562

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

The array called reserved_for_peak_module is an array of common memory
that used only by the peak processor to avoid conflicting memory
allocations. Listing 17.3 shows the variable declarations for the peak
processor. The two ranges of memory shared by the processors have
identical declarations. The only difference is that the peak processor has
the reserved space in the upper 1K of the dual-port area for the filter
processor.

.MODULE/ABS=0 peak_processor;

{Dual Port Memory Declarations}
.VAR/DM/RAM/ABS=0 full_flag_1,data_1[256];

.VAR/DM/RAM/ABS=1024 full_flag_2,data_2[256];

.VAR/DM/RAM/ABS=1281 reserved_for_filter_module[767];

RTI;
RTI;
RTI;
RTI;

L0=0;
M0=1;

main: AX0=DM(full_flag_1);
AR=PASS AX0;
IF EQ JUMP main;
I0=^data_1;
CALL peak;

{Do something with the peak value}
AX0=0;
DM(full_flag_1)=AX0;

check_2: AX0=DM(full_flag_2);
AR=PASS AX0;
IF EQ JUMP check_2;
I0=^data_2;
CALL peak; {Do something with the peak value}
AX0=0;
DM(full_flag_2)=AX0;
JUMP main;

1717171717MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

563563563563563

peak: CNTR=%data_1-1;
AY0=DM(I0,M0);
AR=PASS AY0;
DO find_peak UNTIL CE;
 AF=AR-AY0, AY0=DM(I0,M0);

find_peak: IF LT AR=PASS AY0;
AF=AR-AY0;
IF LT AR=PASS AY0;
RTS;

.ENDMOD;

Listing 17.3 Source Code for Peak ProcessorListing 17.3 Source Code for Peak ProcessorListing 17.3 Source Code for Peak ProcessorListing 17.3 Source Code for Peak ProcessorListing 17.3 Source Code for Peak Processor

17.5.317.5.317.5.317.5.317.5.3 SimulationSimulationSimulationSimulationSimulation
The multiprocessing environment can be tested using the Simulator.
When simulated, the filter program produces output data and stores it in
the common data memory. You can then use the Simulator command to
dump from data memory to store the dual-port data memory image on
disk. Restart the Simulator, loading the peak processor program, and
execute the Simulator command to reload the image of the common
memory. Then simulate the peak processor program, which operates on
the data generated by the filter program. A batch file that automatically
executes this sequence of commands (using ADSP-2100 Cross-Software
version 1.5x commands) is shown in Figure 17.4.

Command Comment
load filter Load filter program
readimage test.dat Load memory image of input data
run Execute filter program
dumpdm full_flag_1 257 hold.dat i Write the file hold.dat with the flag

and buffer data
load peak Load peak program
readimage hold.dat Load memory image of flag and

data buffer from hold.dat
run Execute peak program

Figure 17.4 Batch File ExampleFigure 17.4 Batch File ExampleFigure 17.4 Batch File ExampleFigure 17.4 Batch File ExampleFigure 17.4 Batch File Example

1717171717

564564564564564

MultiprocessingMultiprocessingMultiprocessingMultiprocessingMultiprocessing

	Chapter 17: Multiprocessing
	17.1 Overview
	17.2 Software Architecture
	17.3 Hardware Architecture
	17.3.1 Using Dual-Port Memory
	17.3.2 Dual-Port Memory Interface
	17.3.3 Decoder Timing

	17.4 Synchronizing Multiple ADSP-2100s
	17.5 Development Tools
	17.5.1 System Builder
	17.5.2 Assembler
	17.5.3 Simulation

