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6.76.76.76.76.7 LEAKAGELEAKAGELEAKAGELEAKAGELEAKAGE
The input to an FFT is not an infinite-time signal as in a continuous
Fourier transform. Instead, the input is a section (a truncated version) of a
signal. This truncated signal can be thought of as an infinite signal
multiplied by a rectangular function. For a DFT, the product of the signal
and the rectangular function is sampled (multiplied by a series of
impulses). Because multiplication in the time domain corresponds to
convolution in the frequency domain, the effect of truncating a signal is
seen in the FFT results (Brigham, 1974). Figure 6.19 illustrates the effect
truncation and sampling have on the Fourier transform.

Figure 6.19a shows z(t), a continuous cosine wave with a period of T0. Its
Fourier transform, Z(f) is two impulses, at 1/T0 and –1/T0. Figure 6.19c
shows the product of z(t) and u(t), a sampling function. The sampled
signal z(t) x u(t) is truncated by multiplication with w(t), a rectangular
function. Figure 6.19e shows the resulting signal, y(t), and its Fourier
transform, Y(f) (the convolution of Z(f), U(f), and W(f)).

The DFT interprets its input as one complete cycle of a periodic signal. To
create a periodic signal from the N samples (y(t)), we convolve y(t) with
v(t), a series of impulses at intervals of T0. T0 is the length of the
rectangular function as well as exactly one period of the input signal z(t).
Notice that V(f), the Fourier transform of v(t), is a series of impulses
located at multiples of 1/T0. Because the zero values of the side lobes of
Y(f) are also located at multiples of 1/T0, multiplying Y(f) by V(f) in Figure
6.19g produces the same transform as in Figure 6.19c (the transform of the
non-truncated signal).

If the length of the rectangular function (w(t)) is not equal to one period or
a multiple of periods of the input signal, leakage effects appear in the DFT
output. Figure 6.20 illustrates these effects. Notice that in this case T1, the
width of the rectangular function w(t), is not equal to T0, the period of z(t).
Because of the convolution of impulses at locations –1/T0 and 1/T0 with
W(f), which has zero values at multiples of 1/T1, Y(f) has zero values at
frequencies other than multiples of 1/T1 or 1/T0. Convolution in the time
domain of y(t) and v(t) in Figure 6.20g corresponds to multiplication of
Y(f) and V(f) in the frequency domain. Because the samples in V(f) spaced
at 1/T1 do not correspond to zero values in Y(f), noise (or leakage) in the
DFT output is produced.

Another way to think of leakage is to conceptualize the DFT output as a
series of bins at specific frequencies. If fs is the sampling frequency and N
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Figure 6.19  Development of DFT, Window = Input PeriodFigure 6.19  Development of DFT, Window = Input PeriodFigure 6.19  Development of DFT, Window = Input PeriodFigure 6.19  Development of DFT, Window = Input PeriodFigure 6.19  Development of DFT, Window = Input Period
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Figure 6.20  Development of DFT, Window Figure 6.20  Development of DFT, Window Figure 6.20  Development of DFT, Window Figure 6.20  Development of DFT, Window Figure 6.20  Development of DFT, Window ≠ Input Period Input Period Input Period Input Period Input Period
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is the number of samples, the bins range from 0 Hz to fs/2 Hz and are
equally spaced in frequency fs/N Hz apart. If the N input samples contain
one period or a multiple of periods of the input signal, each of the
frequency components falls into a frequency bin. If the N input samples
do not contain one period or a multiple of periods, at least one of the
frequency components falls between bins. The energy of this frequency
component is distributed to the surrounding bins, producing a spectrum
similar to Figure 6.20g (Brigham, 1974).

In a real system, it is difficult to capture exactly one period or a multiple
of periods of a signal. In most cases, leakage in the FFT output will result.
One method of reducing this leakage is called windowing.

Although windowing has many applications, we use it here to reduce
leakage. Truncation of a signal is a form of windowing in which the
window function is rectangular. Leakage caused by truncation can be
reduced by selecting a non-rectangular window function with specific
characteristics.

The window function is selected for two characteristics (Brigham, 1974).
First, to reduce the effect of side lobe multiplication, the side lobes in the
Fourier transform of the window function should be significantly smaller
than those of the rectangular window function's Fourier transform.
Second, the main lobe of the window function's Fourier transform should
be sufficiently narrow so that important signal information is not lost.
Two examples of window functions that exhibit these characteristics are
the Hanning and the Hamming windows.

Hanning: w(n) = 1/2 [1 – cos(2πn/(N–1))] 0 < n < N–1

Hamming: w(n) = 0.54 – 0.46cos(2πn/(N–1)) 0 < n < N–1

Noise reduction is accomplished by dividing the selected window
function into N equally spaced samples (called window coefficients) and
multiplying each FFT input sample by the corresponding coefficient. The
module window, shown in Listing 6.37, performs this calculation. This
module works with both the radix-2 and radix-4 DIF subroutines. It
assumes that the inplacedata buffer contains sequentially ordered data
organized with real and imaginary values interleaved. It is written for a
1024-point FFT, but the window size can be changed by changing the
constant N_x_2.
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The window_coeffs buffer is initialized with the window coefficients. This
buffer is organized with real and imaginary values interleaved. The buffer
is initialized with an external file window_coeffs.dat that contains the
precalculated window coefficients.

Pointers are set to point to the inplacedata and window_coeffs buffers. The
initial data fetch of a window coefficient and a sample is done before the
loop. Inside the loop, a coefficient and sample are multiplied at the same
time as the next coefficient and sample are read. After each multiplication,
the product is written over the original FFT input sample. The loop is
repeated for N samples (real and imaginary parts).

.MODULE windowing;

{ Calling Parameters
FFT input data in the inplacedata buffer

Return Values
Windowed FFT input data in the inplacedata buffer

Altered Registers
I0,I1,I4,M0,M4,MX0,MY0,MR

}

.CONST N_x_2=2048;

.VAR/PM window_coeffs[N_x_2];

.INIT window_coeffs:<window_coefs.dat>;

.ENTRY window;

window: I0=^inplacedata; {I0 --> 1st sample in FFT input data}
I1=I0;
I4=^window_coeffs; {I4 --> 1st window coefficient}
M0=1;
M4=1;
CNTR=N_x_2-1;
MX0=DM(I0,M0),MY0=PM(I4,M4); {Read 1st sample and coefficient}
DO window_loop UNTIL CE; {Window N_x_2-1 samples}

MR=MX0*MY0(RND),MX0=DM(I0,M0),MY0=PM(I4,M4);
window_loop: DM(I1,M0)=MR1;

MR=MX0*MY0(RND); {Multiply last sample and coefficient}
DM(I1,M0)=MR1; {Last sample updated}
RTS;

.ENDMOD;

Listing 6.37  Windowing RoutineListing 6.37  Windowing RoutineListing 6.37  Windowing RoutineListing 6.37  Windowing RoutineListing 6.37  Windowing Routine
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6.86.86.86.86.8 BENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKS
Benchmarks for the optimized radix-2 DIT FFT and radix-4 DIF FFT
routines are given in this section.

Straight-line code occupies much more memory than looped code, is hard
to understand and is tedious to debug. All programs used to generate the
benchmarks presented in this section are relatively short and
uncomplicated looped programs.

The FFT benchmarks in Table 6.1 are worst-case. For example, the 1024-
point radix-2 FFT benchmark assumes that the data grows by two bits in
every stage.

Routine Number Number Execution Time
of Points of Cycles (12.5MHz ADSP-2100A)

Radix-2 DIT 1024 52911 4.23 ms
Input scaling

Radix-2 DIT 1024 113482 9.08 ms
Conditional BFP*

Radix-4 DIF 64 1381 0.11 ms
Input scaling 256 7372 0.59 ms

1024 37021 2.96 ms

Radix-4 DIF 64 1405 0.11 ms
Input scaling 256 7423 0.59 ms
Built-in digit-reverse 1024 37203 2.98 ms

*  BFP = Block Floating-Point Scaling

Table 6.1  Benchmarks for FFT RoutinesTable 6.1  Benchmarks for FFT RoutinesTable 6.1  Benchmarks for FFT RoutinesTable 6.1  Benchmarks for FFT RoutinesTable 6.1  Benchmarks for FFT Routines
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Table 6.2 lists the benchmarks for the other routines presented in this
chapter (bit reversal, digit reversal, and windowing).

Routine Number Number Time (12MHz ADSP-2100A)
of Points of Cycles (µs)

Bit-Reverse 64 138 11.04
(scramble, 128 266 21.28
real data) 256 522 41.76

1024 2058 164.64

Bit-Reverse 64 270 21.60
(unscramble, 128 526 42.08
complex data) 256 1038 83.04

1024 4110 328.80

Digit-Reverse 64 430 34.40
(unscramble, 256 1812 144.96
complex data) 1024 7188 575.04

Window 64 267 21.36
(complex data) 128 523 41.84

256 1035 82.80
1024 4107 328.56

Table 6.2  Benchmarks for Other RoutinesTable 6.2  Benchmarks for Other RoutinesTable 6.2  Benchmarks for Other RoutinesTable 6.2  Benchmarks for Other RoutinesTable 6.2  Benchmarks for Other Routines
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