
ModemsModemsModemsModemsModems 22222

1717171717

2.12.12.12.12.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
The International Telegraph and Telephone Consultative Committee
(CCITT), which determines protocols and standards for telephone and
telegraph equipment, has authored a number of recommendations
describing modem operation. This chapter surveys the fundamental
algorithms of the V.32 modem recommendation, which describes the
operation of a high-speed modem. Implementations of the algorithms on
the ADSP-2100 family of DSP microprocessors are shown.

A modem is an electronic device that incorporates both a modulator and a
demodulator into a single piece of signal conversion equipment.
Interfacing directly to the communication channel, modems establish
communication links between various computer systems and terminal
equipment. In most cases the communications channel is the general
switched telephone network (GSTN) or a two- or four-wire leased circuit.
The GSTN is, for the most part, a copper wire network. The bandwidth of
this channel is limited to 200 Hz to 3400 Hz.

Traditionally, a modem was implemented using analog discrete
components. Today, digital circuits centered around a high performance
digital signal processor can meet the demands of modem algorithms
without the difficulties associated with analog circuitry. A digital modem
implementation offers programmability, temperature insensitivity, ease of
design and often reduced cost when compared with analog
implementations.

2.22.22.22.22.2 V.32 MODEM DEFINITIONV.32 MODEM DEFINITIONV.32 MODEM DEFINITIONV.32 MODEM DEFINITIONV.32 MODEM DEFINITION
The V.32 recommendation describes a full duplex synchronous modem
that operates on the general switched telephone network (GSTN) as well
as point-to-point leased circuits. The V.32 modem communicates at a rate
of 9600 bits per second (with a 4800 bit per second slow down mode)
utilizing quadrature amplitude modulation (QAM). Four-bit symbols
(bauds) modulate a carrier frequency of 1800 Hz with a modulation rate of
2400 bauds per second. The modulation of 4-bit symbols at a rate of 2400
symbols per second yields the 9600 bit per second specification.

22222 ModemsModemsModemsModemsModems

1818181818

There are three signal coding modes to choose from in the V.32
recommendation.

• 9600 bit/second 16-point QAM. Four bits per symbol are transmitted.
• 9600 bit/second 32-point trellis-coded QAM. Transmitted symbols

contain four information bits and an additional trellis encoded bit for
error correction.

• 4800 bit/second 4-point QAM.

The second method, which produces a redundant bit for error correction,
is the method used in the implementation described in this chapter.

Channel separation is achieved through echo cancellation. Echo cancellers
are subject to CCITT specification G.165. An ADSP-2100 family
implementation of an echo canceller is described in this chapter.

The V.32 modem transmits with a carrier frequency of 1800 ±1 Hz and
must be able to operate with received carrier frequency offsets of ±7 Hz.
The V.32 recommendation also specifies the transmitted spectrum.

2.2.12.2.12.2.12.2.12.2.1 Transmitter AlgorithmsTransmitter AlgorithmsTransmitter AlgorithmsTransmitter AlgorithmsTransmitter Algorithms
A block diagram of the transmitter section of the V.32 modem
implemented in this chapter is shown in Figure 2.1. The input serial bit
stream is subject to a number of algorithms prior to modulation and
transmission. Each step is described briefly below and in greater detail in
the following sections.

Scrambler. The input serial bit stream is first scrambled by a self-
synchronizing (requires no clock signal) scrambler. Scrambling takes the
input serial bit stream and produces a pseudo-random sequence. The
purpose of the scrambler is to whiten the spectrum of the transmitted
data. Without the scrambler, a long series of identical symbols could cause
the receiver to lose carrier lock. Scrambling makes the transmitted
spectrum resemble white noise, to utilize the bandwidth of the channel
more efficiently, makes carrier recovery and timing synchronization easy
and makes adaptive equalization and echo cancellation possible.

Encoders. The scrambled bit stream is divided into groups of four bits. The
first two bits of each 4-bit group are first differentially encoded and then
convolutionally encoded. This produces a 5-bit symbol in which the first
bit is a redundantly coded bit.

22222ModemsModemsModemsModemsModems

1919191919

Input bit
stream

x(t)

y(t)

cos 2πf

sin 2πf

Analog

DIFFERENTIAL
ENCODER

CONVOLUTIONAL
ENCODER

SIGNAL
MAPPING

PULSE
SHAPE
FILTER

PULSE
SHAPE
FILTER

LOW
PASS

FILTER
DAC

SCRAMBLER

MODULATION

Figure 2.1 Transmitter Block DiagramFigure 2.1 Transmitter Block DiagramFigure 2.1 Transmitter Block DiagramFigure 2.1 Transmitter Block DiagramFigure 2.1 Transmitter Block Diagram

Signal Mapping. The 5-bit symbols are mapped into the signal space
(defined in the V.32 recommendation) for modulation. The signal space
mapping produces two coordinates, one for the real part of the QAM
modulator and one for the imaginary part.

Pulse Shape Filters. The pulse shape filter is based on the impulse response
of a raised cosine function. Used prior to modulation, these filters
attenuate frequencies above the Nyquist frequency that are generated in
the signal mapping process. The filters are designed to have zero crossings
at the appropriate frequencies to cancel intersymbol interference.

Modulation. The modulation for all coding schemes in the V.32 modem
recommendation is quadrature amplitude modulation (QAM). The carrier
frequency is 1800 Hz and the modulation rate is 2400 symbols/second.

After modulation, the samples are converted to an analog signal. The
analog output is filtered through a smoothing filter.

22222 ModemsModemsModemsModemsModems

2020202020

2.2.22.2.22.2.22.2.22.2.2 Receiver AlgorithmsReceiver AlgorithmsReceiver AlgorithmsReceiver AlgorithmsReceiver Algorithms
A block diagram of the receiver section of the V.32 modem described in
this chapter is shown in Figure 2.2. Each step is described briefly below
and in greater detail in the following sections.

PHASE DETECTOR

r(t)
PULSE
SHAPE
FILTER

ADAPTIVE
(FRACTIONALLY

SPACED)
EQUALIZER

TIMING
LOOP

DELAY

+

VITERBI
DECODER

–

DIFFERENTIAL
DECODER

DESCRAMBLERRX

Tentative
Decision

PHASE
LOCKED

LOOP

exp j Ø

e c–j(2πf nT/2)

DEMODULATION

2X
DECIMATION

2X
DECIMATION

Figure 2.2 Receiver Block DiagramFigure 2.2 Receiver Block DiagramFigure 2.2 Receiver Block DiagramFigure 2.2 Receiver Block DiagramFigure 2.2 Receiver Block Diagram

Input Filter. The received analog signal is oversampled by a factor of 4 at
9600 samples per second. The sampled input is filtered with a raised
cosine pulse shape filter. The output is then decimated by a factor of 2.

Demodulation. Multiplication by e–j(2πfCnT/2) demodulates the signal. QAM
demodulation techniques are described in this chapter.

Adaptive Equalizer. An adaptive equalizer compensates for distortions
introduced in the communications channel. A 64-tap fractionally spaced
equalizer provides the performance necessary for V.32 applications. The

22222ModemsModemsModemsModemsModems

2121212121

equalizer also feeds a timing loop which adjusts the 4X sampling input
and the 2X sampling output of the input filter. An ADSP-2100 family
implementation of an adaptive equalizer is described in this chapter.

Viterbi Decoder. The decoder takes as input a demodulated, pulse shaped,
equalized signal. The Viterbi algorithm is employed as a decoder in order
to determine the appropriate signal constellation point received. This
algorithm is a soft-decision maximum likelihood sequence decoder. By
keeping a past history of 20 or so baud, the decoder can determine the
signal point received in noisy conditions. The phase detector and delay
adjust the feedback from the Viterbi decoder to the equalizer, which is
constantly adapting in response to the received data.

Differential Decoder and Descrambler. Once the amplitude and phase of the
signal point received is known, the corresponding symbol must be back-
mapped to decode the encoded bits. The decoded 4-bit symbol is then
descrambled utilizing the same generating polynomials as the scrambler.

2.2.32.2.32.2.32.2.32.2.3 ScramblerScramblerScramblerScramblerScrambler
The V.32 modem recommendation calls for the use of a scrambler in the
transmit section of the modem and descrambler in the receive section of
the modem. The scrambler and descrambler are based on simple
polynomials. Each transmission direction uses a different scrambler, i.e., a
different generating polynomial, as specified in the V.32 specification. The
calling or call mode modem uses the following generating polynomial
(GPC):

GPC = 1 + x–18 + x–23

where x is the input sample and the exponent on x indicates a time delay,
e. g., x–23 is the twenty-third previous sample. The answering or answer
mode modem uses a similar scrambler with the following generating
polynomial (GPA):

GPA = 1 + x–5 + x–23

The additions are modulus 2 additions, that is, the bitwise exclusive-OR of
the data values. The transmitting modem scrambles the input data
sequence by dividing the message sequence by the generating polynomial.
The receiving modem multiplies the scrambled sequence by the same
polynomial to descramble and recover the original message sequence.

22222 ModemsModemsModemsModemsModems

2222222222

These polynomials can be thought of as digital filters. The scrambler has
an all pole transfer function and the descrambler has an all zero transfer
function.

The scrambler output is pseudo-random. For a repetitive input signal, the
scrambler output is also repetitive with a maximum period of 2k–1
samples, where k is the order of the generating polynomial (23 in the case
of the V.32 scrambler). In order to maximize the period of the pseudo-
random output patterns, the specified GPC and GPA are irreducible and
primitive.

A block diagram of the call mode scrambler is shown in Figure 2.3; xin is
the serial bit input stream and DS is the scrambled data bit stream. Each
delay block corresponds to a serial port cycle and each addition block is an
exclusive OR operation.

Z ZZ Z

D • x
S

–23

DS

x

D • x
S

–18

Z –1 –1 –1 –1 –1

in

Figure 2.3 Call Mode ScramblerFigure 2.3 Call Mode ScramblerFigure 2.3 Call Mode ScramblerFigure 2.3 Call Mode ScramblerFigure 2.3 Call Mode Scrambler

The answer mode scrambler block diagram (Figure 2.4) is similar. The
fifth delay line sample, x–5, is used in the answer mode scrambler rather
than the eighteenth delay line value as in the call mode scrambler.

2.2.42.2.42.2.42.2.42.2.4 DescramblingDescramblingDescramblingDescramblingDescrambling
The descrambler is implemented using a delay line, similar to the
scrambler. The descrambler is the last functional block that the data passes
through in the receiver. The data that is input to the descrambler is in
effect multiplied by the appropriate generating polynomial. This
multiplication performs the inverse operation of the scrambler.

22222ModemsModemsModemsModemsModems

2323232323

Z ZZ Z

D • x
S

–23

DS

x

D • x
S

–5

Z –1 –1 –1 –1 –1

in

Figure 2.4 Answer Mode ScramblerFigure 2.4 Answer Mode ScramblerFigure 2.4 Answer Mode ScramblerFigure 2.4 Answer Mode ScramblerFigure 2.4 Answer Mode Scrambler

There are two versions of the descrambler, one for call mode and one for
answer mode. Block diagrams for the call mode and answer mode
descramblers are shown in Figures 2.5 and 2.6.

Z ZZ Z

D • x
S

–23

DS

x

D • x
S

–18

Z –1 –1 –1 –1 –1

out

Figure 2.5 Call Mode DescramblerFigure 2.5 Call Mode DescramblerFigure 2.5 Call Mode DescramblerFigure 2.5 Call Mode DescramblerFigure 2.5 Call Mode Descrambler

Z ZZ Z

D • x
S

–23

DS

x

D • x
S

–5

Z –1 –1 –1 –1 –1

out

Figure 2.6 Answer Mode DescramblerFigure 2.6 Answer Mode DescramblerFigure 2.6 Answer Mode DescramblerFigure 2.6 Answer Mode DescramblerFigure 2.6 Answer Mode Descrambler

22222 ModemsModemsModemsModemsModems

2424242424

2.2.52.2.52.2.52.2.52.2.5 ADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family Implementation
Fundamentally, the implementation of the generating polynomials for
scrambling and descrambling is the management of a delay line. The
scrambler generates its output from the current input bit and two delayed
outputs. The call mode uses the eighteenth and twenty-third previous
outputs, while the answer mode uses the fifth and twenty-third previous
outputs.

The ADSP-2100 family processors have two key features to facilitate
efficient delay line management. First, each of two independent data
address generators (DAGs) has four independent data pointers. An index
register pointer can be programmed to handle each of the delay values
and can be separately updated. Second, the DAGs support circular buffers
into which delay lines are easily mapped.

In either scrambler, the twenty-third value is the oldest value, and once
used is no longer needed. Thus the newest value can be written over it, so
the circular buffer always contains only the 23 most recent values. Figure
2.7 illustrates the circular buffer implementation and shows the
appropriate pointers.

D • x
S

–1 D • x
S

–1

D • x
S

–18
D • x

S
–17

D • x
S

–23
D • x

S
–22

D • x
S

0

Figure 2.7 Circular Buffer Implementation For ScramblerFigure 2.7 Circular Buffer Implementation For ScramblerFigure 2.7 Circular Buffer Implementation For ScramblerFigure 2.7 Circular Buffer Implementation For ScramblerFigure 2.7 Circular Buffer Implementation For Scrambler

22222ModemsModemsModemsModemsModems

2525252525

The value x0 is the current input value. This value is put into an ALU
register. The delayed value, DS • x–18, is read from the circular buffer using
the address supplied by a pointer (represented in the above diagram with
an arrow). Once the location is read, the pointer is decremented to the next
location in the buffer, shown with the light arrow. The oldest value is then
written to an ALU register; the pointer’s address is not yet modified. The
necessary XOR operations are performed and the result is output, as well
as written to the last buffer location. This pointer is now decremented to
the next value, now the oldest.

This process is repeated with each new input bit. When a pointer comes to
the first location in the circular buffer and is decremented, it wraps
around to the last location in the circular buffer. Eighteen and twenty-
three unit delays are maintained in the circular buffer, with no need to
move data values, just pointer addresses.

The answer mode scrambler works similarly, except with a delay of five
units instead of eighteen units. The descrambler, for both call and answer
modes, also uses the same basic structure, but with a different flow of data
to accomplish the inverse operation.

2.2.62.2.62.2.62.2.62.2.6 Scrambler/Descrambler ProgramsScrambler/Descrambler ProgramsScrambler/Descrambler ProgramsScrambler/Descrambler ProgramsScrambler/Descrambler Programs
The code in Listings 2.1 and 2.2 implements the V.32 scrambler (call mode)
on the ADSP-2100 family processors. There are two modules, a main
module and a scrambler module. The main module sets up interrupts,
initializes the appropriate registers for interrupt control, initializes index
registers for maintenance of the circular buffer, clears the circular buffer to
zero and waits in an infinite loop for an interrupt. The only interrupt
active in this program is IRQ3. This is the highest priority interrupt, and in
this case it corresponds to a sampling interrupt. When a sample is ready to
be scrambled, this interrupt is asserted.

The second program module is the actual scrambling routine. Included as
part of this module is the bits subroutine, which takes 16-bit data values
and strips off bits one at a time. The output of this subroutine is a string of
simulated serial data values in the most significant bit position of 16-bit
words. That is, a 16-bit word is input and 16 words (each of whose value
is either H#8000 or H#0000) are output. These simulated serial bits are
then passed to the scrambler. The scrambler output is in the AR register at
the end of each pass and is written to the data memory location dac.

The descrambler program, in Listing 2.3, has the same fundamental
structure as the scrambler program, performing the inverse operation of
the scrambler.

22222 ModemsModemsModemsModemsModems

2626262626

.MODULE/RAM/ABS=0 cms_main_routine;

{ This module initializes registers, clears a buffer}
{ of length 23 for the call mode scrambler, sets IMASK}
{ and waits in a loop for sampling interrupt}
{ CALLS: initial, clear_buffer}
{ INTERRUPTS: only interrupt 3 active}

.CONST no_bits_per_word=16;

.VAR/DM/RAM/CIRC buffer[23], input_buffer [no_bits_per_word];

.GLOBAL input_buffer;

.PORT cntl_port;

.EXTERNAL start_scramble;

{interrupt jump table}
RTI; {only INT3 is used}
RTI;
RTI;
JUMP start_scramble; {INT3 8 kHz from codec}

{main routine}
CALL initial;
CALL clear_buffer;
IMASK=H#8; {enable interrupt 3}

mainloop: JUMP mainloop; {loop until interrupted}

{———————————INIT SUBROUTINE————————————}
{One time initialization subroutine, sets up registers}

initial: IMASK=B#0000; {disable interrupts}
ICNTL=H#F; {edge sensitive interrupts}
SI=0;
DM(cntl_port)=SI; {load codec control register}

L0=%buffer; {length registers}
L1=%buffer; {circular buffer length 23}
L2=%buffer;
L3=0; {no other index circ buffer}
L4=0;
L5=0;
L6=0;
L7=0;

{index registers}
I0=^buffer; {ds(n-5)}
I1=^buffer + 17; {ds(n-18)}
I2=^buffer + 22; {ds(n-23)}

22222ModemsModemsModemsModemsModems

2727272727

I3=0000;
I4=^input_buffer + 15;

M0=0; {modify registers}
M1=-1;
M2=1;
M4=-1;
M5=1;
SE=4; {SE for nibble pack}
RTS;

{——————————CLEAR BUFFER SUBROUTINE———————}
{initialize scramble buffer to zero}

clear_buffer: CNTR=%buffer;
DO clear UNTIL CE;

clear: DM(I0,M1)=0;
RTS;

.ENDMOD;

Listing 2.1 Call Mode Scrambler Main RoutineListing 2.1 Call Mode Scrambler Main RoutineListing 2.1 Call Mode Scrambler Main RoutineListing 2.1 Call Mode Scrambler Main RoutineListing 2.1 Call Mode Scrambler Main Routine

22222 ModemsModemsModemsModemsModems

2828282828

.MODULE call_mode_scrambler;

{ This module performs V.32 call mode scrambling}
{ The generating polynomial is: xin+y(n-18)+y(n-23)}
{ CALLS: bits}

.EXTERNAL input_buffer;

.CONST no_bits_per_word=16;

.PORT codec;

.PORT dac;

.ENTRY start_scramble;

start_scramble: AY0=DM(codec); {read from port}
CALL bits; {show as serial stream}
CNTR=no_bits_per_word; {scramble 16 times}

{once for every bit of input}
DO scrambl UNTIL CE;

AY0=DM(I4,M5);
AX0=DM(I1,M1); {d(n-18)}
AY1=DM(I2,M0); {d(n-23)}
AR=AX0 XOR AY1; {d(n-18) + d(n-23)}
AR=AR XOR AY0; {d(n) + d(n-18) + d(n-23)}
DM(I2,M1)=AR; {store scramble in buffer}

 {write new value over oldest}
DM(dac)=AR; {out to dac}
MODIFY(I4,M4); {reset pointer to last buffer}

{value for next input word}
scrambl: NOP;

RTI;

{——————————BITS SUBROUTINE—————————————}
{ takes output from u_expand (16-bit word) and separates out }
{ the bits; stores as MSB in a 16-word buffer ‘input_buffer’}
{ The most significant bit of the input word is at the top of }
{ the buffer}

bits: AX0=AY0; {expanded output into ALU}
SE=15;
CNTR=no_bits_per_word;
AY0=H#8000;
DO bit_loop UNTIL CE;

AR=AX0;
SR=LSHIFT AR (LO); {shift so next bit is}

 {MSB in reg SR0}

22222ModemsModemsModemsModemsModems

2929292929

AR=AR0 AND AY0; {mask out all except MS}
DM(I4,M4)=AR;
AY1=SE; {decrement SE for next}
AR=AY1-1;

bit_loop: SE=AR;
I4=^input_buffer;
SE=4;
RTS;

.ENDMOD;

Listing 2.2 Call Mode Scrambler Scrambling RoutineListing 2.2 Call Mode Scrambler Scrambling RoutineListing 2.2 Call Mode Scrambler Scrambling RoutineListing 2.2 Call Mode Scrambler Scrambling RoutineListing 2.2 Call Mode Scrambler Scrambling Routine

22222 ModemsModemsModemsModemsModems

3030303030

.MODULE/RAM/ABS=0 main_routine;

{ Descrambling Routine }
{ Call Mode Functions implemented:}
{ d(n)=di(n)+d(n-18)+d(n-23)}

{ System file: fullpm.sys}
{ CALLS: initial, clear_buffer, output}

.VAR/DM/RAM/CIRC buffer[23];

.PORT codec;

.PORT dac;

.PORT cntl_port;

RTI; RTI; RTI; {int0-2 not used}
JUMP start_descramble; {INT3 8 kHz from codec}
CALL initial;
CALL clear_buffer;

IMASK=h#8; {enable interrupts}
mainloop: JUMP mainloop; {loop until interrupted}

{———————— descramble subroutine ————————————}
{addressing circular buffer with 2 pointers for modem scrambler}

start_descramble: AY0=DM(codec); {read from port}
AX0=DM(I1,M1); {d(n-18)}
AY1=DM(I2,M0); {d(n-23)}
AR=AX0 XOR AY1; {d(n-18)+d(n-23)}
AR=AR XOR AY0; {d(n)+d(n-18)+d(n-23)}
DM(I2,M1)=AY0; {store scramble in buffer}

{input stored... not output}
CALL output;
AR=0; {clear AR for next time}
RTI;

{—————————— initialize subroutine ——————————}
{initialize registers}

initial: IMASK=B#0000; {disable interrupts}
ICNTL=H#F; {edge level interrupts}
SI=0;
DM(cntl_port)=SI; {load codec control reg}
L0=%buffer; {circular buffer length 23}
L1=%buffer;

22222ModemsModemsModemsModemsModems

3131313131

L2=%buffer;
L3=0;
L4=0;
L5=0;
L6=0;
L7=0;
I0=^buffer;
I1=^buffer + 17;
I2=^buffer + 22;
M0=0;
M1=-1;
SR0=0;
SR1=0;
SE=16;
RTS;

{——————— clear buffer subroutine ———————————}
{initialize buffer to zero}

clear_buffer: CNTR=%buffer;
DO clear UNTIL CE;

clear: DM(I0,M1)=0;
RTS;

{———— output routine packs serial into 16 bit words ————}
output: SR=SR OR LSHIFT AR(LO);

AY0=SE;
AR=AY0 -1;
SE=AR;
IF EQ CALL out;
RTS;

out: DM(dac)=SR1;
SR0=0;
SR1=0;
SE=16;
RTS;

.ENDMOD;

Listing 2.3 Call Mode Descrambler RoutineListing 2.3 Call Mode Descrambler RoutineListing 2.3 Call Mode Descrambler RoutineListing 2.3 Call Mode Descrambler RoutineListing 2.3 Call Mode Descrambler Routine

22222 ModemsModemsModemsModemsModems

3232323232

2.2.72.2.72.2.72.2.72.2.7 Raised Cosine FilterRaised Cosine FilterRaised Cosine FilterRaised Cosine FilterRaised Cosine Filter
For the V.32 modem recommendation, 5-bit symbols are modulated by a
carrier of 1800 Hz. This modulation is performed digitally. Coupled with
the modulator and the demodulator are pulse shaping low pass filters.
These digital filters eliminate intersymbol interference (ISI) on the
bandlimited GSTN.

A brief development of the theory of pulse shaping filters follows. For a
more complete theoretical discussion of pulse shaping filters, see
“References” at the end of this chapter: Bingham, Lee and Messerschmitt,
Proakis.

Low pass transmitted signals can be shown to have the form

∞
∑ In g(t–nT)
n=0

where In is the discrete code word and g(t) is a pulse. For the bandlimited
channel, we desire a transmitted pulse g(t) that produces no ISI. If the
channel is ideally bandlimited, then an ideally bandlimited pulse can be
used. In the frequency domain, this ideally bandlimited pulse can be
described as:

G(f) = T for f < 1/2T
0 for f ≥ 1/2T

This spectrum has an ideal rectangular shape.

In the time domain, this ideal spectrum shape is the sinc function:

g(t) = sin(πt/T)/(πt/T)

The nulls (zero values of the pulse function) occur at multiples of T, the
baud rate. Because of the placement of the nulls, there is no additive
interference due to previous symbols; there is no ISI.

The ideal pulse shaping filter is not practical to implement. The ideally
bandlimited frequency response has a corresponding infinite impulse
response. Although the impulse response has a zero value at all multiples
of T, any mistiming in the modem produces an infinite series of ISI terms.

22222ModemsModemsModemsModemsModems

3333333333

A pulse shaping filter that is practical and widely used in digital
communications is the raised cosine pulse shaping filter. The raised cosine
pulse shaping filter is realizable, unlike the ideal pulse shaping filter. The
raised cosine function has tails that decay proportional to 1/t3, whereas
the ideal pulse tails off proportional to 1/t. Mistiming errors in sampling
in the modem therefore have a much less dramatic effect on the amount of
ISI in the raised cosine pulse filter.

A generic formula for the impulse response of the raised cosine filter, p(t),
is shown below. T is the symbol rate in Hz, t is the sampling rate in Hz,
and α is the rolloff factor.

sin (πt/T) • cos (απt/T)
p(t) =

(πt/T) • (1 – (2απt/T)2)

The rolloff factor, α, represents the amount of excess bandwidth required.
A raised cosine with a rolloff factor of 0 needs the least excess bandwidth.
As α varies from 0 to 1, the amount of excess bandwidth required
increases from 0 to 100%. For purposes of this implementation, a common
rolloff factor of 0.25 is used. For the V.32 modem, the symbol rate, T, is
specified at 2400 symbols per second. The sampling rate, t, is usually 9600
Hz. The frequency response of the raised cosine pulse shaping filter with
these parameter values is shown in Figure 2.8.

The pulse shaping filter usually spans four baud intervals. For a sampling
rate of 9600 Hz and a symbol rate of 2400 Hz, a 17-tap FIR filter can be
used.

2.2.82.2.82.2.82.2.82.2.8 ADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family Implementation
The raised cosine pulse shaping filter can be implemented in the modem
as a simple FIR filter. Implementation of FIR filters on the ADSP-2100
family is straightforward. The dual DAGs with circular buffering and the
on-chip Harvard architecture allows for efficient realization of FIR filter
structures. A complete description of FIR filters as well as other fixed-
coefficient filters can be found in Digital Signal Processing Applications
Using the ADSP-2100 Family, Chapter 5 (see “Literature” at the beginning
of this book).

Filter coefficients are arrived at using the formula above, generated with a
C program. The coefficients are scaled to provide a filter with 0 dB gain.

22222 ModemsModemsModemsModemsModems

3434343434

0.6

0.8

1

0 T 2T-T-2T

Impulse response

0.4

0.2

0

Figure 2.8 Raised Cosine Pulse Shaping Filter, Figure 2.8 Raised Cosine Pulse Shaping Filter, Figure 2.8 Raised Cosine Pulse Shaping Filter, Figure 2.8 Raised Cosine Pulse Shaping Filter, Figure 2.8 Raised Cosine Pulse Shaping Filter, α=0.25=0.25=0.25=0.25=0.25

The coefficients represent a rolloff factor of 0.25, and the generated
impulse response spans four baud intervals.

For the V.32 modem, the filter input is a digitally modulated value (1800
Hz carrier). Samples are processed at the baud rate (2400 baud) and are
interpolated, zero-filled, to provide filter input at a rate of 9600 Hz.
Samples are processed in quadrature. Figure 2.9 shows the relationship of
the filter to the digital modulator and the data rates.

Listing 2.4 contains the ADSP-2100 family code for implementation of the
raised cosine filter. The coefficients can be found in the data file coef.dat.

22222ModemsModemsModemsModemsModems

3535353535

Input
SIGNAL
MAPPING

Real Part

Imaginary Part

cos 1800 Hz

sin 1800 Hz

2400 Hz

2400 Hz

PULSE
SHAPE
FILTER

PULSE
SHAPE
FILTER

9600 Hz

9600 Hz

Digitally

Modulated output

2400 Hz

2400 Hz

Figure 2.9 Modem TransmitterFigure 2.9 Modem TransmitterFigure 2.9 Modem TransmitterFigure 2.9 Modem TransmitterFigure 2.9 Modem Transmitter

.MODULE/boot=0 fir_sub;
{———————————————————————————————
 Pulse Shape filter routine for V.32
 ICASSP DEMO

 Rev History 2/8/90 take APP VOL I FIR routine
 adapt for V.32

}

.ENTRY pulse_shape;

.CONST PSF_length=89;

.EXTERNAL Real_PSF_delay_line, Imag_PSF_delay_line, Pulse_Shape_Coeff;

.EXTERNAL real_PSF_i0, imag_PSF_i0;

.VAR/DM psf_save_I0;

.VAR/DM psf_save_L0;

.VAR/DM psf_save_I4;

.VAR/DM psf_save_L4;

.VAR/DM test_psf1;

.VAR/DM test_psf2;

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

3636363636

pulse_shape: DM(psf_save_I0)=I0; DM(psf_save_L0)=L0; {save I0,L0,I4,L4}
DM(psf_save_I4)=I4; DM(psf_save_L4)=L4;

I0=DM(real_PSF_i0);
I4=^Pulse_Shape_Coeff;
L0=psf_length; L4=psf_length;

{——— Do real part of the filter. ax0 contains the x value
 from the signal map module.}

DM(I0,M2)=AX0; {dump new vals into delay line}
CNTR=PSF_Length-1;
MR=0, MX0=DM(I0,M2), MY0=PM(I4,M5);

sop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M5);
IF NOT CE JUMP sop;
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
AX0=MR1; {filtered X in ax0}
DM(real_PSF_i0)=I0;

{——— Do the imaginary part of the Pulse Shape filter. ax1 contains
 the imaginary part of the point from the signal map module. }

I0=DM(imag_PSF_i0);
DM(I0,M2)=AX1; {dump new vals into delay line}
CNTR=PSF_Length-1;
MR=0, MX0=DM(I0,M2), MY0=PM(I4,M5);

imag_sop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M2), MY0=PM(I4,M5);
IF NOT CE JUMP imag_sop;
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
AX1=MR1; {filtered Y in ax1}
DM(imag_PSF_i0) = I0;

I0=DM(psf_save_I0); L0=DM(psf_save_L0);
I4=DM(psf_save_I4); L4=DM(psf_save_L4);

RTS;

Listing 2.4 Raised Cosine FilterListing 2.4 Raised Cosine FilterListing 2.4 Raised Cosine FilterListing 2.4 Raised Cosine FilterListing 2.4 Raised Cosine Filter

22222ModemsModemsModemsModemsModems

3737373737

2.2.92.2.92.2.92.2.92.2.9 Trellis EncodingTrellis EncodingTrellis EncodingTrellis EncodingTrellis Encoding
The GSTN was intended for voiceband transmission and is bandlimited
200 Hz to 3400 Hz. Data rates in excess of the upper band limit can be
realized only by the transmission of multiple bits per symbol interval.
Data rates of 9.6 Kbits per second can be achieved on unconditioned
circuits and data rates of up to 16.8 Kbits per second can be realized on
conditioned leased lines using the technique known as trellis coded
modulation (TCM).

The V.32 modem recommendation specifies trellis encoding as an option.
Four-bit symbols are encoded into 5-bit symbols that are made up of four
information bits and a redundant bit. These 5-bit symbols are used with a
32 carrier state QAM modulator. A 2400 baud rate is used and 9600
information bits per second are transmitted. A trellis encoded scheme
offers much better performance than a non-encoded scheme. It results in a
much higher immunity to noise for a given error rate and can reduce the
block error rate by three orders of magnitude for a given signal-to-noise
ratio.

There are two fundamental types of codes used in channel encoding.
Linear block codes include Hamming codes, BCH (Bose-Chadhuri-
Hocquenghem) codes, Reed-Solomon codes, Galay codes and many
others. The convolutional code, which is specified for V.32 modems can be
implemented using a shift register and can be described using a diagram
called a trellis diagram.

Suppose we can achieve a certain Pe (probability of error) in an uncoded
system operating on a bandlimited channel. We can attempt to improve
system performance by coding. If we add a single redundant bit to a
binary symbol with k bits, we increase the number of waveforms that the
modulator must produce from 2k to 2k+1. An increase in alphabet size on
the same bandwidth requires a 3 dB increase in the signal to noise ratio to
achieve the same Pe. That is, coding alone decreases the performance of
the system.

Trellis coded modulation employs signal set partitioning in addition to
redundant coding in order to increase the system performance. In the case
of the V.32 modem, there are 32 modulator states. Of the four input bits to
the encoder, only two are encoded. Two bits pass through uncoded and
two bits are encoded into three output bits. The three bits provide a
mechanism for dividing the 32 modulator states into 8 subsets of 4
modulator carrier states. The coded bits identify the subset of the 32

22222 ModemsModemsModemsModemsModems

3838383838

modulator states and the uncoded bits select a point within the subset.
Figure 2.10 shows the input and output bits of the trellis encoder. Bits Q1
through Q4 are the input bits. Bits Q3 and Q4 pass through the encoder
unchanged. Bits Q1 and Q2 are encoded to give Y1, Y2 and the redundant
error correcting bit Y0. Bits Y0, Y1, Y2 identify the subset while the bits Q3
and Q4 identify the point within the subset.

E
N
C
O
D
E
R

Input Output

Q1Q2Q3Q4

Input Bits Output Bits

Q3Q4 Y0Y1Y2

Figure 2.10 Encoder Block DiagramFigure 2.10 Encoder Block DiagramFigure 2.10 Encoder Block DiagramFigure 2.10 Encoder Block DiagramFigure 2.10 Encoder Block Diagram

The signal set for the V.32 modem (and other TCM schemes) has been
designed so that there is a large distance between the members of each
subset. The 32-state signal constellation for the V.32 modem is shown in
Figure 2.11. Bits are ordered on this diagram left to right, most significant
to least significant: Y0 Y1 Y2 Q3 Q4. The signal space mapping for the
redundant coding is from Figure 3/V.32 of the V.32 recommendation.

The signal set is located on a quadratic grid known as a Z2 lattice and the
signal set type is known as 32 CROSS. In order to transmit m bits per
signalling interval, 2m+1 signals are needed. The coding gain (performance
of the coded signals versus uncoded signals) is approximately 4 dB for
any m. The closest distance between any two points on the signal set is ∆0.
The closest distance between any two points in a subset (i.e., points that
have the same Y0, Y1 and Y2 bits) is √8 ∆0 for the 32 CROSS signal set.

All bit patterns that begin with the same three bits are spread out on the
signal constellation. This signal set partitioning along with the redundant
coding are the fundamentals of TCM.

22222ModemsModemsModemsModemsModems

3939393939

11000

01010

10100

00011

11111

0010101000

100111010110010

01101000100111100000

1110111010

001000101100110

1011010001

0110000001

1101111100

10111

11110

01110

01001

11001

10000

00111

4

2

2 4
-2-4

-2

-4

Y0 Y1 Y2 Q3 Q4

Imaginary (Y)

Real (X)

Figure 2.11 V.32 Signal ConstellationFigure 2.11 V.32 Signal ConstellationFigure 2.11 V.32 Signal ConstellationFigure 2.11 V.32 Signal ConstellationFigure 2.11 V.32 Signal Constellation

2.2.102.2.102.2.102.2.102.2.10 ADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family Implementation
Trellis encoding for the V.32 modem consists of two encoding operations:
a differential encoder, implemented as a lookup table and a convolutional
encoder, performed using a shift register and Boolean logic. Together,
these two encoders generate a 5-bit symbol from a 4-bit input word.

The serial input bits to the encoder are Q1, Q2, Q3 and Q4 (Q1 first, Q4
last). Three of the output bits are Y0, Y1 and Y2, and the other two output

22222 ModemsModemsModemsModemsModems

4040404040

bits are Q3 and Q4, unchanged from the input. Y1 and Y2 are generated in
the differential encoder. Y0, the redundant bit for error correction, is
generated in the convolutional encoder.

The differential encoder takes as input the first two bits, Q1 and Q2, and
produces two output bits, Y1 and Y2. Previous output bits, Y1(n–1) and
Y2(n–1) are also used in the differential encoder. The encoder is easily
implemented on the ADSP-2100 family as a lookup table. The input bits
and the previous output bits are combined to a 4-bit value that serves as a
pointer into the lookup table. For example, assume that the current input
bits are Q1=1, Q2=0, Y1(n–1)=0 and Y2(n–1)=1, for a 4-bit value of 1001.
This corresponds to the 1001 (ninth) entry in the lookup table, from which
the current Y1 and Y2 outputs are read. Table 2.1 shows the lookup table
for differential encoding.

Inputs Previous Outputs Outputs
Q1 Q2 Y1(n-1) Y2(n-1) Y1 Y2

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1

0 1 0 0 0 1
0 1 0 1 0 0
0 1 1 0 1 1
0 1 1 1 1 0

1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 0

1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 1 0 1

Table 2.1 Differential Encoder Lookup TableTable 2.1 Differential Encoder Lookup TableTable 2.1 Differential Encoder Lookup TableTable 2.1 Differential Encoder Lookup TableTable 2.1 Differential Encoder Lookup Table

22222ModemsModemsModemsModemsModems

4141414141

The convolutional encoder (Figure 2.12) uses a shift register structure to
examine the four incoming bits (the output of the differential encoder) and
build a 5-bit symbol. The five output bits of the convolutional encoder
consist of the four input bits plus an additional redundantly coded fifth
bit. This additional bit increases the complexity of the signal set, but limits
the number of possible transitions between bit patterns. For any given 5-
bit convolutionally encoded word, only half of the signal states can follow.
In other words, the process of convolutional encoding prohibits
transitions from any particular signal state to only half of the possibilities.
This property is exploited in the Viterbi decoder in the receiver.

Delay
Element

#1

Delay
Element

#2

Delay
Element

#3
++

+

++

input bits

MS LS

MSB LSB

output bits

MS LS

Figure 2.12 Convolutional Encoder Block DiagramFigure 2.12 Convolutional Encoder Block DiagramFigure 2.12 Convolutional Encoder Block DiagramFigure 2.12 Convolutional Encoder Block DiagramFigure 2.12 Convolutional Encoder Block Diagram

Listing 2.5 contains a ADSP-2100 family subroutine that provides both the
differential encoder and the convolutional encoder. The input is assumed
to be a single bit residing in the most significant bit position of a 16-bit
word. Listing 2.6 shows the convolutional encoder routine that is called by
the program in Listing 2.5, and Listing 2.7 contains the routine that
performs signal mapping on the encoded data.

22222 ModemsModemsModemsModemsModems

4242424242

.MODULE/RAM trellis;

.VAR/DM/RAM t_table[16];

.VAR/DM/RAM last_ys;

.VAR/DM/RAM bit_count;

.VAR/DM/RAM diff_out;

.VAR/DM/RAM delay_val_1;

.VAR/DM/RAM delay_val_2;

.VAR/DM/RAM delay_val_3;

.VAR/DM/RAM Y1;

.VAR/DM/RAM Y2;

.INIT t_table: 0,1,2,3,1,0,3,2,2,3,1,0,3,2,0,1;

.ENTRY trellis_encode;

.PORT dac;

.PORT adc;

.GLOBAL t_table, bit_count, last_ys;

{——bit count is intially 4——}
trellis_encode: SE=DM(bit_count);

SI=DM(adc); {take in new 8000 or 0000}

Q1Q2_pack: SR=SR OR LSHIFT SI (LO); {count up 4 bits,}
AY0=SE; {shift into SR register}
AR=AY0 -1;
SE=AR;
DM(bit_count)=SE; {store decremented count}
IF EQ JUMP packed;
RTI;

packed: AX0=SR1; {stored as 4 bits}
AX1=4; {Q1 Q2 Q3 Q4}
DM(bit_count)=AX1;
SR0=0;
SR1=0;
CALL d_encode;
RTI;

22222ModemsModemsModemsModemsModems

4343434343

{—————————————ENCODE——————————————}
{input: AX0 -> 0 0 0 X where X -> bits 0 0 0 0 Q1Q2Q3Q4}

d_encode: I3=^t_table;
AY0=h#000C; {mask to keep Q1 Q2}
AR=AX0 AND AY0;
AY1=DM(last_ys); {last output Y1 Y2}
AR=AR XOR AY1; {AR is Q1 Q2 Y1 Y2}

M3=AR; {address in lookup}
MODIFY(I3,M3); {for new Y1 Y2}

SI=DM(I3,M0);
DM(last_ys)=SI; {AY0 ->encoded Y1 Y2}

AY1=3;
AF=AX0 AND AY1; {keep Q3 Q4}
SR=LSHIFT SI BY 2(LO);
AR=SR0+AF; {AR ->Y1 Y2 Q3 Q4}
DM(diff_out)=AR; {store output of diff encode}
DM(dac)=AR;
CALL c_encode; {call convolutional encode}
RTS;

.ENDMOD;

Listing 2.5 Trellis Encoder ProgramListing 2.5 Trellis Encoder ProgramListing 2.5 Trellis Encoder ProgramListing 2.5 Trellis Encoder ProgramListing 2.5 Trellis Encoder Program

22222 ModemsModemsModemsModemsModems

4444444444

.MODULE/RAM conv_encode;

{ Trellis Encoder for V.32 Modem
Implements convolutional encoder

Input: Four bit symbols, output of the differential encoder

Output: Five bit symbol in the LSB positions}

.VAR/DM/RAM diff_out; {differential encode output}

.VAR/DM/RAM conv_out; {convolutional encode output}

.VAR/DM/RAM packed_4_bits; {Q1Q2Q3Q4 as 4 LSBs}

.VAR/DM/RAM delay_val_1; {conv. enc delay element}

.VAR/DM/RAM delay_val_2; {conv. enc delay element}

.VAR/DM/RAM delay_val_3; {conv. enc delay element}

.VAR/DM/RAM intermed_1;

.VAR/DM/RAM intermed_2;

.VAR/DM/RAM Y0; {output bit Y0}

.VAR/DM/RAM Y1; {output bit Y1}

.VAR/DM/RAM Y2; {output bit Y2}

.GLOBAL conv_out;

.GLOBAL delay_val_1, delay_val_2, delay_val_3;

.GLOBAL intermed_1, intermed_2, packed_4_bits;

.ENTRY c_encode;

.EXTERNAL sig_map, dac;

{—————————— CONVOLUTIONAL ENCODE——————————}
{Input is Y1Y2Q3Q4 located in “diff_out” 4 LSBs}
{Output is 3 encoded bits in data mem locations Y0 Y1 Y2}
{calls “pack_up_5_bits” for output to dac}

c_encode: SR0=0; {clear shift result}
SR1=0;
SI=DM(diff_out); {get input from diff encoder}
SE=-3;
SR=LSHIFT SI BY -3(HI); {put Y1 in LSB position}
AY0=1;
AR=SR1 AND AY0; {separate Y1}
DM(Y1)=AR;
AX0=AR;
SR=LSHIFT SI BY -2(HI);
AR=SR1 AND AY0; {separate Y2 and store}
DM(Y2)=AR;
AY0=AR;

22222ModemsModemsModemsModemsModems

4545454545

AR=AX0 XOR AY0; {op #1}
AY1=DM(delay_val_3);
AR=AR XOR AY1; {op #2}
DM(intermed_1)=AR;

AX0=DM(delay_val_1);
AR=AX0 XOR AY0; {delay val 1 XOR Y2 op #5}
DM(intermed_2)=AR;

AY0=DM(delay_val_2);
DM(delay_val_3)=AY0; {update delay val 3}
AR=AR AND AY0; {and_1}

AY1=DM(intermed_1);
AR=AR XOR AY1;
DM(delay_val_1)=AR; {update delay_val_1}

AX1=DM(Y1);
AR=AX1 AND AY0; {and_2}
AY0=DM(intermed_2);
AR=AR XOR AY0;

DM(delay_val_2)=AR; {update delay val 2}
DM(Y0)=AR;

CALL pack_up_5_bits;
RTS;

{——————————— OUTPUT FORMATTER —————————}
{Packs up convolutional bits as 5 LSBs Y0 Y1 Y2 Q3 Q4}
{Outputs to DAC}

pack_up_5_bits: SR0=0; {pack up bits as Y0Y1Y2Q3Q4}
SR1=0; {clear SR}

SR1=DM(diff_out);
SI=DM(Y0);

SR=SR OR LSHIFT SI BY 4 (HI);
DM(conv_out)=SR1;
DM(dac)=SR1;

SR0=0;
SR1=0;

CALL sig_map;
RTS;

.ENDMOD;

Listing 2.6 Convolutional Encoder RoutineListing 2.6 Convolutional Encoder RoutineListing 2.6 Convolutional Encoder RoutineListing 2.6 Convolutional Encoder RoutineListing 2.6 Convolutional Encoder Routine

22222 ModemsModemsModemsModemsModems

4646464646

.MODULE signal_map;

{ This module takes the output of the convolutional encoder,
 that is, a five bit code residing in the LSBs of the data
 memory location “conv_out”, and looks up the x and y
coordinates
 as defined by the CCITT spec for the V.32 modem.

 The coordinates are given in the CCITT spec as whole integers.
 They are represented in a 16-bit fixed format as follows:

integer hexadecimal
0 0000
1 2000
2 4000
3 6000
4 7FFF
-1 E000
-2 C000
-3 A000
-4 8000

 Registers used:
}

.VAR/DM x_table[32];

.VAR/DM y_table[32];

.INIT x_table: H#8000, H#0000, H#0000, H#7FFF, H#7FFF,
H#0000, H#0000, H#8000, H#C000, H#C000, H#4000,
H#4000, H#4000, H#4000, H#C000, H#C000, H#A000,
H#2000, H#A000, H#2000, H#6000, H#E000, H#6000,
H#E000, H#2000, H#A000, H#2000, H#2000, H#E000,
H#6000, H#E000, H#E000;

.INIT y_table: H#2000, H#A000, H#2000, H#2000, H#E000,
H#6000, H#E000, H#E000, H#6000, H#E000, H#6000,
H#E000, H#A000, H#2000, H#A000, H#2000, H#C000,
H#C000, H#4000, H#4000, H#4000, H#4000, H#C000,
H#C000, H#7FFF, H#0000, H#0000, H#8000, H#8000,
H#0000, H#0000, H#7FFF;

22222ModemsModemsModemsModemsModems

4747474747

.EXTERNAL conv_out, dac;

.ENTRY sig_map;

sig_map: I1=^x_table;
I2=^y_table;

M0=0;

M1=DM(conv_out);
MODIFY(I1,M1);
MODIFY(I2,M1);

AX0=DM(I1,M0); {x value in ax0}
AX1=DM(I2,M0); {y value in ax1}

DM(dac)=ax0;
DM(dac)=ax1;

RTS;
.ENDMOD;

Listing 2.7 Signal Mapping RoutineListing 2.7 Signal Mapping RoutineListing 2.7 Signal Mapping RoutineListing 2.7 Signal Mapping RoutineListing 2.7 Signal Mapping Routine

2.2.112.2.112.2.112.2.112.2.11 Viterbi DecodingViterbi DecodingViterbi DecodingViterbi DecodingViterbi Decoding
The V.32 recommendation specifies a trellis or convolutional encoding of
data before transmission. The most common technique used for decoding
received data is Viterbi decoding. The Viterbi algorithm is a general
purpose technique for making an error-corrected decision. Viterbi
decoding provides a certain degree of error correction by determining
from the received bit pattern the value that was the most likely to have
been transmitted. The Viterbi algorithm can be used for many applications
where error correcting is required. Its application in the V.32 modem is
similar to that used in other digital data communication schemes, such as
digital telephones.

In order for the Viterbi algorithm to decode received data properly, the
model for encoding the transmitted data must be known. In trellis
encoding, it is assumed that the three delay elements of the encoder
contain zeros initially. At each time period, a new 2-bit input is presented.
The contents of the delay elements are changed accordingly and a 3-bit
output is produced. If the three delay elements are treated as a 3-bit word,
where delay element 1 is the most significant bit and delay element 3 is

22222 ModemsModemsModemsModemsModems

4848484848

the least significant bit, then the state of the delay elements collectively
can be represented by that 3-bit value.

It is possible to derive a state diagram or table from this specification. The
three delay elements in the encoder are labelled from left to right as
element 1, 2 and 3, respectively, in Figure 2.12. At any moment, each delay
element has stored in it a 1 or a 0. The possible combinations of bits in the
three delay elements or the possible states is eight. The state table shows
the eight possible states of these three storage elements. It also shows that
for any 2-bit input to the encoder, the three delay elements go to some
new state and the encoder also produces an output. The state table
showing the state transitions with the encoder inputs and outputs is
shown in Table 2.2.

Beginning End Beginning End
State Input Output State State Input Output State
000 00 000 000 100 00 000 010
000 01 101 011 100 01 101 001
000 10 010 010 100 10 010 000
000 11 111 001 100 11 111 011

001 00 000 100 101 00 000 110
001 01 101 101 101 01 101 111
001 10 110 111 101 10 110 101
001 11 011 110 101 11 011 100

010 00 100 001 110 00 100 011
010 01 001 010 110 01 001 000
010 10 110 011 110 10 110 001
010 11 011 000 110 11 011 010

011 00 100 111 111 00 100 101
011 01 001 110 111 01 001 100
011 10 010 100 111 10 010 110
011 11 111 101 111 11 111 111

Table 2.2 State Table For Convolutional EncoderTable 2.2 State Table For Convolutional EncoderTable 2.2 State Table For Convolutional EncoderTable 2.2 State Table For Convolutional EncoderTable 2.2 State Table For Convolutional Encoder

22222ModemsModemsModemsModemsModems

4949494949

Table 2.2 can also be used to derive a trellis diagram. The trellis diagram
and the state diagram convey equivalent information. The trellis diagram
for the convolutional encoder of the V.32 modem is shown in Figure 2.13.

Each node of the trellis represents a state and each node is labelled with
the three-bit value of that particular state out of the eight possible states. A
line is drawn from a state in one time window to a state of the next time
window and represents the transition from one state to another for any
given 2-bit input. Figure 2.13 shows some of the trellis paths labelled with
the 3-bit output that was produced as the delay elements went from one
state to another.

000

001

010

100

101

110

111

011

000

001

010

100

101

110

111

011

000

001

010

100

101

110

111

011

000

001

010

100

101

110

111

011

Time window 1 Time window 2 Time window 3

101

010

111

000

011
100

001

110

010

111

001

100

Figure 2.13 Trellis Diagram For Convolutional EncodingFigure 2.13 Trellis Diagram For Convolutional EncodingFigure 2.13 Trellis Diagram For Convolutional EncodingFigure 2.13 Trellis Diagram For Convolutional EncodingFigure 2.13 Trellis Diagram For Convolutional Encoding

It is assumed that at time t=0, the contents of each delay element is 0.
Therefore the starting point for the trellis is at state 000. There are four
possible combinations of 2-bit inputs and therefore, four lines that come
out of state 000 and connect to the corresponding states at time window 2
as specified by the state table. For example, an input of 01 results in a

22222 ModemsModemsModemsModemsModems

5050505050

change in the state of the delay elements from 000 to 011 with an output of
101. This information is conveyed in the trellis diagram by a line from
state 000 to 011 labelled 101. The trellis diagram in Figure 2.13 has some of
the branches labelled with the output value that is produced for a specific
state transition; the rest can be determined from the state table.

2.2.122.2.122.2.122.2.122.2.12 Data ConstellationData ConstellationData ConstellationData ConstellationData Constellation
A 2-bit input to the convolutional encoder produces a 3-bit output
containing a redundant bit. Because of redundancy, this 3-bit data value
can be corrected for errors that occur during transmission.

In the transmission of information in a V.32 modem, the three bits from
the output of the convolutional encoder are combined with two bits
coming directly from the data bit stream. In essence, four bits from the
data stream are being encoded to five bits (one redundant bit is added to
the four original bits).

To modulate a carrier with this information, a constellation is created that
maps any 5-bit data value to an X and Y coordinate or a real and
imaginary term associated. The real and imaginary terms are used to
modulate sine and cosine carriers for quadrature amplitude modulation.
Figure 2.14 shows the V.32 constellation with the 3-bit output of the
convolutional encoder underlined.

The demodulated carrier yields the original X and Y coordinates which
determine the original 5-bit data value. Since the transmission medium for
the carrier is noisy, the demodulated data may not be correct. The Viterbi
algorithm corrects errors introduced in transmission.

2.2.132.2.132.2.132.2.132.2.13 Viterbi AlgorithmViterbi AlgorithmViterbi AlgorithmViterbi AlgorithmViterbi Algorithm
The Viterbi algorithm decides whether demodulated data is the data that
was sent and if not, corrects it. It works by analyzing the pattern of data
values received over a period of time to deduce the data value that is most
likely to have occurred at the beginning of the period.

The received carrier is demodulated to produce X and Y coordinates of a
point on the signal constellation. The distances from that point on the
constellation to the nearest eight points that all have different leading
three bits are calculated. These Euclidean distances are then used to label
the branches of the trellis diagram. After a number of samples have been
received and mapped to the trellis diagram in this fashion, the diagram
can be read to determine the shortest path back to the original state, which
determines the data value that has the highest probability of having been
transmitted at that time.

22222ModemsModemsModemsModemsModems

5151515151

11000

01010

10100

00011

11111

0010101000

100111010110010

01101000100111100000

1110111010

001000101100110

1011010001

0110000001

1101111100

10111

11110

01110

01001

11001

10000

00111

Imaginary (Y)

Real (X)

Figure 2.14 Signal Constellation Showing Convolutional Encoder OutputFigure 2.14 Signal Constellation Showing Convolutional Encoder OutputFigure 2.14 Signal Constellation Showing Convolutional Encoder OutputFigure 2.14 Signal Constellation Showing Convolutional Encoder OutputFigure 2.14 Signal Constellation Showing Convolutional Encoder Output

For example, assume that the received signal at time window 1 is mapped
into the constellation at coordinate 2, 2 (x, y). This does not correspond to
a five-bit code on the constellation. The Euclidean distances from this
point to the nearest eight points are calculated. Because of the way the
signal map is configured, each of these points has a different value for its
first three bits (underlined in Figure 2.14).

In the trellis diagram, the line connecting state 000 to state 011 in time
window 1 is labelled 101. The point in the signal constellation that is
nearest to 2, 2 and has the value 101 as its first three bits is 10100, at
coordinate 3, 2. The Euclidean distance between coordinate 2, 2 and 3, 2 is:

[(2–3)2 + (2–2)2]1/2 = 1

22222 ModemsModemsModemsModemsModems

5252525252

Therefore, the branch of the trellis diagram going from state 000 to state
011 is labelled 1. This process is repeated to label the other branches on the
trellis diagram. As a new sample is received in each time window, the
trellis branches are labelled with the corresponding Euclidean distances.

After a given number of time windows have elapsed, the shortest path
back to the start of the first time window is calculated. The branch of the
shortest path in the first time window represents the original data value
that was transmitted.

Since the data point is determined only after a given number of time
windows has elapsed, a delay of (number of time window multiplied by
the symbol rate) is incurred. The more time windows that elapse before a
decision is made, the more accurate the decision. Thus there is a tradeoff
between accuracy and execution time.

2.2.142.2.142.2.142.2.142.2.14 ADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family Implementation
The first task of the program is to determine which eight points in the data
constellation are the nearest to the X and Y coordinates produced by the
demodulator. This is done using a lookup table. Each group in the lookup
table contains the X and Y coordinates of the four points in the
constellation that have the same 3-bit leading sequences. There are 32
points in the constellation, and therefore eight groups. Because the ADSP-
2100 is a 16-bit machine, the X and Y values are normalized for 16-bit data.
A negative full scale value of H#8000 and a positive full scale value of
H#7FFF are used for both the X and Y values.

For example, 00000, 00001, 00010 and 00011 are in group 0. The Euclidean
distance between the received point and the points in the group 0 are
calculated. The shortest distance is then written into another table called
min_dist in which the first location holds the shortest distance of the first
group, the second location holds the shortest distance of the second group,
etc. Table 2.3 shows the X and Y coordinates in each of the eight groups.

22222ModemsModemsModemsModemsModems

5353535353

Group X Y Group X Y
 000 4 1 100 1 2

0 1 –3 2
–4 1 1 –2
0 –3 –3 –2

 001 4 –1 101 3 2
0 –1 –1 2
–4 –1 3 –2
0 3 1 0

 010 2 3 110 1 0
–2 3 1 4
2 –1 –3 0
–2 –1 1 –4

 011 2 1 111 3 0
–2 1 –1 0
2 –3 –1 4
–2 –3 –1 –4

Table 2.3 Lookup Table Of X & Y CoordinatesTable 2.3 Lookup Table Of X & Y CoordinatesTable 2.3 Lookup Table Of X & Y CoordinatesTable 2.3 Lookup Table Of X & Y CoordinatesTable 2.3 Lookup Table Of X & Y Coordinates

2.2.152.2.152.2.152.2.152.2.15 Shortest Path Through Trellis DiagramShortest Path Through Trellis DiagramShortest Path Through Trellis DiagramShortest Path Through Trellis DiagramShortest Path Through Trellis Diagram
After the distance from the received point for the current time window to
the closest point in each group is known, the total distance back to the
beginning of the trellis diagram can be calculated. Each time, only the
incremental distance for the time window, not the total distance, is
calculated.

An 8-location table acc_dist stores the accumulated distance through the
trellis diagram. Because the trellis diagram starts at state 000, the first
location of the table is initialized with a 0 and all other locations with the
positive full scale value. This ensures that, for the first time window, all
paths converge back to state 000, since this state starts with the shortest
accumulated distance.

At each time window, the surviving path to each state is determined and
the accumulated distance table is updated with the accumulated distance
of each of the eight surviving paths. The surviving path is determined by
taking the length of all of the possible paths going into a state and adding
that distance to the accumulated distance of the state at the other end of
the path.

22222 ModemsModemsModemsModemsModems

5454545454

For example, Figure 2.15 shows the four paths that lead into state 001. The
length of each path is added to the accumulated distance of the state from
where the path emanates. The length of path 111 is added to the
accumulated distance of state 000, the length of path 100 to is added the
accumulated distance of state 010, the length of path 101 to is added the
accumulated distance of state 100, and the length of path 110 is added to
the accumulated distance of state 110. The lengths of these paths are read
from the min_dist table.

The minimum of these four distances becomes the new accumulated
distance to state 001 and is written into the appropriate location of the
accumulated distance table (acc_dist). As each surviving path leg is
determined, a table is filled with the distance of the path and the state
from which it came, to allow the program to trace back along the
surviving path to the beginning of the trellis diagram.

000

001

010

100

101

110

111

011

Time window N

000

001

010

100

101

110

111

011

111

100

101

110

New Accumulated
Distance to State 001

= Minimum of

Old Distance to state 000 + length of path 111

Old Distance to state 100 + length of path 101

Old Distance to state 110 + length of path 110

Accumulated Distance Table

Accumulated Distance to State 000

Accumulated Distance to State 001

Accumulated Distance to State 010

Accumulated Distance to State 011

Accumulated Distance to State 100

Accumulated Distance to State 101

Accumulated Distance to State 110

Accumulated Distance to State 111

Old Distance to state 010 + length of path 100

Figure 2.15 Accumulated Distance Table Update ExampleFigure 2.15 Accumulated Distance Table Update ExampleFigure 2.15 Accumulated Distance Table Update ExampleFigure 2.15 Accumulated Distance Table Update ExampleFigure 2.15 Accumulated Distance Table Update Example

22222ModemsModemsModemsModemsModems

5555555555

After all eight accumulated distances are updated, the shortest of the eight
accumulated distances is determined. This path is traced back the given
number of time windows. The distance of the branch in the first time
window determines the data value most likely to have been transmitted.
The point in the data constellation that is this distance from the received
point represents the error-corrected symbol.

2.2.162.2.162.2.162.2.162.2.16 Viterbi ProgramViterbi ProgramViterbi ProgramViterbi ProgramViterbi Program
The example program uses N=20 time windows. In general, a value of N
which is greater than or equal to three times the constraint length gives
good results. In this case, the constraint length is 3, the number of bits
needed to describe the possible states at each time window. The larger the
value of N, the better the performance of the Viterbi algorithm, but the
longer the execution time and the larger the table sizes.

2.2.16.12.2.16.12.2.16.12.2.16.12.2.16.1 InitializationInitializationInitializationInitializationInitialization
The first part of the program declares buffers and initializes variables. A
buffer to store input data, eight tables holding the coordinates of the eight
data groups, eight tables holding the 5-bit codes for the eight data groups,
the accumulated distance buffer, eight state-tracing tables, eight buffers to
hold surviving path distances and some pointer tables are all declared in
the initialization section.

2.2.16.22.2.16.22.2.16.22.2.16.22.2.16.2 Data Input & Euclidean DistanceData Input & Euclidean DistanceData Input & Euclidean DistanceData Input & Euclidean DistanceData Input & Euclidean Distance
Data values are placed in registers AX0 and AX1 as X and Y coordinates,
respectively, for input to the Viterbi program. The code starting at
find_dist calculates the distances by calling the subroutine dist (which
calculates the Euclidean distance squared) followed by the subroutine sqrt.
This subroutine is repeated for each data group. The table min_dist is filled
with the shortest distance for each group.

2.2.16.32.2.16.32.2.16.32.2.16.32.2.16.3 Shortest PathShortest PathShortest PathShortest PathShortest Path
The code starting at short_path determines the shortest surviving path to
each state for the current time window. It also fills the eight state tables
with the distance of the surviving branch and the state from which the
branch came. The subroutine min_calc compares the four possible
surviving paths and determine the shortest.

2.2.16.42.2.16.42.2.16.42.2.16.42.2.16.4 Last Surviving PathLast Surviving PathLast Surviving PathLast Surviving PathLast Surviving Path
After the accumulated distances to all eight states are calculated, the
shortest is determined. The code starting at search determines the shortest
path and traces this path back to the start of the trellis diagram.

22222 ModemsModemsModemsModemsModems

5656565656

2.2.16.52.2.16.52.2.16.52.2.16.52.2.16.5 Determination Of Error Corrected DataDetermination Of Error Corrected DataDetermination Of Error Corrected DataDetermination Of Error Corrected DataDetermination Of Error Corrected Data
When the surviving branch of the first time window is determined, the
closest point of the data constellation in that data group is found. This 5-
bit code is put into the SR1 register.

.MODULE/RAM viterbi;

{Viterbi decoder program for convolutional encoded data for a V.32 modem. This
program decodes information using N=20 levels or time windows of Viterbi decoding.

Demodulated data is stored as input to this routine in registers AX0 and AX1 as
follows;

AX0=X coordinate
AX1=Y coordinate

This data is used as input.

The 5-bit data word output by this routine is placed in register SR1.}

.CONST N=20;

.CONST base=h#0D49, sqrt2=h#5A82; {required for square root}

.VAR/PM/RAM sqrt_coeff[5];

.INIT sqrt_coeff: h#5D1D00, h#A9ED00, h#46D600,
h#DDAA00, h#072D00;

{table for storing last N inputs, as X and Y coordinate
table will contain alternating X, Y for each time window}

.VAR/DM/RAM/CIRC inputs[N+N];

{variables to hold new X and Y inputs}
.VAR/DM/RAM x_input;
.VAR/DM/RAM y_input;

22222ModemsModemsModemsModemsModems

5757575757

{tables for X and Y coordinates of data constellation points. Coordinates of both
axes are -4, -3, -2 ,-1, 0, 1, 2, 3, 4. They are represented in binary as:

-4 H#8000
-3 H#A000
-2 H#C000
-1 H#E000
0 H#0000
1 H#2000
2 H#4000
3 H#6000
4 H#7FFF

}

.VAR/PM/RAM group0[8];

.VAR/PM/RAM group1[8];

.VAR/PM/RAM group2[8];

.VAR/PM/RAM group3[8];

.VAR/PM/RAM group4[8];

.VAR/PM/RAM group5[8];

.VAR/PM/RAM group6[8];

.VAR/PM/RAM group7[8];

.INIT group0: H#7FFF00, H#200000, H#000000, H#200000,
H#800000, H#200000, H#000000, H#A00000;

.INIT group1: H#7FFF00, H#E00000, H#000000, H#E00000,
H#800000, H#E00000, H#000000, H#600000;

.INIT group2: H#400000, H#600000, H#C00000, H#600000,
H#400000, H#E00000, H#C00000, H#E00000;

.INIT group3: H#400000, H#200000, H#C00000, H#200000,
H#400000, H#A00000, H#C00000, H#A00000;

.INIT group4: H#200000, H#400000, H#A00000, H#400000,
H#200000, H#C00000, H#A00000, H#C00000;

.INIT group5: H#600000, H#400000, H#E00000, H#400000,
H#600000, H#C00000, H#E00000, H#C00000;

.INIT group6: H#200000, H#000000, H#200000, H#7FFF00,
H#A00000, H#000000, H#200000, H#800000;

.INIT group7: H#600000, H#000000, H#E00000, H#000000,
H#E00000, H#7FFF00, H#E00000, H#800000;

{lookup table to get proper group}
.VAR/DM/RAM group_table[8];

.INIT group_table: ^group0, ^group1, ^group2, ^group3,
^group4, ^group5, ^group6, ^group7;

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

5858585858

{eight tables which show the 5-bit codes that correspond to the X and Y
coordinates in the 8 group tables}
.VAR/DM/RAM codes0[4];
.VAR/DM/RAM codes1[4];
.VAR/DM/RAM codes2[4];
.VAR/DM/RAM codes3[4];
.VAR/DM/RAM codes4[4];
.VAR/DM/RAM codes5[4];
.VAR/DM/RAM codes6[4];
.VAR/DM/RAM codes7[4];

.INIT codes0: h#0003, h#0002, h#0000, h#0001;

.INIT codes1: h#0004, h#0006, h#0007, h#0005;

.INIT codes2: h#000A, h#0008, h#000B, h#0009;

.INIT codes3: h#000D, h#000F, h#000C, h#000E;

.INIT codes4: h#0013, h#0012, h#0011, h#0010;

.INIT codes5: h#0014, h#0015, h#0016, h#0017;

.INIT codes6: h#001A, h#0018, h#0019, h#001B;

.INIT codes7: h#001D, h#001E, h#001F, h#001C;

.VAR/DM/RAM codes_table[8];

.INIT codes_table: ^codes0, ^codes1, ^codes2, ^codes3,
^codes4, ^codes5, ^codes6, ^codes7;

{table for accumulated distances at each state}
.VAR/DM/RAM/CIRC acc_dist[8];
.VAR/DM/RAM temp_dist[8];

{eight tables where each table contains the possible states from where a
path could come for each of the eight states}

.VAR/DM/RAM to_state0[4];

.VAR/DM/RAM to_state1[4];

.VAR/DM/RAM to_state2[4];

.VAR/DM/RAM to_state3[4];

.VAR/DM/RAM to_state4[4];

.VAR/DM/RAM to_state5[4];

.VAR/DM/RAM to_state6[4];

.VAR/DM/RAM to_state7[4];

22222ModemsModemsModemsModemsModems

5959595959

{table is stored with state numbers in backwards order}
.INIT to_state0: 2,4,6,0;
.INIT to_state1: 0,6,4,2;
.INIT to_state2: 6,0,2,4;
.INIT to_state3: 4,2,0,6;
.INIT to_state4: 5,3,7,1;
.INIT to_state5: 3,5,1,7;
.INIT to_state6: 1,7,3,5;
.INIT to_state7: 7,1,5,3;

{eight tables, each with N entries, where each entry contains the label of
the leg of the surviving path for a given time window}

.VAR/DM/RAM/CIRC state0[N];

.VAR/DM/RAM/CIRC state1[N];

.VAR/DM/RAM/CIRC state2[N];

.VAR/DM/RAM/CIRC state3[N];

.VAR/DM/RAM/CIRC state4[N];

.VAR/DM/RAM/CIRC state5[N];

.VAR/DM/RAM/CIRC state6[N];

.VAR/DM/RAM/CIRC state7[N];

{eight variables to hold the most recent pointer into the eight state
tables above}

.VAR/DM/RAM pointer0;

.VAR/DM/RAM pointer1;

.VAR/DM/RAM pointer2;

.VAR/DM/RAM pointer3;

.VAR/DM/RAM pointer4;

.VAR/DM/RAM pointer5;

.VAR/DM/RAM pointer6;

.VAR/DM/RAM pointer7;

.INIT pointer0:^state0;

.INIT pointer1:^state1;

.INIT pointer2:^state2;

.INIT pointer3:^state3;

.INIT pointer4:^state4;

.INIT pointer5:^state5;

.INIT pointer6:^state6;

.INIT pointer7:^state7;

{table used to look up pointers declared above}
.VAR/DM/RAM point_table[8];

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

6060606060

{initialize table with the addresses of the pointers}
.INIT point_table: ^pointer0, ^pointer1, ^pointer2,

^pointer3, ^pointer4, ^pointer5,
^pointer6, ^pointer7;

{table to hold the eight possible distances, minimum of each group}
.VAR/DM/RAM min_dist[8];

{interrupt vectors}
RTI;
RTI;
RTI;
JUMP decode;

IMASK=0; {disable all interrupts}
ICNTL=8; {interrupts edge sensitive, non-nested}
ENA AR_SAT;

I0=^inputs; {init. I0 to start of input buffer}
L0=%inputs; {init. L0 to size of input buffer}
M0=1;
M1=0;
M3=-1;

L3=N;
L5=0;

{initialize input buffer to all 0s}
CNTR=%inputs; {load counter with size of buffer}
SI=0; {put a 0 into register si}
DO clear_buf UNTIL CE;

clear_buf: DM(I0,M0)=SI; {transfer 0 into buffer location}

{initialize accumulated distance table}
I1=^acc_dist;
L1=%acc_dist;
DM(I1,M0)=0;
CNTR=%acc_dist-1;
DO clear_acc UNTIL CE;

clear_acc: DM(I1,M0)=h#7FFF;

22222ModemsModemsModemsModemsModems

6161616161

{initialize eight tables with 0}
I2=^state0;
L2=%state0;
CNTR=N;
DO init_table0 UNTIL CE;

init_table0: DM(I2,M0)=SI;

I2=^state1;
L2=%state1;
CNTR=N;
DO init_table1 UNTIL CE;

init_table1: DM(I2,M0)=SI;

I2=^state2;
L2=%state2;
CNTR=N;
DO init_table2 UNTIL CE;

init_table2: DM(I2,M0)=SI;

I2=^state3;
L2=%state3;
CNTR=N;
DO init_table3 UNTIL CE;

init_table3: DM(I2,M0)=SI;

I2=^state4;
L2=%state4;
CNTR=N;
DO init_table4 UNTIL CE;

init_table4: DM(I2,M0)=SI;

I2=^state5;
L2=%state5;
CNTR=N;
DO init_table5 UNTIL CE;

init_table5: DM(I2,M0)=SI;

I2=^state6;
L2=%state6;
CNTR=N;
DO init_table6 UNTIL CE;

init_table6: DM(I2,M0)=SI;

I2=^state7;
L2=%state7;
CNTR=N;
DO init_table7 UNTIL CE;

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

6262626262

init_table7: DM(I2,M0)=SI;

L2=0;
IMASK=8; {enable interrupt 3}

waitlp: JUMP waitlp;

{——————————————————————————————}

decode: AX0=DM(codec);
AX1=DM(codec);
DM(I0,M0)=AX0; {store X input in input buffer}
DM(I0,M0)=AX1; {store Y input in input buffer}
DM(x_input)=AX0;
DM(y_input)=AX1;

{Calculate Euclidean distances from received point to 32 points of data
constellation. The shortest distance in each data group is saved and will
represent the distance for the trellis branch for the current time window}

find_dist: M4=1;
L4=0;
I4=^group0;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist)=SR1; {store shortest dist in table}

I4=^group1;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+1)=SR1; {store shortest dist in table}

I4=^group2;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+2)=SR1; {store shortest dist in table}

22222ModemsModemsModemsModemsModems

6363636363

I4=^group3;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+3)=SR1; {store shortest dist in table}

I4=^group4;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+4)=SR1; {store shortest dist in table}

I4=^group5;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+5)=SR1; {store shortest dist in table}

I4=^group6;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+6)=SR1; {store shortest dist in table}

I4=^group7;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MR0=0;
MR1=AR;
CALL sqrt;
DM(min_dist+7)=SR1; {store shortest dist in table}

SR1=H#7fff;
DM(min_dist+8)=SR1;

{Add each path distance to accumulated distance to yield 4 accumulated
distances for each state. The shortest accumulated distance becomes the new
accumulated distance to that state.}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

6464646464

{Find shortest path into state 0. Choose from 0, 1, 2, 3 of min_dist table; these
correspond to paths back to states 0, 6, 4, 2 respectively. The accumulated
distances to these states are added with the paths of the current time window to
determine the shortest accumulated path to this point.}

short_path: I2=^min_dist;
I3=^to_state0+3;
CNTR=4;
CALL min_calc;
DM(temp_dist)=AR; {store temporarily}

AX0=4;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came}
I2=^to_state0-1;

{point to 1 before start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later along with the 3-bit output
label of the suriving path; pack both into 1 word; state in high byte, label low
byte}

SR=SR OR LSHIFT SI BY 8 (HI);
I3=DM(pointer0); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer0)=I3; {store new pointer}

{find shortest path into state 1, choose from 4, 5, 6, 7 of min_dist table these
correspond to paths back to states 2, 4, 6, 0 respectively}

I2=^min_dist+4;
I3=^to_state1+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+1)=AR; {store temporarily}

AX0=8;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}

22222ModemsModemsModemsModemsModems

6565656565

I2=^to_state1-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-
bit output label of the suriving path pack both into 1 word state is in high
byte, label lo byte.}

SR=SR or LSHIFT SI BY 8 (HI);
I3=DM(pointer1); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer1)=I3; {store new pointer}

{find shortest path into state 2, choose from 0, 1, 2, 3 of min_dist table
these correspond to paths back to states 4, 2, 0, 6 respectively}

I2=^min_dist;
I3=^to_state2+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+2)=AR; {store temporarily}

AX0=4;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}
I2=^to_state2-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,I1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-
bit output label of the suriving path pack both into 1 word state is in high
byte, label lo byte.}

SR=SR or LSHIFT SI BY 8 (HI);
I3=DM(pointer2); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer2)=i3; {store new pointer}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

6666666666

{find shortest path into state 3, choose from 4, 5, 6, 7 of min_dist table
these correspond to paths back to states 6, 0, 2, 4 respectively}

I2=^min_dist+4;
I3=^to_state3+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+3)=AR; {store temporarily}

AX0=8;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}
I2=^to_state3-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);
I3=DM(pointer3); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer3)=I3; {store new pointer}

{find shortest path into state 4, choose from 0, 1, 2, 3 of min_dist table
these correspond to paths back to states 1, 7, 3, 5 respectively}

I2=^min_dist;
I3=^to_state4+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+4)=AR; {store temporarily}

AX0=4;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

22222ModemsModemsModemsModemsModems

6767676767

{find the state from which the shortest path came.}
I2=^to_state4-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);
I3=DM(pointer4); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer4)=I3; {store new pointer}

{find shortest path into state 5, choose from 4, 5, 6, 7 of min_dist table
these correspond to paths back to states 7, 1, 5, 3 respectively}

I2=^min_dist+4;
I3=^to_state5+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+5)=AR; {store temporarily}

AX0=8;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, will pack later}

{find the state from which the shortest path came.}
I2=^to_state5-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);
I3=DM(pointer5); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer5)=I3; {store new pointer}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

6868686868

{find shortest path into state 6, choose from 0, 1, 2, 3 of min_dist table
these correspond to paths back to states 5, 3, 7, 1 respectively}

I2=^min_dist;
I3=^to_state6+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+6)=AR; {store temporarily}

AX0=4;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}
I2=^to_state6-1; {point to start of table}
I2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,I1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte}

SR=SR or LSHIFT SI BY 8 (HI);
I3=DM(pointer6); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer6)=I3; {store new pointer}

{find shortest path into state 7, choose from 4, 5, 6, 7 of min_dist table
these correspond to paths back to states 3, 5, 1, 7 respectively}

I2=^min_dist+4;
I3=^to_state7+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+7)=AR; {store temporarily}

AX0=8;
AY0=SI;
AR=AX0-AY0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

22222ModemsModemsModemsModemsModems

6969696969

{find the state from which the shortest path came.}
I2=^to_state7-1; {point to start of table}
M2=SI; {get index into table}
MODIFY(I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-bit
output label of the suriving path pack both into 1 word state is in high byte, label
lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);
I3=DM(pointer7); {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM(pointer7)=I3; {store new pointer}

{Put data from temp_dist back into acc_dist as new accumulated distance up to this
point.}

replace: CNTR=8;
I2=^acc_dist;
I1=^temp_dist;
I1=0;
DO move_buf UNTIL CE;

SI=DM(I1,M0); {read data from temp_dist}
move_buf: DM(I2,M0)=SI; {put back as new acc_dist}

{Search through the acc_dist table for the shortest distance. This will indicate
the end point of the surviving path.}

search: I2=^acc_dist;
CNTR=8;

SI=CNTR;
AY0=h#7FFF; {initialize with largest number}
AF=PASS AY0;
AX0=DM(I2,M0);
DO short_dst UNTIL CE;

AR=AF-AX0;
IF LE JUMP short_dst;
SI=CNTR; {save index of smallest}
IF GE AF=PASS AX0; {if smaller, update}

short_dst: AX0=DM(I2,M0);

AX0=8;
AY0=SI;
AR=AX0-AY0; {calc. which state is at end of surviving path}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

7070707070

{Now that the end of surviving path is known (in AR), trace back N time
windows to find starting path or path of survivor in first time window.}

trace: CNTR=N; {trace back N time windows}
DO search_back UNTIL CE;

{read entry from proper state table to find from which state path came}
I2=^point_table; {point to start of table}
M2=AR; {get offset into table}
MODIFY(I2,M2); {modify pointer to point into table}
AX0=DM(I2,M1); {read pointer address from table}

I2=AX0; {put pointer address into I2}
AY1=DM(I2,M2); {get pntr value, add. into state table}
I2=AY1;
AY0=N+1; {calculate index into state table}
AX0=CNTR;
AR=AX0-AY0;
M2=AR;
L2=N;
MODIFY(I2,M2); {point into state table using circ}
L2=0;
SI=DM(I2,M1); {read contents of state table}
AX0=SI;
AY0=h#FF; {set up mask to isolate path label}
AF=AX0 AND AY0; {extract path label}

SR=LSHIFT SI BY -8 (HI); {extract state info}
search_back: AR=SR1;

{At this point the surviving leg label is in AF and the state number in AR
find the 5-bit code in the group specified by value in AF that is closest
to the data recieved N time windows ago.}

final_stage: AR=PASS AF; {put leg label into AR}
MX1=AR; {store leg label in MX1,for later}
I2=^group_table; {point to start of group table}
M2=AR; {get displacement into table}
MODIFY(I2,M2); {update pointer}
AX0=DM(I2,M1); {get address of proper table}
I4=AX0; {load i4 with start of group table}

AX0=DM(I0,M0); {get X coord. of input N windows ago}
M2=-1;
AX1=DM(I0,M2); {get Y coord. of input N windows ago}

22222ModemsModemsModemsModemsModems

7171717171

AY0=32767; {init with max distance}
AF=PASS AY0, AY0=PM(I4,M4); {get X value from table}
CNTR=4; {4 points in group}
DO ptloop2 UNTIL CE;

AR=AX0-AY0, AY1=PM(I4,M4); {do X-X’ and get Y}
IF AV JUMP ptloop2; {if overflow, go on}
MY0=AR, AR=AX1-AY1; {copy X-X’, do Y-Y’}
IF AV JUMP ptloop2; {if overflow, go on}
MY1=AR; {copy Y-Y’}
MR=AR*MY1(SS), MX0=MY0; {square Y-Y’, copy X-X’}
MR=MR+MX0*MY0(RND); {add square of X-X’}
AR=MR1-AF; {compare with previous}
IF GE JUMP ptloop2; {if larger, no update}
AF=PASS MR1; {if smaller, update}
SI=CNTR; {save index of closest point}

ptloop2: AY0=PM(I4,M4); {get next X value}

AX0=4;
AY0=SI;
AR=AX0-AY0; {calculate index from min pointer}
I2=^codes_table; {point to start of codes_table}
M2=MX1; {leg label is offset into table}
MODIFY(I2,M2);
SI=DM(I2,M1); {get address of which codes buf}
I2=SI;
M2=AR; {get index into codes table}
MODIFY(I2,M2);
SR1=DM(I2,M1); {get 5-bit code from table}

{SR1 now contains the answer}
answer: DM(dac)=SR1;

RTI;

{—————————— SUBROUTINES ———————————}

{Calculate the Euclidean distance squared between the point specified by the x
and y coordinates found data memory locations x_input and y_input and the
points specified by the x and y coordinates found in the table pointed to by
index register i4. The index denoting the table entry which is closest to the
input point is left in register SI and the shortest distance squared is left in
register AF.}

dist: AY0=32767; {init min distance to max num}
AX0=DM(x_input);
AX1=DM(y_input);
AF=PASS AY0, AY0=PM(I4,M4); {get X value from table}
CNTR=4; {4 points in group}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

7272727272

DO ptloop UNTIL CE;
AR=AX0-AY0, AY1=PM(I4,M4); {do X-X’ and get Y}
IF AV JUMP ptloop; {if overflow, go on}
MY0=AR, AR=AX1-AY1; {copy X-X’, do Y-Y’}
IF AV JUMP ptloop; {if overflow, go on}
MY1=AR; {copy Y-Y’}
MR=AR*MY1(SS), MX0=MY0; {square Y-Y’, copy X-X’}
IF MV SAT MR;
MR=MR+MX0*MY0(RND); {add square of X-X’}
IF VM SAT MR;
AR=MR1-AF; {compare with previous}
IF GE JUMP ptloop; {if larger, no update}
AF=PASS MR1; {if smaller, update}
SI=CNTR; {save index of closest point}

ptloop: AY0=PM(I4,M4); {get next X value}
RTS;

{—————————————————————————————}

{Take a 32-bit number whose most significant portion is in register MR1 and
least significant portion in register MR0 and calculate the 16-bit square
root. If the input is interpreted as a 16.16 unsigned number, the output in
register SR1 is in 8.8 signed format.}

sqrt: I7=^sqrt_coeff; {pointer to coeff. buffer}
M4=1;
L7=0;
SE=EXP MR1(HI); {check for redundant bits}
SE=EXP MR0(LO);
AX0=SE, SR=NORM MR1(HI); {remove redundant bits}
SR=SR OR NORM MR0(LO);
MY0=SR1, AR=PASS SR1;
IF EQ RTS;
MR=0;
MR1=base; {load constant value}
MF=AR*MY0(RND), MX0=PM(I7,M4); {MF = x squared}
MR=MR+MX0*MY0(SS), MX0=PM(I7,M4); {MR = base + CX}
CNTR=4;
DO approx UNTIL CE;

MR=MR+MX0*MF(SS), MX0=PM(I7,M4);
approx: MF=AR*MF(RND);

AY0=15;
MY0=MR1, AR=AX0+AY0; {SE + 15 = 0?}
IF NE JUMP scale; {no, compute square-root}
SR=ASHIFT MR1 BY -7 (HI);
RTS;

22222ModemsModemsModemsModemsModems

7373737373

scale: MR=0;
MR1=sqrt2; {load 1 over square rt of 2}
MY1=MR1, AR=ABS AR;
AY0=AR;
AR=AY0-1;
IF EQ JUMP pwr_ok;
CNTR=AR; {compute (1/sqr-rt 2)^(SE+15)}
DO compute UNTIL CE;

compute: MR=MR1*MY1(RND);
pwr_ok: IF NEG JUMP frac;

AY1=h#0080; {load a 1 in 9.23 format}
AY0=0;
DIVS AY1, MR1; {compute reciprocal MR}
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
MX0=AY0;
MR=0;
MR0=h#2000;
MR=MR+MX0*MY0(US);
SR=ASHIFT MR1 BY 1(HI);
SR=SR OR LSHIFT MR0 BY 1(LO);
RTS;

frac: MR=MR1*MY0(RND);
SR=ASHIFT MR1 BY -7(HI);
RTS;

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

7474747474

{—————————————————————————————}

{Take the distances found in the table pointed to by register I2, add them
to the accumulated distance to the state specified in the state table
pointed to by register I3, and determine the shortest of these total
distances. The shortest distance is placed in register AR and the index of
the shortest distance is placed in register SI.}

min_calc: L3=0;
SI=CNTR;
AY0=h#7FFF; {initialize with largest number}
AF=PASS AY0;

MR1=DM(I2,M0);
SR=ASHIFT MR1 BY -1(HI); {half scale}
AX0=SR1;

DO short_dist UNTIL CE;

AY1=DM(I3,M3); {read state number}
I5=^acc_dist;
M5=AY1;
MODIFY(I5,M5); {point to proper acc_dist val}
MR1=DM(I5,M4); {get acc_dist value}
AR=MR1-AY0; {check for max value of acc_dist}
IF EQ JUMP read_nxt; {if max go to next}
SR=ASHIFT MR1 BY -1(HI); {half scale}
AY1=SR1;

AR=AX0+AY1; {add new path to acc_dist}

AX0=AR;

AR=AF-AX0;
IF LE JUMP read_nxt;
SI=CNTR; {save index of smallest}
IF GE AF=PASS AX0; {if smaller, update}

read_nxt: MR1=DM(I2,M0);
SR=ASHIFT MR1 BY -1(HI); {half scale}

short_dist: AX0=SR1;
AX0=DM(I2,M0);
AR=PASS AF;
L3=N;
RTS;

.ENDMOD;

Listing 2.8 Viterbi DecoderListing 2.8 Viterbi DecoderListing 2.8 Viterbi DecoderListing 2.8 Viterbi DecoderListing 2.8 Viterbi Decoder

22222ModemsModemsModemsModemsModems

7575757575

2.32.32.32.32.3 QUADRATURE AMPLITUDE MODULATIONQUADRATURE AMPLITUDE MODULATIONQUADRATURE AMPLITUDE MODULATIONQUADRATURE AMPLITUDE MODULATIONQUADRATURE AMPLITUDE MODULATION
The CCITT V.32 modem recommendation calls for the use of quadrature
amplitude modulation (QAM) in the transmit section and quadrature
amplitude demodulation in the receive section of the modem. The
encoded digital sequence to be transmitted is amplitude modulated in the
digital domain and then converted to analog form (via a D/A converter)
for transmission over the telephone wires. At the receiving end of the V.32
system, the received analog signal is digitized (via an A/D converter) and
demodulated in the digital domain in order to recover the information
that was sent.

This section describes the implementation of quadrature amplitude
modulation and demodulation on the ADSP-2100 family of processors.

2.3.12.3.12.3.12.3.12.3.1 QAM MethodologyQAM MethodologyQAM MethodologyQAM MethodologyQAM Methodology
Double-sideband quadrature amplitude modulation (QAM) is a very
efficient modulation technique in terms of bandwidth usage. In QAM, two
quadrature (90° phase-shifted) carriers, cos ωck and sin ωck, are
amplitude-modulated by two separate information-bearing signals, as
shown in Figure 2.16.

The synthesized digital sequence can be expressed as:

x(k) = m1(k) cos ωck + m2(k) sin ωck

where m1(k) and m2(k) are the two separate information-bearing signals.
The QAM signal sequence x(k) has the spectrum:

X(2πF) = 1/2 [M1(ω – ωc) + M1(ω + ωc)] – j 1/2 [M2(ω – ωc) – M2(ω + ωc)]

22222 ModemsModemsModemsModemsModems

7676767676

X

X

CARRIER
SIGNAL

GENERATOR
x(k)

m (k)
1

m (k)
2

cos ω kc

sin ω kc

Figure 2.16 QAM Modulator Block DiagramFigure 2.16 QAM Modulator Block DiagramFigure 2.16 QAM Modulator Block DiagramFigure 2.16 QAM Modulator Block DiagramFigure 2.16 QAM Modulator Block Diagram

The spectrum components of the information-bearing signals overlap.
However, the quadrature phase relationship in the carrier components cos
ωck and sin ωck allows the receiving end of the V.32 system to separate the
two signals.

The demodulation is performed as shown in Figure 2.17. A digital phase-
locked loop is used to obtain the carrier component cos ωck and to
generate sin ωck.

Subsequently, the received sequence is multiplied by the two quadrature
carriers. This multiplication results in two signal sequences:

x(k) cos ωck = 1/2 m1(k) + 1/2 m1(k) cos 2ωck + 1/2 m2(k) sin 2ωck

x(k) sin ωck = 1/2 m2(k) + 1/2 m2(k) cos 2ωck + 1/2 m1(k) sin 2ωck

22222ModemsModemsModemsModemsModems

7777777777

The information-bearing signal components m1(k) and m2(k) can be
recovered by passing each of the sequences through a filter that rejects the
double-frequency terms centered at 2ω.

In this particular V.32 implementation, the carrier frequency (Fc) is 1800
Hz, the symbol rate is 2400 Hz and the sample rate of the modulator is
9600 Hz. Thus, the desired cosine carrier is:

cos ωck = cos 2πFckTs = cos 2π(1800)(1/9600) k = cos 3π/8 k

and similarly the sine carrier is:

sin ωck = sin 3π/8 k

Again, in this particular V.32 implementation, the sequences m1(k) and
m2(k) correspond to i(k) and q(k) respectively. These input streams are the
filtered versions of quadrature and in-phase portions of the encoded
symbols to be transmitted.

CARRIER
SIGNAL

GENERATOR

From Timing
Loop & PLL

To Equalizer

X

X

m (k)

m (k)

x(k)

cos ω kc

sin ω kc

1

2

Figure 2.17 QAM Demodulator Block DiagramFigure 2.17 QAM Demodulator Block DiagramFigure 2.17 QAM Demodulator Block DiagramFigure 2.17 QAM Demodulator Block DiagramFigure 2.17 QAM Demodulator Block Diagram

22222 ModemsModemsModemsModemsModems

7878787878

2.3.22.3.22.3.22.3.22.3.2 ADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family ImplementationADSP-2100 Family Implementation
There are two ADSP-21XX assembly modules that handle the modulation
and demodulation tasks separately. These modules are arranged as
interrupt service routines that can be called from a main program which is
presumably managing the V.32 modem.

Modulation is performed by the modulator routine shown on Listing 2.9.
The first section of the code contains the necessary variable, constant and
buffer declarations. The cosine table contains 16 discrete values of a cosine
wave between 0 and 2π, in increments of π/8. This table is used to
generate the cos3π/8k and sin3π/8k values for the modulation process.
The variable mod_ptr stores a pointer into the cosine table between
interrupts. The mod_ptr points to the cosine value to be modulated with
the next arriving data sample.

.MODULE/RAM modulator;

.VAR/PM/CIRC cosine[16]; {Declare cosine table}

.VAR cos_ptr;

.PORT mod_out;

.INIT cosine:<cosval.dat>; {Initialize the cosine table}

.INIT cos_ptr:^cosine; {and the pointer}

.EXTERNAL q_in, i_in; {Input ports for i(k) and q(k)}

.GLOBAL cosine, mod_out;

.ENTRY modulate;

modulate: I4=DM(cos_ptr); {Read current pointer to cosine table}
M4=-4;
M5=7;
L4=16;
MX0=PM(I4,M4); {Read current cos value}
MY0=DM(i_in); {Read I(k)}
MR=MX0*MY0(SS),MX0=PM(I4,M5); {cos(k)*I(k) and get -sin value}
MY0=DM(q_in); {Read Q(k)}
MR=MR+MX0*MY0(RND); {cos(k)*I(k)-sin(k)*Q(k)}
SR=ASHIFT MR2 BY -1(HI); {Scale modulated output by 1/2}
SR=SR OR LSHIFT MR1 BY -1(LO);
DM(mod_out)=SR0; {Send scaled output}
DM(cos_ptr)=I4; {Save the cosine table pointer}
RTI;

.ENDMOD;

Listing 2.9 Modulator CodeListing 2.9 Modulator CodeListing 2.9 Modulator CodeListing 2.9 Modulator CodeListing 2.9 Modulator Code

22222ModemsModemsModemsModemsModems

7979797979

The main body of the modulator code starts at the label modulate. The
current cosine pointer is read and used to fetch the proper cosine value
from the table. This fetch is done using M4=–4, which modifies the I4
register to point to the proper sine value on the following program
memory (PM) fetch. Next, the i(k) input is read and multiplied with the
cosine value. Subsequently, the proper sine value is fetched, multiplied
with the q(k) input and added to the previous multiplication result. The
sine value is fetched using M5=7 which modifies the I4 register to point to
the proper cosine value on the following PM fetch. At this point, the MR
register contains the output of the QAM modulator. Next, the contents of
MR are scaled down by 1/2 using the shifter. This is necessary to keep the
output of the modulator within a 16-bit field without causing overflows or
underflows. Finally the current I4 value is saved as mod_ptr and the
output is sent to the D/A converter.

The demodulation is handled by the demodulator routine shown in Listing
2.10. The first section of the code contains the necessary variable, constant
and buffer declarations. This module also uses the cosine table that is
declared and initialized in the modulator program. The variable demod_ptr
points to the next cosine value for the demodulator, just as mod_ptr does
for the modulator.

The main body of the demodulator code starts at the label demodulate.
First, the current cosine pointer is read into I4. Next, the variable
phase_shift is read in order to determine whether the phase-locked loop
requires a phase shift in the cosine values to be used in demodulation. If a
shift is required, the subroutine cos_gen is called to compute new values
for the cosine table. Once this is completed, the appropriate cosine value is
read from program memory using M4=–4. This value is multiplied with
the input from the A/D converter and sent out to the memory location
xcos which represents x(k) cos ωck. Subsequently, the proper sine value is
fetched from program memory using M5=7 and multiplied with the A/D
input. This result is sent to the memory location xsin which represents x(k)
sin ωck. Finally, the current I4 value is saved as demod_ptr.

22222 ModemsModemsModemsModemsModems

8080808080

.MODULE/RAM demodulator;

.VAR cos_ptr;

.PORT xsin; {Sine demodulated received signal}

.PORT xcos; {Cosine demodulated received signal}

.PORT ad_in; {Input port from the A/D}

.INIT cos_ptr:^cosine; {Initialize cosine table pointer}

.EXTERNAL ph_shift_flag, cosine;

.GLOBAL xsin, xcos;

.ENTRY demodulate;

demodulate: I4=DM(cos_ptr); {Read current ptr to cosine table}
AY0=DM(ph_shift_flag); {Read phase shift flag from the}

{carrier recovery routine}
AR=PASS AY0;
IF NE CALL phase_shift; {Call if phase shift desired}
M4=-4;
M5=7;
L4=16;
MX0=PM(I4,M4); {Read the current cosine value}
MY0=DM(ad_in); {Read the A/D input}
MR=MX0*MY0(RND),MX0=PM(I4,M5); {cos(k)*x(k), get sine value}
DM(xcos)=MR1; {Output cosine demodulated sample}
MR=MX0*MY0(RND); {sin(k)*x(k)}
DM(xsin)=MR1; {Output sine demodulated sample}
DM(cos_ptr)=I4; {Save the cosine table pointer}
RTI;

phase_shift: MODIFY(I4,M4);
MODIFY(I4,M5);
RTS;

.ENDMOD;

Listing 2.10 Demodulator CodeListing 2.10 Demodulator CodeListing 2.10 Demodulator CodeListing 2.10 Demodulator CodeListing 2.10 Demodulator Code

22222ModemsModemsModemsModemsModems

8181818181

2.42.42.42.42.4 ECHO CANCELLATIONECHO CANCELLATIONECHO CANCELLATIONECHO CANCELLATIONECHO CANCELLATION
Most voiceband telephone connections involve several connections
through the telephone network. The 2-wire subscriber line available at
most sites is generally converted to a 4-wire signal at the telephone central
office. The signal must be converted back to a 2-wire signal at the far-end
subscriber line. The 2-to-4-wire interface is implemented with a circuit
called a hybrid. The hybrid intentionally inserts impedance mismatches to
prevent oscillations on the 4-wire trunk line. The mismatch forces a
portion of the transmitted signal to be reflected or echoed back to the
transmitter. This echo can corrupt data the transmitter receives from the
far-end modem.

The telephone system and sources of echo are shown in Figure 2.18. There
are two types of echo in a typical voiceband telephone connection. The
first echo is the reflection from the near-end hybrid, and the second echo
is from the far-end hybrid.

Figure 2.18 Telephone Channel Block DiagramFigure 2.18 Telephone Channel Block DiagramFigure 2.18 Telephone Channel Block DiagramFigure 2.18 Telephone Channel Block DiagramFigure 2.18 Telephone Channel Block Diagram

X

+

Transmitter

Frequency
Shift

Hybrid

Receive
Channel

Far-End Modem
X

Four Wire Trunk

Transmit
Channel

Frequency
Shift Noise

Hybrid

Far-End
Echo

Near-End Modem

Receiver

Receiver
Transmitter

+

Noise

Near-End
Echo

22222 ModemsModemsModemsModemsModems

8282828282

In long distance telephone transmissions, the transmitted signal is
heterodyned to and from a carrier frequency. Since local oscillators in the
network are not exactly matched, the carrier frequency of the far-end echo
is offset from the frequency of the transmitted carrier signal. In modem
applications this shift can affect the degree to which the echo signal can be
cancelled. It is therefore desirable for the echo canceller to compensate for
this frequency offset.

2.4.12.4.12.4.12.4.12.4.1 Echo Cancellation AlgorithmEcho Cancellation AlgorithmEcho Cancellation AlgorithmEcho Cancellation AlgorithmEcho Cancellation Algorithm
A data signal produced by a modem with a two-dimensional signal
constellation has the form

s(t) = RE [∑ bmg(t–mT) e j2πft]

where bm is the complex data symbol and g(t) is the baseband pulse
shape. The frequency f is the carrier frequency. The echo signal is the
transmitted signal convolved with the channel transfer function, H(f). This
transfer function usually involves a linear delay and some dispersive
filtering. The echo signal has the form

se(t) = RE [∑ bmh(t–mT) e j2π(f+f’)t]

where f’ is the frequency offset (Weinstein, 1977).

If the near-end modem is transmitting a signal s(n) and the far-end
modem is transmitting a signal y(n), the near-end received signal is:

r(n) = y(n) + sne(n) + sfe(n) + w(n)

where sne and sfe are the near-end and far-end echo respectively, and w(n)
is random noise introduced by the system.

Echo cancellation is accomplished by subtracting an estimate of the echo
return signal from the actual received signal. The received signal after
echo cancellation is

r´(n) = y(n) + (sne(n) – ^sne(n)) + (sfe(n) – ^sfe(n)) + w(n)

where ^sfe(n) is the estimate of the far-end echo and ^sne(n) is the estimate
of the near-end echo. Ideally, the estimates are equal to the echo signals
and the echo terms drop out (Quatieri and O’Leary, 1989).

22222ModemsModemsModemsModemsModems

8383838383

The estimated echo is generated by feeding the transmitted signal into an
adaptive filter whose transfer function tries to model the telephone
channel’s (see Figure 2.19). The filter coefficients are determined using the
stochastic gradient (Least Mean Squared, or LMS) algorithm (Kamilo and
Messerschmitt, 1987) during a training sequence prior to full duplex
communications. The LMS algorithm attempts to minimize the mean
squared error |E(n)2|. A more detailed description of the LMS algorithm
can be found later in this chapter.

In the training sequence, because the far-end modem is not transmitting,
the received signal consists of echo:

r(n) = sne(n) + sfe(n)

The output of the filter is an estimate of the received signal,

r^(n) = ^sne(n) + ^sfe(n)

and the difference is the error term that the LMS algorithm operates on.

E(n) = r(n) – r^(n)

∑

Adaptive
Filter

S(n)

To Receive Circuit

Sne(n) + Sfe (n)^^

R(n) = + (n)SfeSne(n) + W(n)

+ SfeSne(n)

Sne(n) + Sfe (n)^^(

(

)

)

Figure 2.19 Echo CancellerFigure 2.19 Echo CancellerFigure 2.19 Echo CancellerFigure 2.19 Echo CancellerFigure 2.19 Echo Canceller

22222 ModemsModemsModemsModemsModems

8484848484

The adaptive filter is commonly implemented with a transverse FIR filter.
The structure of this filter is shown in Figure 2.20. The LMS update
equation for tap C at sample time n is

C(n)k+1 = C(n)k + βA(n)E(n)

where A(n) is the sample transmitted at sample time n, E(n) is the residual
error and β is an adaptation constant related to the rate of convergence.

X X X X X

∑

Z-1Z-1Z-1Z-1Z-1
S(n)

Sne (n) + Sfe(n)
^ ^

C k+1 = C k + A E(n) (n)

C1 C2 C3 C4 Ck

(n) (n) β

Figure 2.20 LMS Adaptive FilterFigure 2.20 LMS Adaptive FilterFigure 2.20 LMS Adaptive FilterFigure 2.20 LMS Adaptive FilterFigure 2.20 LMS Adaptive Filter

In a modem application, the filter taps are only updated during the
training periods. The tap update algorithm is either disabled or the
adaptation constant β is greatly reduced during full duplex operation. In
the second case, reducing β allows the echo canceller to track a slowly
changing telephone channel without retraining the modem.

2.4.22.4.22.4.22.4.22.4.2 ADSP-2100 Family Implementation Of LMS AlgorithmADSP-2100 Family Implementation Of LMS AlgorithmADSP-2100 Family Implementation Of LMS AlgorithmADSP-2100 Family Implementation Of LMS AlgorithmADSP-2100 Family Implementation Of LMS Algorithm
Figure 2.21 shows a flowchart for implementing the LMS stochastic
gradient algorithm on the ADSP-2100 family of processors. The LMS
algorithm is implemented in an interrupt service routine so that the
arrival of a new sample forces one iteration of the algorithm. In this
example, the FIR filter and the tap update are implemented as subroutine
calls from the interrupt service routine.

22222ModemsModemsModemsModemsModems

8585858585

In applications such as V.32 modems, the tap update algorithm gets
disabled during full duplex operation.

Start

Get Next
Transmitted

Sample

Get Next
Received

Sample R(n)

Output Cancelled
Signal

Update
Taps with

LMS Algorithm

Yes

No

Tap
Update
Enabled

?

Se (n)
^

Generate
with FIR Filter

Error =

R(n) – Se(n)^

Figure 2.21 Flowchart For LMS Stochastic Gradient AlgorithmFigure 2.21 Flowchart For LMS Stochastic Gradient AlgorithmFigure 2.21 Flowchart For LMS Stochastic Gradient AlgorithmFigure 2.21 Flowchart For LMS Stochastic Gradient AlgorithmFigure 2.21 Flowchart For LMS Stochastic Gradient Algorithm

22222 ModemsModemsModemsModemsModems

8686868686

Listing 2.11 contains the LMS filter code. The ADSP-2100 family can
execute a multiply/accumulate operation and fetch two operands in a
single cycle. The FIR filter loop and the tap update loop are executed
without any additional cycles for loop overhead. These features allow the
FIR filter to execute in one cycle per tap and the coefficient update to
execute in two cycles per tap. Table 2.4 summarizes the execution speeds.

Some applications require the echo canceller to operate on complex data.
A complex data implementation of the LMS algorithm is described later in
this chapter.

.MODULE/RAM/ABS=0 adaptive;

{ Near and Far End Echo Canceller
INPUT: Received Data from Channel
Transmitted Data
OUTPUT: To Rest of Modem

}

.PORT received_data; {Received sample from channel}

.PORT transmitted_data; {Transmitted sample from modem}

.PORT out; {Output to rest of modem}

.CONST A=154; {Adaptive filter length}

.CONST beta=H#CC; {Adaptation constant}

.VAR/DM/RAM/CIRC enable; {Update enabled bit}

.VAR/DM/RAM/CIRC afilt_data[A]; {Filter delay line}

.VAR/PM/RAM/CIRC afilt_coeff[A]; {Filter coefficients}

{ Each new sample asserts interrupt 3}
start: RTI;

RTI;
RTI;
JUMP sample;

22222ModemsModemsModemsModemsModems

8787878787

{ Initialize Routine: This is executed during system startup}
.ENTRY setup;

setup: ICNTL=B#01111; {Initialize Interrupts}
M0=0; {Initialize DAGS}
M1=1;
M3=-1;
M4=1;
M5=1;
M6=-1;
M7=2;
I0=^afilt_data;
I4=^afilt_coeff;
L0=%afilt_data;
L4=%afilt_coeff;
AX0=H#0000;
AY1=H#0000; {Initialize filter to 0}
CNTR=%afilt_data;
DO foo3 UNTIL CE;

foo3: PM(I4,M4)=AY1,DM(I0,M1)=AX0;
IMASK=B#1000; {Enable IRQ2}

fevr: JUMP fevr; {Wait for Interrupt}

{ Interrupt Routine: This code processes one data sample}
sample: AY0=DM(received_data); {Received data: r(n)}

SR0=DM(transmitted_data); {Transmitted data: A(n)}
CALL fir; {Calculate r^(n)}
AR=AY0-MR1; {AR=error=r-r^}
DM(out)=AR; {Output cancelled data}
AX0=DM(enable); {Update taps if enabled}
AF=PASS AX0;
IF EQ CALL update;

done: RTI;

{ FIR Filter
INPUTS:

I0=Start of data buffer in DM
I4=Start of coeff buffer in PM
SR0=Newest input value
M1,M4=1

OUTPUTS:
MR=Output value

ALTERS:
MR, MY0, MX0

}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

8888888888

.ENTRY fir;

fir: DM(I0,M1)=SR0;
MR=0, MX0=DM(I0,M1), MY0=PM(I4,M4);
CNTR=A-1;
DO floop UNTIL CE;

floop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND);
RTS;

{ Adaptive Filter Coefficient Update
INPUTS:

I0=Start of data buffer in DM
I4=Start of coeff buffer in PM
M1,M4=1
M6=-1
M7=+2
AR=error of last iteration

 Executes the coeff update algorithm as follows:
Ck+1=Ck+Beta*Error*A(n)

}
.ENTRY update;

update: MY1=beta; {Load Beta}
{MF=Beta*Error, Load Ck, A(n)}

MF=AR*MY1(RND), AY0=PM(I4,M4), MX0=DM(I0,M1);
MR=MX0*MF(RND);
CNTR=A; {Tap update loop}
DO uloop UNTIL CE;

AR=MR1+AY0, AY0=PM(I4,M6), MX0=DM(I0,M1);
uloop: PM(I4,M7)=AR, MR=MX0*MF(RND);

MODIFY(I0,M3);
MODIFY(I4,M6);
RTS;

.ENDMOD;

Listing 2.11 LMS Stochastic Gradient ImplementationListing 2.11 LMS Stochastic Gradient ImplementationListing 2.11 LMS Stochastic Gradient ImplementationListing 2.11 LMS Stochastic Gradient ImplementationListing 2.11 LMS Stochastic Gradient Implementation

2.4.32.4.32.4.32.4.32.4.3 Frequency Offset CompensationFrequency Offset CompensationFrequency Offset CompensationFrequency Offset CompensationFrequency Offset Compensation
Frequency offset in the far-end echo can limit convergence of the adaptive
filter. In order to compensate for shifts in the carrier frequency, it is
necessary to shift the received signal back to the original carrier frequency.
Figure 2.22 shows a block diagram for performing this operation. The

22222ModemsModemsModemsModemsModems

8989898989

frequency shifter is a first-order digital phase locked loop (DPLL). The
magnitude of the frequency shift is defined as

Ø^(n+1) = Ø^(n) + β A(n) (Ø(n) – Ø^(n)) r(n)

where β is the adaptation constant, Ø(n) is the frequency offset of sample
n, Ø^(n) is the estimate of the frequency offset, A(n) is the transmitted
sample, and r(n) is the received sample from the echo channel (Wang and
Werner, 1988).

Figure 2.22 Block Diagram Of Echo Canceller With Frequency ShiftFigure 2.22 Block Diagram Of Echo Canceller With Frequency ShiftFigure 2.22 Block Diagram Of Echo Canceller With Frequency ShiftFigure 2.22 Block Diagram Of Echo Canceller With Frequency ShiftFigure 2.22 Block Diagram Of Echo Canceller With Frequency Shift

∑

A(n)

156 Tap
Adaptive FIR

Filter

Phase
Update

Z -1

Hilbert
r(n)

To Rest
of System

Sne (n) + Sfe (n)
^ ^

r(n) e j tØ

e j tØ

Ø(n+1)

Ø(n)

22222 ModemsModemsModemsModemsModems

9090909090

When compensating for frequency offset, the received sample must be
rotated before the error term is calculated. The new error equation is

E(n) = r(n) ejøt – r(n)^

In a real system, the frequency shift is implemented in the time domain
with a Hilbert transform algorithm. Figure 2.23 shows the general
structure of this algorithm.

HT

X

X

REAL+

j

R(n)e = A(n)eR(n) =A(n) e tjØ

e tjØ′

Figure 2.23 Block Diagram Of Hilbert TransformFigure 2.23 Block Diagram Of Hilbert TransformFigure 2.23 Block Diagram Of Hilbert TransformFigure 2.23 Block Diagram Of Hilbert TransformFigure 2.23 Block Diagram Of Hilbert Transform

The Hilbert algorithm is best understood in the frequency domain.
Consider the real, bandlimited signal shown in Figure 2.24a. The Hilbert
transfer function is

H(ω) = –j ω > 0
= +j ω < 0

The output of the Hilbert transform is multiplied by +j so that the
frequency magnitude is real. The sum of the Hilbert transform and the
original sample is complex in the time domain and contains only positive
frequencies in the frequency domain. The magnitude in the frequency
domain is equal to twice the magnitude of the original sample (Figure
2.24d).

The frequency shift is accomplished by convolving (in the frequency
domain) the signal in Figure 2.24d with the desired frequency. This
convolution is equivalent to multiplying the time domain signal by
e–jω

o
t, where ωo is the desired frequency shift. The sample is converted

back to a real signal by taking the real part of the complex waveform.

22222ModemsModemsModemsModemsModems

9191919191

- Ø Ø

A

Ø

Ø

Ø - Ø

Ø - ØØ - Ø– ()

B

C

D

E

′

′′

Figure 2.24 Spectrum Of Hilbert Frequency ShiftFigure 2.24 Spectrum Of Hilbert Frequency ShiftFigure 2.24 Spectrum Of Hilbert Frequency ShiftFigure 2.24 Spectrum Of Hilbert Frequency ShiftFigure 2.24 Spectrum Of Hilbert Frequency Shift

2.4.42.4.42.4.42.4.42.4.4 ADSP-2100 Family Implementation Of Hilbert TransformADSP-2100 Family Implementation Of Hilbert TransformADSP-2100 Family Implementation Of Hilbert TransformADSP-2100 Family Implementation Of Hilbert TransformADSP-2100 Family Implementation Of Hilbert Transform
Code implementing a Hilbert transform is shown in Listing 2.12. The
received signal must be rotated before En, the error signal for the adaptive
filter, can be calculated. The Hilbert transform is thus performed in a
subroutine called from the LMS interrupt service routine.

22222 ModemsModemsModemsModemsModems

9292929292

The Hilbert transform is implemented with a 31-tap transverse FIR filter.
Since every other coefficient is zero, the circular buffers in the ADSP-2100
are programmed to access every other data sample. This is possible using
multiple modify registers with a single index register in the data address
generators. The 31-tap Hilbert transform executes in 20 cycles.

To compensate for the group delay in the Hilbert transform, a 15-cycle
linear delay is required for the real-valued input signal. Again, the circular
buffering capabilities of the ADSP-2100 family allow for a simple
implementation. Once the delay line is initialized, the index registers
automatically increment to the next value, even when the end of the buffer
is reached. The 15-tap delay line executes in just 3 cycles per sample.

The addition operation described shown in Figure 2.23 is actually
summing of a real and a complex number. Since a real and imaginary
number cannot be added, this operation is not implemented in the code.
Instead, the real and imaginary parts are used in the complex
multiplication.

The complex multiply by e–jω
o
t would normally require four

multiplications and two additions. In practice, the desired output is
contained entirely in the real part of the product. Therefore, only two
multiplications and one addition are required. The values for sin(ωot) and
cos(ωot) must be calculated for each successive sample.

The single cycle multiply/accumulate operation on the ADSP-2100 family
allows both multiplications and the addition to be executed in two cycles.
Execution time is also reduced when operands are fetched from data
memory in parallel with the multiplications. In transmit mode, the entire
Hilbert frequency shift requires about 100 cycles to execute.

22222ModemsModemsModemsModemsModems

9393939393

.MODULE/RAM/ABS=0 hilbert_rotator;

{ Hilbert Rotator
INPUT: Received Sample
OUTPUT: To Adaptive Filter

}

.CONST H=31; {Length of Hilbert xform filter}

.PORT received_data; {Received sample from channel}

.PORT out; {Output to rest of modem}

.VAR/DM/RAM/CIRC hdelay[H]; {Delay line for phase matching}

.VAR/DM/RAM/CIRC hil_dat[H]; {filter data values}

.VAR/PM/RAM/CIRC hilbert_coeff[16]; {Hilbert filter coefficients}

.VAR/DM/RAM time;

.VAR/DM/RAM delta_time; {Delta for frequency shift}

.VAR/DM/RAM high;

.VAR/DM/RAM low;

.VAR/DM/RAM ovr;

.INIT hilbert_coeff: <hilb.dat>;
{Hilbert filter coefficients}

{ Initialize Routine: This is executed during system startup}
.ENTRY setup;

setup: AX0=H#00;
DM(time)=AX0;
AX0=H#02;
DM(delta_time)=AX0;
CNTR=^HIL_DAT; {Init Delay line, Hilbert data}
DO iloop UNTIL CE;

DM(I0,M1)=H#0000;
iloop: DM(I1,M1)=H#0000;

IMASK=B#1000; {Enable IRQ2}
fevr: JUMP fevr; {Wait for Interrupt}

{ Interrupt Routine: This code processes one data sample}
sample: AY0=DM(received_data); {Received data: r(n)}

CALL delay; {Insert r(n) into delay line}
CALL hilb; {Execute Hilbert transform}
CALL rotate2;
AR=MR1;
DM(out)=AR;
RTI;

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

9494949494

{ 31 Tap Linear Delay Line
INPUTS: AY0=Newest Input Value

I0=Oldest value in delay
M0=0
M1=1

OUTPUTS: AX1=Delay line output
}
.ENTRY delay;

delay: AX1=DM(I0,M0);
DM(I0,M1)=AY0;
RTS;

{ 31 Tap Fir Hilbert Filter
INPUTS: AY0=Newest Input Data

I1=Oldest data value
I4=First Coeff value
M0=0
M1=1
M4=1

OUTPUTS: AY0=Hilbert output
}
.ENTRY hilb;

hilb: MR=0, MX0=DM(I1,M2), MY0=PM(I4,M4);
CNTR=16;
DO hil_loop UNTIL CE;

hil_loop: MR=MR+MX0*MY0(SS), MX0=DM(I1,M2), MY0=PM(I4,M4);
MR=MR+MX0*MY0(RND);
DM(I1,M1)=AY0;
AY0=MR1;
RTS;

{ Hilbert Rotator
Perform the calculation:

Y(t)=RE[(Xr(t)+jXi(t)*(exp(-jWt))]

INPUTS: AY0=Xi(t)
AX1=Xr(t)
AY1=W in degrees-q15 format
W*t=DM(time)=time in q15

OUTPUTS: MR=Y(t)
}

22222ModemsModemsModemsModemsModems

9595959595

.ENTRY rotate2;

rotate2: AX0=DM(time); {Get and update rotate time}
AY1=DM(delta_time); {on unit circle}
AR=AX0+AY1, MY0=AY0; {MY0=im(x)}
IF AC AR=PASS 0;
DM(time)=AR;
CALL sin; {Xi(t)*IM[exp(-jwt)]}
MR=AR*MY0(SS), MY0=AX1;
DM(ovr)=MR2;
DM(high)=MR1;
DM(low)=MR0;
AY0=H#4000; {Xr(t)*sin(wt+90)}
AR=AX0+AY0;
AX0=AR;
CALL sin;
MR0=DM(low);
MR1=DM(high);
MR2=DM(ovr);
MR=MR+AR*MY0(RND);
RTS;

{ Sine Calculation
Sine Approximation: Y=Sin(x)

INPUTS: AX0=x in scaled 1.15 format
M3=1
L3=0

OUTPUTS: AR=y in 2.14 format

Computation Time: 25 cycles
}

(listing continues on next page)

22222 ModemsModemsModemsModemsModems

9696969696

.VAR/DM sin_coeff[5];

.INIT sin_coeff: H#3240, H#0053, H#AACC, H#08B7, H#1CCE;

.ENTRY sin;

sin: I3=^sin_coeff; {Pointer to coeff. buffer}
AY0=H#4000;
AR=AX0, AF=AX0 AND AY0; {Check 2nd or 4th quad}
IF NE AR=-AX0; {If yes, negate input}
AY0=H#7FFF;
AR=AR AND AY0; {Remove sign bit}
MY1=AR;
MF=AR*MY1(RND), MX1=DM(I3,M3); {MF=x2}
MR=MX1*MY1(SS), MX1=DM(I3,M3); {MR=C1x}
CNTR=3;
DO approx UNTIL CE;

MR=MR+MX1*MF(SS);
approx: MF=AR*MF(RND), MX1=DM(I3,M3);

MR=MR+MX1*MF(SS);
SR=ASHIFT MR1 BY 2(HI);
SR=SR OR LSHIFT MR0 BY 2(LO); {Convert to 2.14 format}
AR=PASS SR1;
IF LT AR=PASS AY0; {Saturate if needed}
AF=PASS AX0;
IF LT AR=-AR; {Negate output if needed}
RTS;

.ENDMOD;

Listing 2.12 Hilbert Transform ImplementationListing 2.12 Hilbert Transform ImplementationListing 2.12 Hilbert Transform ImplementationListing 2.12 Hilbert Transform ImplementationListing 2.12 Hilbert Transform Implementation

2.4.52.4.52.4.52.4.52.4.5 V.32 Modem ImplementationV.32 Modem ImplementationV.32 Modem ImplementationV.32 Modem ImplementationV.32 Modem Implementation
V.32 modems operate in full duplex mode; both the near-end and far-end
modem are transmitting data at the same time. The echo canceller is
responsible for channel separation as well as cancelling the near-end and
far-end echos.

The echo canceller can be implemented in the passband or the baseband.
The advantage of passband cancellation is reduced computation. A
baseband echo canceller must execute all algorithms on complex data. In
addition, compensating for frequency shift in the baseband is difficult.
The disadvantage of passband echo canceller is a longer convergence time
for the adaptive filter and the digital phase locked loop. Figure 2.25 shows
a block diagram of a V.32 modem with a passband echo canceller.

22222ModemsModemsModemsModemsModems

9797979797

Signal
Encoding

LPF

LPF

x(n)

y(n)
X

X

Cos 2πf

Sin 2πf

+ S(n)
DAC

Transmit

S(t)

Signal
Decoding Demodulation

Adaptive
Filter

Sample
And Hold

A/D

+ X
+

–

R(n)

Received
Signal

R(t)

LPF

e j tØ

Figure 2.25 V.32 Modem Block DiagramFigure 2.25 V.32 Modem Block DiagramFigure 2.25 V.32 Modem Block DiagramFigure 2.25 V.32 Modem Block DiagramFigure 2.25 V.32 Modem Block Diagram

The CCITT specification for V.32 modems recommends a carrier
frequency of 1800±7 Hz. The echo canceller must be able to cancel 16 ms of
echo. At 9600 samples/second, a 154-tap FIR filter is required to cancel the
echo. It is recommended that the echo canceller be implemented with a
minimum number of taps.

Assuming that the canceller and frequency shifter have converged during
the training period, about 200 cycles are required to cancel a V.32 signal.
Benchmarks are summarized in Table 2.4.

Operation Cycles @12.5 MHz
Real FIR Filter N + 6 80 ns per tap
Complex FIR Filter 4 (N–1) + 21 240 ns per tap
Real LMS Update (Stochastic) 2N + 9 160 ns per tap
Complex LMS Update (Stochastic) 6N + 10 480 ns per tap
154-Tap LMS Filter With Update 935 74.8 µs

N = Number of Taps

Table 2.4 ADSP-2100 Family Benchmarks For Echo CancellationTable 2.4 ADSP-2100 Family Benchmarks For Echo CancellationTable 2.4 ADSP-2100 Family Benchmarks For Echo CancellationTable 2.4 ADSP-2100 Family Benchmarks For Echo CancellationTable 2.4 ADSP-2100 Family Benchmarks For Echo Cancellation

	Table of Contents
	Chapter 2: Modems
	2.1 Overview
	2.2 V.32 Modem Definition
	2.2.1 Transmitter Algorithms
	2.2.2 Receiver Algorithms
	2.2.3 Scrambler
	2.2.4 Descrambling
	2.2.5 ADSP-2100 Family Implementation
	2.2.6 Scrambler/Descrambler Programs
	2.2.7 Raised Cosine Filter
	2.2.8 ADSP-2100 Family Implementation
	2.2.9 Trellis Encoding
	2.2.10 ADSP-2100 Family Implementation
	2.2.11 Viterbi Decoding
	2.2.12 Data Constellation
	2.2.13 Viterbi Algorithm
	2.2.14 ADSP-2100 Family Implementation
	2.2.15 Shortest Path Through Trellis Diagram
	2.2.16 Viterbi Program
	2.2.16.1 Initialization
	2.2.16.2 Data Input & Euclidean Distance
	2.2.16.3 Shortest Path
	2.2.16.4 Last Surviving Path
	2.2.16.5 Determination of Error Corrected Data

	2.3 Quadrature Amplitude Modulation
	2.3.1 QAM Methodology
	2.3.2 ADSP-2100 Family Implementation

	2.4 Echo Cancellation
	2.4.1 Echo Cancellation Algorithm
	2.4.2 ADSP-2100 Family Implementation of LMS Algorithm
	2.4.3 Frequency Offset Compensation
	2.4.4 ADSP-2100 Family Implementation of Hilbert Transform
	2.4.5 V.32 Modem Implementation

