
Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters 55555

6767676767

5.15.15.15.15.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
The digital computation of filter transfer functions has always been an
important area of digital signal processing. Apart from the obvious
advantages of virtually eliminating errors in the filter associated with
voltage and temperature drift, component aging, and EMI-induced power
supply noise, digital filters are capable of performance specifications that
would, at best, be extremely difficult to achieve with an analog
implementation. Digital filters are able to realize sharp cutoff
characteristics, tight passband and stopband specifications, exactly linear
phase responses, and even arbitrary magnitude responses.

Many of the routines in this chapter make use of circular buffers for
storing data and coefficients. To implement circular addressing, the length
register (Ln) that corresponds to the circular buffer pointer register (In)
must be set to the buffer length. See the discussion in Chapter 2 of the
ADSP-2100 User’s Manual for more information.

The bibliography at the end of this manual provides several excellent
sources of introductions to digital filter theory, design, and
implementation.

5.25.25.25.25.2 FINITE IMPULSE RESPONSE (FIR) FILTERSFINITE IMPULSE RESPONSE (FIR) FILTERSFINITE IMPULSE RESPONSE (FIR) FILTERSFINITE IMPULSE RESPONSE (FIR) FILTERSFINITE IMPULSE RESPONSE (FIR) FILTERS
A finite impulse response (FIR) filter is a discrete linear time-invariant
system whose output is based on the weighted summation of a finite
number of past inputs. FIR filters, unlike infinite impulse response (IIR)
filters, are nonrecursive and require no feedback loops in their
computation. This property allows simple analysis and implementation
on microprocessors such as the ADSP-2100. A graphic representation of
an FIR filter is shown in Figure 5.1, on the next page.

55555

6868686868

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.2.15.2.15.2.15.2.15.2.1 Single-Precision FIR Transversal FilterSingle-Precision FIR Transversal FilterSingle-Precision FIR Transversal FilterSingle-Precision FIR Transversal FilterSingle-Precision FIR Transversal Filter
The realization of an FIR filter can take many forms, although the most
useful in practice are generally the transversal and lattice structures. The
FIR lattice filter is described later in this chapter. Another implementation
of the transversal filter is given in Chapter 13. An FIR transversal filter
structure can be obtained directly from the equation for discrete-time
convolution.

N–1

y(n) = ∑ hk(n) x(n–k)
k=0

In this equation, x(n) and y(n) represent the input to and output from the
filter at time n. The output y(n) is formed as a weighted linear
combination of the current and past input values of x, x(n–k). The weights,
h

k
(n), are the transversal filter coefficients at time n. (For a nonadaptive

filter, the coefficients do not change with n. Adaptive filters are described
later in this chapter.) In the equation, x(n–k) represents the past value of
the input signal “contained” in the (k+1)th tap of the transversal filter. For
example, x(n), the present value of the input signal, would correspond to
the first tap, while x(n–42) would correspond to the forty-third filter tap.

The subroutine that realizes the sum-of-products operation used in
computing the transversal filter is shown in Listing 5.1. The first
instruction sets up the computation by clearing MR and loading MX0 and
MY0 with the first data and coefficient values from data and program
memory. The multiply/accumulate with dual data fetch in the sop loop is
then executed N–1 times in N cycles to compute the sum of the first N–1
products. The final multiply/accumulate instruction is performed with
the rounding mode enabled to round the result to the upper 24 bits of MR.
MR1 is then conditionally saturated to its most positive or negative value
based on the status of the overflow flag MV. In this manner, results are

x h0 1 2 n–2 n–1x hx hx h x h

x(n)

y(n)

DELAY DELAY DELAY

Figure 5.1 FIR FilterFigure 5.1 FIR FilterFigure 5.1 FIR FilterFigure 5.1 FIR FilterFigure 5.1 FIR Filter

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

6969696969

accumulated to the full 40-bit resolution of MR, with saturation of the
output only if the final result overflowed beyond the least significant 32
bits of MR.

The limit on the number of filter taps attainable for a real-time
implementation of the transversal filter subroutine is determined
primarily by the processor cycle time, the sampling rate, and the number
of other computations required. The transversal filter subroutine
presented here requires a total of N+6 cycles for a filter of length N; at an
8 kHz sampling rate and an instruction cycle time of 125 nanoseconds, this
permits a filter of 900 taps with 94 instruction cycles for other operations.

.MODULE fir_sub;

{
FIR Transversal Filter Subroutine

Calling Parameters
I0 —> Oldest input data value in delay line
L0 = Filter length (N)
I4 —> Beginning of filter coefficient table
L4 = Filter length (N)
M1,M5 = 1
CNTR = Filter length - 1 (N-1)

Return Values
MR1 = Sum of products (rounded and saturated)
I0 —> Oldest input data value in delay line
I4 —> Beginning of filter coefficient table

Altered Registers
MX0,MY0,MR

Computation Time
N - 1 + 5 + 2 cycles

All coefficients and data values are assumed to be in 1.15 format.
}

.ENTRY fir;

fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5);
DO sop UNTIL CE;

sop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
RTS;

.ENDMOD;

Listing 5.1 FIR Filter Single-PrecisionListing 5.1 FIR Filter Single-PrecisionListing 5.1 FIR Filter Single-PrecisionListing 5.1 FIR Filter Single-PrecisionListing 5.1 FIR Filter Single-Precision

55555

7070707070

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.2.25.2.25.2.25.2.25.2.2 Double-Precision FIR Transversal FilterDouble-Precision FIR Transversal FilterDouble-Precision FIR Transversal FilterDouble-Precision FIR Transversal FilterDouble-Precision FIR Transversal Filter
Many digital filters require a sum-of-products computation using
operands that are greater than 16 bits in magnitude. The following
subroutine implements a sum-of-products calculation using coefficients
and data that are both represented in double precision. On the ADSP-
2100, this is accomplished through the use of the mixed-mode multiply
instructions, in much the same manner as described in Chapter 2.

The subroutine that realizes the sum-of-products operation used in
computing the transversal filter is shown in Listing 5.2. First, the sum of
the products of the low halves of the coefficients and the high halves of
the data values is computed; this sum is accumulated with the sum of the
products of the high halves of the coefficients and the low halves of the
data values. This sum is then shifted right 16 bits and then accumulated
with the sum of the products of the high halves of the coefficients and the
high halves of the data values. A conditional saturation is then performed
on the final 32-bit result before storage to data memory. Note that because
the result is only the most significant 32 bits, the products of the low-order
coefficients and the low-order data affect only the least significant bit of
the result and are therefore not computed.

The above routine is easily extended to applications requiring other
multiprecision formats or even those requiring mixed precision. For
example, to use 32-bit coefficients and 16-bit data values, you would
eliminate the lhloop loop and make corresponding changes in the data
memory pointer values and the size of the circular buffer. Chapter 2
describes the basic techniques for performing multiprecision
multiplications, which are directly applicable to multiprecision
multiply/accumulate operations.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

7171717171

.MODULE dfir_sub;

{
Double-Precision Transversal Filter Subroutine

Calling Parameters
I0 —> Oldest input data value in delay line
L0 = 2 × Filter length (N)
I4 —> 2nd location (LSW of 1st value) of filter coefficient table
L4 = 2 × Filter length (N)
M0,M4 = 1
M1,M5 = 2
M2,M6 = 3
AX0 = Filter length - 2 (N-2)
CNTR = Filter length - 2 (N-2)

Return Values
MR1,MR0 = sum of products
(conditionally saturated to 32 bits)
I0 —> Oldest input data value in delay line
I4 —> 2nd location (LSW of 1st value) of filter coefficient table

Altered Registers
MX0,MY0,MR

Computation Time
3 × (N - 2) + 16 + 9

All coefficients and data values are assumed to be in 1.15 format.
}

.ENTRY dfir;

dfir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5);
DO hlloop UNTIL CE;

hlloop: MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M2), MY0=PM(I4,M4);
MR=MR+MX0*MY0(SU), MX0=DM(I0,M1), MY0=PM(I4,M5);
CNTR=AX0;
DO lhloop UNTIL CE;

lhloop: MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M0), MY0=PM(I4,M5);
MR=MR+MX0*MY0(US), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR0=MR1; {downshift 16 places}
MR1=MR2;
CNTR=AX0;
DO hhloop UNTIL CE;

hhloop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M6);
MR=MR+MX0*MY0(SS);
IF MV SAT MR;
RTS;

.ENDMOD;
Listing 5.2 Double-Precision FIR FilterListing 5.2 Double-Precision FIR FilterListing 5.2 Double-Precision FIR FilterListing 5.2 Double-Precision FIR FilterListing 5.2 Double-Precision FIR Filter

55555

7272727272

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.2.35.2.35.2.35.2.35.2.3 Two-Dimensional FIR FilterTwo-Dimensional FIR FilterTwo-Dimensional FIR FilterTwo-Dimensional FIR FilterTwo-Dimensional FIR Filter
The two-dimensional FIR filter is used in a variety of applications,
including smoothing and edge detection in image processing, in which the
input is a matrix that represents a digitized image. The routine presented
in this section is a two-dimensional version of the single-precision FIR
filter presented earlier in this chapter. Instead of performing a sum-of-
products operation on a one-dimensional input signal, it convolves a two-
dimensional (QxR) coefficient matrix with a two-dimensional (SxT) input
matrix using the equation:

Q–1 R–1

G(x,y) = ∑ ∑ [H(i,j) F(x–i, y–j)] (Oppenheim, 1978)
i=0 j=0

The two-dimensional FIR filter is computed by multiplying and
accumulating a section of each row of the input matrix by each row of the
coefficient matrix. The value of a point in the output matrix is equal to a
sum-of-products operation of the input matrix with the coefficient matrix.

The routine, shown in Listing 5.3, assumes that the first (data memory)
address of the input matrix is stored in I0, the first output matrix address
in I1, and the first coefficient matrix address in I4. The length registers L0
and L1 should each be set to zero, and L4 should be set to the length of
(total number of elements in) the QxR coefficent matrix. The number of
rows of the output buffer (S–Q) should be stored in the CNTR, and the
number of columns of the output buffer (T–R) should be stored in AX0.
AX1 should store Q, the number rows in the coefficient matrix. AY0
should store R–2. The modify registers M0 and M4 should both be set to
one. M1 should store T–R+1, M2 should be set to –(Q × T+1), and M3
should store R–1. All of these values must be initialized before the routine
is called.

Convolution at the edges of the input matrix can yield meaningless results
because the edge values do not have valid adjacent data. This situation
can be remedied in several ways; one way is to set any value outside the
input matrix to zero. Another way, used in this example, is to perform the
convolution only if the coefficient matrix is completely enclosed by the
input matrix. To use a coefficient matrix that is not enclosed by the input
matrix, you must call the routine with CNTR set to S (the number of input
matrix rows), AX0 set to T (the number input matrix columns), and M3 set

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

7373737373

to zero.

The routine begins by reading the first coefficient into MY0. The in_row
loop is executed once for each row of the output matrix. In this loop, the
CNTR register is loaded and the in_col loop is executed, generating a
column of the output matrix on each pass. The row_loop loop executes the
col_loop loop once for each column of the coefficient matrix.

The last two multiply/accumulate and data read instructions are removed
from the col_loop loop in order to provide efficient pointer manipulation.
The first multiply/accumulate operation outside the loop is performed in
parallel with moving I0 to point to the first element of the next
convolution row. The second multiply/accumulate operation is
performed in parallel with reading in the values that will be used for the
next sequence of execution of the row_loop loop. When all iterations of the
row_loop loop have been executed, the value in MR1 is stored in the
appropriate location of the output matrix. The last instruction in the
in_row loop modifies I0 to point to the first element of the next row of
input data.

The output matrix, stored by rows, is smaller than the input matrix if the
input matrix fully encloses the coefficient matrix. In this case, the number
of cycles the routine requires is:

(((R–2+4) × Q+5) × (T–R)+3) × (S–Q)+3+4

If the coefficient matrix is not fully enclosed by the input matrix, the
number is:

55555

7474747474

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

(((R–2+4) × Q+5) × T+3) × S+3+4

.MODULE two_dimensional_FIR_filter;

{ Q-1 R-1
G(x,y) = ∑ ∑ [H(i,j) F(x-i, y-j)]

 i=0 j=0

Calling Parameters
I0 —> F, SxT Input Matrix stored by rows L0 = 0
I1 —> G, (S-Q)x(T-R) Output Matrix stored by rows L1 = 0
I4 —> H, QxR Coefficient Matrix stored by rows L4 = Q × R
M0,M4 = 1
M1 = T-R+1
M2 = -(Q × T+1) AX1 = Q
M3 = R-1 AY0 = R-2
CNTR = S-Q AX0 = T-R

Return Values
G(x,y) filled [Output Matrix]

Altered Registers
MX0,MY0,MR,I0,I1,I4,L4

Computation Time
(((R-2+4) × Q + 5) × (T-R) + 3) × (S-Q) + 3 + 4 cycles

}

.ENTRY tdfir;

tdfir: MY0=PM(I4,M4); {Get first coefficient}
DO in_row UNTIL CE; {Loop through output rows}
 CNTR=AX0;
 DO in_col UNTIL CE; {Loop through output columns}
 CNTR=AX1;
 MR=0, MX0=DM(I0,M0); {Clear MR, get input data}
 DO row_loop UNTIL CE; {Loop through coefficient rows}
 CNTR=AY0;
 DO col_loop UNTIL CE; {Loop through coefficient cols}

col_loop: MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 {Move pointer to next convolution window row}

row_loop: MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 {Read values for next loop}
 DM(I1,M0)=MR1; {Save output points}

in_col: MODIFY(I0,M2); {Get next conv. start same row}
in_row: MODIFY(I0,M3); {Point to next input row}

RTS;
.ENDMOD;

Listing 5.3 Two-Dimensional FIR FilterListing 5.3 Two-Dimensional FIR FilterListing 5.3 Two-Dimensional FIR FilterListing 5.3 Two-Dimensional FIR FilterListing 5.3 Two-Dimensional FIR Filter

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

7575757575

5.35.35.35.35.3 INFINITE IMPULSE RESPONSE (IIR) FILTERSINFINITE IMPULSE RESPONSE (IIR) FILTERSINFINITE IMPULSE RESPONSE (IIR) FILTERSINFINITE IMPULSE RESPONSE (IIR) FILTERSINFINITE IMPULSE RESPONSE (IIR) FILTERS
Compared to the FIR filter, an IIR filter can often be much more efficient
in terms of attaining certain performance characteristics with a given filter
order. This is because the IIR filter incorporates feedback and is capable of
realizing both poles and zeroes of a system transfer function, whereas the
FIR filter is only capable of realizing the zeroes (although the FIR filter is
still more desirable in many applications, because of features such as
stability and the ability to realize exactly linear phase responses).

5.3.15.3.15.3.15.3.15.3.1 Direct Form IIR FilterDirect Form IIR FilterDirect Form IIR FilterDirect Form IIR FilterDirect Form IIR Filter
The IIR filter can realize both the poles and zeroes of a system because it
has a rational transfer function, described by polynomials in z in both the
numerator and the denominator:

 M

 ∑ bk z–k

 k=0
H(z) = _______________________________

 N

1 – ∑ ak z–k

 k=1

The difference equation for such a system is described by the following:

M N

y(n) = ∑ bk x(n–k) + ∑ ak y(n–k)
k=0 k=1

In most applications, the order of the two polynomials M and N are the
same.

The roots of the denominator determine the pole locations of the filter,
and the roots of the numerator determine the zero locations. There are, of
course, several means of implementing the above transfer function with
an IIR filter structure. The “direct form” structure presented in Listing 5.4
implements the difference equation above.

Note that there is a single delay line buffer for the recursive and non-
recursive portions of the filter (Oppenheim and Schafer’s Direct Form II).
The sum-of-products of the a values and the delay line values are first
computed, followed by the sum-of-products of the b values and the delay
line values.

55555

7676767676

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

.MODULE diriir_sub;

{
Direct Form II IIR Filter Subroutine

Calling Parameters
MR1 = Input sample (x[n])
MR0 = 0
I0 —> Delay line buffer current location (x[n-1])
L0 = Filter length
I5 —> Feedback coefficients (a[1], a[2], ... a[N])
L5 = Filter length - 1
I6 —> Feedforward coefficients (b[0], b[1], ... b[N])
L6 = Filter length
M0 = 0
M1,M4 = 1
CNTR = Filter length - 2
AX0 = Filter length - 1

Return Values
MR1 = output sample (y[n])
I0 —> delay line current location (x[n-1])
I5 —> feedback coefficients
I6 —> feedforward coefficients

Altered Registers
MX0,MY0,MR

Computation Time
(N - 2) + (N - 1)) + 10 + 4 cycles (N = M = Filter order)

All coefficients and data values are assumed to be in 1.15 format.
}

.ENTRY diriir;

diriir: MX0=DM(I0,M1), MY0=PM(I5,M4);
DO poleloop UNTIL CE;

poleloop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I5,M4);
MR=MR+MX0*MY0(RND);
CNTR=AX0;
DM(I0,M0)=MR1;
MR=0, MX0=DM(I0,M1), MY0=PM(I6,M4);
DO zeroloop UNTIL CE;

zeroloop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I6,M4);
MR=MR+MX0*MY0(RND);
MODIFY (I0,M2);
RTS; Listing 5.4 Direct Form IIR FilterListing 5.4 Direct Form IIR FilterListing 5.4 Direct Form IIR FilterListing 5.4 Direct Form IIR FilterListing 5.4 Direct Form IIR Filter

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

7777777777

5.3.25.3.25.3.25.3.25.3.2 Cascaded Biquad IIR FilterCascaded Biquad IIR FilterCascaded Biquad IIR FilterCascaded Biquad IIR FilterCascaded Biquad IIR Filter
A second-order biquad IIR filter section is shown on Figure 5.2. Its transfer
function in the z-domain is:

H(z) = Y(z)/X(z) = (B0 + B1z
–1 + B2z

–2)/(1 + A1z
–1 + A2z

–2)

where A1, A2, B0, B1 and B2 are coefficients that determine the desired
impulse response of the system H(z). Furthermore, the corresponding
difference equation for a biquad section is:

Y(n) = B0X(n) + B1X(n–1) + B2X(n–2) – A1Y(n–1) – A2Y(n–2)

Figure 5.2 Second-order Biquad IIR Filter SectionFigure 5.2 Second-order Biquad IIR Filter SectionFigure 5.2 Second-order Biquad IIR Filter SectionFigure 5.2 Second-order Biquad IIR Filter SectionFigure 5.2 Second-order Biquad IIR Filter Section

Higher-order filters can be obtained by cascading several biquad sections
with appropriate coefficients. Another way to design higher-order filters
is to use only one complicated single section. This approach is called the
direct form implementation. The biquad implementation executes slower
but generates smaller numerical errors than the direct form
implementation. The biquads can be scaled separately and then cascaded
in order to minimize the coefficient quantization and the recursive

Z-1

Z-1

1
B

B
0

A 1

B
2

Z-1

Z-1

2A

X (n) Y (n)

SCALE
FACTOR

55555

7878787878

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

accumulation errors. The coefficients and data in the direct form
implementation must be scaled all at once, which gives rise to larger
errors. Another disadvantage of the direct form implementation is that the
poles of such single-stage high-order polynomials get increasingly
sensitive to quantization errors. The second-order polynomial sections
(i.e., biquads) are less sensitive to quantization effects.

An ADSP-2100 subroutine that implements a high-order filter is shown in
Listing 5.5. The subroutine is arranged as a module and is labeled
biquad_sub. There are a number of registers that need to be initialized in
order to execute this subroutine. It may be sufficient to do this
initialization only once (e.g., at powerup) if other executed algorithms do
not need these registers. In most typical cases, however, some of these
registers may need to be set every time the biquad_sub routine is called. It
may sometimes be beneficial, from a modular software point of view, to
always initialize all the setup registers as a part of this subroutine.

The biquad_sub routine takes its input from the SR1 register. This register
must contain the 16-bit input X(n). X(n) is assumed to be already
computed before this subroutine is called. The output of the filter is also
made available in the SR1 register.

After the initial design of a high order filter, all coefficients must be scaled
down in each biquad stage separately. This is necessary in order to
conform to the 16-bit fixed-point fractional number format as well as to
ensure that overflows will not occur in the final multiply-accumulate
operations in each stage. The scaled-down coefficients are the ones that
get stored in the processor’s memory. The operations in each biquad are
performed with scaled data and coefficients and are eventually scaled up
before being output to the next one. The choice of a proper scaling factor
depends greatly on the design objectives, and in some cases it may even
be unnecessary. The filter coefficients are usually designed with a
commercial software package in higher than 16-bit precision arithmetic.
System performance deviates from ideal when such high precision
coefficients are quantized to 16 bits and further scaled down. In systems
that require stringent specifications, careful simulations of quantization
and scaling effects must be performed.

During the initialization of the biquad_sub routine, the index register I0
points to the data memory buffer that contains the previous error inputs
and the previous biquad section outputs. This buffer must be initialized to
zero at powerup unless some nonzero initial condition is desired. The
index register I1 points to another buffer in data memory that contains the

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

7979797979

individual scale factors for each biquad. The buffer length register L1 is set
to zero if the filter has only one biquad section. In the case of multiple
biquads, L1 is initialized with the number of biquad sections. The index
register I4, on the other hand, points to the circular program memory
buffer that contains the scaled biquad coefficients. These coefficients are
stored in the order: B2, B1, B0, A2 and A1 for each biquad. All of the
individual biquad coefficient groups must be stored in the same order that
the biquads are cascaded in, such as: B2, B1, B0, A2, A1, B2*, B1*, B0*, A2*,
A1*,B2**, etc. The buffer length register L4 must be set to the value of (5 x
number of biquad sections). Finally, the loop counter register CNTR must
be set to the number of biquad sections since the filter code will be
executed as a loop.

The core of the biquad_sub routine starts its execution at the biquad label.
The routine is organized in a looped fashion where the end of the loop is
the instruction labeled sections. Each iteration of the loop executes the
computations for one biquad. The number of loops to be executed is
determined by the CNTR register contents. The SE register is loaded with
the appropriate scaling factor for the particular biquad at the beginning of
each loop iteration. After this operation, the coefficients and the data
values are fetched from memory in the sequence that they have been
stored. These numbers are multiplied and accumulated until all of the
values for a particular biquad have been accessed. The result of the last
multiply/accumulate is rounded to 16 bits and upshifted by the scaling
value. At this point the biquad loop is executed again, or the filter
computations are completed by doing the final update to the delay line.
The delay lines for data values are always being updated within the biquad
loop as well as outside of it.

The filter coefficients must be scaled appropriately so that no overflows
occur after the upshifting operation between the biquads. If this is not
ensured by design, it may be necessary to include some overflow checking
between the biquads.

The execution time for an Nth order biquad_sub routine can be calculated
as follows (assuming that the appropriate registers have been initialized
and N is a power of 2):

ADSP-2101/2102 : (8 x N/2) + 4 processor cycles
ADSP-2100/2100A : (8 x N/2) + 4 + 5 processor cycles

It may take up to a maximum of 12 cycles to initialize the appropriate
registers every time the filter is called, but typically this number will be
lower.

55555

8080808080

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

.MODULE biquad_sub;

{ Nth order cascaded biquad filter subroutine

Calling Parameters:

SR1=input X(n)
I0 —> delay line buffer for X(n-2), X(n-1),

Y(n-2), Y(n-1)
L0 = 0
I1 —> scaling factors for each biquad section
L1 = 0 (in the case of a single biquad)
L1 = number of biquad sections

(for multiple biquads)
I4 —> scaled biquad coefficients
L4 = 5 x [number of biquads]
M0, M4 = 1
M1 = -3
M2 = 1 (in the case of multiple biquads)
M2 = 0 (in the case of a single biquad)
M3 = (1 - length of delay line buffer)

Return Value:
SR1 = output sample Y(n)

Altered Registers:
SE, MX0, MX1, MY0, MR, SR

Computation Time (with N even):
ADSP-2101/2102: (8 x N/2) + 5 cycles
ADSP-2100/2100A: (8 x N/2) + 5 + 5 cycles

All coefficients and data values are assumed to be in 1.15 format
}

.ENTRY biquad;

biquad: CNTR = number_of_biquads
DO sections UNTIL CE;

SE=DM(I1,M2);
MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MX0*MY0(SS), MX1=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX1*MY0(SS), MY0=PM(I4,M4);
MR=MR+SR1*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
DM(I0,M0)=MX1, MR=MR+MX0*MY0(RND);

sections: DM(I0,M0)=SR1, SR=ASHIFT MR1 (HI);
DM(I0,M0)=MX0;
DM(I0,M3)=SR1;
RTS;

.ENDMOD;

Listing 5.5 Cascaded Biquad IIR FilterListing 5.5 Cascaded Biquad IIR FilterListing 5.5 Cascaded Biquad IIR FilterListing 5.5 Cascaded Biquad IIR FilterListing 5.5 Cascaded Biquad IIR Filter

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

8181818181

.ENDMOD;

5.45.45.45.45.4 LATTICE FILTERSLATTICE FILTERSLATTICE FILTERSLATTICE FILTERSLATTICE FILTERS
The lattice filter is used often in the analysis and synthesis of speech, most
commonly to simulate the vocal tract. Its physical analogue is a series of
cylinders of different radii; each of the filter coefficients represents the
amount of energy reflected at a boundary of two cylinders. The all-pole
lattice filter is used in voice synthesis (see Chapter 10).

Z –1Z –1
Z –1

y (n)

u (n)

x(n)

y (n)
y (n)

u (n)u (n)

k1 k2 k
M

M

M

2

21

1

Figure 5.3 All-Zero Lattice FilterFigure 5.3 All-Zero Lattice FilterFigure 5.3 All-Zero Lattice FilterFigure 5.3 All-Zero Lattice FilterFigure 5.3 All-Zero Lattice Filter

5.4.15.4.15.4.15.4.15.4.1 All-Zero Lattice FilterAll-Zero Lattice FilterAll-Zero Lattice FilterAll-Zero Lattice FilterAll-Zero Lattice Filter
The all-zero lattice filter (Bellanger, 1984) is the FIR representation of the
lattice filter whose structure is shown in Figure 5.3.

Each stage of the filter has an input and output that are related by the
equations

y
z
(n) = y

z–1
(n) + k

z
u

z–1
(n–1)

u
z
(n) = k

z
y

z–1
(n) + u

z–1
(n–1)

The initial values of y
z
(n) and u

z
(n) are both the value of the filter input,

x(n).

55555

8282828282

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

y
0
(n) = x(n)

u
0
(n) = x(n)

For example

y
1
(n) = x(n) + k

1
 x(n–1)

u
1
(n) = k

1
 x(n) + x(n–1)

and

y
2
(n) = x(n) + k

1
 (1+k

2
) x(n–1) + k

2
 x(n–2)

u
2
(n) = k

2
x(n) + k

1
(1+k

2
) x(n–1) + x(n–2)

The filter output is the output of the last stage.

The ADSP-2100 implementation of the all-zero lattice filter is shown in
Listing 5.6. Various registers must be preloaded before this routine is
called. The index register I0 should contain the starting address of the
input buffer, and I2 should hold the starting address of the output buffer.
I3 should contain the starting address of the filter delay line, and I4 should
contain the starting address of the coefficient buffer. The length registers
L0 and L2 should be set to zero, but L3 and L4 should be set to the order
of the filter (number of sections) to make the delay line and coefficient
buffers circular. The modify register M3 should be set to one, and the SE
register should contain the value needed to maintain a valid output data
format. (For example, if two 4.12 numbers are multiplied, the product is a
7.23 number. To obtain a product in 9.21 format, the SE register must be
set to –2.) MF, the multiplier feedback register, should contain the value
one in the output format. Multiplication by MF is an alternative method of
converting output to the correct format. The CNTR register should contain
the number of locations in the output buffer.

The out_loop loop is executed once for each output data point. CNTR is
loaded with the order of the filter, and the first input data point is loaded
into MX0. The latt_loop loop performs the filtering operation on the input
data point.

The first multiplication in the latt_loop loop formats the yz–1(n) value into
the MR register and also reads in values for uz–1(n–1) and kz. These values
are then multiplied and accumulated to produce yz(n), at the same time

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

8383838383

the value uz–1(n) is stored in the delay line for the next pass. The value
yz(n) is reformatted in the shifter for use by the multiplier in the next pass
of the latt_loop loop.

Next, uz–1(n–1) is formatted into the multiplier to compute the value of uz(n). This value is then
accumulated with the product of kz and yz(n). Again, the shifter reformats the value before
storage.

.MODULE all_zero_lattice_filter;

{
All Zero Lattice

Calling Parameters
CNTR = Length of Output Buffer
I0 —> Input Buffer L1 = 0
I2 —> Output Buffer L2 = 0
I3 —> Delay Line Buffer (circular) L3 = Filter Order
I4 —> Coefficient Buffer (circular) L4 = Filter Order
M0 = 1
M2 = 0
M3 = 1
M4 = 1
SE = Appropriate Scale Factor
MF = Formatted 1

Return Values
Output Buffer Filled

Altered Registers
MX0,MX1,MY0,MF,MR,SR,I2,I3,I4

Computation Time
(8 × Filter Order + 4) × Output Buffer Length + 3 + 1 cycles

}

.ENTRY z_latt;

z_latt: SR1=0; {Clear SR1 for first pass}
DO out_loop UNTIL CE; {Loop output length}
 CNTR=L3;
 MX0=DM(I0,M0); {Get excitation signal}
 DO latt_loop UNTIL CE; {Loop through filter}
 MR=MX0*MF (SS), MX1=DM(I3,M2), MY0=PM(I4,M4); {Get U,K}
 MR=MR+MX1*MY0 (SS), DM(I3,M3)=SR1; {Compute Yz store U}
 SR=ASHIFT MR1 (HI); {Reformat Yz}
 SR=SR OR LSHIFT MR0 (LO);
 MR=MX1*MF (SS); {Format Uz-1}
 MX0=SR1, MR=MR+MX0*MY0 (SS); {Compute Uz and Hold Yz}
 SR=ASHIFT MR1 (HI); {Reformat Uz}

latt_loop: SR=SR OR LSHIFT MR0 (LO);
out_loop: DM(I2,M0)=MX0; {Save output}

RTS;

55555

8484848484

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

.ENDMOD;

Listing 5.6 All-Zero Lattice FilterListing 5.6 All-Zero Lattice FilterListing 5.6 All-Zero Lattice FilterListing 5.6 All-Zero Lattice FilterListing 5.6 All-Zero Lattice Filter

5.4.25.4.25.4.25.4.25.4.2 All-Pole Lattice FilterAll-Pole Lattice FilterAll-Pole Lattice FilterAll-Pole Lattice FilterAll-Pole Lattice Filter
The all-pole lattice filter, shown in Figure 5.4, relates the variables xz(n),
uz(n), and y(n) by the following equations (Bellanger, 1984):

xz–1(n) = xz(n) – kz uz–1(n–1)

uz(n) = kz xz–1(n) + uz–1(n–1)

Therefore

y(n) = x1(n) – k1 y(n–1)

u1(n) = k1 y(n) + y(n–1)

and

Z –1
Z –1 Z –1

y(n)

k1
k2kM

x (n)
M

u (n)M

x (n)
2

u (n)2 u (n)
1

x (n)1

Figure 5.4 All-Pole Lattice Filter StructureFigure 5.4 All-Pole Lattice Filter StructureFigure 5.4 All-Pole Lattice Filter StructureFigure 5.4 All-Pole Lattice Filter StructureFigure 5.4 All-Pole Lattice Filter Structure

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

8585858585

x1(n) = x2(n) – k2 u1(n–1)

u2(n) = k2 x1(n) + u1(n–1)

The all-pole lattice filter routine is shown in Listing 5.7. Various registers
must be preloaded before the routine is called. The index register I0
should point to the start of the input buffer, I1 to the start of the coefficient
buffer, I2 to the start of the output buffer, and I4 to the start of the filter
delay line. The length registers L0 and L2 should both be set to zero, and
L1 and L4 should be set to the filter order to make the coefficient and
delay line buffers circular. The modify registers M0 and M4 should both
be set to one; M1 and M5 should both be set to –1. M6 should be set to
three and M7 to –2. The SE register, which controls data scaling, should be
set to an appropriate value, and AX0 should be set to the order of the filter
less one.

The routine loads the first input data value into MY0. The outloop loop is
executed once for each output data value. The MR register is loaded with
the scaled value of xz(n) at the same time the coefficient kz and delay line
value uz–1(n–1) are loaded. The next instruction computes the value xz–1(n)
and also loads the next multiplier operands. The dataloop loop performs
the remainder of the filtering operation on the data point.

In the dataloop loop, xz–1(n) is computed and then shifted to the proper
format for the next multiplication. Then the value of uz(n) is computed

55555

8686868686

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

and stored in the delay line. After the dataloop loop has been executed, the pointers to the delay
line and coefficient buffer are moved to the tops of their buffers at the same time the output of the
filter and the last delayed point u1(n) are saved.

.MODULE all_pole_lattice_filter;

{ All-Pole Lattice Filter Routine

Calling Parameters
CNTR = Length of Excitation Signal
I0 —> Excitation Signal L0 = 0
I1 —> Coefficient Buffer (circular) L1 = Filter Order
I2 —> Output Buffer L2 = 0
I4 —> Delay Line Buffer (circular) L4 = Filter Order
AR = Formatted 1
M0, M4 = 1 M1,M5 = -1
M6 = 3 M7 = -2
SE = Appropriate scale value
AX0 = Filter Order - 1

Return Values
Output Buffer Filled

Altered Registers
MX0,MY0,MY1,MR,SR,I0,I1,I2,I4

Computation Time
(6 × (Filter Length-1) +8) × Output Buffer Length + 3 + 6 cycles

}

.ENTRY p_latt;

p_latt: MY0=DM(I0,M0); {Get Input data}
DO outloop UNTIL CE; {Loop through output}
 CNTR=AX0;
 MR=AR*MY0 (SS), MX0=DM(I1,M0), MY0=PM(I4,M4); {Get U,K}
 MR=MR-MX0*MY0 (SS), MX0=DM(I1,M0), MY0=PM(I4,M4); {MR=X10}
 DO dataloop UNTIL CE; {Loop through filter}
 MR=MR-MX0*MY0 (SS); {Compute Xz}
 SR=ASHIFT MR1 (HI); {Reformat Xz}
 MY1=SR1, MR=AR*MY0 (SS); {Format Uz+1}
 MR=MR+MX0*MY1 (SS), MX0=DM(I1,M0),MY0=PM(I4,M7); {MR=Uz}
 SR=ASHIFT MR1 (HI); {Reformat Uz}

dataloop: PM(I4,M6)=SR1, MR=AR*MY1 (SS); {Save Uz format Xz}
 MY0=PM(I4,M7), MX0=DM(I1,M1); {Reset Pointers}
 MY0=DM(I0,M0), SR=ASHIFT MR1 (HI); {Get new data point}
 DM(I2,M0)=MY1, SR=SR OR LSHIFT MR0 (LO);{Store output}

outloop: PM(I4,M4)=SR1; {Save Y}
RTS;

.ENDMOD;
Listing 5.7 All-Pole Lattice FilterListing 5.7 All-Pole Lattice FilterListing 5.7 All-Pole Lattice FilterListing 5.7 All-Pole Lattice FilterListing 5.7 All-Pole Lattice Filter

	Table of Contents
	Chapter 5: Digital Filters
	5.1 Overview
	5.2 Finite Impulse Response (FIR) Filters
	5.2.1 Single-Precision FIR Transversal Filter
	5.2.2 Double-Precision FIR Transversal Filter
	5.2.3 Two-Dimensional FIR Filter

	5.3 Infinite Impulse Response (IIR) Filters
	5.3.1 Direct Form IIR Filter
	5.3.2 Cascaded Biquad IIR Filter

	5.4 Lattice Filters
	5.4.1 All-Zero Lattice Filter
	5.4.2 All-Pole Lattice Filter

