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2.12.12.12.12.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
Binary number representations usually include a sign and a radix point, as
well as a magnitude. The sign shows whether the number is positive or
negative. The radix point separates the integer and fractional parts of the
number.

The sign of a binary number can be represented with one bit. In most
representations, a zero indicates positive and a one indicates negative. The
sign bit is usually in the leftmost location (most significant bit).

There are several formats for representing negative numbers, including
signed-magnitude, ones complement, and twos complement. The most
common method, and the one used by the ADSP-2100, is twos
complement. The advantage of twos-complement format is that it
provides a unique representation for zero, whereas the other formats have
both a positive and a negative zero. In twos-complement format, zero is
considered positive; therefore, the magnitude of the largest negative
number that can be represented with a given number of bits is one greater
than the magnitude of the largest positive number. A twos-complement
number of k+1 bits (one bit indicates the sign and k bits indicate the
magnitude) can represent the range of numbers from 2k –1 to –2k.

The twos complement of a binary number can be calculated in one of two
ways: 1) invert all the bits and add one to the least significant bit, or 2)
invert all bits to the left of the least significant 1. For example:

Binary +72   0100 1000
Invert bits   1011 0111
Add 1                                                                              +
0000 0001
Binary –72   1011 1000

or

Binary +72   0100 1000
Invert all bits left of         |
least significant 1     invert
Binary –72   1011 1000 1313131313
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A radix point is placed between two bits in a number. The bits to the left
of the radix point represent the integer part of the number; the bits to the
right of the radix point represent the fractional part of the number. There
are two ways to specify the location of the radix point:

• Fixed-point format places the radix point at a single, predetermined
location. Often this location is to the left of all bits (all bits are
fractional) or to the right of all bits (all bits are integer). Because the
location of the radix point is assumed by software, it does not need to
be represented explicitly. Arithmetic operations (such as
multiplication) can change the radix-point position so that shifting
may be necessary to keep the number in the same fixed-point format.

• Floating-point format uses two numbers to represent a value: a
mantissa and an exponent. The exponent indicates the location of the
radix point. The exponent may be stored along with the mantissa or in
a separate register.

The ADSP-2100 represents numbers in a fixed-point format. In this
publication, the location of the radix point is given by the format
designation I.Q, in which I is the number of bits to the left of the radix
point and Q is the number of bits to the right. For example, the 1.15 format
indicates signed full fractional numbers; one integer bit indicates the sign,
and 15 fractional bits indicate the fractional magnitude. Full integer
number representation is 16.0 format. For most signal processing
applications, fractional numbers (1.15 format) are assumed. The multiplier
and divider of the ADSP-2100 are optimized for use with this format.

ADSP-2100 addition, subtraction, and multiplication primitives operate
directly on single-precision (16-bit) numbers. In this chapter, we show an
example of how to program the ADSP-2100 to perform single-precision,
fixed-point division. We also include explanations of extended-precision,
fixed-point arithmetic. Example implementations of addition, subtraction,
and multiplication are shown in both double precision (32-bit operands)
and triple precision (48-bit operands). Division is shown using a 64-bit
dividend and a 32-bit divisor.

Double-precision operations are most common, so we show examples that
can be implemented directly. Triple-precision arithmetic is also shown to
demonstrate how to handle the middle words of extended-precision
numbers. Repeating the middle-word operations allows extension to any
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precision.
2.2 SINGLE-PRECISION FIXED-POINT DIVISION
The ADSP-2100 instruction set includes two divide primitives, DIVS and
DIVQ, to compute fixed-point division. The DIVS instruction calculates
the sign bit of the quotient, and the DIVQ calculates a single bit of the
quotient. These instructions can be used to implement a nonrestoring
(remainder is invalid) add/subtract division algorithm that works with
signed or unsigned operands. The operands must be either both signed or
both unsigned. Because each instruction produces one bit of the quotient,
dividing a 16-bit divisor into a 32-bit dividend to produce a 16-bit quotient
requires 16 instructions, and therefore 16 cycles. Block diagrams of the
DIVS and DIVQ operations are shown in Figures 2.1 and 2.2, on the
following page.

The division algorithm performs either an addition or subtraction based
on the signs of the divisor and the partial remainder. Mano, 1982, gives an
excellent explanation of a similar algorithm.

In the ADSP-2100 implementation of the division algorithm for signed
operands, the divisor can be stored in AX0, AX1, or any register on the R
bus. The MSW of the dividend can be loaded into AY1 or AF, and the
dividend’s LSW is loaded into AY0. To calculate the quotient, the ADSP-
2100 first executes a DIVS instruction to compute the sign of the quotient,
followed by 15 DIVQ instructions to compute 15 quotient bits. A signed
fixed-point division routine is shown in Listing 2.1. This routine takes the
divisor from AX0, the dividend’s MSW from AF, and the dividend’s LSW
from AY0. The quotient is returned in AY0.

In unsigned division, the dividend’s MSW must be loaded into AF, and
the ASTAT register must be cleared to set the AQ bit to zero. The ADSP-
2100 executes 16 DIVQ instructions. Listing 2.2 shows a subroutine to
perform an unsigned division. The registers must be preloaded with the
same values as for the signed division routine: the divisor in AX0, the
dividend’s MSW in AF, and the dividend’s LSW in AY0.

The format of the quotient is determined by the format of the two
operands. If the dividend is in P.Q format, and the divisor is in M.N
format, the quotient will be in (P–M+1).(Q–N–1) format. Some format
manipulation may be necessary to guarantee the validity of the quotient.
For example, if both operands are signed and fully fractional (dividend in
1.31 format and divisor in 1.15 format) then the result is fully fractional (in
1.15 format), and therefore the dividend must be smaller than the divisor
for a valid quotient.
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To divide two integers (dividend in 32.0 format and divisor in 16.0 format)
and produce an integer quotient (in 16.0 format), you must shift the
dividend one bit to the left (into 31.1 format) before dividing.

.MODULE Signed_SP_Divide;

{
Signed Single-Precision Divide

Calling Parameters
AF = MSW of dividend
AY0 = LSW of dividend
AX0 = 16-bit divisor

Return Values
AY0 = 16-bit result

Altered Registers
AY0, AF

Computation Time
17 cycles

}
.ENTRY sdivs;

sdivs: DIVS AF,AX0; {Compute sign bit}
DIVQ AX0; DIVQ AX0; DIVQ AX0; {Compute 15 quotient bits}
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;
RTS;RTS;RTS;RTS;RTS;

.ENDMOD.ENDMOD.ENDMOD.ENDMOD.ENDMOD;

Listing 2.1  Single-Precision Divide, Signed
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.MODULE Unsigned_SP_Divide;

{
Unsigned Single-Precision Divide

Calling Parameters
AF = MSW of dividend
AY0 = LSW of dividend
AX0 = 16-bit divisor

Return Values
AY0 = 16-bit result

Altered Registers
AY0, AF

Computation Time
18 cycles

}

.ENTRY sdivq;

sdivq: ASTAT=0;    {Clear AQ bit of ASTAT}
DIVQ AX0;    {Compute 16

quotient bits}
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;DIVQ AX0; DIVQ AX0; DIVQ AX0;
RTS;RTS;RTS;RTS;RTS;

.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;

Listing 2.2  Single-Precision Divide, Unsigned

2.3 MULTIPRECISION FIXED-POINT ADDITION
The following algorithm adds two multiprecision operands together:

1. Add the two LSWs to produce the LSW of the result and a carry bit.
2. Add the next word of each operand plus the carry from the previous

word to produce the next word of the result and a carry bit.
3. Repeat step 2 until every word of the result has been computed. After

the MSW has been computed, the status flags of the ALU will be valid
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for the multiprecision sum.

To produce a valid number, the radix points must be in the same location
in both operands. The result will be in the same format as the operands.

Listing 2.3 shows a subroutine that implements the addition algorithm for
two double-precision numbers. The LSW of the augend is stored in AX0,
and its MSW is stored in AX1. The LSW of the addend is stored in AY0,
and its MSW is stored in AY1. The LSW of the result is returned in SR0,
and its MSW is returned in SR1.

Listing 2.4 shows a subroutine that performs triple-precision addition.
This routine retrieves the augend from data memory, LSW first, starting at
DM(I0). The addend is read from data memory, LSW first, starting at
DM(I1). The result is stored in data memory, LSW first, starting at DM(I2).
Each data memory access modifies the address by adding the value of M0
to the I register used in the access. Before executing the routine, you must
ensure that the augend and addend are loaded at the correct data memory
locations, and you must initialize I0, I1, I2, and M0. You must also set the
buffer length registers L0, L1, and L2 to zero to disable circular buffers
and allow the ADSP-2100 to read the full numbers. Note that most of the
subroutine instructions are concerned with either reading operands or
writing the result.

.MODULE Double_Precision_Add;

{ Double-Precision Addition
Z = X + Y

Calling Parameters
AX0 = LSW of X
AX1 = MSW of X
AY0 = LSW of Y
AY1 = MSW of Y

Return Values
SR0 = LSW of Z
SR1 = MSW of Z

Altered Registers
AR,SR

Computation Time

(listing continues on next page)
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LISTING 2.4  TRIPLE-PRECISION ADDITIONLISTING 2.4  TRIPLE-PRECISION ADDITIONLISTING 2.4  TRIPLE-PRECISION ADDITIONLISTING 2.4  TRIPLE-PRECISION ADDITIONLISTING 2.4  TRIPLE-PRECISION ADDITION

2.4 MULTIPRECISION FIXED-POINT SUBTRACTION
The subtraction algorithm is very similar to the addition algorithm. In fact,
subtraction can be accomplished by adding the twos complement of the
subtrahend to the minuend. Multiprecision subtraction is performed by
the following steps:

1. Subtract the LSW of the subtrahend from the LSW of the minuend to
produce the LSW of the result and a borrow (“carry–1”) bit.

2. Subtract the next word of the subtrahend from the next word of the
minuend and add to it the “carry – 1,” producing the next word of the
result and a carry bit. The “carry – 1” value effectively implements a
borrow signal from the previous word.

3. Repeating step 2 until every word of the result has been computed.
After the MSW has been computed, the status flags of the ALU will be
valid.

Listing 2.5 shows a double-precision subtraction routine. This routine
assumes that the minuend’s LSW is stored in AX0, the minuend’s MSW is
in AX1, the subtrahend’s LSW is in AY0, and the subtrahend’s MSW is in
AY1. The result is returned in the SR registers (LSW in SR0, MSW in SR1).

Listing 2.6 shows the triple-precision subtraction routine. Most of its
instructions perform data I/O. The minuend is read, LSW first, starting at
DM(I0); the subtrahend is read, LSW first, starting at DM(I1). The result is
written, LSW first, starting at DM(I2). Before calling this routine, you must
initialize I0, I1, I2 to the correct data memory locations, M0 to one (the
memory spacing value) and L0, L1, and L2 to zero (to disable
circular buffers).

.MODULE Double_Precision_Subtract;

{ Double-Precision Subtraction
Z = X - Y

Calling Parameters
AX0 = LSW of X
AX1 = MSW of X
AY0 = LSW of Y
AY1 = MSW of Y

(listing continues on next page)
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Return Values
SR0 = LSW of Z
SR1 = MSW of Z

Altered Registers
AR, SR

Computation Time
4 cycles

}

.ENTRY dps;

dps: AR=AX0-AY0; {Subtract LSWs}
SR0=AR, AR=AX1-AY1+C-1;C-1;C-1;C-1;C-1; {Subtract MSWs}{Subtract MSWs}{Subtract MSWs}{Subtract MSWs}{Subtract MSWs}
SR1=AR;SR1=AR;SR1=AR;SR1=AR;SR1=AR;
RTS;RTS;RTS;RTS;RTS;

.EN.EN.EN.EN.ENDDDDDMOD;

Listing 2.5  Double-Precision Subtraction

.MODULE Triple_Precision_Subtract;

{ Triple-Precision Subtraction
Z = X - Y

Calling Parameters
I0 —> X Buffer L0 = 0
I1 —> Y Buffer L1 = 0
I2 —> Z Buffer L2 = 0
M0 = 1

Return Values
Z Buffer is filled

Altered Registers
I0, I1, I2, AR, AX0, AY0

Computation Time
10 cycles

}

.ENTRY tps;

tps: AX0=DM(I0,M0);       {Fetch LSWs}
AY0=DM(I1,M0);
AX0=DM(I0,M0), AR=AX0-AY0;     {Subtract LSWs}
AY0=DM(I1,M0);
DM(I2,M0)=AR, AR=AX0-AY0+C-1;   {Store LSW, fetch middle}

      {words}
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AX0=DM(I0,M0);     {Fetch MSWs}
AY0=DM(I1,M0);
DM(I2,M0)=AR, AR=AX0-AY0+C-1; {Subtract MSWs}
DM(I2,M0)=AR;I2,M0)=AR;I2,M0)=AR;I2,M0)=AR;I2,M0)=AR;         {Store MSW}        {Store MSW}        {Store MSW}        {Store MSW}        {Store MSW}
RTS;RTS;RTS;RTS;RTS;

.EN.EN.EN.EN.ENDDDDDMOD;

LISTING 2.6  TRIPLE-PRECISION SUBTRACTIONLISTING 2.6  TRIPLE-PRECISION SUBTRACTIONLISTING 2.6  TRIPLE-PRECISION SUBTRACTIONLISTING 2.6  TRIPLE-PRECISION SUBTRACTIONLISTING 2.6  TRIPLE-PRECISION SUBTRACTION
2.5 MULTIPRECISION FIXED-POINT MULTIPLICATION
Multiplication is more complicated than either addition or subtraction. An
important task is placing the radix point in the product. In addition and
subtraction, the radix point location in the result is the same as for both
operands. In multiplication, the radix point may be in a different location
in the two operands, and its location in the product depends on the
locations in the two operands. The result of multiplying a number in P.Q
format by a number in M.N format produces a result in (P+M–1).(Q+N+1)
format. The ADSP-2100 multiplier automatically shifts the product one bit
to the left to eliminate the redundant sign bit of the result. Therefore,
multiplication of two numbers in a full fractional format (1.15 format, the
most common format) returns the result in a full fractional format (1.31). If
two numbers in full integer format (16.0) are multiplied, the result is in
31.1 format. To produce an integer result (32.0 format), the product must
be shifted to the right one bit before storing it in memory.

Multiplication is performed according to the following procedure, which
is illustrated in Figure 2.3, on the next page.

1. Multiply each word of the multiplicand by the LSW of the multiplier
and an appropriate power of two to shift it left to its correct position.

2. Multiply each word of the multiplicand by the next word of the
multiplier and the appropriate power of two.

3. Repeat step 2 until each word of the multiplicand has been multiplied
by every word of the multiplier.
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U and N are 16-bit words

 Nn Nn–1 ... N2 N1 N0

×  Un Un–1 ... U2 U1 U0

216nU0Nn + 216(n–1)U0Nn–1 + ...232U0N2 + 216U0N1 + U0N0

216(n+1)U1Nn + 216nU1Nn–1 + ... 248U1N2 +232U1N1 + 216U1N0

•

•

•

+ 216(2n) UnNn+...216(n+1)UnN1 + 216nUnN0

Figure 2.3  Multiprecision MultiplicationFigure 2.3  Multiprecision MultiplicationFigure 2.3  Multiprecision MultiplicationFigure 2.3  Multiprecision MultiplicationFigure 2.3  Multiprecision Multiplication

4. Add all the partial products together.

In computing the partial products, the signed/unsigned switch of the
multiplier determines whether the multiplication is signed, mixed-mode,
or unsigned. Multiplication of the MSWs should be signed, and
multiplication of a less significant word by either MSW should be mixed-
mode. All other multiplication should be unsigned.

Listing 2.7 shows a double-precision multiplication routine for fractional
operands. The routine assumes that the multiplicand’s LSW is stored in
MX0 and its MSW is stored in MX1, and that the multiplier’s LSW is
stored in MY0 and its MSW is stored in MY1. This routine produces a 64-
bit product that is stored in data memory, LSW first, starting at DM(I0).
M0 and L0 should be set to one and zero, respectively, before the routine
is executed.

The product of the LSWs of the operands is computed first, and the LSW
of the result is written to DM(I0). The MR register is then shifted 16 bits to
the right. The inner products are computed and added to the shifted value
in MR; MR0 is written to the next data memory location. The MR register
is again shifted 16 bits to the right, and the product of the MSWs is
computed and added to MR. MR0 is written to data memory, followed by
MR1, to complete the 64-bit product. Note how the signed/unsigned
switch indicates the type of multiplication for each partial product.

The triple-precision multiplication routine is shown in Listing 2.8. In this
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routine, the multiplicand and the multiplier are both stored in data
memory, LSW first, the multiplicand starting at DM(I0) and the multiplier
starting at DM(I1). The routine produces a 96-bit result stored LSW first,
starting at DM(I2). The X and Y buffers must be declared (and located in
memory) as circular buffers; L0 and L1 are set to three because the routine
circles back to refetch the first words of the operands. Before executing the
routine, you should set M0 to one and L2 to zero.

Listings 2.9 and 2.10 show the double-precision routine and the triple-
precision routine, respectively, for integer multiplication. These routines
differ from the multiplication routines already described only in that they
shift the result one bit to the right before writing it to memory, in order
to generate a full integer product.

.MODULE Double_Precision_Multiπly;

{ Double-Precision Multiplication
Z = X ¥ Y

Calling Parameters
I0 —> Address of Z Buffer L0 = 0
M0 = 1
MX0 = LSW of X
MX1 = MSW of X
MY0 = LSW of Y
MY1 = MSW of Y

Return Values
Z Buffer Filled

Altered Registers
MR, I0

Computation Time
13 cycles

}

.ENTRY dpm;

dpm: MR=MX0*MY0(UU); {Compute LSW}
DM(I0,M0)=MR0; {Save LSW}
MR0=MR1; {Shift right 16 bits}
MR1=MR2;
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MR=MR+MX1*MY0(SU); {Compute inner product}
MR=MR+MX0*MY1(US);
DM(I0,M0)=MR0; {Shift right 16 bits}
MR0=MR1;
MR1=MR2;
MR=MR+MX1*MY1(SS); {Compute MSW}
DM(I0,M0)=MR0;;;;;
DM(I0,M0)=MR1;DM(I0,M0)=MR1;DM(I0,M0)=MR1;DM(I0,M0)=MR1;DM(I0,M0)=MR1; {Store MSW}{Store MSW}{Store MSW}{Store MSW}{Store MSW}
RTS;RTS;RTS;RTS;RTS;

.ENDMO.ENDMO.ENDMO.ENDMO.ENDMOD;

Listing 2.7  Double-Precision Multiplication
.MODULE Triple_Precision_Multiπly;

{ Triple-Precision Multiplication
Z = X ¥ Y

Calling Parameters
I0 —> X Buffer L0 = 3
I1 —> Y Buffer L1 = 3
I2 —> Z Buffer L2 = 0
M0 = 1

Return Values
Z Buffer Filled

Altered Registers
MX1,MX0,MY1,MY0,MR,I0,I1,I2

Computation Time
26 cycles

}

.ENTRY tpm;

tpm: MY0=DM(I0,M0);
MX0=DM(I1,M0);
MX1=DM(I1,M0), MR=MX0*MY0(UU); {Compute LSW}
DM(I2,M0)=MR0; {Save LSW}
MR0=MR1; {Shift right 16 bits
MR1=MR2;
MY1=DM(I0,M0), MR=MR+MX1*MY0(UU);
MR=MR+MX0*MY1(UU);
DM(I2,M0)=MR0;
MR0=MR1; {Shift right 16 bits}
MR1=MR2;
MY1=DM(I0,M0), MR=MR+MX1*MY1(UU);
MX0=DM(I1,M0), MR=MR+MX0*MY1(US);
MY0=DM(I0,M0), MR=MR+MX0*MY0(SU); {Skip 1st word, LSW}
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DM(I2,M0)=MR0;
MR0=MR1; {Shift right 16 bits}
MR1=MR2;
MY0=DM(I0,M0), MR=MR+MX1*MY1(US);
MR=MR+MX0*MY0(SU);
DM(I2,M0)=MR0;
MR0=MR1;
MR1=MR2;
MR=MR+MX0*MY1(SS);
DM(I2,M0)=MR0;;;;;
DM(I2,M0)=MR1;DM(I2,M0)=MR1;DM(I2,M0)=MR1;DM(I2,M0)=MR1;DM(I2,M0)=MR1; {Save MSW}{Save MSW}{Save MSW}{Save MSW}{Save MSW}
RTS;RTS;RTS;RTS;RTS;

.ENDMOD.ENDMOD.ENDMOD.ENDMOD.ENDMOD;

Listing 2.8  Triple-Precision Multiplication
.MODULE Integer_DPM;

{
Ιnteger Double-Precision Multiplication

Z = X ¥ Y

Calling Parameters
I0 —> Z Buffer L0 = 0
M0 = 1
MX0 = LSW of X
MX1 = MSW of X
MY0 = LSW of Y
MY1 = MSW of Y
SE = -1

Return Values
Z Buffer Filled

Altered Registers
I0, MR, SR

Computation Time
14 cycles

}

.ENTRY idpm;

idpm: MR=MX0*MY0(UU); {Compute LSW}
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MR0=MR1, SR=LSHIFT MR0(LO); {Shift LSW right 1 bit}
MR1=MR2, SR=SR OR LSHIFT MR1(HI); {before saving}
DM(I0,M0)=SR0, MR=MR+MX1*MY0(SU);
MR=MR+MX0*MY1(US);
MR0=MR1, SR=LSHIFT MR0(LO);
MR1=MR2, SR=SR OR LSHIFT MR1(HI);
DM(I0,M0)=SR0, MR=MR+MX1*MY1(SS);
SR=LSHIFT MR0(LO);
SR=SR OR LSHIFT MR1(HI);
SR=SR OR LSHIFT MR2 BY 15(HI);
DM(I0,M0)=SR0;
DM(I0,M0)=SR1;SR1;SR1;SR1;SR1; {Save MSW after{Save MSW after{Save MSW after{Save MSW after{Save MSW after

shifting}shifting}shifting}shifting}shifting}
RTS;RTS;RTS;RTS;RTS;

.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;

ListiListiListiListiListing 2.9  Integer Double-Precision Multiplication
.MODULE Integer_TPM;

{ Ιnteger Triple-Precision Multiplication
Z = X ¥ Y

Calling Parameters
I0 —> X Buffer L0 = 3
I1 —> Y Buffer L1 = 3
I2 —> Storage for Z L2 = 0
M0 = 1
SE = -1

Return Values
Z Buffer Filled

Altered Registers
MX0,MX1,MY0,MY1,MR,I0,I1,I2,SR

Computation Time
28 cycles

}

.ENTRY itpm;

itpm: MY0=DM(I0,M0); {Fetch LSWs}
MX0=DM(I1,M0);
MY1=DM(I0,M0), MR=MX0*MY0(UU); {Compute LSW}
MX1=DM(I1,M0);
MR0=MR1, SR=LSHIFT MR0(LO); {Shift LSW}
MR1=MR2, SR=SR OR LSHIFT MR1(HI);
DM(I2,M0)=SR0, MR=MR+MX0*MY1(UU); {Store LSW}
MR=MR+MX1*MY0(UU);
MR0=MR1, SR=LSHIFT MR0(LO);
MR1=MR2, SR=SR OR LSHIFT MR1(HI);
DM(I2,M0)=SR0, MR=MR+MX1*MY1(UU);
MY1=DM(I0,M0);



22222Fixed-Point ArithmeticFixed-Point ArithmeticFixed-Point ArithmeticFixed-Point ArithmeticFixed-Point Arithmetic

2929292929

MR=MR+MX0*MY1(US), MX0=DM(I1,M0);
MY0=DM(I0,M0), MR=MR+MX0*MY0(SU); {Skip 1st word}
MR0=MR1, SR=LSHIFT MR0(LO);
MR1=MR2, SR=SR OR LSHIFT MR1(HI);
DM(I2,M0)=SR0;
MY0=DM(I0,M0), MR=MR+MX1*MY1(US);
MR=MR+MX0*MY0(SU);
MR0=MR1, SR=LSHIFT MR0(LO);
MR1=MR2, SR=SR OR LSHIFT MR1(HI);
DM(I2,M0)=SR0, MR=MR+MX0*MY1(SS);
SR=LSHIFT MR0(LO); {Shift MSW}
SR=SR OR LSHIFT MR1(HI);
SR=SR OR LSHIFT MR2 BY 15(HI);
DM(I2,M0)=SR0;;;;;
DM(I2,M0)=SR1;DM(I2,M0)=SR1;DM(I2,M0)=SR1;DM(I2,M0)=SR1;DM(I2,M0)=SR1; {Save MSW}{Save MSW}{Save MSW}{Save MSW}{Save MSW}
RTS;RTS;RTS;RTS;RTS;

.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;.ENDMOD;

ListiListiListiListiListingngngngng 2.10  Integer Triple-Precision Multiplication

2.6 MULTIPRECISION FIXED-POINT DIVISION
The routine shown in Listing 2.11 provides a convenient method for doing
double-precision division (64-bit dividend, 32-bit divisor). It is a double-
precision software implementation of the algorithm used by the hardware
instructions DIVS and DIVQ (see section 2.2). Mano, 1982, gives an
excellent explanation of a similar algorithm. The division algorithm
generates one bit of the quotient by comparing the divisor and the partial
remainder. If the divisor is less than or equal to the partial remainder, the
quotient bit is a one; otherwise, the quotient bit is a zero. The divisor is
subtracted from the partial remainder if it is less than the partial
remainder, and then the divisor is shifted right one bit and compared to
the partial remainder to generate the next bit. This routine shifts the
dividend to the left rather than the divisor to the right, accomplishing the
same comparison.

Before calling the routine, you must load SE with –15. You must also load
the dividend into the SR and MR registers. Its MSW should be loaded into
SR1, the next word in SR0, the next in MR1, and its LSW in MR0. The
divisor should be loaded into the AY registers, LSW in AY0 and MSW in
AY1. The result is returned in the MR registers, LSW in MR0 and MSW in
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MR1.

The division subroutine has two entry points; ddivs should be called to
execute a signed division, and ddivq should be called to execute an
unsigned division. The section of the routine starting at the ddivs label
calculates the sign bit by comparing the MSW of the divisor with the
MSW of the dividend and shifts the dividend one bit left. The CNTR
register is set to 31, the number of bits that remain to be calculated. The
section of the routine starting at the ddivq label sets the CNTR register to
32 and AX1, which is used to compare the divisor and the partial
remainder, to zero. The portion of the routine common to both signed and
unsigned division is the ddivu loop. In this loop, the divisor is subtracted
from the partial remainder if both have the same sign; otherwise, the
divisor is added to the partial remainder. The quotient bit is determined
by comparing the MSW of the divisor (in AX0) with the partial remainder
(in AF). The dividend is shifted one bit left, and the loop is repeated until
all 32 bits of the quotient have been computed.

.MODULE Double_Precision_Divide;

{
Double-Precision Division

Z = X ÷ Y

Calling Parameters
AY0 = LSW of Y
AY1 = MSW of Y
SR1 = MSW of X
SR0 = Next Significant Word of X
MR1 = Next Significant Word of X
MR0 = LSW of X
SE = -15

Return Values
MR1 = MSW of Z
MR0 = LSW of Z

Altered Registers
AF,AR,AX1,AX0,SI,SR,MR
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Computation Time
485 cycles (maximum)

}

.ENTRY ddivs;

.ENTRY ddivq;

ddivs: AF=PASS SR1;
SI=SR0, AR=SR1 XOR AY1;   {Exclusive OR sign bits}
AX1=AR;
SR=LSHIFT MR0 BY 1(LO);   {shift dividend up 1 bit}
SR=SR OR LSHIFT MR1 BY 1(HI);
SR=SR OR LSHIFT AR(LO);   {shift in quotient-sign bit}
AR=PASS AF, MR0=SR0;
MR1=SR1, SR=LSHIFT MR1(LO);
SR=SR OR LSHIFT SI BY 1(LO);
SR=SR OR LSHIFT AR BY 1(HI);
CNTR=31;
JUMP ddiv;

ddivq: CNTR=32;
AX1=0;

ddiv: AX0=AY1;
DO ddivu UNTIL CE;

AR=ABS AX1; {is quotient bit set?}

IF POS JUMP aqz; {no, –divisor from
partial remainder}
aqo: AR=SR0+AY0; {yes, +divisor to
partial remainder}

SI=AR, AF=SR1+AY1+C;
JUMP ddivi;

aqz: AR=SR0-AY0;
SI=AR, AF=SR1-AY1+C-1;

ddivi: SR=LSHIFT MR0 BY 1(LO); {shift dividend 1
bit}

SR=SR OR LSHIFT MR1 BY 1(HI);
AR=AX0 XOR AF; {compute quotient

bit}
AX1=AR; {save quotient

bit}
AR=NOT AX1;
SR=SR OR LSHIFT AR(LO); {shift in new bit}
MR0=SR0, AR=PASS AF;
MR1=SR1, SR=LSHIFT MR1(LO);
SR=SR OR LSHIFT SI BY 1(LO);

ddivu: SR=SR OR LSHIFT AR BY 1(HI);SR=SR OR LSHIFT AR BY 1(HI);SR=SR OR LSHIFT AR BY 1(HI);SR=SR OR LSHIFT AR BY 1(HI);SR=SR OR LSHIFT AR BY 1(HI);
RTS;RTS;RTS;RTS;RTS;

.....EEEEENDMOD;

LISTING 2.11  DOUBLE-PRECISION LISTING 2.11  DOUBLE-PRECISION LISTING 2.11  DOUBLE-PRECISION LISTING 2.11  DOUBLE-PRECISION LISTING 2.11  DOUBLE-PRECISION DIVISIONDIVISIONDIVISIONDIVISIONDIVISION
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