Sub-Band ADPCM 01 5

51 OVERVIEW

Pulse Code Modulation, or PCM (CCITT Recommendation G.711), is a
method of digitizing analog wave forms to transmit speech signals. This
guantization scheme provides 13 bits (u-law) or 14 bits (A-law) of dynamic
range in an 8-bit value. 13 or 14-bit dynamic range is the minimum
requirement to accurately reproduce the full range of speech signals,
therefore, p-law and A-law encoding are widely used in telephony.

This A/D conversion can introduce quantization noise when the analog
signals are quantized to digital values. The human ear is more sensitive to
guantization noise when the noise component is relatively large compared
to the size of the signal. Recommendation G.711 applies a non-uniform
guantization function to adjust the data size in proportion to the input
signal, thus reducing noise interference. As a result, smaller signals are
approximated with greater accuracy.

Adaptive Differential Pulse Code Modulation, or ADPCM (CCITT
Recommendation G.721), is more efficient to transmit than PCM. ADPCM
uses an adaptive predictor to take advantage of the redundancies present
in speech signals. It compares a signal sample with the previous sample
and transmits the difference between the two. This reduces the number of
bits needed to reproduce the speech. G.721 samples speech bandwidths of
200-3400 Hz at 8 kSa/s. The inputs and outputs of a G.721-based system
are still PCM values. Although G.711 and G.721 are widely used, these
methods are quality and bandwidth limited. Chapters 11 and 12 of Digital
Signal Processing Applications Using the ADSP-2100 Family, Volume 1, briefly
discuss PCM and ADPCM theory, and include program examples.

To improve the overall transmission quality and add a sub-carrier
frequency, CCITT developed Sub-Band ADPCM (Recommendation
G.722). Recommendation G.722 is a wideband audio recommendation (50
to 7000 Hz) that splits the frequency band into two sub-bands (0 to 4000
Hz and 4000 Hz to 8000 Hz), and applies ADPCM to the sub-bands
independently. G.722 operates on linear samples of speech. The auxiliary
data (non-encoded) channel is available for video transmission, and is
used in applications such as teleconferencing.

293

294

Sub-Band ADPCM

This chapter describes a method to implement the G.722 algorithm with
the ADSP-2100 Family of digital signal processors. To save memory space
and to clarify the implementation, the program example (Listing 5.1) at
the end of this chapter is written as a collection of subroutines. This format
is efficient because the higher and lower sub-bands share most of the
subroutines; in fact, many subroutines (such as filtez and filtep) are
also shared by the encoder and the decoder of each sub-band.

5.2 SUB-BAND ADPCM ALGORITHM
CCITT Recommendation G.722 specifies the following six parts of the
algorithm (see Figure 5.1):

Transmit quadrature mirror filter (QMF)
Lower sub-band encoder

Higher sub-band encoder

Lower sub-band decoder

Higher sub-band decoder

Receive quadrature mirror filter

The block diagram has two halves, transmit (encoder) and receive
(decoder).The implementation of the multiplexer and demultiplexer are
straightforward, and are not described in this chapter.

The subroutines included at the end of this chapter were verified against
digital test sequences provided by CCITT for the standards, and are fully
compatible with Recommendation G.722. When possible, the names of the
subroutines and variables used in the algorithm match the names
specified in the recommendation.

5.3 TRANSMIT PATH

This section describes the encoder and transmit path shown in Figure 5.1.
The encoder operates at 64 kbits per second, with 16 kSa/s and 14 bits.

53.1 Transmit Quadrature Mirror Filter

The transmit quadrature mirror filter splits the frequency band into two
sub-bands, higher and lower. It also decimates the input to the encoder
from 16 kHz to 8 kHz. The filter is a 24 tap Finite Impulse Response filter,
or FIR. The impulse response can be approximated as a simple delay
function. The transmit quadrature mirror filter shares the same
coefficients and 24 tap delay line with the receive QMF. Implementation of

Sub-Band ADPCM 5

Transm

-

- 16 kbi Higher Sub-Bar |
64 kbi | ADPCM Encode [N Transmii

-« MW H H Quadratu je——
I ; Mirror X i
48 kbi Lower Sub-Ba Filters n
< ADPCM Encod [
I XL
Receiv
e
|H - I'H
Higher Sub-Bar
Iy 16 kbiT ADPCM Decode = Receive | Xgui
——>»| DMU. Quadratu| o
64 kbit Ly r Iglilrtror
Lower Sub-Ba ilters
48 kb.i1 ADPCM Decoc o
(3 variants)
Mode Indice

Figure 5.1 Sub-Band ADPCM Algorithm Block Diagram

QMFs in ADSP-2100 family assembly language is computationally
efficient because the data adress generators, or DAGS, use indirect
addressing to fetch filter coefficients and data values in the same processor
cycle. Also, you can use circular buffering to represent the tapped delay
lines. The output variables of the filters, xI(n) and xh(n) (lower and
higher sub-band signal components), are determined by the following
equations:

xl(n) = xa + xb
xh(n) = xa - xb

where

xa = h2i * xin(j-2i)
xb = h2i+1 * xin(j - 2i - 1)

295

296

Sub-Band ADPCM

5.3.2 Higher Sub-Band Encoder

Figure 5.2 is a functional block diagram of the higher sub-band encoder.
The higher sub-band encoder operates on the differences between input
signal value xh and the adaptive predictor signal estimate. After the
predicted value is determined and the subtraction for the difference signal
is performed, the estimate signal (el) is applied to a four level non-linear
adaptive quantizer that assigns six binary digits to yield the 48 kbits/s

signal, Il . Since data is not truncated from the output signal, Ih , in the
feedback loop, theinverse adantive quantizer isjalso 4 levels. _
+, H Adaptiv >
X
H - @ Quantize
A
Ay
Quantize
© Adaptatic ‘ *
y
4 Level
- Inverse
Adaptiv
d Quantiz
S H H
daoti < fo
Adaptiv *
lo— : r
Predict < H ? +
+

Figure 5.2 Higher Sub-Band Encoder Block Diagram
5.3.3 Lower Sub-Band Encoder

The lower sub-band encoder (shown in Figure 5.3) operates by estimating
the difference in signal value between the predicted value and the actual
input value. The structure of the adaptive predictor in the higher-band
encoder is identical to the one in the lower sub-band encoder, but the
names in memory of the adaptive predictor coefficients differ by an “I” or
“h” to make the program more understandable. The number of bits
required to represent the difference is smaller than the number of bits
required to represent the total input signal. This difference is calculated by
subtracting the predicted value from the input value:

el(n) = xI(n) - sl(n)
eh(n) = xh(n) - sh(n)

Sub-Band ADPCM 5

The predicted value (sl(n) or sh(n)) is produced by the adaptive
predictor, which contains a second-order section to model poles, and a
sixth-order section that models zeroes in the input signal. For every
received sample, (xI(n) orxh(n)), upzero updates the six zero
section coefficients of the predictor, uppol2 calculates the second pole
section coefficient, and uppoll calculates the firEt pole section

+ S 60 Leve 48 kbi
X > Adaptiv . >
- @ Quantizt *
A Delete t
Two LSB
AL
Quantize |
* Adaptatic [oLt
y
15 Leve
> Inverse
Adaptiv
di¢ Quantiz
SLH I
< \d
. Adaptiv
Predict MLt +
N ®
T +

coefficient.
Figure 5.3 Lower Sub-Band Encoder Block Diagram

Operation is similar to the operation of the higher sub-band decoder
except a 60-level adaptive quantizer is applied rather than a 4-level
guantizer.

An important feature of the lower sub-band encoder is the feedback loop.
The feedback loop is used for adaptation of the 60-level adaptive
guantizer and to update the adaptive predictor. To do this, inside the
feedback loop, the two least significant bits of Il are truncated to produce
a 4-bit difference signal, Ilt . Since this value was already passed through
the adaptive quantizer, an inverse adaptive quantizer produces dit . This
is a quantized difference signal that the adaptive predictor uses to
produce sl (the estimate of the input signal) and update the adaptive
predictor.

Four-bit operation (rather than 6-bit) leaves room for the auxiliary data 297

298

Sub-Band ADPCM

channel in the lower sub-band encoder.

54 RECEIVE PATH

This section describes the decoder and receive path, shown in Figure 5.1.
While the encoder operates at 64 kbits/s, the decoder accepts encoded
signals at 64, 56 and 48 Kbits/s. The two lower bit rates correspond to the
availability of an auxiliary data channel that uses either 8 or 16 Kbits/s.
The auxiliary data channel is described as a data insertion device that is
totally separate from the G.722 encoder and decoder. Bits from the
auxiliary data channel are simply carried over the same transmission
medium as the G.722 encoded data.

The different bit rates available at the input of the decoder (depending on
whether the auxiliary data channel is used) are referred to as the “modes”
of operation (see Table 5.1). During operation of the algorithm on-chip,
you must indicate the desired mode.

MODE 7 kHz audio coding bit rate Auxiliary data channel rate
1 64 Kbits/s 0 Kbits/s

2 56 Kbits/s 8 Kbits/s

3 48 Kbits/s 16 Kbits/s

Table 5.1 Decoder Modes Of Operation

54.1 Higher Sub-Band Decoder

The higher sub-band decoder (see Figure 5.4) is the simplest element of
sub-band ADPCM. There are no choices to make for inverse adaptive
guantizers or mode control to indicate word truncation. Instead, the input
code word, Ih , is fed into the 4-level inverse adaptive quantizer (to obtain

Dh) and into theauantizer adaptation segment in parallel. The adaptive
| 4 Level d
H Inverse H + "W
ol Adaptive . + >
Quantizel +
°H
> Adaptiv
Ay . Predict:
L Quantize
Adaptatic

Figure 5.4 Higher Sub-Band Decoder Block Diagram

Sub-Band ADPCM 5

predictor generates the signal estimate Sh and adds to this the output of
the inverse adaptive quantizer to generate the decoder output signal, Rh.

5.4.2 Lower Sub-Band Decoder

Figure 5.5 is a functional block diagram of the lower sub-band decoder.
Generally, the higher and lower sub-band decoders and encoders share
the same subroutine calls in almost the same order because they are

similar in operation. In the lower sub-band decoder, however, the mode

indication signal determines how many bits are truncated from the input

codeword lIr wwmgqmﬂe
15 Level

'

Selectiq

d_s

o

SL

Y

mgﬁceanc Delete (L9 Inverse dL
o 2 LSBs | o Adaptive
L4 Quantizel d L4
| I 30 Level
Lr - Delete L5 Inverse
i C 1LSB - Adaptive
48 kbits Quantizel
Delete | 60 Level
2LSBs Lr Inverse
o Adaptive
Quantizel
> Quantize .
Adaptatic
15 Level
Inverse
Adaptive [
Quantizel
dit
. = Adaptiv
r .
n ’ Lt Predictt

Figure 5.5 Lower Sub-Band Decoder Block Diagram

299

300

Sub-Band ADPCM

feedback loop. Table 5.2 shows you the correlation between the Mode and
the number of levels for the inverse adaptive quantizer.

MODE Inverse adaptive quantizer levels
1 60-level
2 30-level
3 15-level

Table 5.2 Inverse Adaptive Quantizer Modes Of Operation

In both the quantizers and inverse quantizers for the lower and higher
sub-bands, indexed indirect memory access is used to read and write
memory. An index of a data table is calculated (for example, see quantl
subroutine, adaptive quantizer in the lower sub-band); this index is added
to the base address of the data table and a single-cycle memory fetch is
executed to obtain the desired address value.

54.3 Receive Quadrature Mirror Filter

The receive quadrature mirror filter interpolates the output of the decoder
from 8 kHz to 16 kHz for input to the receive audio signal. The filter is a
24 tap finite impulse response filters whose impulse response can be
approximated as a simple delay function.

55 ADSP-2100 FAMILY IMPLEMENTATION

The G.722 code implementation is a parameter set-up shell that calls
subroutines corresponding to the subroutines listed in the CCITT
recommendation. This is useful for the following reasons:

< Memory savings-both the encoder and decoder (and in some cases
both sub-bands) use many of the same routines

= Easy transition from full-duplex to half-duplex implementation—-copy
the shell that includes the appropriate sub-routine calls

Circular buffering is used in the G.722 algorithm in several places: as
delay lines in the receive and transmit quadrature mirror filters and in the
adaptive predictor (a separate one for both encoder and decoder and both
upper and lower sub-bands). The circular buffering implementation
maintains only the necessary pieces of information (specific number of
delay values). It does not require code to maintain the data or require

Sub-Band ADPCM 5

extraneous memory to store the data and time to service it.

5.6 SUBROUTINE DESCRIPTIONS

This section contains brief descriptions of the subroutines used to
implement CCITT Recommendation G.722.

5.6.1 reset_ mem

This subroutine initializes the state variables required for correct

operation of the algorithm. You must call the reset_mem routine before

running the encoder or decoder. The reset_mem routine also does the

following things:

< [Initializes the linear and circular buffers required by the filters,
encoder, and decoder

= Sets up pointers (data memory values) to the circular buffers so the
index registers do not need to be dedicated to the circular buffers

= Set up modify and length registers that will remain constant for the
remainder of the algorithm

56.2 filtez

This subroutine computes the output of the zero section of the adaptive
predictor by multiplying the zero section coefficients by the quantized
difference signal buffer values. Higher and lower sub-band encoders and
decoders use this subroutine.

5.6.3 filtep

This subroutine computes the output of the pole section of the adaptive
predictor by multiplying the pole section coefficients by the quantized
reconstructed signal buffers. Higher and lower sub-band encoders and
decoders use this subroutine.

5.6.4 quantl

This subroutine calculates the encoder output codeword based on the
difference in signal value and the quantizer scale factor, detl (calculated
in scalel below).

This subroutine fetches data words from the look-up tables included in the
G.722 recommendation. It is necessary to first compute an index that
locates the magnitude of the signal difference relative to the quantizer
decision levels. This is accomplished in the ll1 loop. The decision levels
(stored as a program memory data table) are multiplied by the quantizer
scale factor and subtracted from the magnitude of the difference in signal
value; if this value is less than zero, a flag is incremented to give the
desired index. This index is then added to the address of the codeword

301

302

Sub-Band ADPCM

data table and the correct six-bit codeword is chosen. Only the lower sub-
band encoder uses this subroutine.

5.6.5 invgxl

This subroutine represents the invgal and invgbl sections of the
algorithm. invgal computes the lower sub-band quantized difference in
signal value for the adaptive predictor of the encoder and decoder.

invgbl computes the quantized difference in signal value for the decoder
output in the lower sub-band decoder. Since these two routines are
identical except for the presence of the “mode” signal (decoder only), they
are merged to save code space. Again, this subroutine is based on an
indexed table look-up, and the choice of tables depends on the mode of
operation. For the encoder, you supply a constant to choose the correct
table (and number of bits to be truncated). For the decoder, the shell
program mathematically determines which table is chosen according to
the mode you define. Similar to quantl , an index is calculated and added
to the indicated table as an offset.

5.6.6 logscl

This subroutine updates the logarithmic scale factor in the lower sub-band
encoder and decoder. It is an indexed table look-up subroutine with limits
imposed on the output value, nbpl .

5.6.7 scalel

This subroutine computes the quantizer scale factor in the lower sub band
encoder and decoder. In addition to scaling output values, this subroutine
performs an indexed table look-up.

5.6.8 upzero

This subroutine determines six zero section predictor coefficients. The
output values (a buffer of size six) depend on the value and signs of the
guantized difference in signal value, some leakage and gain constants, the
delayed difference signal values, and old zero-section predictor
coefficients.

5.6.9 uppol2

This subroutine generates the second pole predictor coefficient. It is
determined from the sign and value of the partially reconstructed signal
pl , some leakage and gain constants, and the old (delayed) pole predictor
coefficients.

5.6.10 uppoll

This subroutine generates the first pole predictor coefficient. It depends on
the delayed first pole predictor coefficient, some leakage and gain

Sub-Band ADPCM 5

constants, plt and the old (delayed) pole predictor coefficients.

5.6.11 limit

This subroutine limits the output reconstructed signals for both lower and
higher sub-band decoders.

5.6.12 quanth

This subroutine quantizes the difference in signal value in the higher sub-
band encoder based on the magnitude of the signal, the higher sub-band
guantizer scale factor, and a decision level indexed table look-up.

5.2.13 invqah

This subroutine computes the quantized difference in signal value in the
higher sub-band encoder and decoder, based on the higher sub-band
guantizer scale factor and the higher sub-band decoder output codeword,
Ih , in indexed table look-up manner.

5.6.14 logsch

This subroutine determines the logarithmic quantizer scale factor in the
higher sub-band encoder and decoder. This subroutine involves
calculations for leakage and scale factors, and imposes some limits on the
output signal.

Note: In addition to the routines mentioned above, several routines are
performed in the shell itself. They are implemented in the shell because
they are short, and because it saves two cycles (call andrts)for every
execution. The following routines are implemented in the shell:

= SUBTRA
= RECONS
= PARREC

Also, the delay blocks DELAYZ, DELAYL, and DELAYA are implemented
with the following two step process:

1. Variables (both single words and buffers) are given their initial value
in reset_mem

2. Variables are updated after processing through either the decoder or
encoder with the newly computed value. They will contain the correct
data for the next iteration through the system.

303

5 Sub-Band ADPCM

.module/ram/abs=0 g722;

L5,
.var/ram/dm/circ
var/ram/dm
.var/ram/pm

.init coefs:
.var/ram/dm
.var/ram/dm/circ
.var/ram/dm/circ
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm

[s
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/pm

.init code4 _table:

.var/ram/pm

.init code5_table:

.var/ram/pm

.init code6_table:

.var/ram/pm
.init qg6_table:
.var/ram/pm
.init gg5_table:
.var/ram/pm
.init gg4_table :
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm/circ
.var/ram/dm
.var/ram/pm
.init wl_table:
.var/ram/pm
initilb_table:
.var/ram/dm
.var/ram/dm
.var/ram/dm

304

variables for filters here
tgmf_buf[23];
accumab_ptr;
coefs[24];
<coeffs.dat>;

xl;
accumc[11];
accumd[11];

accumc_ptr;

accumd_ptr;
xh;

xoutl;

xout2;

XS;

variables for encoder (hi and lo) here

il;

mode;

szl;

spl;

sl;

el;

store_this;

code4_table[0x20];
<codword4.dat>;

code5_table[0x40];
<codword5.dat>;

code6_table[0x80];
<codword6.dat>;

gg6_table[0x80];
<quant6.dat>;

qg5_table[0x10];
<quant5.dat>;

qg4_table[8];
<quant4.dat>;

delay_bpl[6];

ditx_ptr;

fouf[6];

tbuf[6];

delay_dItx[7];

il4;

wl_table[8];
<wl.dat>;

ilb_table[32];

<ilb.dat>;

nbl;

all;

al2;

[* delay line */

Sub-Band ADPCM 5

var/ram/dm plt;
var/ram/dm plt1;
var/ram/dm plt2;
var/ram/dm rs;

var/ram/dm dit;
var/ram/dm apli;
var/ram/dm apl2;
var/ram/dm rlt;

var/ram/dm rit1;
var/ram/dm rlt2;
.var/ram/pm decis_levl[29];
.init decis_levl: <(g6shft3.dat>;
var/ram/dm detl;
.var/ram/pm quant26bt_pos[30];
.init quant26bt_pos: <quant6p.dat>;
.var/ram/pm quant26bt_neg[30];
.init quant26bt_neg: <quant6n.dat>;
var/ram/dm deth;
var/ram/dm sh; /* this comes from adaptive predictor */
var/ram/dm eh;
.var/ram/pm bit_out2[4];
.init bit_out2: <bit_ih2.dat>;
var/ram/dm dh;
var/ram/dm ih;

var/ram/dm nbh;
var/ram/dm szh;
var/ram/dm sph;
var/ram/dm ph;
var/ram/dm yh;
var/ram/dm rh;
.var/ram/dm/circ delay_dhx[7];
var/ram/dm delay_bphl[6];
var/ram/dm dhx_ptr;
var/ram/dm ahl;
var/ram/dm ah2;
var/ram/dm aphi;
var/ram/dm aph2;
var/ram/dm phil;
var/ram/dm ph2;
var/ram/dm rhl;
var/ram/dm rh2;

[* variables for decoder here */
var/ram/dm ilr;

var/ram/dm yl;

var/ram/dm rl;

var/ram/dm dec_deth;
var/ram/dm dec_detl;
var/ram/dm dec_dlt;
var/ram/dm dec_del_bpl[6];
var/ram/dm dec_dltx_ptr;

(listing continues on next page)

305

5 Sub-Band ADPCM

.var/ram/dm/circ dec_del_dItx[7];
var/ram/dm dec_apli;
var/ram/dm dec_apl2;
var/ram/dm dec_plt;
var/ram/dm dec_plt1;
var/ram/dm dec_plt2;
var/ram/dm dec_szl;
var/ram/dm dec_spl;
var/ram/dm dec_sl;
var/ram/dm dec_rlt1;
var/ram/dm dec_rlt2;
var/ram/dm dec_rlt;
var/ram/dm dec_all;
var/ram/dm dec_al2;
var/ram/dm di;
var/ram/dm dec_nbl;
var/ram/dm dec_yh;
var/ram/dm dec_dh;
var/ram/dm dec_nbh;
[* variables used in filtez */
var/ram/dm dec_del _bphi[6];
var/ram/dm dec_dhx_ptr;
/* pointer for circ buffer index - hi sb dec */
.var/ram/dm/circ dec_del _dhx[7];
var/ram/dm dec_szh;
[variables used in filtepccccvveeee. */
var/ram/dm dec_rhi;
var/ram/dm dec_rh2;
var/ram/dm dec_ahl;
var/ram/dm dec_aphi;
var/ram/dm dec_ah2;
var/ram/dm dec_aph2;
var/ram/dm dec_ph;
var/ram/dm dec_sph;
var/ram/dm dec_sh;
var/ram/dm dec_rh;
var/ram/dm dec_phi;
var/ram/dm dec_ph2;
var/ram/dm X_num;
o, starting with lower sub band encoder */
o, if in reset, initialize required memory */
* o encode: put input samples in myl and mxO(calling parameters) */
o, my1 = first value, mx0 = second value */
o, returns il and ih stored together in ax0 */

306

Sub-Band ADPCM

o, decode: calling parameters: ilr and xh */
[* ... return parameters: xoutl and xout2 (in ax0 and ax1 respectively) ... */
o note: supply mode signal to decoder also (in dm) */

encode: mstat = 0x0;
i0 = dm(accumab_ptr);
10 = 23;
mo0 = 2; /* skipping through buffer with a stride of 2 */
i5 = *coefs;
I5=0;
m6 = 2;
si = mx0;
mr = 0, my0 = pm(i5,m®6);
cntr = 11;
do e_loop until ce;

/* ... main multiply accumulate loop for even samples and coefficients */
e_loop: mr = mr + mx0 * my0(ss), mx0 = dm(i0,m0), my0 = pm(i5,m6);
dm(i0,m2) =my1, mr = mr + mx0 * myQ(ss); /* final mult/accumulate */
[* and write to delay line */

/* .. save mr here, want xa (contents of mr) to be at least 24 bits wide .. */

~ o S0 start moving mr outputs into alu regs for multiprecision */
sr0 = mrl;
ay0 = mr0; /* for multiprecis add in hight and lowt */
cntr = 11;
i5 = "coefs+1;

mr = 0,mx0 = dm(i0,m0), myO = pm(i5,m6);
do o_loop until ce;

*o main loop for mult/accum odd inputs and coefficients */
o_loop: mr = mr + mx0 * my0(ss), mx0 = dm(i0,m0), my0 = pm(i5,m6);
modify(i0,m0);
modify(i0,m0);

dm(i0,m2) = si, mr = mr + mx0 * my0(ss); /* final mult/accumulate */
[* and write to delay line */

lowt: ar = mr0 + ay0, ayl = sr0O; /* add low precis word from loop first */
ena ar_sat;
ar=mrl +ayl+C; /*need 16 bits of info, but to keep precise */
dis ar_sat; /* this is xI, needs to be limited */
call chk vals;
dm(xl) = ar;

hight: ar = ay0 - mr0, ayl = sr0;
ena ar_sat;
ar=ayl-mrl+C-1; /* subtract with borrow */
dis ar_sat;
call chk vals;
dm(xh) = ar;
dm(accumab_ptr) = i0; L .
(listing continues on next page)

307

5 Sub-Band ADPCM

* o into regular encoder segment here - consider filters embedded */

mstat = 0x8;

i1 =~delay_bpl;

i5 = dm(dltx_ptr);

I5=7;

10 =0;
* o filtez - compute predictor output section - zero section */
/* ... calling params: il points to delay bpl, i2 points to delay_dltx */
[return parameters: mrl (szl)ccccoeeeee. */

call filtez;

dm(szl) = ar;

sr0 = dm(ritd);

myO0 = dm(all);

ax0 = dm(rit2);

myl = dm(al2);
* o filtep - compute predictor output signal (pole section) */
o, calling params: sr0, myO0, sr1, myl */
[return parameters : ar (Spl) ...ccccceeveeeeeenn. */

call filtep;

/* predic:compute the predictor output value in the lower sub_band encoder */
/* not a subroutine but a small piece of code to compute pred|ctor output */

o, adding together szl + spl to form sl */
dm(spl) = ar;
ay0 = dm(szl);
ar = ar + ay0;
dm(sl) = ar;
ay0 = dm(xl); /* this is subtra : xI - sl = el (diff. signal) */
ar=ayo0 - ar;
dm(el) = ar;
o, guantl: quantize the difference signal */
* o calling params: el(ar), detl (which has value at reset) */
o, return parameters: il (4 bit codeword) in ax0 */
call quantl;
dm(il) = ax0;
my0 = dm(detl);
ay0 = 3; [* this is mode for block 41 */
mrO = axo0;
ayl = “code4 table; /* remember, this will change w/ invgbl */

/* invgxl: does both invgal and invgbl- computes quantized difference signal */

*o, for invgbl, truncate by 2 Isbs, soay0=3 */
o, calling parameters: il(mr0), detl(my0) */
[*o, and ayl(address of correct table for codeword */
[, return paramters: dlit(mrl) */

call invgxl;

modify(i5,m7);

m6 = 0;

308

Sub-Band ADPCM 5

dm(i5,m6) = mrl;
mr0 = dm(nbl);
ar = dm(il);

/* logscl: updates logarithmic quant. scale factor in low sub band */

* o calling parameters: il (ilr in decoder) - in ar, nblin mr0 */

* o return parameters: nbl used next time - note - same var name */
call logscl;
dm(nbl) = ar;
ayl =8§;

/* ... scalel: compute the quantizer scale factor in the lower sub band ... */
/* calling params nbl(in ar) and 8(constant such that scalel can be scaleh */
[, return parameter: detl */

call scalel;

dm(detl) = sr0;

ax0 = dm(i5,m>5);

ay0 = dm(szl);
/* parrec - simple addition to compute recontructed signal for adaptive pred */
[no subroutine, just in place */
* o add predictor zero section + quantized diff signal */

ar = ax0 + ayo0;

dm(plt) = ar;
/* ... upzero: update zero section predictor coefficients (sixth order) ... */
* o calling parameters: dlt(sr0); dlti(circ pointer for delaying */
[* dit1, dit2, ..., dité from dit */
* o bpli (linear_buffer i |n WhICh all six values are delayed */
o, return params: updated bpli, delayed dltx */

i1 =~delay_bpl;

call upzero;

ax0 = dm(all);

ay0 = ax0;

mx0 = dm(al2);

i = dm(plt);

mr0 = dm(pltl);
mrl = dm(plt2);

/* . uppol2- update second predictor coefficient apl2 and delay itas al2 . */
o, calling parameters: all, al2, plt, pltl, plt2 */
[return parameters: apl2 (in ar) */
[note: apl2 is limited to +-.75ccccceeenn. */

call uppol2;

dm(apl2) = ar;

dm(al2) = ar;

mr0 = dm(pltl);

mx0 = dm(all);

ayl = dm(apl2);

i = dm(plt);

(listing continues on next page)

309

/*
/*
/*

5

.. uppoll

Sub-Band ADPCM

:update first predictor coefficient apll and delay itas all .. */
calling parameters: all, apl2, plt, pltl */

. hote: wd3= .9375-.75 is always positive */

call uppoll;

dm(apll) =ar;

dm(all) = ar;

...... parameters: sl(ax0), dlt(ay0)ccccevunn. ¥/
....... return parameters: rit(ar)ccccceevnnn. ¥/
ax0 = dm(sl);

ay0 = dm(store_this);

ar = ax0 + ayo0;

dm(rlt) = ar;

/* . done with lower sub_band encoder; now implement delays for next time .

modify(i5,m5);

ax0 = dm(rltd);

dm(rlt2) = axo;

dm(ritl) = ar;

ax0 = dm(pltl);

dm(plt2) = axo;

ax0 = dm(plt);

dm(pltl) = axo;

dm(dltx_ptr) = i5; [* save i5 in dltx_ptr, restore next time */

hi_sb_enc:il = ~delay_bph;

i5 = dm(dhx_ptr);

... filtez: calling params: ax0, ax1l */
......... return params: ar(szh)cccoeeiees ¥/
call filtez;

dm(szh) = ar;

sr0 = dm(rhl);

myO0 = dm(ahl);

ax0 = dm(rh2);

myl = dm(ah2);

filtep: calling parms: sr0, myO, srl, myl */

......... return params: ar (sph)ccccecvvveenn. ¥/

call filtep;

dm(sph) = ar;

ay0 = dm(szh);

ar = ar + ay0;

dm(sh) = ar; [* predic: sh = sph + szh */
ay0 = dm(xh);

ar=ayo0 - ar;

dm(eh) = ar; /* subtra: eh = xh - sh */
myO0 = dm(deth);

........ quanth: calling params: eh(ar), deth (has init. value) */

*/

/*

/*
/*
/*

/*
/*

*

~

r* ..

/*

/*
/*
/*

Sub-Band ADPCM 5

........................... return: ih in axo

call quanth;
dm(ih) = ax0;
ay0 = ax0;

invgah: compute the quantized difference signal in th ehigher sub_band */
............. calling parameters: ih(in ax0); deth(in my0) */
.................... return parameters: dh (inmrl)cccceeeee. ¥/

call invgah;
modify(i5,m7);
m6=0;

dm(i5,m6) = mrl;
ay0 = dm(ih);
myO0 = 0x7f00;
mx0 = dm(nbh);

... logsch: update logarithmic quantizer scale factor in hi sub band ... */

....... calling paameters: ih(ay0), nbh(mxO0),

myO0 has a constant */

................ return parameters: updated nbh (in ar) */

call logsch;
dm(nbh) = ar;
ayl = Oxa;

..... note : scalel and scaleh use same code, different parameters */

call scalel;
dm(deth) = sr0;

. parrec - add pole predictor output to quantized diff. signal(in place . */

ax0 = dm(i5,m>5);
ay0 = dm(szh);
ar = ax0 + ayo0;
dm(ph) = ar;

upzero: update zero section predictor coefficients (sixth order) ... */

.......... calling parameters: dh(sr0); dhi(circ), bphi (circ) */
............... return params: updated bphi, delayed dhx */

i1 = ~delay_bph;
call upzero;

................ calling params: ahl, ah2, ph, phl, ph2 */

..................... return params: aph2 (in ar)
.................... note: aph2 is limited to +- .75
ax0 = dm(ahl);

ay0 = ax0;
mx0 = dm(ah2);
si = dm(ph);

mr0 = dm(phl);
mrl = dm(ph2);

call uppol2;
dm(aph2) = ar;
dm(ah2) =ar;

(listing continues on next page)

311

5 Sub-Band ADPCM

/* ... uppol
[i,

[,
o cal

1: update first predictor coef. aph2 and delay it as ahl

note: wd3 = .9375 -.75 is always positive */
mr0 = dm(phl);

mx0 = dm(ahl);

ayl = dm(aph2);

call uppoll;

dm(apll) = ar;
dm(ahl) = ar;

ax0 = dm(sh);

ay0 = dm(store_this);
ar = ax0 + ayo0;
dm(yh) = ar;

....... recontructed output signalccccceeeee... ¥/
ling params: yl (in ar); return params: rh (in ar) */

~ o done with higher sub-band encoder, now Delay for next time

ax0 = dm(rhl);
dm(rh2) = axo;
dm(rhl) = ar;
ax0 = dm(phl);
dm(ph2) = ax0;
ax0 = dm(ph);
dm(phl) = ax0;
modify(i5,m5);
dm(dhx_ptr) = i5;

o multiplexing ih and il to get signals together */

[*

[*

si = dm(ih);

ar = dm(il);

sr = Ishift si by 6(lo);

sr = sr or Ishift ar by 0(lo);
ax0 = sr0;

.. multiplexed transmission word in ax0 */
rts; /* done with encode */

......... LOWER SUB_BAND DECODERccoeoeiine

*/

* o expect to split transmitted word from ax0 into ilr and ih */
decode: ay0 = 0x3f;

lo_sb_dec:

312

ar = ax0 and ayO0;
dm(ilr) = ar;

ay0 = 0xc0;

ar = ax0 and ayO0;

sr = Ishift ar by -6 (l0);

dm(ih) = sr0; /* place ih in two Isb’s of sr0 */

mstat = 0x8;
i1 =~dec_del bpl;
i5 = dm(dec_dltx_ptr);

/*
/*

dm(dec_szl) = ar;
sr0 = dm(dec_rltl);
myO0 = dm(dec_all);
ax0 = dm(dec_rlt2);
myl = dm(dec_al2);

call filtep;
dm(dec_spl) = ar;
ay0 = dm(dec_szl);
ar = ar + ay0;
dm(dec_sl) = ar;
ay0 = 3;

mr0 = dmy(ilr);

ayl = ~code4 table;
myO0 = dm(dec_detl);

Sub-Band ADPCM 5

filtez: compute predictor output for zero section */
. calling parmeters: addresses of zero section input and output bufs .. */
return parameters: del_szl (inmrl) */
call filtez;

filtep: compute predictor output signal for pole section */
calling parameters: dec_rltl, dec_rlt2, dec_all and dec_al2 */
return parameter: del_spl (in ar)c........... */

/* invgxl: compute quantized difference signal for adaptive predic in low sb */

call invgxl;
modify(i5,m7);
m6=0;

dm(i5,m6) = mrl;
ay0 = dm(mode);

mr0 = ~code4_table;
mrl = ~code5_table;

sr0 = ~code6_table;
ax0 = 2;

axl =3;

af=ay0 - 1;

if eq ar = pass sr0;
af = ay0 - ax0;

if eq ar = pass mrl;
af = ay0 - ax1;

if eq ar = pass mr0;
ayl = ar;

mr0 = dmy(ilr);

myO0 = dm(dec_detl);

calling parameters: my0, mr0, ayl, ayo0 */
return parameters: mrl (dec_dlt) */

(listing continues on next page)

313

5 Sub-Band ADPCM

/* invgxl: compute quantized difference signal for decoder output in low sb */

o, calling parameters: my0, mr0, ayl, ayo0 */
[, return parameters: mrl(dl)ccc.e... */

call invgxl;

dm(dl) = mrl;

ay0 = dm(dec_sl);
ar=mrl + ay0;

dm(yl) = ar;
I, limit: calling parameters yl (ar)ccc........ */
[, return parameters: rl (ar)cccveeeee. */
call limit;
dm(rl) = ar;

/* logscl: quantizer scale factor adaptation in the lower sub-band */
/* ... calling parameters: dec_nbl (in mrl, dm(il4) calculated in invgxl ... */
mr0 = dm(dec_nbl);
ar = dm(ilr);
call logscl;
dm(dec_nbl) = ar;
ayl = 8§;

* o scalel: computes quantizer scale factor in the lower sub band */
/* .. calling params: updated dec_nbl, and ay1 for integer part scaling .. */
call scalel;
dm(dec_detl) = sr0;

/* . parrec - add pole predictor output to quantized diff. signal(in place . */
o, for partially reconstructed signal */

ax0 = dm(i5,m>5);

ay0 = dm(dec_szl);

ar = ax0 + ayo0;

dm(dec_plt) = ar;

i1 =~dec_del bpl;

* o upzero: update zero section predictor coefficients */
/*calling params: dec_dlt(sr0),dec_dlti(circ buffer),dec_bpli(linear buffer)*/
*o return parameters: updated dec_bpli, delayed dec_dlti */
* o note: am saving the index(i) register for circ buffers to mem */

call upzero;

ax0 = dm(dec_all);

ay0 = ax0;

mx0 = dm(dec_al2);

i = dm(dec_plt);
mr0 = dm(dec_pltl);
mrl = dm(dec_plt2);

/* . uppol2: update second predictor coefficient apl2 and delay itas al2 . */
/* . calling parameters: all(ax0), al2(mx0), plt(si), plt1(mr0), plt2(mrl) . */

314

Sub-Band ADPCM 5

[return parameters: apl2 (inar) */
call uppol2;
dm(dec_apl2) = ar
dm(dec_al2) = ar;
mr0 = dm(dec_pltl);
mx0 = dm(dec_all);
ayl = dm(dec_apl2);

= dm(dec_plt);
* o uppoll: update first predictor coef. (pole setion) */
/* calling params: dec_pltl (mr0), dec_plt(si), dec_all(mx0), dec_apl2(ayl) */
X, return parameter: apll (inar) */
call uppoll;

dm(dec_apll) = ar
dm(dec_all) =ar;
ax0 = dm(dec_sl);
ay0 = dm(store_this);

~o recons : compute recontructed signal for adaptive predictor */
*o, adding together dec_sl(ax0), dec_dlt(ay0) */

ar = ax0 + ayo0;

dm(dec_rlt) =

/* ... done with lower sub band decoder, implement delays for next time ... */
modify(i5,m5);
ax0 = dm(dec_rltl);
dm(dec_rlt2) =
dm(dec_rltl) = ar;
ax0 = dm(dec_pltl);
dm(dec_plt2) = ax0;
ax0 = dm(dec_plt);
dm(dec_pltl) = ax0;
dm(dec_dltx_ptr) = i5;

i1 =~dec_del_bph;
i5 = dm(dec_dhx_ptr);

*o filtez: compute predictor output for zero section */
/* .. calling parameters: addresses of zero section input and output bufs .. */
o, return parameters: dec_shl (in mrl) */

call filtez;

dm(dec_szh) = ar;
sr0 = dm(dec_rh1l);
myO0 = dm(dec_ahl);
ax0 = dm(dec_rh2);
myl = dm(dec_ah2);

(listing continues on next page)

315

5 Sub-Band ADPCM

* o filtep: compute predictor output signal for pole section */
* o calling parameters: dec_rhl, dec_rh2, dec_ahl and dec_ah2 */
I, return parameter: dec_sph (inar) */

call filtep;

dm(dec_sph) = ar;

/* predic:compute the predictor output value in the higher sub_band decoder */
o, adding dec_szh and dec_sph to form dec_sh */

ay0 = dm(dec_szh);

ar = ar + ay0;

dm(dec_sh) = ar;

ax0 = dm(ih);

ay0 = ax0;

myO0 = dm(dec_deth);

/* invgah: compute the quantized difference signal in th ehigher sub_band */
[*o, calling parameters: ih(in ax0); deth(in my0) */
o, return parameters: dec_dh (inmrl) */

call invgah;

modify(i5,m7);

m6=0;

dm(i5,m6) = mrl;

ay0 = dm(ih);

myO0 = 0x7f00;

mx0 = dm(dec_nbh);

/* ... logsch: update logarithmic quantizer scale factor in hi sub band ... */

* o calling parameters: ih(ay0), dec_nbh(mx0), myO has a constant */
o, return parameters: updated dec_nbh (in ar) */

call logsch;

dm(dec_nbh) = ar;

ayl = Oxa;

/* ... scalel: compute the quantizer scale factor in the higher sub band ... */
/* calling params: dec_nbl(in ar) and 10(constant so that scalel is re-used */
o, return parameter: dec_deth(in sr0) */

call scalel;

dm(dec_deth) = sr0;

ax0 = dm(i5,m>5);

ay0 = dm(dec_szh);

o, parrec: compute partially recontructed signal */
o, add together ax0(dec_dh), ay0 (dec_szh) */
ar = ax0 + ayo0;
dm(dec_ph) =ar;
i1 =~dec_del_bph;

* o upzero: update zero section predictor coefficients */
/* calling params: dec_dh (sr0), dec_dhi(circ buffer), dec_bph(linear buf */
* o return parameters: updated dec_bph, delayed dec_dhi */

Sub-Band ADPCM 5

* o note: am saving the index(i) register for circ buffers to mem */

call upzero;

ax0 = dm(dec_ahl);

ay0 = ax0;

mx0 = dm(dec_ah2);

i = dm(dec_ph);
mr0 = dm(dec_ph1l);
mrl = dm(dec_ph?2);

/* . uppol2: update second predictor coefficient aph2 and delay it as ah2 . */

* o calling parameters:dec_ahl1(ax0),dec_ah2(mx0),dec ph(SI) */
[, dec_phl(mr0),dec_ph2(mrlccccoueeeee.
X, return parameters: aph2 (inar) */

call uppol2;

dm(dec_aph?2) = ar
dm(dec_ah2) =ar;
mr0 = dm(dec_ph1l);
mx0 = dm(dec_ahl);
ayl = dm(dec_aph?2);

* o uppoll: update first predictor coef. (pole setion) */
/*calling parameters: dec_phl (mr0), dec_ph(si), dec ahl(me) dec_aph2(ayl)*/
[return parameter: aphl (inar)cccoceeeee..

call uppoll;

dm(dec_aphl) = ar
dm(dec_ahl) =ar;
ax0 = dm(dec_sh);
ay0 = dm(store_this);

~o recons : compute recontructed signal for adaptive predictor */
o, add parameters: dec_sh(ax0), dec_dh(ayO) */
[to get parameters: dec_yh(ar)ccccuveee. */

ar = ax0 + ayo0;
dm(dec_yh) = ar;

o, implementing delays for next time here */
ax0 = dm(dec_rhl);
dm(dec_rh2) = ax0;
dm(dec_rhl) = ar; [* ar has dec_yh */
ax0 = dm(dec_phl);
dm(dec_ph2) = ax0;
ax0 = dm(dec_ph);
dm(dec_ph1l) = ax0;
modify(i5,m5);
dm(dec_dhx_ptr) = i5;

o limit: limiting the output reconstructed signal */
[calling params:dec_yh(inar)ccccceeee... */
I, return parameters: dec_rh(inar) */
call limit;
dm(rh) =

(listing continues on next page)

317

5 Sub-Band ADPCM

[end of higher sub_band decoder */
o, start with receive quadrature mirror filters */
recv_gmf; mstat = Ox0;

i5 = *coefs;

I5=0;

i0 = dm(accumc_ptr);

mO = 0;

10 =11;

i1 = dm(accumd_ptr);

11=11;

m6 = 2,

ena ar_sat;

ax0 = dm(rl);

ay0 = dm(rh);

ar = ax0 + ay0; [* xs in af */

dm(xs) = ar;

ar = ax0 - ay0; [*xd in ar */

dis ar_sat;

mx0 = ar;

si=ar;

cntr = 11;

mr = 0, my0 = pm(i5,m®6);

do accumc_loop until ce;

accumc_loop: mr = mr + mx0 * my0(ss), mx0 = dm(i0,m3),
myO0 = pm(i5,m6);

mr = mr + mx0 * myO (ss);

modify(i0,m1);

sr = ashift mrl by -15(hi);

sr = sr or Ishift mr0 by -15(l0);

dm(io,m2) = si;

ar = pass sr0;

call chk vals;

dm(xoutl) = ar; [* could leave this in a register */

i5 = "coefs +1;

mr = 0, my0 = pm(i5,m®6);

cntr = 11;
mx0 = dm(xs);
Si = mx0;

do accumd_loop until ce;
accumd_loop: mr = mr + mx0 * myO(ss), mx0 = dm(il,m3),
myO0 = pm(i5,m6);

mr = mr + mx0 * my0(ss);

modify(i1,m1);

sr = ashift mrl by -15(hi);

sr = sr or Ishift mr0 by -15(lo);

dm(il,m2) = si;

ar =pass sro;

call chk vals;

dm(xout2) = ar;

dm(accumc_ptr) = i0;

dm(accumd_ptr) = i1;

rts;

318

Sub-Band ADPCM 5

reset_mem: ax0 = 1;
dm(rs) = ax0;
ax0 = 0x8;
dm(deth) = axo0;
dm(dec_deth) = ax0;
ax0 = 0x20;
dm(detl) = ax0;
dm(dec_detl) = ax0;

ax0 = 0;

dm(nbl) = axo;
dm(all) = axo;
dm(al2) = axo;

dm(pltl) = axo;
dm(plt2) = axo;
dm(rltl) = axo;
dm(rlt2) = axo;
dm(nbh) = axo;
dm(ahl) = axo;
dm(ah2) = axo;
dm(phl) = axo;
dm(ph2) = axo;
dm(rhl) = ax0o;
dm(rh2) = axo;
dm(dec_rltl) = ax0;
dm(dec_rlt2) = ax0;
dm(dec_all) = ax0;
dm(dec_al2) = ax0;
dm(dec_nbl) = ax0;
dm(dec_pltl) = ax0;
dm(dec_plt2) = ax0;
dm(dec_rhl) = ax0;
dm(dec_rh2) = ax0;
dm(dec_ahl) = ax0;
dm(dec_ah2) = ax0;
dm(dec_nbh) = ax0;
dm(dec_phl) = ax0;
dm(dec_ph2) = ax0;

(listing continues on next page)

319

5 Sub-Band ADPCM

320

ml =1,

m5 =1,

m3 = -1;

m7 = -1,

m2 = 0;

i5 = Mdelay_dltx;
I5=7;

cntr=7;

do init_circO until ce;

init_circO: dm(i5,m5) =

i5 = ~delay_dhx;
cntr =7,
do init_circl until ce;

init_circl: dm(i5,m5) =

i5 = ~dec_del_dltx;
cntr =7,
do init_circ2 until ce;

init_circ2: dm(i5,m5) =

i5 = ~dec_del_dhx;
cntr =7,
do init_circ3 until ce;

init_circ3: dm(i5,m5) =

i0 = ~delay_bpl;

10 =0;

i1 = ~delay_bph;

11=0;

i5 = ~dec_del_bpl;

I5=0;

i6 = ~dec_del_bph;

16 =0;

cntr = 0x6;

do init_lin until ce;
dm(io,m1)
dm(il,m1)
dm(i5,m5)

init_lin: dm(i6,m5) = 0;

i0 = ~buf;

i1 = ~buf;

cntr = 6;

do init_temp_bufs until ce;
dm(io,m1) = 0;

init_temp_bufs: dm(il,m1) = 0;

0;
0;
0;

reserved regs for ¢ run-time model */

0;

0;

0;

0;

/* initialize temporary buffers */

Sub-Band ADPCM 5

/* save circ buffer index ptrs in mem, may need them in the future */
/* set up permanent length and index registers for encoder/decoder */
/* set up pointers for circular buffers, restore at the end of encode/decode */

ax0 = ~delay_dltx;

dm(dltx_ptr) = ax0;

ax0 = ~delay_dhx;

dm(dhx_ptr) = ax0;

ax0 = ~dec_del_dltx;

dm(dec_dltx_ptr) = ax0;

ax0 = ~dec_del_dhx;

dm(dec_dhx_ptr) = ax0;

[*o, set up pointers for circ. buffers in filters */
I initialize circ buffers in mem */
i0 = ~tgmf_buf;
10=0;
cntr = 23;

do init_tgmf until ce;
init_tgmf: dm(i0,m1) = 0;
i1 = ~accumc;

11=0;
i5 = ~accumd,;
15=0;
cntr = 11;
do init_fil until ce;
dm(i5,m5) = 0;
init_fil: dm(il,m1) = 0;
ax0 = ~gmf_buf; /* these are input values */

dm(accumab_ptr) = ax0;
ax0 = ~accumc;
dm(accumc_ptr) = ax0;
ax0 = *accumd;
dm(accumd_ptr) = ax0;

I5=7; [* final set up for length register */
ml=1,

mb5 =1,

m2 = 0;

m3 = -1,

m7 = -1,

11=0;

rts;

(listing continues on next page)

321

5 Sub-Band ADPCM

filtez: mr = 0, ay0 = dm(i5,m5); /* i1 points to bpl */
/* i2 points to delay buffer(dltx) */
i0 = ~buf; [* io is temp buffer for adding delay line values */
ar = pass ay0, my0 = dm(il,m1);
ar = ar + ay0;
cntr = 6;

do m_loop until ce;
mr = ar * my0(ss), ay0 = dm(i5,m5);
dm(io,m1) = mrl;
ar = pass ay0, my0 = dm(il,m1);
m_loop: ar = ar + ay0;

i0 = ~buf;
ar = pass 0;
cntr = 6;

do filtl until ce;

ay0 = dm(io,m1);
filtl: ar = ar + ay0;
rs;

filtep: ayl =sr0;

ar =sr0 + ayl,; /* add rlt + rlt1 */

mr = ar * my0(ss), ayl = ax0; /* multiply by all */

ay0 = mrl; /* save wdl in ay0 */
ar = ax0 + ay1, ay0 = mrl; [* ar = rlt2 + rlt2,wd1 in ay0 */
mr =ar * myl(ss); /*wd2 * al2 in mrl */

ar = mrl + ay0; [* wdl + wd2 */

rts;

quantl: sr = ashift ar by -15(lo);
af = pass sr0;
if eq jump cont;
ay0 = OxTfff;
af = ay0 - ar, ax0 = ay0; ar = ax0 and af;

cont: i6 = “decis_levl;
ayl =0;
ay0 = ar;
my0 = dm(detl);
af = pass 0, mx0 = pm(i6,m5);
cntr = 0x1d;
do 11 until ce;
mr = mx0 * my0(ss), mx0 = pm(i6,m5);
ar =ay0 - mrl;
if It af = af + 1;
[11: ar = pass af;
/*i0 has mil starting from 1 */

ayl = Oxle; [* process i0 now from ayl */
ar=ayl - ar;
af = pass af; /* if el is greater than table values */

322

invaxl:

Sub-Band ADPCM

if eq ar = pass ay1; /* mil gets 30 */
i6 =ar;

ar = “quant26bt_neg;

ay0 = *quant26bt_pos;

af = pass sr0;

if eq ar = pass ay0;

af = pass ar;

ar=af-1; /* offset by 1 to start addressing from 0 */
m6 = ar;

modify(i6,m6);

ax0 = pm(i6,m6);

rts;

/* invgxl is either invgbl or invgal depending on params passed */

ar=ay0 - 1; [* ay0 is passed in to indicate */
ar = -ar; /* how many bits to shift by */
se = ar;

sr = Ishift mrO(lo);

sr = ashift sr0 by 1(lo);
ar =sr0 + ayl,;

i6 =ar;

mrl = ~qqg6_table;
mr0 = ~qqg5_table;

sr0 = ~qg4_table;

mr2 = 2;
srl=3;
af = ay0 - 1,ax0 = pm(i6,m5); [* save value from table here */

if eq ar = pass mri;
af = ay0 - mr2,ax1 = pm(i6,m5); /* save sign from table here */
if eq ar = pass mr0;
af = ay0 - srl;
if eq jump offset_O;
af = pass ax0;
ar = ar + af;
af = pass ar;
/* work around here; qg4 starts */
/* at offset 0, qg5 & qg6 at 1 */
ar = af -1; [* need this for qg5 & qq6, not 4 */
jump get_sign;

offset_0: ar = pass sr0;

af = pass ax0;
ar = ar + af; * no offset for qq4, values start at 0 */

get_sign: i6 = ar;

ar = pm(i6,m5);

sr = ashift ar by 3(lo); /* now add sign */

af = pass ax1, ar= sr0; [* if its neg, negate value */

if It ar = -ar;

mr = ar * my0(ss); /* round off here, check it out */
rs;

(listing continues on next page)

323

5 Sub-Band ADPCM

logscl: myO0 = 0x7f00; /* compensating for scale factor 32512 */
mr = mr0 * my0(SS); /*wd in mrl */
sr = Ishift ar by -2(lo);
sr = ashift srO by 1(lo);
ayl = “code4 _table;
ar =sr0 + ayl,;
i6 =ar;
m6 = 0;
ax0 = pm(i6,m®6);
ay0 = *wl_table; /* use value from code4_table as index */
ar = ax0 + ay0; /* into wl_table */
i6 =ar;
ayl = pm(i6,m6); /* address for wi(il4) here */
ar=mrl + ayl; [* nbpl here */

ay0 = 0x4800;
af = pass ar;
if It af = pass 0O; [* limiting ar - if >18432 */
/* nbpl gets 18432 */
ar = ar - ay0; [*if<0gets0*
if gt af = pass ay0;
ar = pass af;
rts; /* this is new delay value */
scalel: si=ar;
sr = ashift ar by -6(hi);
ay0 = Ox1f;
ar = srl and ay0; /* and with 31 - ar has WDL1 */
mr0 = ar; [* this is wd1 in mrO */
sr = ashift si by -11(lo); [* this gives wd2 in srO */
ar = ayl - sr0; /* ayl has 8 for scalel */
/* and 10 scaleh */
ar = -ar;
se = ar; /* se gets 8 - wd2 */
ayl="ilb_table;
ar=mr0 + ayl;
i6 = ar; /* use wd1 as index in ilb_table */
ar = pm(i6,m5);

sr = ashift ar (lo); /* wd3 = ilb(wd1) >> (8-wd2) */
sr = ashift sr0O by 2(lo);
rs;

upzero: ay0 = ax0;
se = -15;
mx0 = 0x7f80;
ar = pass ayo;
if eq jump wdi_over;
ay0 = 0x80;

324

Sub-Band ADPCM 5

wdi_over: sr = ashift ar(lo),si = dm(i5,m5);
ayl = sr0;
cntr = 6;
do upzero_| until ce;
sr = ashift si(lo), si = dm(i5,m5);
axl = sr0;
af = pass ay0;
ar = ax1l - ayl, my0 = dm(i1,m2);
if ne af = -af;
mr = mx0 *myO0(ss);
ar =mrl + af;
upzero_l:dm(il,m1) = ar;
dm(store_this) = si;
rts;

uppol2: ar=ax0 + ay0; /* mx0 has al2, ay0,ax0 have all */
/* si has plt,mr0 has pltl,mrl has plt2 */
af = pass ar;
ar = ar + af;
se = -15;
sr = ashift si(lo), ay0 = ar; /*wd1 in ay0 */
ayl = sr0; /*sg0 in ayl */
sr = ashift mrO(lo); /*sglin srO */
ar = sr0 xor ayl;
ar = ay0;
if eq ar = -ay0; [*wd2 in ar */
sr = ashift ar by -7(lo);
ax0 = sr0; /* wd2 in ax0 */
ax1l = 0x80;
sr = ashift mr1(lo); /* sg2 in sr0 */
ar = sr0 xor ayl;
ar = axl;
if ne ar = - ax1;
af = pass ar;
ar = ax0 + af; /*wd2 + wd3 = wd4 */
myO0 = 0x7f00;
mr = mx0 * myO (ss);
ayl =mrl,;
ar = ar + ayl; /* apl2 = wd4 + wd5 */
ay0 = 0x3000;
ar = abs ar;
af = ar - ay0;
if gt ar = pass ayo0; [* note: apl2 limited to +.75*
if neg ar = -ar;
rts;

(listing continues on next page)

325

5 Sub-Band ADPCM

326

uppoll:

limit:

guanth;

ay0 = 0xc0;

sr = ashift si by -15(lo);

af = pass sr0; /*sg0 in af */

sr = ashift mr0 by -15(l0); /*sglin sr0 */

ar = sr0 xor af;

ar = ayo0;

if ne ar = - ay0;

myO0 = 0x7f80;

mr = mx0 * myO(ss), ay0 = ar;

ar = mrl + ay0; /* apll before limits = wdl + w2 */

mrO = ar;

ax0 = 0x3c00;

ar = ax0 - ayl;

ayl =ar; /*wd3 in ar, ayl has apl2 */

ar = abs mr0; [* note: wd3 is always positive, */
/* so abs value works */

af = ar - ayl;

if gt ar = pass ay1;

if neg ar = -ar;

rts;

axl =ar;

af = pass axl;
ayl = Ox3fff;

ar = axl - ayl;

ar = pass ar;

if gt af = pass ayl;
ayl = 0xc000;

ar = axl- ay1l,

ar = pass ar;

if It af = pass ay1;
ar = pass af;

rts;

sr = ashift ar by -15(lo); [* sr0 has sih */

af = pass sr0;

if eq jump continue;
ay0 = OxTfff;

ax0 = OxTfff;

af = ay0 - ar;

ar = ax0 and af;

continue: af = pass 0,ay0 = ar;

ayl = 2;

mx0 = 0x11a0; I* q2(564) <<3 */

mr = mx0 * myO (ss); [* this means mrl will be 2.14 */

ar =mrl - ay0; /* (g2(1)<<3*deth)-wd;if gt 0, */
/* mih is 1) */

if le af = pass 1; /* af has mih */

ar = pass af;

af = pass 0, axl = ar; /* clear af for processing */

Sub-Band ADPCM 5

ar = pass sr0;

if eq af = pass ayl;
ar = ax1 + af;

ayl = "bit_out2;
ar=ar + ayl,

i6 =ar;

ax0 = pm(i6,m>5);
rts;

...... INVQAH: inverse adaptive quantizer for the higher sub-band */
invgah: mr0 = 0x650;
mrl = Ox1cfO;
ar = pass ayo;
if eq af = - mrl; /* save sih as flag for passing later */
ar =ayo0 -1;
if eq af = - mr0;
ay0 = ar;
ar =ayo0 -1;
if eq af = pass mrl;
ay0 = ar;
ar =ayo0 -1;
if eq af = pass mr0;
ar = pass af;
mr = ar * myO (ss);
rts;

logsch: mr0 = 0xff2a; [* these correspond to wh for 1 & 2 */
mrl = 0x31le;
ar = pass ayo;
if eq af = pass mrl; [* save sih here as flag */
[* for passing later */
ar =ayo0 -1;
if eq af = pass mr0;
ay0 = ar;
ar =ayo0 -1;
if eq af = pass mrl;
ay0 = ar;
ar =ayo0 -1;
if eq af = pass mr0; [* af has wh(ih2) */
mr = mx0 * myOQ(ss);
ar =mrl + af;
ay0 = 0x5800;
ar = abs ar;
af = ar - ay0;
if gt ar = pass ayo0;
if neg ar = pass 0;
rts;

(listing continues on next page)

327

5 Sub-Band ADPCM

chk_vals:ax1 = 0xc000;
ax0 = Ox3fff;
if av jump chk_ov;
af = pass ar;
ar = abs ar;
if pos jump chk_pos;
ar = ax0 + af; [* if abs val is neg, execute this code */
if It af = pass ax1;
ar = pass af;
rs;

chk_pos: ar = af - ax0;
if gt af = pass axo;
ar = pass af;
rs;

chk_ov: ar = pass ax0;
if It ar = pass ax1;
rs;

.endmod;

Listing 5.1 Implementation Of The G.722 Algorithm

5.7 BENCHMARKS

Table 5.3 contains typical benchmarks for implementing Sub-band
ADPCM (CCITT Recommendation G.722).

Memory Usage: PM RAM DM RAM
1312 Locations 208 Locations

DSP Processor Speed Number of Cycles Execution Time Processor Loading
ADSP-2101 20 MHz Encoder 821 41.05 ps 34.8%

Decoder 742 37.10 ps 27.2%

Total 1563 78.15 s 62%
ADSP-2171 33 MHz Encoder 821 24.63 s 19.7%

Decoder 742 22.26 us 17.8%

Total 1563 46.89 s 37.5%

Table 5.3 Typical Benchmark Performance

328

	Table of Contents
	Chapter 5: Sub-Band ADPCM
	5.1 Overview
	5.2 Sub-Band ADPCM Algorithm
	5.3 Transmit Path
	5.3.1 Transmit Quadrature Mirror Filter
	5.3.2 Higher Sub-Band Encoder
	5.3.3 Lower Sub-Band Encoder

	5.4 Receive Path
	5.4.1 Higher Sub-Band Decoder
	5.4.2 Lower Sub-Band Decoder
	5.4.3 Receive Quadrature Mirror Filter

	5.5 ADSP-2100 Family Implementation
	5.6 Subroutine Descriptions
	5.6.1 reset_mem
	5.6.2 filtez
	5.6.3 filtep
	5.6.4 quantl
	5.6.5 invqxl
	5.6.6 logsci
	5.6.7 scalel
	5.6.8 upzero
	5.6.9 uppol2
	5.6.10 uppol1
	5.6.11 limit
	5.6.12 quanth
	5.2.13 invqah
	5.6.14 logsch

	5.7 Benchmarks

