
Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

8787878787

55555

5.55.55.55.55.5 MULTIRATE FILTERSMULTIRATE FILTERSMULTIRATE FILTERSMULTIRATE FILTERSMULTIRATE FILTERS
Multirate filters are digital filters that change the sampling rate of a
digitally-represented signal. These filters convert a set of input samples to
another set of data that represents the same analog signal sampled at a
different rate. A system incorporating multirate filters (a multirate system)
can process data sampled at various rates.

Some examples of applications for multirate filters are:

• Sample-rate conversion between digital audio systems
• Narrow-band low-pass and band-pass filters
• Sub-band coding for speech processing in vocoders
• Transmultiplexers for TDM (time-division multiplexing) to FDM

(frequency-division multiplexing) translation
• Quadrature modulation
• Digital reconstruction filters and anti-alias filters for digital audio, and
• Narrow-band spectra calculation for sonar and vibration analysis.

For additional information on these topics, see References at the end of this
chapter.

The two types of multirate filtering processes are decimation and
interpolation. Decimation reduces the sample rate of a signal. It eliminates
redundant or unnecessary information and compacts the data, allowing
more information to be stored, processed, or transmitted in the same
amount of data. Interpolation increases the sample rate of a signal.
Through calculations on existing data, interpolation fills in missing
information between the samples of a signal. Decimation reduces a sample
rate by an integer factor M, and interpolation increases a sample rate by
an integer factor L. Non-integer rational (ratio of integers) changes in
sample rate can be achieved by combining the interpolation and
decimation processes.

The ADSP-2100 programs in this chapter demonstrate decimation and
interpolation as well as efficient rational changes in sample rate. Cascaded
stages of decimation and interpolation, which are required for large rate
changes (large values of L and M) and are useful for implementing
narrow-band low-pass and band-pass filters, are also demonstrated.

55555

 88 88 88 88 88

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.5.15.5.15.5.15.5.15.5.1 DecimationDecimationDecimationDecimationDecimation
Decimation is equivalent to sampling a discrete-time signal. Continuous-
time (analog) signal sampling and discrete-time (digital) signal sampling
are analogous.

5.5.1.15.5.1.15.5.1.15.5.1.15.5.1.1 Continuous-Time SamplingContinuous-Time SamplingContinuous-Time SamplingContinuous-Time SamplingContinuous-Time Sampling
Figure 5.5 shows the periodic sampling of a continuous-time signal, xc(t),
where t is a continuous variable. To sample xc(t) at a uniform rate every T
seconds, we modulate (multiply) xc(t) by an impulse train, s(t):

+∞
s(t) = ∑ ∂(t–nT)

n=–∞

The resulting signal is a train of impulses, spaced at intervals of T, with
amplitudes equal to samples of xc(t). This impulse train is converted to a
set of values x(n), where n is a discrete-time variable and x(n)= xc(nT).
Thus, xc(t) is quantized both in time and in amplitude to form digital
values x(n). The modulation process is equivalent to a track-and-hold
circuit, and the quantization process is equivalent to an analog-to-digital
(A/D) converter.

Figure 5.6 shows a frequency-domain interpretation of the sampling
process. Xc(w) is the spectrum of the continuous-time signal xc(t). S(w), a
train of impulses at intervals of the sampling frequency, Fs or 1/T, is the
frequency transform of s(t). Because modulation in the time domain is
equivalent to convolution in the frequency domain, the convolution of
Xc(w) and S(w) yields the spectrum of x(n). This spectrum is a sequence of
periodic repetitions of Xc(w), called images of Xc(w), each centered at
multiples of the sampling frequency, Fs.

The frequency that is one-half the sampling frequency (Fs/2) is called the
Nyquist frequency. The analog signal xc(t) must be bandlimited before
sampling to at most the Nyquist frequency. If xc(t) is not bandlimited, the
images created by the sampling process overlap each other, mirroring the
spectral energy around nFs/2, and thus corrupting the signal
representation. This phenomenon is called aliasing. The input xc(t) must
pass through an analog anti-alias filter to eliminate any frequency
component above the Nyquist frequency.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

8989898989

t

x (t)

s(t)

t

T–T 2T–2T 0 3T–3T

x(n)

n

0 1 2–1–2 3–3

T–T 2T–2T 0 3T–3T

c

s(t)

t

T–T 2T–2T 0 3T–3T

x (t)c

Figure 5.5 Sampling Continuous-Time SignalFigure 5.5 Sampling Continuous-Time SignalFigure 5.5 Sampling Continuous-Time SignalFigure 5.5 Sampling Continuous-Time SignalFigure 5.5 Sampling Continuous-Time Signal

5.5.1.25.5.1.25.5.1.25.5.1.25.5.1.2 Discrete-Time SamplingDiscrete-Time SamplingDiscrete-Time SamplingDiscrete-Time SamplingDiscrete-Time Sampling
Figure 5.7 shows the sampling of a discrete-time signal, x(n). The signal
x(n) is multiplied by s(n), a train of impulses occurring at every integer
multiple of M. The resulting signal consists of every Mth sample of x(n)
with all other samples zeroed out. In this example, M is 4; the decimated
version of x(n) is the result of discarding three out of every four samples.
The original sample rate, Fs, is reduced by a factor of 4; Fs’=Fs/4.

55555

 90 90 90 90 90

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

X(w)*S(w)

X (w)

S(w)

πF
w

w

w

2πF 4πF

2πF 4πF

c

s

s

s

s

s

• • •

Figure 5.6 Spectrum of Continuous-Time Signal SamplingFigure 5.6 Spectrum of Continuous-Time Signal SamplingFigure 5.6 Spectrum of Continuous-Time Signal SamplingFigure 5.6 Spectrum of Continuous-Time Signal SamplingFigure 5.6 Spectrum of Continuous-Time Signal Sampling

Figure 5.8 shows the frequency-domain representation of sampling the
discrete-time signal. The spectrum of the waveform to be sampled is X(w).
The original analog signal was bandlimited to ws/2 before being sampled,
where ws is the original sample rate. The shaded lines indicate the images
of X(w) above ws/2. Before decimation, X(w) must be bandlimited to one-
half the final sample rate, to eliminate frequency components that could
alias. H(w) is the transfer function of the low-pass filter required for a
decimation factor (M) of four. Its cutoff frequency is ws/8. This digital
anti-alias filter performs the equivalent function as the analog anti-alias
filter described in the previous section.

W(w) is a version of X(w) filtered by H(w), and W(w)*S(w) is the result of
convolving W(w) with the sampling function S(w), the transform of s(n).
The shaded lines in W(w)*S(w) represent the images of W(w) formed by
this convolution. These images show the energy in the original signal that
would alias if we decimated X(w) without bandlimiting it. X(w’) is the
result of decimating W(w)*S(w) by four. Decimation effectively spreads
out the energy of the original sequence and eliminates unwanted
information located above ws/M.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

9191919191

y(m)

x(n)s(n)

n

s(n)

n

n

x(n)

m

0 1 2 3 ...

0 1 2 3 4 5

The decimation and anti-alias functions are usually grouped together into
one function called a decimation filter. Figure 5.9 shows a block diagram
of a decimation filter. The input samples x(n) are put through the digital
anti-alias filter, h(k). The box labeled with a down-arrow and M is the
sample rate compressor, which discards M–1 out of every M samples.
Compressing the filtered input w(n) results in y(m), which is equal to
w(Mm).

Data acquisition systems such as the digital audio tape recorder can take
advantage of decimation filters to avoid using expensive high-

Figure 5.7 Sampling Discrete -Time SignalFigure 5.7 Sampling Discrete -Time SignalFigure 5.7 Sampling Discrete -Time SignalFigure 5.7 Sampling Discrete -Time SignalFigure 5.7 Sampling Discrete -Time Signal

55555

 92 92 92 92 92

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

2

ws

w

8

ws

8

ws

2

w' s

=
4

w

w

w

w

W(w)

W(w)*S(w)

H(w)

X(w)

8

ws

w'

w

S(w)

4

ws

2

ws

4

3w s
ws

X(w')

Figure 5.8 Spectrum of Discrete-Time Signal SamplingFigure 5.8 Spectrum of Discrete-Time Signal SamplingFigure 5.8 Spectrum of Discrete-Time Signal SamplingFigure 5.8 Spectrum of Discrete-Time Signal SamplingFigure 5.8 Spectrum of Discrete-Time Signal Sampling

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

9393939393

↓ Mx(n) y(m)h(k)
w(n)

Figure 5.9 Decimation Filter Block DiagramFigure 5.9 Decimation Filter Block DiagramFigure 5.9 Decimation Filter Block DiagramFigure 5.9 Decimation Filter Block DiagramFigure 5.9 Decimation Filter Block Diagram

performance analog anti-aliasing filters. Such a system over-samples the
input signal (usually by a factor of 2 to 8) and then decimates to the
required sample rate. If the system over-samples by two, the transition
band of the front end filter can be twice that required in a system without
decimation, thus a relatively inexpensive analog filter can be used.

5.5.1.35.5.1.35.5.1.35.5.1.35.5.1.3 Decimation Filter StructureDecimation Filter StructureDecimation Filter StructureDecimation Filter StructureDecimation Filter Structure
The decimation algorithm can be implemented in an FIR (Finite Impulse
Response) filter structure. The FIR filter has many advantages for
multirate filtering including: linear phase, unconditional stability, simple
structure, and easy coefficient design. Additionally, the FIR structure in
multirate filters provides for an increase in computational efficiency over
IIR structures. The major difference between the IIR and the FIR filter is
that the IIR filter must calculate all outputs for all inputs. The FIR
multirate filter calculates an output for every Mth input. For a more
detailed description of the FIR and IIR filters, refer to Crochiere and
Rabiner, 1983; see References at the end of this chapter.

The impulse response of the anti-imaging low-pass filter is h(n). A time-
series equation filtering x(n) is the convolution

N–1

w(n) = ∑ h(k) x(n–k)
k=0

where N is the number of coefficients in h(n). N is the order, or number of
taps, in the filter. The application of this equation to implement the filter
response H(ejw) results in an FIR filter structure.

Figure 5.10a, on the next page, shows the signal flowgraph of an FIR
decimation filter. The N most recent input samples are stored in a delay
line; z–1 is a unit sample delay. N samples from the delay line are
multiplied by N coefficients and the resulting products are summed to
form a single output sample w(n). Then w(n) is down-sampled by M
using the rate compressor.

55555

 94 94 94 94 94

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

x(n) y(m)↓ M

z-1

z-1

z-1

z-1

x(n) y(m)

z-1

z-1

z-1

z-1

h(0)

h(1)

h(2)

h(3)

h(N-1)

h(0)

h(1)

h(2)

h(3)

h(N-1)

(a)

(b)

↓ M

↓ M

↓ M

↓ M

↓ M

Figure 5.10 FIR Form Decimation FilterFigure 5.10 FIR Form Decimation FilterFigure 5.10 FIR Form Decimation FilterFigure 5.10 FIR Form Decimation FilterFigure 5.10 FIR Form Decimation Filter

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

9595959595

It is not necessary to calculate the samples of w(n) that are discarded by
the rate compressor. Accordingly, the rate compressor can be moved in
front of the multiply/accumulate paths, as shown in Figure 5.10b. This
change reduces the required computation by a factor of M. This filter
structure can be implemented by updating the delay line with M inputs
before each output sample is calculated.

Substitution of the relationship between w(n) and y(m) into the
convolution results in the decimation filtering equation

N–1

y(m) = ∑ h(k) x(Mm–k)
k=0

Some of the implementations shown in textbooks on digital filters take
advantage of the symmetry in transposed forms of the FIR structure to
reduce the number of multiplications required. However, such a reduction
of multiplications results in an increased number of additions. In this
application, because the ADSP-2100 is capable of both multiplying and
accumulating in one cycle, trading off multiplication for addition is a
useless technique.

5.5.1.45.5.1.45.5.1.45.5.1.45.5.1.4 ADSP-2100 Decimation AlgorithmADSP-2100 Decimation AlgorithmADSP-2100 Decimation AlgorithmADSP-2100 Decimation AlgorithmADSP-2100 Decimation Algorithm
Figure 5.11 shows a flow chart of the decimation filter algorithm used for
the ADSP-2100 routine. The decimator calculates one output for every M
inputs to the delay line.

External hardware causes an interrupt at the input sample rate Fs, which
triggers the program to fetch an input data sample and store it in the data
circular buffer. The index register that points into this data buffer is then
incremented by one, so that the next consecutive input sample is written
to the next address in the buffer. The counter is then decremented by one
and compared to zero. If the counter is not yet zero, the algorithm waits
for another input sample. If the counter has decremented to zero, the
algorithm calculates an output sample, then resets the counter to M so that
the next output will be calculated after the next M inputs.

The output is the sum of products of N data buffer samples in a circular
buffer and N coefficients in another circular buffer. Note that M input
samples are written into the data buffer before an output sample is
calculated. Therefore, the resulting output sample rate is equal to the
input rate divided by the decimation factor: Fs’=Fs/M.

55555

 96 96 96 96 96

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

counter=1
initialize AG

interrupt
?

yes

no

dm(^data,1)=input
counter=counter–1

no

yes

counter=0
?

filter N–1 coeffs
output sample
counter=M

at input sample rate

Figure 5.11 Decimator Flow ChartFigure 5.11 Decimator Flow ChartFigure 5.11 Decimator Flow ChartFigure 5.11 Decimator Flow ChartFigure 5.11 Decimator Flow Chart

For additional information on the use of the ADSP-2100’s address
generators for circular buffers, see the ADSP-2100 User’s Manual, Chapter
2.

The ADSP-2100 program for the decimation filter is shown in Listing 5.8.
Inputs to this filter routine come from the memory-mapped port adc, and
outputs go to the memory-mapped port dac. The filter’s I/O interfacing
hardware is described in more detail later in this chapter.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

9797979797

{DECIMATE.dsp
Real time Direct Form FIR Filter, N taps, decimates by M for a
decrease of 1/M times the input sample rate.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 decimate;

.CONST N=300;

.CONST M=4; {decimate by factor of M}

.VAR/PM/RAM/CIRC coef[N];

.VAR/DM/RAM/CIRC data[N];

.VAR/DM/RAM counter;

.PORT adc;

.PORT dac;

.INIT coef:<coef.dat>;

RTI; {interrupt 0}
RTI; {interrupt 1}
RTI; {interrupt 2}
JUMP sample; {interrupt 3= input sample rate}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
SI=M; {set decimation counter to M}
DM(counter)= SI; {for first input data sample}
I4=^coef; {setup a circular buffer in PM}
L4=%coef;
M4=1; {modifier for coef is 1}
I0=^data; {setup a circular buffer in DM}
L0=%data;
M0=1; {modifier for data is 1}
IMASK=b#1000; {enable interrupt 3}

wait_interrupt: JUMP wait_interrupt; {infinite wait loop}

{__________Decimator, code executed at the sample rate________________}
sample: AY0=DM(adc);

DM(I0,M0)=AY0; {update delay line with newest}
AY0=DM(counter);
AR=AY0-1; {decrement and update counter}
DM(counter)=AR;
IF NE RTI; {test and return if not M times}

(listing continues on next page)

55555

 98 98 98 98 98

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

Listing 5.8 Decimation FilterListing 5.8 Decimation FilterListing 5.8 Decimation FilterListing 5.8 Decimation FilterListing 5.8 Decimation Filter

The routine uses two circular buffers, one for data samples and one for
coefficients, that are each N locations long. The coef buffer is located in
program memory and stores the filter coefficients. Each time an output is
calculated, the decimator accesses all these coefficients in sequence,
starting with the first location in coef. The I4 index register, which points to
the coefficient buffer, is modified by one (from modify register M0) each
time it is accessed. Therefore, I4 is always modified back to the beginning
of the coefficient buffer after the calculation is complete.

The FIR filter equation starts the convolution with the most recent data
sample and accesses the oldest data sample last. Delay lines implemented
with circular buffers, however, access data in the opposite order. The
oldest data sample is fetched first from the buffer and the newest data
sample is fetched last. Therefore, to keep the data/coefficient pairs
together, the coefficients must be stored in memory in reverse order.

The relationship between the address and the contents of the two circular
buffers (after N inputs have occurred) is shown in the table below. The
data buffer is located in data memory and contains the last N data samples
input to the filter. Each pass of the filter accesses the locations of both
buffers sequentially (the pointer is modified by one), but the first address
accessed is not always the first location in the buffer, because the
decimation filter inputs M samples into the delay line before starting each
filter pass. For each pass, the first fetch from the data buffer is from an
address M greater than for the previous pass. The data delay line moves
forward M samples for every output calculated.

{_________code below executed at 1/M times the sample rate____________}
do_fir: AR=M; {reset the counter to M}

DM(counter)=AR;
CNTR=N - 1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop UNTIL CE; {N-1 taps of FIR}

taploop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output data sample}
RTI;

.ENDMOD;

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

9999999999

Data Coefficient
DM(0) = x(n–(N–1)) oldest PM(0) = h(N–1)
DM(1) = x(n–(N–2)) PM(1) = h(N–2)
DM(2) = x(n–(N–3)) PM(2) = h(N–3)

• •
• •
• •

DM(N–3) = x(n–2) PM(N–3) = h(2)
DM(N–2) = x(n–1) PM(N–2) = h(1)
DM(N–1) = x(n–0) newest PM(N–1) = h(0)

A variable in data memory is used to store the decimation counter. One of
the processor’s registers could have been used for this counter, but using a
memory location allows for expansion to multiple stages of decimation
(described in Multistage Implementations, later in this chapter).

The number of cycles required for the decimation filter routine is shown
below. The ADSP-2100 takes one cycle to calculate each tap (multiply and
accumulate), so only 18+N cycles are necessary to calculate one output
sample of an N-tap decimator. The 18 cycles of overhead for each pass is
just six cycles greater than the overhead of a non-multirate FIR filter.

Interrupt response 2 cycles
Fetch input 1 cycle
Write input to data buffer 1 cycle
Decrement and test counter 4 cycles
Reload counter with M 2 cycles
FIR filter pass 7 + N cycles
Return from interrupt 1 cycle

Maximum total 18 + N cycles/output

5.5.1.55.5.1.55.5.1.55.5.1.55.5.1.5 A More Efficient DecimatorA More Efficient DecimatorA More Efficient DecimatorA More Efficient DecimatorA More Efficient Decimator
The routine in Listing 5.8 requires that the 18+N cycles needed to calculate
an output occur during the first of the M input sample intervals. No
calculations are done in the remaining M–1 intervals. This limits the
number of filter taps that can be calculated in real time to:

N = 1 – 18
Fs tCLK

where tCLK is the instruction cycle time of the processor.

55555

 100 100 100 100 100

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

An increase in this limit by a factor of M occurs if the program is modified
so that the M data inputs overlap the filter calculations. This more efficient
version of the program is shown in Listing 5.9.

In this example, a circular buffer input_buf stores the M input samples. The
code for loading input_buf is placed in an interrupt routine to allow the
input of data and the FIR filter calculations to occur simultaneously.

A loop waits until the input buffer is filled with M samples before the
filter output is calculated. Instead of counting input samples, this program
determines that M samples have been input when the input buffer’s index
register I0 is modified back to the buffer’s starting address. This strategy
saves a few cycles in the interrupt routine.

After M samples have been input, a second loop transfers the data from
input_buf to the data buffer. An output sample is calculated. Then the
program checks that at least one sample has been placed in input_buf. This
check prevents a false output if the output calculation occurs in less than
one sample interval. Then the program jumps back to wait until the next
M samples have been input.

This more efficient decimation filter spreads the calculations over the
output sample interval 1/Fs’ instead of the input interval 1/Fs. The
number of taps that can be calculated in real time is:

N = M – 20 – 2M – 6(M–1)
Fs tCLK

which is approximately M times greater than for the first routine.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

101101101101101

{DEC_EFF.dsp
Real time Direct Form FIR Filter, N taps, decimates by M for a decrease of 1/M times
the input sample rate. This version uses an input buffer to allow the filter
computations to occur in parallel with inputs. This allows larger order filter for a
given input sample rate. To save time, an index register is used for the input buffer
as well as for a decimation counter.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 eff_decimate;

.CONST N=300;

.CONST M=4; {decimate by factor of M}

.VAR/PM/RAM/CIRC coef[N];

.VAR/DM/RAM/CIRC data[N];

.VAR/DM/RAM/CIRC input_buf[M];

.PORT adc;

.PORT dac;

.INIT coef:<coef.dat>;

RTI; {interrupt 0}
RTI; {interrupt 1}
RTI; {interrupt 2}
JUMP sample; {interrupt 3= input sample rate}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
I4=^coef; {setup a circular buffer in PM}
L4=%coef;
M4=1; {modifier for coef is 1}
I0=^data; {setup a circular buffer in DM}
L0=%data;
M0=1; {modifier for data is 1}
I1=^input_buf; {setup a circular buffer in DM}
L1=%input_buf;
IMASK=b#1000; {enable interrupt 3}

wait_M: AX0=I1; {wait for M inputs}
AY0=^input_buf;
AR=AX0-AY0; {test if pointer is at start}
IF NE JUMP wait_M;

(listing continues on next page)

55555

 102 102 102 102 102

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

Listing 5.9 Efficient Decimation FilterListing 5.9 Efficient Decimation FilterListing 5.9 Efficient Decimation FilterListing 5.9 Efficient Decimation FilterListing 5.9 Efficient Decimation Filter

5.5.25.5.25.5.25.5.25.5.2 Decimator Hardware ConfigurationDecimator Hardware ConfigurationDecimator Hardware ConfigurationDecimator Hardware ConfigurationDecimator Hardware Configuration
Both decimation filter programs assume an ADSP-2100 system with the
I/O hardware configuration shown in Figure 5.12. The processor is
interrupted by an interval timer at a frequency equal to the input sample
rate Fs and responds by inputting a data value from the A/D converter.
The track/hold (sampler) and the A/D converter (quantizer) are also
clocked at this frequency. The D/A converter on the filter output is
clocked at a rate of Fs/M, which is generated by dividing the interval
timer frequency by M.

To keep the output signal jitter-free, it is important to derive the D/A
converter’s clock from the interval timer and not from the ADSP-2100. The
sample period of the analog output should be disassociated from writes to
the D/A converter. If an instruction-derived clock is used, any conditional

{____________code below executed at 1/M times the sample rate__________}
CNTR=M;
DO load_data UNTIL CE;

AR=DM(I1,M0);
load_data: DM(I0,M0)=AR;

fir: CNTR=N - 1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop UNTIL CE; {N-1 taps of FIR}

taploop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output data sample}

wait_again: AX0=I1;
AY0=^input_buf;
AR=AX0-AY0; {test and wait if i1 still}
IF EQ JUMP wait_again; {points to start of input_buf}
JUMP wait_M;

{__________sample input, code executed at the sample rate____________}
sample: ENA SEC_REG; {so no registers will get lost}

AY0=DM(adc); {get input sample}
DM(I1,M0)=AY0; {load in M long buffer}
RTI;

.ENDMOD;

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

103103103103103

ADSP-2100

DMD DMA DMRD DMWR

Decode

A/D Tri-
State
Buffer

Latch Latch D/A
Track
/Hold

Interval
Timer

÷M

y(t')
x(t)

IRQ

Track
/Hold

Figure 5.12 Decimator HardwareFigure 5.12 Decimator HardwareFigure 5.12 Decimator HardwareFigure 5.12 Decimator HardwareFigure 5.12 Decimator Hardware

instructions in the program could branch to different length program
paths, causing the output samples to be spaced unequally in time. The
D/A converter must be double-buffered to accommodate the interval-
time-derived clock. The ADSP-2100 outputs data to one latch. Data from
this latch is fed to a second latch that is controlled by an interval-timer-
derived clock.

5.5.35.5.35.5.35.5.35.5.3 InterpolationInterpolationInterpolationInterpolationInterpolation
The process of recreating a continuous-time signal from its discrete-time
representation is called reconstruction. Interpolation can be thought of as
the reconstruction of a discrete-time signal from another discrete-time
signal, just as decimation is equivalent to sampling the samples of a
signal. Continuous-time (analog) signal reconstruction and discrete-time
(digital) signal reconstruction are analogous.

Figure 5.13, on the following page, illustrates the reconstruction of a
continuous-time signal from a discrete-time signal. The discrete-time
signal x(n) is first made continuous by forming an impulse train with
amplitudes at times nT equal to the corresponding samples of x(n). In a

55555

 104 104 104 104 104

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

x (t)

t

x(n)

n

0 1 2–1–2 3–3

t

y(t)

T–T 2T–2T 0 3T–3T...

T–T 2T–2T 0 3T–3T

c

Figure 5.13 Reconstruction of a Continuous-Time SignalFigure 5.13 Reconstruction of a Continuous-Time SignalFigure 5.13 Reconstruction of a Continuous-Time SignalFigure 5.13 Reconstruction of a Continuous-Time SignalFigure 5.13 Reconstruction of a Continuous-Time Signal

0

real system, a D/A converter performs this operation. The result is a
continuous signal y(t), which is smoothed by a low-pass anti-imaging
filter (also called a reconstruction filter), to produce the reconstructed
analog signal xc(t). The frequency domain representation of y(t) in Figure
5.14 shows that images of the original signal appear in the discrete- to
continuous-time conversion. These images are eliminated by the anti-
imaging filter, as shown in the spectrum of the resulting signal Xc(w).

5.5.3.15.5.3.15.5.3.15.5.3.15.5.3.1 Reconstruction of a Discrete-Time SignalReconstruction of a Discrete-Time SignalReconstruction of a Discrete-Time SignalReconstruction of a Discrete-Time SignalReconstruction of a Discrete-Time Signal
Figure 5.15 shows the interpolation by a factor of L (4 in this example) of
the discrete-time signal x(n). This signal is expanded by inserting L–1
zero-valued samples between its data samples. The resulting signal w(m)
is low-pass filtered to produce y(m). The insertion of zeros and the
smoothing filter fill in the data missing between the samples of x(n).
Because one sample of x(n) corresponds to L samples of y(m), the sample
rate is increased by a factor of L.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

105105105105105

Figure 5.15 Interpolation of Discrete-Time SignalFigure 5.15 Interpolation of Discrete-Time SignalFigure 5.15 Interpolation of Discrete-Time SignalFigure 5.15 Interpolation of Discrete-Time SignalFigure 5.15 Interpolation of Discrete-Time Signal

Y(w)*S(w)

w
2πF 4πF

X (w)

πF
w

πF

c

s s s

s

Figure 5.14 Spectrum of Continuous-Time Signal ReconstructionFigure 5.14 Spectrum of Continuous-Time Signal ReconstructionFigure 5.14 Spectrum of Continuous-Time Signal ReconstructionFigure 5.14 Spectrum of Continuous-Time Signal ReconstructionFigure 5.14 Spectrum of Continuous-Time Signal Reconstruction

m

y(m)

m

w(m)

x(n)

n

55555

 106 106 106 106 106

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

Figure 5.16 shows the frequency interpretation of interpolation. Fs’ is the
input sample frequency and Fs” is the output sample frequency. Fs” is
equal to Fs’ multiplied by the interpolation factor L (3 in this example).
H(w) is the response of the filter required to eliminate the images in W(w).
The lower stopband frequency of H(w) must be less than Fs”/2L, which is
the Nyquist frequency of the original signal. Thus filtering by H(w)
accomplishes the function of a digital anti-imaging filter.

Digital audio systems such as compact disk and digital audio tape players
frequently use interpolation (oversampling) techniques to avoid using
costly high performance analog reconstruction filters. The anti-imaging
function in the digital interpolator allows these systems to use inexpensive
low-order analog filters on the D/A outputs.

Figure 5.16 Spectrum of InterpolationFigure 5.16 Spectrum of InterpolationFigure 5.16 Spectrum of InterpolationFigure 5.16 Spectrum of InterpolationFigure 5.16 Spectrum of Interpolation

X(w)

W(w)

H(w)

 w s

 w
s
'

Y(w)

 w
s
'

 ws'

2L

w
s
'

2

w
s

2

ws'

w

w

w

w

2

ws'

2

ws'

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

107107107107107

5.5.3.25.5.3.25.5.3.25.5.3.25.5.3.2 Interpolation Filter StructureInterpolation Filter StructureInterpolation Filter StructureInterpolation Filter StructureInterpolation Filter Structure
Figure 5.17a shows a block diagram of an interpolation filter. The two
major differences from the decimation filter are that the interpolator uses a
sample rate expander instead of the sample rate compressor and that the
interpolator’s low-pass filter is placed after the rate expander instead of
before the rate compressor. The rate expander, which is the block labeled
with an up-arrow and L, inserts L–1 zero-valued samples after each input
sample. The resulting w(m) is low-pass filtered to produce y(m), a
smoothed, anti-imaged version of w(m). The transfer function of the
interpolator H(k) incorporates a gain of 1/L because the L–1 zeros
inserted by the rate expander cause the energy of each input to be spread
over L output samples.

x(n) y(m)

x(n) y(m)

z-1

z-1

z-1

z-1

h(0)

h(1)

h(2)

h(3)

h(N-1)

h(k)

↑ L

↑ L(a)

(b)

Figure 5.17 Interpolation Filter Block DiagramFigure 5.17 Interpolation Filter Block DiagramFigure 5.17 Interpolation Filter Block DiagramFigure 5.17 Interpolation Filter Block DiagramFigure 5.17 Interpolation Filter Block Diagram

55555

 108 108 108 108 108

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

The low-pass filter of the interpolator uses an FIR filter structure for the
same reasons that an FIR filter is used in the decimator, notably
computational efficiency. The convolution equation for this filter is

N–1

y(m) = ∑ h(k) w(m–k)
k=0

N–1 is the number of filter coefficients (taps) in h(k), w(m–k) is the rate
expanded version of the input x(n), and w(m–k) is related to x(n) by

w(m–k) = x((m–k)/L)) for m–k = 0, ±L, ±2L, ...

0 otherwise

The signal flow graph that represents the interpolation filter is shown in
Figure 5.17b, on previous page. A delay line of length N is loaded with an
input sample followed by L–1 zeros, then the next input sample and L–1
zeros, and so on. The output is the sum of the N products of each sample
from the delay line and its corresponding filter coefficient. The filter
calculates an output for every sample, zero or data, loaded into the delay
line.

An example of the interpolator operation is shown in the signal flowgraph
in Figure 5.18. The contents of the delay line for three consecutive passes
of the filter are highlighted. In this example, the interpolation factor L is 3.
The delay line is N locations long, where N is the number of coefficients of
the filter; N=9 in this example. There are N/L or 3 data samples in the
delay line during each pass. The data samples x(1), x(2), and x(3) in the
first pass are separated by L–1 or 2 zeros inserted by the rate expander.
The zero-valued samples contribute (L–1)N/L or 6 zero-valued products
to the output result. These (L–1)N/L multiplications are unnecessary and
waste processor capacity and execution time.

A more efficient interpolation method is to access the coefficients and the
data in a way that eliminates wasted calculations. This method is
accomplished by removing the rate expander to eliminate the storage of
the zero-valued samples and shortening the data delay line from N to
N/L locations. In this implementation, the data delay line is updated only
after L outputs are calculated. The same N/L (three) data samples are
accessed for each set of L output calculations. Each output calculation

{

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

109109109109109

accesses every Lth (third) coefficient, skipping the coefficients that
correspond to zero-valued data samples.

Crochiere and Rabiner (see References at the end of this chapter) refer to
this efficient interpolation filtering method as polyphase filtering, because a
different phase of the filter function h(k) (equivalent to a set of interleaved
coefficients) is used to calculate each output sample.

5.5.3.35.5.3.35.5.3.35.5.3.35.5.3.3 ADSP-2100 Interpolation AlgorithmADSP-2100 Interpolation AlgorithmADSP-2100 Interpolation AlgorithmADSP-2100 Interpolation AlgorithmADSP-2100 Interpolation Algorithm
A circular buffer of length N/L located in data memory forms the data
delay line. Although the convolution equation accesses the newest data
sample first and the oldest data sample last, the ADSP-2100 fetches data
samples from the circular buffer in the opposite order: oldest data first,
newest data last. To keep the data/coefficient pairs together, the
coefficients are stored in program memory in reverse order, e.g., h(N–1) in
PM(0) and h(0) in PM(N–1).

x (n)

z-1

z-1

z-1

↑ L

z-1

z-1

z-1

z-1

y(m)

z-1

h(0)

h(1)

h(2)

h(3)

h(4)

h(5)

h(6)

h(7)

h(8)

x(3)

x(2)

x(1)

0

0

0

0

0

0

0 0

x(3)

x(2)

x(1)

0

0

0

0

0

0

x(3)

x(2)

x(1)

0

0

0

0

x(4)

0

0

x(3)

x(2)

0

0

0

0

0

x(4)

0

0

x(3)

x(2)

0

0

0

1st
Pass

2nd
Pass

3rd
Pass

Figure 5.18 Example Interpolator FlowgraphFigure 5.18 Example Interpolator FlowgraphFigure 5.18 Example Interpolator FlowgraphFigure 5.18 Example Interpolator FlowgraphFigure 5.18 Example Interpolator Flowgraph

55555

 110 110 110 110 110

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

Figure 5.19 shows a flow chart of the interpolation algorithm. The
processor waits in a loop and is interrupted at the output sample rate
(L times the input sample rate). In the interrupt routine, the coefficient
address pointer is decremented by one location so that a new set of
interleaved coefficients will be accessed in the next filter pass. A counter
tracks the occurrence of every Lth output; on the Lth output, an input
sample is taken and the coefficient address pointer is set forward L
locations, back to the first set of interleaved coefficients. The output is then
calculated with the coefficient address pointer incremented by L locations
to fetch every Lth coefficient. One restriction in this algorithm is that the
number of filter taps must be an integral multiple of the interpolation
factor; N/L must be an integer.

counter=1
initialize AG

yes

modify(^coef,–1)
counter=counter–1

no

yes

counter=0
?

no

dm(^data,1)=input
modify(^coef,L)
counter=L

filter N/L–1 coeffs
output sample

interrupt
?

at L x (input sample rate)

Figure 5.19 Interpolation Flow ChartFigure 5.19 Interpolation Flow ChartFigure 5.19 Interpolation Flow ChartFigure 5.19 Interpolation Flow ChartFigure 5.19 Interpolation Flow Chart

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

111111111111111

Listing 5.10 is an ADSP-2100 program that implements this interpolation
algorithm. The ADSP-2100 is capable of calculating each filter pass in
((N/L)+17) processor instruction cycles. Each pass must be calculated
within the period between output samples, equal to 1/FsL. Thus the
maximum number of taps that can be calculated in real time is:

N = 1 – 17L
Fs tCLK

where tCLK is the processor cycle time and Fs is the input sampling rate.

{INTERPOLATE.dsp
Real time Direct Form FIR Filter, N taps, uses an efficient algorithm
to interpolate by L for an increase of L times the input sample rate. A
restriction on the number of taps is that N/L be an integer.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 interpolate;

.CONST N=300;

.CONST L=4; {interpolate by factor of L}

.CONST NoverL=75;

.VAR/PM/RAM/CIRC coef[N];

.VAR/DM/RAM/CIRC data[NoverL];

.VAR/DM/RAM counter;

.PORT adc;

.PORT dac;

.INIT coef:<coef.dat>;

RTI; {interrupt 0}
RTI; {interrupt 1}
RTI; {interrupt 2}
JUMP sample; {interrupt 3 at (L*input rate)}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
SI=1; {set interpolate counter to 1}
DM(counter)=SI; {for first data sample}
I4=^coef; {setup a circular buffer in PM}
L4=%coef;

(listing continues on next page)

55555

 112 112 112 112 112

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

M4=L; {modifier for coef is L}
M5=-1; {modifier to shift coef back -1}
I0=^data; {setup a circular buffer in DM}
L0=%data;
M0=1;
IMASK=b#1000; {enable interrupt 3}

wait_interrupt: JUMP wait_interrupt;{infinite wait loop}

{______________________Interpolate__________________________________}

sample: MODIFY(I4,M5); {shifts coef pointer back by -1}
AY0=DM(counter);
AR=AY0-1; {decrement and update counter}
DM(counter)=AR;
IF NE JUMP do_fir; {test and input if L times}

{________input data sample, code executed at the sample rate__________}

do_input: AY0=DM(adc); {input data sample}
DM(I0,M0)=AY0; {update delay line with newest}
MODIFY(I4,M4); {shifts coef pointer up by L}
DM(counter)=M4; {reset counter to L}

{_________filter pass, occurs at L times the input sample rate________}

do_fir: CNTR=NoverL - 1; {N/L-1 since round on last tap}
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop UNTIL CE; {N/L-1 taps of FIR}

taploop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflowed}
DM(dac)=MR1; {output sample}
RTI;

.ENDMOD;

Listing 5.10 Efficient Interpolation FilterListing 5.10 Efficient Interpolation FilterListing 5.10 Efficient Interpolation FilterListing 5.10 Efficient Interpolation FilterListing 5.10 Efficient Interpolation Filter

The interpolation filter has a gain of 1/L in the passband. One method to
attain unity gain is to premultiply (offline) all the filter coefficients by L.
This method requires the maximum coefficient amplitude to be less than
1/L, otherwise the multiplication overflows the 16-bit coefficient word
length. If the maximum coefficient amplitude is not less than 1/L, then
you must multiply each output result by 1/L instead. The code in Listing

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

113113113113113

5.11 performs the 16-by-32 bit multiplication needed for this gain
correction. This code replaces the saturation instruction in the
interpolation filter program in Listing 3.3. The MY1 register should be
initialized to L at the start of the routine, and the last multiply/accumulate
of the filter should be performed with (SS) format, not the rounding
option. This code multiplies a filter output sample in 1.31 format by the
gain L, in 16.0 format, and produces in a 1.15 format corrected output in
the SR0 register.

MX1= MR1;
MR= MR0*MY1 (UU);
MR0= MR1;
MR1= MR2;
MR= MR+MX1*MY1 (SU);
SR= LSHIFT MR0 BY -1 (LO);
SR= SR OR ASHIFT MR1 BY -1 (HI);

Listing 5.11 Extended Precision MultiplyListing 5.11 Extended Precision MultiplyListing 5.11 Extended Precision MultiplyListing 5.11 Extended Precision MultiplyListing 5.11 Extended Precision Multiply

5.5.3.45.5.3.45.5.3.45.5.3.45.5.3.4 Interpolator Hardware ConfigurationInterpolator Hardware ConfigurationInterpolator Hardware ConfigurationInterpolator Hardware ConfigurationInterpolator Hardware Configuration
The I/O hardware required for the interpolation filter is the same as that
for the decimation filter with the exception that the interval timer clocks
the output D/A converter, and the input A/D converter is clocked by the
interval counter signal divided by L. The interval timer interrupts the
ADSP-2100 at the output sample rate. This configuration is shown in
Figure 5.20, on the following page.

5.5.45.5.45.5.45.5.45.5.4 Rational Sample Rate ChangesRational Sample Rate ChangesRational Sample Rate ChangesRational Sample Rate ChangesRational Sample Rate Changes
The preceding sections describe processes for decreasing or increasing a
signal’s sample rate by an integer factor (M for decreasing, L for
increasing). In real systems, the integer factor restriction is frequently
unacceptable. For instance, if two sequences of different sample rates are
analyzed in operations such as cross-correlation, cross-spectrum, and
transfer function determination, the sequences must be converted to a
common sample rate. However, the two sample rates are not generally
related by an integer factor. Another instance in which the integer factor
restriction is unacceptable is in transferring data between two storage
media that use different sampling rates, such as from a compact disk at
44.1kHz to a digital audio tape at 48.0kHz. The compact disk data must
have its sampling rate increased by a factor of 48/44.1.

55555

 114 114 114 114 114

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

ADSP-2100

DMD DMA DMRD DMWR

Decode

A/D Tri-
State
Buffer

Latch Latch D/A
Track
/Hold

Interval
Timer

÷L

y(t')
x(t)

IRQ

Track
/Hold

5.5.4.15.5.4.15.5.4.15.5.4.15.5.4.1 L/M Change in Sample RateL/M Change in Sample RateL/M Change in Sample RateL/M Change in Sample RateL/M Change in Sample Rate
A noninteger rate change factor can be approximated by a rational
number closest to the desired factor. This number should be the least
common multiple of the two sample rates. A rational number is the ratio
of two integers and can be expressed as the fraction L/M. For an L/M
sample rate change, the signal is first interpolated to increase its sample
rate by L. The resulting signal is decimated to decrease its sample rate by
M. The overall change in the sample rate is L/M. Thus, a rational rate
change can be accomplished by cascading interpolation and decimation
filters. For example, to increase a signal’s sample rate by a ratio of 48/44.1
requires interpolation by L=160 and decimation by M=147.

Figure 5.21a shows the cascading of the interpolation and decimation
processes. The cascaded filters are the interpolation and decimation filters
discussed in the two previous sections of this chapter. The rate expander
and the low-pass filter h’(k) make up the interpolator, and the low-pass
filter h”(k) and the rate compressor make up the decimator. The
interpolator has the same restriction that N/L must be an integer. The
input signal x(n) is interpolated to an intermediate sample rate that is a
common multiple of the input and output sample rates. To maintain the
maximum bandwidth in the intermediate signal x(k), the interpolation
must precede the decimation; otherwise, some of the desired frequency
content in the original signal would be filtered out by the decimator.

Figure 5.20 Interpolation Filter HardwareFigure 5.20 Interpolation Filter HardwareFigure 5.20 Interpolation Filter HardwareFigure 5.20 Interpolation Filter HardwareFigure 5.20 Interpolation Filter Hardware

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

115115115115115

x(n) ↑ L ↓ M y(m)

↓ Mx(n) y(m)h(k)↑ L

h"(k)h'(k)

x(k)

Interpolator Decimator

x(k) w(k)

w(k)

a.

b.

Figure 5.21 Combined Interpolation and DecimationFigure 5.21 Combined Interpolation and DecimationFigure 5.21 Combined Interpolation and DecimationFigure 5.21 Combined Interpolation and DecimationFigure 5.21 Combined Interpolation and Decimation

A significant portion of the computations can be eliminated because the
two filters, h’(k) and h”(k), are redundant. Both filters have low-pass
transfer functions, and thus the filter with the highest cutoff frequency is
unnecessary. The interpolation and decimation functions can be combined
using one low-pass filter, h(k), as shown in Figure 5.21b. This rate changer
incorporates a gain of L to compensate for the 1/L gain of the
interpolation filter, as described earlier in this chapter.

Figure 5.22, on the next page, shows the frequency representation for a
sample rate increase of 3/2. The input sample frequency of 4kHz is first
increased to 12kHz which is the least common multiple of 4 and 6kHz.
This intermediate signal X(k) is then filtered to eliminate the images
caused by the rate expansion and to prevent any aliasing that the rate
compression could cause. The filtered signal W(k) is then rate compressed
by a factor of 2 to result in the output Y(k) at a sample rate of 6kHz. Figure
5.23, also on the next page, shows a similar example that decreases the
sample rate by a factor of 2/3.

Figure 5.24 shows the relationship between the sample periods used in the
3/2 and 2/3 rate changes. The intermediate sample period is one-Lth of
the input period, 1/Fs, and one-Mth of the output period.

5.5.4.25.5.4.25.5.4.25.5.4.25.5.4.2 Implementation of Rate Change AlgorithmImplementation of Rate Change AlgorithmImplementation of Rate Change AlgorithmImplementation of Rate Change AlgorithmImplementation of Rate Change Algorithm
The rational rate change algorithm applies the same calculation-saving
techniques used in the decimation and interpolation filters. In the
interpolation, the rate expander is incorporated into the filter so that all

55555

 116 116 116 116 116

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

X(n)

X(k)

W(k)

Y(m)

42

42 6 128 10

42 6 128 10

42 63 51

kHz

kHz

kHz

kHz

= F
s
'

 = F
s
"

Figure 5.23 2/3 Sample Rate ChangeFigure 5.23 2/3 Sample Rate ChangeFigure 5.23 2/3 Sample Rate ChangeFigure 5.23 2/3 Sample Rate ChangeFigure 5.23 2/3 Sample Rate Change

Figure 5.22 3/2 Sample Rate ChangeFigure 5.22 3/2 Sample Rate ChangeFigure 5.22 3/2 Sample Rate ChangeFigure 5.22 3/2 Sample Rate ChangeFigure 5.22 3/2 Sample Rate Change

X(n)

X(k)

W(k)

Y(m)

3

42 6 128 10

42 6 128 10

2 31

kHz

kHz

kHz

kHz

6 = F
s
'

4 = F
s
"

3 9

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

117117117117117

Intermediate rate

Input Sample rate

Output Sample rate

Intermediate rate

Input Sample rate

Output Sample rate

F
s

1

F
s

1L/M = 3/2

L/M = 2/3

Figure 5.24 Intermediate, Input and Output Sample RatesFigure 5.24 Intermediate, Input and Output Sample RatesFigure 5.24 Intermediate, Input and Output Sample RatesFigure 5.24 Intermediate, Input and Output Sample RatesFigure 5.24 Intermediate, Input and Output Sample Rates

zero-valued multiplications are skipped. In the decimation, the rate
compressor is incorporated into the filter so that discarded results are not
calculated, and a data buffer stores input samples that arrive while the
filter output is being calculated. Thus, an entire output period is allocated
for calculating one output sample.

The flow charts in Figures 5.25 and 5.26 show two implementations of the
rate change algorithm. The first one uses software counters to derive the
input and output sample rates from the common sample rate. In this
algorithm, the main routine is interrupted at the common sample rate.
Depending on whether one or both of the counters has decremented to
zero, the interrupt routine reads a new data sample into the input buffer
and/or sets a flag that causes the main routine to calculate a new output
sample.

For some applications, the integer factors M and L are so large that the
overhead for dividing the common sample rate leaves too little time for
the filter calculations. The second implementation of the rate change
algorithm solves this problem by using two external hardware dividers,
÷L and ÷M, to generate the input and output sample rates from the
common rate. The ÷L hardware generates an interrupt that causes the
processor to input a data sample. The ÷M hardware generates an interrupt
(with a lower priority) that starts the calculation of an output sample.

55555

 118 118 118 118 118

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

L/M Rate Change
Main Routine

countin=1
countout=1
out_flag=0

coef_update=0
initialize AG

out_flag=1
?

yes

out_flag=0

load delay line with
input_buffer data

modify ^coef by
(–M+coef_update)

coef_update=0

no

filter N/L-1 coeffs
output sample

countin=countin–1

no

yes

countin=0
?

load input_buffer
with input sample

modify coef_update
by L

countin=L

countout=countout–1

no

yes

out_flag=1
countout=M

Return
to Main

Interrupt Main
at L*input rate

countout=0
?

Figure 5.25 L/M Rate Change with Software DivisionFigure 5.25 L/M Rate Change with Software DivisionFigure 5.25 L/M Rate Change with Software DivisionFigure 5.25 L/M Rate Change with Software DivisionFigure 5.25 L/M Rate Change with Software Division

5.5.4.35.5.4.35.5.4.35.5.4.35.5.4.3 ADSP-2100 Rational Rate Change ProgramADSP-2100 Rational Rate Change ProgramADSP-2100 Rational Rate Change ProgramADSP-2100 Rational Rate Change ProgramADSP-2100 Rational Rate Change Program
Listings 5.12 and 5.13 contain the ADSP-2100 programs for the two
implementations of the rational factor sample rate change discussed
above. The programs are identical except that the first uses two counters
to derive the input and output sample periods from IRQ1, whereas the
second relies on external interrupts IRQ0 and IRQ1 to provide these
periods. In the second program, the input routine has the higher priority
interrupt so that inputs always precede outputs when both interrupts
coincide.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

119119119119119

Figure 5.26 L/M Rate Change with Hardware DivisionFigure 5.26 L/M Rate Change with Hardware DivisionFigure 5.26 L/M Rate Change with Hardware DivisionFigure 5.26 L/M Rate Change with Hardware DivisionFigure 5.26 L/M Rate Change with Hardware Division

load input_buffer
with input sample

modify coef_update
by L

Return
to Main

Interrupt Main
at input rate

Interrupt Main
at output rate

load delay line with
input_buffer data

modify the ^coef by
(–M+coef_update)

coef_update=0

filter N/L–1 coeffs
output sample

Return
to Main

L/M Rate Change
Main Routine

coef_update=0
initialize AG

Wait
Interrupt

To implement the calculation-saving techniques, the programs must
update the coefficient pointer with two different modification values.
First, the algorithm must update the coefficient pointer by L each time an
input sample is read. This modification moves the coefficient pointer back
to the first set of the polyphase coefficients. The variable coef_update tracks
these updates. The second modification to the coefficient pointer is to set it
back by one location for each interpolated output, even the outputs that
not calculated because they are discarded in the decimator. The
modification constant is –M because M–1 outputs are discarded by the
rate compressor. The total value that updates the coefficient pointer is –M
+ coef_update.

55555

 120 120 120 120 120

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

The rate change program in Listing 5.12 can calculate the following
number of filter taps within one output period:

N = M – 30L – 11ML – 6L M/L
Fs tCLK

where tCLK is the ADSP-2100 instruction cycle time, and the notation u
means the smallest integer greater than or equal to u. The program in
Listing 3.6 can execute

N = M – 22L – 9L M/L
Fs tCLK

taps in one output period. These equations determine the upper limit on
N, the order of the low-pass filter.

{RATIO_BUF.dsp
Real time Direct Form FIR Filter, N taps. Efficient algorithm
to interpolate by L and decimate by M for a L/M change in the input sample rate. Uses
an input buffer so that the filter computations to occur in parallel with inputting and
outputting data. This allows a larger number of filter taps for a given input sample
rate.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 Ratio_eff;

.CONST N=300; {N taps, N coefficients}

.CONST L=3; {decimate by factor of L}

.CONST NoverL=100; {NoverL must be an integer}

.CONST M=2; {decimate by factor of M}

.CONST intMoverL=2; {smallest integer GE M/L}

.VAR/PM/RAM/CIRC coef[N]; {coefficient circular buffer}

.VAR/DM/RAM/CIRC data[NoverL]; {data delay line}

.VAR/DM/RAM input_buf[intMoverL]; {input buffer is not circular}

.VAR/DM/RAM countin;

.VAR/DM/RAM countout;

.VAR/DM/RAM out_flag; {true when time to calc. output}

.PORT adc;

.PORT dac;

.INIT coef:<coef.dat>;

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

121121121121121

RTI; {interrupt 0}
JUMP interrupt; {interrupt 1= L * input rate}
RTI; {interrupt 2}
RTI; {interrupt 3}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
SI=0; {variables initial conditions}
DM(out_flag)=SI; {true if time to calc. output}
SI=1;
DM(countin)=SI; {input every L interrupts}
DM(countout)=SI; {output every M interrupts}
I4=^coef; {setup a circular buffer in PM}
L4=%coef;
M4=L; {modifier for coef buffer}
I5=0; {i5 tracks coefficient updates}
L5=0;
M5=-M; {coef modify done each output}
I0=^data; {setup delay line in DM}
L0=%data;
M0=1; {modifier for data is 1}
I1=^input_buf; {setup input data buffer in DM}
L1=0; {input buffer is not circular}
IMASK=b#0010; {enable interrupt 3}

{___________wait for time to calculate an output sample______________}
wait_out: AX0=DM(out_flag);

AR=PASS AX0; {test if true}
IF EQ JUMP wait_out;

{____________code below occurs at the output sample rate_____________}
DM(out_flag)=L5; {reset the output flag to 0}
AX0=I1; {calculate ammount in in buffer}
AY0=^input_buf;
AR=AX0-AY0;
IF EQ JUMP modify_coef; {skip do loop if buffer empty}
CNTR=AR; {dump in buffer into delay line}

(listing continues on next page)

55555

 122 122 122 122 122

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

I1=^input_buf;
DO load_data UNTIL CE;

AR=DM(I1,M0);
load_data: DM(I0,M0)=AR;

I1=^input_buf; {fix pointer to input_buf}

modify_coef: MODIFY(I5,M5); {modify coef update by -M}
M6=I5;
MODIFY(I4,M6); {modify ^coef by coef update}
I5=0; {reset coef update}

fir: CNTR=NoverL-1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop UNTIL CE; {N/L-1 taps of FIR}

taploop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output data sample}
JUMP wait_out;

{__________interrupt, code executed at L times the input rate_________}
interrupt: ENA SEC_REG; {so no registers will get lost}

AY0=DM(countin); {test if time for input}
AR=AY0-1;
DM(countin)=AR;
IF NE JUMP skipin;

input: AY0=DM(adc); {get input sample}
DM(I1,M0)=AY0; {load in M long buffer}
MODIFY(I5,M4); {modify the coef update by L}
DM(countin)=M4; {reset the input count to L}

skipin: AY0=DM(countout); {test if time for output}
AR=AY0-1;
DM(countout)=AR;
IF NE RTI;

output: DM(out_flag)=M0; {set output flag to true 1}
AR=M; {reset output counter to M}
DM(countout)=AR;
RTI;

.ENDMOD;

Listing 5.12 Rational Rate Change Program with Software DivisionListing 5.12 Rational Rate Change Program with Software DivisionListing 5.12 Rational Rate Change Program with Software DivisionListing 5.12 Rational Rate Change Program with Software DivisionListing 5.12 Rational Rate Change Program with Software Division

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

123123123123123

{RATIO_2INT.dsp
Real time Direct Form FIR Filter, N taps. Efficient algorithm to interpolate by L and
decimate by M for a L/M change in the input sample rate. Uses an input buffer so that
the filter computations to occur in parallel with inputting and outputting data. This
allows a larger number of filter taps for a given input sample rate. This version uses
two interrupts and external divide by L and divide by M to eliminate excessive overhead
for large values of M and L.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 Ratio_2int;

.CONST N=300; {N taps, N coefficients}

.CONST L=3; {decimate by factor of L}

.CONST NoverL=100; {NoverL must be an integer}

.CONST M=2; {decimate by factor of M}

.CONST intMoverL=2; {smallest integer GE M/L}

.VAR/PM/RAM/CIRC coef[N]; {coefficient circular buffer}

.VAR/DM/RAM/CIRC data[NoverL]; {data delay line}

.VAR/DM/RAM input_buf[intMoverL]; {input buffer is not circular}

.PORT adc;

.PORT dac;

.INIT coef:<coef.dat>;

JUMP output; {interrupt 0= L*Fin/M}
JUMP input; {interrupt 1= L*Fin/L}
RTI; {interrupt 2}
RTI; {interrupt 3}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#11111; {edge sens. nested interrupts}
I4=^coef; {setup a circular buffer in PM}
L4=%coef;
M4=L; {modifier for coef buffer}
I5=0; {i5 tracks coefficient updates}
L5=0;
M5=-M; {coef modify done each output}
I0=^data; {setup delay line in DM}
L0=%data;
M0=1; {modifier for data is 1}
I1=^input_buf; {setup input data buffer in DM}
L1=0; {input buffer is not circular}
IMASK=b#0011; {enable interrupt 3}

(listing continues on next page)

55555

 124 124 124 124 124

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

{___________wait for time to output or input a sample________________}
wait_out: JUMP wait_out;

{______interrupt code below executed at the output sample rate________}
output: AX0=I1; {calculate ammount in in buffer}

AY0=^input_buf;
AR=AX0-AY0;
IF EQ JUMP modify_coef; {skip do loop if buffer empty}
CNTR=AR; {dump in buffer into delay line}

I1=^input_buf;
DO load_data UNTIL CE;

AR=DM(I1,M0);
load_data: DM(I0,M0)=AR;

I1=^input_buf; {fix pointer to input_buf}
modify_coef: MODIFY(I5,M5); {modify coef update by -M}

M6=I5;
MODIFY(I4,M6); {modify ^coef by coef update}
I5=0; {reset coef update}

fir: CNTR=NoverL-1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop UNTIL CE; {N/L-1 taps of FIR}

taploop: MR=MR+MX0*MY0(ss), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output data sample}
RTI;

{_______interrupt code below executed at the input sample rate_________}

input: ENA SEC_REG; {context save}
AY0=DM(adc); {get input sample}
DM(I1,M0)=AY0; {load in M long buffer}
MODIFY(I5,M4); {modify the coef update by L}
RTI;

.ENDMOD;

Listing 5.13 Rational Rate Change Program with Hardware DivisionListing 5.13 Rational Rate Change Program with Hardware DivisionListing 5.13 Rational Rate Change Program with Hardware DivisionListing 5.13 Rational Rate Change Program with Hardware DivisionListing 5.13 Rational Rate Change Program with Hardware Division

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

125125125125125

5.5.55.5.55.5.55.5.55.5.5 Multistage ImplementationsMultistage ImplementationsMultistage ImplementationsMultistage ImplementationsMultistage Implementations
The previous examples of sample rate conversion in this chapter use a
single low-pass filter to prevent the aliasing or imaging associated with
the rate compression and expansion. One method for further improving
the efficiency of rate conversion is to divide this filter into two or more
cascaded stages of decimation or interpolation. Each successive stage
reduces the sample rate until the final sample rate is equal to twice the
bandwidth of the desired data. The product of all the stages’ rate change
factors should equal the total desired rate change, M or L.

Crochiere and Rabiner (see References at the end of this chapter) show that
the total number of computations in a multi-stage design can be made
substantially less than that for a single-stage design because each stage has
a wider transition band than that of the single-stage filter. The sample rate
at which the first stage is calculated may be large, but because the
transition band is wide, only a small number of filter taps (N) is required.
In the last stage, the transition band may be small, but because the sample
rate is small also, fewer taps and thus a reduced number of computations
are needed. In addition to computational efficiency, multistage filters have
the advantage of a lower round-off noise due to the reduced number of
taps.

Figure 5.27, on the following page, shows the frequency spectra for an
example decimation filter implemented in two stages. The bandwidth and
transition band of the desired filter is shown in Figure 5.27a and the
frequency response of the analog anti-alias filter required is shown in
Figure 5.27b. The shaded lines indicate the frequencies that alias into the
interstage transition bands. These frequencies are sufficiently attenuated
so as not to disturb the final pass or transition bands. The frequency
responses of the first and final stage filters are shown in Figure 5.27c and
d. The example in Figure 5.28 is the same except that aliasing is allowed in
the final transition band. This aliasing is tolerable, for instance, when the
resulting signal is used for spectral analysis and the aliased band can be
ignored. All the transition bands are wide and therefore the filter stages
require fewer taps than a single-stage filter.

Crochiere and Rabiner (see References at the end of this chapter) contains
some design curves that help to determine optimal rate change factors for
the intermediate stages. A two- or three-stage design provides a
substantial reduction in filter computations; further reductions in
computations come from adding more stages. Because the filters are
cascaded, each stage must have a passband ripple equal to final passband

55555

 126 126 126 126 126

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

analog
anti-alias
response

stage 1

stage 2
response

response

required
data
bandwidth

 f's

 f"s

2

f's

2

f"s

2

f s f s

(a)

(b)

(c)

(d)

Figure 5.27 Two-Stage Decimation with No Transition Band AliasingFigure 5.27 Two-Stage Decimation with No Transition Band AliasingFigure 5.27 Two-Stage Decimation with No Transition Band AliasingFigure 5.27 Two-Stage Decimation with No Transition Band AliasingFigure 5.27 Two-Stage Decimation with No Transition Band Aliasing

ripple divided by the number of stages used. The stopband ripple does
not have to be less than the final stopband ripple because each successive
stage attenuates the stopband ripple of the previous stage.

Listing 5.14 is the ADSP-2100 program for a two-stage decimation filter.
This two-stage decimation program is similar to the program for the
buffered decimation listed in Decimation, earlier in this chapter. The main
difference is that two ping-ponged buffers are used to store input samples.
While one buffer is filled with input data, the other is dumped into the
delay line of the first filter stage. The result of the first stage filter is
written to the second stage’s delay line. After M samples have been input
and one final result has been calculated, the two input buffers swap
functions, or ping-pong.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

127127127127127

Two buffers are needed because only a portion (M–1 samples) of the input
buffer can be dumped into the first stage delay line at once. The single-
stage decimation algorithm used only one buffer because it could dump
all input data into the buffer at once. The two ping-ponged buffers are
implemented as one double-length circular buffer, 2M locations long,
indexed by two pointers offset from each other by M. Because the pointers
follow each other and wrap around the buffer, the two halves switch
between reading and writing (ping-pong) after every M inputs.

Listing 5.15 is the ADSP-2100 program for a two-stage interpolation filter.
This routine is essentially a cascade of the program for the single-stage
interpolator. The required interrupt rate is the product of the interpolation
factors of the individual stages, (L–1)(L–2). The program can be expanded
easily if more than two stages of interpolation or decimation are required.

Figure 5.28 Two-Stage Decimation with Transition Band AliasingFigure 5.28 Two-Stage Decimation with Transition Band AliasingFigure 5.28 Two-Stage Decimation with Transition Band AliasingFigure 5.28 Two-Stage Decimation with Transition Band AliasingFigure 5.28 Two-Stage Decimation with Transition Band Aliasing

analog
anti-alias
response

stage 1

stage 2
response

response

required
data
bandwidth

 f's

 f"
s

2

f's

2

f"s

2

f s f
s

(a)

(b)

(c)

(d)

55555

 128 128 128 128 128

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

{DEC2STAGEBUF.dsp
Real time Direct Form Finite Impulse Filter, N1,N2 taps, uses two cascaded stages to
decimate by M1 and M2 for a decrease of 1/(M1*M2) times the input sample rate. Uses an
input buffer to increase efficiency.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 dec2stagebuf;

.CONST N1=32;

.CONST N2=148;

.CONST M_1=2; {decimate by factor of M}

.CONST M_2=2; {decimate by factor of M}

.CONST M1xM2=4; {(M_1 * M_2)}

.CONST M1xM2x2=8; {(M_1 * M_2 * 2)}

.VAR/PM/RAM/CIRC coef1[N1];

.VAR/PM/RAM/CIRC coef2[N2];

.VAR/DM/RAM/CIRC data1[N1];

.VAR/DM/RAM/CIRC data2[N2];

.VAR/DM/RAM/CIRC input_buf[m1xm2x2];

.VAR/DM/RAM input_count;

.PORT adc;

.PORT dac;

.INIT coef1:<coef1.dat>;

.INIT coef2:<coef2.dat>;

RTI; {interrupt 0}
RTI; {interrupt 1}
RTI; {interrupt 2}
JUMP sample; {interrupt 3 at input rate}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
SI=M1xM2;
DM(input_count)=SI;
I4=^coef1; {setup a circular buffer in PM}
L4=%coef1;
M4=1; {modifier for coef is 1}
I5=^coef2; {setup a circular buffer in PM}
L5=%coef2;

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

129129129129129

I0=^data1; {setup a circular buffer in DM}
L0=%data1;
M0=1; {modifier for data is 1}
I1=^data2; {setup a circular buffer in DM}
L1=%data2;
I2=^input_buf; {setup input buffer in DM}
L2=%input_buf;
I3=^input_buf; {setup second in buffer in DM}
L3=%input_buf;
IMASK=b#1000; {enable interrupt 3}

wait_full: AX0=DM(input_count); {wait until input buffer is full}
AR=PASS AX0;
IF NE JUMP wait_full;

AR=M1xM2; {reinitialize input counter}
DM(input_count)=AR;
CNTR=M_2;
DO stage_1 UNTIL CE;

CNTR=M_1;
DO dump_buf UNTIL CE;

 AR=DM(I3,M0);
dump_buf: DM(I0,M0)=AR;

CNTR=N1 - 1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop1 UNTIL CE;{N-1 taps of FIR}

taploop1: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}

stage_1: DM(I1,M0)=MR1; {pass to next filter stage}

CNTR=N2 - 1;
MR=0, MX0=DM(I1,M0), MY0=PM(I5,M4);
DO taploop2 UNTIL CE; {N-1 taps of FIR}

taploop2: MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I5,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output data sample}
JUMP wait_full;

(listing continues on next page)

55555

 130 130 130 130 130

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

{______________interrupt code executed at the sample rate_____________}
sample: ENA SEC_REG; {context save}

AY0=DM(adc); {input data sample}
DM(I2,M0)=AY0; {load input buffer}
AY0=DM(input_count);
AR=AY0-1; {decrement and update counter}
DM(input_count)=AR;
RTI;

.ENDMOD;

{INT2STAGE.dsp
Two stage cascaded real time Direct Form Finite Impulse Filter, N1, N2 taps, uses an
efficient algorithm to interpolate by L1*L2 for an increase of L1*L2 times the input
sample rate. A restriction on the number of taps is that N divided by L be an integer.

INPUT: adc
OUTPUT: dac

}

.MODULE/RAM/ABS=0 interpolate_2stage;

.CONST N1=32;

.CONST N2=148;

.CONST L_1=2; {stage one factor is L1}

.CONST L_2=2; {stage two factor is L2}

.CONST N1overL1=16;

.CONST N2overL2=74;

.VAR/PM/RAM/CIRC coef1[N1];

.VAR/PM/RAM/CIRC coef2[N2];

.VAR/DM/RAM/CIRC data1[N1overL1];

.VAR/DM/RAM/CIRC data2[N2overL2];

.VAR/DM/RAM counter1;

.VAR/DM/RAM counter2;

Listing 5.14 ADSP-2100 Program for Two-Stage DecimationListing 5.14 ADSP-2100 Program for Two-Stage DecimationListing 5.14 ADSP-2100 Program for Two-Stage DecimationListing 5.14 ADSP-2100 Program for Two-Stage DecimationListing 5.14 ADSP-2100 Program for Two-Stage Decimation

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

131131131131131

.PORT adc;

.PORT dac;

.INIT coef1:<coef1.dat>;

.INIT coef2:<coef2.dat>;

RTI; {interrupt 0}
RTI; {interrupt 1}
RTI; {interrupt 1}
JUMP sample; {interrupt 3= L1*L2 output rate}

initialize: IMASK=b#0000; {disable all interrupts}
ICNTL=b#01111; {edge sensitive interrupts}
SI=1; {set interpolate counters to 1}
DM(counter1)=SI; {for first data sample}
DM(counter2)=SI;
I4=^coef1; {setup a circular buffer in PM}
L4=%coef1;
M4=L_1; {modifier for coef is L1}
M6=-1; {modifier to shift coef back -1}

I5=^coef2; {setup a circular buffer in PM}
L5=%coef2;
M5=L_2; {modifier for coef is L2}
I0=^data1; {setup a circular buffer in DM}
L0=%data1;
M0=1;
I1=^data2; {setup a circular buffer in DM}
L1=%data2;
IMASK=b#1000; {enable interrupt 3}

wait_interrupt: JUMP wait_interrupt; {infinite wait loop}

{________________________Interpolate_________________________________}
sample: MODIFY(I5,M6); {shifts coef pointer back by -1}

AY0=DM(counter2);
AR=AY0-1; {decrement and update counter}
DM(counter2)=AR;
IF NE JUMP do_fir2; {test, do stage 1 if L_2 times}

(listing continues on next page)

55555

 132 132 132 132 132

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

MODIFY(I4,M6); {shifts coef pointer back by -1}
AY0=DM(counter1);
AR=AY0-1; {decrement and update counter.}
DM(counter1)=AR;
IF NE JUMP do_fir1; {test and input if L_1 times}

{_________input data sample, code occurs at the input sample rate____}
do_input: AY0=DM(adc); {input data sample}

DM(I0,M0)=AY0; {update delay line with newest}
MODIFY(I4,M4); {shifts coef1 pointer by L1}
DM(counter1)=M4; {reset counter1}

{_________filter pass, occurs at L1 times the input sample rate_______}
do_fir1: CNTR=N1overL1 - 1; {N1/L1-1 because round last tap}

MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO taploop1 UNTIL CE; {N1/L_1-1 taps of FIR}

taploop1: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(I1,M0)=MR1; {update delay line with newest}
MODIFY(I5,M5); {shifts coef2 pointer by L2}
DM(counter2)=M5; {reset counter2}

{_______filter pass, executed at (L1*L2) times the input sample rate__}
do_fir2: CNTR=N2overL2 - 1; {N2/L2-1 because round last tap}

MR=0, MX0=DM(I1,M0), MY0=PM(I5,M5);
DO taploop2 UNTIL CE; {N2/L_2-1 taps of FIR}

taploop2: MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I5,M5);
MR=MR+MX0*MY0(RND); {last tap with round}
IF MV SAT MR; {saturate result if overflow}
DM(dac)=MR1; {output sample}
RTI;

.ENDMOD;

Listing 5.15 ADSP-2100 Program for Two-Stage InterpolationListing 5.15 ADSP-2100 Program for Two-Stage InterpolationListing 5.15 ADSP-2100 Program for Two-Stage InterpolationListing 5.15 ADSP-2100 Program for Two-Stage InterpolationListing 5.15 ADSP-2100 Program for Two-Stage Interpolation

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

133133133133133

5.5.65.5.65.5.65.5.65.5.6 Narrow-Band Spectral AnalysisNarrow-Band Spectral AnalysisNarrow-Band Spectral AnalysisNarrow-Band Spectral AnalysisNarrow-Band Spectral Analysis
The computation of the spectrum of a signal is a fundamental DSP
operation that has a wide range of applications. The spectrum can be
calculated efficiently with the fast Fourier transform (FFT) algorithm. An
N-point FFT results in N/2 bins of spectral information spanning zero to
the Nyquist frequency. The frequency resolution of this spectrum is Fs/N
Hz per bin, where Fs is the sample rate of the data. The number
computations required is on the order of Nlog2N. Often, applications such
as sonar, radar, and vibration analysis need to determine only a narrow
band of the entire spectrum of a signal. The FFT would require calculating
the entire spectrum of the signal and discarding the unwanted frequency
components.

Multirate filtering techniques let you translate a frequency band to the
baseband and reduce the sample rate to twice the width of the narrow
band. An FFT performed on reduced-sample-rate data allows either
greater resolution for about the same amount of computations or an
equivalent resolution for a reduced amount of computations. Thus, the
narrow band can be calculated more efficiently. In addition to
computation savings, this frequency translation technique has the
advantage of eliminating the problem of an increased noise floor caused
by the bit growth of data in a large-N FFT.

One method of frequency translation takes advantage of the aliasing
properties of the rate compressor. As discussed in Decimation, earlier in
this chapter, rate compression (discrete-time sampling) in the frequency
domain results in images, a sequence of periodic repetitions of the
baseband signal. These images are spaced at harmonics of the sampling
frequency.

The modulation and the sample rate reduction can be done
simultaneously, as shown in Figure 5.29a, on the next page. The input
signal is band-pass-filtered to eliminate all frequencies but the narrow
band of interest (between w1 and w2). This signal is rate-compressed by a
factor of M to get the decimated and frequency-translated output. An
(N/M)-point FFT is performed on the resulting signal, producing the
spectrum of the signal, which now contains only the narrow band.

Figure 5.29b shows the modulation of the band-pass signal. The
modulating impulses are spaced at intervals of 2π/M. Figure 5.29c shows
that the narrow band is translated to baseband because it is forced to alias.
The spectrum of the final signal y(m) is shown in Figure 5.29d. Zero
corresponds to w1, and π or the Nyquist frequency corresponds to w2. If an

55555

 134 134 134 134 134

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

↓ Mx(n)

y(m)

bandpass
filter

X(w)

w(n)

K=0 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9

w
1

w
2

w'=

π

2π/M

0

0

0 = 2π

π/M

w

π

w

(a)

(b)

(c)

(d)

w
2

π =w
1

FFT

w/M

Figure 5.29 Integer Band Decimator for High Resolution Spectral AnalysisFigure 5.29 Integer Band Decimator for High Resolution Spectral AnalysisFigure 5.29 Integer Band Decimator for High Resolution Spectral AnalysisFigure 5.29 Integer Band Decimator for High Resolution Spectral AnalysisFigure 5.29 Integer Band Decimator for High Resolution Spectral Analysis

odd integer band is chosen for the band-pass filter, e.g., K=9, then the
translated signal is inverted in frequency. This situation can be corrected
by multiplying each output sample y(m) by (–1)m, i.e., inverting the sign of
all odd samples.

The entire narrow band filtering process can be accomplished using the
single- or multi-stage decimation program listed in this chapter. A listing
of an ADSP-2100 FFT implementation can be found in Chapter 6.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

135135135135135

5.65.65.65.65.6 ADAPTIVE FILTERSADAPTIVE FILTERSADAPTIVE FILTERSADAPTIVE FILTERSADAPTIVE FILTERS
The stochastic gradient (SG) adaptive filtering algorithm, developed in its
present form by Widrow and Hoff (Widrow and Hoff, 1960), provides a
powerful and computationally efficient means of realizing adaptive filters.
It is used to accomplish a variety of applications, including

• echo cancellation in voice or data signals,
• channel equalization in data communication to minimize the effect of

intersymbol interference, and,
• noise cancellation in speech, audio, and biomedical signal processing.

The SG algorithm is the most commonly used adaptation algorithm for
transversal filter structures. Honig and Messerschmitt, 1984, provides an
excellent and thorough treatment of the SG transversal filter as well as
other algorithms and filter structures. Using the notation developed
therein, the estimation error ec(T) between the two input signals y(T) and
d(T) of a joint process estimator implemented with a transversal filter
structure is given by the following equation:

 n
ec(T) = d(T) – ∑ cj(T) y(T – j + 1)

j = 1

The estimation error of the joint process estimator is thus formed by the
difference between the signal it is desired to estimate, d(T), and a
weighted linear combination of the current and past input values y(T).
The weights, cj(T), are the transversal filter coefficients at time T. The
adaptation of the jth coefficient, cj(T), is performed according to the
following equation:

cj(T + 1) = cj(T) +βec(T) y(T – j + 1)

In this equation, y(T–j+1) represents the past value of the input signal
“contained” in the jth tap of the transversal filter. For example, y(T), the
present value of the input signal, corresponds to the first tap and y(T–42)
corresponds to the forty-third filter tap. The step size β controls the “gain”
of the adaptation and allows a tradeoff between the convergence rate of
the algorithm and the amount of random fluctuation of the coefficients
after convergence.

55555

 136 136 136 136 136

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.6.15.6.15.6.15.6.15.6.1 Single-Precision Stochastic GradientSingle-Precision Stochastic GradientSingle-Precision Stochastic GradientSingle-Precision Stochastic GradientSingle-Precision Stochastic Gradient
The transversal filter subroutine that performs the sum-of-products
operation to calculate ec(T), the estimation error, is given in FIR Filters,
earlier in this chapter. The subroutine that updates the filter coefficients is
shown in Listing 5.16. This subroutine is based on the assumption that all
n data values used to calculate the coefficient are real.

The first instruction multiplies ec(T) (the estimation error at time T, stored
in MX0) by β (the step size, stored in MY1) and loads the product into the
MF register. In parallel with this multiplication, the data memory read
which transfers y(T–n+1) (pointed to by I2) to MX0 is performed. The nth
coefficient update value, βec(T) y(T–n+1), is computed by the next
instruction in parallel with the program memory read which transfers the
nth coefficient (pointed to by I6) to the ALU input register AY0. The adapt
loop is then executed n times in 2n+2 cycles to update all n coefficients.
The first time through the loop, the nth coefficient is updated in parallel
with a dual fetch of y(T–n+2) and the (n–1)th coefficient. The updated nth
coefficient value is then written back to program memory in parallel with
the computation of the (n–1)th coefficient update value, ec(T) y(T–n+2).
This continues until all n coefficients have been updated and execution
falls out of the loop. If desired, the saturation mode of the ALU may be
enabled prior to entering the routine so as to automatically implement a
saturation capability on the coefficient updates.

The maximum allowable filter order when using the stochastic gradient
algorithm for an adaptive filtering application is determined primarily by
the processor cycle time, the sampling rate, and the number of other
computations required. The transversal filter subroutine requires a total of
n+7 cycles for a filter of length n, while the gradient update subroutine
requires 2n+9 cycles to update all n coefficients. At an 8-kHz sampling
rate and an instruction cycle time of 125 nanoseconds, the ADSP-2100 can
implement an SG transversal filter of approximately 300 taps. This
implementation would also have 84 instruction cycles for miscellaneous
operations.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

137137137137137

.MODULE rsg_sub;

{
Real SG Coefficient Adaptation Subroutine

Calling Parameters
MX0 = Error
MY1 = Beta
I2 —> Oldest input data value in delay line
L2 = Filter length
I6 —> Beginning of filter coefficient table
L6 = Filter length
M1,M5 = 1
M6 = 2
M3,M7 = –1
CNTR = Filter length

Return Values
Coefficients updated
I2 —> Oldest input data value in delay line
I6 —> Beginning of filter coefficient table

Altered Registers
AY0,AR,MX0,MF,MR

Computation Time
(2 × Filter length) + 6 + 3 cycles

All coefficients and data are assumed to be in 1.15 format.
}

.ENTRY rsg;

rsg: MF=MX0*MY1(RND), MX0=DM(I2,M1); {MF=Error × Beta}
MR=MX0*MF(RND), AY0=PM(I6,M5);
DO adapt UNTIL CE;
 AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);

adapt: PM(I6,M6)=AR, MR=MX0*MF(RND);
MODIFY (I2,M3); {Point to oldest data}
MODIFY (I6,M7); {Point to start of table}
RTS;

.ENDMOD;

Listing 5.16 Single-Precision Stochastic GradientListing 5.16 Single-Precision Stochastic GradientListing 5.16 Single-Precision Stochastic GradientListing 5.16 Single-Precision Stochastic GradientListing 5.16 Single-Precision Stochastic Gradient

55555

 138 138 138 138 138

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.6.25.6.25.6.25.6.25.6.2 Double-Precision Stochastic GradientDouble-Precision Stochastic GradientDouble-Precision Stochastic GradientDouble-Precision Stochastic GradientDouble-Precision Stochastic Gradient
In some adaptive filtering applications, such as the local echo cancellation
required in high-speed data transmission systems, the precision afforded
by 16-bit filter coefficients is not adequate. In such applications it is
desirable to perform the coefficient adaptation (and generally the filtering
operation as well) using a higher-precision representation for the
coefficient values. The subroutine in Listing 5.17 implements a stochastic
gradient adaptation algorithm that is again based on the equations in the
previous section but performs the coefficient adaptation in double
precision. Data values, of course, are still maintained in single precision.

The 16-bit coefficients are stored in program memory LSW first, so that
the LSWs of all coefficients are stored at even addresses, and the MSWs at
odd addresses. The coefficients thus require a circular buffer length
(specified by L6) that is twice the length of the filter. As in the single-
precision SG program in the previous section, the first instruction is used
to compute the product of ec(T), the estimation error, and β, the step size,
in parallel with the data memory read that transfers the oldest input data
value in the delay line, y(T–n+1), to MX0. Upon entering the adaptd loop,
y(T–n+1) is multiplied by βec(T) to yield the nth coefficient update value.
This is performed in parallel with the fetch of the LSW of the nth
coefficient (to AY0). The next instruction computes the sum of the update
value LSW (in MR0) and the LSW of the nth coefficient, while performing
a dual fetch of the MSW of the nth coefficient (again to AY0) and the next
data value in the delay line (to MX0). The LSW of the updated nth
coefficient is then written back to program memory in parallel with the
update of the MSW of the nth coefficient, and the final instruction of the
loop writes this updated MSW to program memory. The adaptd loop
continues execution in this manner until all n double-precision coefficients
have been updated. If you want saturation capability on the coefficient
update, you must enable and disable the saturation mode of the ALU
within the update loop. The updates of the LSWs of the coefficients should
be performed with the saturation mode disabled; the update of the MSWs
of the coefficients should be performed with the saturation mode enabled.

To determine whether an application can benefit from double-precision
adaptation, you should evaluate the performance of the associated
filtering routine using both single-precision and double-precision
coefficients. In some instances, maintaining the coefficients in double
precision while performing the filtering operation on only the MSWs of
the coefficients may result in the desired amount of cancellation. This
adaptation can be achieved using the single-precision transversal filter
routine with an M5 value of two. If more cancellation is needed, the
routine in Listing 5.17 must be used.

55555Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

139139139139139

.MODULE drsg_sub;

{
Double-Precision SG Coefficient Adaptation Subroutine

Calling Parameters
MX0 = Error
MY1 = Beta
I2 —> Oldest input data value in delay line
L2 = Filter length
I6 —> Beginning of filter coefficient table
L6 = 2 × Filter length
M1,M5 = 1
M3,M7 = –1
CNTR = Filter length

Return Values
Coefficients updated
I2 —> Oldest input data value in delay line
I6 —> Beginning of filter coefficient table

Altered Registers
AY0,AR,MX0,MF,MR

Computation Time
(4 × Filter length) + 5 + 4 cycles

All coefficients are assumed to be in 1.31 format.
All data are assumed to be in 1.15 format.

}

.ENTRY drsg;

drsg: MF=MX0*MY1(RND), MX0=DM(I2,M1); {MF=Error × Beta}
MR=MX0*MF(SS);
DO adaptd UNTIL CE;
 MX0=DM(I2,M1), AY0=PM(I6,M5);
 AR=MR0+AY0, AY0=PM(I6,M7);
 PM(I6,M5)=AR, AR=MR1+AY0+C;

adaptd: MR=MX0*MF(SS), PM(I6,M5)=AR;
MODIFY (I2,M3); {Point to oldest data}
RTS;

.ENDMOD;

Listing 5.17 Double-Precision Stochastic GradientListing 5.17 Double-Precision Stochastic GradientListing 5.17 Double-Precision Stochastic GradientListing 5.17 Double-Precision Stochastic GradientListing 5.17 Double-Precision Stochastic Gradient

55555

 140 140 140 140 140

Digital FiltersDigital FiltersDigital FiltersDigital FiltersDigital Filters

5.75.75.75.75.7 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Bellanger, M. 1984. Digital Processing of Signals: Theory and Practice. New
York: John Wiley and Sons.

Bloom, P.J. October 1985. High Quality Digital Audio in the Entertainment
Industry: An Overview of Achievements and Changes. IEEE ASSP Magazine,
Vol. 2, Num. 4, pp. 13-14.

Crochiere, Ronald E. and Lawrence R. Rabiner. 1983. Multirate Digital
Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall.

Hamming, R. W. 1977. Digital Filters. Englewood Cliffs, N.J.: Prentice-Hall,
Inc.

Honig, M. and Messerschmitt, D. 1984. Adaptive Filters: Structures,
Algorithms, and Applications. Boston: Kluwer Academic Publishers.

Jackson, L. B. 1986. Digital Filters and Signal Processing. Boston: Kluwer
Academic Publishers.

Liu, Bede and Abraham Peled. 1976. Theory Design and Implementation of
Digital Signal Processing, pp. 77-88. John Wiley & Sons.

Liu, Bede and Fred Mintzer. December 1978. Calculation of Narrow Band
Spectra by Direct Decimation. IEEE Trans. Acoust. Speech Signal Process.,
Vol. ASSP-26, No. 6, pp. 529-534.

Oppenheim, A. V., and Schafer, R. W. 1975. Digital Signal Processing.
Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Oppenheim, A.V. ed. 1978. Applications of Digital Signal Processing.
Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Otnes, R.K and L.E Enochson. 1978. Applied Time Series Analysis, pp. 202-
212. Wiley-Interscience.

Rabiner, L. R. and Gold, B. 1975. Theory and Applications of Digital Signal
Processing. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Schafer, Ronald W. and Lawrence R. Rabiner. June 1973. A Digital Signal
Processing Approach to Interpolation. Proc. IEEE, vol. 61, pp. 692-702.

Widrow, B., and Hoff, M., Jr. 1960. Adaptive Switching Circuits. IRE
WESCON Convention Record, Pt. 4., pp. 96-104.

	Chapter 5: Digital Filters (Part II)
	5.5 Multirate Filters
	5.5.1 Decimation
	5.5.1.1 Continuous-Time Sampling
	5.5.1.2 Discrete-Time Sampling
	5.5.1.3 Decimation Filter Structure
	5.5.1.4 ADSP-2100 Decimation Algorithm
	5.5.1.5 A More Efficient Decimator

	5.5.2 Decimator Hardware Configuration
	5.5.3 Interpolation
	5.5.3.1 Reconstruction of a Discrete - Time Signal
	5.5.3.2 Interpolation Filter Structure
	5.5.3.3 ADSP-2100 Interpolation Algorithm
	5.5.3.4 Interpolator Hardware Configuration

	5.5.4 Rational Sample Rate Changes
	5.5.4.1 L/M Change in Sample Rate
	5.5.4.2 Implementation of Rate Change Algorithm
	5.5.4.3 ADSP-2100 Rational Rate Change Program

	5.5.5 Multistage Implementations
	5.5.6 Narrow-Band Spectral Analysis

	5.6 Adaptive Filters
	5.6.1 Single-Precision Stochastic Gradient
	5.6.2 Double-Precision Stochastic Gradient

	5.7 References

