
193193193193193

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

6.56.56.56.56.5 RADIX-4 FAST FOURIER TRANSFORMSRADIX-4 FAST FOURIER TRANSFORMSRADIX-4 FAST FOURIER TRANSFORMSRADIX-4 FAST FOURIER TRANSFORMSRADIX-4 FAST FOURIER TRANSFORMS
Whereas a radix-2 FFT divides an N-point sequence successively in half
until only two-point DFTs remain, a radix-4 FFT divides an N-point
sequence successively in quarters until only four-point DFTs remain. An
N-point sequence is divided into four N/4-point sequences; each N/4-
point sequence is broken into four N/16-point sequences, and so on, until
only four-point DFTs are left. The four-point DFT is the core calculation
(butterfly) of the radix-4 FFT, just as the two-point DFT is the butterfly for
a radix-2 FFT.

A radix-4 FFT essentially combines two stages of a radix-2 FFT into one, so
that half as many stages are required. The radix-4 butterfly is consequently
larger and more complicated than a radix-2 butterfly; however, fewer
butterflies are needed. Specifically, N/4 butterflies are used in each of
(log2N)/2 stages, which is one quarter the number of butterflies in a radix-
2 FFT. Although addressing of data and twiddle factors is more complex, a
radix-4 FFT requires fewer calculations than a radix-2 FFT. The addressing
capability of the ADSP-2100 can accommodate the added complexity, and
so the it can compute a radix-4 FFT significantly faster than a radix-2 FFT.
Like the radix-2 FFT, the radix-4 FFT requires data scrambling and/or
unscrambling. However, radix-4 FFT sequences are scrambled and
unscrambled through digit reversal, rather than bit reversal as in the
radix-2 FFT. Digit reversal is described later in this section.

6.5.16.5.16.5.16.5.16.5.1 Radix-4 Decimation-In-Frequency FFT AlgorithmRadix-4 Decimation-In-Frequency FFT AlgorithmRadix-4 Decimation-In-Frequency FFT AlgorithmRadix-4 Decimation-In-Frequency FFT AlgorithmRadix-4 Decimation-In-Frequency FFT Algorithm
The radix-4 FFT divides an N-point DFT into four N/4-point DFTs, then
into 16 N/16-point DFTs, and so on. In the radix-2 DIF FFT, the DFT
equation is expressed as the sum of two calculations, one on the first half
and one on the second half of the input sequence. Then the equation is
divided to form two equations, one that computes even samples and the
other that computes odd samples. Similarly, the radix-4 DIF FFT expresses
the DFT equation as four summations, then divides it into four equations,
each of which computes every fourth output sample. The following
equations illustrate radix-4 decimation in frequency.

N–1

(24) X(k) = ∑ x(n) WN
nk

n=0

N/4–1 N/2–1 3N/4–1 N–1

= ∑ x(n) WN
nk + ∑ x(n) WN

nk + ∑ x(n) WN
nk + ∑ x(n) WN

nk

n=0 n=N/4 n=N/2 n=3N/4

194194194194194

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

N/4–1 N/4–1

= ∑ x(n) WN
nk + ∑ x(n+N/4) WN

(n+N/4)k

n=0 n=0

N/4–1 N/4–1

+ ∑ x(n+N/2) WN
(n+N/2)k + ∑ x(n+3N/4)WN

(n+3N/4)k

n=0 n=0

N/4–1

= ∑ [x(n) + WN
k(N/4) x(n+N/4) + WN

k(N/2) x(n+N/2) +
n=0

WN
k3N/4 x(n+3N/4)] WN

nk

The three twiddle factor coefficients can be expressed as follows:

(25) WN
k(N/4) = (e–j2π/N)k(N/4) = (e–jπ/2)k = (cos (π/2) – jsin (π/2))k = (–j)k

(26) WN
k(N/2) = (e–j2π/N)k(N/2) = (e–jπ)k = (cos (π) – jsin (π))k = (–1)k

(27) WN
k3N/4 = (e–j2π/N)k3N/4 = (e–j3π/2)k = (cos (3/2π) – jsin (3π/2))k = jk

Equation (23) can thus be expressed as

N/4–1

(28) X(k) = ∑ [x(n) + (–j)k x(n+N/4) + (–1)k x(n+N/2)
n=0 + (j)k x(n+3N/4)] WN

nk

Four sub-sequences of the output (frequency) sequence are created by
setting k=4r, k=4r+1, k=4r+2 and k=4r+3:

N/4–1

(29) X(4r) = ∑ [(x(n) + x(n+N/4) + x(n+N/2) + x(n+3N/4)) WN
0] WN/4

nr

n=0

195195195195195

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

N/4–1

(30) X(4r+1) = ∑ [(x(n) – jx(n+N/4)–x(n+N/2) + jx(n+3N/4))WN
n] WN/4

nr

n=0

N/4–1

(31) X(4r+2) = ∑ [(x(n) – x(n+N/4) + x(n+N/2) – x(n+3N/4))WN
2n] WN/4

nr

n=0

N/4–1

(32) X(4r+3) = ∑ [(x(n) + jx(n+N/4)–x(n+N/2) – jx(n+3N/4))WN
3n] WN/4

nr

n=0

for r = 0 to N/4–1

X(4r), X(4r+1), X(4r+2), and X(4r+3) are N/4-point DFTs. Each of their
N/4 points is a sum of four input samples (x(n), x(n+N/4), x(n+N/2) and
x(n+3N/4)), each multiplied by either +1, –1, j, or –j. The sum is
multiplied by a twiddle factor (WN

0, WN
n, WN

2n, or WN
3n).

These four N/4-point DFTs together make up an N-point DFT. Each of
these N/4-point DFTs is divided into four N/16-point DFTs. Each N/16
DFT is further divided into four N/64-point DFTs, and so on, until the
final decimation produces four-point DFTs (groups of four one-point DFT
equations). The four one-point DFT equations make up the butterfly
calculation of the radix-4 FFT. A radix-4 butterfly is shown graphically in
Figure 6.9.

Figure 6.9 Radix-4 DIF FFT ButterflyFigure 6.9 Radix-4 DIF FFT ButterflyFigure 6.9 Radix-4 DIF FFT ButterflyFigure 6.9 Radix-4 DIF FFT ButterflyFigure 6.9 Radix-4 DIF FFT Butterfly

x(n)

N
4

x(n + –)

N
2

x(n + –)

3N
4

x(n + –)

x(4r)

x(4r + 1)

x(4r + 2)

x(4r + 3)

Wn

W
2n

W 3n

196196196196196

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

The output of each leg represents one of the four equations which are
combined to make a four-point DFT. These four equations correspond to
equations (29) through (32), for one point rather than N/4 points.

Each sample in the butterfly is complex. A butterfly flow graph with
complex inputs and outputs is shown in Figure 6.10. The real part of each
point is represented by x, and y represents the imaginary part. The twiddle
factor can be divided into real and imaginary parts because WN = e–j2π/N =
cos(2π/N) – jsin(2π/N). In the program presented later in this section, the
twiddle factors are initialized in memory as cosine and –sine values (not
+sine). For this reason, the twiddle factors are shown in Figure 6.10 as
C + j(–S). C represents cosine and –S represents –sine.

Wb

Wc

Wd

x' + jy'b b

x' + jy'a a

x' + jy'c c

x' + jy'd d

x + jya a

x + jyb b

x + jyc c

x + jy
d d

Figure 6.10 Radix-4 DIF FFT Butterfly, Complex DataFigure 6.10 Radix-4 DIF FFT Butterfly, Complex DataFigure 6.10 Radix-4 DIF FFT Butterfly, Complex DataFigure 6.10 Radix-4 DIF FFT Butterfly, Complex DataFigure 6.10 Radix-4 DIF FFT Butterfly, Complex Data

The real and imaginary output values for the radix-4 butterfly are given
by equations (33) through (40).

(33) xa´ = xa + xb + xc + xd

(34) ya´ = ya + yb + yc + yd

(35) xb´ = (xa + yb – xc – yd)Cb – (ya – xb – yc + xd)(–Sb)

(36) yb ´ = (ya – xb – yc + xd)Cb + (xa + yb – xc – yd)(–Sb)

197197197197197

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

(37) xc´ = (xa – xb + xc – xd)Cc – (ya – yb + yc – yd)(–Sc)

(38) yc´ = (ya – yb + yc – yd)Cc + (xa – xb + xc – xd)(–Sc)

(39) xd´ = (xa – yb – xc + yd)Cd – (ya + xb – yc – xd)(–Sd)

(40) yd´ = (ya + xb – yc – xd)Cd + (xa – yb – xc + yd)(–Sd)

A complete 64-point radix-4 FFT is shown in Figure 6.11, on the next page.
As in the radix-2 FFT, butterflies are organized into groups and stages.
The first stage has one group of 16 (N/4) butterflies, the next stage has
four groups of four (N/16) butterflies, and the last stage has 16 groups of
one butterfly. Notice that the twiddle factor values depend on the group
and stage that are being performed. The table below summarizes the
characteristics of an N-point radix-4 FFT.

Stage 1 2 3 (log2N)/2

Butterfly
Groups 1 4 16 N/4

Butterflies
per Group N/4 N/16 N/64 1

Dual-Node
Spacing N/4 N/16 N/64 1

Twiddle leg1 0 0 0 0
Factor leg2 n 4n 16n (N/4)n
Exponents leg3 2n 8n 32n (N/2)n

leg4 3n 12n 48n (3N/4)n

n=0 to N/4–1 n=0 to N/16–1 n=0 to N/32–1 n=0

A 64-point radix-4 FFT has half as many stages (three instead of six) and
half as many butterflies in each stage (16 instead of 32) as a 64-point radix-
2 FFT.

198198198198198

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Figure 6.11 Sixty-Four-Point Radix-4 DIF FFTFigure 6.11 Sixty-Four-Point Radix-4 DIF FFTFigure 6.11 Sixty-Four-Point Radix-4 DIF FFTFigure 6.11 Sixty-Four-Point Radix-4 DIF FFTFigure 6.11 Sixty-Four-Point Radix-4 DIF FFT

Column a) indicates input sample; 44=x(44).
Column b) indicates twiddle factor exponent, stage one; 5=WN

5.
Column c) indicates twiddle factor exponent, stage two.
Column d) indicates output sample; 51=X(51).

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0
0
0
0
0
4
8

12
0
8

16
24

0
12
24
36

0
0
0
0
0
4
8

12
0
8

16
24

0
12
24
36

0
16
32
48

4
20
36
52

8
24
40
56
12
28
44
60

1
17
33
49

5
21
37
53

9
25
41
57
13
29
45
61
2

18
34
50

6
22
38
54
10
26
42
58
14
30
46
62

3
19
35
51

7
23
39
55
11
27
43
59
15
31
47
63

A B C D

199199199199199

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

6.5.26.5.26.5.26.5.26.5.2 Radix-4 Decimation-In-Frequency FFT ProgramRadix-4 Decimation-In-Frequency FFT ProgramRadix-4 Decimation-In-Frequency FFT ProgramRadix-4 Decimation-In-Frequency FFT ProgramRadix-4 Decimation-In-Frequency FFT Program
A flow chart for the radix-4 DIF FFT program is shown in Figure 6.12. The
program flow is identical to that of the radix-2 DIF FFT except that the
outputs are unscrambled by digit reversal instead of bit reversal.

The radix-4 DIF FFT routine uses three subroutines; the first computes the
FFT, the second performs block floating-point scaling, and the third
unscrambles the FFT results. The main routine (rad4_main) declares and
initializes buffers and variables stored in external memory. It also calls the
FFT and digit reversal subroutines. Three other modules contain the FFT,
block floating-point scaling and digit reversal subroutines. The rad4_main
and rad4_fft modules are described in this section. The block floating-point
scaling and digit reversal routines are described later.

6.5.2.16.5.2.16.5.2.16.5.2.16.5.2.1 Main ModuleMain ModuleMain ModuleMain ModuleMain Module
The rad4_main module is shown in Listing 6.22. Constants N, N_x_2,
N_div_4, and N_div_2 are used throughout this module to specify buffer
lengths as well as initial values for some variables. The in-place FFT
calculation is performed in the inplacedata buffer. A small buffer called
padding is placed at the end of the inplacedata buffer to allow memory
accesses to exceed the buffer. The extra memory locations are necessary in
a simulation because the ADSP-2100 Simulator does not allow undefined
memory locations to be operated on; however, padding is not necessary in
a real system.

The input_data buffer retains the initial FFT input data that is lost during
the FFT calculation. This buffer allows you to look at the original input
data after executing the program. However, input_data is also not needed
in a real system.

The digit_rev subroutine unscrambles the FFT outputs and writes them in
sequential order into results. The variables groups, bflys_per_group,
node_space, and blk_exponent are declared to store stage characteristics and
the block floating-point exponent, as in the radix-2 FFT routine.

Buffers inplacedata, twids, and input_data are initialized with data stored in
external files. For example, twids is initialized with the external file
twids.dat, which contains the twiddle factor values. Immediate zeros are
placed in padding.

The variable groups is initialized to one and bflys_per_group to N_div_4
because there is one group in the first stage of the FFT and N/4 butterflies

Figure 6.12 Radix-4 DIFFigure 6.12 Radix-4 DIFFigure 6.12 Radix-4 DIFFigure 6.12 Radix-4 DIFFigure 6.12 Radix-4 DIF
FFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow Chart

START

END

Set Up For Next Stage

Set Up For Next Group

Set Up For Next Butterfly

Compute Butterfly

Initialize

More Butterflies?

More Groups?

More Stages?

BFP Scaling

YES

NO

YES

NO

YES

NO

G
R

O
U

P
 L

O
O

P

S
T

A
G

E
 L

O
O

P

B
U

T
T

E
R

F
L

Y
 L

O
O

P

Digit Reverse Outputs
(unscramble)

200200200200200

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

in this first group. Node spacing for the radix-4 FFT in the first stage is
N/4. However, because the inplacedata buffer is organized with real and
imaginary data interleaved, the node spacing is doubled to N/2. Thus, the
variable node_space is initialized to N_div_2.

The rad4_fft subroutine computes the FFT, and the digit_rev routine
unscrambles the output using digit reversal. The TRAP instruction halts
the ADSP-2100 when the FFT is complete.

6.5.2.26.5.2.26.5.2.26.5.2.26.5.2.2 DIF FFT ModuleDIF FFT ModuleDIF FFT ModuleDIF FFT ModuleDIF FFT Module
The conditional block floating-point radix-4 DIF FFT subroutine presented
in this section consists of three nested loops. To simplify the explanation
of this subroutine, each loop is described separately, starting with the
innermost loop (the butterfly loop) and followed by the group loop and
the stage loop. The entire subroutine is listed at the end of this section.

Butterfly LoopButterfly LoopButterfly LoopButterfly LoopButterfly Loop
The radix-4 butterfly equations (33-40) are repeated below.

(33) xa´ = xa + xb + xc + xd

(34) ya´ = ya + yb + yc + yd

(35) xb´ = (xa + yb – xc – yd)Cb – (ya – xb – yc + xd)(–Sb)

(36) yb ´ = (ya – xb – yc + xd)Cb + (xa + yb – xc – yd)(–Sb)

(37) xc´ = (xa – xb + xc – xd)Cc – (ya – yb + yc – yd)(–Sc)

(38) yc´ = (ya – yb + yc – yd)Cc + (xa – xb + xc – xd)(–Sc)

(39) xd´ = (xa – yb – xc + yd)Cd – (ya + xb – yc – xd)(–Sd)

(40) yd´ = (ya + xb – yc – xd)Cd + (xa – yb – xc + yd)(–Sd)

The code segment to calculate these equations is shown in Listing 6.23.
This code segment computes one radix-4 butterfly. The outputs (xa´, ya´,
xb´, yb´, etc.) are written over the inputs (xa, ya, xb, yb, etc.) in the
highlighted instructions. Each of the eight butterfly results is monitored
for bit growth using the EXPADJ instruction and written to data memory
in the same multifunction instruction. This code segment also sets up
pointers and fetches the initial data for the next butterfly. The butterfly
calculation is described in detail in the comments, and the instructions

201201201201201

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

.MODULE/ABS=4 rad4_main;

.CONST N=1024,N_x_2=2048, {Define constants for N-point FFT}
N_div_4=256,N_div_2=512;

.VAR/DM/RAM/ABS=0 inplacedata[N_x_2], padding[4];
{Pad end of inplacedata so memory}

.VAR/DM/RAM twids[N_x_2]; {accesses can exceed end of buffer}

.VAR/DM/RAM outputdata[N_x_2];

.VAR/DM/RAM input_data[N_x_2];

.VAR/DM/RAM groups,bflys_per_group,
node_space,blk_exponent;

.INIT inplacedata: <inplacedata.dat>;

.INIT input_data: <inplacedata.dat>;

.INIT twids: <twids.dat>;

.INIT groups: 1;

.INIT bflys_per_group: N_div_4;

.INIT node_space: N_div_2;

.INIT blk_exponent: 0;

.INIT padding: 0,0,0,0;

.GLOBAL inplacedata,twids, outputdata;

.GLOBAL groups,bflys_per_group,node_space,blk_exponent;

.EXTERNAL rad4_fft,digit_rev;

CALL rad4_fft;
CALL digit_rev;
TRAP; {Stop program execution}

.ENDMOD;

Listing 6.22 Main Module, Radix-4 DIF FFTListing 6.22 Main Module, Radix-4 DIF FFTListing 6.22 Main Module, Radix-4 DIF FFTListing 6.22 Main Module, Radix-4 DIF FFTListing 6.22 Main Module, Radix-4 DIF FFT

202202202202202

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

that check for bit growth and write the butterfly results to data memory
are boldface.

The input and output parameters of this code segment are shown below.

Initial Conditions Final Conditions

I0 --> xa I0 --> next xa
I1 --> xb I1 --> next xb
I2 --> yc I2 --> next yc
I3 --> xd I3 --> next xd
I4 --> Cb I4 --> next Cb
I5 --> Sc I5 --> next Sc
I6 --> Cd I6 --> next Cd
M0 = 0 AX0 = next xa
M1 = 1 AY0 = next xc
M3 = –1 MY0 = next Cc
CNTR = butterfly counter CNTR = butterfly counter – 1
M4 = 1
M5 = groups x 2 – 1
M6 = groups x 4 – 1
M7 = groups x 6 – 1
AX0 = xa
AY0 = xc
MY0 = Cc

203203203203203

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

AF=AX0+AY0,AX1=DM(I1,M1); {AF=xa+xc; AX1=xb; I1 --> yb}
AR=AF-AX1,AY1=DM(I3,M1); {AR=xa+xc-xb; AY1=xd; I3 --> yd}
AR=AR-AY1,SR1=DM(I1,M3); {AR=xa-xb+xc-xd; SR1=yb; I1 --> xb}
MR=AR*MY0(SS),SR0=DM(I3,M3); {MR=(xa-xb+xc-xd)Cc; SR0=yd; I3 --> xd}
MX0=AR,AR=AX1+AF; {AR=xa+xb+xc; MX0=(xa-xb+xc-xd)Cc}
AR=AR+AY1; {AR=xa+xb+xc+xd}
SB=EXPADJ AR,DM(I0,M1)=AR; {xa´=xa+xb+xc+xd; I0 --> ya}
AF=AX0-AY0,AX0=DM(I0,M0); {AF=xa-xc; AX0=ya; I0 --> ya}
AR=SR1+AF,AY0=SR0; {AR=xa+yb-xc; AY0=yd}
AF=AF-SR1; {AF=xa-yb-xc}
AR=AR-AY0,AY0=DM(I2,M3); {AR=xa+yb-xc-yd; AY0=yc; I2 --> xc}
MX1=AR,AR=SR0+AF; {AR=xa-yb-xc+yd; MX1=xa+yb-xc-yd}
AF=AX0+AY0,DM(I3,M1)=AR; {AR=ya+yc; location of xd=xa-yb-xc+yd}

{I3 --> yd}
AY0=DM(I3,M3),AR=SR1+AF; {AR=ya+yb+yc; AY0=yd; I3 --> xd}
AR=AR+AY0,MY1=DM(I5,M6); {AR=ya+yb+yc+yd; MY1=(-Sc); I5 --> next Cc}
SB=EXPADJ AR,DM(I0,M1)=AR; {ya´=ya+yb-yc+yd; I0 --> next xa}
AF=AF-SR1; {AF=ya-yb+yc}
AR=AF-SR0; {AR=ya-yb+yc-yd}
MR=MR-AR*MY1(SS); {MR=(xa-xb+xc-xd)Cc - (ya-yb+yc-yd)(-Sc)}
SB=EXPADJ MR1,DM(I2,M1)=MR1; {xc´=(xa-xb+xc-xd)Cc - (ya-yb+yc-yd)(-Sc)}

{I2 --> yc}
MR=AR*MY0(SS); {MR=(ya-yb+yc-yd)Cc}
MR=MR+MX0*MY1(SS),AY0=DM(I2,M0); {MR=(ya-yb+yc-yd)Cc + (xa-xb+xc-xd)(-Sc)}

{AY0=yc; I2 --> yc}
SB=EXPADJ MR1,DM(I2,M1)=MR1; {yc´=(ya-yb+yc-yd)Cc + (xa-xb+xc-xd)(-Sc)}

{I2 --> next xc}
AF=AX0-AY0,MY1=DM(I4,M4); {AF=ya-yc; MY1=Cb; I4 -->(-Sb)}
AR=AF-AX1,AX0=DM(I0,M0); {AR=ya-xb-yc; AX0=ya; I1 --> ya}
AR=AR+AY1,AY0=DM(I2,M1); {AR=ya-xb-yc+xd; AY0=yc; I2 --> next xc}
MR=MX1*MY1(SS),MY0=DM(I4,M5); {MR=(xa+yb-xc-yd)Cb; MY0=Sb; I4 --> next Cb}
MR=MR-AR*MY0(SS); {MR=(xa+yb-xc-yd)Cb - (ya-xb-yc+xd)(-Sb)}
SB=EXPADJ MR1,DM(I1,M1)=MR1; {xb´=(xa+yb-xc-yd)Cb - (ya-xb-yc+xd)(-Sb)}

{I1 --> yb}
MR=AR*MY1(SS); {MR=(ya-xb-yc+xd)Cb}
MR=MR+MX1*MY0(SS),MX1=DM(I3,M0); {MR=(ya-xb-yc+xd)Cb + (xa+yb-xc-yd)(-Sb)}

{MX1=xa-yb-xc+yd; I3 --> xd}
SB=EXPADJ MR1,DM(I1,M1)=MR1; {yb´=(ya-xb-yc+xd)Cb + (xa+yb-xc-yd)(-Sb)}

{I1 --> next xb}
AR=AX1+AF,MY0=DM(I6,M4); {AR=ya+xb-yc; MY0=Cd; I6 -->-Sd}
AR=AR-AY1,MY1=DM(I6,M7); {AR=ya+xb-yc-xd; MY1=-Sd; I6 -->Cd}
MR=MX1*MY0(SS); {MR=(xa-yb-xc+yd)Cd}
MR=MR-AR*MY1(SS); {MR=(xa-yb-xc+yd)Cd - (ya+xb-yc-xd)(-Sd)}
SB=EXPADJ MR1,DM(I3,M1)=MR1; {xd´=(xa-yb-xc+yd)Cd - (ya+xb-yc-xd)(-Sd)}

{I3 --> yd}
MR=AR*MY0(SS),MY0=DM(I5,M4); {MR=(ya+xb-yc-xd)Cd; MY0=next Cc}

{I5 --> next (-Sc)}
MR=MR+MX1*MY1(SS); {MR=(ya+xb-yc-xd)Cd + (xa-yb-xc+yd)(-Sd)}
SB=EXPADJ MR1,DM(I3,M1)=MR1; {yd´=(ya+xb-yc-xd)Cd +(xa-yb-xc+yd)(-Sd)}

{I3 --> next xd}

Listing 6.23 Radix-4 DIF FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.23 Radix-4 DIF FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.23 Radix-4 DIF FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.23 Radix-4 DIF FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.23 Radix-4 DIF FFT Butterfly, Conditional Block Floating-Point Scaling

204204204204204

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Group LoopGroup LoopGroup LoopGroup LoopGroup Loop
The group loop is shown in Listing 6.24. This code segment sets up and
computes one group of butterflies. Because each leg of the first butterfly in
all groups in the FFT has the twiddle factor W0, twiddle-factor pointers are
initialized to point to the real part of W0. Next, the butterfly loop is set up
by initializing the butterfly loop counter and fetching initial data values
(xa, yc and Cc). Notice that these are the initial conditions for the butterfly
loop.

After all the butterflies in the group are calculated, pointers used in the
butterfly are updated to point to xa, xb, xc, and xd for the first butterfly in
the next group. For example, I0 points to the first xa in the next group, I1 to
the first xb, etc. The group loop is executed groups times (the number of
groups in a stage).

The input and output parameters of this code segment are as follows:

Initial Conditions Final Conditions

I0 --> xa I0 --> first xa of next group
I1 --> xb I1 --> first xb of next group
I2 --> xc I2 --> first xc of next group
I3 --> xd I3 --> first xd of next group
M0 = 0 I4 --> invalid location for twiddle factor
M1 = 1 I5 --> invalid location for twiddle factor
M2 = 3 x node_space I6 --> invalid location for twiddle factor
M3 = –1 CNTR = group count – 1
M4 = 1
CNTR = group count

205205205205205

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

I4=^twids; {I4 --> Cb}
I5=I4; {I5 --> Cc}
I6=I5; {I6 --> Cd}
CNTR=DM(bflys_per_group); {Initialize butterfly counter}
AX0=DM(I0,M0); {AX0=xa; I0 --> xa}
AY0=DM(I2,M1); {AY0=xc; I2 --> yc}
MY0=DM(I5,M4); {MY0=Cc; I5 --> Sc}
DO bfly_loop UNTIL CE;

bfly_loop : {Calculate All Butterflies}

MODIFY(I0,M2); {I0 --> first xa of next group}
MODIFY(I1,M2); {I1 --> first xb of next group}
MODIFY(I2,M3);
MODIFY(I2,M2); {I2 --> first xc of next group}
MODIFY(I3,M2); {I3 --> first xd of next group}

Listing 6.24 Radix-4 DIF FFT Group LoopListing 6.24 Radix-4 DIF FFT Group LoopListing 6.24 Radix-4 DIF FFT Group LoopListing 6.24 Radix-4 DIF FFT Group LoopListing 6.24 Radix-4 DIF FFT Group Loop

Stage LoopStage LoopStage LoopStage LoopStage Loop
The stage characteristics of the FFT are controlled by the stage loop. For
example, the stage loop controls the number of groups and the number of
butterflies in each group. The stage loop code segment is shown in Listing
6.25. This code sets up and calculates all groups of butterflies in a stage
and updates parameters for next stage.

The radix-4 butterfly data can potentially grow three bits from butterfly
input to output (the worst case growth factor is 5.6). Therefore, each input
value to the FFT contains three guard bits to prevent overflow. SB is
initialized to –3, so any bit growth into the guard bits can be monitored. If
bit growth occurs, it is compensated for in the block floating-point
subroutine that is called after each stage is computed.

The variable groups is loaded into SI and used to calculate various stage
parameters. These include groupsx2–1, the leg b twiddle factor modifier,
groupsx4–1, the leg c twiddle factor modifier, and groupsx6–1, the leg d
modifier. Pointers are set to xa, xb, xc, and xd, the inputs to the first

206206206206206

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

butterfly in the stage. The group loop counter is initialized and M2, which
is used to update butterfly data pointers at the start of a new group, is set
to three times the node spacing.

In the group loop, all groups in the stage are computed. After the groups
are computed, the subroutine bfp_adjust is called to perform block floating-
point scaling by checking for bit growth in the stage output data and
adjusting all of the data in the block accordingly.

After the output data is scaled, parameters are adjusted for the next stage;
groups is updated to groupsx4, node_space to node_space/4, and
bflys_per_group to bflys_per_group/4. The stage loop is repeated (log2N)/2
times (the number of stages in the FFT).

The input and output parameters for this code segment are as follows:

Initial Conditions Final Conditions

groups = # groups/stage groups =groups x 4
node_space = node spacing for stage node_space = node_space /4
bflys_per_group = # butterflies/group bflys_per_group =bflys_per_group /4
inplacedata=stage input data inplacedata=stage output data
CNTR = stage count CNTR = stage count – 1

SB = –(number of guard bits
remaining in data word(s) with
largest magnitude)
SI = # groups/stage
I0 ->invalid location for data sample
I1 ->invalid location for data sample
I2 ->invalid location for data sample
I3 ->invalid location for data sample
M2 = node_space x 3
M5 = groups x 2 – 1
M6 = groups x 4 – 1
M7 = groups x 6 – 1

207207207207207

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

SB=-3; {SB detects growth into 3 guard bits}
SI=DM(groups); {SI=groups}
SR=ASHIFT SI BY 1(HI); {SR1=groups × 2}
AY1=SR1; {AY1=groups × 2}
AR=AY1-1; {AR=groups × 2 - 1}
M5=AR; {M5=groups × 2 - 1}
SR=ASHIFT SR1 BY 1(HI); {SR1=groups × 4}
AY1=SR1; {AY1=groups × 4}
AR=AY1-1; {AR=groups × 4 - 1}
M6=AR; {M6=groups × 4 - 1}
AY0=SI; {AY0=groups}
AR=AR+AY0; {AR=groups × 5 - 1}
AR=AR+AY0; {AR=groups × 6 - 1}
M7=AR; {M7=groups × 6 - 1}
M2=DM(node_space); {M2=node_space}
I0=^inplacedata; {I0 --> xa}
I1=I0;
MODIFY(I1,M2); {I1 --> xb}
I2=I1;
MODIFY(I2,M2); {I2 --> xc}
I3=I2;
MODIFY(I3,M2); {I3 --> xd}
CNTR=SI; {Initialize group counter}
AY0=DM(node_space);
M2=I3; {M2=node_space × 3}
DO group_loop UNTIL CE;

group_loop: {Calculate All Groups in a Stage}

CALL bfp_adjust; {Check for bit growth}
SI=DM(groups); {SI=groups}
SR=ASHIFT SI BY 2(HI); {SR1=groups × 4 }
DM(groups)=SR1; {group count, next stage}
SI=DM(bflys_per_group); {SI=bflys_per_group}
SR=ASHIFT SI BY -1(HI); {SR1=bflys_per_group ÷ 2}
DM(node_space)=SR1; {node spacing, next stage}
SR=ASHIFT SI BY -1(HI); {SR1=node_space ÷ 2}
DM(bflys_per_group)=SR1; {butterfly count, next stage}

Listing 6.25 Radix-4 DIF FFT Stage LoopListing 6.25 Radix-4 DIF FFT Stage LoopListing 6.25 Radix-4 DIF FFT Stage LoopListing 6.25 Radix-4 DIF FFT Stage LoopListing 6.25 Radix-4 DIF FFT Stage Loop

Radix-4 DIF FFT SubroutineRadix-4 DIF FFT SubroutineRadix-4 DIF FFT SubroutineRadix-4 DIF FFT SubroutineRadix-4 DIF FFT Subroutine
The butterfly, group, and stage loop code segments are combined into the
entire radix-4 DIF FFT subroutine, which is shown in Listing 6.26. Note
that length and modify registers that retain the same value throughout the
routine are initialized outside the stage loop. The stage loop counter is
initialized to the number of stages in an N-point FFT (log2N_div_2).
Instructions that write butterfly results to memory are boldface.

208208208208208

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

.MODULE radix_4_dif_fft; {Declare and name module}

.CONST log 2N_div_2=5; {Initial stage count}

.ENTRY rad4_fft;

.EXTERNAL groups,node_space,bflys_per_group;

.EXTERNAL inplacedata,twids,bfp_adjust;

rad4_fft: CNTR=log 2N_div_2; {Initialize stage counter}
M0=0; {Set constant modifiers, length registers}
M1=1;
M3=-1;
M4=1;
L0=0;
L1=0;
L2=0;
L3=0;
L4=0;
L5=0;
L6=0;
L7=0;
DO stage_loop UNTIL CE; {Compute all stages}

SB=-4; {Detects bit growth into 4 MSBs}
SI=DM(groups); {SI=groups}
SR=ASHIFT SI BY 1(HI); {SR1=groups × 2}
AY1=SR1; {AY1=groups × 2}
AR=AY1-1; {AR=groups × 2 - 1}
M5=AR; {M5=groups × 2 - 1}
SR=ASHIFT SR1 BY 1(HI); {SR1=groups × 4}
AY1=SR1; {AY1=groups × 4}
AR=AY1-1; {AR=groups × 4 - 1}
M6=AR; {M6=groups × 4 - 1}
AY0=SI; {AY0=groups}
AR=AR+AY0; {AR=groups × 5 - 1}
AR=AR+AY0; {AR=groups × 6 - 1}
M7=AR; {M7=groups × 6 - 1}
M2=DM(node_space); {M2=node_space}
I0=^inplacedata; {I0 -->xa}
I1=I0;
MODIFY(I1,M2); {I1 -->xb}
I2=I1;
MODIFY(I2,M2); {I2 -->xc}
I3=I2;
MODIFY(I3,M2); {I3 -->xd}
CNTR=SI; {Initialize group counter}
AY0=DM(node_space);
M2=I3; {M2=node_space × 3}
DO group_loop UNTIL CE; {Compute all groups in stage}

209209209209209

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

I4=^twids; {I4 -->Cb}
I5=I4; {I5 -->Cc}
I6=I5; {I6 -->Cd}
CNTR=DM(bflys_per_group); {Initialize butterfly counter}
AX0=DM(I0,M0); {AX0=xa, I0 -->xa}
AY0=DM(I2,M1); {AY0=xc, I2 -->yc}
MY0=DM(I5,M4); {MY0=Cc, I5 -->(-Sc)}
DO bfly_loop UNTIL CE; {Compute all butterflies in grp}

AF=AX0+AY0,AX1=DM(I1,M1);
AR=AF-AX1,AY1=DM(I3,M1);
AR=AR-AY1,SR1=DM(I1,M3);
MR=AR*MY0(SS),SR0=DM(I3,M3);
MX0=AR,AR=AX1+AF;
AR=AR+AY1;
SB=EXPADJ AR,DM(I0,M1)=AR; {xa´=xa+xb+xc+xd}
AF=AX0+AY0,AX0=DM(I0,M0);
AR=SR1+AF,AY0=SR0;
AF=AF-SR1;
AR=AR-AY0,AY0=DM(I2,M3);
MX1=AR,AR=SR0+AF;
AF=AX0+AY0,DM(I3,M1)=AR;
AY0=DM(I3,M3),AR=SR1+AF;
AR=AR+AY0,MY1=DM(I5,M6);
SB=EXPADJ AR,DM(I0,M1)=AR; {ya´=ya+yb+yc+yd}
AF=AF-SR1;
AR=AF-SR0;
MR=MR-AR*MY1(SS);
SB=EXPADJ MR1,DM(I2,M1)=MR1; {xc´=(xa-xb+xc-xd)Cc}
MR=AR*MY0(SS); {-(ya-yb+yc-yd)(-Sc)}
MR=MR+MX0*MY1(SS),AY0=DM(I2,M0);
SB=EXPADJ MR1,DM(I2,M1)=MR1; {yc´=(ya-yb+yc-yd)Cc}
AF=AX0-AY0,MY1=DM(I4,M4); {+ (xa-xb+xc-xd)(-Sc)}
AR=AF-AX1,AX0=DM(I0,M0);
AR=AR+AY1,AY0=DM(I2,M1);
MR=MX1*MY1(SS),MY0=DM(I4,M5);
MR=MR-AR*MY0(SS);
SB=EXPADJ MR1,DM(I1,M1)=MR1; {xb´=(xa+yb-xc-yd)Cb}
MR=AR*MY1(SS); {-(ya-xb-yc+yd)(-Sb)}
MR=MR+MX1*MY0(SS),MX1=DM(I3,M0);
SB=EXPADJ MR1,DM(I1,M1)=MR1; {yb´=(ya-xb-yc+xd)Cb}
AR=AX1+AF,MY0=DM(I6,M4); {+ (xa+yb-xc-yd)(-Sb)}
AR=AR-AY1,MY1=DM(I6,M7);
MR=MX1*MY0(SS);
MR=MR-AR*MY1(SS);
SB=EXPADJ MR1,DM(I3,M1)=MR1; {xd´=(xa-yb-xc+yd)Cd}
MR=AR*MY0(SS),MY0=DM(I5,M4); {- (ya+xb-yc-xd)(-Sd)}
MR=MR+MX1*MY1(SS);

bfly_loop: SB=EXPADJ MR1, DM(I3,M1)=MR1; {yd´= (ya+xb-yc-xd)Cd}
{+ (xa-yb-xc+yd)(-Sd)}

(listing continues on next page)

210210210210210

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

DO bfly_loop UNTIL CE; {Compute all butterflies in grp}
AF=AX0+AY0,AX1=DM(I1,M1);
AR=AF-AX1,AY1=DM(I3,M1);
AR=AR-AY1,SR1=DM(I1,M3);
MR=AR*MY0(SS),SR0=DM(I3,M3);
MX0=AR,AR=AX1+AF;
AR=AR+AY1;
SB=EXPADJ AR,DM(I0,M1)=AR; {xa´=xa+xb+xc+xd}
AF=AX0+AY0,AX0=DM(I0,M0);
AR=SR1+AF,AY0=SR0;
AF=AF-SR1;
AR=AR-AY0,AY0=DM(I2,M3);
MX1=AR,AR=SR0+AF;
AF=AX0+AY0,DM(I3,M1)=AR;
AY0=DM(I3,M3),AR=SR1+AF;
AR=AR+AY0,MY1=DM(I5,M6);
SB=EXPADJ AR,DM(I0,M1)=AR; {ya´=ya+yb+yc+yd}
AF=AF-SR1;
AR=AF-SR0;
MR=MR-AR*MY1(SS);
SB=EXPADJ MR1,DM(I2,M1)=MR1; {xc´=(xa-xb+xc-xd)Cc}
MR=AR*MY0(SS); {-(ya-yb+yc-yd)(-Sc)}
MR=MR+MX0*MY1(SS),AY0=DM(I2,M0);
SB=EXPADJ MR1,DM(I2,M1)=MR1; {yc´=(ya-yb+yc-yd)Cc}
AF=AX0-AY0,MY1=DM(I4,M4); {+ (xa-xb+xc-xd)(-Sc)}
AR=AF-AX1,AX0=DM(I0,M0);
AR=AR+AY1,AY0=DM(I2,M1);
MR=MX1*MY1(SS),MY0=DM(I4,M5);
MR=MR-AR*MY0(SS);
SB=EXPADJ MR1,DM(I1,M1)=MR1; {xb´=(xa+yb-xc-yd)Cb}
MR=AR*MY1(SS); {-(ya-xb-yc+yd)(-Sb)}
MR=MR+MX1*MY0(SS),MX1=DM(I3,M0);
SB=EXPADJ MR1,DM(I1,M1)=MR1; {yb´=(ya-xb-yc+xd)Cb}
AR=AX1+AF,MY0=DM(I6,M4); {+ (xa+yb-xc-yd)(-Sb)}
AR=AR-AY1,MY1=DM(I6,M7);
MR=MX1*MY0(SS);
MR=MR-AR*MY1(SS);
SB=EXPADJ MR1,DM(I3,M1)=MR1; {xd´=(xa-yb-xc+yd)Cd}
MR=AR*MY0(SS),MY0=DM(I5,M4); {- (ya+xb-yc-xd)(-Sd)}
MR=MR+MX1*MY1(SS);

bfly_loop: SB=EXPADJ MR1, DM(I3,M1)=MR1; {yd´= (ya+xb-yc-xd)Cd}
{+ (xa-yb-xc+yd)(-Sd)}

MODIFY(I0,M2); {I0 -->1st xa of next group}
MODIFY(I1,M2); {I1 -->1st xb of next group}
MODIFY(I2,M3);
MODIFY(I2,M2); {I2 -->1st xc of next group}

group_loop: MODIFY(I3,M2); {I3 -->1st xd of next group}
CALL bfp_adjust; {Check for bit growth}
SI=DM(groups); {SI=groups}
SR=ASHIFT SI BY 2(HI); {SR1=groups × 4}

211211211211211

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

DM(groups)=SR1; {Group count, next stage}
SI=DM(bflys_per_group); {SI=bflys_per_group}
SR=ASHIFT SI BY -1(HI); {SR1=bflys_per_group ÷ 2}
DM(node_space)=SR1; {Node spacing, next stage}
SR=ASHIFT SI BY -1(HI); {SR1=node_space ÷ 2}

stage_loop: DM(bflys_per_group)=SR1; {Butterfly count, next stage}
RTS;

.ENDMOD;

Listing 6.26 Radix-4 DIF FFT Routine, Conditional Block Floating-Point ScalingListing 6.26 Radix-4 DIF FFT Routine, Conditional Block Floating-Point ScalingListing 6.26 Radix-4 DIF FFT Routine, Conditional Block Floating-Point ScalingListing 6.26 Radix-4 DIF FFT Routine, Conditional Block Floating-Point ScalingListing 6.26 Radix-4 DIF FFT Routine, Conditional Block Floating-Point Scaling

A routine similar to the dit_radix-2_bfp_adjust routine is used to monitor bit
growth in the radix-4 FFT. Because a radix-4 butterfly can cause data to
grow by three bits from input to output, the radix-2 block floating-point
routine is modified to adjust for three bits instead of two. The dif_radix-
4_bfp_adjust routine is shown in Listing 6.27. This routine performs block
floating-point adjustment on the radix-4 DIF FFT stage output.

The dif_radix-4_bfp_adjust routine checks for growth of three bits as well as
for zero, one and two bits. This routine shifts data (by one, two or three
bits to the right) using the shifter. As described above, shifting right by
multiplication allows rounding of the shifted bit(s). However,
multiplication is not always possible. This routine illustrates the use of the
shifter.

.MODULE dif_radix_4_bfp_adjust;

{ Calling Parameters
Radix-4 DIF FFT stage results in inplacedata

Return Values
inplacedata adjusted for bit growth

Altered Registers
I0,I1,AX0,AY0,AR,SE,SI,SR

Altered Memory
inplacedata, blk_exponent

}

.CONST N_x_2=2048;

.EXTERNAL inplacedata, blk_exponent;

.ENTRY bfp_adjust;

(listing continues on next page)

212212212212212

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

bfp_adjust: AY0=CNTR;
AR=AY0-1;
IF EQ RTS; {If last stage, return}
AY0=-3;
AX0=SB;
AR=AX0-AY0;
IF EQ RTS; {If SB=-3, no bit growth, return}
AY0=-2;
SE=-1;
I0=^inplacedata; {I0=read pointer}
I1=^inplacedata; {I1=write pointer}
AR=AX0-AY0,SI=DM(I0,M1); {Check SB, get 1st sample}
IF EQ JUMP strt_shift; {If SB=-2, shift block right 1 bit}
AY0=-1;
SE=-2;
AR=AX0-AY0;
IF EQ JUMP strt_shift; {If SB=-1, shift block right 2 bits}
SE=-3; {Otherwise, SB=0, shift right 3 bits}

strt_shift: CNTR=N_x_2-1;
AY0=SE;
DO shift_loop UNTIL CE;

SR=ASHIFT SI(LO),SI=DM(I0,M1); {SR=shifted data, SI=next data}
shift_loop: DM(I1,M1)=SR0; {Unshifted data=shifted data}

SR=ASHIFT SI(LO); {Shift last data word}
AX0=DM(blk_exponent); {Update block exponent and}
DM(I1,M1)=SR0,AR=AX0-AY0; {store last shifted sample}
DM(blk_exponent)=AR;
RTS;

.ENDMOD;

Listing 6.27 Radix-4 Block Floating-Point Scaling RoutineListing 6.27 Radix-4 Block Floating-Point Scaling RoutineListing 6.27 Radix-4 Block Floating-Point Scaling RoutineListing 6.27 Radix-4 Block Floating-Point Scaling RoutineListing 6.27 Radix-4 Block Floating-Point Scaling Routine

213213213213213

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

6.5.36.5.36.5.36.5.36.5.3 Digit ReversalDigit ReversalDigit ReversalDigit ReversalDigit Reversal
Whereas bit reversal reverses the order of bits in binary (base 2) numbers,
digit reversal reverses the order of digits in quarternary (base 4) numbers.
Every two bits in the binary number system correspond to one digit in the
quarternary number system. (For example, binary 1110 = quarternary 32.)
The quarternary system is illustrated below for decimal numbers 0
through 15.

Decimal Binary Quarternary

0 0000 00
1 0001 01
2 0010 02
3 0011 03
4 0100 10
5 0101 11
6 0110 12
7 0111 13
8 1000 20
9 1001 21
10 1010 22
11 1011 23
12 1100 30
13 1101 31
14 1110 32
15 1111 33

The radix-4 DIF FFT successively divides a sequence into four sub-
sequences, resulting in an output sequence in digit-reversed order. A
digit-reversed sequence is unscrambled by digit-reversing the data
positions. For example, position 12 in quarternary (six in decimal)
becomes position 21 in quarternary (nine in decimal) after digit reversal.
Therefore, data in position six is moved to position nine when the digit-
reversed sequence is unscrambled. The digit-reversed positions for a 16-
point sequence (samples X(0) through X(15)) are shown on the next page.

214214214214214

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Sample, Sequential Location Digit-Reversed Location Sample,
Sequential Digit-Reversed
Order decimal quarternary decimal quarternary Order

X(0) 0 00 0 00 X(0)
X(1) 1 01 4 10 X(4)
X(2) 2 02 8 20 X(8)
X(3) 3 03 12 30 X(12)
X(4) 4 10 1 01 X(1)
X(5) 5 11 5 11 X(5)
X(6) 6 12 9 21 X(9)
X(7) 7 13 13 31 X(13)
X(8) 8 20 2 02 X(2)
X(9) 9 21 6 12 X(6)
X(10) 10 22 10 22 X(10)
X(11) 11 23 14 32 X(14)
X(12) 12 30 3 03 X(3)
X(13) 13 31 7 13 X(7)
X(14) 14 32 11 23 X(11)
X(15) 15 33 15 33 X(15)

In an N-point radix-4 FFT, only the number of digits needed to represent
N locations are reversed. Two digits are needed for a 16-point FFT, three
digits for a 64-point FFT, and five digits for a 1024-point FFT.

The digit reversal subroutine that unscrambles the output sequence for the
radix-4 DIF FFT is described later in the next section. This routine works
with the optimized radix-4 FFT. A similar routine can be used for the
unoptimized program.

	Chapter 6: One-Dimensional FFTs (Part V)
	6.5 Radix-4 Fast Fourier Transforms
	6.5.1 Radix-4 Decimation-In-Frequency FFT Algorithm
	6.5.2 Radix-4 Decimation-In-Frequency FFT Program
	6.5.2.1 Main Module
	6.5.2.2 DIF FFT Module
	Butterfly Loop
	Group Loop
	Stage Loop
	Radix-4 DIF FFT Subroutine

	6.5.3 Digit Reversal

