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7.17.17.17.17.1 TWO-DIMENSIONAL FFTSTWO-DIMENSIONAL FFTSTWO-DIMENSIONAL FFTSTWO-DIMENSIONAL FFTSTWO-DIMENSIONAL FFTS
The two-dimensional discrete Fourier transform (2D DFT) is the discrete-
time equivalent of the two-dimensional continuous-time Fourier
transform. Operating on x(n1,n2), a sampled version of a continuous-time
two-dimensional signal, the 2D DFT is represented by the following
equation:

N1–1 N2–1

X(k1, k2) = ∑ ∑   x(n1, n2) WN1
n1k1 WN2

n2k2

n1=0 n2=0

where WN = e–j2π/N and the signal is defined for the points 0 ≤ n1, n2 < N1,
N2.

Direct calculation of the 2D DFT is simple, but requires a very large
number of complex multiplications. Assuming all of the exponential terms
are precalculated and stored in a table, the total number of complex
multiplications needed to evaluate the 2D DFT is N1

2N2
2. The number of

complex additions required is also N1
2N2

2. Direct evaluation of the 2D DFT
for a square image, 128 pixels by 128 pixels, requires over 268 million
complex multiplications.

Two techniques can be employed to reduce the operation count of the
two-dimensional transform. First, the row-column decomposition method
(Dudgeon and Mersereau, 1984) partitions the two-dimensional DFT into
many one-dimensional DFTs. Row-column decomposition reduces the
number of complex multiplications from N1

2N2
2 (direct evaluation) to N1N2

(N1+N2) (row-column decomposition with direct DFT evaluation). For the
128-by-128-pixel example, the number of complex multiplications is
reduced from 268 million to less than 4.2 million, a factor of 63.

The second technique to reduce the operation count of the two-
dimensional transform is the fast Fourier transform (FFT). The FFT is a
shortcut evaluation of the DFT. The FFT is used to evaluate the one-
dimensional DFTs produced by the row-column decomposition.
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7.1.17.1.17.1.17.1.17.1.1 Row-Column DecompositionRow-Column DecompositionRow-Column DecompositionRow-Column DecompositionRow-Column Decomposition
Row-column decomposition is straightforward. The 2D DFT double
summation

N1–1 N2–1

X(k1, k2) = ∑ ∑   x(n1, n2) WN1
n1k1 WN2

n2k2

n1=0 n2=0

can be rewritten as

N1–1 N2–1

X(k1, k2) = ∑ [ ∑   x(n1, n2) WN2
n2k2  ]  WN1

n1k1

n1=0 n2=0

in which all occurrences of n2 are grouped within the square brackets. The
result is that the quantity within the brackets is a one-dimensional DFT.
The equation can then be separated into the following two equations:

N2–1

A(n1, k2) = ∑   x(n1, n2) WN2
n2k2

n2=0

N1–1

X(k1, k2) = ∑   A(n1, k2) WN1
n1k1

n1=0

In the equations above, the function A(n1, k2) has rows (n1) and columns
(k2). The columns are one-dimensional DFTs of the corresponding
columns of the original signal, x(n1, n2). The second equation evaluates
row DFTs. The DFT of each row is evaluated for the intermediate function
A(n1, k2). Therefore, in order to evaluate the DFT of a two-dimensional
signal, x(n1, n2), you first evaluate the DFT for each row. The results of
these 1D DFTs are stored in an intermediate array, A(n1, k2). Then
1D DFTs are evaluated for each column of the intermediate array. The
result is the 2D DFT of the original signal. For an image of 128 by 128
pixels, 256 1D DFTs need to be evaluated.

When the FFT algorithm is employed to evaluate the 1D DFTs from the
row-column decomposition, there are further significant computational
savings. The number of complex multiplications is reduced from

2 1

1 2

2

1
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N1N2(N1+N2) for direct evaluation of each DFT to N1N2(log2(N1N2/2)) for
FFT evaluation using the row-column decomposition method. For the 128-
by-128 pixel example mentioned above, the number of complex
multiplications necessary is less than 115 thousand. Therefore, using row-
column decomposition and FFTs, there is a reduction by a factor of 2300 in
the number of complex multiplications for a 128-by-128-point image.

The one-dimensional radix-2, decimation-in-frequency FFT algorithm
from Chapter 6 is adapted for two dimensions in this chapter. Row-
column decomposition facilitates the transition to two dimensions. To
evaluate the FFT of a N-by-N-point image, you must simply evaluate 2N
one-dimensional FFTs.

7.1.27.1.27.1.27.1.27.1.2 Radix-2 FFTRadix-2 FFTRadix-2 FFTRadix-2 FFTRadix-2 FFT
The FFT algorithm divides an input sequence into smaller sequences,
evaluates the DFTs of these smaller sequences, and combines the outputs
of the small DFTs to give the DFT of the original input sequence. The
radix-2 FFT divides an N-point input sequence in half, into two N/2-point
sequences. This division provides computational savings. Further
computational savings are realized by dividing each N/2-point sequence
into two N/4-point sequences. The strategy of a radix-2 FFT is to divide
the input sequence successively by two until the resulting sequences
contain only two points. For example, an 8-point DFT is reduced to four 2-
point DFTs. The number of multiplications needed to evaluate a DFT is
proportional to the square of the number of input points. Dividing the
number of input points in half and evaluating two DFTs reduces the
multiplication count from N2 to 2(N/2)2. Each of these N/2-point
sequences are again divided in half, and the operation count is reduced in
the same fashion. With each decimation, the multiplication count is
reduced by a factor of two. This scheme dramatically reduces the number
of multiplications necessary to evaluate the DFT of the original sequence.

There are two basic varieties of radix-2 FFTs: decimation-in-time (DIT)
and decimation-in-frequency (DIF). The DIT FFT divides the input
sequence into even samples and odd samples. Each half-sequence is, in
turn, divided into even and odd samples. Division into even and odd
samples is facilitated by bit-reversing the addresses of the input sequence.
The radix-2 DIT FFT takes a bit-reversed input sequence and outputs
samples in normal order.

The DIF radix-2 FFT also successively divides the input sequence in half;
however, the two N/2-point sequences consist of the first N/2 samples
and the last N/2 samples. One sequence contains the points 0 through
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N/2–1, and the other sequence contains the points N/2 through N–1. The
inputs to the DIF FFT are addressed in normal order, and the results are
output in bit-reversed order, which is the converse of the operation of the
DIT FFT.

The row-column decomposition described in this chapter evaluates the 2D
DFT of an N-by-N-point signal using 2N one-dimensional FFTs. The DIF
radix-2 FFT is used to evaluate the rows and columns of an N-by-N-point
input signal.

7.1.37.1.37.1.37.1.37.1.3 ADSP-2100 ImplementationADSP-2100 ImplementationADSP-2100 ImplementationADSP-2100 ImplementationADSP-2100 Implementation
This implementation of the 2D FFT uses nine software routines. The main
routine declares and initializes data buffers and calls subroutines that
perform the 2D FFT. Two subroutines perform initialization tasks. Row
and column 1D FFTs are performed with block floating-point DIF FFTs.
There are four subroutines that adjust the FFT output for bit growth. Two
of these routines operate on row FFT output and two operate on column
FFT output. There are also two bit reversal subroutines, one each for row
and column FFTs.

Input data for this 2D FFT must be in 16 bit twos-complement fractional
format. This input format is often called 1.15. Two guard bits is also
necessary to prevent overflow in the first stage of the FFT. The
implementation presented in this chapter is a block floating-point
implementation of the 2D FFT. This implementation is computationally
less intensive than full floating-point and provides more dynamic range
than a fixed-point implementation. The ADSP-2100 family of DSP
processors posess the necessary hardware to efficiently perform these
block floating-point operations. There are four block floating-point adjust
routines within the 2D FFT program. Two of these operate on row FFT
data and two operate on column FFT data.

7.1.3.17.1.3.17.1.3.17.1.3.17.1.3.1 Main ModuleMain ModuleMain ModuleMain ModuleMain Module
Declaring variables, initializing data buffers and program variables, and
calling subroutines are the major functions of the main module. The two-
dimensional FFT is performed in place (using the same data buffers for
inputs and outputs). The data buffers realdata and imaginarydata contain
the real and imaginary parts of the input signal at the start of the program.
As the program executes, all partial results are written to these data
buffers, and at program completion, the buffers realdata and imaginarydata
contain the resulting frequency samples. The in-place buffers are shown in
Figure 7.1.



77777Two-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTs

257257257257257

Schematic Representation of realdata

0 63
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128 191

4032 4095

1 2 3

65 66 67

4096 4097 4159

4160

81918128

Schematic Representation of imaginarydata

Twiddle factors, sine values and cosine values used for evaluation of
complex exponentials, are stored in two tables, twid_real and twid_imag.
These twiddle factors are multiplied with the FFT data values. To exploit
the Harvard architecture of the ADSP-2100, the twiddle factor tables are
placed in program memory. A dual data fetch occurs in a single processor
cycle, retrieving a twiddle factor fron program memory and a data value
from data memory. The indexing of the twiddle factors is maintained with
the index registers I4 and I5.

Figure 7.1  In-Place BuffersFigure 7.1  In-Place BuffersFigure 7.1  In-Place BuffersFigure 7.1  In-Place BuffersFigure 7.1  In-Place Buffers
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Because row-column decomposition divides the 2D FFT into many
1D FFTs, a mechanism is needed to keep track of the current FFT. This
program uses five variables for this purpose: offset, rrowbase, irowbase,
rcolbase, and icolbase. The rowbase variables keep track of the real and
imaginary row FFT starting points, and the colbase variables keep track of
the real and imaginary column FFT starting points. Offset is used to
update these variables as each FFT is completed. Three other variables—
groups, bflys_per_group, and node_space—are used in each FFT.

Listing 7.1 contains the source code for the main module. The main
module calls eight subroutines. The first, initialize, performs the once-only
initialization of data pointers, length registers and modify registers. The
second, fft_start, performs DIF FFTs on the row data. For an N-by-N input
signal, this routine is called N times. After all of the row FFTs have been
performed, the routine unscr_start unscrambles the row output data by
bit-reversing the addresses. Then the row_final_adj routine adjusts the
outputs of the row FFTs for bit growth.

For the column FFTs, col_init, an initialization routine, is called. Because
sequential points in the column FFTs do not reside in sequential
addresses, the col_init routine is needed to initialize the parameters that
define the FFT bounds. The column FFT subroutine, col_fft_strt, is called N
times to transform each column of data in the buffers realdata and
tempdata. Once the column FFTs are done, the subroutine col_unscr_start
bit-reverses the column outputs’ addressing. Finally, the subroutine
col_final_adj adjusts the column output data for bit growth.

The initialize and col_init routines are part of the main modules, but are
described later in Listings 7.5 and 7.6. The other subroutines are in other
modules.

.MODULE      fft_2d;

{ Performs a two dimensional FFT using the row column
decomposition method. One dimensional FFTs are performed
first on each row. The pointers rrowbase and irowbase keep
track of row bounds. One dimensional FFTs are then
performed on each column. The pointers rcolbase and
icolbase keep track of the column data. The row FFTs and
column FFTs are decimation in frequency: input in normal
order and output in bit-reversed order.
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      Variables
           realdata          Array (N X N) of real input data
           imaginarydata     Array (N X N) of imaginary input
data
           twid_real         Real part of twiddle factors
           twid_imag         Imaginary part of twiddles
           groups            # of groups in current stage
           node_space        spacing between dual node points
           bflys_per_group   # of butterflys per group
           rrowbase          real data row pointer
           irowbase          imaginary data row pointer
           rcolbase          real data column pointer
           icolbase          imaginary data column pointer
           fft_start         entry point row FFTs
           col_fft_strt      entry point column FFTs
           shift_strt        entry point normalizer
}

.CONST                  N = 64, N_X_2 = 128;

.CONST                  N_div_2 = 32, log2N = 6;

.VAR/DM/RAM             realdata[4096];

.VAR/DM/RAM/ABS=h#1000  imaginarydata[4096];

.VAR/DM/RAM/ABS=h#2000  tempdata[4096];

.VAR/PM/RAM/CIRC  twid_real[N_div_2];

.VAR/PM/RAM/CIRC  twid_imag[N_div_2];

.VAR/DM           row_exponents[N];

.VAR/DM           col_exponents[N];

.VAR/PM/RAM       padding[8];

.VAR/DM/RAM       groups, node_space, bflys_per_group;

.VAR/DM/RAM       offset, rrowbase, irowbase, rcolbase, icolbase;

.VAR/DM/RAM       blk_exponent;

.VAR/DM/RAM       real_br_pointers[N];

.VAR/DM/RAM       imag_br_pointers[N];

.VAR/DM/RAM       c_real_br_pointers[N];

.VAR/DM/RAM       c_imag_br_pointers[N];

.VAR/DM/RAM       current_rrow;

.VAR/DM/RAM       current_irow;

.VAR/DM/RAM       current_rcol;

.VAR/DM/RAM       current_icol;

(listing continues on next page)



77777

260260260260260

Two-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTs

.INIT       realdata: <realdata.dat>;

.INIT       imaginarydata: <imagdata.dat>;

.INIT       twid_real:  <twid_real.dat>;

.INIT       twid_imag:  <twid_imag.dat>;

.INIT       real_br_pointers: <real_ptr.dat>;

.INIT       imag_br_pointers: <imag_ptr.dat>;

.INIT       c_real_br_pointers: <c_real_p.dat>;

.INIT       c_imag_br_pointers: <c_imag_p.dat>;

.INIT       padding: 0,0,0,0,0,0,0,0;

.INIT       groups: 1;

.INIT       blk_exponent: 0;

.INIT       node_space: N_div_2;

.INIT       bflys_per_group: N_div_2;

.GLOBAL     realdata, imaginarydata, twid_real, twid_imag;

.GLOBAL     groups, bflys_per_group, node_space, offset;

.GLOBAL     rrowbase, irowbase, icolbase, rcolbase, blk_exponent;

.GLOBAL     real_br_pointers, imag_br_pointers;

.GLOBAL     c_real_br_pointers, c_imag_br_pointers;

.GLOBAL     current_rrow, current_irow, tempdata;

.GLOBAL     current_rcol, current_icol;

.GLOBAL     row_exponents, col_exponents;

.EXTERNAL   fft_start, col_fft_strt, unscr_start;

.EXTERNAL   col_unscr_start, row_final_adj, col_final_adj;

            NOP;        NOP;
            NOP;        NOP;

            CALL initialize;
            CNTR = N;               {row counter}
            DO rowloop UNTIL CE;    {do row FFTs}
               CALL fft_start;
rowloop:       NOP;

            CNTR = N;               {bit reverse rows}
            I6 = ^real_br_pointers;
            I7 = ^imag_br_pointers;
            DO unscramble UNTIL CE; {real data -> tempdata}
               CALL unscr_start;    {imaginary -> realdata}
unscramble:    NOP;
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            CALL row_final_adj;
            I7 = ^col_exponents;
            CNTR = N;               {column counter}
            DO colloop UNTIL CE;    {do column FFTs}
               CALL col_init;
               CALL col_fft_strt;
colloop:       NOP;

            CNTR = N;
            I6 = ^c_imag_br_pointers;
            I7 = ^c_real_br_pointers;
            DO col_unscramble UNTIL CE;
                CALL col_unscr_start;
col_unscramble: NOP;

            CALL col_final_adj;     {final BFP adjust}

            TRAP;

(initialize and col_init routines shown in Listings 7.5 and 7.6)

.ENDMOD;

Listing 7.1  Main ModuleListing 7.1  Main ModuleListing 7.1  Main ModuleListing 7.1  Main ModuleListing 7.1  Main Module

7.1.3.27.1.3.27.1.3.27.1.3.27.1.3.2 Row DIF ModuleRow DIF ModuleRow DIF ModuleRow DIF ModuleRow DIF Module
The dif_fft module operates on row data from the data buffers realdata and
imaginarydata. Rows consist of 64 sequential locations and have start
addresses that are multiples of 64. Figure 7.2, on the following page,
shows row data from the data buffer realdata.

The dif_fft routine (entry point at fft_start) is called N times for an N-by-N-
point image. Each time, the routine performs an FFT on a single row of
complex data, actually two rows of data, one representing the real part
and one representing the imaginary part of the data. Three data memory
variables keep track of the current row of data: rrowbase contains the start
address of the current real data row, irowbase contains the start address of
the current imaginary data row, and offset calculates rrowbase and irowbase
for the next data row.
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The FFT program is a looped program consisting of three nested loops.
They are the stage loop, the group loop and the butterfly loop. This looped
structure is identical to that of the DIF FFT programs found in Chapter 6.
The innermost loop, the butterfly loop, performs the FFT calculations. A
generalized DIF butterfly flow graph is shown in Figure 7.3.

Evaluation of the DFT requires multiplication by a complex exponential,
WN. This complex exponential can be divided into real and imaginary
parts according to the following relationship:

WN = e–j2π/N = cos (2π/N) – jsin(2π/N)

Figure 7.2  Row DataFigure 7.2  Row DataFigure 7.2  Row DataFigure 7.2  Row DataFigure 7.2  Row Data

Figure 7.3  Radix-2 DIF ButterflyFigure 7.3  Radix-2 DIF ButterflyFigure 7.3  Radix-2 DIF ButterflyFigure 7.3  Radix-2 DIF ButterflyFigure 7.3  Radix-2 DIF Butterfly
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The following equations calculate the real and imaginary parts of the DIF
butterfly. The variables x0 and y0 are the real and imaginary parts of the
primary node, and x1 and y1 are the real and imaginary parts of the dual
node.

x’0 = x0 + x1

y’0 = y0 + y1

x’1 = C(x0 –x1) – (–S) (y0 – y1)

y’1 = (–S) (x0 –x1) + C(y0 – y1)

Listing 7.2 details the butterfly loop. The primary and dual nodes are
separated in memory by the number of locations indicated by the
program variable node_space. The primary node and dual node points are
accessed throughout the program using index registers; I0 and I2 index
the real and imaginary parts (respectively) of the primary node, and I1
and I3 index the real and imaginary parts of the dual node.

DO bfly_loop UNTIL CE;
AR=AX0+AY0, AX1=DM(I2,M0), MY0=PM(I4,M5);

{AR=x0+x1,AX1=y0,MY0=C}
DM(I0,M1)=AR, AR=AX1+AY1; {x0=x0+x1,AR=y0+y1}
DM(I2,M1)=AR, AR=AX0-AY0; {y0=y0+y1,AR=x0-x1}
MX0=AR, AR=AX1-AY1; {MX0=x0-x1,AR=y0-y1}
MR=MX0*MY0 (SS), AX0=DM(I0,M0), MY1=PM(I5,M5);

{MR=(x0-x1)C,AX0=next x0,MY1=(-S)}
MR=MR-AR*MY1 (RND);

{MR=(x0-x1)C-(y0-y1)(-S),AY0=next x1}
DM(I1,M1)=MR1, MR=AR*MY0 (SS);

{x1=(x0-x1)C-(y0-y1)(-S),MR=(y0-y1)C}
MR=MR+MX0*MY1 (RND), AY0=DM(I1,M0); {AY0=new x1}

{MR=(y0-y1)C+(x0-x1)(-S),AY1=next y1}
DM(I3,M1)=MR1; {AY1=new y1}

{y1=(y0-y1)C+(x0-x1)(-S),check bit
growth}
bfly_loop: AY1=DM(I3,M0);
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Listing 7.2  DIF Butterfly LoopListing 7.2  DIF Butterfly LoopListing 7.2  DIF Butterfly LoopListing 7.2  DIF Butterfly LoopListing 7.2  DIF Butterfly Loop

The DIF algorithm accepts input in a normal order. Output of the DIF
algorithm is scrambled and needs to be put through a bit-reverse
algorithm to achieve normal ordering of output. For the 2D FFT, both the
row and column FFTs use the DIF algorithm and the output of each
requires a bit-reverse subroutine. These routines are described later under
Bit Reverse Modules.

A complete description of the DIF FFT algorithm and its implementation
on the ADSP-2100 can be found in Chapter 6. Listing 7.3 contains the
complete row FFT module.

.MODULE   dif_fft;

{      DIF section for Row FFTs

       Calling Parameters
          realdata = Real input data normal order
          imaginarydata = Imaginary data normal order
          twid_real = Twiddle factor cosine values
          twid_imag = Twiddle factor sine values
          groups = 1
          bflys_per_group = N/2
          node_space = N/2
          rrowbase = 0
          irowbase = 4096

       Return Values
          realdata = row FFT results in bit-reversed order
          imaginarydata = column FFT results bit-reversed

       Altered Registers
          I0,I1,I2,I3,I4,I5,L0,L1,L2,L3,L4,L5
          M0,M1,M2,M3,M4,M5
          AX0,AX1,AY0,AY1,AR,AF
          MX0,MX1,MY0,MY1,MR,SB,SE,SR,SI

       Altered Memory
          realdata,imaginarydata, groups, node_space,
          bflys_per_group, irowbase, icolbase, offset
}

.CONST       N=64, N_div_2=32, log2N=6;
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.EXTERNAL    realdata,imaginarydata, twid_real, twid_imag;

.EXTERNAL    offset, irowbase, rrowbase;

.EXTERNAL    groups,bflys_per_group,node_space;

.EXTERNAL    row_bfp, blk_exponent;

.ENTRY       fft_start;

fft_start:   AX0 = N;
             DM(offset) = AX0;
             CNTR=log2N;              {Initialize stage counter}
             DO stage_loop UNTIL CE;
                SB = -2;              {block exponent}
                I0 = DM(rrowbase);
                I2 = DM(irowbase);
                M2 = DM(node_space);
                I1=I0;
                MODIFY(I1,M2);        {I1 -> x1}
                I3=I2;
                MODIFY(I3,M2);        {I3 -> y1}

                CNTR=DM(groups);      {Initialize group counter}
                M5=CNTR;              {Init. twid factor modifier}

                DO group_loop UNTIL CE;
                   CNTR=DM(bflys_per_group);  {Init. bfly counter}
                   AX0=DM(I0,M0);             {AX0=x0}
                   AY0=DM(I1,M0);             {AY0=x1}
                   AY1=DM(I3,M0);             {AY1=y1}
                   DO bfly_loop UNTIL CE;
                      AR=AX0+AY0, AX1=DM(I2,M0), MY0=PM(I4,M5);

{AR=x0+x1,AX1=y0,MY0=C}
                      SB = EXPADJ AR;
                      DM(I0,M1)=AR, AR=AX1+AY1;

{x0=x0+x1,AR=y0+y1}
                      SB = EXPADJ AR;
                      DM(I2,M1)=AR, AR=AX0-AY0;

{y0=y0+y1,AR=x0-x1}
                      MX0=AR, AR=AX1-AY1;

{MX0=x0-x1,AR=y0-y1}

                      MR=MX0*MY0(SS),AX0=DM(I0,M0),MY1=PM(I5,M5);
{MR=(x0-x1)C,AX0=next x0,MY1=(-S)}

                      MR=MR-AR*MY1 (SS);  MR=MR(RND);
{MR=(x0-x1)C-(y0-y1)(-S),AY0=next x1}

                      SB = EXPADJ MR1;
                      DM(I1,M1)=MR1, MR=AR*MY0 (SS);

(listing continues on next page)
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{x1=(x0-x1)C-(y0-y1)(-S),MR=(y0-y1)C}
                      MR=MR+MX0*MY1 (RND), AY0=DM(I1,M0);

{ AY0 = new x1 }
{MR=(y0-y1)C+(x0-x1)(-S),AY1=next y1}

                      DM(I3,M1)=MR1, SB = EXPADJ MR1;
{ AY1 = new y1 }
{y1=(y0-y1)C+(x0-x1)(-S),check bit growth}

bfly_loop:            AY1=DM(I3,M0);

                   MODIFY(I0,M2); {I0->x0 of 1st bfly next group}
                   MODIFY(I1,M2); {I1->x1 of 1st bfly next group}
                   MODIFY(I2,M2); {I2->y0 of 1st bfly next group}
group_loop:        MODIFY(I3,M2); {I3->y1 of 1st bfly next group}

                CALL row_bfp;

                SI=DM(groups);
                SR=LSHIFT SI BY 1 (LO);
                DM(groups)=SR0;     {groups=groups X 2}
                SI=DM(node_space);
                SR=LSHIFT SI BY -1 (LO);
                DM(node_space)=SR0; {node_space=node_space / 2}
stage_loop:     DM(bflys_per_group)=SR0;

{bflys_per_group=bflys_per_group / 2}

             AX0 = DM(offset);      {calculate next fft base}
             AY0 = DM(rrowbase);
             AR = AX0 + AY0;
             I0 = AR;
             DM(rrowbase) = AR;
             AY0 = DM(irowbase);
             AR = AX0 + AY0;
             DM(irowbase) = AR;
             I2 = AR;
             AX1 = n_div_2;
             DM(node_space) = AX1;  {reset node_space}
             DM(bflys_per_group) = AX1;
             AR = 1;
             DM(groups) = AR;

             AX0 = DM(blk_exponent);
             DM(I6,M7) = AX0;
             AX0 = 0;
             DM(blk_exponent)=AX0;

             RTS;
.ENDMOD;
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Listing 7.3  Row DIF ModuleListing 7.3  Row DIF ModuleListing 7.3  Row DIF ModuleListing 7.3  Row DIF ModuleListing 7.3  Row DIF Module

7.1.3.37.1.3.37.1.3.37.1.3.37.1.3.3 Column DIF ModuleColumn DIF ModuleColumn DIF ModuleColumn DIF ModuleColumn DIF Module
The col_dif_fft module operates on column data in the data buffers realdata
and tempdata. Sequential points in a data column are not at sequential
addresses. Figure 7.4 illustrates the arrangement of columns in the data

4096 4097 4159

4160

81918128

buffer tempdata.

Figure 7.4  Column DataFigure 7.4  Column DataFigure 7.4  Column DataFigure 7.4  Column DataFigure 7.4  Column Data

Accessing data in a column format is easy with the ADSP-2100. In the first
stage of a typical DIF FFT, the primary and dual nodes are separated by a
node space of N/2. Because this implementation of the DIF algorithm
relies on the data memory variable node_space to reference the spacing
between primary and dual node, however, they need not be sequential.
Before the start of each column FFT, node_space is initialized to the value
64 x N/2. As the algorithm progresses, the node spacing decrements by a



77777

268268268268268

Two-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTs

factor of 2 with each stage.

Listing 7.4 contains the complete column FFT module.

.MODULE   col_dif_fft;

{      DIF section for Column FFTs

       Calling Parameters
          realdata = Real input data normal order
          imaginarydata = Imaginary data normal order
          twid_real = Twiddle factor cosine values
          twid_imag = Twiddle factor sine values
          groups = 1
          bflys_per_group = N/2
          node_space = N/2
          rrowbase = 0
          irowbase = 4096

       Return Values
          realdata = row FFT results in bit reversed order
          imaginARydata = column FFT results bit reversed

       Altered Registers
          I0,I1,I2,I3,I4,I5,L0,L1,L2,L3,L4,L5
          M0,M1,M2,M4,M5
          AX0,AX1,AY0,AY1,AR,AF
          MX0,MX1,MY0,MY1,MR,SB,SE,SR,SI

       Altered Memory
          realdta,imaginarydata, groups, node_space
          bflys_per_group, irowbase, icolbase, offset
}

.CONST       N=64, N_div_2=32, log2N=6;

.EXTERNAL    realdata,imaginarydata, twid_real, twid_imag;

.EXTERNAL    offset, icolbase, rcolbase;

.EXTERNAL    groups,bflys_per_group,node_space;

.EXTERNAL    col_bfp, blk_exponent;

.ENTRY       col_fft_strt;

col_fft_strt: CNTR=log2N;             {Initialize stage counter}
              DO stage_loop UNTIL CE;
                 SB = -2;             {block exponent}
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                 I0 = DM(rcolbase);
                 I2 = DM(icolbase);
                 M2 = DM(node_space);
                 I1=I0;
                 MODIFY(I1,M2);       {I1 -> x1}
                 I3=I2;
                 MODIFY(I3,M2);       {I3 -> y1}

                 CNTR=DM(groups);     {Initialize group counter}
                 M5=CNTR;             {Init twid factor modifier}

                 DO group_loop UNTIL CE;
                    CNTR=DM(bflys_per_group); {Init bfly counter}
                    AX0=DM(I0,M0);            {AX0=x0}
                    AY0=DM(I1,M0);            {AY0=x1}
                    AY1=DM(I3,M0);            {AY1=y1}
                    DO bfly_loop UNTIL CE;
                       AR=AX0+AY0, AX1=DM(I2,M0), MY0=PM(I4,M5);

{AR=x0+x1,AX1=y0,MY0=C}
                       SB = EXPADJ AR;
                       DM(I0,M1)=AR, AR=AX1+AY1;

{x0=x0+x1,AR=y0+y1}
                       SB = EXPADJ AR;
                       DM(I2,M1)=AR, AR=AX0-AY0;

{y0=y0+y1,AR=x0-x1}
                       MX0=AR, AR=AX1-AY1;

{MX0=x0-x1,AR=y0-y1}
     MR=MX0*MY0(SS),AX0=DM(I0,M0),MY1=PM(I5,M5);

{MR=(x0-x1)C,AX0=next x0,MY1=(-S)}
                       MR=MR-AR*MY1 (SS);  MR = MR(RND);

{MR=(x0-x1)C-(y0-y1)(-S),AY0=next x1}
                       SB = EXPADJ MR1;
                       DM(I1,M1)=MR1, MR=AR*MY0 (SS);

{x1=(x0-x1)C-(y0-y1)(-S),MR=(y0-y1)C}
                       MR=MR+MX0*MY1 (RND), AY0=DM(I1,M0);

{AY0 = new x1}
{MR=(y0-y1)C+(x0-x1)(-S),AY1=next y1}

                       DM(I3,M1)=MR1, SB = EXPADJ MR1;
{AY1 = new y1}
{y1=(y0-y1)C+(x0-x1)(-S),check bit growth}

bfly_loop:             AY1=DM(I3,M0);

                    MODIFY(I0,M2);  {I0->x0 of 1st bfly next grp}
                    MODIFY(I1,M2);  {I1->x1 of 1st bfly next grp}
                    MODIFY(I2,M2);  {I2->y0 of 1st bfly next grp}

(lisitng continues on next page)
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group_loop:         MODIFY(I3,M2);  {I3->y1 of 1st bfly next grp}

                 CALL col_bfp;
                 SI=DM(groups);
                 SR=LSHIFT SI BY 1 (LO);
                 DM(groups)=SR0;       {groups=groups X 2}
                 SI=DM(node_space);
                 SR=LSHIFT SI BY -1 (LO);
                 DM(node_space)=SR0;   {node_space=node_space /
2}
                 SI=DM(bflys_per_group);
                 SR=LSHIFT SI BY -1 (LO);
stage_loop:      DM(bflys_per_group)=SR0;

              AY0 = DM(rcolbase);
              AR = AY0 + 1;
              DM(rcolbase) = AR;
              AY0 = DM(icolbase);
              AR = AY0 + 1;
              DM(icolbase) = AR;

              AX0 = DM(blk_exponent); {take blk exponent for
this}
              DM(I7,M7) = AX0;        {fft and store in array}
              AX0 = 0;
              DM(blk_exponent) = AX0;

              RTS;
.ENDMOD;

Listing 7.4  Column DIF ModuleListing 7.4  Column DIF ModuleListing 7.4  Column DIF ModuleListing 7.4  Column DIF ModuleListing 7.4  Column DIF Module

7.1.3.47.1.3.47.1.3.47.1.3.47.1.3.4 InitializationInitializationInitializationInitializationInitialization
There are two initialization subroutines in this implementation of the two-
dimensional FFT. Both of the routines are part of the main module. The
first, initialize, performs once-only initialization of index registers, modify
registers and length registers. Pointers are used for data access as well as
access to twiddle factors. This routine is listed below in Listing 7.5. The
twiddle factors are stored circular buffers of length 32 (for a 64-point FFT)
in program memory and use the index registers I4 and I5. Index registers
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I0 and I2 set up pointer access to the real and imaginary parts of the data
buffers realdata and imaginarydata. In addition, the initialize routine
declares the variables rrowbase, irowbase, and offset to their initial values.

{One-time only initialization. Pointers and modifiers}
{and length registers.}

initialize: L0 = 0;
            L1 = 0;
            L2 = 0;
            L3 = 0;
            L4 = N_div_2;
            L5 = N_div_2;
            L6 = 0;
            L7 = 0;

            I0 = ^realdata;
            I2 = ^imaginarydata;
            I3 = ^tempdata;
            I4 = ^twid_real;
            I5 = ^twid_imag;
            I6 = ^row_exponents;

            DM(current_rrow) = I0;
            DM(current_irow) = I2;

            DM(current_icol) = I0;
            DM(current_rcol)=  I3;

            M0 = 0;
            M1 = 1;
            M3 = 0;
            M7 = 1;

            AF = PASS 0;
            AX0 = 0;
            AY0 = 0;
            AY1 = 4096;
            DM(offset) = AY0;       {base address for rows}
            DM(rrowbase) = AY0;
            DM(irowbase) = AY1;
            AY1 = ^tempdata;
            DM(rcolbase) = AY1;
            DM(icolbase) = AY0;
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            RTS;

Listing 7.5  Initialize RoutineListing 7.5  Initialize RoutineListing 7.5  Initialize RoutineListing 7.5  Initialize RoutineListing 7.5  Initialize Routine

The second initialization routine is col_init, shown in Listing 7.6. This
routine initializes variables before the start of each column FFT. This
initialization is necessary because the data points in each column FFT are
not in sequential order.

{      Initialization for column DIF FFTs}

col_init:   AY1 = N_DIV_2;
            DM(bflys_per_group) = AY1; {bflys = 1}
            AY1 = 1;
            DM(groups) = AY1;          {groups = 32}
            AX1 = 2048;
            DM(node_space) = AX1;      {node_space = 64}
            M1 = 64;                   {modifier for col. points}
            L4 = N_DIV_2;
            I4 = ^twid_real;
            I5 = ^twid_imag;

            RTS;

Listing 7.6  Column Initialization RoutineListing 7.6  Column Initialization RoutineListing 7.6  Column Initialization RoutineListing 7.6  Column Initialization RoutineListing 7.6  Column Initialization Routine

7.1.3.57.1.3.57.1.3.57.1.3.57.1.3.5 Bit Reverse ModulesBit Reverse ModulesBit Reverse ModulesBit Reverse ModulesBit Reverse Modules
The 1D FFTs used to perform the 2D FFT use the DIF algorithm and
produce frequency output points in bit-reversed addressing (scrambled)
order. For a complete explanation of bit-reversing in FFTs, see Chapter 6.
Bit-reversing the addresses of the output data puts the data back into
sequential order (unscrambles it). Because the output for each 1D FFT
needs to be bit-reversed, the bit-reverse routine is called 2N times. The bit-
reverse subroutines for the row and column FFTs are nearly identical.

The ADSP-2100 has a bit-reversed addressing capability. Unscrambling a
row or column requires a seed value (the bit-reversed address of the first
location in the row or column) and a modify value. The modify value is
the value of 2 raised to the difference between 14 (the number of address
bits) and the number of bits to be reversed, i.e., 214–N. In this example of a
64x64-point FFT, the number of bits to be reversed is six, and so the
modify value is 28 or 256.

With the bit-reverse capability of the ADSP-2100 enabled, adding the
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modify value to a current address provides the correct address for the
next bit-reversed sample. Because the 2D FFT needs to perform bit-
reversal on 2N 1D FFTs, the program needs the seed values (first location
addresses, bit-reversed) for each row and column. The seed values for the
rows and columns for a 64x64-point 2D FFT are stored in buffers called
real_br_pointers, imag_br_pointers, c_real_br_pointers and c_imag_br_pointers
(c_ means “column”).

Listings 7.7 and 7.8 contain the row bit-reverse routine and the column
bit-reverse routine, respectively.

.MODULE dif_unscramble;

{
      Calling Parameters
         Real and imaginary scrambled output data in inplacedata

      Return Values
         Normal ordered real output data in real_results
         Normal ordered imag. output data in imaginary_results

      Altered Registers
         I0,I1,I4,M1,M4, AY1,CNTR

      Altered Memory
         real_results, imaginary_results
}

.VAR/DM    rownum;

.CONST     N=64, mod_value=256;        {Initialize constants}

.CONST     N_x_2 = 128, N_DIV_2 = 32;

.EXTERNAL  current_rrow, current_irow;

.EXTERNAL  real_br_pointers, imag_br_pointers;

.ENTRY     unscr_start;       {Declare entry point into module}

unscr_start:  I4=DM(current_rrow);
{I4->real part of 1st data point}

              M4=1;     {Modify by 2 to fetch only real data}
              L0=0;
              L4=0;
              SI = DM(I6,M4);
              I1 = SI;

(listing continues on next page)
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              M1=mod_value;        {Modifier for FFT size}
              CNTR=N;              {N=number of real data points}
              ENA BIT_REV;         {Enable bit-reverse}

              DO bit_rev_real UNTIL CE;
                 AY1=DM(I4,M4);    {Read real data}
bit_rev_real:    DM(I1,M1)=AY1;    {Place in sequential order}
              DM(current_rrow) = I4;
              CNTR = N;
              I4 = DM(current_irow);
              SI = DM(I7,M4);
              I1 = SI;

              DO bit_rev_imag UNTIL CE;
                 AY1=DM(I4,M4);    {Read imag data}
bit_rev_imag:    DM(I1,M1)=AY1;    {Place in sequential order}
              DM(current_irow) = I4;
              DIS BIT_REV;         {Disable bit-reverse}
              RTS;
.ENDMOD;

Listing 7.7  Row Bit-Reverse RoutineListing 7.7  Row Bit-Reverse RoutineListing 7.7  Row Bit-Reverse RoutineListing 7.7  Row Bit-Reverse RoutineListing 7.7  Row Bit-Reverse Routine

.MODULE col_dif_unscramble;

{
     Calling Parameters
        Real and imaginary scrambled output data in inplacedata

     Return Values
        Normal ordered real output data in real_results
        Normal ordered imag output data in imaginary_results

     Altered Registers
        I0, I1, I4, M1, M4, AY1, CNTR

     Altered Memory
        real_results, imaginary_results
}

.VAR/DM      rownum;

.CONST       N=64, mod_value=4;        {Initialize constants}

.CONST       N_x_2 = 128, N_DIV_2 = 32;
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.EXTERNAL    current_rcol, current_icol;

.ENTRY       col_unscr_start;  {Declare entry point into module}

col_unscr_start: I4 = DM(current_icol);
{I4->real part of 1st data point}

                 M4 = 64;     {Modify by 64 to fetch next col
val}
                 M5 = 1;
                 L0 = 0;
                 L4 = 0;
                 SI = DM(I6,M5);
                 I1 = SI;
                 M1=mod_value; {Modifier for FFT size}
                 CNTR=N;       {N=number of real data points}
                 ENA BIT_REV;  {Enable bit-reverse}

                 DO bit_rev_real UNTIL CE;
                    AY1=DM(I4,M4);    {Read real data}
bit_rev_real:       DM(I1,M1)=AY1;    {Place in sequential order}
                 AY0 = DM(current_icol);

 {increment pointer to current}
                 AR = AY0 + 1; {imaginary column data}
                 DM(current_icol) = AR;

                 CNTR = N;
                 I4 = DM(current_rcol);
                 SI  = DM(I7,M5);
                 I1 = SI;

                 DO bit_rev_imag UNTIL CE;
                    AY1=DM(I4,M4);  {Read imag data}
bit_rev_imag:       DM(I1,M1)=AY1;  {Place in sequential order}
                 AY0 = DM(current_rcol);

 {increment pointer to current}
                 AR = AY0 + 1; {real column data}
                 DM(current_rcol) = AR;
                 DIS BIT_REV;  {Disable bit-reverse}
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                 RTS;
.ENDMOD;

Listing 7.8  Column Bit-Reverse RoutineListing 7.8  Column Bit-Reverse RoutineListing 7.8  Column Bit-Reverse RoutineListing 7.8  Column Bit-Reverse RoutineListing 7.8  Column Bit-Reverse Routine

7.1.3.67.1.3.67.1.3.67.1.3.67.1.3.6 Block Floating-Point AdjustmentBlock Floating-Point AdjustmentBlock Floating-Point AdjustmentBlock Floating-Point AdjustmentBlock Floating-Point Adjustment
Block floating-point format provides extended dynamic range of fixed-
point arithmetic without the computational burdens of full floating-point
arithmetic. In a block floating-point implementation, there is a single
exponent for a group of mantissas. In the implementation of the 2D FFT
explained in this chapter, there is an associated exponent for each of the
2N 1D FFTs performed.

There are two block floating-point adjustment routines for each 1D FFT.
The first block floating-point routine normalizes 1D FFT values. The 64
real and imaginary output values are normalized to a single block
exponent. At the completion of all of the rows or all of the columns the
second block floating-point routine is called. This routine normalizes the
output of the entire output array to a single exponent.

The first adjustment routine is called from within the stage loop of each
1D FFT. If there is any bit growth, then the stage output is adjusted
according to a shift value stored in the SB register. For an N-stage FFT,
there can be at most N bits of growth. For every bit of growth, this routine
shifts the results of the FFT one bit and stores the amount of shift as an
exponent in an appropriate buffer. The buffers used are row_exponents for
the row FFTs and col_exponents for the column FFTs.

The second block floating-point adjustment routine is called after all of the
row FFTs or column FFTs are complete. These routines row_final_adj and
col_final_adj (for the row FFTs and column FFTs, respectively) search the
buffers col_exponents and row_exponents for the largest exponent. Each row
or column value is shifted by the difference between the largest exponent
and the exponent associated with the particular row or column. This has
the effect of scaling the entire output array to one exponent.

The block floating-point adjustment routines are shown in Listings 7.9
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through 7.12. Listings 7.9 and 7.10 show the routines for the stage outputs
of the row FFTs and column FFTs, respectively. Listings 7.11 and 7.12
show the routines that adjust the entire output array for the row FFTs and
column FFTs, respectively.

.MODULE    each_row_bfp_adjust;
{
        Calling Parameters
           FFT stage results in realdata & imaginarydata

        Return Parameters
           realdata & imaginarydata adjusted for bit growth

        Altered Registers
           I0,I1,AX0,AY0,AR,MX0,MY0,MR,CNTR

        Altered Memory
           inplacereal, inplaceimag, blk_exponent
}

.EXTERNAL  realdata, blk_exponent;   {Begin declaration section}

.EXTERNAL  imaginarydata, rrowbase, irowbase;

.CONST     buffer_size = 64;

.ENTRY     row_bfp;

row_bfp:      AY0=CNTR;        {Check for last stage}
              AR=AY0-1;
              IF EQ RTS;       {If last stage, return}
              AY0=-2;
              AX0=SB;
              AR=AX0-AY0;      {Check for SB=-2}
              IF EQ RTS;       {If SB=-2, no bit growth, return}
              I0=DM(rrowbase); {I0=read pointer}
              I1=DM(rrowbase); {I1=write pointer}
              AY0=-1;
              MY0=H#4000;      {Set MY0 to shift 1 bit right}
              AR=AX0-AY0,MX0=DM(I0,M1);

{Check if SB=-1; Get first sample}
              IF EQ JUMP strt_shift;

{If SB=-1, shift block data 1 bit}
              AY0=-2;          {Set AY0 for block exponent
update}
              MY0=H#2000;      {Set MY0 to shift 2 bits right}
strt_shift:   CNTR=buffer_size - 1; {initialize loop counter}
(listing continues on next page)
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              DO shift_loop UNTIL CE;  {Shift block of data}
                 MR=MX0*MY0(RND),MX0=DM(I0,M1);

{MR=shifted data,MX0=next value}
shift_loop:      DM(I1,M1)=MR1;   {Unshifted data=shifted data}
              MR=MX0*MY0(RND);    {Shift last data word}

              I0=DM(irowbase);       {I0=read pointer}
              I1=DM(irowbase);       {I1=write pointer}
              AY0=-1;
              MY0=H#4000;            {Set MY0 to shift 1 bit right}
              AR=AX0-AY0,MX0=DM(I0,M1);

 {Check if SB=-1; Get first sample}
              IF EQ JUMP i_strt_shift;

 {If SB=-1, shift block data 1 bit}
              AY0=-2;                {Set AY0 for block exponent update}

           MY0=H#2000;            {Set MY0 to shift 2 bits right}
i_strt_shift: CNTR=buffer_size - 1;  {initialize loop counter}
              DO i_shift_loop UNTIL CE;  {Shift block of data}
                 MR=MX0*MY0(RND),MX0=DM(I0,M1);

 {MR=shifted data,MX0=next value}
i_shift_loop:    DM(I1,M1)=MR1;      {Unshifted data=shifted data}
              MR=MX0*MY0(RND);       {Shift last data word}

              AY0 = DM(blk_exponent); {Update block exponent and}

Listing 7.9  Row BFP Adjustment RoutineListing 7.9  Row BFP Adjustment RoutineListing 7.9  Row BFP Adjustment RoutineListing 7.9  Row BFP Adjustment RoutineListing 7.9  Row BFP Adjustment Routine

              DM(I1,M1)=MR1,AR=AY0-AX0;
  {store last shifted sample}

              DM(blk_exponent)=AR;
              RTS;

.ENDMOD;

.MODULE     column_bfp_adjust;

.EXTERNAL   realdata, blk_exponent;   {Begin declaration section}

.EXTERNAL   tempdata, rcolbase, icolbase;

.CONST      buffer_size = 64;

.ENTRY      col_bfp;

col_bfp:     AY0=CNTR; {Check for last stage}
             AR=AY0-1;
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             IF EQ RTS; {If last stage, return}
             AY0=-2;
             AX0=SB;
             AR=AX0-AY0; {Check for SB=-2}
             IF EQ RTS; {If SB=-2, no bit growth, return}

             I0=DM(rcolbase); {I0=read pointer}
             I1=DM(rcolbase); {I1=write pointer}
             M1=buffer_size;
             AY0=-1;
             MY0=H#4000;

{Set MY0 to shift 1 bit right}
             AR=AX0-AY0,MX0=DM(I0,M1);

{Check if SB=-1; Get first sample}
             IF EQ JUMP strt_shift;

{If SB=-1, shift block data 1 bit}
             AY0=-2; {Set AY0 for block exponent update}
             MY0=H#2000; {Set MY0 to shift 2 bits right}
strt_shift:  CNTR=buffer_size - 1; {initialize loop counter}
             DO shift_loop UNTIL CE; {Shift block of data}
                MR=MX0*MY0(RND),MX0=DM(I0,M1);

{MR=shifted data,MX0=next value}
shift_loop:     DM(I1,M1)=MR1; {Unshifted data=shifted data}
             MR=MX0*MY0(RND);
             DM(I1,M1)=MR1; {Shift last data word}

{store last shifted sample}

             I0=DM(icolbase); {I0=read pointer}
             I1=DM(icolbase); {I1=write pointer}
             AY0=-1;
             MY0=H#4000; {Set MY0 to shift 1 bit right}
             AR=AX0-AY0,MX0=DM(I0,M1);

{Check if SB=-1; Get first sample}
             IF EQ JUMP shift_start;

{If SB=-1, shift block data 1 bit}
             AY0=-2; {Set AY0 for block exponent update}
             MY0=H#2000; {Set MY0 to shift 2 bits right}
shift_start: CNTR=buffer_size - 1; {initialize loop counter}
             DO shft_loop UNTIL CE; {Shift block of data}
                MR=MX0*MY0(RND),MX0=DM(I0,M1);

{MR=shifted data,MX0=next value}
shft_loop:      DM(I1,M1)=MR1; {Unshifted data=shifted data}
             MR=MX0*MY0(RND); {Shift last data word}
             AY0=DM(blk_exponent); {Update block exponent and}
             DM(I1,M1)=MR1,AR=AY0-AX0; {store last shifted sample}
             DM(blk_exponent)=AR;
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             RTS;

.ENDMOD;

Listing 7.10  Column BFP Adjustment RoutineListing 7.10  Column BFP Adjustment RoutineListing 7.10  Column BFP Adjustment RoutineListing 7.10  Column BFP Adjustment RoutineListing 7.10  Column BFP Adjustment Routine

.MODULE        all_row_bfp;

{
       This module does the final adjusting of the row
       block floating point exponents, to normalize the
       entire array. Each row has an associated BFP exponent.
       This module finds the greatest magnitude exponent,
       then shifts each row by the difference of the individual
       BFP exponent and the greatest magnitude exponent.
}

.VAR/DM   largest_re;

.CONST    N=64;

.EXTERNAL row_exponents, rrowbase, irowbase, realdata, tempdata;

.ENTRY    row_final_adj;

{find the greatest of the row exponents}

row_final_adj: I0 = ^row_exponents;
               M0 = 0;
               M1 = 1;
               AX1 = 0;
               AF = PASS AX1;

               AY0 = DM(I0,M1);     {find max of 1st two values}
               AX0 = DM(I0,M1);
               AR = AX0 - AY0;      {see which is greater}

               IF GE AF = PASS AX0; {AF gets greatest of 1st two}
               IF LT AF = PASS AY0;
               AX0 = DM(I0,M1);

               CNTR = N-2; {buffer size less first two values}
               DO findmax UNTIL CE; {find greatest in the buffer}
                  AR = AX0 - AF;
                  IF GE AF = PASS AX0;
findmax:          AX0 = DM(I0,M1);
               AR = PASS AF;        {put the largest row exponent}
               DM(largest_re) = AR; {in memory}

{shift each row by the difference between the greatest



77777Two-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTsTwo-Dimensional FFTs

281281281281281

and the individual row exponent}

               I1=^tempdata; {address of post scrambled real data}
               I2=^realdata; {address of post scrambled imag data}
               I0=^row_exponents;

               AY0 = DM(largest_re);
               CNTR = N;
               AX0=DM(I0,M1); {get individual row BFP}

               DO row UNTIL CE;
                  AR = AY0 - AX0;

{diff between greatest and row BFP}
                  SE = AR;
                  AF = PASS 0; {clear AC bit}
                  CNTR = N;
                  DO row_shift UNTIL CE; {shift the row}
                     SI = DM(I1,M0);

{get next value leave pointer}
                     SR = ASHIFT SI (HI);
                     DM(I1,M1) = SR1;

{put shifted value back, inc pointer}
                     SI = DM(I2,M0); {do same for imag values}
                     SR = ASHIFT SI (HI);
row_shift:           DM(I2,M1) = SR1;
row:              AX0=DM(I0,M1); {get indiv. row BFP}
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               RTS;

.ENDMOD;

Listing 7.11  Row Final Exponent Adjustment RoutineListing 7.11  Row Final Exponent Adjustment RoutineListing 7.11  Row Final Exponent Adjustment RoutineListing 7.11  Row Final Exponent Adjustment RoutineListing 7.11  Row Final Exponent Adjustment Routine

.MODULE        all_col_bfp;

{
     This module does the final adjusting of the column
     block floating point exponents, to normalize the
     entire array. Each column has an associated BFP exponent.
     This module finds the greatest magnitude exponent,
     then shifts each column by the difference of the individual
     BFP exponent and the greatest magnitude exponent.
}
.VAR/DM        largest_ce;
.CONST         N=64;
.EXTERNAL      col_exponents, realdata, imaginarydata;
.EXTERNAL      current_rcol, current_icol;
.ENTRY         col_final_adj;

{find the greatest of the column exponents}

col_final_adj: I0 = ^col_exponents;
               M0 = 0;
               M1 = 1;
               M2 = N; {increment by N for columns}
               AX1 = 0;
               AY1 = h#1000;
               AF = PASS AX1;
               DM(current_rcol) = AX1;
               DM(current_icol) = AY1;

               AY0 = DM(I0,M1); {find max of 1st two values}
               AX0 = DM(I0,M1);
               AR = AX0 - AY0; {see which is greater}

               IF GE AF = PASS AX0; {AF gets greatest of 1st two}
               IF LT AF = PASS AY0;
               AX0 = DM(I0,M1);

               CNTR = N-2; {buffer size less first two values}
               DO findcolmax UNTIL CE;

{find greatest in the buffer}
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                  AR = AX0 - AF;
                  IF GE AF = PASS AX0;
findcolmax:       AX0 = DM(I0,M1);
               AR = PASS AF; {put the largest row exponent}
               DM(largest_ce) = AR; {in memory}

{shift each row by the difference between the greatest and the individual row exponent}

               I1=DM(current_rcol);
{address of post scrambled real data}

               I2=DM(current_icol);
{address of post scrambled imag data}

               I0 = ^col_exponents;

               AY0 = DM(largest_ce);
               CNTR = N;
               AX0=DM(I0,M1); {get indiv. row BFP}

               DO col UNTIL CE;
                  AR = AY0 - AX0;

{diff between greatest and row BFP}
                  SE = AR;
                  AF = PASS 0; {clear AC bit}
                  CNTR = N;
                  DO col_shift UNTIL CE; {shift the row}
                     SI = DM(I1,M0);

{get next value leave pointer}
                     SR = ASHIFT SI (HI);
                     DM(I1,M2) = SR1;

{put shifted value back, incr pointer}
                     SI = DM(I2,M0); {do same for imag values}
                     SR = ASHIFT SI (HI);
col_shift:           DM(I2,M2) = SR1;
                  AY1=DM(current_rcol); {incr col pointer real}
                  AR = AY1 + 1;
                  I1 = AR;
                  DM(current_rcol) = AR;
                  AY1=DM(current_icol); {incr col pointer imag}
                  AR = AY1 + 1;
                  I2 = AR;
                  DM(current_icol) = AR;
col:              AX0=DM(I0,M1); {get next indiv. row BFP}

               RTS;

.ENDMOD;

Listing 7.12  Column Final Exponent Adjustment RoutineListing 7.12  Column Final Exponent Adjustment RoutineListing 7.12  Column Final Exponent Adjustment RoutineListing 7.12  Column Final Exponent Adjustment RoutineListing 7.12  Column Final Exponent Adjustment Routine
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7.27.27.27.27.2 BENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKS
Benchmarks for the 2D FFT programs are given below. All are for a 64-by-
64-point 2D FFT.

Routine Number of Execution Time
Cycles (12.5MHz ADSP-2100A)

fft_2d (main) 597 47.8 µs
initialize 33 2.64 µs
col_init 11 (called 64 times) 0.88 µs
dif_fft 3457 (called 64 times) 277.00 µs
col_dif 3396 (called 64 times) 272.00 µs
row_bfp 287 (multiple calls)* 23.00 µs
col_bfp 288 (multiple calls)* 23.00 µs
all_row_bfp 25105 2.01 ms
all_col_bfp 25118 2.01 ms
unscr 279 (called 64 times) 22.3 µs
col_unscr 280 (called 64 times) 22.4 µs

*  This routine is data-dependent; the cycle count shown is worst case.

Experimentally, the 2D FFTs of complex signals ranged from a minimum
of 543001 cycles (43.4ms) to a maximum 633701 cycles (50.7ms).
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