GSM Codec 1 4

41 OVERVIEW

This chapter describes the implementation of the Pan-European Digital
Mobile Radio (DMR) Speech Codec Specification 06.10. This code was
developed in accordance with the recommendation of the Conference of
European Post and Telecommunications’ (CEPT) Group Special Mobile
(GSM). A copy of the recommendation can be obtained directly from this
organization.

The recommendation describes how the software must perform, and
provides a brief tutorial on the algorithm’s operation. This chapter and the
accompanying code were written to follow the structure of the
recommendation.

For your reference, this chapter also includes subroutines for Voice
Activity Detection (VAD, Specification 06.32) and Comfort Noise Insertion
(CNI, Specification 06.12) . Together, these subroutines provide a more
complete solution for GSM applications. For more information about these
particular subjects, refer to the corresponding specifications.

411 Speech Codec

The speech codec for pan-European digital mobile radio is a modified
version of a Linear Predictive Coder (LPC). The LPC algorithm uses a
simplified model of the human vocal tract, which consists of a series of
cylinders that vary in diameter. To produce voiced speech, you force air
through these cylinders. You can represent this structure mathematically
by a series of simultaneous equations that describe the cylinders.

Early LPC systems worked well enough for users to understand the coded
speech, but often, not well enough to identify the speaker. The LPC
system described in this chapter uses two techniques, Regular Pulse
Excitation (RPE) and Long Term Prediction (LTP), to improve the quality
of the coded speech. The improved speech quality is almost comparable to
the speech quality produced by logarithmic Pulse Code Modulation
(PCM).

205

206

GSM Codec

The input to the speech codec is a series of 13-bit speech data samples
sampled at 8 kSa/s. The codec operates on a 20 ms window (160 samples)
and reduces it to 76 coefficients (260 bits) that result in a coded data rate of
13 kbits/s.

412 Software Comments

This section includes several comments that apply to the program
examples in this chapter.

4.1.2.1 Multiply With Rounding

The GSM recommendation requires a multiply with rounding operation that
provides biased rounding. Although the ADSP-21xx family does have a
multiply with rounding instruction, this implementation does not use it
because the instruction performs unbiased rounding (see the ADSP-2100
Family User’s Manual), and the RND mode of the multiplier introduced bit-
errors during the codec testing.

To eliminate this problem, the code uses a pre-multiply that stores the
value H#8000 in the MR register. Unbiased rounding is then completed by
a multiply/accumulate that produces the desired result. The MF register is
loaded with H#80, and, at various points, an X-register is also loaded with
H#80. Multiplying these two registers places the H#0000008000 in MR.

4.1.2.2 Arithmetic Saturation Results

The GSM recommendation also requires that arithmetic results be
saturated. The ALU’s AR_SAT mode easily accomplishes this task.
Whenever an ALU operation produces an overflow, the output is
automatically saturated at the appropriate value.

An arithmetic overflow occurs when the arithmetic operation produces an
output that does not fit completely in the proper word size. In other
words, the MSB of the word is not the sign bit. Since only the Most
Significant Word (MSW) of a multiprecision value contains a sign bit, it is
appropriate to check for overflow only in the MSW. When an LSW result
does not fit in the output word size, it produces a carry into the next word,
not an overflow.

When the LSW of a double precision result is produced, the saturation
mode must be disabled. When the MSW is produced, the entire word can
be checked for overflow, and saturated as necessary. Throughout the code,
the ALU saturation mode is turned on when producing MSWs, or single
precision values, and turned off for LSWs.

GSM Codec

4.1.2.3 Temporary Arrays

The GSM recommendation specifies the creation of temporary arrays
during codec execution. You do not need to save the value of these arrays,
and whenever possible, they are eliminated in this implementation to save
memory space. For example, the code overwrites the input speech
window array with the output of the short term filter (difference signal d()
array) instead of creating a new array.

In many cases, the code uses a single array for several purposes. The
code’s in-line comments indicate what information is stored by a
particular section of code.

4.1.2.4 Shared Subroutines

The encoder is designed to produce an estimated signal based on the same
information that is available at the decoder. This structure allows both
systems to operate in synchronization. The encoder uses only the decoded
values of transmitted parameters, insuring that it acts on the same
information available to the decoder.

This requires that the encoder uses many of the same subroutines used by
the decoder. Routines that are used by both systems are placed at the end
of the listing, and are described only in the encoder section of this chapter.

4.2 ENCODER

Listing 4.1, GSM0610.DSP, is a full-duplex codec program example that
contains the encoder and decoder subroutines. The encoder has three
main sections:

e The linear prediction coder (LPC)-The LPC computes a set of eight
reflection coefficients that describe the entire window of data.

= The regular pulse excitation (RPE) grid selector-The RPE grid selector
breaks the input window into 4 sub-windows and computes a different
excitation signal for each. By using 4 separate excitation signals, the
codec can process speech signals that may change within a given
window.

= The long term prediction (LTP) system-The LTP system reduces the
error of the signal over the entire window.

207

208

GSM Codec

421 Down Scaling & Offset Compensation Of The Input

The LPC encoder requires 160 samples of left-justified linear data as input.
This window of data must be downshifted three bits, then upshifted two
bits. The final result of this is to divide each value in half and set its two
LSBs to zero. The first two instructions of the offset_comp loop perform this
operation.

A double-precision high-pass filter is applied to the downshifted input to
produce an offset-free signal. The code must execute a double-precision
multiplication to maintain the necessary accuracy.

The rest of the offset_comp loop implements this filter. The shift instruction
isolates the MSW of L_z2, which is held in the MR register. The AR
register holds the LSW of L_z2. The LSW is multiplied by alpha (MY0) to
produce the result temp. The new value of L_s2 is generated, shifted into
position and added to temp. After the addition of these two values, the
MSW is multiplied by alpha and added to L_s2 to produce L_z2.

The last steps of the loop compute the rounded value that is stored as
output, and loads several registers for the next iteration. As in most of
these operations, the compensation is performed in place, to conserve
memory.

42.2 Pre-Emphasis Filtering

Before the LPC coefficients are determined, the input data is filtered by a
first-order FIR filter. While filtering, the window is searched for the
maximum value. This is necessary to ensure that the data can be properly
scaled for the auto-correlation that follows. The pre_emp loop filters the
input data.

This filter multiplies the delayed value and the filter coefficient, then adds
the product to the current sample. The subroutine uses the SB register to
check each sample for the number of redundant sign bits present. When
the loop is completed, SB holds the negative number that corresponds to
the number of growth bits in the maximum value of the window. The last
step of the loop saves each output sample (written over the input), and
prepares the MR register for the next multiply with round operation.

GSM Codec

4.2.3 Auto-Correlation

The program uses the auto_corr loop for auto-correlation of the filtered
input window to calculate the reflection coefficients for the entire window.
To prevent an overflow during this procedure, the input data is scaled
appropriately.

To compute the scale factor, the subroutine searches the input window for
the maximum value, and determines the number of redundant sign bits
(growth bits). The window is multiplied by a scale factor to insure that
there are three redundant sign bits to handle any growth during the auto-
correlation. The search operation is completed in the previous filtering
section. The code loop labeled scale adjusts the data to ensure the
necessary number of growth bits.

The corr_loop loop determines the first nine terms of the auto-correlation
sequence. The auto-correlation is the sum of the products of the signal
with itself offset for k = 0-8. The terms of the sequence are used to
compute the reflection coefficients.

The auto-correlation code sets two pointers to the data areas (11, 15), one
pointer to the output array (I6), and uses another pointer as a down-
counter for the inner loop (data_loop). Since the inner loop executes one
less time for each successive value of the auto-correlation sequence, the
CNTR is set to 12 for each new auto-correlation term.

After data_loop is completed, the next term of the sequence is in the MR
register. This value is saved in the output array after incrementing the
pointer to the data array, and decrementing the down-counter.

When corr_loop is completed, all nine terms of the auto-correlation
sequence have been generated and stored in the double precision array
L_ACF(). The input data is rescaled by the rescale loop before the reflection
coefficients are computed.

424 The Schur Recursion

The theory behind any LPC voice coder is that the throat can be modeled
as a series of concentric cylinders with varying diameters. An excitation
signal is passed through these cylinders, and produces an output signal.
In the human body, the excitation signal is air moving over the vocal
cords. In a digital system, the excitation signal is a series of pulses input to
a lattice filter with coefficients that represent the sizes of the cylinders.

209

210

GSM Codec

An LPC system is characterized by the number of cylinders it uses for the
model. The DMR system uses eight cylinders, therefore, eight reflection
coefficients must be generated. This system uses the Schur recursion to
efficiently solve for each coefficient.

After a coefficient is determined, two equations are re-computed and used
to solve for the next coefficient. The following equations are used:

) P(0) x SIGN([P(1)]
P(0) =P(0) +P(1) xr(n)
P(m)=P(m+1)+r(n)xK(9-m) form=1-8-n
K(9-m)=K(9-m)+r(n)xP(m+1)

ABS[P(1)]

forn=1-8

The P() and K() arrays are initialized with values from the auto-correlation
sequence determined earlier. If during the computation, the value of
ABS[P(1)] = P(0) is greater than or equal to one, all r-values are set to zero,
and the program proceeds with the transformation of the r-values to
Logarithmic-Area-Ratios (LARS) described in the next section.

Before initializing the P() and K() arrays, the double precision auto-
correlation sequence L_ACF() is normalized. The set_acf loop normalizes
each of the nine values and places them in the array acf(). The SE register
is initialized before entering the loop by the EXP instruction of the shifter.
The first value of the auto-correlation sequence is always the largest value
of the sequence. The normalization of the rest of the sequence is based on
the number of redundant sign bits in the first value.

The create_k loop copies the values of the normalized auto-correlation
sequence acf() into the appropriate locations in the P() and K() arrays.

The compute_reflec loop actually implements the Schur recursion. The 12
and I3 pointers are set to the beginning of the two arrays used to compute
the r-values. The absolute values of P(1) and P(0) are compared. If the
divide produces an invalid result (r > 1), the code executes a JUMP
instruction to skip the remaining computations. Since this test is also
performed after the exit from this loop (and since the P() array is not
altered if the JUMP is executed) the program eventually jumps to the
zero_reflec code block, and sets each r-value to zero.

If the divide is valid, it is computed with the ADSP-2100 family divide
instructions. The DIVS command computes the sign bit of the quotient,

GSM Codec

and 15 DIVQs compute the remaining bits. These commands produce the
16-bit value in the AYO register. After the division, another test is
performed to see if the original dividend and divisor are equal (the
division instruction does not saturate), if so, the quotient is saturated to
32767. The sign of the quotient is determined from the original sign of
P(1), and the r-value is stored in the result array.

The new value for P(0) is computed according to the equation shown
above. The two equations are re-computed in the schur_recur loop. The
counter for this loop is set from the 16 register, which is used as a down-
counter.

The compute_reflec loop generates the first seven reflection coefficients. The
eighth r-value is computed outside of the loop. The code outside the loop
is identical to the code inside, but it is not included in the loop since the
K() and P() arrays do not need to be re-calculated after the final r-value is
computed.

425 Transformation Of The Reflection Coefficients

The reflection coefficients generated by the Schur recursion are
constrained to be in the range -1 < r() < 1. To produce a value that can be
more easily quantized into a small number of bits, the following equation
transforms the reflection coefficients to Logarithmic-Area-Ratios (LARS):
This transformation process is similar to logarithmic companding used in

1+r(i)
1-r(i)
log-PCM coding. Taking the logarithm of a number in a fixed precision n-

bit machine allocates more bits for the smaller values, and tends to
saturate for larger values.

LAR(i) = Log,,

In the implementation of the encoder, the logarithm is approximated with
a linear segmentation (as in log-PCM) to simplify the computation.
Instead of the divide and logarithm operations, the segmentation
simplifies to multiplies, adds, and compares.

The code that transforms the reflection coefficients starts at label real_rs.
The compute_lar loop executes once for each r-value, and produces one
LAR-value for each iteration. The three values that temp can become are
computed first, and stored in various registers. The final ELSE value is left
in AR, which holds the result. The inner IF statement is checked, and if
true, AR is set with the appropriate temp value.

4

211

212

GSM Codec

The first IF statement is checked last. This ensures that AR holds the
correct value for temp. The last step of the loop generates the sign value for
temp, and stores the LAR value.

426 Quantization & Coding Of The Logarithmic-Area-Ratios

The LARs produced in the last section of the program must be quantized
and coded into a limited number of bits for transmission. The quantize_lar
loop computes the following equation to generate the coded LARS or
LARcs.

LAR,(i) = Nint[A(i) x LAR(i) + B(i)]

The function Nint defines the nearest integer value to its input. Since each
LAR has a different dynamic range, they are coded into varying word
sizes. Using a table, the values for A() and B() are defined to reflect these
differences. In addition to A() and B(), the table defines the maximum and
minimum values for each LAR¢. After each LAR¢() is computed, it is
saturated at the appropriate value.

To implement this coding in the program, several Index (l) registers are
set to data arrays representing a table. The AXO register is set to 256 and is
used for rounding the results within the loop.

The code is a straightforward implementation of the recommendation. The
first multiply computes A() x LAR(), and the value for B() is added to the
product. This sum, which is rounded by the addition of AX0, is
downshifted nine bits for saturation. After limiting, the minimum value is
subtracted from the final value to produce the LARc() that is transmitted.

The eight LARcs are copied from their array to the xmit_buffer that holds
the entire window of 76 coefficients to be transmitted. A similar transfer is
executed every time some of the code words are available for
transmission.

4.2.7 Decoding Of The Logarithmic-Area-Ratios

The LARs that were just coded are now decoded (using the decode_larc
subroutine), and used in the short term analysis section. The encoder uses
the decoded LARs because that information matches the information that
the receiving decoder uses. This lets the encoder and decoder produce
results based on the same data.

GSM Codec

The decoded LARs (or LARpp) are calculated from the coded LARs
(LARcs) with the following equation:

_ LAR(i) - B(i)
Ali)
To simplify the implementation of this equation, a table in memory

contains the reciprocal of A(i). The equation becomes a subtraction and a
multiply, which is faster than a divide.

LARF’P(')

The same decoding subroutine is used in the encoder and decoder, so the
code is written as a separate subroutine that can be called from either
routine. The decode_larc subroutine is located near the end of the listing.

This subroutine is a straightforward implementation of the
recommendation. The minimum value for the current LAR¢ (from the
table) is added to the coded LARc. This value is upshifted ten bits, and B()
(upshifted one bit) is subtracted. This remainder is multiplied by the
reciprocal of A(). The final value is doubled before being stored in the
LARpp() array.

428 Short Term Analysis Filtering

Once the LARs are decoded, they are transformed back into reflection
coefficients and used in an 8-pole lattice filter. The short term analysis
filter uses the input speech window and reflection coefficients as inputs,
and produces a difference signal as output. The difference signal
represents the difference between the actual input speech window, and
the speech that would be generated based only on the reflection
coefficients.

The difference signal is used by the long term predictor (LTP) section of
the codec. The LTP is described in Section 4.2.9.

To avoid transients that could occur with a rapid change of filter
coefficients, the LARs are linearly interpolated with the previous set of
LARs. The input speech frame is broken into four sections (not at the same
boundaries as sub-windows), and a different set of interpolated
coefficients is used for each section. A table defines the coefficients that are
used for each section of the speech frame.

4

213

214

GSM Codec

When the interpolated LAR value is generated for each section, it must be
transformed from a Logarithmic-Area-Ratio back into a reflection
coefficient. This sequence must also be performed in the decoder. To
minimize code, the st_filter subroutine, called by the encoder and decoder,
interpolates, transforms, and executes the short term filter for each section
of the input frame.

This subroutine is similar for the encoder and decoder except that
different 8-pole lattice filters are called for the encoder and decoder. This
is easily coded as an indirect call through one of the index registers.
Register 16 is set to the address of st_analysis (for the encoder) and the
indirect call (16) instruction jumps to that subroutine.

The LARSs are interpolated at four points in the st_filter routine. The first
section’s coefficients are interpolated by the k_end_12 loop. Every k_end_xx
code loop uses the old_larpp array (pointed to by 14) and the larpp array
(the current decoded LARS) to produce a weighted sum of the two, and
stores the output in the array larp. The larp array is transformed into
reflection coefficients that are used by the short term filter.

4.2.8.1 Transformation Of The LARs Into Reflection Coefficients

Before transmission, the computed reflection coefficients are transformed
into LARs to provide favorable quantization characteristics. Although this
transformation is useful for transmission, the LARs must be transformed
back into reflection coefficients before they can be used as inputs to the
synthesis filter.

The make_rp subroutine transforms the LARs back into reflection
coefficients and stores them in the rp() array. This subroutine’s
implementation is similar to the subroutine that codes the LARs. The
result for each IF-THEN-ELSE test is created first, with the final ELSE
value stored in the AR register. The condition of each IF statement is
tested from the inside out. The final test of the loop generates the sign of
the output. The rp() array is stored in program memory for easy fetching
during the filtering subroutine.

GSM Codec

4.2.8.2 Short Term Analysis Filtering
The short term analysis filter implements a lattice structure by solving the
following five equations:

1) dy(k)=s(k)
2) ug(k) =s(k)
3)

Q

(K)=d,_,(K)-r;xu,(k=1) withi=1-8
4) u(k)=u,_,(k-1)+r,xd_(k) withi=1-8
5) d(k) = d,(k)

The st_analysis subroutine computes the five equations shown above.
Several registers are setup before calling this subroutine. The CNTR
register is set with the number of output samples to be generated during
this call. The st_compute loop executes once for each output sample created
generated. Pointers to the rp() coefficient and u() delay line are setup, and
the input sample is fetched.

The st_loop loop calculates the two iterative equations (3 and 4) shown
above. The first multiply prepares the MR register and loads the
coefficient and delay values. The second and third lines of the loop
generate a new uj() value (equation 4). The fourth line saves the previous
value of u() (for use in the next iteration) and prepares the MR register.
The final two lines generate a new dj() value (equation 3) that is held in
the AR register.

When the st_loop is exited, the value for dg(Kk) is in the AR register. This
value is stored in the output array, and the loop re-executes as necessary.

429 Calculation Of The Long Term Parameters

The long term calculations of the LPC speech codec are performed four
times for each window of data. The calculations are the same for each sub-
window, so they are implemented as a set of subroutines that are called
four times per frame.

Once the calculations are complete for a sub-window, the 17 coefficients
(Nc, bc, mc, xmaxc, and xMc[0-12]), which are stored contiguously, are
copied to the xmit_buffer. Since the previous sub-window’s coefficients do
not need to be saved, the same memory locations are used by the next sub-
window.

215

216

GSM Codec

The code must set the 13 register to the input array before the first call to
the subroutines. The 13 register is automatically incremented by the
necessary number (40) during the It_analysis section of code.

4.2.9.1 Long Term Analysis Filtering

The long term predictor (LTP) produces two coefficients to describe each
sub-window. A long term correlation lag (Nc) represents the maximum
cross-correlation between samples of the current sub-window and the
previous two sub-windows. A gain parameter (bc) represents the
guantized ratio of the power of delayed samples to the maximum cross-
correlation value.

The value for Nc is determined by computing the cross-correlation
between the short-term residual signal of the current sub-window and the
signal of the previous sub-windows. The cross_loop loop computes each
value of the cross-correlation and puts the maximum lag in AX1.

The transmitted value of Nc is not coded, but sent using a 7-bit word.

The coded value for bc is determined using the table_dlb lookup-table. This
table holds values that indicate the ratio of the numbers. The coded value
of bc is the index into a table that satisfies the relationship.

The Itp_computation subroutine searches the input sub-window for a
maximum value. When the find_dmax code loop is exited, SB holds a
negative number that corresponds to the number of redundant sign bits
present in the maximum value of the sub-window.

The init_wt loop uses the value determined above, and shifts the data to
ensure that there is at least six redundant sign bits for growth during the
cross-correlation execution.

The execution of the cross-correlation is similar to the execution of the
auto-correlation performed for the Schur recursion. The only difference is
that the auto-correlation uses the same signal for both inputs, while the
cross-correlation uses two different signals, dp() and wt(). Each term of the
cross-correlation is checked, and if it exceeds the current maximum, the
new value is taken as the maximum, and its index is saved as Nc. When
the cross_loop loop is exited, the value in AX1 is the final value of Nc.

GSM Codec

The power loop determines the power of the maximum cross-correlation
and the gain (bc) value. The value for bc is the ratio of the power of the
cross-correlation and the maximum value of the correlation. This ratio is
expressed as one of the four values in table_dlb, which is stored in data
memory. The transmitted value for bc is the index into the table that
satisfies the relationship.

4.2.9.2 Long Term Synthesis Filtering

The short-term analysis filter computes a residual signal and stores it in
the d() array. Using the LTP coefficients determined by this filter, an
estimated short-term residual signal, stored in the dpp() array, is
computed from the previously reconstructed short-term residual samples
from the dp() array and the new Nc and bc parameters.

From the values of the dpp() array, the long-term residual signal is
computed and stored in the e() array. The e() array will be applied to a FIR
filter to generate the residual pulse excitation (RPE) signal.

4.2.10 Residual Pulse Excitation Encoding Section

After the long-term residual signal is produced, it is sent through a FIR
filter to generate an excitation signal for the sub-window. After
decimation, the maximum excitation sequence is determined and coded
for transmission.

An Adaptive Pulse Code Modulation (APCM) technique codes the
sequence. The maximum value in the sequence is determined and
logarithmically coded into six bits. The sequence is normalized and
uniformly coded into three bits.

4.2.10.1 Weighting Filter

The output of the long term analysis filtering section, e(), is applied as an
input to an FIR filter. The filter’s coefficients are stored in a table. This
section of code uses a special “block” filter that produces the 40 central
samples of a conventional filter. The x() output array is used in the RPE
grid selector described in the following section.

The compute_x_array loop implements the FIR block filter. The e() input
array is placed into the wt() temporary array with five zeros padded at
each end. The zero padding is necessary because the block filter
implementation tries to use values outside of the defined range of e().

4

217

218

GSM Codec

Pointers to the input and output arrays are initialized and the code enters
the compute_x_array loop. The first two operands of the convolution are
fetched, and the appropriate rounding value is placed in the MR register.
An inner loop is executed to compute the convoluted output value.

The final double precision output value must be scaled by four before the
MSW is stored. This is accomplished using two double-precision
additions. After the first addition, the AV (overflow) flag is checked. If an
overflow occurs, the output value is saturated and the second addition is
skipped. The MS part of the second addition is performed with the
saturation mode of the ALU enabled, which automatically causes
saturation if an overflow occurs.

4.2.10.2 Adaptive Sample Rate Decimation By RPE Grid Selection

The output of the weighting filter, put in the x() array, is examined to
determine the excitation sequence that is used. The x() array is decimated
into four sub-sequences. The sub-sequence with the maximum energy is
used as the excitation signal, and the value of m indicates the RPE grid
selection. The following formula performs the decimation:

X (i) =x(m+3x1)
wherei =0-12, m=0-3

The find_mc loop determines the sub-sequence with the maximum energy.
The energy of each Xm() array is determined by the calculate_em loop. This
loop multiplies each element of the sequence (downshifted twice) by itself
and computes the sum. The value of m that indicates the sub-sequence
with the maximum energy is held in AX0.

Once the find_mc loop is completed, the value for mc is stored, and the
appropriate sub-sequence is copied into the wt() array. The code then
determines the maximum element of the xm() array and holds it in the AR
register for quantizing.

4.2.10.3 APCM Quantization Of The Selected RPE Sequence

The maximum value of the sequence is coded logarithmically using six
bits. The upper three bits of xmaxc hold the exponent of xmax, and the
lower three bits hold the mantissa. Once xmax is coded, the array can be
normalized without performing a division.

The xm() array is normalized by downshifting each element by the
exponent of xmaxc, and multiplying it by the inverse of the xmaxc’s
mantissa. The normalized array is uniformly quantized with three bits.

GSM Codec

The quantize_xmax loop performs the logarithmic quantization of xmax by
determining the exponent and mantissa, and then positioning them
appropriately. The call to get_xmaxc_pts decodes xmaxc, then returns to the
calling routine with the exponent and mantissa of xmax.

The compute_xm loop performs the normalization of xm(). The inverse of
Xmax’s mantissa is read from a table and stored in MYO, while the
magnitude of the downshift is stored in SE. After normalization, the upper
three bits of the result are biased by four, and stored in the xmc() array for
transmission.

4.2.10.4 APCM Inverse Quantization & RPE Grid Positioning

The xmc() array must be decoded for use as the excitation signal. The
subroutine rpe_decoding is used by the encoder and decoder. This
subroutine assumes that the coded mantissa of xmaxc is available in MX0,
and its exponent is in AY1.

The actual value for the mantissa is read from table_fac and stored in MYO0,
while the adjusted exponent is stored in SE and the value of temp3 is
placed in AY1. Various pointers are initialized before entering the
inverse_apcm loop, which decodes the entire xmc() array. After decoding
each element, it is stored in the xmp() array.

The ep() array is reconstructed from the decoded xmc() array. The ep()
array is first set to zero over its entire length, then filled with the
interpolated, decoded values of the xmc() array. The intermediate xmp()
array is not used.

4.2.10.5 Update Of The Reconstructed Short Term Residual Signal

The final step of the encoder’s sub-window computation is to update the
short term residual signal, dp(). The process involves updating the array
and computing the new short term residual signal based on the
reconstructed long term residual signal and the long term analysis signal.
Both of these steps are completed by the update_dp_code loop.

The update_dp loop updates the dp() array by delaying the data one sub-
window. The fill_dp loop adds the dpp() array, generated by the long term
analysis filter, and ep(), the reconstructed long term residual signal, then
stores the result at the end of the dp() array.

4

219

220

GSM Codec

4.3 DECODER

Many of the sections in the decoder are also contained in the encoder, so
they have already been described. The three sections unique to the
decoder are the long term synthesis filter, the short term synthesis filter,
and the post processing. Variables that are unique to the decoder and
must be stored between calls have an “r” in their names, such as drp().

The decoder for the LPC speech codec creates an excitation signal for the
short term synthesis filter. The excitation window is created using the 17
sub-window coefficients that were generated by the encoder. The
excitation signal is used as input to a lattice filter with coefficients of the
eight decoded LARcs. The output of this filter is a full window of speech
data. The speech window is down-scaled and sent through a de-emphasis
filter before returning.

The dmr_decode subroutine computes the output speech window from the
76 input coefficients. The recv_data subroutine copies coefficients from the
input buffer to the appropriate location in memory. The transmitted
LARcs are copied into their array and decoded using the decode_larc
routine described in section 4.2.8. These values are used by the short term
synthesis filter described below.

Computation of the sub-window data starts by copying the sub-window
coefficients into their arrays. A call to get_xmaxc_pts breaks the coded
value of xmaxc into its two parts for use by the rpe_decode routine (see
section 4.2.10.4). The It_predictor routine takes the reconstructed ep() array
and computes the new values for the short term reconstructed residual
signal drp(). Four calls to these subroutines are executed to compute the
excitation signal for the short term synthesis filter.

The post_process loop completes the computation of the output window,
then control is returned to the calling routine.

43.1 Short Term Synthesis Filtering

The decoder uses short term synthesis filtering that is almost identical to
the encoder’s short term synthesis filtering. The st_filter routine is called,
but with different parameters. The 16 register is set to the address of
st_synthesis, the lattice filter used by the decoder, and register 14 is set to
the address of old_larpp, the array that holds the previous LARs for the
decoder. Address register 10 points to a temporary array that holds the
reconstructed short term residual signal that was generated for each sub-
window.

Section 4.2.9.1 has a complete description of the st_filter routine. Section
4.2.9.2. describes the transformation of LARs into reflection coefficients.

GSM Codec 4

4.3.1.1 Short Term Synthesis Filter

The short term synthesis filter is an implementation of an 8-pole lattice
filter. It uses the reconstructed short term residual signal as an excitation,
and computes the reconstructed speech signal as output. LARs that are
averaged and transformed are used as the coefficients for the filter.

The lattice filter used in the decoder is different from the filter used in the
encoder. It is defined by the following five equations.

1) sry(k)=dr'(k)
2) sri(k)=sr_y(k)=rr'gyxve (k1) withi=1-8
3) Vo(k)=v(k=2)+rr g xsri(k) withi=1-8
4) sr(k)=sr,(K)
5) Vo(k) =sry(K)

The code that solves these equations is contained in the subroutine
st_synthesis. The st_synth_compute loop generates one output value (sr)
during each pass of the loop, while st_synth_loop recursively solves the
two inner equations.

The first two instructions of the st_synth_loop loop generate a new value
for sr(j). The next three instructions generate the new value for v(g.j). The
address modification that points to the v() array uses a non-sequential
modifier.

The first fetch to the v() array reads v(7) and points to v(6). The first fetch
in the loop reads v(6) and modifies the pointer to v(8). The last instruction
of the loop writes to the v() array, places the updated value in v(8), and
modifies the pointer to v(5) for the next read. After the st_synth_loop is
exited, the code must modify the pointer so the next write is to v(0).

43.2 Long Term Synthesis Filtering

The long term synthesis filtering used in the decoder takes the lag (Nc),
gain (bc), and reconstructed long term residual signal in ep() and
generates the reconstructed short term residual signal in drp(). This signal
is used as an input to the short term filter.

221

222

GSM Codec

The received lag coefficient is checked to ensure that a transmission error
did not cause an inappropriate value to be received. If the value falls
outside its permissible range, it is set to the previous value. The decoded
gain value is multiplied by the previous reconstructed short term residual
signal (drp()) and subtracted from the reconstructed long term residual
signal (ep()) to generate the reconstructed short term residual signal for
the current sub-window. Also, the drp() array is updated by the
subroutine.

The compute_drp loop generates the new set of reconstructed short term
residual values, and update_drp updates (or delays) the values of the drp()
array.

433 Post Processing

The final stage of the decoder involves the de-emphasis filtering and
down scaling. These two operations are performed by the post_process
loop. A first order IIR filter is applied to the output of the short term
synthesis filter. The first two instructions of the loop accomplish this while
the next two instructions double the value of the output.

The last two instructions mask the three LSBs of the output, and store the
final value in the output array.

44 BENCHMARKS & MEMORY REQUIREMENTS

The following listings implement the entire set of GSM 06 series speech
functions on the ADSP-2101. This code is validated to pass all available
GSM test vectors. This code is also available on the diskette included with
this book.

Table 4.1 presents benchmarks for the system that include encoding and
decoding, voice activity detection, comfort noise insertion and generation,
and discontinuous transmission functions. The ADSP-2100 family
instruction set lets you code the entire set of GSM speech functions into
1988 words of program memory and 964 words of data memory. All the
code fits in the internal memory of the ADSP-2101 or the ADSP-2171
microcomputer.

These benchmarks are for ADSP-2101 (13 MHz instruction rate) and
ADSP-2171 (26 MHz instruction rate) GSM systems with a 20 ms frame.
Most of the time in the frame is unused, leaving ample time and
processing power to implement additional features, such as acoustic echo
cancellation.

GSM Codec 4

Cycle Count Time Processor
(maximum Required Loading
worst case) (ms) (%)
ADSP-2101 (13 MHz)
RPE-LTP LPC Encoder 49300 3.8 19.0
RPE-LTP LPC Decoder 14400 1.1 05.5
Voice Activity Detector 02141 0.17 00.9
Total of 06 series functions 65841 5.07 ms 254 %
Free 74.6 %
ADSP-2171 (26 MHz)
RPE-LTP LPC Encoder 49300 1.9 9.5
RPE-LTP LPC Decoder 14400 0.55 2.75
Voice Activity Detector 02141 0.09 0.45
Total of 06 series functions 65841 2.54 ms 12.7%
Free 87.3%

Table 4.1 GSM Implementation Benchmarks

4.5 LISTINGS

This section contains the listings for this chapter.

223

4 GSM Codec

{

GSM_RSET.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This routine performs all of the necessary initialization of variables
in all of the various GSM speech processing routines. All of these
variables are defined in RAM, in either Program or Data Memory.

The subroutine “reset_codec” must be called following DAG initialization
after system power-up or system reset, before any other subroutine is
called and before the data acquisition routine is enabled.

This program must also be called to set the initial state prior to
validation with the GSM test vectors.

ADSP-2101 Execution cycles: 894 maximum
Release History:
__Date_ _Ver_ Comments
01-Sep-89 58 Initial implementation

10-Jan-90 1.00 Second Release
01-Nov-90 2.00 Third release

.MODULE software_reset;
.ENTRY reset_codec;

{ from 06.10 (encoder/decoder) and 06.12 (comfort noise in encoder)
and 06.31 (dtx in encoder) }

.EXTERNAL u, dp, nrp;

.EXTERNAL oldlar_buffer, oldxmax_buffer, cni_wait;
.EXTERNAL speech_count, oldlar_pntr, oldxmax_pntr;
.EXTERNAL old_LARrpp, old_LARpp;

.EXTERNAL drp, mp,L_z2 |, L_z2_h;

.EXTERNAL z1, msr,v;

{ from 06.32 (voice activity detection) }
.EXTERNAL rvad, normrvad, L_sacf, L_savo0;
.EXTERNAL pt_sacf, pt_sav0, L_lastdm;
.EXTERNAL oldlagcount, veryoldlagcount;
.EXTERNAL e_thvad, m_thvad, adaptcount;
.EXTERNAL burstcount, hangcount, oldlag;

{ from 06.31 (dtx codeword decoding) and 06.11 (sub and mute) }

224

GSM Codec 4

.EXTERNAL valid_sid_buffer, sub_n_mute, sid_inbuf, taf_count;
{ from 06.12 (comfort noise in decoder) }

.EXTERNAL seed_Isw, seed_msw;

{ from shell }

.EXTERNAL speech_1, speech_2, coeff_codeword;
reset_codec:AXO0 = 0;

I0 =~L_sacf;
CNTR = 54;
CALL zero_dm;

10 ="L_savo0;
CNTR =72;
CALL zero_dm;

I0 ="speech_1;
CNTR = 160;
CALL zero_dm;

I0 ="speech_2;
CNTR = 160;
CALL zero_dm;

10 =~drp;
CNTR = 160;
CALL zero_dm;

14 =~dp;
CNTR = 120;
CALL zero_pm;

10 =" msr; { msr, old_LARrpp[8], v[9] }
CNTR = 18;
CALL zero_dm;

10 ="u; {u[8], oldLARpp[8], z1,L z2 h,L z2 |, mp}
CNTR = 20;

CALL zero_dm;

10 =~L_lastdm; { L_lastdm[2], oldlagcount, veryoldlagcount, }

CNTR = 6; { adaptcount, burstcount }
CALL zero_dm;

(listing continues on next page)

225

4 GSM Codec

I0 ="sub_n_mute; {'sub_n_mute, sid_inbuf}
CNTR = 2;
CALL zero_dm;

DM(coeff_codeword) = AXO;
AXO0 = 40;

DM(oldlag) = AXO;
DM(nrp) = AXO;

AXO0 = 15381,
DM(seed_Isw) = AXO0;
AXO0 = 7349;
DM(seed_msw) = AXO0;
AX0 =1;
DM(speech_count) = AXO0;
AXO0 = -4;
DM(cni_wait) = AX0;
AX0 =-1;
DM(hangcount) = AX0;
AXO0 = 20;
DM(e_thvad) = AXO;
AXO0 = 31250;
DM(m_thvad) = AX0;
AX0 = -7;
DM(normrvad) = AXO;
AXO0 = -24;
DM(taf_count) = AXO0;
AXO0 = ~L_sacf;
DM(pt_sacf) = AXO0;
AXO0 = "L_sav0;

DM(pt_sav0) = AXO0;

AXO0 = "oldlar_buffer;
DM(oldlar_pntr) = AXO0;
AXO0 = "oldxmax_buffer;
DM(oldxmax_pntr) = AXO;

10 ="rvad;

AXO0 = 24576;
DM(10,M1) = AXO0;
AXO0 = -16384;
DM(10,M1) = AXO0;
AXO0 = 4096;
DM(10,M1) = AXO0;
AXO0 =0;

CNTR =6;

CALL zero_dm;

226

.ENDMOD;

10 =~valid_sid_buffer;
AXO0 = 42;
DM(10,M1) = AXO0;
AXO0 = 39;
DM(10,M1) = AXO0;
AXO0 = 21;
DM(10,M1) = AXO0;
AXO0 = 10;
DM(10,M1) = AXO0;
AX0 =09;
DM(10,M1) = AXO0;
AXO0 = 4;
DM(10,M1) = AXO0;
AXO0 = 3;
DM(10,M1) = AXO0;
AXO0 = 2;
DM(10,M1) = AXO0;
AX0 = 0;
DM(10,M1) = AXO0;

RTS;

zero_dm: DO dmloop UNTIL CE;

DM(I0,M1) = AXO;
RTS;

zero_pm: DO pmloop UNTIL CE;

PM(14,M5) = AXO;
RTS;

Listing 4.1 Initialization Routine (GSM_RSET.DSP)

GSM Codec 4

227

4 GSM Codec

{ GSM0610.DSP

These subroutines: dmr_encode and dmr_decode, represent a full duplex codec
for the Pan-European Digital Mobile Radio Network. The code implements a
Linear Predicitive Coder (LPC) which incorporates a Long Term Predictor

with Regular Pulse Excitation (LTP-RPE), as defined by the CEPT/GSM 06.10
specification. This code also includes support for the DTX functions of the

GSM specification. Calls are made to Voice Activity Detection (06.32) and
Comfort Noise Insertion (06.12) subroutines. This code has been verified

and successfully transcodes the GSM 06.10 Test Sequence Version 3.0.0 dated
April 15, 1988. The -Dnovad switch must be used at assembly to turn of

Voice Activity Detection during validation. In-line comments refer to

various sections of this recommendation. It is assumed that the reader is
familiar with that document.

Release History:
03-Feb-89 32 Initial release.
20-Jun-89 56 Fix reflect coef sect to pass all 3.0.0 vectors.
10-Jan-90 1.00 Second release.

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties
which may result from its use. Portions of the algorithms implemented in
this code may have been patented; it is up to the user to determine the
legality of their application.

Assembler Preprocessor Switches:

-cp switch must always be used when assembling
-Dnovad switch disables VAD for validation of 06.10
-Dalias switch aliases some variables to save RAM space
-Ddemo switch enables several functions necessary for

the eight-state demonstration

Calling Parameters:
10 —> Input Speech Buffer (for dmr_encode)
I1 —> Coefficient Buffer (for both)
12 —> Output Speech Buffer (for dmr_decode)
AXO -> Silence Descriptor Frame flag (for dmr_decode)
M0=0; M1=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1;
L0O=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=0;

Return Values:

11 —> Coefficient Buffer (for dmr_encode)
I2 —> Output Speech Buffer (for dmr_decode)

228

GSM Codec

Altered Registers:
AXO0, AX1, AYO0, AY1, AR, AF,
MXO0, MX1, MYO, MY1, MR, MF,
Sl, SE, SB, SR,
10,11, 12,13, 14, 15, 16
MO, M7

ADSP-2101 Computation Time (without Voice Activity Detection):
Encoder 49300 cycles maximum
Decoder 14400 cycles maximum

State: Encoder Decoder
speech only 46900 14000 cycles maximum
comfort noise generation 47200 14400 cycles maximum
speech hangover 49300 14000 cycles maximum

}

.MODULE/RAM/BOOT=0 Digital_Mobile_Radio_Codec;

.ENTRY dmr_encode, dmr_decode, schur_routine, divide_routine;

.EXTERNAL comfort_noise_generator;
.EXTERNAL vad_routine, update_periodicity;
.EXTERNAL vad, lags;

{ Conditional Assembly
{ Use (asm21 -cp -Dalias) to alias some variables to save RAM }
#ifdef alias

.INCLUDE <var0610.ram>;
#define r dpp
#define k dpp+25
#define acf dpp+8
#define p dpp+17
#define LAR dpp+25
#define rp wt
#define LARp wt+8
#define LARpp DPP
#define LARc wt
#define ep wt
#define mean_larc dpp+17

#else
INCLUDE <var0610.h>;

#endif

{

INCLUDE <init0610.h>;

{ Global variable declarations }
{variables used in the encoder }

.GLOBAL u, dp, L_ACF, scaleauto;

.GLOBAL old_LARpp, mp, L_z2_|,L_z2_h, z1;

(listing continues on next page)

229

4 GSM Codec

{variables used in the decoder }

.GLOBAL nrp, drp, old_LARrpp, msr, v;
{variables used for comfort noise insertion in the encoder}
.GLOBAL cni_wait, speech_count, oldlar_pntr, oldxmax_pntr;
.GLOBAL oldlar_buffer, oldxmax_buffer, sp_flag;
{variable used as a working buffer to alias VAD variables}
.GLOBAL wt;
{
{ Encoder Subroutine
dmr_encode: ENA AR_SAT; {Enable ALU saturation}
DM(speech_in)=I0; {Save pointer to input window}
DM(xmit_buffer)=I1; {Save pointer to coeff window}
MX1=H#4000; {This multiply will place the}
MY 1=H#100; {vale of H#80 in MF that will}
MF=MX1*MY1 (SS); {be used for unbiased rounding}

{ This section of code computes the downscaling and offset compensation
of the input signal as described in sections 4.2.1 and 4.2.2 of the
recommendation}

I0=DM(speech_in); {Get pointer to input data}

11=I0; {Set pointer for output data}
SE=-15; {Commonly used shift value}
MX1=H#80; {Used for unbaised rounding}
AX1=16384; {Used to round result}
MY0=32735; {Coefficient value}
AY1=H#7FFF; {Used to mask lower L_z2}
MY1=DM(z1);

MRO=DM(L_z2_l);

MR1=DM(L_z2_h);

DIS AR_SAT; {Cannot do saturation}
AR=MRO AND AY1, SI=DM(I1,M1); {Fill the pipeline}
CNTR=window_length;

{ DO offset_comp UNTIL CE;}

gsmi: SR=ASHIFT SI BY -3 (HI);{Shift input data to zero the}
SR=LSHIFT SR1 BY 2 (HI); {the LSB and half data}
AX0=SR1, SR=ASHIFT MR1 (HI); {Get upper part of L_z2 (msp)}
SR=SR OR LSHIFT MRO (LO); {Get LSB of L_z2 (Isp)}
MR=MX1*MF (SS), MX0=SRO0; {Prepare MR, MX0=msp}
MR=MR+AR*MYO0 (SS), AYO=MY1; {Compute temp}
AR=AX0-AY0, AYO=MR1; {Compute new s1}
SR=ASHIFT AR BY 15 (LO); {Compute new L_s2}
AR=SRO+AY0, MY1=AX0; {MY1 holds z1, L_s2+temp is in}
AF=SR1+C, AY0=AR,; {SR in double precision}
MR=MX0*MYO0 (SS); {Compute msp*32735}
SR=ASHIFT MR1 BY -1 (HI); {Downshift by one bit }

SR=SR OR LSHIFT MRO BY -1 (LO);{before adding to L_s2}

230

GSM Codec 4

AR=SRO+AYO0, AY0=AX1, {Compute new L_z2in}
MRO=AR, AR=SR1+AF+C; {double precision MRO=L_z2}
MR1=AR, AR=MRO+AY0; {MR1=L_z2, round result }
SR=LSHIFT AR (LO); {and downshift for output}
AR=MR1+C, SI=DM(I1,M1); {Get next input sample}
SR=SR OR ASHIFT AR (HI);
offset_comp: DM(10,M1)=SR0, AR=MR0O AND AY1;{Store result, get next Isp}
{?} IF NOT CE JUMP gsm1;
DM(L_z2 I)=MRO; {Save values for next call}
DM(L_z2_h)=MR1;
DM(z1)=MY1,;
ENA AR_SAT; {Re-enable ALU saturation}

{ This section of code computes the pre-emphasis filter and
the autocorrelation as defined in sections 4.2.3 and 4.2.4 of
the recommendation}

MX0=DM(mp); {Get saved value for mp}
MY0=-28180; {MYO0 holds coefficient value}
MX1=H#80; {These are used for biased}
MR=MX1*MF (SS); {rounding}
SB=-4; {Maximum scale value}
I0=DM(speech_in); {In-place computation}
CNTR=window_length;
{ DO pre_emp UNTIL CE;}
gsm2: MR=MR+MX0*MYO (SS), AYO=DM(I0,MO0);
AR=MR1+AY0, MX0=AY0;
SB=EXPADJ AR; {Check for maximum value}

pre_emp: DM(10,M1)=AR, MR=MX1*MF (SS); {Save filtered data}
{?} IF NOT CE JUMP gsm2;

DM(mp)=MXO0;

AYO0=SB,; {Get exponent of max value}
AX0=4; {Add 4 to get scale value}
AR=AX0+AYO0;

DM(scaleauto)=AR,; {Save scale for later}

IF LE JUMP auto_corr; {If 0 scale, only copy data}
AF=PASS 1;

AR=AF-AR;

S1=16384;

SE=AR;

I0=DM(speech_in);

11=I0; {Output writes over the input}
SR=ASHIFT SI (HI);

AF=PASS AR, AR=SR1; {SR1 holds temp for multiply}
MX1=H#80; {Used for unbiased rounding}

MR=MX1*MF (SS), MYO=DM(I0,M1); {Fetch first value}
CNTR=window_length;

(listing continues on next page)

231

4 GSM Codec

{ DO scale UNTIL CE;}
gsma3: MR=MR+SR1*MYO0 (SS), MY0=DM(I0,M1); {Compute scaled data}
scale: DM(11,M1)=MR1, MR=MX1*MF (SS); {Save scaled data}
{?} IF NOT CE JUMP gsm3;
auto_corr: 11=DM(speech_in); {This section of code computes}
15=I1; {the autocorr section for LPC}
I2=window_length; {12 used as down counter}
16="L_ACF,; {Set pointer to output array}
CNTR=9; {Compute nine terms}
{ DO corr_loop UNTIL CE;}
gsm4: 10=I11; {Reset pointers for mac loop}
14=15;
MR=0, MX0=DM(I0,M1); {Get first sample}
CNTR=12; {12 decrements once each loop}
{ DO data_loop UNTIL CE;}
gsmb5: MYO0=DM(14,M5);
data_loop: MR=MR+MX0*MYO0 (SS), MX0=DM(I0,M1);
{?} IF NOT CE JUMP gsmb5;
MODIFY(12,M2); {Decrement 12, Increment 15}
MY0=DM(15,M5);
DM(16,M5)=MR1; {Save double precision result}
corr_loop: DM(16,M5)=MRO; {MSW first}
{?} IF NOT CE JUMP gsm4;
I0=DM(speech_in); {This section of code rescales}
SE=DM(scaleauto); {the input data}
11=I0; {Output writes over input}
SI=DM(I0,M1);
CNTR=window_length;
{ DO rescale UNTIL CE;}
gsm6: SR=ASHIFT Sl (HI), SI=DM(10,M1);
rescale: DM(11,M1)=SR1;

{?} IF NOT CE JUMP gsm6;
call vad_routine; {determine vad state}
{**** This section of code sets the Voice Activity Flag (vad) and, if

vad has been inactive four or more cycles (cni_wait), sets the
Comfort Noise Insert Flag (cni_flag). *****}

set_flags: AXO = DM(vad); {AX0 holds vad}
{ Conditional Assembly
{ Use (asm21 -cp -Ddemo) to turn on the demonstration functions}
#ifdef demo
set_vad_demo:AYO = 2;
MRO = M7;
AF =PASS 1;
AR = MRO AND AF; {extract force_vad_low}
IF NE AF = PASS 0;
AR = AX0 AND AF; {AR = vad AND /force_vad_low }

232

GSM Codec 4

AF = MRO AND AYQ0; {extract force_vad_high}
AR = AR OR AF; {AR = .. OR force_vad_high }
DM(vad) = AR;
AX0 = AR;
M7 =2;
#endif
{ }
{ Conditional Assembly }
{ Use (asm21 -cp -Dnovad) to turn VAD off for validation }
#ifdef novad
AX0 =1;
DM(vad) = AXO0;
#endif
{ }

AYO0 = DM(cni_wait);
AY1 = DM(speech_count);

MRO = H#FFFF; {MRO holds cni_flag}
AR =-4; {AR holds cni_wait}

AF = PASS AX0;
IF NE MR = 0; {If vad<>0, set cni_flag=0}
IF NE JUMP store_cni;

AR = AYO + 1; {Increment cni_wait}
IFLE MR =0; {If cni_wait <= 0, cni_flag=0}

store_cni: DM(cni_wait) = AR;
DM(cni_flag) = MRO;

AYO0 = -24;

AF =PASS MRO;

IF NE AR = PASS AYO0;
IF NE JUMP store_spcnt;

AF = PASS AX0, AR = AY1,;
IFNE AR = AY1 + 1;
store_spcnt:DM(speech_count) = AR;

AF = PASS AX0, AY1 = AR; AR =0;

IF NE AR = PASS 1;

AF = PASS AY1;

IF GE AR = PASS 1;
store_spflg:DM(sp_flag) = AR;

(listing continues on next page)

233

4 GSM Codec

{ Now begin section 4.2.5 of the recommendation}
set_up_schur:AY1 ="L_ACF; {in DM}
MY1 = ~acf;
MO ="r;
CALL schur_routine;

{ This section of code transforms the r-values to log-area-ratios
as defined in section 4.2.6 of the recommendation}

real_rs: 15="r; {This section of code computes}
[4="LAR; {the log area ratio from r}
CNTR=S;
{ DO compute_lar UNTIL CE; }
gsm7: AX0=DM(I5,M5);
AR=ABS AX0;
SR=ASHIFT AR BY -1 (HI);{Generate temp>>1}
AX0=SR1; {AX0 holds temp>>1}
AY0=26112;
AX1=AR, AR=AR-AYO0; {Generate temp-26112}
SR=LSHIFT AR BY 2 (HI); {Generate (temp-26112)<<2}
AY0=31130;
AY1=11059;
AR=SR1, AF=AX1-AY0; {Default to AR=(temp-26112)<<2}
IF LT AR=AX1-AY1,; {AR=temp-11059 (if necessary)}
AY0=22118;
AF=AX1-AYO0;
IF LT AR=PASS AXO0; {AR=temp>>1 (if necessary)}
IF NEG AR=-AR; {Compute sign of LARJi]}
compute_lar: DM(14,M5)=AR; {Save LAR][iJ}

{?} IF NOT CE JUMP gsm7;

{**** If necessary, the code will now average the LAR values, and write
new values into oldlar_buffer. The proper LAR values are then
transmitted. *****}

AXO0 = DM(vad);

AF = PASS AX0;

IF NE JUMP encode_lar; {Voice Activity, skip the rest}
AXO0 = DM(cni_flag);

AF = PASS AX0;

IF EQ JUMP write_oldlar; {Not cni, so do not avg. oldlar}

{**** The code will now average the four previous frames lar values as
specified in GSM recommendation 06.12. Note that the values were
previously scaled. *****}

14 =~oldlar_buffer;
I5 ="mean_lar;

16 =14;

M7 =8;

AXO0 = DM(16,M7);
CNTR =7;

234

GSM Codec

{ DO average_lar UNTIL CE;}

gsm8: MODIFY (14,M5);
AYO = DM(16,M7);
AF = AX0 + AY0, AX0 = DM(16,M7);
AF = AX0 + AF, AX0 = DM(16,M7);

16 =14;
AR = AX0 + AF, AX0 = DM(16,M7);
average_lar: DM(I5,M5) = AR; {store mean_lar[iJ}

{?} IF NOT CE JUMP gsm8;
AYO = DM(16,M7);
AF = AX0 + AY0, AX0 = DM(16,M7);
AF = AX0 + AF, AX0 = DM(16,M7);
AR = AXO0 + AF;
DM(I5,M5) = AR; {store mean_lar[8]}
M7 =2; {restore M7}

{***** This section of code will write the current lar values into one
of four (eight location) buffers in the thirty-two location
oldlar_buffer for use in the next frame. The values are also
scaled. *****}

write_oldlar:AX0 = ~oldlar_buffer;
AY1 = "oldlar_buffer + 32;
AR = DM(oldlar_pntr);

AF = AY1-AR;

IF LE AR = PASS AXO0;

14 = AR; {Set the top of buffer}

SE =-2; {Roughly divide by four}

I5 = LAR;

Sl = DM(I5,M5);

CNTR = 8;
{ DO write_buffer UNTIL CE;}
gsmo: SR = ASHIFT SI (HI), SI = DM(I5,M5); {last read will be junk}
write_buffer: DM(14,M5) = SR1;

{?} IF NOT CE JUMP gsm9;
DM(oldlar_pntr) = 14;

{**** This code will quantize the current LAR values and the mean_lar values, if
necessary. One of these is then sent to the transmit buffer. *****}

encode_lar: 16 = LAR;
11 ="LARCc;
CALL lar_encoding;

AXO0 = DM(sp_flag);
AF = PASS AXO0;
IF NE JUMP transmit_lar;

16 ="mean_lar;
I1 ="mean_larc;
CALL lar_encoding;
(listing continues on next page)

235

4 GSM Codec

transmit_lar: 11 = AX1, {The quantized LAR values}
CNTR=8; {can now be sent}
CALL xmit_data; {Copy to the output buffer}

{ Now, continue with GSM recommendation 4.2.8.}

CALL decode_larc; {Decode the LARcs }
I0=DM(speech_in); {Input/output of the st filter}
I6="st_analysis; {Use the st analysis routine}
14="old_larpp; {Use the previous LARpp}
CALL st _filter; {Call st filter manager}

{ Compute sub-window information for each of the 4 sub-windows}
{**** Check to see if Comfort Noise is being generated. *****}

AX0 = DM(sp_flag);
AF = PASS AX0;
IF NE JUMP speech_frame;

AXO0 = DM(cni_flag);
AF =PASS AXO0;
IF NE JUMP comp_mnxmax;

silence_frame:AR = DM(mean_xmaxc);
JUMP xmit_cmfrtnois;

{**** This section will average the four xmax values from the previous
four frames as specified in GSM recommendation 06.12, section 2.1. Note
that the values have been pre-scaled. *****}

comp_mnxmax:l5 = ~oldxmax_buffer;

AR = DM(I5,M5); {AR holds mean_xmax.}
AYO = DM(I5,M5);
CNTR = 15;

{ DO avg_xmax UNTIL CE;}

avg_xmax: AR = AR + AYO, AYO = DM(I5,M5); {Last read is junk.}

{?} IF NOT CE JUMP avg_xmax;

{¥*** Now xmax must be quantized. *****}

CALL quantize_xmax; {mean_xmaxc returned in AR.}
DM(mean_xmaxc) = AR;

{*** The transmit buffer is filled next. *****}
xmit_cmfrtnois:CNTR = 4;

AXO0 =0;

I0 = DM(xmit_buffer);
{ DO xmit_sid UNTIL CE;}

236

GSM Codec

gsm10: DM(I0,M1) = AXO;
DM(I0,M1) = AXO;
DM(I0,M1) = AXO:

DM(I0,M1) = AR; {The fourth value is mean_xmaxc}
CNTR = 12;

{ DO zero_rpe UNTIL CE;}

zero_rpe: DM(10,M1) = AXO;

{?} IF NOT CE JUMP zero_rpe;

Xmit_sid: DM(I0,M1) = AXO;

{?} IF NOT CE JUMP gsm10;

{**** The Silence Descriptor (SID) frame has been sent to the transmit
buffer. *****}

{**** Must now compute the xmax values for the current frame. *****}

I3 = DM(speech_in);

I6="lags;
CNTR=4;
{ DO xmax_loop UNTIL CE;}
gsmll: CALL Itp_computation;
DM(16,M5) = AX1; {AX1 holds Nc for sub-window}
CALL rpe_encoding;
xmax_loop: NOP;
{?} IF NOT CE JUMP gsm11;
JUMP finish;

{ This code implements the sub-window information for each of the 4
speech sub-windows.}

speech_frame:I3=DM(speech_in); {Only set input pointer once}
I6="lags;
CNTR=4;
{ DO enc_subwindow UNTIL CE;}
gsml2: CALL Itp_computation; {Compute LTP coefficients}
DM(16,M5) = AX1; {AX1 holds Nc for sub-window}
CALL rpe_encoding; {Encode and decode RPE sequence}
11="Nc; {Sub-window data can be sent}
CNTR=17; {17 coeffs per sub-window}
CALL xmit_data; {Copy to the output buffer}
enc_subwindow: NOP; {No CALL in last instr of DO}

{?} IF NOT CE JUMP gsm12;
{All the coded variables have been sent to xmit_buffer}
finish: CALL update_periodicity; {VAD (06.32) routine}

DIS AR_SAT;
RTS; {Return to caller}

(listing continues on next page)

4

237

4 GSM Codec

xmit_data: 10=DM(xmit_buffer); {Copy coeffs to the output}
{ DO xmit UNTIL CE;} {buffer}

gsm13: AX0=DM(I1,M1);

Xmit: DM(10,M1)=AX0;

{?} IF NOT CE JUMP gsm13;
DM(xmit_buffer)=I10;
RTS; {Return from Encoder}

{ Subroutines for Encoder

{ This section of code quantizes and codes the LAR value produced above
as defined in section 4.2.7 of the recommendation}

lar_encoding:AX1 = 11, {Stores pointer to result}
I5="table_a; {This section of code computes}
[4="table_b; {the quantizing/coding of LARs}
MX1="table _mac; {Pointers are set to various}
MY 1="table mic; {data memory tables}
AX0=256; {Used for rounding}
CNTR=8;
{ DO quantize_lar UNTIL CE;}
gsmi4: MX0=PM(I5,M5);
SI=I5;
MY0=DM(16,M5);
MR=MX0*MYO0 (SS), AYO=PM(I4,M5); {temp=A[i]*LAR]i]}
AF=MR1+AY0; {temp=AJ[i[*LAR[i]+B][i]}
I15=MX1;
AR=AX0+AF, AY0=PM(I5,M5); {Round result}
MX1=I5;
SR=ASHIFT AR BY -9 (HI); {LARCc[i] = temp>>9}
AR=SR1;
15=MY1;
AF=AR-AYO0, AY1=PM(I5,M5); {Test min/max}
MY1=I5;
IF GT AR=PASS AYO0; {Cap if above max}
AF=AR-AY1;
IF LT AR=PASS AY1; {of below min}
AR=AR-AY1; {Subtract minimum value}
I5=SI;
guantize_lar: DM(11,M1)=AR,; {Save LARC]i]}

{?} IF NOT CE JUMP gsm14;

238

GSM Codec 4

{ This subroutine computes the 8-pole short term lattice filter
as defined in section 4.2.10 of the recommendation}

st_analysis:SR1=H#80; {Used for unbaised rounding}

{ DO st_compute UNTIL CE;} {The counter is set by caller}

gsm15: 15="rp; {Point to decoded r-values}
12="u; {Point to delay line}
AR=DM(I0,MO0); {Get filter input}
AX0=AR,; {Set sav=g]i], AXO0 is sav}
CNTR=8; {Compute all 8 poles}

{ DO st_loop UNTIL CE;}

gsm16: MYO0=DM(I5,M5); {Moved to dm}

MR=SR1*MF (SS), MX1=DM(I2,MO0);
MR=MR+AR*MYO (SS), AYO=MX1;

AY1=AR, AR=MR1+AY0; {AR=temp}
DM(12,M1)=AX0, MR=SR1*MF (SS); {u[i-1]=sav}
MR=MR+MX1*MYO0 (SS);

st_loop: AX0=AR, AR=MR1+AY1; {AR=di, AX0=sav}

{?} IF NOT CE JUMP gsm16;

st_compute: DM(I0,M1)=AR; {Write output over input}

{?} IF NOT CE JUMP gsm15;

RTS;

{ This section of code computes the maximum cross-correlation value
of the reconstructed short term signal dp() and the current
sub-window as defined in section 4.2.11 of the recommendation}

Itp_computation:10=I13; {Preserve I3 for now}
SB=-6; {Maximum shift value}
SI=DM(I0,M1);
CNTR=sub_window_length;
{ DO find_dmax UNTIL CE;}
find_dmax: SB=EXPADJ SI, SI=DM(10,M1);{Find maximum of sub-window}
{?} IF NOT CE JUMP find_dmax;
AY0=6;
AX0=SB;
AR=AX0+AYO0; {Compute shift for scaling}
DM(scal)=AR; {Save shift value}
AR=-AR;
SE=AR;
[1="wt; {Output to temporary array}
10=I3; {Preserve I3 for now}
SI=DM(I0,M1);
CNTR=sub_window_length; {Scale entire sub-window}
{ DO init_wt UNTIL CE;}
gsmi7: SR=ASHIFT SI (HI), SI=DM(I0,M1);

init_wt: DM(11,M1)=SR1;
{?}IF NOT CE JUMP gsm17;

(listing continues on next page)

239

4 GSM Codec

DIS AR_SAT; {Can use saturation here}
AX1=40; {Mimimum value for Nc}
10=39; {10 holds Nc counter}
AY0=0; {Holds LSW of max value}
AY1=0; {Holds MSW of max value}
14="dp+80;
2=t
11=12;
CNTR=81;

{ DO cross_loop UNTIL CE;}

gsm18: 15=14;

MR=0, MX0=DM(I1,M1), MYO=PM(I5,M5);

CNTR=sub_window_length;
{ DO cross_corr UNTIL CE;}
Cross_cofrr: MR=MR+MX0*MYO0 (SS), MX0=DM(I1,M1), MYO0=PM(I5,M5);
{?} IF NOT CE JUMP cross_caorr;

AR=MRO-AYO0, MY0=PM(l4,M6);

AR=MR1-AY1+C-1;

MODIFY(l0,M1);

IF LT JUMP cross_loop; {Check for L_result < L_max}
IF EQ AR=MRO-AYO; {Iif MSW=0, check LSW again}
IF EQ JUMP cross_loop; {If LSW=0, the values are equal}
AY0=MRO; {Reset L_MAX to new value}
AY1=MR1; {in double precision}
AX1=I10; {AX1 holds current value for Nc}
cross_loop: 11=12; {Reset pointer into array}
{?} IF NOT CE JUMP gsm18;
DM(Nc)=AX1; {After loop, Nc is in AX1}
SI=AY1; {This section of code computes}
AY1=6; {the power of the reconstructed}
AX0=DM(scal); {short term residual signal dp}
AR=AX0-AY1;
SE=AR;

SR=ASHIFT SI (HI), AR=AYO0;
SR=SR OR LSHIFT AR (LO);

SE=-3;

AY0="dp+120; {Use dp() array directly, do}
AR=AY0-AX1, AYO=SRO0; {not bother with temp array}
AY1=SR1;

I5=AR;

MR=0, AR=PM(I5,M5);
CNTR=sub_window_length;

{ DO power UNTIL CE;}
gsm19: SR=ASHIFT AR (HI), AR=PM(I5,M5); {Scale data}

MYO0=SR1; {Copy to y-reg}
power: MR=MR+SR1*MYO (SS); {Compute L_power}

{?} IF NOT CE JUMP gsm19;

240

GSM Codec 4

AR=0; {This section of code computes}
AF=PASS AY1, {and codes the LTP gain value}
IF LT JUMP bc_found; {L_max < 0, so bc=0}

IF EQ AF=PASS AY0;

IF EQ JUMP bc_found; {L_max =0, so bc=0}

AR=3;

AF=MRO0-AYO0;

AF=MR1-AY1+C-1;

IF LT JUMP bc_found; {L_max > L_power, so bc=3}

IF EQ AF=MRO0-AYO;

IF EQ JUMP bc_found; {L_max = L_power, so bc=3}
SE=EXP MR1 (HD); {Normalize L_power}

SE=EXP MRO (LO)

SR=NORM MR1 (HI), MR1=AY1,;

SR=SR OR NORM MRO (LO), MRO=AY0;

MYO0=SR1, SR=NORM MR1 (HI); {Normalize L_max, MYO holds s}
SR=SR OR NORM MRO (LO);

AY0=SR1, AF=PASS 0; {AYO0 holds R}
I5="table_dlb; {Check for each value of bc}
AR=PASS 0, MX0=PM(I5,M5);

MR=MX0*MYO0 (SS), MX0=PM(15,M5);

AF=MR1-AY0;

IF GE JUMP bc_found;

AR=1;

MR=MX0*MYO0 (SS), MX0=PM(15,M5);

AF=MR1-AY0;

IF GE JUMP bc_found;

AR=2;

MR=MX0*MYO0 (SS);

AF=MR1-AY0;

IF GE JUMP bc_found;

AR=3;

bc_found: DM(bc)=AR; {AR holds the value of bc}
ENA AR_SAT; {Re-enable ALU saturation}

{ This section of code computes the long term analysis filtering section
as described in section 4.2.12 of the recommendation}

It _analysis:AYO="table_qlb;
AR=AR+AYO0;
I5=AR;
MYO0=PM(I5,M4);
AYO0="dp+120;

AR=AYO0-AX1;

14=AR;

I15="dpp; {Output array dpp()}
[2="wt+5; {The e-array goes into wt}
MX1=H#80;

MR=MX1*MF (SS), MX0=PM(I4,M5);

(listing continues on next page)

241

4 GSM Codec

CNTR=sub_window_length;

{ DO calculate_e UNTIL CE;}

gsm20: MR=MR+MX0*MYO0 (SS), AYO=DM(I3,M1); {Compute dpp[k]}
AR=AY0-MR1, MX0=PM(l4,M5); {Compute e[Kk]}
DM(15,M5)=MR1; {Save dpp()}

calculate_e: DM(12,M1)=AR, MR=MX1*MF (SS); {Save €() into wt()}

{?} IF NOT CE JUMP gsm20;
{ Allthe long term parameters (Nc, bc, mc) have been computed}
RTS;

{ This subroutine computes, encodes and decodes the Residual Pulse
Excitation sequence as defined in section 4.2.13 of the recommendation}

rpe_encoding:10="wt; {The beginning of wt must be}
AX0=0; {cleared for use in the block}
CNTR=5; {filter}
{ DO zero_start UNTIL CE;}
zero_start: DM(10,M1)=AX0;
{?} IF NOT CE JUMP zero_start;
10="wt+45; {The end must also be cleared}
CNTR=5;
{ DO zero_end UNTIL CE;}
zero_end: DM(10,M1)=AXO0;
{?} IF NOT CE JUMP zero_end;
DIS AR_SAT;
[2="wt; {wt will be reloaded with x()}
CNTR=sub_window_length;
{ DO compute_x_array UNTIL CE;}
gsm21: 10=12;
[4="h;
MR=0, MX0=DM(I0,M1), MY0O=PM(I4,M5);
MR0=8192; {Used for rounding}
CNTR=11; {11-term filter}
{ DO compute_x UNTIL CE;}
compute_x: MR=MR+MX0*MYO (SS), MX0=DM(I0,M1), MYO=PM(I4,M5);
{?} IF NOT CE JUMP compute_Xx;
AY0=MRO; {The output value must be}
AR=MRO+AY0, AYO=MR1,; {Up-shifted with saturation}
AY1=AR, AR=MR1+AY0+C;
IF NOT AV JUMP done_2x; {Check for overflow on 2x}
AR=H#7FFF; {Overflow. manually saturate}
AY1=H#8000; {output, and save value}

IF AC AR=PASS AY1,
JUMP compute_x_array;

done_2x: AX1=AR, AR=PASS AY1], {Compute 4x}
AY0=AX1, AR=AR+AY1,;
ENA AR_SAT; {Automatic saturation can}
AR=AX1+AYO0+C; {be used on the last add}
DIS AR_SAT;

242

GSM Codec 4

compute_x_array: DM(I12,M1)=AR; {Output writes over input}
{?} IF NOT CE JUMP gsm21;

{ This section of code computes the RPE Grid Selection as described
in section 4.2.14 of the recommendation}

AF=PASS 0;
AY0=0;
AY1=0;
AX0=0;
MO0=3; {Used for interleaving}
1=t
CNTR=4;
{ DO find_mc UNTIL CE;}
gsm22: 12=11;
MR=0, SI=DM(I12,MO0); {L_result=0, fetch first value}
CNTR=13;
{ DO calculate_em UNTIL CE;}
gsm23: SR=ASHIFT SI BY -2 (HI);{Downshift to avoid overflow}
MYO0=SR1; {Copy to yop}
calculate_em: MR=MR+SR1*MYO0 (SS), SI=DM(I12,M0);{L_result is in MR}
{?} IF NOT CE JUMP gsm23;
AR=MRO0-AY0;
AR=MR1-AY1+C-1;
IF LT JUMP find_moc; {Check for L_result<EM}
IF EQ AR=MRO-AY0; {If MSW=0, check LSW again}
IF EQ JUMP find_mc; {L_result = EM}
AYO0=MRO; {EM=L_result}
AY1=MR1, AR=PASS AF;
AXO0=AR; {Mc=m}

find_mc: AF=AF+1, MX0=DM(I1,M1);
{?} IF NOT CE JUMP gsm22;

{Mc in AX0}
ENA AR_SAT;
DM(Mc)=AX0;
AYO0="wt;
[1="wt; {temp array will be reloaded}
AR=AX0+AYO0; {with xM()}
I0=AR;
AR=PASS 0;
CNTR=13;
{ DO decimate UNTIL CE;}
gsm24: AX0=DM(I0,M0); {Read every third value}
AF=ABS AXO0, DM(I11,M1)=AXO0; {Check for maximum value}
AF=AR-AF;
decimate: IF LT AR=ABS AXO0; {AR holds xmax}
{?} IF NOT CE JUMP gsm24;
MO0=0; {Reset MO to usual value}

(listing continues on next page)

243

4 GSM Codec

{**** The following code checks vad and stores xmax in oldxmax_buffer,
if necessary. *****}

AXO0 = DM(vad);

AF = PASS AX0;

IF NE JUMP xmax_speech; {Yes - VAD, so do not store}
SI = AR; {Save xmax in Sl}

{***** This section of code will write xmax into the oldxmax_buffer for use
in the next frame. Note that scaling also takes place. *****}

AXO0 = "oldxmax_buffer;
AY1 = "oldxmax_buffer + 16;
AR = DM(oldxmax_pntr);

AF = AY1-AR;

IF LE AR = PASS AXO0; {AR holds address}

SR = ASHIFT SI BY -4 (HI); {SR1 holds scaled xmax}

I5 = AR;

DM(I5,M5) = SR1; {Write xmax to oldxmax_buffer}
DM(oldxmax_pntr) = I5;

AR =SI; {Restore xmax}

{ This section of code computes the APCM quantization of the selected
RPE section as defined in section 4.2.15 of the recommendation}

xmax_speech:CALL quantize_xmax; {input and output in AR}
DM(xmaxc)=AR; {Save xmaxc}
CALL get_xmaxc_pts; {Compute exponent and mantissa}
{Exponent in AY1}
AYO0="table_nrfac; {Mant in AR}
MX0=AR, AR=AR+AY0; {Now mant in MX0}
I5=AR;
MYO0=PM(I5,M5); {MYO holds temp2}
AX0=6;
AR=AX0-AY1,;
AY0=4;
10="wt; {Temp array current holds xM()}
[2="xmc;
SE=AR; {SE holds temp1}
SI=DM(I0,M1);
CNTR=13;
{ DO compute_xm UNTIL CE;}
gsm25: SR=LSHIFT SI (HI), SI=DM(I0,M1); {temp=xM[i]<<templ}
MR=SR1*MYO (SS); {temp=temp*temp?2}

SR=ASHIFT MR1 BY -12 (HI);

AR=SR1+AY0; {AR=xMc]i]}
compute_xm: DM(12,M1)=AR,; {Store xMc]iJ}
{?} IF NOT CE JUMP gsm25;

CALL rpe_decoding; {APCM inverse quantization}

244

GSM Codec

{ This section of code updates the reconstructed short term residual
signal dp() as defined in section 4.2.18 of the recommendation}

update_dp_code: 14="dp;

[5="dp+40;

CNTR=80;
{ DO update_dp UNTIL CE;
gsm26: AX0=PM(I5,M5);
update_dp: PM(14,M5)=AX0;
{?} IF NOT CE JUMP gsm26;

14="dp+80;

11="ep;

I15="dpp;

AX0=DM(I1,M1);

AYO0=DM(15,M5);

CNTR=sub_window_length;
{ DO fill_dp UNTIL CE;}
gsm27: AR=AX0+AY0, AX0=DM(I1,M1);

AYO0=DM(15,M5);

fill_dp: PM(14,M5)=AR;
{?} IF NOT CE JUMP gsm27;

RTS;

{14 points to dp[-120]}
{I5 points to dp[-80]}

{dp[-120+K]=dp[-80+K]}

{14 points to dp[-40]}

{Fetch first samples}

{dp[-40+k]=ep[k]+dpp[k]}

{ This section of code computes the APCM quantization of the selected
RPE section as defined in section 4.2.15 of the recommendation}

guantize_xmax:SI=AR, AF=PASS 0;
SR=ASHIFT AR BY -9 (HI);

CNTR=6;
{ DO get_exp UNTIL CE;}
gsm28: AR=PASS SR1;

IF GT AF=AF+1;

get_exp: SR=ASHIFT SR1 BY -1 (HI);
{?} IF NOT CE JUMP gsm28;

AX1=5;

AR=AX1+AF,

AR=-AR;

SE=AR, AR=PASS AF;
SR=LSHIFT AR BY 3 (HI);
AY0=SR1, SR=ASHIFT SI (HI);
AR=SR1+AY0;

RTS;

{This section of code quantizes}
{and codes xmax into xmaxc}

{SR1 holds temp}
{Increment exp until SR1=0}

{temp=exp+5}
{Use this for downshift}
{AR=exp}
{Place exponent}
{Place mantissa}
{AR holds xmaxc}

(listing continues on next page)

4

245

4 GSM Codec

{ Encoder and Voice Activity Detector Subroutines

{ This section of code computes the reflection coefficients using the
schur recursion as defined in section 4.2.5 of recommendation 6.10 and

section 3.3.1 of recommendation 6.32}

schur_routine:16=AY1,
AR=DM(16,M5);

SE=EXP AR (HI), SI=DM(16,M5);

SE=EXP SI (LO);
SR=NORM AR (HI);
SR=SR OR NORM S (LO);
AR=PASS SR1;
IF EQ JUMP zero_reflec;
16=AY1,;
15=MY1;
AR=DM(16,M5);
CNTR=9;

{ DO set_acf UNTIL CE;}

{This section of code prepares}
{for the schur recursion}

{Normalize the autocorrelation}

{sequence based on L_ACF[0]}

{If L_ACF[0] = 0, setr to O}

{Normalize all terms}

gsm29: SR=NORM AR (HI), AR=DM(I6,M5);
SR=SR OR NORM AR (LO), AR=DM(I6,M5);

set_acf: DM(I5,M5)=SR1;
{?} IF NOT CE JUMP gsm29;

I15=MY1;
[4="k+7;
10="p;
AR=DM(15,M5);
DM(10,M1)=AR;
CNTR=7;
{ DO create_k UNTIL CE;}
gsm30: AR=DM(15,M5);
DM(10,M1)=AR;
create_k: DM(14,M6)=AR,;
{?} IF NOT CE JUMP gsm30;
AR=DM(15,M5);
DM(10,M1)=AR;

15=MO;
16=7;
SR0=0;
SR1=H#80;
CNTR=7;
{ DO compute_reflec UNTIL CE;}
gsm31: 12="p;
[4="K+7;
AX0=DM(12,M1);
AX1=DM(12,M2);
MX0=AX1, AF=ABS AX1;
AR=AF-AXO0;

246

{This section of code creates}
{the k-values and p-values}

{Set P[0]=acf[0]}

{Fill the k and p arrays}

{Set P[8]=acf[8]}

{Compute r-values}
{16 used as downcounter}

{Used in unbiased rounding}
{Loop through first 7 r-values}

{Reset pointers}
{Fetch P[0]}

{Fetch P[1]}
{AF=abs(P[1])}

IF LE JUMP do_division;
DM(15,M5)=SRO0;
JUMP compute_reflec;

do_division: CALL divide_routine;

AR=AY0, AF=ABS AX1;
AY0=32767;

AF=AF-AX0;

IF EQ AR=PASS AYO;

IF POS AR=-AR;
DM(I5,M5)=AR;

MYO0=AR, MR=SR1*MF (SS);

GSM Codec 4

{If P[0]<abs(P[1]), r = O}
{Final r =0}

{Compute r[n]=abs(P[1])/P[0]}

{Check for abs(P[1])=P[0]}
{Saturate if they are equal}
{Generate sign of r[n]}
{Store r[n]}

MR=MR+MX0*MYO (SS), AYO=AX0; {Compute new P[0]} AR=MR1+AYO;

{Store new P[0]}
{One less loop each iteration}

AYO; {AR=new P[m]}

DM(12,M3)=AR, AR=MR1+AY0;{Store P[m], AR=new K[9-m]}

{Store new K[9-m]}

DM(12,M3)=AR;
CNTR=I6;
{ DO schur_recur UNTIL CE;}
gsm32: MR=SR1*MF (SS), MX0=DM(I4,M4);
MR=MR+MX0*MYO0 (SS), AY0O=DM(I2,M2);
AR=MR1+AY0, MX1=
MR=SR1*MF (SS);
MR=MR+MX1*MYO0 (SS), AYO=MXO0;
schur_recur: DM(14,M6)=AR,;
{?} IF NOT CE JUMP gsm32;
compute_reflec: MODIFY(16,M6);

{?} IF NOT CE JUMP gsm31;

12="p;
AX0=DM(12,M1);
AX1=DM(12,M2);
AF=ABS AX1,;

CALL divide_routine;
AR=AYO0, AF=ABS AX1,;
AY0=32767;
AF=AF-AX0;

IF EQ AR=PASS AYO0;
AF=ABS AX1,;
AF=AF-AX0;

IF GT AR=PASS 0;

IF POS AR=-AR;
DM(15,M5)=AR;

JUMP schur_done;

zero_reflec:AX0=0;

{

zero_rs:

15=MO;

CNTR=S;

DO zero_rs UNTIL CE;}
DM(15,M5)=AXO0;

{?} IF NOT CE JUMP zero_rs;

schur_done: MO =0;

RTS;

{Decrement loop counter (16)}

{Compute r[8] outside of loop}
{Using same procedure as above}

{The test for valid r is here}
{r[8]=0 if P[0]<abs(P[1])}

{The r-values must be set to}
{0 according to the recursion}

(listing continues on next page)

247

4 GSM Codec

{ Divide Subroutine
divide_routine:
AYO0=0;
DIVS AF,AXO;
CNTR=15;
{ DO div_loop UNTIL CE;}
div_loop: DIVQ AXO0;
{?} IF NOT CE JUMP div_loop;
RTS;
{ Decoder Subroutine

{ This section of code implements the LPC-LTP-RPE decoder as defined in
the GSM recommendation.}

dmr_decode: ENA AR_SAT; {Enable ALU saturation mode}
DM(recv_buffer)=I1; {Save pointer to input coeff array}
DM(speech_out)=I2; {Save pointer to output speech array}
MX1=H#4000; {This is used to set the MF register}
MY 1=H#100; {to H#80 so that it can be used in }
MF=MX1*MY1 (SS); {unbiased rounding in various places}

{**** The code will now implement the comfort noise insertion as specified
in GSM specification 6.31, section 3.1, *****}

AR = PASS AXO0; {AX0 holds the SID signal}
IF EQ JUMP start_dcd;
CALL comfort_noise_generator;

{ Now, continue}

start_dcd: 11="LARc; {Copy the LARc array into proper place}
CNTR=8; {there are 8 LARcs}
CALL recv_data; {This subroutine copies from input buff}
CALL decode_ LARc; {Decode the LARcs to LARs}
I3=DM(speech_out); {Only set output pointer once!}
CNTR=4; {Computations for 4 sub windows}
{ DO dcd_subwindow UNTIL CE;}
gsm33: 11="Nc; {Set pointer to start of sub-window}
CNTR=17; {data array 17 coefs per sub-window}
CALL recv_data; {Copy them from the input buffer}
CALL get_xmaxc_pts; {Decode xmaxc into exp and mantissa}
CALL rpe_decoding; {Decode xMc array into ep array}
CALL It_predictor; {Compute drp for sub-window}
CALL setup_witr; {Copy drp values in temp wtr}
dcd_subwindow: NOP; {No CALL in last instr of DO loop}

{?} IF NOT CE JUMP gsm33;

248

I0=DM(speech_out);
11=10;
I6="st_synthesis;
[4="old_LARrpp;
CALL st _filter;

GSM Codec 4

{Set pointer to output array}
{Set pointer to input/output}
{Set pointer to st filter}
{Set pointer to old LARrpp}
{Call short term filter manager}

{ 435 }
I0=DM(speech_out); {This section of code does the}
MY0=28180; {pre-emp, up-scale and trunc}
MX0=DM(msr);
AY1=H#FFF8; {Same effect as down/up shift}
MX1=H#80; {Used for unbaised rounding}
MR=MX1*MF (SS); {Pre-load MR}
CNTR=window_length;

{ DO post_process UNTIL CE;}

gsm34: MR=MR+MX0*MYO (SS), AYO=DM(I0,M0) {De-emphasis filtering}

AR=MR1+AYO0;

AF=PASS AR, MX0=AR;

AR=AR+AF;
AR=AR AND AY1;
post_process:
{?} IF NOT CE JUMP gsm34;
DM(msr)=MXO0;

{Upscale output}
{Spec does this with shifts}

DM(I0,M1)=AR, MR=MX1*MF (SS);

{At this point, the buffer sr can be output to the speaker}

DIS AR_SAT;
RTS;

{Return from Decoder}

{ Subroutines for Decoder 1

recv_data: 10=DM(recv_buffer);

{ DO recv UNTIL CE;}
gsm35: AX0=DM(I0,M1);
recv: DM(11,M1)=AXO0;

{?} IF NOT CE JUMP gsm35;
DM(recv_buffer)=I10;

RTS;
setup_wtr: 15="drp+120;

CNTR=40;
{ DO copy_drp UNTIL CE;}
gsm36: AX0=DM(I5,M5);
copy_drp: DM(13,M1)=AX0;
{?} IF NOT CE JUMP gsm36;

RTS;

{This subroutine copies data}
{from the input coefficient}
{buffer to the appropraite }
{location in memory while}

{maintaining pointer}
{This subroutine copies the}
{current sub-window data into}
{a temporary array. This temp}

{array will be used by the}
{short term synthesis filter}

(listing continues on next page)

249

4 GSM Codec

{ This section of code computes the short term synthesis filter as
described in section 4.3.4 of the recommendation}

st_synthesis:MX1=H#80; {Used in un-biased rounding}
MO0=-3; {MO is changed for this routine}
{ DO st_synth_compute UNTIL CE;}
gsm37: I15="rp+7; {Point to coefficient array}
[2="V+7; {Point to delay array}
MYO0=DM(I5,M6); {Moved from PM}
MR=MX1*MF (SS), MX0=DM(I2,M2);
AY0=DM(I1,M1); {AYO holds sri, sri=wt[K]}
CNTR=S;
{ DO st_synth_loop UNTIL CE;}
gsm38: MR=MR+MX0*MYO0 (SS);
AY1=MX0, AR=AY0-MR1; {AR=sri}
MR=MX1*MF (SS), AYO=AR; {AYO=sri}
MR=MR+AR*MYO0 (SS), MX0=DM(I2,M3);
AR=MR1+AY1, MY0=DM(I5,M6); {AR=v[9-i]} st_synth_loop:
DM(12,M0)=AR, MR=MX1*MF (SS); {Save v[9-i]}
{?} IF NOT CE JUMP gsm38;
DM(I0,M1)=AY0; {sr[Kk]=sri}
MODIFY(12,M3); {Move pointer to delay line}
st_synth_compute: DM(I12,M0)=AY0; {V[O]=sri}
{?} IF NOT CE JUMP gsm37;
MO0=0; {Reset MO to usual value}
RTS;

{ This section of code computes the long term synthesis filter as
described in section 4.3.2 of the recommendation}

It_predictor:AY1=DM(nrp); {Check the limits of Ncr}
AR=DM(Nc);
AY0=40;
AF=AR-AY0;
IF LT AR=PASS AY1; {Below min, so use last value}
AY0=120;
AF=AR-AY0;
IF GT AR=PASS AY1; {Above max, so use last value}
DM(nrp)=AR;
AY0="drp+120;
AR=AYO0-AR;
4=AR;
16=AY0;
AY0=DM(bc);
AX0="table_qlb;
AR=AX0+AY0;
I5=AR;
MX1=H#80;
MR=MX1*MF (SS), MX0=DM(I4,M5);
MYO0=PM(I5,M4); {brp}

250

12="ep;
CNTR=sub_window_length;
{ DO compute_drp UNTIL CE;}

gsm39:

compute_drp:
{?} IF NOT CE JUMP gsm39;

14="drp;

I5="drp+40;

CNTR=120;
{ DO update_drp UNTIL CE;}
gsm40: AX0=DM(I5,M5);
update_drp: DM(14,M5)=AXO0;
{?} IF NOT CE JUMP gsm40;

RTS;

{

Common Subroutines for

MR=MR+MX0*MYO (ss), AYO=DM(12,M1);
AR=MR1+AY0, MX0=DM(I4,M5);
DM(16,M5)=AR, MR=MX1*MF (SS);

GSM Codec 4

{Compute drpp}
{drp[K]=erp[Kk]+drpp}
{Store drp[K]}

{10 points to drp[-120]}
{11 points to drp[-80]}

{drp[-120+k]=drp[-80+k]}

Encoder and Decoder

{ This section of code decodes the coded log area ratios as defined by

section 4.2.8 of the recommendation}

decode LARCc:12="LARCc;
11="LARpp;
I6="table_mic;
[4="table_inva;

I5="table_b;

SE=1;

CNTR=S;
{ DO compute_larpp UNTIL CE;}
gsm4l: AX0=DM(I2,M1);

AY0=PM(I6,M5);
AR=AX0+AY0, SI=PM(I5,M5);
SR=LSHIFT AR BY 10 (HI);
AY1=SR1, SR=LSHIFT SI (HI);
AR=AY1-SR1, MY0=PM(I4,M5)
MRO=H#8000;MR1=0;
MR=MR+AR*MYO (ss);
AY0=MR1;
AR=MR1+AY0;
compute_larpp: DM(11,M1)=AR,;
{?} IF NOT CE JUMP gsm41;

{AY1=temp1l}

; {AR=templ=templ-temp2}

{Unbiased rounding}
{MR1=templ=INVA[i]*templ}

{AR=LARppl[i]}
{Store LARpp]iJ}

(listing continues on next page)

251

4 GSM Codec

{ This section of code computes the mantissa and exponent parts of the
xmaxc coefficient as described in section 4.2.15 of the recommendation}

get xmaxc_pts:AR=DM(xmaxc);
AY0=AR;
AX0=15;
SR=ASHIFT AR BY -3 (HI);
AY1=1;
AR=SR1-AY1,;
AF=AY0-AXO0;
IF LE AR=PASS 0;
SR=LSHIFT AR BY 3 (HI);
AY1=AR, AR=AYO0-SR1;

IF NE JUMP else_clause; {Check if mant==0}

AY1=-4; {Yes, so set mant and ex}
AR=15;

JUMP around_else; {Jump over else_clause}

else_clause:AY0=7;
AF=AR-AY0;
CNTR=3;
{ DO normalize_mant UNTIL CE;}
gsm42; IF GT JUMP normalize_mant;
SR=LSHIFT AR BY 1 (HI);
AR=AY1-1; {Decrement exponent}
AY1=AR, AF=PASS 1; {AY1=exp}
AR=SR1+AF; {Increment mantissa}
normalize_mant; AF=AR-AYO;
{?} IF NOT CE JUMP gsm42;

around_else:AY0=8;
AR=AR-AYO0;
MX0=AR; {Mant must also be in MX0}
RTS;

{ This section of code computes the reflection coefficients for the
interpolated LARs as defined in section 4.2.9.2 of the recommendation}

make_rp: MX1=16; {store 16}
I5="LARp;
16="rp;
CNTR=S8;
{ DO compute_rp UNTIL CE; }
gsmA43: AX0=DM(I5,M5);
AR=ABS AXO0;
AX1=AR;
SR=LSHIFT AR BY 1 (HI);
AXO0=SR1; {AXO=temp<<1}
SR=ASHIFT AR BY -2 (HI);
AY0=26112;

252

GSM Codec

AR=SR1+AY0; {AR=temp>>2 + 26112}

AY0=20070;

AY1=11059;

AF=AX1-AYO0;

IF LT AR=AX1+AY1,; {AR=temp+11059}

AF=AX1-AY1;

IF LT AR=PASS AXO0;

IF NEG AR=-AR; {Compute sign}
compute_rp: DM(16,M5)=AR,; {Store rp[i], Moved from PM}
{?} IF NOT CE JUMP gsm43;

16=MX1; {restore 16}
RTS;

{ This section of code computes the interpolation of the LARpp() array
and calls the subroutine to compute the reflection coefficients, and
then the appropriate short term filter. This block is defined in section
4.2.9.1 of the recommendation}

st_filter; SE=-2; {Compute the LARps for }
12=14; {k_start=0to k _end =12}
I3="LARpp;
I5="LARp;
SI=DM(I3,M1);
CNTR=8;
{ DO k_end_12 UNTIL CE;}
gsmd4: SR=ASHIFT SI (HI), SI=DM(I12,M1);
AY0=SR1, SR=ASHIFT SI (HI);
AF=SR1+AYO0;
SR=ASHIFT SI BY -1 (HI);
AR=SR1+AF, SI=DM(I3,M1);
k_end_12: DM(15,M5)=AR;
{?} IF NOT CE JUMP gsm44;

CALL make_rp; {Compute reflection coeffs}
CNTR=13; {13 filter samples}
CALL (16); {Analysis or Synthesis}
I5="LARp; {Compute the LARps for}
12=14; {k_start = 13 to k_end = 26}
I3="LARpp;
SE=-1;
SI=DM(I3,M1);
CNTR=8;

{ DO k_end_26 UNTIL CE;}

gsm45: SR=ASHIFT SI (HI), SI=DM(I12,M1);

AY0=SR1, SR=ASHIFT SI (HI);
AR=SR1+AYO0, SI=DM(I3,M1);

k_end_26: DM(I5,M5)=AR;

{?} IF NOT CE JUMP gsm45;

(listing continues on next page)

253

4 GSM Codec

CALL make_rp; {Compute reflection coeffs}

CNTR=14; {14 filter samples}
CALL (16); {Analysis or Synthesis}
I5="LARp; {Compute the LARps for}
12=14; {k_start = 27 to k_end = 39}
I3="LARpp;
SE=-2;
SI=DM(I12,M1);
CNTR=S;
{ DO k_end_39 UNTIL CE;}
gsm46: SR=ASHIFT SI (HI), SI=DM(I3,M1);
AY0=SR1, SR=ASHIFT SI (HI);
AF=SR1+AYO0;

SR=ASHIFT SI BY -1 (HI);
AR=SR1+AF, SI=DM(12,M1);

k_end_39: DM(I5,M5)=AR;
{?} IF NOT CE JUMP gsm46;

CALL make_rp;

CNTR=13;

CALL (16);

I5="LARp;

I3="LARpp;

CNTR=8;
{ DO k_end_159 UNTIL CE;}
gsm47: AX0=DM(I3,M1);

DM(15,M5)=AX0;

k_end_159: DM(14,M5)=AX0;
{?} IF NOT CE JUMP gsm47;

CALL make_rp;
CNTR=120;
CALL (16);
RTS;

{Compute reflection coeffs}
{13 filter samples}

{Compute the LARps for}

{k_start =40to k_end = 159}

{LARpp(j-1)[i] = LARpp()[il}

{Compute reflection coeffs}
{120 filter samples}

{ This section of code computes the inverse of the APCM quantization
and the RPE grid positioning as defined in sections 4.2.16 and 4.2.17

of the recommendation}

rpe_decoding:10="ep;

AXO0=0;

CNTR=sub_window_length;
{ DO zero_fill_ep UNTIL CE;}
zero_fill_ep: DM(10,M1)=AXO0;

{?} IF NOT CE JUMP zero_fill_ep;
AX0=DM(mc);

AYO0="ep;
AR=AX0+AYO;

254

{First set output ep() array}
{to 0s, so it can be filled}
{in the next section}

GSM Codec 4

I1=AR; {Point to start in ep() array}
MO=3;
AYO0="table_ fac;
AX0=MXO0;
AR=AX0+AYO0;
I5=AR;
MYO0=PM(I5,M4); {MYO holds temp1}
AX0=6;
AR=AY1-AXO0;
AX1=AR, AF=AX0-AY1,;
AR=AF-1;
SE=AR, AR=PASS 1, {SE holds temp2}
SR=LSHIFT AR (HI), SE=AX1;
AY1=SR1; {AY1 holds temp3}
10="xmc;
AY0=7;
MX1=H#80;
MR=MX1*MF (SS), SI=DM(I0,M1);
CNTR=13;
{ DO inverse_apcm UNTIL CE;}
gsmA48: SR=LSHIFT SI BY 1 (HI);
AR=SR1-AYO0, SI=DM(I0,M1); {AR=temp=xMc]i]<<1 - 7}
SR=LSHIFT AR BY 12 (HI); {SR1=temp=temp<<12}
MR=MR+SR1*MYO (SS); {MR1=temp=templ*temp}
AR=MR1+AY1; {AR=temp=temp+temp3}
SR=ASHIFT AR (HI); {xMpli]=temp>>temp2}
inverse_apcm: DM(11,M0)=SR1, MR=MX1*MF (SS); {ep[Mc+(3*)=xMp]i]}
{?} IF NOT CE JUMP gsm48;
MO0=0; {Reset MO to usual value}
RTS;
{ End of GSM0610 Code }
.ENDMOD;

Listing 4.2 Codec Routine (GSM0610.DSP)

255

4 GSM Codec

{

GSM0632.DSP
Analog Devices INC. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Hotline: (617) 461-3672

This subroutine implements the voice activity detection algorithm of
GSM specification 06.32 on the ADSP-210x family of DSPs. In line
comments reference various sections of this recommendation. It

is assumed that the reader is familiar with that document.

The code consists of two subroutines. VAD_ROUTINE is called by
the GSM encoder (06.10) after the autocorrelation is complete.

UPDATE_PERIODICITY is called by the GSM encoder after the subwindow

data is calculated.

This code is optimized to implement the Voice Activity Detection
in a minimal amount of Progam Memory space. Since the 21xx processors
can execute all of the GSM speech processing functions in much less
than 20ms, we have slightly increased execution time (less than .02ms)
in exchange for a decrease in code size.

Long words are stored as two successive 16 bit locations,
MSW first, LSW second.

This code has been successfully verified with the GSM 06.32 Digital
Test Sequences, dated March, 1990. The changes made to version 1.00
during validation are available in a separate document.

Release History:
Date Ver Comments

24-Oct-89 66 preliminary - waiting for test vectors
10-Jan-90 1.00 Second Release (waiting for VAD test vectors)
01-Nov-90 2.00 Third release. Validated with 06.32 test sequences

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties
which may result from its use. Portions of the algorithms implemented in
this code may have been patented; it is up to the user to determine the
legality of their application.

Assembler Preprocessor Switches:
-cp switch must always be used when assembling
-Dalias switch aliases some variables to save RAM space
Calling Parameters:
M0=0; M1=1; M2=-1; M3=2; M4=0; M5=1; M6=-1;
LO=0; L1=0; L2=0; L3=0; L4=0; L5=0; L6=0;

Return Values: VAD

256

GSM Codec 4

Max Loop Nesting Depth: 2 levels
Max PC Stack Nesting Depth: 3 levels

Modes Assumed: AR_SAT enabled, M_MODE disabled
ADSP-2101 Execution cycles: 2141 maximum

vad_routine: 2055 cycles maximum
update_periodicity: 86 cycles maximum

.MODULE voice_activity detection;

{ Conditional Assembly }
{ Use (asm21 -cp -Dalias) to alias some variables to save RAM }
#ifdef alias
.INCLUDE <var0632.ram>;
.EXTERNAL wt; {Working buffer for aliases}
#definer_a_avl wt+0
#define vpar wt+0
#define sacf wt+9
#define savO wt+9
#define L_coef wt+18
#define L_av0 wt+36
#define L_avl wt+54
#define L_work wt+54
#else
.INCLUDE <var0632.h>;
#endif
{ }
.ENTRY vad_routine;
.ENTRY update_periodicity;

.EXTERNAL schur_routine; {found in GSM0610.DSP }
.EXTERNAL divide_routine; {found in GSM0610.DSP }

.EXTERNAL L_ACF;
.EXTERNAL scaleauto;

.GLOBAL vad, lags;

{ the following are GLOBAL for the reset routine only }

.GLOBAL rvad, normrvad, L_sacf, L_sav0;

.GLOBAL pt_sacf, pt_sav0, L_lastdm;

.GLOBAL oldlagcount, veryoldlagcount, e_thvad, m_thvad, adaptcount;
.GLOBAL burstcount, hangcount, oldlag;

(listing continues on next page)

257

4 GSM Codec

{ 3.1 Adaptive Filtering and Energy Computation }

{ Test if L_ACF is equal to zero }

vad_routine:16="L_ACF;
AR=DM(scaleauto);
AR=PASS AR, AY0=DM(16,M5); {Get ms_ACF}

IF LT AR=PASS 0; {IF scaleauto<0 THEN: scalvad=0}
SR=ASHIFT AR BY 1 (LO);

AY1=SRO0; {AY1=scalvad<<1}

AR=PASS 0, AX0O=DM(I6,M6); {GetIs_ACF}

DM(m_pvad)=AR; {Init these anyways}
DM(m_acf0)=AR;

AR=-32768;

DM(e_pvad)=AR;

DM(e_acf0)=AR;

AR=AX0 OR AY0, MRO=AY0; {IF L_ACF[0]=0 THEN: goto 3.2}
IF EQ JUMP acf_average;

{Outputs: scalvad<<1=AY1, Is_ACF[0]=AX0, 16="L_ACF[0]}
{ Renormalization of the L_acf[0..8] }

SE=EXP MRO (HI), SI=AX0; {Norm L_ACF[0]}

SE=EXP SI (LO);

AYO0=SE; {Fix SE for >>19, take SR1}
AX0=-3;

AR=AX0-AYO0;

SE=AR; {SE=normacf-3}

I5="sacf;
CNTR=9;
DO norm_sacf UNTIL CE;
SI=DM(16,M5);
SR=ASHIFT SI (HI), SI=DM(I6,M5);
SR=SR OR LSHIFT SI (LO);
norm_sacf: DM(I5,M5)=SR1;

{Outputs: scalvad<<1=AY1, -normacf=AY0}

{ Computation of e_acf and m_acf0 }
I5="sacf;
AX0=32;
AR=AX0+AY1, {e_acf0=32+(scalvad<<1)+(-normacf)}

AR=AR+AY0, SI=DM(I5,M5); {get sacf[0]}
DM(e_acf0)=AR;

SR=ASHIFT SI BY 3 (LO); {m_acfO=sacf[0]<<3}
DM(m_acf0)=SRO0;

258

GSM Codec 4

{Outputs: scalvad<<1=AY1, e_acf0=AR, sacf[0]=SlI, 15="sacf[1]}

{ Computation of e_pvad and m_pvad }
AY0=14;
AF=AR+AY0, MX1=SI;
AX0=DM(normrvad); {normrvad is stored as -normvad}
I0="rvad; {AF will be e_pvad}
AF=AX0+AF, MY1=DM(I0,M1); {get rvad[0] ahead of time}

{get rvad[1], sacf[1]}

MR=MX1*MY1 (SS), MX0=DM(IO,M1); {sacf[O]*rvad[O]}

MY0=DM(15,M5);

SR=ASHIFT MR1 BY -1 (HI); {>>1}

SR=SR OR LSHIFT MRO BY -1 (LO);

MRO=SRO;

MR1=SR1;

CNTR=7;

DO compute_pvad UNTIL CE;

MR=MR+MX0*MYO0 (SS), MX0=DM(I0,M1);

compute_pvad: MYO0=DM(I5,M5);

MR=MR+MX0*MYO0 (SS);

AR=PASS MR1, AYO=MRO;

IF LT JUMP msw_le; {IF ms_temp>=0}
AR=AR OR AYQ0;
IF NE JUMP gt_zero; {THEN IF L_temp==0}
msw_le: MR1=0; {THEN: L_temp=1}
MRO=1;
gt zero: SE=EXP MR1 (HI); {SE=-NORM(L_temp)}

SE=EXP MRO (LO);

SR=NORM MR1 (HI); {L_temp<<normprod, use SR0}
SR=SR OR NORM MRO (LO), AR=SE;

AR=AR+AF; {e_pvad-normprod}
DM(e_pvad)=AR;
DM(m_pvad)=SR1;

{Outputs: scalvad<<1=AY1}

{ 3.2 ACF Averaging }
acf_average:AX0=-10;

AR=AX0+AY1,; {Note that SE is neg for >>}

SE=AR; {so SE is -(10-scalvad<<1)}

{Outputs: scalvad<<1=AY1}

(listing continues on next page)

259

4 GSM Codec

{ computation of L_av0[0..8] and L_av1[0..8] }
L6=72; {Circular buffers for L_sav0}
L3=54; {and L_sacf, restore afterwards}
M2=17; {Skip forward 9, 8.5 longs}
M3=-35; {Skip back 17, -17.5 longs}
[4="L_ACF,; {Restore Ms and Ls after use!}
10="L_avo;
I1="L_sacf;
I3=DM(pt_sacf); {These pointers are updated using}
16=DM(pt_savO0); {automatic circular buffers}
I5="L_avl,;
CNTR=9;
DIS AR_SAT;

DO acf_sum UNTIL CE;

SI=DM(I4,M5); {L_temp=L_ACF][i]>>scal}
SR=ASHIFT SI (HI), SI=DM(I4,M5);

SR=SR OR LSHIFT SI (LO), AY1=DM(I1,M1); {Get L_sacf[i]}

AY0=DM(11,M2);

AF=SRO+AY0, AYO0=DM(I1,M1); {Get L_sacf[i+9]}
AR=SR1+AY1+C, AX0=DM(I1,M2);

AF=AX0+AF, AY1=DM(I1,M1); {GetL_sacf[i+18]}
AR=AR+AYO0+C, AX0=DM(I1,M3); {and skip back 17.5 longs}
AF=AX0+AF, DM(I3,M1)=SR1; {L_sacf[pt_sacf]=L_temp}
AR=AR+AY1+C, DM(I3,M1)=SRO0;

AX1=AR, AR=PASS AF;

DM(10,M1)=AX1; {L_avO[i]=sum}
DM(10,M1)=AR;
AX0=DM(16,M5); {L_av1l]i]=L_savO[pt_savO0+i]}

DM(15,M5)=AX0:
AX0=DM(I6,M6);
DM(15,M5)=AX0:

DM(16,M5)=AX1; {L_savO[pt_savO+i]=sum}
acf_sum: DM(16,M5)=AR;

ENA AR_SAT;
DM(pt_sacf)=I3; {Update pointers}
DM(pt_sav0)=16;

L6=0; {Restore DAG regs}
L3=0;

M2=-1;

M3=2;

260

3.3

3.3.1 Schur recursion

AY1="L_avl; {in DM}
MY1="sacf;
MO="vpar; {in DM}
CALL schur_routine;

{Outputs: none}

Predictor Values Computation

GSM Codec 4

}

{Set calling parameters}

{MO is reset to 0 in subroutine}
{Located in 06.10}

{ 3.3.2 Step up to obtain aav1[0..8] }
16="L_coef;
[4="vpar;
AR=0x2000; {MSW 16384<<15}
DM(16,M5)=AR; {ms_coef[0]=16384<<15}
AR=PASS 0, SI=DM(14,M5); {Get vpar[1]}
DM(16,M5)=AR; {Is_coef[0]=0}

SR=ASHIFT SI BY 14 (LO);
DM(16,M5)=SR1, AR=PASS 1;
DM(16,M5)=SRO;

AYO=AR;

{L_coef[1]=vpar<<14}
{Setup AR as counter}

{Outputs: AY0=1, AR=m counter=1, I6="L_coef[2], l4="vpar[2]}
{ Loop on the LPC analysis order }

M3=-2;

M6=2;

I5="L_coef+2;

CNTR=7;

DO m_loop UNTIL CE;
10="L_coef+2;

11=15;

12="L_work;

MODIFY(15,M6);

SR0=DM(14,M5);

CNTR=AR;

DO v_mac UNTIL CE;
MR1=DM(I0,M1);
MRO=DM(I0,M1);
MY0=DM(I1,M3);
MR=MR+SR0*MYO0 (SS);
IF MV SAT MR;
DM(12,M1)=MR1;

DM(12,M1)=MRO;

{Restore Ms after use}
{7,6,5,4,3,2,1}

{Index for m-i}

{Modify for next time thru}
{Get vpar[m]}
{Loop m-1 times}

{MR=L_coef[i]}

{Get L_coef[m-i]>>16}
{ms_coef[m-i*vpar[m]}

{Saturate may not be needed}

{L_work=...}

v_mac:

(listing continues on next page)

261

4 GSM Codec

12="L_work;

10="L_coef+2;

CNTR=AR;

DO copy_row UNTIL CE;
AX0=DM(12,M1);
DM(I10,M1)=AX0;
AX0=DM(12,M1);

Copy_row: DM(10,M1)=AX0;
SR=ASHIFT SR0 BY 14 (LO);
DM(16,M5)=SR1;

m_loop: DM(16,M5)=SR0, AR=AR+AYO0;

M3=2;
M6=-1;

{Outputs: none}
{ Keep the aavl1[0..8] for next section

I0="L_coef;

12="r_a_avl,;

SE=-19;

CNTR=9;

DO shift_aavl UNTIL CE;
SI=DM(10,M3);
SR=ASHIFT SI (HI);

shift_aavi: DM(12,M1)=SR0;

{Outputs: none}

{ Computation of the rav1|0..8]
12="r_a_avl,;
13="L_work;
CNTR=9;
DO i_loop UNTIL CE;
10="r_a_avl,;
11=12;
MR=0, MX0=DM(I2,M1);
SI=CNTR;
CNTR=SI,
DO k_loop UNTIL CE;
MX0=DM(I0,M1);
MYO0=DM(I1,M1);

k_loop: MR=MR+MX0*MYO (SS);

262

{L_work starts at [1] not [0]}

{Loop m-1 times}

{L_coef[m]=vpar[m]<<14}
{Increment m counter}

{Restore DAG}

{aav1l, ravl and aavl are shared}

{aav1[i]=L_coef[i]>>19}

{ravl here}

{Modify 12 with dummy read}

{Loop 8-i times}

{Sum(aavl[k]*aavl[k+i])}

i_loop:

norm_ravl:

DM(13,M1)=MR1;
DM(13,M1)=MRO;

I13="L_work;
10="r_a_avl,;

AR=DM(I3,M1);
SE=EXP AR (HI), SI=DM(13,M2);
SE=EXP SI (LO), AYO=SI;

AR=AR OR AYO0, AX0=SE;
IF NE AR=PASS AXO0;

DM(normravl)=AR;

SE=AR;

CNTR=9;

DO norm_ravl UNTIL CE;
SI=DM(I3,M1);

GSM Codec

{Save L_work]i]}

{SE=-NORM(L_work[0])}

{IF L_work==0 THEN: AR=SE}
{ELSE: AR=0}
{Save -normravl for 3.6}
{Keep -normrav1 for 3.4}

SR=NORM SI (HI), SI=DM(I3,M1);

SR=SR OR NORM S (LO);
DM(I0,M1)=SR1;

{Outputs: -normrav1=SE}

{ 3.4 Spectral Comparison
{ Renormalize L_av0[0..8]
10="L_avo;
11="sav0;
CNTR=9;

init_savO:

SR0=DM(10,M1);
AY0=DM(I0,M2);

AR=SR0 OR AY0, AY1=SE;
IF NE JUMP else_norm;

AR=4095;
DO init_sav0 UNTIL CE;
DM(11,M1)=AR;

JUMP endif L_av0;

{ravl[i]=L_work<<normrav1l}

{Save -normravl in AY1}
{IF sav0==0}

{THEN: sav0[i]=4095}

(listing continues on next page)

4

263

4 GSM Codec

else_norm: SE=EXP SRO (HI), SI=AY0; {SE=-shift=NORM(L_avO[0]}
SE=EXP SI (LO);

AY0=-3;

AR=SE;

AR=AYO0-AR; {AR=shift-3}

SE=AR;

DO norm_av0 UNTIL CE; {savO[i]=(L_avO[i]<<shift-3)>>16}
SI=DM(I0,M1);
SR=ASHIFT SI (HI), SI=DM(I0,M1);
SR=SR OR LSHIFT SI (LO);

norm_avo: DM(11,M1)=SR1;

{Outputs: -normav1=AY1}
{ Compute partial sum of dm }

endif _L_av0:10="sav0+1;
I1="r_a_avl+l;
MR=0; {L_sump=0}
CNTR=S;
DO sump UNTIL CE;
MX0=DM(I0,M1);
MYO0=DM(I1,M1);
sump: MR=MR+MX0*MYO (SS);

{Outputs: -normav1=AY1, L _sump=MR}

{ Compute division of partial sum by sav0[0] }
AF=PASS 0;
AR=ABS MR1, AYO=MR1,; {Set AS flag on L_sump for later}
IF POS JUMP sump_ge; {IF L_sump<0}
DIS AR_SAT;
AR=AF-MRO; {THEN: Negate L_sump}
ENA AR_SAT;
MRO=AR, AR=AF-MR1+C-1;
MR1=AR;
sump_ge: AR=MRO OR AYO0; {IF L_temp==0}
IF NE JUMP sump_ne;
SE=0; {THEN: shift=0}
MR=0; { L_dm=0}

JUMP endif_sump;

sump_ne: SI=DM(sav0);
SR=ASHIFT SI BY 3 (LO); {AY0=sav0[0]<<3}

SE=EXP MR1 (HI), AYO=SRO; {SE=-shift}
SE=EXP MRO (LO);

264

SR=NORM MR1 (Hl);
SR=SR OR NORM MRO (LO);

AF=SR1-AY0, AX0=AYO0;
IF GT JUMP divshift_1;

divshift_0: AF=PASS SR1,;
AX1=0;
JUMP endif_savO0;

divshift_1: AX1=32768;
endif_savO: CALL divide_routine;
AF=PASS 0;
AX0=0;
DIS AR_SAT;
AR=AX1+AYO0;
SR0=AR, AR=AX0+C;

IF POS JUMP sump_pos;

GSM Codec 4

{temp=(L_temp<<shift)>>16}
{IF sav0O[0]>=temp}

{THEN: will do temp/sav0[0]}
{ IswofL_dm=0}

{ELSE: Isw of L_dm=32768}
{ do (temp-sav0[0])/savO[O]}
{Do divide AYO=AF/AX0}

{L_dm+temp, do the <<1 later}

{IF L_sump<0, set by abs earlier}

SR1=AR, AR=AF-SRO; {THEN: -L_dm}
SR0=AR, AR=AF-SR1+C-1;

{Outputs: -normav1=AY1}

{ Renormalization and final computation of L_dm }

sump_pos:

SR=LSHIFT SRO BY 15 (LO);

{L_dm<<14+1, do the <<1 here}

SR=SR OR ASHIFT AR BY 15 (HI);

AR=SR1, SR=LSHIFT SRO (LO);

SR=SR OR ASHIFT AR (HI);
MRO=SRO;
MR1=SR1,

endif_sump: MX0=DM(r_a_avl);
MY0=0x0400;

MR=MR+MXO0*MYO (SS), SE=AY1,

IF MV SAT MR;

SR=LSHIFT MRO (LO);
SR=SR OR ASHIFT MR1 (HI);

{L_dm=L_dm>>shift}

{L_dm+(rav1[0]<<11) with sat}
{For <<11=27(11-1) and DP add}
{SE=-normav1}
{Saturate L_dm just in case}

{L_dm>>normrav1}

(listing continues on next page)

265

4 GSM Codec

{Outputs: L_dm=SR}

{ Compute difference and save L_dm
10="L_lastdm+1;
AY0=DM(I0,M2);
AR=SR0-AYO0, AY1=DM(I0,M0);
ENA AR_SAT;
AX0=AR, AR=SR1-AY1+C-1;
DIS AR_SAT;

IF NOT AV JUMP exit_sat;
AX0=0x0000;

IF LT JUMP exit_sat;
AXO0=0xFFFF;

exit_sat: DM(I0,M1)=SR1;
DM(10,M0)=SRO;

IF GE JUMP temp_ge;

AX1=AR, AR=AF-AXO0;
AX0=AR, AR=AF-AX1+C-1,

{Outputs: L_temp=AR AX0}
{ Evaluation of the stat flag
temp_ge: AY0=3277,
AX1=AR, AR=AX0-AY0;
ENA AR_SAT;
AR=AX1-AF+C-1;
IF GE AR=PASS 0;
IF LT AR=PASS 1,
DM(stat)=AR;
{Outputs: none}

{ 3.5 Periodicity detection

{L_temp=L_dm-L_lastdm}

{IF overflow}
{THEN: saturate temp}
{IF >=0}
{THEN: saturate -full scale}

{L_lastdm=L_dm}
{IF L_temp<0}

{THEN: -L_temp}
{Can not overflow}

{L_temp-3277}

{IF L_temp>=0,THEN: stat=0}
{ ELSE: stat=1}

AXO0 = DM(oldlagcount);
AYO0 = DM(veryoldlagcount);
AX1 = 4;

AR =0;

AF = AX0 + AYO;

AF = AF - AX1;

IF GE AR = PASS 1;
DM(ptch) = AR;

266

{AR = ptch = 0}

{AF =temp - 4}
{IF GE ptch = 1}

{Outputs: none}

{ 3.6

Threshold adaption

{

set_thvad:

{

Test to find if acfO < pth

MRO = 20;

MR1 = 25000;

AXO0 = DM(e_acf0);

AYO0 =19;

AR = AXO0 - AYO0;

AR =PASS AR;

IF LT JUMP set_thvad,;

IF GT JUMP test_adapt;

AXO0 = DM(m_acf0);

AYO0 = 18750;

AF = AX0 - AYO0;

IF GE JUMP test_adapt;
DM(e_thvad) = MRO;

DM(m_thvad) = MR1;

JUMP vvad_decision;

Test to find if adaptation is needed

test_adapt: AXO0 = DM(ptch);

AYO0 = DM(stat);

MR =0;

AF = PASS AX0;

IF NE JUMP clr_adaptcount;
AF = PASS AY0;

IF NE JUMP inc_adaptcount;

clr_adaptcount: DM(adaptcount) = MRO;

{

JUMP vvad_decision;

Increment adaptcount

inc_adaptcount: AYO = DM(adaptcount);

AY1=38;

AR =AYO0 + 1,
DM(adaptcount) = AR;

AF = AR - AY1;

IF LE JUMP vvad_decision;

GSM Codec 4

{MRO = E_PLEV}
{MR1 = M_PLEV}

{AYO = E_PTH}

{AYO = M_PTH}

{comp =1}

{jump to section 3.7}

{comp =0}

{comp =1}

{jump to section 3.7}

{comp =0}

{AF = adaptcount - 8}
{jump to section 3.7}

(listing continues on next page)

267

4 GSM Codec

{ Compute (thvad - thvad/dec) }

SE =-5;

AY1 = 16384,

S| = DM(m_thvad);

SR = ASHIFT SI (HI), AYO = SI;

AR = AYO - SR1; {AR=m_thvad - (m_thvad>>5) }
AYO0 = DM(e_thvad);

AF = AR -AY1, SR1=AR; {AF=m_thvad-16384, SR1=m_thvad}
SE =1,

IF LT SR = ASHIFT SR1 (HI);

AR = AYO0;

Sl = SR1; {SI = m_thvad}

IFLT AR =AYO0-1; {AR = e_thvad}

{outputs: m_thvad=SR1,Sl;e_thvad=AR;}

{ Compute (pvad * fac) }
SE =-2; {shift >> 1 and format adjust}
MXO0 = 3;

MYO = DM(m_pvad);

AY1 = DM(e_pvad);

MR = MXO0 * MYO (SS), AY0 =SI; {AYO0 = m_thvad}
SR = LSHIFT MRO (LO), MRO = AR; {MRO = e_thvad}

AR =AYl +1; {AR = e_temp}

SR = SR OR ASHIFT MR1 (HI), AY1 = AR; {SR=L_temp, AY1=e_temp}
AF = PASS SRO0; {L_temp can overflow 1 bit max}
IF GE JUMP test_thvad;

SR = LSHIFT SRO BY -1 (LO); {SRO = m_temp}

AR =AYl +1; {AR=e_temp}

{outputs:m_thvad=AY0,Sl;e_thvad=MRO;m_pvad=MYO;m_temp=SRO0;e_temp=AR}

{ Test to find if (thvad < pvad*fac) }
test_thvad: AY1l = MRO; {AY1 = e_thvad}

MR1 = AR; {MR1=e_temp}

AF = AY1 - AR, AXO0 = SRO; {AF=e_thvad-e_temp}

IF LT JUMP compute_min;
IF GT JUMP pvad_margin;

AF = AYO - SRO; {AF=m_thvad-m_temp}
IF GE JUMP pvad_margin;

{outputs:m_temp=SR0,AX0;e_temp=AR,MR1;m_thvad=AY0,Sl;e_thvad=MRO,AY1;m_pvad=MY0}

{ Compute minimum [comp=1] }

268

GSM Codec

compute_min:SR = ASHIFT SI BY -4 (HI); {SR1=m_thvad >> 4}
DIS AR_SAT;
AR =SR1 + AY0; {AR = L_temp}
ENA AR_SAT;
AY0 = AR;

IF NOT AV JUMP update_m_thvad;
SR = LSHIFT AR BY -1 (HI);
AR =AYl +1, AY0 = SR1;
AY1=AR;
update_m_thvad: AF = MR1 - AY1;
IF GT JUMP pvad_margin;
IF LT JUMP update_e_m;
AF = AX0 - AYO0;
IF GE JUMP pvad_margin;
update_e m: AY1 = MRI1,;
AYO0 = AXO0;

{outputs:e_thvad=AY1; m_thvad=AYO; m_pvad=MYO0}
{ Compute (pvad + margin) [comp=0,comp2=0]

pvad_margin:DM(e_thvad) = AY1,;
DM(m_thvad) = AYO;
AYO0 = DM(e_pvad);
MR1 = 19531;
MRO = 27;
AR =MRO - AYO, AY1 = MYO0;
IF EQ JUMP epvad_eq;
IF LT JUMP epvad_greater;

{SR1=L_temp>>1}

{AR=ethvad+1,AY0=mthvad}
{AY1 = e_thvad}

{AF = e_temp - e_thvad}

{AF = m_temp - m_thvad}

{comp2=1, AY1 = e_thvad}
{AY0 = m_thvad}

{MR1 = M_MARGIN}
{MRO = E_MARGIN}

4

{AR=E_MARGIN-e_pvad, AY1l=m_pvad}

swap_values: AR =-AR, AX0 = AY1; {MR1 = m_pvad}

AYO0 = MRO; {AY0 = E_MARGIN}
AY1 = MR1,; {AY1 = M_MARGIN}
MR1 = AXO0;

epvad_greater: SE = AR;
SR = ASHIFT MR1 (HI);
DIS AR_SAT;
AR =SR1 + AY1,;
ENA AR_SAT;
SR1 = AR;
SE =-1;
IF AV SR = LSHIFT AR (HI);
AR = AYOQ;
IF AV AR = AYO + 1;
JUMP test_for_greater;
epvad_eq: DIS AR_SAT;
AR =MR1 + AY1;

ENA AR_SAT;
SR = LSHIFT AR BY -1 (HI);
AR = AYO + 1;

{AR = -temp}

{SR1 =temp}
{AR =L_temp}

{SR1 =m_temp}

{m_pvad > 0 always}

{AR =e_temp}

{AR = m_pvad + M_MARGIN}

{SR1 =m_temp}

{AR =e_temp}

(listing continues on next page)

269

4 GSM Codec

{outputs: m_temp=SR1; e_temp=AR}
{ Test to find if (thvad > (pvad+margin)) }

test for_greater:
AYO0 = DM(e_thvad);
AY1 = DM(m_thvad);
AF = AYO - AR; {AF = e_thvad-e_temp}
IF GT JUMP update_thvad;
IF LT JUMP update_rvad;

AF = AY1 - SR1; {AF = m_thvad-m_temp}
IF LE JUMP update_rvad;
update_thvad:DM(e_thvad) = AR; {comp =1}

DM(m_thvad) = SR1;
{outputs: NONE}
{ Initialize new rvad }

update_rvad:MX0 = DM(normrav1l); {comp =0}
DM(normrvad) = MXO0;
10 ="rvad;
11 =~r_a_avl; {ravl, shared by ravl and aavl}
CNTR =9;
DO write_rvad UNTIL CE;
MXO0 = DM(I11,M1);
write_rvad: DM(10,M1) = MXO0;

{outputs: NONE}
{ Set adaptcount

MXO0 = 9;
DM(adaptcount) = MXO0;

{ 3.7 VAD decision

vvad_decision: AY0 = DM(e_pvad);
AY1 = DM(m_pvad);
AXO0 = DM(e_thvad);
AX1 = DM(m_thvad);
AR = AYO0 - AXO0;
IF EQ AR = AY1 - AX1;
AR =PASS AR;
AR =0;
IF GT AR = PASS 1;

{outputs: vad=AR}

270

GSM Codec 4

{ 3.8 VAD hangover decision }

AY1 = DM(hangcount);

AYO0 = DM(burstcount);

AX0 = AR, AR = PASS 0; {AX0 = vvad}

AF = PASS AX0;

IF NE AR = AYO + 1; {AR = burstcount}
MR1 = 5;

AYO0 = 3;

AF = AR - AYO0;

IF GE AR = PASS AY0; {AR = burstcount}
DM(burstcount) = AR;

AF = PASS AF, AR = AY1;

IF GE AR = PASS MR1;

AF = ABS AR, AY1 = AR;

IF POS AR = AY1 - 1;

MR1 = AR, AR = PASS AXO0; {MR1 = hangcount}

IF POS AR = PASS 1; {AR = vad}

DM(hangcount) = MR1;

DM(vad) = AR;

RTS; {Return to Main Speech transcoder}

{outputs: NONE}

{ 3.9 Periodicity updating }

update_periodicity:

AR =0; {lagcount = 0}

AYO0 = DM(oldlag);

11 ="ags;

CNTR = 4;

DO update_lagcount UNTIL CE;
AX1 = DM(I11,M1); {AX1=lags[i],AF=oldlag-lags][i],}
AF = AYO - AX1, AY1 = AR; {AY1=lagcount}
IF GT JUMP case_1,

case_2: AR = PASS AX1,;

JUMP find_smallag;
case_1: AR = PASS AY0, AY0 = AX1; {AY0 = minlag, AR = maxlag}
find_smallag: CNTR = 3; {AR = smallag}

DO compute_smallag UNTIL CE;

(listing continues on next page)

271

4 GSM Codec

compute_smallag:

AF =AR - AYO;
IF GE AR = PASS AF,
AF =AYO0 - AR;
AF =AF - AR;
IFLT AR = AYO - AR;
AYO0 = 2;
AF =AR - AYO, AR = AY1;
IFLT AR =AY1 + 1;

update_lagcount:AYO = AX1;

.ENDMOD;

DM(oldlag) = AYO;

AXO0 = DM(oldlagcount);
DM(oldlagcount) = AR;
DM(veryoldlagcount) = AXO;
RTS;

{AR = smallag}
{AF = temp}
{AF = temp - smallag}

{AR=lagcount}
{AYO=oldlag}

{Return to main speech transcoder}

Listing 4.3 Voice Activity Detection Routine (GSM0632.DSP)

272

GSM Codec

{

4

GSM_SID.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA, 02062
DSP Applications: (617) 461-3672

This code generates comfort noise as specified in GSM recommendation
6.31, section 3.1. Interpolation of the generated values over
several frames is not implemented.

This subroutine is called from the dmr_decode routine when the

frame to be decoded contains comfort noise parameters (silence
descriptor frame). The frame of coefficients is over-written

with the necessary LTP gain and lag values, and the pseudo-randomly
generated grid position and RPE pulses, for each subwindow. The
program then returns this properly formatted comfort noise frame

for normal decoding.

The pseudo-random number generator is adapted from the one found in
Analog Devices DSP Applications Handbook 1, section 4.6.

The pseudo-random number generator is also used by the substitution
and muting sections of GSM_DTX.DSP.

ADSP-2101 Execution cycles: 379 maximum

Release History:

__ Date_ _Ver_ Comments
24-Aug-89 57 Incorporated random number generator
10-Jan-90 1.00 Second Release

01-Nov-90 2.00 Third release

.MODULE Generate_Comfort_Noise;

.ENTRY comfort_noise_generator, make_random;
.VAR/DM/RAM seed_Isw, seed_msw;

.GLOBAL seed_Isw, seed_msw;

{**** This code generates comfort noise as specified in GSM recommendation
6.31, section 3.1. Interpolation of the generated values over several
frames is not implemented. This code can be further optimized for
the ADSP-2101. ****x}

(listing continues on next page)

273

4 GSM Codec

274

comfort_noise_generator:

M3 =8;
MODIFY(I1,M3);
M3 =2;

MXO0 = 40;

MX1 = 120;

MY1 = 25;

AXO0 = 26125;

SE =-1;

SRO = DM(seed_Isw);
SR1 = DM(seed_msw);

{For random numbers in the range:

CNTR = 2;

DO cn_update UNTIL CE;

DM(11,M1) = MXO;
AR =PASS0;
DM(I1,M1) = AR;

AX1=0;
MYO = 2;
CNTR =1;

CALL make_random;

MODIFY(I1,M1);

AX1=1;
MYO = 3;
CNTR = 13;

CALL make_random;

DM(11,M1) = MX1;
AR =PASS0;
DM(I1,M1) = AR;

AX1=0;
MYO = 2;
CNTR =1;

CALL make_random;

MODIFY(I1,M1);

AX1=1;
MYO = 3;
CNTR = 13;

CALL make_random;

Oto3

{11 holds pointer to coeff}
{Skip LAR values}
{Reset M3}

{Constants to write to buffer}
{Upper half of a}
{Lower half of a}

AX1=0,MY0=2
1to6 AX1 =1, MYO =3}

{LTP lag (Ncr) }

{LTP gain (bcr) }

{RPE grid position (Mcr) }

{skip block amplitude (Xmaxcr) }

{RPE pulses 1 to 13 (Xmcr) }
{LTP lag (Ncr) }

{LTP gain (bcr) }

{RPE grid position (Mcr) }

{skip block amplitude (Xmaxcr) }

{RPE pulses 1 to 13 (Xmcr) }

GSM Codec 4

cn_update: DM(seed_Isw) = SRO;
DM(seed_msw) = SR1;
RTS;
make_random:DO gen_random UNTIL CE;
MR = SR1* MYO0 (UU); {Scale the seed}
AYO0 = MYO0;
AY1 = MR1; {Scaled seed in AY1}
MR =SR0 * MY1 (UU), MYO = AXO0; {MR = x(lo) * a(hi)}
MR = MR + SR1 * MYO (UU); {MR = MR + x(hi)*a(lo)}
AR =PASS MR1, MR1 = MRO;
MR2 = AR, AR = AX1 + AY1; {Offset the scaled seed}
MRO = H#FFFE;

MR =MR + SRO * MYO (UU), DM(I1,M1)=AR; {MR=MR+x(lo)*a(l0)}
SR = ASHIFT MR2 BY 15 (HI);
SR = SR OR LSHIFT MR1 (HI);
gen_random: SR = SR OR LSHIFT MRO (LO), MYO = AYO;
RTS;

.ENDMOD;

Listing 4.4 Comfort Noise Insertion Routine (GSM_SID.DSP)

275

4 GSM Codec

{

GSM_DTX.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This module contains routines for decoding a codeword that precedes the
76 coefficients, classifying the frame, performing substitution and
muting if necessary, and preparing the coefficients for decoding.

The code is to be executed after the coefficient transfer is complete.

It assumes that the coefficient buffer was overwritten only with

GOOD SPEECH or VALID SID parameters. The code executes in the primary
register set, before the dmr_decode routine is called.

The 2-bit codeword classifies the frame as follows:
00 — frame contains speech
01 — unusable frame
10 — frame contains valid comfort noise parameters (silence
descriptor (SID) frame)
11 — invalid silence descriptor frame - substitute with previous
valid silence descriptor frame

ADSP-2101 Computation Time: 199 cycles maximum.
state: max. cycles
Good speech 15
Valid silence frame 39
Invalid silence frame 42
Unusable frame 199

Release History:

__Date_ _Ver_ Comments
01-Nov-89 67 Initial implementation
10-Jan-90 1.00 Second Release

01-Nov-90 2.00 Third release

.MODULE dtx_routine;

VAR/PM/RAM/CIRC sil_fram_subwin[17]; { silence frame coeffs (06.11)}

VAR/PM/RAM sil_fram_lar[8]; { silence frame coeffs (06.11)}

.VAR/DM/RAM valid_sid_buffer[9]; { valid coeffs from prior SID}

.VAR/DM/RAM sub_n_mute; { flag}

VAR/DM/RAM sid_inbuf; { flag}

.VAR/DM/RAM taf_count; { counts frames between valid SID
coeffs during Comfort Noise
Insert}

276

GSM Codec

.EXTERNAL make_random;

.EXTERNAL seed_lIsw, seed_msw;

.GLOBAL sid_inbuf;

.GLOBAL valid_sid_bulffer;

.GLOBAL sub_n_mute;

.GLOBAL taf_count;

.ENTRY decode_codeword;

{these are constants located in program memory ROM}

ANIT sil_fram_subwin : H#2800, 0, H#100, 0, H#300, H#400, H#300,
H#400, H#400, H#300, H#300, H#300, H#300,
H#400, H#400, H#300, H#300;
{40,0,1,0, 3,4, 3, 4,
4,3,3,33,4,4,3,3}

ANIT sil_fram_lar : H#2A00, H#2700, H#1500, H#A00, H#900,

H#400, H#300, H#200;
{42, 39, 21, 10, 9, 4, 3, 2;}

decode_codeword:10 = “valid_sid_buffer;

AYO0 = 2;
MX1=1;
MXO0 = -24;
MYO = 0;

AF =PASS 1, AX0 = DM(I1,M1); {AXO = codeword}

14 =11; {14 is working pointer, save 11}
AR = AXO0 AND AF;

IF NE JUMP not_good_frame;

good_frame: DM(sub_n_mute) = MYO;

valid_sid:

DM(taf_count) = MXO0;

AR = AX0 AND AYO0;
IF NE AR = PASS 1,

DM(sid_inbuf) = AR;
IF EQ RTS; {If good speech, return}
CNTR = 8;
M7 =3;
DO fill_valid_sid UNTIL CE;
AR = DM(I4,M5);

fill_valid_sid: DM(I0,M1) = AR; { save LAR values}

MODIFY (14,M7);

M7 =0;

AR = DM(I4,M4);

DM(I0,M0) = AR; { save xmax value}
RTS;

(listing continues on next page)

4

277

4 GSM Codec

not_good_frame: AR = AX0 AND AYO;
IF NE JUMP invalid_sid;

unusable_frame: AX0 = DM(sub_n_mute);
AX1 = DM(sid_inbuf);
AF = PASS AX0;
IF NE JUMP check xmax;

AF = PASS AX1;
IF EQ JUMP set_subnmut;

AYO0 = DM(taf_count);
AF = PASS AY0;
IF LE JUMP inc_taf;

set_subnmut:DM(sub_n_mute) = MX1;
RTS;

inc_taf: AR = AYO +1;
DM(taf_count) = AR;
RTS;

check_xmax: AF = PASS 0;
M7 =11;
MODIFY (14,M7);
M7 =17;
AYO0 = 4;
CNTR = 4;
DO dec_xmax UNTIL CE;
AXO0 = DM(14,M4);
AR = AXO0 - AYO0;
IF GE AF = PASS 1;
IFLT AR = PASS 0;
dec_xmax: DM(14,M7) = AR;
AR =PASS AF;
IF NE JUMP not_sil_frame;

writ_sil_frame:DM(sid_inbuf) = AR;

10 =13;

14 ="sil_fram_lar;

CNTR = 8;

DO writ_sil_lar UNTIL CE;

AR = PM(14,M5);

writ_sil_lar: DM(I0,M1) = AR;

14 ="sil_fram_subwin;

CNTR = 68;

L4 =17,

DO writ_sil_subwin UNTIL CE;

AR = PM(14,M5);

2178

{ At this point, either UNUSABLE or}
{ INVALID SID frame}

{JUMP if NOT first consecutive UNUSABLE}

{JUMP if not generating comfort noise}

{JUMP if waiting for VALID SID frame}

{ substitution and muting begins}

{ set pointer to xmax[1]}

{ decrement xmax by 4}

{ set minimum}
{ write xmax}

{if all four xmax < 4, insert silence}

writ_sil_subwin: DM(I0,M1) = AR;

L4 =0;
RTS;

not_sil_frame: AR = PASS AX1,

invalid_sid:DM(sub_n_mute) = MYO;

IF NE RTS;

14 =11;

M1 = 10;
MODIFY (I1,M1);
AX1 = 0;

MYO = 2;

M1 =17;

SRO = DM(seed_Isw);
SR1 = DM(seed_msw);
SE =-1;

MY1 = 25;

AXO0 = 26125;

CNTR = 4;

CALL make_random;
M1 =1,

11 =14

RTS;

DM(taf_count) = MXO0;
DM(sid_inbuf) = MX1;

CNTR = 8§;
M7 =3;

DO writ_valid_sid UNTIL CE;

AR = DM(I0,M1);

writ_valid_sid: DM(14,M5) = AR;

.ENDMOD;

MODIFY (14,M7);
M7 =17;

AR = DM(I0,MO);
DM(14,M7) = AR;
DM(14,M7) = AR;
DM(14,M7) = AR;
DM(14,M4) = AR;
M7 =2;

RTS;

GSM Codec

{ AX1 = sid_inbuf}
{ if generating comfort noise, grid
position determined elsewhere}

{ set-up}

{ frame contains INVALID SID parameters}

{ replace 8 LARs with previous}
{ valid values}

{ replace xmax with previous}
{ valid values}

Listing 4.5 Discontinuous Transmission Routine (GSM_DTX.DSP)

279

4 GSM Codec

{

DMR21xx.DSP

Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This module is a data acquisition shell for the digital mobile radio

(GSM) speech processing functions, running on the ADSP-2101 or ADSP-2111
EZ LAB. Sound from the microphone input is processed and echoed back to
the speaker output.

The interrupt IRQ2 controls the state of the demonstration. There are
five states, as follows:

State 0 — input is output directly in a talk-thru mode
- no encoding, decoding, etc. take place
- the voice activity flag is disabled

State 1 — speech is encoded and decoded in a talk-thru mode

- This mode demonstrates the need for comfort noise
insertion. The intelligibility of speech in a noisy
background is reduced.

- frames are encoded as speech or as comfort noise,
dependent on the speech flag

- frames are decoded as speech if the speech flag is
active, otherwise output is muted

- the voice activity flag is determined for each frame

State 2 — speech is encoded and decoded in a talk-thru mode
- This mode is the normal operation of the GSM system.
- frames are encoded and decoded as speech or as comfort
noise, dependent on the speech flag
- the voice activity flag is determined for each frame

State 3 — input is encoded and decoded in an example mode
- each frame is encoded and decoded as a comfort noise
(silence descriptor) frame
- the voice activity flag is forced inactive

State 4 — continuously decodes the last valid silence descriptor frame
(comfort noise insertion)
- the voice activity flag is forced inactive

These five states are cycled through, entering the next state after an
IRQ2 interrupt. State 0 is the initial state after reset.

In contrasting states 1 and 2, it is helpful to have a random noise

source available to mix with the microphone input. This will show the
adaptation of the voice activity detection threshold, and the loss of

280

GSM Codec 4

intelligibility in state 1 compared to state 2 in a noisy environment.

The muting in state 1 occurs immediately, unlike the gradual muting
specified by GSM (which can take up to 320 ms). The code for immediate
muting is added with the -Ddemo switch.

The FLAG_OUT signal of the ADSP-2101 or ADSP-2111 EZ LAB board is
configured to output the state of the Voice Activity Detector flag in

states 1 and 2. A high output (LED on) signals that voice activity

has been detected. This will not work when FLAG_OUT is used to

control an AD28msp02.

This implementation allows serial port O to accept either 8-bit u-law
or 16-bit linear data input, based on a C preprocessor switch. The
u-law hardware companding is used with the codec provided on the
EZ LAB board. A 16-bit linear format is used with an AD28msp02
daughterboard plugged into the codec socket. The default format is
8-bit u-law.

This routine takes full advantage of the integration on the ADSP-2101

and ADSP-2111. It makes use of the IDLE function while waiting for

the next frame of data. The transfer of the transmit/receive speech

buffer takes place over serial port 0, using index register 17. If

using the u-law codec, this is an autobuffered transfer. In order

for the receive and transmit autobuffering to function synchronously,

THIS IMPLEMENTATION REQUIRES RFS0 and TFSO TO BE WIRED TOGETHER
EXTERNALLY WHEN USING THE u-LAW CODEC. If an AD28msp02 is being used,
autobuffering is NOT used. THIS IMPLEMENTATION REQUIRES RFSO0 and

TFSO TO BE SEPARATE WHEN USING THE AD28msp02.

The Data Address Generator 2 registers 17, L7, M4, and M5 should NEVER,
NEVER be altered in any routine. They are reserved for input and
output data buffering, controlled by this shell program.

Release History:

___Date_ _Ver_ Comments
20-Jun-89 56 Initial release.

04-Jan-90 84 add routine for testing VAD - waiting for vectors
10-Jan-90 1.00 Second release

01-Nov-90 2.00 Third release - added 2111 and 28msp02 capability

Assembler Preprocessor Switches

-cp switch must always be used when assembling

-Ddemo switch enables functions necessary for the five-state
demonstration

-Dtestvad includes code to format coefficients for VAD and
SP_FLAG testing

-Dadsp2111 must be used if running code on the ADSP-2111

microcomputer (default is ADSP-2101)

(listing continues on next page)

281

4 GSM Codec

-Dmsp02 changes incoming data format to 16 bit linear for
AD28msp02, disables autobuffering (default
is u-law codec, autobuffering enabled)

.MODULE/ABS=0 LPC_Codec_Shell;
.VAR/DM/RAM/CIRC coeff_codeword, coeff buffer[76];
{Buffer for coeffs, codeword}
VAR/DM/RAM/CIRC speech_1[160];
.VAR/DM/RAM/CIRC speech_2[160]; {Speech windows}

{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration }

#ifdef demo
VAR/PM/RAM demo_codes[5]; {codes for demonstration only}
ANIT demo_codes: H#C00000, H#100000, H#200000,
H#020100, H#030100;
#endif
{
.ENTRY start_dmr;

.EXTERNAL dmr_encode, dmr_decode;
.EXTERNAL reset_codec, decode_codeword;

.EXTERNAL vad;
.EXTERNAL sid_inbuf;

.EXTERNAL sp_flag;

.EXTERNAL taf count; {temporary - for demonstration}
.GLOBAL speech_1;

.GLOBAL speech_2;

.GLOBAL coeff_codeword;

reset_vector: JUMP start_dmr; NOP; NOP; NOP;
{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration }

#ifdef demo

irg2: JUMP next_demo; NOP; NOP; NOP;
#else

irg2: RTI; NOP; NOP; NOP;

#endif

{

282

GSM Codec

{oeee, Conditional Assembly.............ccccovvveeeeeeenn. }
{ use (asm21 -cp -Dadsp2111) for use with ADSP-2111 }
#ifdef adsp2111

hipw: NOP; NOP; NOP; NOP;

hipr: NOP; NOP; NOP; NOP;

#endif

e }

transO: RTI; NOP; NOP; NOP;

{oeee, Conditional Assembly.............ccccovvveeeeeennn. }

{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02

recvo: JUMP sample; NOP; NOP; NOP;
#else

recvo: RTI; NOP; NOP; NOP;

#endif
e }
transl: NOP; NOP; NOP; NOP;

revcl: NOP; NOP; NOP; NOP;

timer_int: NOP; NOP; NOP; NOP;

start_ dmr: ICNTL=B#10100;
LO=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=160;
M0=0; M1=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1; M7=0;

CALL reset_codec;

reg_setup: AXO0=0;

DM(0X3FFE) = AXO0; { DM wait states }
{oeee, Conditional Assembly.............ccccovvveeeeeennn. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
{ initialize 28msp02 - assumes 21xx rfs0, tfsO separate }
RESET FLAG_OUT; { connected to data/~cntl }
AXO0 = Ox2A0F; { ext sclk, ext rfs, int tfs}
DM(0x3FF6) = AXO0; { control reg0 }
AX0 = 0x1000; { enable serial port0, keep flagout }
DM(0x3FFF) = AX0; { system control reg }
IMASK = 0x10;
AXO0 = 0x20; { =+ PWDD is inverted in early 28msp02 }
TX0 = AXO0; { write control word to 28msp02 }
IDLE;
AXO0 = 0x7C20;
TX0 = AXO; { write nomRayg! vesridisEEMeRYext page)

4

283

4 GSM Codec

IDLE;
IMASK = 0;
SET FLAG_OUT; { connected to data/~cntl }
AX0 = 0x0000; { disable serial port0 }
DM(0x3FFF) = AX0; { system control reg }
#else
AXO0 = 2;
DM(0X3FF5) = AXO0; { sclkdiv0 }
AXO0 = 255;
DM(0X3FF4) = AXO0; { rfsdiv0 }
AX0 = 0x6927; {int sclk, int rfs, ext tfs }
DM(0X3FF6) = AXO0; { control reg0 }
AXO0 = OXO0E77;
DM(0x3FF3) = AXO0; { autobuffer reg0 }
#endif
e }
I7="speech_1; { 17 is speech buffer pointer }
AXO0 = 0X1000;
DM(0x3FFF) = AX0; { system control reg }
{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration - sets values for state 0}
#ifdef demo

ENA SEC_REG;
MR1 =3; MRO =0; MY1=0; MY0O=0; MX1=0; SI=0;
DIS SEC_REG;
#endif
{
{oeee, Conditional Assembly.............ccccovvveeeeeennn. }
{ use (asm21 -cp -Dadsp2111) for use with ADSP-2111 }
#ifdef adsp2111
IMASK=0x88;
#else
IMASK=0x28;
#endif
e }
{oeee, Conditional Assembly.............ccccvvveeeeenenn. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
ENA SEC_REG;
MXO0 = 0; { reset sample counter }

284

GSM Codec 4

AX1 = 160; { length of sample buffers speech 1,2}
code 1 loop:IDLE; { wait for next sample }
AY1 = MXO0;
AR = AX1-AY1,; { check if buffer is full }
IF NE JUMP code_1 loop;
MXO0 = 0; { buffer full, reset sample counter }
DIS SEC_REG;
#else
code 1 loop:IDLE; { autobuffering counts samples }
#endif
e }
I7="speech_2; { swap speech output/input buffer }
{ Conditional Assembly }
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
ENA SEC_REG;
AF = PASS MR1;
IF NE JUMP CODE_2_LOOP;
M7 = MX1;
DIS SEC_REG;
#endif
{ }
do_dmr_1
{oeee, Conditional Assembly.............ccccovvveeeeeen.n. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02
SE =2; { left-justify expanded u-law input }
I0 ="speech_1;
CALL scale_routine;
#endif
e }
I0="speech_1;
I1="coeff_buffer;
CALL dmr_encode;
{ Conditional Assembly }
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo

(listing continues on next page)

285

4 GSM Codec

#ifndef msp02
CALL vad_out;
#endif
#endif
{
AR =2: {temporary}
AXO0 = DM(sp_flag);
AF = PASS AXO0; {temporary}
IF NE AR = PASS 0; {temporary}
DM(coeff_codeword) = AR;
{ Conditional Assembly
{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_format;
#endif
{
{This is where the coefficient transfer will take place!'}
I1="coeff_codeword;
[2="speech_1;
{ Conditional Assembly
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
CALL set_codeword; {routine sets coeff_codeword for demo}
#endif
{
CALL decode_codeword;
AXO0 = DM(sid_inbuf);
{ Conditional Assembly
{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_unformat;
#endif
{
CALL dmr_decode;
{ooeeee, Conditional Assembly.............ccccovvveeeeeeenn. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02

SE =-2; { right shift to 14 bits for u-law }

286

GSM Codec 4

I0 ="speech_1; { compression }
CALL scale_routine;
#endif
e }
{oeee, Conditional Assembly.............ccccovvveeeeeeen.n. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
ENA SEC_REG;
code_ 2 loop:IDLE; { wait for next sample }
AY1 = MXO0;
AR = AX1-AY1,; { check if buffer is full }
IF NE JUMP code_2_loop;
MXO0 = 0; { buffer full, reset sample counter }
DIS SEC_REG;
#else
code_2 loop:IDLE; { autobuffering counts samples }
#endif
e }
I7="speech_1; { swap speech output/input buffer }
{ Conditional Assembly }
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
ENA SEC_REG;
AF = PASS MR1;
IF NE JUMP CODE_1_LOOP;
M7 = MX1;
DIS SEC_REG;
#endif
{ }
do_dmr_2:
{oeee, Conditional Assembly.............ccccovvveeeeeeen.n. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02
SE =2; { left-justify expanded u-law input }
I0 ="speech_2;
CALL scale_routine;
#endif
e }

I0="speech_2;

(listing continues on next page)

287

4 GSM Codec

I1="coeff_buffer;
CALL dmr_encode;

{ Conditional Assembly
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
#ifndef msp02
CALL vad_out;
#endif
#endif
{
AR =2; {temporary}
AXO0 = DM(sp_flag);
AF = PASS AXO0; {temporary}
IF NE AR = PASS 0; {temporary}
DM(coeff_codeword) = AR;
{ Conditional Assembly
{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_format;
#endif
{
{This is where the coefficient transfer will take place!'}
I1="coeff_codeword;
[2="speech_2;
{ Conditional Assembly
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
CALL set_codeword; {routine sets coeff_codeword for demo}
#endif
{
CALL decode_codeword;
AXO0 = DM(sid_inbuf);
{ Conditional Assembly }
{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_unformat;
#endif
{

CALL dmr_decode;

288

Conditional Assembly

GSM Codec 4

{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }

{ right shift to 14 bits for u-law }

{ compression }

{ sample counting done in sec regs }

#ifndef msp02

SE =-2;

I0 ="speech_2;

CALL scale_routine;
#endif
e }
{oeee, Conditional Assembly.........................
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02

ENA SEC_REG;
#endif
e }

JUMP code_1_loop;
{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
next demo: ENA SEC_REG;

SE =2;

AYO0 = *demo_codes;

AR =SI, AF = PASS 1;

AY1 =4;
AR = AR + AF;
af = ar - ayl;

if gt ar = pass 0;

SI = AR, AR = AR + AYO;

AXO0 = 15;

15 = AR;

SRO = PM(I5,M4);

I5 = AXO;

ayl =7,

AR = SR0O AND AY1;

MX1 = AR, SR = LSHIFT SRO (LO);
MR1 = SR1, SR = LSHIFT SRO (LO);
MRO = SR1, SR = LSHIFT SRO (LO);
MY1 = SR1, SR = LSHIFT SRO (LO);

MYO = SR1;
RTI;
set_codeword: ENA SEC_REG;
IMASK = 0;
AY1=3;
AF = PASS 0;

AYO0 = DM(sp_flag);

{increment current state}

{offset pointer, save state}

{get demo state codeword}

{extract force_vad_high, _low}
talk_thru_flag}
mask_sp}
mask_taf}
force_codeword_high}

(listing continues on next page)

289

4 GSM Codec

AR =PASS AY0;

IF EQ AF = PASS AY1;

AR = MRO AND AF; {AR = masked sp_flag}
AY1=2;

AF =PASS 1, AX0 = AR;

AYO0 = DM(taf_count);

AR =PASS AY0;

IF GT AF = PASS AY1;

AR = MY1,;
AF = AR AND AF; {AF = masked taf_count}
AF = AX0 OR AF, AR = MYO0;
AR = AR OR AF; {AR = coeff_codeword}
DM(coeff_codeword) = AR;
AYO0 =1;
AR = AR - AYO; { check if unusable frame }
IF NE JUMP set_cw_done;
14 =11; { unusable frame - force }
M7 =12; { immediate muting for }
MODIFY(14,M7); { demonstration by setting }
M7 =17; { the four xmax values < 4 }
CNTR = 4; { (in this case, = 0) }
DO set_xmax_demo UNTIL CE;
set_xmax_demo: DM(14,M7) = AR;
M7 =2;
Conditional Assembly.............cccccvvvveeeennnn. }
{ use (asm21 -cp -Dadsp2111) for use with ADSP-2111 }
#ifdef adsp2111

set_cw_done: IMASK=0x88;
#else

set_cw_done: IMASK=0x28;

#endif {......cooii e, }
DIS SEC_REG;
RTS;
#endif
{
{ Conditional Assembly
{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad

test format:I1 = ~coeff_buffer;
AXO0 = DM(vad);

290

GSM Codec 4

AX1 = DM(sp_flag);

CNTR = 2;
DO add_bits UNTIL CE;
AR = H#8000;

AF =PASS AX0, AYO = DM(I1,M0); IF EQ AR = PASS 0;
AR = AR OR AY0, AX0 = AX1;
add_bits: DM(11,M1) = AR;

RTS;

test_unformat: AX1 = H#7FFF;
AYO0 = DM(I11,MO0);
AR = AX1 AND AYO0;
DM(I11,M1) = AR;
AYO0 = DM(I11,MO0);
AR = AX1 AND AYO0;

DM(I11,M2) = AR;
RTS;
#endif
{ }
{ Conditional Assembly }
{ use (asm21 -cp -Ddemo) for demonstration }
#ifdef demo
#ifndef msp02

{this is temporary for outputting the voice activity flag for the demonstration}

vad_out: AXO = DM(vad);
AF = PASS AX0;

IF NE SET FLAG_OUT;

IF EQ RESET FLAG_OUT;
RTS;

#endif

#endif

{ }

(listing continues on next page)

291

4 GSM Codec

{oeee, Conditional Assembly.............ccccovvveeeeenenn. }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02
scale_routine: SI = DM(I0,M1);

CNTR = 160;

DO shift_it UNTIL CE;

SR = ASHIFT SI (HI), SI = DM(I0,M2);

shift_it: DM(10,M3) = SR1;

RTS;
#endif
e }
{oee, Conditional Assembly................ }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
sample: ENA SEC_REG;
AR =DM(I17,M4); { read buffer, do not move pointer }
TX0 = AR; { write transmit data }
AR = RXO0; { read received data }
Listing 4.6 Di'AdasfioTShell Routine (DMRZASED)e" increment pointer)
AYO = ;
AR = AYO + 1; { increment sample counter }
MXO0 = AR;
RTI;
#endif ... }
.ENDMOD;

292

	Table of Contents
	Chapter 4: GSM Codec
	4.1 Overview
	4.1.1 Speech Codec
	4.1.2 Software Comments
	4.1.2.1 Multiply with Rounding
	4.1.2.2 Arithmetic Saturation Results
	4.1.2.3 Temporary Arrays
	4.1.2.4 Shared Subroutines

	4.2 Encoder
	4.2.1 Down Scaling & Offset Compensation of the Input
	4.2.2 Pre-Emphasis Filtering
	4.2.3 Auto-Correlation
	4.2.4 The Schur Recursion
	4.2.5 Transformation of the Reflection Coefficients
	4.2.6 Quantization & Coding of the Logarithmic-Area-Ratios
	4.2.7 Decoding of the Logarithmic-Area-Ratios
	4.2.8 Short Term Analysis Filtering
	4.2.8.1 Transformation of the LARs Into Reflection Coefficients
	4.2.8.2 Short Term Analysis Filtering

	4.2.9 Calculation of the Long Term Parameters
	4.2.9.1 Long Term Analysis Filtering
	4.2.9.2 Long Term Synthesis Filtering

	4.2.10 Residual Pulse Excitation Encoding Section
	4.2.10.1 Weighting Filter
	4.2.10.2 Adaptive Sample Rate Decimation by RPE Grid Selection
	4.2.10.3 APCM Quantization of the Selected RPE Sequence
	4.2.10.4 APCM Inverse Quantization & PRE Grid Positioning
	4.2.10.5 Update of the Reconstructed Short Term Residual Signal

	4.3 Decoder
	4.3.1 Short Term Synthesis Filtering
	4.3.1.1 Short Term Synthesis Filter

	4.3.2 Long Term Synthesis Filtering
	4.3.3 Post Processing
	4.4 Benchmarks & Memory requirements
	4.5 Listings

