
Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition 66666

329329329329329

6.16.16.16.16.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
This chapter describes the basic framework for speech recognition using
ADSP-2100 Family Digital Signal Processors. Although there are many
techniques available for speech recognition, this chapter focuses on a
single LPC-based technique. This technique takes advantage of the flexible
architecture, computational power, and integration of these processors. It
also takes full advantage of the family’s development tools, which support
a modular design that can be easily tested and quickly modified. The
modular code design lets you customize the code efficiently for each
individual application. For this reason, the programming examples in this
chapter have not been optimized since the memory space and speed
requirements are specific for each system.

Because of advances in speech recognition and processing, you can design
systems that users control through speech. Today, systems and
applications that have limited vocabularies are available with a
recognition accuracy nearing 100%. The increasing speed and integration
of digital signal processors make portable speech processing and
recognition units possible. State of the art DSPs have serial ports,
substantial memory, and analog interfaces on a single chip, letting you
design single-chip solutions for many speech processing applications.

Speech recognition research and development has several goals.
Simplifying the interface between user and machine is one major goal. Just
as many users consider the mouse an improvement to the user interface
on a personal computer, machine speech recognition and understanding
has the potential to greatly simplify the way people work with machines.
Examples of this emerging technology include dialing telephones and
controlling consumer electronics through voice-activation. As voice input
and output become further integrated into the everyday machines, many
advances will be possible.

66666

330330330330330

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

Analog Devices is at the forefront of this emerging technology. With the
powerful ADSP-2100 family of DSPs, ADI has asserted its leadership and
commitment to this field. For example, the ADSP-21msp50 is a complete
system for speech processing. It contains an analog interface, two serial
ports, one parallel communication port, expansive on-chip memory, and
the superior signal processing architecture of Analog Devices Digital
Signal Processors.

6.26.26.26.26.2 SPEECH RECOGNITION SYSTEMSSPEECH RECOGNITION SYSTEMSSPEECH RECOGNITION SYSTEMSSPEECH RECOGNITION SYSTEMSSPEECH RECOGNITION SYSTEMS
Speech recognition systems fall into two categories:

• Speaker dependent systems that are used (and often trained) by one
person

• Speaker independent systems that can be used by anyone

Regardless of the type of system, the theory behind speech recognition is
relatively simple. First, the DSP acquires an input word and compares it to
a library of stored words. Then, the DSP selects the library word that most
closely matches the unknown input word. The selected word is the
recognition result. Systems that follow this model have two distinct
phases: training phase and recognition phase.

To help you understand the processes used to develop the speech
recognition system implemented in this chapter, this section also briefly
describes the theory of voice production and modeling.

6.2.16.2.16.2.16.2.16.2.1 Voice Production & ModelingVoice Production & ModelingVoice Production & ModelingVoice Production & ModelingVoice Production & Modeling
You can separate human speech production into two distinct sections:
sound production and sound shaping. Sound production is caused by air
passing across the vocal chords (as in “a”, “e”, and “o”) or from a
constriction in the vocal tract (as in “sss”, “p”, or “sh”). Sound production
using the vocal chords is called voiced speech; unvoiced speech is produced
by the tongue, lips, teeth, and mouth. In signal processing terminology,
sound production is called excitation.

Sound shaping is a combination of the vocal tract, the placement of the
tongue, lips, teeth, and the nasal passages. For each fundamental sound,
or phoneme, of English, the shape of the vocal tract is somewhat different,
leading to a different sound. In signal processing terminology, sound
shaping is called filtering.

331331331331331

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

An efficient method of modeling human speech is to separate the speech
into its components: an excitation (the sound production) and a filter (the
sound shaping). When you need to compress speech for transmission,
each part can be efficiently coded and transmitted independently. The
coded parameters can then be decoded and synthesized to reconstruct the
original speech.

In most speech processing applications, the two parts of speech have an
equal importance. For speech recognition, however, they do not. The
excitation changes drastically from person to person, and it changes
according to the speaker’s gender, physical and emotional state. The
sound shaping, or filtering, is less sensitive to these factors. For this
reason, in a basic speech recognition system, you only need to consider the
filter.

A robust and efficient method exists for estimating the sound shaping
filter. Called linear predictive coding, or LPC, it estimates the filter
characteristics, or the spectral envelope of the sound shaping. By using
only the LPC generated coefficients, redundant and unnecessary
information is removed from the speech signal, leaving just the essential
information for speech recognition. For a more detailed explanation of
LPC, refer to Chapter 10 of Digital Signal Processing Applications Using the
ADSP-2100 Family, Volume 1.

Since many different sounds are strung together to form a single word,
many sets of LPC filter coefficients are necessary to represent the word. A
series of coefficient sets is stored to represent the sound-shaping filter at
each particular place the word is sampled. This is possible because speech
is a slowly-varying signal. If the speech is processed in short enough time
slices, or frames, the sound-shaping filter is approximately constant for the
duration of that frame. A series of LPC coefficient sets generated from a
series of frames then represents the word, with each frame representing a
time-slice of the speech.

A word is stored as a series of frames, with each time-slice of speech
represented as a feature vector, using a set of LPC coefficients. In an
isolated word system, the beginning and ending points of the word can be
detected automatically, therefore only the word itself is captured and
stored.

You can build a recognition library from these captured words. Each word
to be recognized is stored in a library. For speaker-independent systems,
multiple copies of each word may be stored to represent different ways of
saying the same word. Once the library is built, the system training is
complete, and the task of recognition can begin.

66666

332332332332332

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.2.26.2.26.2.26.2.26.2.2 Training PhaseTraining PhaseTraining PhaseTraining PhaseTraining Phase
When you train a system to recognize words, you first create a library of
stored words. The training phase changes depending on the type of
speech recognition system. The system compares the input words against
this library to find the closest match.

In a speaker dependent system, ideally the user and trainer are the same
person. In this situation, these systems offer the best performance because
the input words will be fairly consistent. Also, the recognition library can
be relatively small because of the limited number of speech samples
required to recognize the input words. Because of accents, dialects, and
other variations in speech, the performance of speaker-dependent systems
degrades when one person trains the system and another person uses it.

Speaker independent systems are usually trained with speech from many
people. This process can be more involved than training speaker-
dependent systems because you need more speech samples, (perhaps
several hundred, or a thousand samples for each word) to train the
system. Speaker independent systems typically require larger memories to
hold the larger library.

Although the number of required samples may vary depending on the
type of speech recognition system, fundamentally the training process
remains the same. Figure 6.1 shows a functional block diagram of the
training phase of the speech recognition system implemented in this
chapter.

A/D Windowing
Frame

Preprocessing

8 kHz sampling
14 bit resolution

160 samples/frame (20 ms)
80 sample frame overlay (10 ms)

Hamming window

Pre-emphasis
calculate energy,
zero crossing rate

Feature
Analysis

Endpoint
Detection

LPC using
autocorrelation

method

Based on
energy,

zero crossings

Template
Storage

Figure 6.1 Speech Training System Block DiagramFigure 6.1 Speech Training System Block DiagramFigure 6.1 Speech Training System Block DiagramFigure 6.1 Speech Training System Block DiagramFigure 6.1 Speech Training System Block Diagram

333333333333333

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.2.36.2.36.2.36.2.36.2.3 Recognition PhaseRecognition PhaseRecognition PhaseRecognition PhaseRecognition Phase
Figure 6.2 shows a block diagram of the recognition phase. Notice that the
two phases of the speech recognition system share the same word
acquisition functions.

A/D Windowing
Frame

Preprocessing

8 kHz sampling
14 bit resolution

160 samples/frame (20 ms)
80 sample frame overlay (10 ms)
Hamming window

Pre-emphasis
calculate energy,
zero crossing rate

Feature
Analysis

Endpoint
Detection

LPC using
autocorrelation
method

Based on
energy,
zero crossings

Distance
Measure

Dynamic
Time Warping

Output to
Display

Template
Library

Pattern Matching

Figure 6.2 Speech Recognition System Block DiagramFigure 6.2 Speech Recognition System Block DiagramFigure 6.2 Speech Recognition System Block DiagramFigure 6.2 Speech Recognition System Block DiagramFigure 6.2 Speech Recognition System Block Diagram

During speech recognition, the DSP compares an unknown input word to
a library of stored words. Then, for the recognition result, it selects the
library word that is most similar to the unknown word. The method
implemented in this chapter is a template-based, dynamic time warping
(DTW) system. Each library word, stored as a series of feature vectors
containing LPC-derived coefficients, is referred to as a template. Since the
time you take to completely utter a word changes, dynamic time warping
aligns the time axes of the unknown word to a library template. By
lengthening or shortening sections of the unknown word, the system
attains a “best fit” between words. With DTW, different durations for
words have little effect on the recognition accuracy. Dynamic time
warping is described in Section 6.3.2.3.

66666

334334334334334

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

The unknown word and the library word are represented as a series of
feature vectors. To compare the words, a measure of similarity between
the words is necessary. At the most basic level, the system must measure
the similarity between two feature vectors. This is referred to as a distance,
or distortion, measure. Many distortion measures are proposed and
evaluated in the published literature. Two of the most popular distortion
measures are the Itakura log-likelihood ratio and the bandpass cepstral
distortion measure.

During the recognition stage, the distortion measure is integrated into the
dynamic time warping routine. The “best fit” between the unknown word
and a library word is calculated; the system compares the unknown input
word to each library word in turn. The system maintains a recognition
word score for each library word. For a single template-per-word system
(usually speaker-dependent systems), typically, the system chooses the
lowest score as the recognition result. For speaker-independent systems
where more than one template-per-word is stored, the lowest scores for
each library word are averaged. This results in an average recognition
word score for each library word. The system still selects the lowest score
as the recognition result.

6.36.36.36.36.3 SOFTWARE IMPLEMENTATIONSOFTWARE IMPLEMENTATIONSOFTWARE IMPLEMENTATIONSOFTWARE IMPLEMENTATIONSOFTWARE IMPLEMENTATION
This section describes the software implementation of the speech
recognition system; it is divided into the following three sections that
correspond to the organization of the listing that accompany the text.

The software implementation is divided into the following sections that
correspond to the organization of the program examples.

• Word Acquisition and Analysis

• Word Recognition

• Main Shell Routines

335335335335335

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.16.3.16.3.16.3.16.3.1 Word Acquisition & AnalysisWord Acquisition & AnalysisWord Acquisition & AnalysisWord Acquisition & AnalysisWord Acquisition & Analysis
This section describes the functions necessary for word acquisition. These
functions are divided into a receive shell, frame analysis, word endpoint
detection and coefficient conversion. Each of these functions is contained
in a separate subroutine.

The input and output of data samples is interrupt-driven using serial port
0. The interrupt routine is in the main shell. The data is sampled at 8 kHz,
and is sectioned into 20 ms frames (160 samples). Each frame overlaps the
previous frame by 10 ms (80 samples). This leads to 100 frames per
second. As currently configured, a word can not exceed one second.

6.3.1.16.3.1.16.3.1.16.3.1.16.3.1.1 Receive ShellReceive ShellReceive ShellReceive ShellReceive Shell
The subroutine get_word in the receive shell is called when a word is
acquired. This routine returns a word with I0 pointing to the starting
vector of the word, and AX0 holding a count of the number of vectors in
the word.

After the software initializes the necessary variables, pointers, and buffers,
the receive shell enables data acquisition. A circular buffer of 240 locations
is used as the sample input buffer. Each frame of samples is 160 samples
long, with consecutive frames overlapping by 80 samples. The code at
code_1_loop counts the samples. The first time through this loop, the
loop exits after a full frame of 160 samples is acquired. After the first
iteration, it exits after 80 samples. The result is an 80 sample overlap for
consecutive frames.

The 160 samples are copied into a separate frame buffer for processing,
since the frame analysis destroys the input data. A frame pointer points to
the beginning of each frame in the 240 location circular input buffer. Next,
the software analyzes the frame and converts the coefficients. (Sections
6.3.1.2, Frame Analysis and 6.3.1.4, Coefficient Conversion describe these
processes.) The resulting coefficients are written into the feature vector
buffer at the current location.

Before word acquisition is complete, the system must detect the word’s
endpoints (see Section 6.3.1.3, Endpoint Detection). Several options exist
based on the results from this subroutine call. If the system detects the
word’s start, or possible start, the vector pointer is advanced and the
vector count is incremented. The system compares the length of the word
to a maximum length, and, if this maximum is exceeded, forces the word
to end. If the word does not exceed the maximum length, the system
acquires additional frames and the repeats the process.

66666

336336336336336

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

If the system detects the word’s end, it stops sampling data. It pads the
beginning of the word with the five previous feature vectors to insert
noise before the word. Then, the routine returns.

If the system fails to detect the beginning or end of a word, the vector
pointer and count are reset. The feature vector is written into a circular
start buffer, and can be used to pad the beginning of the next word. The
code then jumps to the start, and acquires more frames.

At several places in the shell, code is included for conditional assembly. If
you use this code, the first four features of the feature vector are the
energy, change in energy, zero crossing rate (ZCR), and change in zero
crossing rate. For most applications, this information is not necessary. If
your application requires this information, the included code adds
processing to the receive shell. When the end of the word is detected, the
energy values are scaled based on the maximum value determined. Then,
the change in energy and the change in ZCR values are determined for
each feature vector.

6.3.1.26.3.1.26.3.1.26.3.1.26.3.1.2 Frame AnalysisFrame AnalysisFrame AnalysisFrame AnalysisFrame Analysis
The subroutine analyzes the frames with an LPC analysis that uses auto
correlation and the Schur recursion. It requires pointers to the data frame
and the output buffer as inputs. The routine returns eight reflection
coefficients.

The subroutine calculates the energy of the frame after scaling and offset
filtering the coefficients. A sum of the magnitude of the energy measure is
used. Before summing, the magnitudes are scaled to prevent overflows.
The subroutine also calculates the zero crossing rate. One zero crossing
occurs each time the input data changes sign and passes beyond the noise
threshold. Each crossing increases the zero crossing rate by 205. Using this
value, a 4000 Hz input results in a zero crossing rate of 32595, taking
advantage of the full data width.

Pre-emphasis takes place after these calculations, and uses a coefficient of
-28180. Next, a Hamming window is multiplied by the frame of data.
Finally, the auto correlation and the Schur recursion complete the frame
analysis.

337337337337337

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.1.36.3.1.36.3.1.36.3.1.36.3.1.3 Endpoint DetectionEndpoint DetectionEndpoint DetectionEndpoint DetectionEndpoint Detection
The endpoint detector is a variation of an endpoint detector proposed by
Rabiner (see the references for the source). It is based on the energy (sum
of magnitudes) and the zero crossing rate (ZCR) of each frame of input
data. The subroutine determines the word’s endpoints by comparing these
values to several thresholds. These thresholds adapt to steady background
noise levels. Several flags are returned from this routine to indicate a
definite word start, a possible word start, or the end of a word.

There are two types of thresholds for the energy and ZCR, possible
thresholds and word start (WS) thresholds. Possible thresholds are set just
above the background noise levels, and for this reason, they may be
exceeded occasionally by spurious background noise. The word start
thresholds are set relatively high so they are exceeded only when the
system is sure a word is being spoken. Setting WS thresholds to high,
however, causes the detector to miss some softly spoken words. It may be
necessary to experiment with threshold levels to achieve the best results.

There are two additional thresholds. The minimum word length threshold is
set to the minimum number of frames per word. This should be long
enough to avoid isolating background noise spikes, but not too long. The
threshold time is the length of silence that must be detected before a word
end is determined. This is necessary to allow silence in the middle of
words (especially preceding stops, like “t” or “p”).

When searching for the start of a word, the algorithm first compares the
frame energy and zero crossing rate to the WS thresholds. If the frame
energy or ZCR exceeds the threshold, the word start flag is asserted, and
the system starts storing frames. If the threshold is not exceeded, the
possible thresholds are compared. If the frame energy or ZCR exceeds the
possible thresholds, the possible start flag is set and the system starts
storing frames. For this to be considered the actual start of a word,
however, the WS thresholds must be exceeded before the frame energy
and ZCR fall below the possible thresholds.

Once a word is determined, the algorithm searches for the end of the
word. The subroutine finds the end of the word when the energy and ZCR
fall below the possible thresholds for longer than the threshold time.
When this happens, the word end flag is set.

66666

338338338338338

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.1.46.3.1.46.3.1.46.3.1.46.3.1.4 Coefficient ConversionCoefficient ConversionCoefficient ConversionCoefficient ConversionCoefficient Conversion
The LPC analysis performed on the incoming frames of data produces
eight reflection coefficients for each 160 samples of input speech. While
this data compression is outstanding, for recognition purposes, the
reflection coefficients are not the best features to represent the speech.
There are two widely used representations; the predictor coefficients of
the LPC analysis and the cepstral coefficients. The predictor coefficients are
the parameters of the all-pole filter that is being modeled. These predictor
coefficients are often referred to as αk. The cepstral coefficients are
parameters of the impulse response of the log power spectrum of the
input speech. In this case, the cepstral coefficients are solved for
recursively from the predictor coefficients, and are referred to as ck.

Coefficient conversion immediately follows the frame analysis, but
happens before feature vector storage. The conversion module is
separated into several subroutine calls, each with a specific function. The
implementation is in floating-point, with a 16-bit mantissa and 16-bit
exponent. This method lets you ignore scaling issues, speeding the code
development. The floating-point routines are adapted from the routines in
Chapter 3, Floating-Point Arithmetic, in Digital Signal Processing Using the
ADSP-2100 Family, Volume 1, and are called throughout the module.

The first subroutine called from the conversion shell, k_to_alpha ,
converts the fixed-point reflection coefficients (k’s) to the floating-point
predictor coefficients (αk). The conversion is accomplished using a the
following recursion

which is solved recursively for i = 1, 2, ..., p. The final results are found
from

For the current system, p = 8.

Two buffers are used to store the temporary results of the recursion, one
for even values of i and one for odd values. These buffers alternate as the
input buffer and the result buffer at each stage of the recursion, until the
final result is contained in the even buffer (since p = 8).

ai
i() = ki

aj
i() = aj

i−1() + kiai− j
i−1() 1 ≤ j ≤ i − 1

 aj = aj
p() 1 ≤ j ≤ p

339339339339339

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

At the completion of this subroutine, all of the predictor coefficients have
been calculated. Many of the popular distortion measures use these
parameters in the recognition calculations, such as the Itakura log-
likelihood ratio. If the predictor coefficients are the desired features,
conversion from floating-point back to a fixed-point representation
finishes the routine.

The present system uses a cepstral representation. The following recursion
is also used to convert from the predictor coefficients to the cepstral
coefficients.

The implementation of this algorithm in subroutine alpha_to_cep is
straightforward, and is commented in the code. From the eight predictor
coefficients, twelve cepstral coefficients are calculated. These twelve
coefficients are also used in several well-known distortion measures, and
can be used directly following conversion to a fixed-point representation.

You can obtain better performance by using a window in the cepstral
domain to weight each coefficient. Several different weights are described
and evaluated in the literature, including weighting by the inverse
variance of the coefficients or weighting by a raised sine function. The
weighting chosen for this implementation is shown below:

c1 = −a1

ck = −ak − ai
i=1

k −1

∑ ck − i
k − i

k




 1 ≤ k ≤ p

ck = − ai
i=1

p

∑ ck − i
k − i

k




 p < k

The subroutine weight_cep , used to weight the cepstral coefficients, is
also straightforward. The weighting values are initialized in a separate
buffer, making them easier to modify.

w k() = 1 + 6sin

πk
12





 1 ≤ k ≤ 12

66666

340340340340340

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

The next subroutine normalize_cep, normalizes the twelve cepstral
coefficients to the length of the entire vector. Normalization is necessary
for the cepstral projection distortion measure. The length of the vector is
the square-root of the sum of each coefficient squared. To square each
coefficient, multiply it by itself. These values are then accumulated in a
temporary variable. The square-root subroutine calculates an approximate
square-root of the mantissa. This subroutine is adapted from a subroutine
in Chapter 4, Function Approximation, of Digital Signal Processing
Applications Using the ADSP-2100 Family, Volume 1, and calculates an
approximate square-root of the mantissa. If the exponent is even, it is
divided by two, giving the correct floating-point result. If the exponent is
odd, it is incremented and divided by two, and the mantissa is scaled by

1
2

This results in the appropriate value. Each cepstral coefficient is then
scaled by this calculated length, using a floating-point divide routine.

The final step is to convert the floating-point cepstral coefficients back to
fixed-point using cep_to_fixed . The results are written over the
original input buffer.

6.3.26.3.26.3.26.3.26.3.2 Isolated Word RecognitionIsolated Word RecognitionIsolated Word RecognitionIsolated Word RecognitionIsolated Word Recognition
Following the word acquisition, one of two things happens. If the system
is in the training mode, the word is stored in the library, and a record is
kept of its location and length. In the recognition mode, this unknown
word is compared to each template in the library, and the recognition
result value is returned.

6.3.2.16.3.2.16.3.2.16.3.2.16.3.2.1 Library RoutinesLibrary RoutinesLibrary RoutinesLibrary RoutinesLibrary Routines
The library routines store and catalog the acquired words. The words are
stored in a template library that occupies the external program memory of
the ADSP-2100 Family processor (as currently implemented). The most
important function of these routines is to store a new word in the template
library. The code uses several variables to organize the library. These
include a variable for catalog size (tracks of the number of words in the
library); a library catalog is built as words are added. Two values are
stored for each library template. The first value represents a pointer to the
starting location of the template. The second value represents the length of
the template, and it is stored as the number of vectors in the word. A final
variable records the location of the next available catalog entry.

341341341341341

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

While template storage and library catalog maintenance are the most
important functions of the library routines, the code contains other
optional routines including playback. If the features representing the
library are reflection coefficients, the words are played back through the
speaker. Several variations of playback are available. A single template
may be played, all the templates in the library may be played in order, or
the library templates may be played in any order. This final routine is
useful to play the library templates after recognition, beginning with the
most probable word and ending with the least.

6.3.2.26.3.2.26.3.2.26.3.2.26.3.2.2 ComparisonComparisonComparisonComparisonComparison
A comparison routine compares an unknown word to the full library.
Several comparison routines exist, differing only in the distance measure
used for the recognition. In the implemented system, four different people
are used for training, with each person’s speech stored in a different bank
of program memory.

The unknown word is compared to each of the four template banks
separately. Each bank has its own library catalog, storing the location and
length of each entry in the bank. Using a bank’s catalog, the comparison
subroutine initializes values needed to compare the unknown word to
each of the specified bank’s templates, in order. The comparison includes
dynamic time warping and the distortion measure (see Section 6.3.2.3,
Dynamic Time Warping, for more information). The comparison subroutine
must be called once for each bank used.

The result of the comparison between the unknown word and a template
is the word distance score. A buffer must be specified to hold these
double-precision results, msw followed by lsw. These word distance
scores are stored in the same order as the words stored in the library. A
different buffer is used for each bank. After an unknown word is
compared to each template in all four banks, the results are stored in four
separate distance buffers.

Since all banks contain the same vocabulary in the same order, four word
distance scores exist for each template. A K-Nearest Neighbor routine
averages the results for each word. The implemented algorithm finds the
two lowest scores of the four scores for each vocabulary word. These two
are then summed, resulting in the final word distance score. This final
word distance score is found for each word of the vocabulary. Using the
K-Nearest Neighbor decision algorithm, the speech recognition becomes
speaker-independent.

66666

342342342342342

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.2.36.3.2.36.3.2.36.3.2.36.3.2.3 Dynamic Time WarpingDynamic Time WarpingDynamic Time WarpingDynamic Time WarpingDynamic Time Warping
The speech recognition code contains a complete system to perform
dynamic time warping, or DTW, between two words. DTW dynamically
matches two patterns of different lengths. In this case, each pattern
represents a word, and each pattern is represented by a time sequence of
feature vectors taken from a moving window of speech. The DTW
algorithm aligns the time axis of the library word with the time axis of the
unknown word, leading to the lowest possible word distance score.

The constraints used in this implementation were suggested by Itakura.
This example tries to match unknown word(x), of length N, to a library
word(y), of length, M. The indices x and y refer to a particular time frame
of speech data, represented by a feature vector. A distance matrix can be
calculated to represent the distance between an x (unknown word) feature
vector and all y (library word) feature vectors, evaluated for 0 <= x <= N.
Each point of the distance matrix has a value that is the distance between a
single x feature vector and a single y feature vector. The specific distance
measure used between feature vectors is arbitrary. The distance matrix is
the only thing DTW needs.

To warp the time axis of the library word to the time axis of the unknown
word, several constraints must be set. The starting point of the warping is
(0,0), and the ending point must always be (N,M). The minimum slope of
the warp is 1/2, and the maximum slope is 2. Finally, two consecutive
slopes of 0 are not allowed. Figure 6.3 shows a diagram of a distance
matrix with these constraints.

As this diagram shows, most of the distance matrix is invalid when the
slope and warping constraints are imposed. Significant execution time is
saved if only valid warping paths are considered, and only vector
distances within the warp boundaries are calculated.

To determine the boundaries of the warping, the points A and B (or xA
and xB), shown in the diagram, must be calculated. The following
equations represent these two points:

 Ax = 1
3

2M − N()

xB = 2

3
2N − M()

343343343343343

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

Figure 6.3 Distance Matrix With Slope ConstraintsFigure 6.3 Distance Matrix With Slope ConstraintsFigure 6.3 Distance Matrix With Slope ConstraintsFigure 6.3 Distance Matrix With Slope ConstraintsFigure 6.3 Distance Matrix With Slope Constraints

B

A

y (time)

M

x (time)
N

(N,M)

XbXa(0,0)

Since the actual processing is performed only at points where x and y are
integers, the values of xA and xB are rounded down to the nearest integer
in all cases, without loss of accuracy.

The values of xA and xB must be in the range of 0 < xA < N and 0 < xB < N.
This imposes a constraint on the lengths of the unknown word and the
library word. The equations for this requirement are:

 2M − N ≥ 3

 2N − M ≥ 2

If this relation is not met, the two words cannot be warped together in this
implementation.

66666

344344344344344

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

Finally, the minimum and maximum y values must be determined for
each x value. The equations for this are:

y minimum

= 1
2

x 0 ≤ x ≤ xB

= 2x + M − 2N() xB < x ≤ N

y maximum

= 2x 0 ≤ x ≤ xA

= 1
2

x + M − 1
2

N



 xA < x ≤ N

The warping can be broken into two or three sections, based on the
relationship of xAand xB. xAcan be less than, greater than, or equal to xB.
Each of these cases has different boundaries for each section, as
summarized below in Table 6.1.

Section xA< xB xB < xA xA = xB

1 0 <= x <= xA 0 <= x <= xB 0 <= x <= xA,xB
2 xA < x <= xB xB < x <= xA xA,xB < x <= N
3 xB < x <= N xA < x <= N none

Table 6.1 Time Warping BoundariesTable 6.1 Time Warping BoundariesTable 6.1 Time Warping BoundariesTable 6.1 Time Warping BoundariesTable 6.1 Time Warping Boundaries

For each case, the boundaries of y are different, but the warping is the
same. The DTW finds the path of minimum word distance through the
distance matrix, while considering the given constraints. This is done
sequentially, beginning at x = 0 and ending at x = N. The following
recursion shows the path through the matrix that is subject to warping
constraints.

 D x,y() = d x,y() + min D x − 1,y(),D x − 1,y − 1(),D x − 1,y − 2()[] 0 ≤ x ≤ N

D(x,y) represents the (intermediate) word distance score at (x,y), and
d(x,y) is the value (vector distance) at point (x,y).

Since the recursion only involves the values in columns (x-1) and x, the
complete distance matrix does not need to be calculated before the
recursion begins. Instead, two buffers are set up. The intermediate sum

345345345345345

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

buffer contains the values of D(x-1,y) for all y, organized as msw, lsw,
warp value. The vector distance buffer contains the values of d(x,y) for all
allowable y, organized as msw, lsw, empty location. The warp value in the
intermediate sum buffer is the previous warp value (from column (x-2) to
(x-1)), and is required to determine the allowable warp from column x-1
to x.

When the time warping commences from column x-1 to column x, the
values in the intermediate sum buffer are examined to determine the
minimum intermediate sum present in the allowed warping path. This
minimum is then added to the value of the vector distance and placed in
the vector distance buffer, along with the slope of the warp used.
Figure 6. 4 shows the allowable paths. After the warping is complete for
all values of y (y minimum–y maximum) the vector distance buffer
contains the current intermediate sums. Before the next column is
processed, these values must be copied into the intermediate sum buffer.

The recursion continues until x=N, when the vector distance buffer
contains the final word distance score.

A single exception exists to the constraints on the warping path. It
specifies that a warp of 0 is not allowed for two consecutive warps.
However, since only integer indices are considered for (x,y), a case exists

D (x – 1, y) d (x, y) D (x, y)

Figure 6.4 Time Warping Paths Between Intermediate Sums & Vector DistancesFigure 6.4 Time Warping Paths Between Intermediate Sums & Vector DistancesFigure 6.4 Time Warping Paths Between Intermediate Sums & Vector DistancesFigure 6.4 Time Warping Paths Between Intermediate Sums & Vector DistancesFigure 6.4 Time Warping Paths Between Intermediate Sums & Vector Distances

66666

346346346346346

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

where the best option is to allow two consecutive 0 warps. You can
saturate the intermediate distance calculated at the exception point, but
this option yields an unknown effect on the recognition.

The warping path is constrained by saturating the intermediate sum
values that, if selected, result in illegal warps. This insures that these paths
are selected.

6.3.2.46.3.2.46.3.2.46.3.2.46.3.2.4 RankingRankingRankingRankingRanking
After the unknown input word is compared to the complete template
library, the routine returns a single buffer containing a word distance
score for each vocabulary word. The ranking routine then compares the
scores for each template. The routine finds the smallest distance contained
in the buffer and places a pointer to the corresponding library catalog
entry in the candidate order buffer. The buffer is filled, storing the most
probable recognition candidate first, the second next, and so on. The least
word distance score is considered the most likely recognition result. The
location of each word’s entry in the catalog library is the stored value. A
separate buffer contains the candidate’s number in the library (first,
second, tenth, etc.), stored in the same order. The returned buffer for
candidate order contains pointers to library catalog entries of template
words, in order from the least word distance score to the greatest word
distance score. The second buffer contains each candidate’s number in the
library, stored in the same order.

You will probably need to make minor modifications to the code so it will
be compatible with your particular application.

6.3.36.3.36.3.36.3.36.3.3 Main Shell RoutinesMain Shell RoutinesMain Shell RoutinesMain Shell RoutinesMain Shell Routines
This speech recognition system has two different main shell routines. The
executive shell is used for the initial training of the system, and can be used
for testing the resulting templates. The demonstration shell is used after the
system is fully trained, and it is designed to demonstrate hands-free
dialing for a telephone application, although the recognition system can
be used for any application.

Only one of these shells is used at a time. Since the code is written in a
modular fashion, and includes many subroutine calls, this scheme is
possible. Both shells contain an interrupt table, initialization functions,
and an interrupt routine used to process samples. The interrupt sample
routine has an output flag to select whether data is being input or output,
since both are not done at the same time. The additional features of each
shell are described in more detail in the following sections.

347347347347347

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.3.16.3.3.16.3.3.16.3.3.16.3.3.1 Executive ShellExecutive ShellExecutive ShellExecutive ShellExecutive Shell
The executive shell (EXECSHEL.DSP), shown in Listing 6.1, calls the
functions necessary for speech recognition: getting an input word, adding
a word to the library, and recognizing a word. Figure 6.5 shows the link
file menu tree used by EXECSHEL.DSP. The interface is the minimum
necessary to accomplish the tasks. If the LPC reflection coefficients are
used as features, this shell can call routines to playback a single word or
the entire library. If another representation is used, the recognized word
can be output to a display.

library

dtw

display demobox.dsp

\

boundary

distance

warp

yminmax.dsp

vectdist.dsp

timewarp.dsp

lib_func.dsp

reset initize.dsp

word

analysis

convert

isolate

receive

analyze.dsp

convert.dsp

endpoint.dsp

recvshel.dsp

executiv execshel.dsp

compare complib.dsp

rank rankdist.dsp

shell warpshel.dsp

Figure 6.5 EXECSHEL.DSP Link File Menu TreeFigure 6.5 EXECSHEL.DSP Link File Menu TreeFigure 6.5 EXECSHEL.DSP Link File Menu TreeFigure 6.5 EXECSHEL.DSP Link File Menu TreeFigure 6.5 EXECSHEL.DSP Link File Menu Tree

The code is organized into one main loop. On reset, the system gets an
input word. This word is either added to the recognition library or
compared for recognition. An interrupt must be asserted before the word
is spoken if the word will become a library template. Note that the
interrupt is only enabled during the word acquisition routine.

66666

348348348348348

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.3.3.26.3.3.26.3.3.26.3.3.26.3.3.2 Demonstration ShellDemonstration ShellDemonstration ShellDemonstration ShellDemonstration Shell
The demonstration shell (DEMOSHEL.DSP), shown in Listing 6.2, calls
some of the functions necessary for speech recognition: getting an input
word and recognizing a word. It also calls many display routines. Figure
6.6 shows the link file menu tree used by DEMOSHEL.DSP. The interface
is designed for a demonstration of hands-free dialing. The specific display
routines can be changed to communicate with any desired display.

library

dtw

display demobox.dsp

\

boundary

distance

warp

yminmax.dsp

vectdist.dsp

timewarp.dsp

lib_func.dsp

reset initize.dsp

word

analysis

convert

isolate

receive

analyze.dsp

convert.dsp

endpoint.dsp

recvshel.dsp

demo demoshel.dsp

compare complib.dsp

rank rankdist.dsp

shell warpshel.dsp

icassp dtmf.dsp

dtmfmain.dsp

Figure 6.6 DEMOSHEL.DSP Link File Menu TreeFigure 6.6 DEMOSHEL.DSP Link File Menu TreeFigure 6.6 DEMOSHEL.DSP Link File Menu TreeFigure 6.6 DEMOSHEL.DSP Link File Menu TreeFigure 6.6 DEMOSHEL.DSP Link File Menu Tree

The code is organized to reflect the different stages of dialing a telephone.
Using a fifteen word vocabulary (the letter “o”, zero, one, two, three, four,
five, six, seven, eight, nine, dial, delete, phonecall, scratch), the
demonstration accepts a spoken phone number as isolated words, then
dials. After reset, the demonstration continuously gets input words for
recognition. The command, “phonecall,” alerts the processor that a phone
number is about to be spoken. Once “phonecall” is recognized, the
demonstration moves to the next stage.

349349349349349

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

The demonstration then accepts the first digit of the number, and moves
into the final state of the system. In the last state, the processor adds each
digit to the phone number, as it is spoken. When the command “dial” is
recognized, the software boots the next boot page, which consists of a
dialing routine.

If a mistake is made during recognition, the command “delete” removes
the preceding digit from the phone number. Repeatedly speaking “delete”
continues to erase digits. To reset the demonstration use the command
“scratch” to return the demonstration to its initial state, where it waits for
the command “phonecall.”

This demonstration shell performs a basic calling routine. It could serve as
a framework for an actual implementation. Functions that might be added
include: local or long distance dialing, memory dialing, and so on.

6.46.46.46.46.4 HARDWARE IMPLEMENTATIONHARDWARE IMPLEMENTATIONHARDWARE IMPLEMENTATIONHARDWARE IMPLEMENTATIONHARDWARE IMPLEMENTATION
The speech recognition uses a hardware platform designed specifically for
this application. This expansion board is connected to the ADSP-2101 EZ-
LAB® Demonstration Board through the EZ-LAB connector. Figure 6.7 is
the schematic diagram for this circuit board.

6.56.56.56.56.5 LISTINGSLISTINGSLISTINGSLISTINGSLISTINGS
This section contains the listings for this chapter.

66666

350350350350350

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

Figure 6.7 Speech Recognition System Circuit Board Schematic DiagramFigure 6.7 Speech Recognition System Circuit Board Schematic DiagramFigure 6.7 Speech Recognition System Circuit Board Schematic DiagramFigure 6.7 Speech Recognition System Circuit Board Schematic DiagramFigure 6.7 Speech Recognition System Circuit Board Schematic Diagram

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

CE OE

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

CS
1

C
S2 WE OE

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

CS
1

C
S2 WE OE

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

CE OE

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

10 9 8 7 6 5 4 3 25 24 21 23 2 26 27 1

10 9 8 7 6 5 4 3 25 24 21 23 2 26 27 1

10 9 8 7 6 5 4 3 25 24 21 23 2

10 9 8 7 6 5 4 3 25 24 21 23 2

20 22

20 26 27 22

20 26 27 22
20 22

11 12 13 15 16 17 18 19

11 12 13 15 16 17 18 19

11 12 13 15 16 17 18 19

11 12 13 15 16 17 18 19

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

A
0–

A
13

D
0–

D
23

B
A

0
B

A
1

B
A

0
B

A
1

P
M

S
/

R
D

/
P

M
S

/
R

D
/

D
M

S
/

A
13

/
W

R
/

R
D

/

D
M

S
/

A
13

/
W

R
/

R
D

/

27
51

2
27

51
2

7C
18

5
7C

18
5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

G
ND

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

G
ND

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

G
ND

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

G
ND

C
LK

O
U

T
G

ND

G
ND

B
R

/
B

G
/

IR
Q

0
IR

Q
1

R
ES

ET

B
M

S
/

G
ND

A
0

A
1

A
2

A
3

G
ND

A
4

A
5

A
6

A
7

A
8

G
ND

A
9

A
10

A
11

A
12

A
13

G
ND

G
ND

P
M

S
/

W
R

/
R

D
/

D
M

S
/

E
Z

-L
A

B
C

O
N

N
E

C
T

O
R

A B G

Y
0

Y
1

Y
2

Y
3

U
1A 74

F
13

9

2 3 1

4 5 6 7

A B G

Y
0

Y
1

Y
2

Y
3

U
1B 74

F
13

9

14 13 15

12 11 10
9

A
12 W
R

/

A
13

A
13

/

D
M

S
/

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

U
6 74

LS
37

4

3 4 7 8
13 14 17 18

2 5 6 9 12 15 16 19

1
11

O
C

C
LK

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

U
8 74

LS
37

4

3 4 7 8
13 14 17 18

2 5 6 9 12 15 16 19

1
11

O
C

C
LK

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

U
7 74

LS
37

4

3 4 7 8
13 14 17 18

2 5 6 9 12 15 16 19

1
11

O
C

C
LK

S
E

L
2

S
E

L
3

D
0–

D
23

A
0–

A
13

1 3 5 7 9 11 13 15 17 19 21 23 25

2 4 6 8 10 12 14 16 18 20 22 24 26

D
IS

P
LA

Y
C

O
N

N
E

C
T

O
R

LD
0

LD
1

LD
2

LD
3

LD
4

LD
5

LD
6

LW
R

/
LA

0
LA

1
LA

2
LA

3

LE
D

+
LD

B
LD

A
LD

E
C

P
T

LE N
C

G
N

D

V
C

C
LD

C
LD

D
N

C
R

D
E

C
P

T
N

C
B

LA
N

K

14 13 12 11 10 9 8

1 2 3 4 5 6 7

U
2

U
3

U
4

U
5

U
9

H
E

X
LE

D

J2

LD
0

LD
1

LD
2

LD
3

LD
4

LD
5

LD
6

LW
R

/

LA
0

LA
1

LA
2

LA
3

A
0

A
1

A
2

A
3

B
A

0
B

A
1

V
C

C
V

C
C

351351351351351

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/ABS=0/RAM/BOOT=0 executive_shell;

.VAR/DM/RAM flag;

.VAR/DM/RAM output_flag;

.VAR/DM/RAM unknown_feature_dimension;

.VAR/DM/RAM library_feature_dimension;

.GLOBAL output_flag;

.GLOBAL unknown_feature_dimension;

.GLOBAL library_feature_dimension;

.GLOBAL flag;

.EXTERNAL get_word;

.EXTERNAL put_in_library;
{.EXTERNAL play_library;}
{.EXTERNAL play_single;}
{.EXTERNAL coarse_compare;}
{.EXTERNAL fine_compare;}
{.EXTERNAL full_compare;}
{.EXTERNAL shuffle_play;}
.EXTERNAL rank_candidates;
.EXTERNAL reset_recog;
.EXTERNAL display_digit;
{.EXTERNAL add_a_digit;}
{.EXTERNAL display_number;}
.EXTERNAL set_bank_select;
.EXTERNAL show_bank;
.EXTERNAL cepstral_compare;
{%%}
{%%}
{______________________main shell for speech recognition_____________________}
{%%}
{%%}

reset_vector: JUMP start; NOP; NOP; NOP;
irq2: JUMP toggle_flag; NOP; NOP; NOP;
trans0: NOP; NOP; NOP; NOP;
recv0: JUMP sample; NOP; NOP; NOP;
trans1: NOP; NOP; NOP; NOP;
recv1: NOP; NOP; NOP; NOP;
timer_int: NOP; NOP; NOP; NOP;

start: IMASK=0;
ICNTL=B#00100;
L0=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=0;
M0=0; M1=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1; M7=2;

(listing continues on next page)

66666

352352352352352

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

reg_setup: AX0 = 0;
DM(0X3FFE) = AX0; { DM wait states }
AX0 = 2;
DM(0X3FF5) = AX0; { sclkdiv0 with 12.288 MHz input }
AX0 = 255;
DM(0X3FF4) = AX0; { rfsdiv0 }
AX0 = 0X6927;
DM(0X3FF6) = AX0; { control reg0 }
AX0 = 0X1004;
DM(0X3FFF) = AX0; { system control reg }

CALL reset_recog;
AR = 4;
CALL set_bank_select;
CALL show_bank;

recognition:
IMASK = 0x20;
CALL get_word;
AY0 = DM(flag);
AF = PASS AY0;
IF NE JUMP build_library;

CALL cepstral_compare;
CALL rank_candidates; { buffer pointer returned in AY0 }

CALL display_digit;

AX0 = 1; { play the top three candidates}
{ CALL shuffle_play;}

JUMP recognition;

build_library:
CALL put_in_library;

{ CALL play_library;}
AX0 = 0;
DM(flag) = AX0;
JUMP recognition;

{______________________toggle record/recognize flag__________________________}
toggle_flag:

ENA SEC_REG;
MR0 = DM(flag);
AR = NOT MR0;
DM(flag) = AR;
RTI;

353353353353353

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{______________________process sample__}
sample: ENA SEC_REG;

AR = DM(output_flag);
AR = PASS AR;
IF EQ JUMP get_input;

send_output:
SR1 = DM(I7,M5);
SR = ASHIFT SR1 BY -2 (HI);
TX0 = SR1;
JUMP inc_count;

get_input:
AR=RX0;
TX0 = AR;
DM(I7,M5)=AR; {Save sample}

inc_count:
AY0=MX0;
AR=AY0+1;
MX0=AR;
RTI;

.ENDMOD;

Listing 6.1 Executive Shell Subroutine (EXECSHEL.DSP)Listing 6.1 Executive Shell Subroutine (EXECSHEL.DSP)Listing 6.1 Executive Shell Subroutine (EXECSHEL.DSP)Listing 6.1 Executive Shell Subroutine (EXECSHEL.DSP)Listing 6.1 Executive Shell Subroutine (EXECSHEL.DSP)

66666

354354354354354

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/ABS=0/RAM/BOOT=0 demonstration_shell;

.VAR/DM/RAM flag;

.VAR/DM/RAM output_flag;

.VAR/DM/RAM unknown_feature_dimension;

.VAR/DM/RAM library_feature_dimension;

.GLOBAL flag;

.GLOBAL output_flag;

.GLOBAL unknown_feature_dimension;

.GLOBAL library_feature_dimension;

.EXTERNAL get_word;

.EXTERNAL put_in_library;
{.EXTERNAL play_library;}
{.EXTERNAL play_single;}
{.EXTERNAL coarse_compare;}
{.EXTERNAL fine_compare;}
{.EXTERNAL full_compare;}
{.EXTERNAL shuffle_play;}
.EXTERNAL rank_candidates;
.EXTERNAL reset_recog;
.EXTERNAL init_catalog;
.EXTERNAL catalog_size;
.EXTERNAL inc_bank_select;
.EXTERNAL show_bank;
.EXTERNAL set_local_call;
.EXTERNAL set_long_distance;
.EXTERNAL digit_count;
.EXTERNAL display_number;
.EXTERNAL display_digit;
.EXTERNAL add_a_digit;
.EXTERNAL display_numpls;
.EXTERNAL display_dial;
.EXTERNAL reset_display;
.EXTERNAL timed_display;
.EXTERNAL reset_timed;
.EXTERNAL cepstral_compare;

{%%}
{%%}
{_______________main shell for speech recognition demonstration______________}
{%%}
{%%}

355355355355355

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

reset_vector:
JUMP start; NOP; NOP; NOP;

irq2: JUMP next_bank; NOP; NOP; NOP;
trans0: RTI; NOP; NOP; NOP;
recv0: JUMP sample; NOP; NOP; NOP;
trans1: NOP; NOP; NOP; NOP;
recv1: NOP; NOP; NOP; NOP;
timer_int: JUMP timed_display; NOP; NOP; NOP;

start: IMASK=0;
ICNTL=B#00100;
L0=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=0;
M0=0; M1=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1; M7=2;

reg_setup:
AX0 = 0;
DM(0X3FFE) = AX0; { DM wait states }
AX0 = 2;
DM(0X3FF5) = AX0; { sclkdiv0 with 12.288 MHz input }
AX0 = 255;
DM(0X3FF4) = AX0; { rfsdiv0 }
AX0 = 0X6927;
DM(0X3FF6) = AX0; { control reg0 }
AX0 = 0X1003;
DM(0X3FFF) = AX0; { system control reg }

CALL reset_recog;
CALL reset_display;
{CALL play_library;}

{_______________wait for (phonecall) while displaying intro__________________}

phone_call:
IMASK = 0x21;
ENA TIMER;
CALL get_word;
DIS TIMER;
CALL cepstral_compare;
CALL rank_candidates; { buffer pointer returned in AY0 }

{ failsafe feature }
IF NOT FLAG_IN JUMP its_a_call;

{ is it (phonecall)? }
AX0 = 14;
AF = AX0 - AY1;
IF NE JUMP phone_call;

(listing continues on next page)

66666

356356356356356

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{ decrement catalog_size to remove (phonecall) }
its_a_call:

AY0 = DM(catalog_size);
AR = AY0 - 1;
DM(catalog_size) = AR;

{_______________wait for digit while displaying (number please?)_____________}

first_digit:
CALL display_numpls; { display }
AX0 = 0;
DM(digit_count) = AX0;
CALL set_local_call;

CALL get_word;
CALL cepstral_compare;
CALL rank_candidates; { buffer index returned in AY1 }

{ is it (question_mark)?}
AX0 = 14;
AF = AX0 - AY1;
IF GT JUMP chk_scratch1;
AY1 = 15;
CALL display_digit;
JUMP first_digit;

{ is it (scratch)?}
chk_scratch1:

AX0 = 12;
AF = AX0 - AY1;
IF EQ JUMP catsiz_reset;

{ is it (dial) or (delete)? }
AX0 = 11;
AF = AX0 - AY1;
IF EQ JUMP first_digit;
AX0 = 13;
AF = AX0 - AY1;
IF EQ JUMP first_digit;

{ is it (one)? }
AX0 = 1;
AF = AX0 - AY1;
IF EQ CALL set_long_distance;
CALL add_a_digit; { increment digit_count }
CALL display_digit; { display digit }

357357357357357

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{______________collect and display remaining digits, wait for (dial)_________}

more_digits:
CALL display_number; { display number }
CALL get_word;
CALL cepstral_compare;
CALL rank_candidates; { buffer pointer returned in AY0 }

{ failsafe feature }
IF NOT FLAG_IN JUMP dial_number;

{ is it (question_mark)?}
AX0 = 14;
AF = AX0 - AY1;
IF GT JUMP chk_scratch2;
AY1 = 15;
CALL display_digit;
JUMP more_digits;

{ is it (scratch)?}
chk_scratch2:

AX0 = 12;
AF = AX0 - AY1;
IF EQ JUMP catsiz_reset;

{ is it (dial)? }
AX0 = 11;
AF = AX0 - AY1;
IF EQ JUMP dial_number;

{ is it (delete)? }
AX0 = 13;
AF = AX0 - AY1;
IF NE JUMP its_a_digit;
AY0 = DM(digit_count);
AR = AY0 - 1;
IF EQ JUMP first_digit;
DM(digit_count) = AR;
JUMP more_digits;

its_a_digit:
CALL add_a_digit; { increment digit_count }
CALL display_digit; { display digit }

JUMP more_digits;

(listing continues on next page)

66666

358358358358358

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{______________________reset catalog_size____________________________________}

catsiz_reset:
AY0 = DM(catalog_size);
AR = AY0 + 1;
DM(catalog_size) = AR;
CALL reset_timed;
JUMP phone_call;

{______________________boot code to dial the number__________________________}

dial_number:
CALL display_dial;
AR = 0X025B;
DM(0X3FFF) = AR; { boot page 1 }

{______________________enable new template library___________________________}

next_bank:
ENA SEC_REG;
CALL inc_bank_select;
CALL show_bank;
CALL init_catalog;
RTI;

{______________________process sample__}

sample: ENA SEC_REG;
AR = DM(output_flag);
AR = PASS AR;
IF EQ JUMP get_input;

send_output:
SR1 = DM(I7,M5);

SR = ASHIFT SR1 BY -2 (HI);
TX0 = SR1;
JUMP inc_count;

get_input:
AR=RX0;
DM(I7,M5)=AR; {Save sample}

inc_count:
AY0=MX0;
AR=AY0+1;
MX0=AR;
RTI;

.ENDMOD;

Listing 6.2 Demonstration Shell Subroutine (DEMOSHEL.DSP)Listing 6.2 Demonstration Shell Subroutine (DEMOSHEL.DSP)Listing 6.2 Demonstration Shell Subroutine (DEMOSHEL.DSP)Listing 6.2 Demonstration Shell Subroutine (DEMOSHEL.DSP)Listing 6.2 Demonstration Shell Subroutine (DEMOSHEL.DSP)

359359359359359

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

(listing continues on next page)

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

INITIZE.DSP

This routine performs necessary initialization of data memory variables for
the speech recognition system. There are several assembly switches switches
available. The -Dplayback switch is used when reflection coefficients are
stored as features and templates are to be output to a speaker. The -Dinit_lib
switch is used to initialize a rom copy of the library catalogs. One of the
two remaining switches MUST be used. The -Drecord switch is used with
external program ram to record new templates. The -Ddemo switch is used in a
rom-based system for the demonstration and recognition accuracy testing.

The conditional assembly options and a description of each follows. At a
minimum, assembly must include:

asm21 INITIZE -cp -Drecord used when recording new templates

OR

asm21 INITIZE -cp -Ddemo used when demonstrating system,
templates and catalog already stored in
rom or initialized with switch

The other options are: -Dplayback allows playback of library templates
if reflection coefficients are the
stored features

-Dinit_lib used to initialize the template library
catalog with data contained in the file
catalog.dat

___}

.MODULE/RAM/BOOT=0 initialize;

.VAR/PM/RoM/SEG=EXT_PM catalog_init[32];

.EXTERNAL threshold_time;

.EXTERNAL min_word_length;

.EXTERNAL ws_energy_thresh;

.EXTERNAL ws_zcr_thresh;

.EXTERNAL ps_energy_thresh;

.EXTERNAL ps_zcr_thresh;

66666

360360360360360

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.EXTERNAL flag;

.EXTERNAL unknown_feature_dimension;

.EXTERNAL library_feature_dimension;

.EXTERNAL catalog_size;

.EXTERNAL library_catalog;

.EXTERNAL next_catalog_entry;

.EXTERNAL template_library;

.EXTERNAL catalog_init;
{..}
{ conditional assembly use -Dplayback }
#ifdef playback
.EXTERNAL voiced_energy_thresh;
.EXTERNAL spseed_lsw;
.EXTERNAL spseed_msw;
.EXTERNAL synth_train;
#endif
{..}

.ENTRY reset_recog;
{..}
{ conditional assembly use -Ddemo }
#ifdef demo
.ENTRY init_catalog; { necessary when multiple template banks used }
#endif
{..}

{%%}
{%%}

{_______________________initialize data memory variables_____________________}

{%%}
{%%}

reset_recog:
AX0 = 15; { variables from endpoint detection }
DM(threshold_time) = AX0;
AX0 = 30;
DM(min_word_length) = AX0;
AX0 = 1000;
DM(ws_energy_thresh) = AX0;
AX0 = 11000;
DM(ws_zcr_thresh) = AX0;
AX0 = 250;
DM(ps_energy_thresh) = AX0;
AX0 = 5500;
DM(ps_zcr_thresh) = AX0;

AX0 = 0; { shell variables }
DM(flag) = AX0;
AX0 = 12;
DM(unknown_feature_dimension) = AX0;
AX0 = 12;
DM(library_feature_dimension) = AX0;

361361361361361

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{..}
{ conditional assembly use -Dplayback }
#ifdef playback

AX0 = 3072; { synthesis variables }
DM(voiced_energy_thresh) = AX0;
AX0 = 15381;
DM(spseed_lsw) = AX0;
AX0 = 7349;
DM(spseed_msw) = AX0;

#endif {...}

{_______________________EITHER this section__________________________________}

{..}
{ conditional assembly use -Drecord }
#ifdef record

AX0 = 0; { for recording new templates }
DM(catalog_size) = AX0;
AX0 = ^template_library;
DM(library_catalog) = AX0;
AX0 = ^library_catalog;
DM(next_catalog_entry) = AX0;

#endif
{..}

{_______________________OR this section______________________________________}

{..}
{ conditional assembly use -Dinit_lib }
#ifdef init_lib
.INIT catalog_init : <catalog.dat>; { for initializing external pm }
#endif {...}
{..}
{ conditional assembly use -Ddemo }
#ifdef demo
init_catalog: I0 = ^catalog_size; { necessary when multiple template }

I4 = ^catalog_init; { banks are used }
CNTR = 32;
DO copy_catalog UNTIL CE;

AX0 = PM(I4,M5);
copy_catalog: DM(I0,M1) = AX0;
#endif
{..}

{__}

RTS;

.ENDMOD;

Listing 6.3 Data Variable Initialization Routine (INITIZE.DSP)Listing 6.3 Data Variable Initialization Routine (INITIZE.DSP)Listing 6.3 Data Variable Initialization Routine (INITIZE.DSP)Listing 6.3 Data Variable Initialization Routine (INITIZE.DSP)Listing 6.3 Data Variable Initialization Routine (INITIZE.DSP)

66666

362362362362362

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/RAM/BOOT=0 receive_shell;

.CONST vector_buffer_length = 1200; {enough for one second}

.VAR/DM/RAM LPC_coeff_buffer[12];

.VAR/DM/RAM/CIRC input_buffer[240];

.VAR/DM/RAM frame_buffer[160];

.VAR/DM/RAM frame_pntr;

.VAR/DM/RAM vector_pntr;

.VAR/DM/RAM feature_vector_buffer[vector_buffer_length];

.VAR/DM/RAM vector_count;

.VAR/DM/RAM/CIRC start_buffer[60];

.VAR/DM/RAM start_buffer_pntr;

.ENTRY get_word;

.EXTERNAL analyze_frame;

.EXTERNAL frame_energy, frame_zcr;

.EXTERNAL word_start_flag, poss_start_flag;

.EXTERNAL word_end_flag, find_endpoints;

.EXTERNAL unknown_feature_dimension;

.EXTERNAL output_flag;

.EXTERNAL convert_coeffs;

{%%}
{%%}

{_______________________receive input word___________________________________}

{%%}
{%%}

{_______________________initialize buffers and analysis variables____________}

get_word:AX0 = 0;

DM(vector_count) = AX0;
DM(output_flag) = AX0;
DM(word_end_flag) = AX0;
DM(word_start_flag) = AX0;
DM(poss_start_flag) = AX0;

I0 = ^frame_buffer;
CNTR = 160;

{ DO dmloop1 UNTIL CE;}
dmloop1: DM(I0,M1) = AX0;

IF NOT CE JUMP dmloop1;

I0 = ^input_buffer;
CNTR = 240;

{ DO dmloop2 UNTIL CE;}

363363363363363

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

dmloop2: DM(I0,M1) = AX0;
IF NOT CE JUMP dmloop2;

I0 = ^start_buffer;
CNTR = 60;

{ DO dmloop3 UNTIL CE;}
dmloop3: DM(I0,M1) = AX0;

IF NOT CE JUMP dmloop3;

AX0 = ^input_buffer;
DM(frame_pntr) = AX0;
AX0 = ^feature_vector_buffer + 60;
DM(vector_pntr) = AX0;
AX0 = ^start_buffer;
DM(start_buffer_pntr) = AX0;

RESET FLAG_OUT;

I7 = ^input_buffer; {I7 is speech buffer pointer}
L7 = 240;

ENA SEC_REG;
MX0=0; {sample recvd counter}
AX1=160;

AX0 = IMASK;
AY0 = 0X08;
AR = AX0 OR AY0;
IMASK = AR; {0X28;}

{_______________________acquire data frame___________________________________}

code_1_loop:
AY1=MX0;
AR=AX1-AY1;
IF NE JUMP code_1_loop;
AX1 = 80;
MX0 = 0;
DIS SEC_REG;

{_______________________copy data to frame buffer____________________________}

I0 = DM(frame_pntr);
I1 = ^frame_buffer;
CNTR = 160;
L0 = 240;

{ DO copy_frame UNTIL CE;}
RSHELL1: AX0 = DM(I0,M1);
copy_frame: DM(I1,M1) = AX0;

IF NOT CE JUMP RSHELL1;
{L0 = 0;}

(listing continues on next page)

66666

364364364364364

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________update frame pointer_________________________________}

I0 = DM(frame_pntr);
M3 = 80;
{L0 = 240;}
MODIFY (I0,M3);
M3 = 2;
L0 = 0;
DM(frame_pntr) = I0;

{_______________________frame analysis_______________________________________}

do_dmr_1:
I0=^frame_buffer;
I1=^LPC_coeff_buffer;
CALL analyze_frame;

{_______________________feature conversion___________________________________}

I4 = ^LPC_coeff_buffer;
CALL convert_coeffs;

{_______________________store feature vector_________________________________}

I0 = DM(vector_pntr);
I1 = ^LPC_coeff_buffer;

{..}
{ conditional assembly }
#ifdef eight_features

AX0 = DM(frame_energy);
AX1 = DM(frame_zcr);
DM(I0,M3) = AX0; {M3 = 2}
DM(I0,M3) = AX1;

AY0 = DM(unknown_feature_dimension);
AR = 4; {E, delta_E, zcr, delta_zcr}
AR = AY0 - AR;
CNTR = AR;

#else
CNTR = DM(unknown_feature_dimension);

#endif
{..}

{ DO write_feature UNTIL CE;}
RSHELL2: AY0 = DM(I1,M1);
write_feature: DM(I0,M1) = AY0;

IF NOT CE JUMP RSHELL2;

365365365365365

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________speech test__}

CALL find_endpoints;

{_______________________update vector pointer, count_________________________}

test_sp_flags:
AX0 = DM(word_start_flag);
AY0 = DM(poss_start_flag);
AR = AX0 OR AY0;
IF EQ JUMP test_word_end;
SET FLAG_OUT;

update_vp:
I0 = DM(vector_pntr);
M3 = DM(unknown_feature_dimension);
MODIFY(I0,M3);
DM(vector_pntr) = I0;
M3 = 2;

update_vc:
AY0 = DM(vector_count);
AY1 = 100;
AR = AY0 + 1;
AF = AY1 - AR;
IF LE JUMP word_end;
DM(vector_count) = AR;

JUMP more_frames;

{_______________________word test__}

test_word_end:
RESET FLAG_OUT;
AX0 = DM(word_end_flag);
AF = PASS AX0;
IF EQ JUMP reset_vpvc;

word_end:
IMASK = 0;

{___________________copy start_buffer to feature_vector_buffer_______________}

I0 = ^feature_vector_buffer;
I1 = DM(start_buffer_pntr);
L1 = 60;
CNTR = 60;
DO copy_start UNTIL CE;

AX0 = DM(I1,M1);
copy_start: DM(I0,M1) = AX0;

L1 = 0;

(listing continues on next page)

66666

366366366366366

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{..}
{ conditional assembly }
#ifdef eight_features

{_______________________scale energy in word template________________________}

I0 = ^feature_vector_buffer;
CNTR = DM(vector_count);
M3 = DM(unknown_feature_dimension);
AF = PASS 0, AX0 = DM(I0,M3);
DO find_max_energy UNTIL CE;

AR = AF - AX0, AX0 = DM(I0,M3);
find_max_energy:

xIF LT AF = PASS AX0;
AR = AF + 1;

I0 = ^feature_vector_buffer;
CNTR = DM(vector_count);
AX0 = AR;
DO scale_energy UNTIL CE;

AY1 = DM(I0,M0);
AY0 = 0;
DIVS AY1,AX0;
CNTR = 15;
DO scale_divloop UNTIL CE;

scale_divloop:
DIVQ AX0;

scale_energy:
DM(I0,M3) = AY0;
M3 = 2;

{_______________calculate delta energy,zcr in word template__________________}

I0 = ^feature_vector_buffer;
M2 = DM(unknown_feature_dimension);
AY1 = DM(vector_count);
AR = AY1 - 1;

AY0 = 0;
I1 = I0;
AX0 = DM(I1,M1); { read energy }
DM(I1,M1) = AY0; { store delta energy }
AX1 = DM(I1,M1); { read zero-crossings }
DM(I1,M1) = AY0; { store delta zero-crossings }

367367367367367

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

CNTR = AR;
DO compute_deltas UNTIL CE;

MODIFY(I0,M2);
I1 = I0;
AY0 = DM(I1,M1); { read energy }
AR = AY0 - AX0, AX0 = AY0;
DM(I1,M1) = AR; { store delta energy }
AY1 = DM(I1,M1); { read zero-crossings }
AR = AY1 - AX1, AX1 = AY1;

compute_deltas:
DM(I1,M0) = AR; { store delta zero-crossings }
M2 = -1;

#endif
{..}

{_______________________word template complete - return______________________}

L7 = 0;
I0 = ^feature_vector_buffer;
AX0 = DM(vector_count);

RTS;

{_______________________reset vector pointer and count_______________________}

reset_vpvc:
AX0 = ^feature_vector_buffer + 60;
DM(vector_pntr) = AX0;
AX0 = 0;
DM(vector_count) = AX0;

{_______________________store vector in start buffer_________________________}

I0 = DM(start_buffer_pntr);
L0 = 60;
I1 = ^LPC_coeff_buffer;

{..}

{ conditional assembly }
#ifdef eight_features

AX0 = DM(frame_energy);
AX1 = DM(frame_zcr);
DM(I0,M3) = AX0; {M3 = 2}
DM(I0,M3) = AX1;

AY0 = DM(unknown_feature_dimension);
AR = 4; {E, delta_E, zcr, delta_zcr}
AR = AY0 - AR;
CNTR = AR;

(listing continues on next page)

66666

368368368368368

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

#else
CNTR = DM(unknown_feature_dimension);

#endif
{..}

{ DO write_start UNTIL CE;}
RSHELL9: AY0 = DM(I1,M1);
write_start:

DM(I0,M1) = AY0;
IF NOT CE JUMP RSHELL9;

DM(start_buffer_pntr) = I0;
L0 = 0;

{_______________________jump to get more frames______________________________}

more_frames:
ENA SEC_REG;
JUMP code_1_loop;

{==}

.ENDMOD;

Listing 6.4 Receive Word Routine (RECVSHEL.DSP)Listing 6.4 Receive Word Routine (RECVSHEL.DSP)Listing 6.4 Receive Word Routine (RECVSHEL.DSP)Listing 6.4 Receive Word Routine (RECVSHEL.DSP)Listing 6.4 Receive Word Routine (RECVSHEL.DSP)

369369369369369

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/RAM/BOOT=0 LPC_analysis;

.ENTRY analyze_frame;

.CONST analysis_window_length = 160;

.CONST input_scaler = 1; { 1 for u-law, 2 for A-law}
{ assumes right justified input}

.CONST zcr_noise_threshold = 15;

.VAR/PM/RoM/SEG=EXT_PM
hamming_dat[analysis_window_length];

.VAR/DM/RAM frame_energy;

.VAR/DM/RAM frame_zcr;

.VAR/DM/RAM spL_ACF[18]; {9 long (32-bit) words}

.VAR/DM/RAM r[8];

.VAR/DM/RAM k[8];

.VAR/DM/RAM acf[9];

.VAR/DM/RAM p[9];
{.VAR/DM/RAM z1, L_z2_h, L_z2_l, mp;}
.VAR/DM/RAM spscaleauto; {Used in pre-emphasis save}
.VAR/DM/RAM speech_in, xmit_buffer;

.INIT hamming_dat : <hammdat.dat>;

.GLOBAL spL_ACF, spscaleauto;
{.GLOBAL mp, L_z2_l, L_z2_h, z1;}
.GLOBAL frame_energy, frame_zcr;

{%%%}
{%%%}

{____________________________Analysis Subroutine_____________________________}

{%%}
{%%}

analyze_frame:
ENA AR_SAT; {Enable ALU saturation}
DM(speech_in)=I0; {Save pointer to input window}
DM(xmit_buffer)=I1; {Save pointer to coeff window}
MX1=H#4000; {This multiply will place the}
MY1=H#100; {vale of H#80 in MF that will}
MF=MX1*MY1 (SS); {be used for unbiased rounding}

(listing continues on next page)

66666

370370370370370

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{__________________downscaling and offset compensation_______________________}

I0=DM(speech_in); {Get pointer to input data}
I1=I0; {Set pointer for output data}
SE=-15; {Commonly used shift value}
MX1=H#80; {Used for unbaised rounding}
AX1=16384; {Used to round result}
MY0=32735; {Coefficient value}
AY1=H#7FFF; {Used to mask lower L_z2}

MY1 = 0;
MR = 0; {Since frames now overlapped}

{ MY1=DM(z1);}
{ MR0=DM(L_z2_l);}
{ MR1=DM(L_z2_h);}

DIS AR_SAT; {Cannot do saturation}
AR=MR0 AND AY1, SI=DM(I1,M1); {Fill the pipeline}
CNTR=analysis_window_length;

{ DO offset_comp UNTIL CE;}
AN1: SR=LSHIFT SI BY input_scaler (HI);{assumes right justified}

AX0=SR1, SR=ASHIFT MR1 (HI); {Get upper part of L_z2 (msp)}
SR=SR OR LSHIFT MR0 (LO); {Get LSB of L_z2 (lsp)}
MR=MX1*MF (SS), MX0=SR0; {Prepare MR, MX0=msp}
MR=MR+AR*MY0 (SS), AY0=MY1; {Compute temp}
AR=AX0-AY0, AY0=MR1; {Compute new s1}
SR=ASHIFT AR BY 15 (LO); {Compute new L_s2}
AR=SR0+AY0, MY1=AX0; {MY1 holds z1, L_s2+temp is in}
AF=SR1+C, AY0=AR; {SR in double precision}
MR=MX0*MY0 (SS); {Compute msp*32735}
SR=ASHIFT MR1 BY -1 (HI); {Downshift by one bit }
SR=SR OR LSHIFT MR0 BY -1 (LO);{before adding to L_s2}
AR=SR0+AY0, AY0=AX1; {Compute new L_z2 in }
MR0=AR, AR=SR1+AF+C; {double precision MR0=L_z2}
MR1=AR, AR=MR0+AY0; {MR1=L_z2, round result }
SR=LSHIFT AR (LO); {and downshift for output}
AR=MR1+C, SI=DM(I1,M1); {Get next input sample}
SR=SR OR ASHIFT AR (HI);

offset_comp:
DM(I0,M1)=SR0, AR=MR0 AND AY1;{Store result, get next lsp}
IF NOT CE JUMP AN1;

{ DM(L_z2_l)=MR0;} {Save values for next call}
{ DM(L_z2_h)=MR1;}
{ DM(z1)=MY1;}

ENA AR_SAT; {Re-enable ALU saturation}

371371371371371

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________energy calculation___________________________________}

I0 = DM(speech_in);
AF = PASS 0, AX0 = DM(I0,M1);
CNTR = analysis_window_length;

{ DO calc_energy UNTIL CE;}
AN2: AR = ABS AX0;

SR = ASHIFT AR BY -7 (HI);
calc_energy:AF = SR1 + AF, AX0 = DM(I0,M1);

IF NOT CE JUMP AN2;
AR = PASS AF;
DM(frame_energy) = AR;

{_______________________zero crossing calculation____________________________}

I0 = DM(speech_in);
AF = PASS 0, AX0 = DM(I0,M1);
AR = ABS AX0; {set either POS or NEG}
AX1 = 205; {temporary - improves scaling}
AY0 = zcr_noise_threshold;
CNTR = analysis_window_length;

{ DO calc_zcr UNTIL CE;}
AN3: IF POS JUMP last_was_pos;
last_was_neg:

AR = AX0 - AY0, AX0 = DM(I0,M1);
IF GE AF = AX1 + AF;
JUMP calc_zcr;

last_was_pos:
AR = AX0 + AY0, AX0 = DM(I0,M1);
IF LT AF = AX1 + AF;

calc_zcr:
AR = ABS AR;
IF NOT CE JUMP AN3;

AR = PASS AF;
DM(frame_zcr) = AR;

{_______________________pre-emphasis filter__________________________________}

MX0 = 0;
{ MX0=DM(mp);} {Get saved value for mp}

MY0=-28180; {MY0 holds coefficient value}
MX1=H#80; {These are used for biased}
MR=MX1*MF (SS); {rounding}
SB=-4; {Maximum scale value}
I0=DM(speech_in); {In-place computation}
CNTR=analysis_window_length;

{ DO pre_emp UNTIL CE;}

(listing continues on next page)

66666

372372372372372

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AN4: MR=MR+MX0*MY0 (SS), AY0=DM(I0,M0);
AR=MR1+AY0, MX0=AY0;
SB=EXPADJ AR; {Check for maximum value}

pre_emp: DM(I0,M1)=AR, MR=MX1*MF (SS); {Save filtered data}
IF NOT CE JUMP AN4;

{ DM(mp)=MX0;}
AY0=SB; {Get exponent of max value}
AX0=4; {Add 4 to get scale value}
AR=AX0+AY0;
DM(spscaleauto)=AR; {Save scale for later}

{_________________________hamming windowing_________________________________}

I0 = DM(speech_in);
I1 = I0; {output}
I5 = ^hamming_dat;
MX0 = DM(I0,M1);
MY0 = PM(I5,M5);
MX1 = H#80;
MR = MX1 * MF (SS);
CNTR = analysis_window_length;

{ DO window_frame UNTIL CE;}
AN5: MR = MR + MX0 * MY0 (SS), MX0 = DM(I0,M1);

MY0 = PM(I5,M5);
window_frame:

DM(I1,M1) = MR1, MR = MX1 * MF (SS);
IF NOT CE JUMP AN5;

{_______________________dynamic scaling_____________________________________}

IF LE JUMP auto_corr; {If 0 scale, only copy data}
AF=PASS 1;
AR=AF-AR;
SI=16384;
SE=AR;
I0=DM(speech_in);
I1=I0; {Output writes over the input}
SR=ASHIFT SI (HI);
AF=PASS AR, AR=SR1; {SR1 holds temp for multiply}
MX1=H#80; {Used for unbiased rounding}
MR=MX1*MF (SS), MY0=DM(I0,M1); {Fetch first value}
CNTR=analysis_window_length;

{ DO scale UNTIL CE;}
AN6: MR=MR+SR1*MY0 (SS), MY0=DM(I0,M1); {Compute scaled data}
scale: DM(I1,M1)=MR1, MR=MX1*MF (SS); {Save scaled data}

IF NOT CE JUMP AN6;

373373373373373

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________autocorrelation______________________________________}

auto_corr:
I1=DM(speech_in); {This section of code computes}
I5=I1; {the autocorr section for LPC}
I2=analysis_window_length; {I2 used as down counter}
I6=^spL_ACF; {Set pointer to output array}
CNTR=9; {Compute nine terms}

{ DO corr_loop UNTIL CE;}
AN7: I0=I1; {Reset pointers for mac loop}

I4=I5;
MR=0, MX0=DM(I0,M1); {Get first sample}
CNTR=I2; {I2 decrements once each loop}

{ DO data_loop UNTIL CE;}
AN8: MY0=DM(I4,M5);
data_loop: MR=MR+MX0*MY0 (SS), MX0=DM(I0,M1);

IF NOT CE JUMP AN8;
MODIFY(I2,M2); {Decrement I2, Increment I5}
MY0=DM(I5,M5);
DM(I6,M5)=MR1; {Save double precision result}

corr_loop: DM(I6,M5)=MR0; {MSW first}
IF NOT CE JUMP AN7;

I0=DM(speech_in); {This section of code rescales}
SE=DM(spscaleauto); {the input data}
I1=I0; {Output writes over input}
SI=DM(I0,M1);
CNTR=analysis_window_length;

{ DO rescale UNTIL CE;}
AN9: SR=ASHIFT SI (HI), SI=DM(I0,M1);
rescale: DM(I1,M1)=SR1;

IF NOT CE JUMP AN9;

{_______________________schur recursion______________________________________}

set_up_schur:
AY1 = ^spL_ACF; {in DM}
MY1 = ^acf;
M0 = ^r;
CALL schur_routine;

{_______________________output reflection coefficients_______________________}

transmit_lar:
I1 = ^r; {The quantized LAR values}
CNTR=8; {can now be sent}
CALL xmit_data; {Copy to the output buffer}

(listing continues on next page)

66666

374374374374374

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{All the coded variables have been sent to xmit_buffer}

finish: DIS AR_SAT;
RTS; {Return to caller}

xmit_data:
I0=DM(xmit_buffer); {Copy coeffs to the output}

{ DO xmit UNTIL CE;} {buffer}
AN10: AX0=DM(I1,M1);
xmit: DM(I0,M1)=AX0;

IF NOT CE JUMP AN10;
DM(xmit_buffer)=I0;
RTS; {Return from Encoder}

{______________Encoder and Voice Activity Detector Subroutines_______________}

{ This section of code computes the reflection coefficients using the
schur recursion }

schur_routine:
I6=AY1; {This section of code prepares}
AR=DM(I6,M5); {for the schur recursion}
SE=EXP AR (HI), SI=DM(I6,M5); {Normalize the autocorrelation}
SE=EXP SI (LO); {sequence based on spL_ACF[0]}
SR=NORM AR (HI);
SR=SR OR NORM SI (LO);
AR=PASS SR1; {If spL_ACF[0] = 0, set r to 0}
IF EQ JUMP zero_reflec;
I6=AY1;
I5=MY1;
AR=DM(I6,M5);
CNTR=9; {Normalize all terms}

{ DO set_acf UNTIL CE;}
AN11: SR=NORM AR (HI), AR=DM(I6,M5);

SR=SR OR NORM AR (LO), AR=DM(I6,M5);
set_acf: DM(I5,M5)=SR1;

IF NOT CE JUMP AN11;

I5=MY1; {This section of code creates}
I4=^k+7; {the k-values and p-values}
I0=^p;
AR=DM(I5,M5); {Set P[0]=acf[0]}
DM(I0,M1)=AR;
CNTR=7;

{ DO create_k UNTIL CE;} {Fill the k and p arrays}

375375375375375

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AN12: AR=DM(I5,M5);
DM(I0,M1)=AR;

create_k: DM(I4,M6)=AR;
IF NOT CE JUMP AN12;

AR=DM(I5,M5);
DM(I0,M1)=AR; {Set P[8]=acf[8]}

I5=M0; {Compute r-values}
I6=7; {I6 used as downcounter}
SR0=0;
SR1=H#80; {Used in unbiased rounding}
CNTR=7; {Loop through first 7 r-values}

{ DO compute_reflec UNTIL CE;}
AN13: I2=^p; {Reset pointers}

I4=^k+7;
AX0=DM(I2,M1); {Fetch P[0]}
AX1=DM(I2,M2); {Fetch P[1]}
MX0=AX1, AF=ABS AX1; {AF=abs(P[1])}
AR=AF-AX0;
IF LE JUMP do_division; {If P[0]<abs(P[1]), r = 0}
DM(I5,M5)=SR0; {Final r =0}
JUMP compute_reflec;

do_division:
CALL divide_routine; {Compute r[n]=abs(P[1])/P[0]}
AR=AY0, AF=ABS AX1;
AY0=32767;
AF=AF-AX0; {Check for abs(P[1])=P[0]}
IF EQ AR=PASS AY0; {Saturate if they are equal}
IF POS AR=-AR; {Generate sign of r[n]}
DM(I5,M5)=AR; {Store r[n]}
MY0=AR, MR=SR1*MF (SS);
MR=MR+MX0*MY0 (SS), AY0=AX0; {Compute new P[0]}
AR=MR1+AY0;
DM(I2,M3)=AR; {Store new P[0]}
CNTR=I6; {One less loop each iteration}

{ DO schur_recur UNTIL CE;}
AN14: MR=SR1*MF (SS), MX0=DM(I4,M4);

MR=MR+MX0*MY0 (SS), AY0=DM(I2,M2);
AR=MR1+AY0, MX1=AY0; {AR=new P[m]}
MR=SR1*MF (SS);
MR=MR+MX1*MY0 (SS), AY0=MX0;
DM(I2,M3)=AR, AR=MR1+AY0; {Store P[m], AR=new K[9-m]}

schur_recur: DM(I4,M6)=AR; {Store new K[9-m]}
IF NOT CE JUMP AN14;

(listing continues on next page)

66666

376376376376376

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

compute_reflec:
MODIFY(I6,M6); {Decrement loop counter (I6)}
IF NOT CE JUMP AN13;

I2=^p; {Compute r[8] outside of loop}
AX0=DM(I2,M1); {Using same procedure as above}
AX1=DM(I2,M2);
AF=ABS AX1;
CALL divide_routine;
AR=AY0, AF=ABS AX1;
AY0=32767;
AF=AF-AX0;
IF EQ AR=PASS AY0;
AF=ABS AX1;
AF=AF-AX0; {The test for valid r is here}
IF GT AR=PASS 0; {r[8]=0 if P[0]<abs(P[1])}
IF POS AR=-AR;
DM(I5,M5)=AR;
JUMP schur_done;

zero_reflec:
AX0=0; {The r-values must be set to}
I5=M0; {0 according to the recursion}
CNTR=8;

{ DO zero_rs UNTIL CE;}
zero_rs: DM(I5,M5)=AX0;

IF NOT CE JUMP ZERO_RS;

schur_done:
M0 = 0;
RTS;

{__________________________Divide Subroutine_________________________________}

divide_routine:
AY0=0;
DIVS AF,AX0;
CNTR=15;

{ DO div_loop UNTIL CE;}
div_loop: DIVQ AX0;

IF NOT CE JUMP DIV_LOOP;
RTS;

.ENDMOD;

Listing 6.5 Frame Analysis Routine (ANALYZE.DSP)Listing 6.5 Frame Analysis Routine (ANALYZE.DSP)Listing 6.5 Frame Analysis Routine (ANALYZE.DSP)Listing 6.5 Frame Analysis Routine (ANALYZE.DSP)Listing 6.5 Frame Analysis Routine (ANALYZE.DSP)

377377377377377

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/RAM/BOOT=0 detect_endpoints;

.VAR/RAM/DM word_start_flag;

.VAR/RAM/DM ws_energy_thresh;

.VAR/RAM/DM ws_zcr_thresh;

.VAR/RAM/DM silence_time;

.VAR/RAM/DM poss_start_flag;

.VAR/RAM/DM ps_energy_thresh;

.VAR/RAM/DM ps_zcr_thresh;

.VAR/RAM/DM min_word_length;

.VAR/RAM/DM threshold_time;

.VAR/RAM/DM word_end_flag;

.VAR/RAM/DM speech_count;

.GLOBAL word_end_flag, word_start_flag, poss_start_flag;

.GLOBAL threshold_time;

.GLOBAL min_word_length;

.GLOBAL ws_energy_thresh;

.GLOBAL ws_zcr_thresh;

.GLOBAL ps_energy_thresh;

.GLOBAL ps_zcr_thresh;

.EXTERNAL frame_energy, frame_zcr;

.ENTRY find_endpoints;

{%%}
{%%}

{_______________________Endpoint Detection Subroutine________________________}

{%%}
{%%}

find_endpoints:
MX0 = 0;
MX1 = 1;
AX0 = DM(word_start_flag);
AR = PASS AX0;
IF EQ JUMP find_word_start;

{====================== find end of word ====================================}

find_word_end:
AX0 = DM(ps_energy_thresh);
AX1 = DM(ps_zcr_thresh);
CALL comp_energy_and_zcr;
IF NE JUMP set_word_start; {still speech, return to shell}

(listing continues on next page)

66666

378378378378378

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________no longer speech_____________________________________}

AY0 = DM(silence_time);
AR = AY0 + 1; { increment silence time }
DM(silence_time) = AR;
AY0 = DM(threshold_time); { if threshold time exceeded,}
AR = AR - AY0; { assume end of word }

{_______________________silence inside word__________________________________}

IF LT JUMP inc_sp_count; { returns to shell }

{_______________________end of word reached__________________________________}

end_of_word:
AX0 = DM(speech_count);
AY0 = DM(min_word_length);
AR = AY0 - AX0;

word_too_short:
IF GT JUMP reset_vars; { returns to shell }

word_length_ok:
DM(word_start_flag) = MX0;
DM(word_end_flag) = MX1;
RTS;

{====================== find start of word ==================================}

find_word_start:
AX0 = DM(ws_energy_thresh);
AX1 = DM(ws_zcr_thresh);
CALL comp_energy_and_zcr;
IF NE JUMP set_word_start; { returns to shell }

{_______________check for possible starting point____________________________}

not_word_start:
AX0 = DM(ps_energy_thresh);
AX1 = DM(ps_zcr_thresh);
CALL comp_energy_and_zcr;
IF EQ JUMP reset_vars; { returns to shell }

{_______________possible starting point found________________________________}

poss_word_start:
DM(poss_start_flag) = MX1;
JUMP inc_sp_count; { returns to shell }

379379379379379

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{==}

{============== set variables for word start and increment speech count =====}

{==}

set_word_start:
DM(word_start_flag) = MX1;
DM(poss_start_flag) = MX0;
DM(silence_time) = MX0;

inc_sp_count:
AY0 = DM(speech_count);
AR = AY0 + 1;
DM(speech_count) = AR;
RTS;

{==}

{============== reset variables to find new starting endpoint ===============}

{==}

reset_vars:
DM(poss_start_flag) = MX0;

D M(word_start_flag) = MX0;
DM(word_end_flag) = MX0;
DM(silence_time) = MX0;
DM(speech_count) = MX0;
RTS;

{==}

{============== compare frame energy and zcr with thresholds ================}

{==}

comp_energy_and_zcr: { inputs: AX0 = energy threshold }
AY0 = DM(frame_energy); { AX1 = zcr threshold }
AY1 = DM(frame_zcr);
AF = PASS 0;
AR = AY0 - AX0;
IF GT AF = PASS 1; { test frame_energy }
AR = AY1 - AX1;
IF GT AF = PASS 1; { test frame_zcr }
AR = PASS AF; { AR will be NE for (poss_) speech }
RTS;

{==}

.ENDMOD;

Listing 6.6 Endpoint Detection Routine (ENDPOINT.DSP)Listing 6.6 Endpoint Detection Routine (ENDPOINT.DSP)Listing 6.6 Endpoint Detection Routine (ENDPOINT.DSP)Listing 6.6 Endpoint Detection Routine (ENDPOINT.DSP)Listing 6.6 Endpoint Detection Routine (ENDPOINT.DSP)

66666

380380380380380

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

CONVERT.DSP

The purpose of the routines in this module is to derive different feature
representations from the LPC reflection coefficients. Separate routines exist
to convert from reflection (k) to predictor (alpha) coefficients, from
predictor to cepstral (c) coefficients, and to weight and normalize the
cepstral vector.

For several of these conversion recursions, scaling to prevent overflows would
reduce the significance of results. A pseudo-floating-point number format is
used to alleviate scaling concerns during processing. The inputs are in 1.15
fixed-point format, floating-point is used in processing, and the results are
returned in 1.15 fixed-point format. The pseudo-floating-point format has a
one word (16 bit) mantissa and a one word (16 bit) exponent, stored as
mantissa followed by exponent.

The floating-point routines are adapted from Applications Handbook, volume 1.
All of the routines have been optimized for this particular application.

A more detailed description of the algorithms implemented can be found in the
Application Note.
___}

.MODULE/RAM/BOOT=0 coefficient_conversion;

.VAR/DM/RAM i_odd_a[16]; { temporary buffers for storage of intermediate}

.VAR/DM/RAM i_even_a[16]; { predictor coefficient values }

.VAR/DM/RAM cepstral_coeff[24]; { temporary storage of cepstral coeffs }

.VAR/DM/RAM temp_mant; { temporary mantissa storage }

.VAR/DM/RAM temp_exp; { temporary exponent storage }

.VAR/PM/RAM sqrt_coeff[5]; { used in square root approximation }

.INIT sqrt_coeff : H#5D1D00, H#A9ED00, H#46D600, H#DDAA00, H#072D00;

.VAR/PM/RAM weighting_coeff[12]; { used to weight (window) cepstral }
{ coeff for improved recognition }

{ weighting of (1 + 6*sin(pi*k/12)) }
.INIT weighting_coeff : 0X2EAE00, 0X492400, 0X5FDD00, 0X714D00,

0X7C4200, 0X7FFF00, 0X7C4200, 0X714D00,
0X5FDD00, 0X492400, 0X2EAE00, 0X124900;

381381381381381

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{ weighting of (1 + 6.5*sin(pi*k/16)) }
{.INIT weighting_coeff : 0X000000, 0X3B8400, 0X4EB200, 0X5F8200,

0X6D4D00, 0X778E00, 0X7DDE00, 0X7FFF00,
0X7DDE00, 0X778E00, 0X6D4D00, 0X5F8200;

}

.CONST cepstral_order = 12;

.ENTRY convert_coeffs;

{%%}
{%%}

{_______________________Conversion Shell_____________________________________}

{%%}
{%%}

{ required inputs: I4 -> ^reflection_coefficients }

convert_coeffs:
I6 = I4; { I6 points to output buffer }
CALL k_to_alpha; { convert from reflection to predictor }
CALL alpha_to_cep; { predictor to cepstral }
CALL weight_cep; { weight cepstral coefficients }
CALL normalize_cep; { normal coeffs to length of vector }
CALL cep_to_fixed; { convert back to fixed-point }
RTS;

{%%}
{%%}

{_______________Convert from reflection to predictor coefficients____________}

{%%}
{%%}

{ required inputs: I4 -> ^reflection_coefficients }

{__}
{ floating point implementation }

{ for each stage of this recursion:
I1 -> pointer to result buffer
I0 -> points to last data in previous

results buffer
I2 -> points to start of previous

results buffer }

(listing continues on next page)

66666

382382382382382

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

k_to_alpha:
M3 = -3;

I1 = ^i_odd_a; { i = 1 }
MY0 = DM(I4,M5); { read k1 }
DM(I1,M1) = MY0; { a1(1) mantissa = k1 (M1 = 1) }
DM(I1,M2) = 0; { a1(1) exponent = 0 (M2 = -1) }

I0 = I1;
I1 = ^i_even_a; { i = 2 }
MY0 = DM(I4,M5); { read k2 }
AX0 = 0; { k2 exponent = 0 }
AX1 = MY0; { k2 mantissa }
AY1 = DM(I0,M1); { a1(1) mantissa }
AY0 = DM(I0,M1); { a1(1) exponent }
CALL fpm; { floating-point multiply }
AX0 = AR, AR = pass SR1;
AX1 = AR;
CALL fpa; { floating-point add }
DM(I1,M1) = SR1; { a1(2) = a1(1) + k2*a1(1) mantissa}
DM(I1,M1) = AR; { exponent }
DM(I1,M1) = MY0; { a2(2) mantissa = k2 }
DM(I1,M2) = 0; { a2(2) exponent = 0 }

I0 = I1;

I3 = 2; { used as stage counter }
CNTR = 3; { two recursions done. two per loop. 2+2*3=8 total }

{ DO conver_recur UNTIL CE;}
loopa: I1 = ^i_odd_a; { output pointer }

I2 = ^i_even_a; { input pointer }
CNTR = I3;
CALL recursion;
MODIFY(I3,M1); { increment stage counter }

I1 = ^i_even_a; { output pointer }
I2 = ^i_odd_a; { input pointer }
CNTR = I3;
CALL recursion;

conver_recur:
MODIFY(I3,M1); { increment stage counter }
IF NOT CE JUMP loopa;

M3 = 2;
RTS;

{==}

383383383383383

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________Conversion Recursion_________________________________}

{==}

{ floating point implementation }

recursion:
MY0 = DM(I4,M5); { read k }

{ DO recur_routine UNTIL CE;}
loopb: AX0 = 0; { k exponent }

AX1 = MY0; { k mantissa }
AY1 = DM(I0,M1); { a mantissa }
AY0 = DM(I0,M3); { a exponent }
CALL fpm; { k * a }
AX0 = AR, AR = pass SR1;
AX1 = AR;
AY1 = DM(I2,M1);
AY0 = DM(I2,M1);
CALL fpa; { a + k*a }
DM(I1,M1) = SR1; { write new result mantissa }

recur_routine:
DM(I1,M1) = AR; { exponent }
IF NOT CE JUMP loopb;

DM(I1,M1) = MY0; { ai(i) = ki mantissa }
DM(I1,M2) = 0; { exponent }
I0 = I1;
RTS;

{%%}
{%%}
{%%}

{_______________convert from predictor to cepstral coefficients______________}

{%%}
{%%}

alpha_to_cep:M7 = -3;

{ c1 = -a1 }
I5 = ^i_even_a; { holds predictor coefficients }
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5);
AR = -AX1; { negate mantissa only }
DM(I1,M1) = AR; { store c1 mantissa }
AY0 = DM(I5,M5);
DM(I1,M1) = AY0; { store c1 exponent }

(listing continues on next page)

66666

384384384384384

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{ c2 = - (a2 + 1/2*c1*a1) }
I5 = ^i_even_a + 2;
AX1 = DM(I5,M5); { read a2 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1; { preload with a2 mantissa }
DM(temp_exp) = AX0; { preload with a2 exponent }

I1 = ^cepstral_coeff;
AX1 = 0x4000; { 1/2 in 1.15 format }
CALL scale_n_sum; {accumulates sum of products in temp_mant,exp}

AY0 = AR, AR = -SR1; { negate mantissa }
DM(I1,M1) = AR; { store c2 mantissa }
DM(I1,M1) = AY0; { store c2 exponent }

{ c3 = - (a3 + 2/3*c2*a1 + 1/3*c1*a2) }
I5 = ^i_even_a + 4;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a3 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1; { preload with a3 mantissa }
DM(temp_exp) = AX0; { preload with a3 exponent }
AX1 = 0x2AAA; { 1/3 in 1.15 format }
CALL scale_n_sum;

AX1 = 0x5555; { 2/3 in 1.15 format }
CALL scale_n_sum;

AY0 = AR, AR = -SR1; { negate mantissa }
DM(I1,M1) = AR; { store c3 mantissa }
DM(I1,M1) = AY0; { store c3 exponent }

{ c4 = - (a4 + 3/4*c3*a1 + 1/2*c2*a2 + 1/4*c1*a3) }
I5 = ^i_even_a + 6;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a4 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1;
DM(temp_exp) = AX0;
AX1 = 0x2000; { 1/4 in 1.15 format }
CALL scale_n_sum;

AX1 = 0x4000; { 1/2 in 1.15 format }
CALL scale_n_sum;

AX1 = 0x6000; { 3/4 in 1.15 format }
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR; { store c4 mantissa }
DM(I1,M1) = AY0; { store c4 exponent }

385385385385385

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{ c5 = - (a5 + 4/5*c4*a1 + 3/5*c3*a2 + 2/5*c2*a3 + 1/5*c1*a4) }
I5 = ^i_even_a + 8;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a5 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1;
DM(temp_exp) = AX0;
AX1 = 0x1999;
CALL scale_n_sum;

AX1 = 0x3333;
CALL scale_n_sum;

AX1 = 0x4CCC;
CALL scale_n_sum;

AX1 = 0x6666;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

{ c6 = - (a6 + 5/6*c5*a1+2/3*c4*a2+1/2*c3*a3+1/3*c2*a4+1/6*c1*a5) }
I5 = ^i_even_a + 10;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a6 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1;
DM(temp_exp) = AX0;
AX1 = 0x1555;
CALL scale_n_sum;

AX1 = 0x2AAA;
CALL scale_n_sum;

AX1 = 0x4000;
CALL scale_n_sum;

AX1 = 0x5555;
CALL scale_n_sum;

AX1 = 0x6AAA;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

(listing continues on next page)

66666

386386386386386

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{ c7 = -(a7 + 6/7*c6*a1+5/7*c5*a2+4/7*c4*a3+3/7*c3*a4+2/7*c2*a5+1/7*c1*a6) }
I5 = ^i_even_a + 12;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a7 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1;
DM(temp_exp) = AX0;

AX1 = 0x1249;
CALL scale_n_sum;

AX1 = 0x2492;
CALL scale_n_sum;

AX1 = 0x36DB;
CALL scale_n_sum;

AX1 = 0x4924;
CALL scale_n_sum;

AX1 = 0x5B6D;
CALL scale_n_sum;

AX1 = 0x6DB6;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

{c8=-(a8+7/8*c7*a1+3/4*c6*a2+5/8*c5*a3+1/2*c4*a4+3/8*c3*a5+1/4*c2*a6+1/8*c1*a7)}
I5 = ^i_even_a + 14;
I1 = ^cepstral_coeff;
AX1 = DM(I5,M5); { read a8 }
AX0 = DM(I5,M7);
DM(temp_mant) = AX1;
DM(temp_exp) = AX0;

AX1 = 0x1000;
CALL scale_n_sum;

AX1 = 0x2000;
CALL scale_n_sum;

AX1 = 0x3000;
CALL scale_n_sum;

AX1 = 0x4000;
CALL scale_n_sum;

387387387387387

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AX1 = 0x5000;
CALL scale_n_sum;

AX1 = 0x6000;
CALL scale_n_sum;

AX1 = 0x7000;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

{c9=-(8/9*c8*a1+7/9*c7*a2+2/3*c6*a3
+5/9*c5*a4+4/9*c4*a5+1/3*c3*a6+2/9*c2*a7+1/9*c1*a8)}

I5 = ^i_even_a + 14;
I1 = ^cepstral_coeff;
AX0 = 0;
DM(temp_mant) = AX0;
DM(temp_exp) = AX0;

AX1 = 0x0E38;
CALL scale_n_sum;

AX1 = 0x1C71;
CALL scale_n_sum;

AX1 = 0x2AAA;
CALL scale_n_sum;

AX1 = 0x38E3;
CALL scale_n_sum;

AX1 = 0x471C;
CALL scale_n_sum;

AX1 = 0x5555;
CALL scale_n_sum;

AX1 = 0x638E;
CALL scale_n_sum;

AX1 = 0x71C7;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

(listing continues on next page)

66666

388388388388388

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{c10=-(9/10*c9*a1+4/5*c8*a2+7/10*c7*a3
+3/5*c6*a4+1/2*c5*a5+2/5*c4*a6+3/10*c3*a7+2/10*c2*a8)}

I5 = ^i_even_a + 14;
I1 = ^cepstral_coeff + 2;
AX0 = 0;
DM(temp_mant) = AX0;
DM(temp_exp) = AX0;

AX1 = 0x1999;
CALL scale_n_sum;

AX1 = 0x2666;
CALL scale_n_sum;

AX1 = 0x3333;
CALL scale_n_sum;

AX1 = 0x4000;
CALL scale_n_sum;

AX1 = 0x4CCC;
CALL scale_n_sum;

AX1 = 0x5999;
CALL scale_n_sum;

AX1 = 0x6666;
CALL scale_n_sum;

AX1 = 0x7333;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

{c11=-(10/11*c10*a1+9/11*c9*a2+8/11*c8*a3
+7/11*c7*a4+6/11*c6*a5+5/11*c5*a6+4/11*c4*a7+3/11*c3*a8)}

I5 = ^i_even_a + 14;
I1 = ^cepstral_coeff + 4;
AX0 = 0;
DM(temp_mant) = AX0;
DM(temp_exp) = AX0;

AX1 = 0x22EB;
CALL scale_n_sum;

AX1 = 0x2E8B;
CALL scale_n_sum;

389389389389389

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AX1 = 0x3A2E;
CALL scale_n_sum;

AX1 = 0x45D1;
CALL scale_n_sum;

AX1 = 0x5174;
CALL scale_n_sum;

AX1 = 0x5D17;
CALL scale_n_sum;

AX1 = 0x68BA;
CALL scale_n_sum;

AX1 = 0x745D;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

{c12=-(11/12*c11*a1+5/6*c10*a2+3/4*c9*a3
+2/3*c8*a4+7/12*c7*a5+1/2*c6*a6+5/12*c5*a7+1/3*c4*a8)}

I5 = ^i_even_a + 14;
I1 = ^cepstral_coeff + 6;
AX0 = 0;
DM(temp_mant) = AX0;
DM(temp_exp) = AX0;

AX1 = 0x2AAA;
CALL scale_n_sum;

AX1 = 0x3555;
CALL scale_n_sum;

AX1 = 0x4000;
CALL scale_n_sum;

AX1 = 0x4AAA;
CALL scale_n_sum;

AX1 = 0x5555;
CALL scale_n_sum;

AX1 = 0x6000;
CALL scale_n_sum;

AX1 = 0x6AAA;
CALL scale_n_sum;

(listing continues on next page)

66666

390390390390390

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AX1 = 0x7555;
CALL scale_n_sum;

AY0 = AR, AR = -SR1;
DM(I1,M1) = AR;
DM(I1,M1) = AY0;

M7 = 2;
RTS;

{==}

{_______________scale the product and add to running sum_____________________}

{==}

{ required inputs: AX1 -> scale value }

scale_n_sum:
AX0 = 0; { scale factor has exponent = 0 }
AY1 = DM(I1,M1); { read cepstral coefficient mant, exp }
AY0 = DM(I1,M1); { now points to next coefficient }
CALL fpm; { scale factor * cepstral coeff }
AX0 = AR;
AX1 = SR1;

AY1 = DM(I5,M5); { read predictor coefficient mant, exp }
AY0 = DM(I5,M7); { now points to previous coefficient }
CALL fpm; { predictor coeff * (scal * cepstral) }
AX0 = AR;
AX1 = SR1;
AY1 = DM(temp_mant);
AY0 = DM(temp_exp);
CALL fpa; { accumulate product with prev results }
DM(temp_mant) = SR1; { store new results }
DM(temp_exp) = AR;
RTS;

{%%}
{%%}
{%%}

{_______________________weight cepstral coefficients_________________________}

{%%}
{%%}

391391391391391

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

weight_cep: I0 = ^cepstral_coeff;
I5 = ^weighting_coeff;

CNTR = cepstral_order;
{ DO weighting UNTIL CE;}
top_weight: AX1 = PM(I5,M5);

AX0 = 0; { weighting coeff exponent = 0 }
AY1 = DM(I0,M1);
AY0 = DM(I0,M2);
CALL fpm;
DM(I0,M1) = SR1; { store results }

weighting: DM(I0,M1) = AR;
IF NOT CE JUMP top_weight;

RTS;

{%%}
{%%}
{%%}

{_______________convert cepstral coefficients to 1.15 fixed point____________}

{%%}
{%%}

cep_to_fixed:I0 = ^cepstral_coeff;
AY0 = 0; { exponent bias value }
CNTR = cepstral_order;

{ DO scale_cep UNTIL CE;}
scale_loop: SI = DM(I0,M1);

AX0 = DM(I0,M1);
CALL fixone; { converts to 1.15 format }

scale_cep: DM(I6,M5) = SR1; { I6 points to result buffer }
IF NOT CE JUMP scale_loop;
RTS;

{%%}
{%%}
{%%}

{_______________normalize cepstral coefficients to length of vector__________}

{%%}
{%%}

(listing continues on next page)

66666

392392392392392

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

normalize_cep:
I0 = ^cepstral_coeff;
AX0 = 0;
DM(temp_mant) = AX0;
DM(temp_exp) = AX0;
CNTR = cepstral_order;

{ DO mag_sqd UNTIL CE;}
top_mag_sqd:

AX1 = DM(I0,M1);
AX0 = DM(I0,M1);
AY1 = AX1;
AY0 = AX0;
CALL fpm; { square cepstral coefficient }
AX0 = AR;
AX1 = SR1;
AY1 = DM(temp_mant);
AY0 = DM(temp_exp);
CALL fpa; { accumulate squared values }
DM(temp_mant) = SR1;

mag_sqd: DM(temp_exp) = AR;
IF NOT CE JUMP top_mag_sqd;

CALL sqrt; {find square root of mag sqrd mantissa }
AY0 = DM(temp_exp); {find square root of mag sqrd exponent }
AX0 = 0X1;
AF = AX0 AND AY0;
IF EQ JUMP exp_sqrt; { is exponent even or odd ? }

AR = AY0 + 1; {exponent odd, must add one and scale }
AY0 = AR; { mantissa by 1/(SQRT(2)) }
MY0 = 0X5A82;
MR = SR1 * MY0 (SS);
SR1 = MR1; { scaled mantissa }

exp_sqrt: DM(temp_mant) = SR1;
SI = AY0;
SR = ASHIFT SI BY -1 (HI); { divide exponent by two }
DM(temp_exp) = SR1;

I0 = ^cepstral_coeff; { normalize all cepstral coefficients }
CNTR = cepstral_order; { to length of cepstral vector }

{ DO normalization UNTIL CE;}
top_norm: AX1 = DM(I0,M1);

AX0 = DM(I0,M2);
AY1 = DM(temp_mant);
AY0 = DM(temp_exp);
CALL fpd; { floating-point divide (coeff/length) }
DM(I0,M1) = SR1;

393393393393393

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

normalization: DM(I0,M1) = AR;
IF NOT CE JUMP top_norm;
RTS;

{%%}
{%%}

{_______________________floating point multiply______________________________}

{%%}
{%%}
{

Floating-Point Multiply
Z = X * Y

Calling Parameters
AX0 = Exponent of X
AX1 = Fraction of X
AY0 = Exponent of Y
AY1 = Fraction of Y
MX0 = Excess Code

Return Values
AR = Exponent of Z
SR1 = Fraction of Z

}

fpm: MX0 = 0; { set exponent bias = 0 }
AF=AX0+AY0, MX1=AX1; {Add exponents}
MY1=AY1;
AX0=MX0, MR=MX1*MY1 (SS); {Multiply mantissas}
IF MV SAT MR; {Check for overflow}
SE=EXP MR1 (HI);
AF=AF-AX0, AX0=SE; {Subtract bias}
AR=AX0+AF; {Compute exponent}
SR=NORM MR1 (HI); {Normalize}
SR=SR OR NORM MR0 (LO);
RTS;

{%%}
{%%}

{_______________________floating point addition______________________________}

{%%}
{%%}

(listing continues on next page)

66666

394394394394394

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{
Floating-Point Addition

z = x + y

Calling Parameters
AX0 = Exponent of x
AX1 = Fraction of x
AY0 = Exponent of y
AY1 = Fraction of y

Return Values
AR = Exponent of z
SR1 = Fraction of z

}

fpa: AF=AX0-AY0; {Is Ex > Ey?}
IF GT JUMP shifty; {Yes, shift y}
SI=AX1, AR=PASS AF; {No, shift x}
SE=AR;
SR=ASHIFT SI (HI);
JUMP add;

shifty: SI=AY1, AR=-AF;
SE=AR;
SR=ASHIFT SI (HI), AY1=AX1;
AY0=AX0;

add: AR=SR1+AY1; {Add fractional parts}
IF AV JUMP work_around;
SE=EXP AR (HI);
AX0=SE, SR=NORM AR (HI); {Normalize}
AR= AX0+AY0; {Compute exponent}
RTS;

work_around:
AX1 = 0X08; { work around for HIX }
AY1 = ASTAT;
AX0 = AR, AR = AX1 AND AY1;
SR = LSHIFT AR BY 12 (HI);
SE = 1;
AR = AX0;
AX0 = SE, SR = SR OR NORM AR (HI);
AR = AX0 + AY0;
RTS;

{%%}
{%%}

{_______________________floating point conversion____________________________}

{%%}
{%%}

395395395395395

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{
Convert two-word floating-point to 1.15 fixed-point

Calling Parameters
AX0 = exponent [16.0 signed twos complement]
AY0 = exponent bias [16.0 signed twos complement]
SI = mantissa [1.15 signed twos complement]

Return Values
SR1 = fixed-point number [1.15 signed twos complement] }

.ENTRY fixone;
fixone: AR=AX0-AY0; {Compute unbiased exponent}

IF GT JUMP overshift; { positive exponent would
 overflow so saturate }

SE=AR;
SR=ASHIFT SI (HI); {Shift fractional part}
RTS;

overshift: AR = SI;
AF = PASS AR;
ENA AR_SAT;
AR = AR + AF; { saturate positive or negative }
DIS AR_SAT;
SR1 = AR;
RTS;

{%%}
{%%}

{_______________________square root routine__________________________________}

{%%}
{%%}

{
Square Root

y = sqrt(x)

Calling Parameters
SR1 = x in 1.15 format
M5 = 1
L5 = 0

Return Values
SR1 = y in 1.15 format

}

{ most of the error checking has been removed from this routine }

(listing continues on next page)

66666

396396396396396

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.CONST base=H#0D49;

sqrt: I5=^sqrt_coeff; {Pointer to coeff. buffer}
MY0=SR1, AR=PASS SR1;
IF EQ RTS; { if x=0 then y=0 }
MR=0;
MR1=base; {Load constant value}
MF=AR*MY0 (RND), MX0=PM(I5,M5); {MF = x**2}
MR=MR+MX0*MY0 (SS), MX0=PM(I5,M5); {MR = base + C1*x}
CNTR=4;
DO approx UNTIL CE;

MR=MR+MX0*MF (SS), MX0=PM(I5,M5);
approx: MF=AR*MF (RND);

SR=ASHIFT MR1 BY 1 (HI);
RTS;

{%%}
{%%}

{_______________________floating point divide________________________________}

{%%}
{%%}

{
Floating-Point Divide

z = x / y

Calling Parameters
AX0 = Exponent of x
AX1 = Fraction of x
AY0 = Exponent of y
AY1 = Fraction of y

Return Values
AR = Exponent of z
SR1 = Fraction of z

}

fpd: MX0 = 0;
SR0=AY1, AR=ABS AX1;
SR1=AR, AF=ABS SR0;
SI=AX1, AR=SR1-AF; {Is Fx > Fy?}
IF LT JUMP divide; {Yes, go divide}
SR=ASHIFT SI BY -1 (LO); {No, shift Fx right}
AF=PASS AX0;
AR=AF+1, AX1=SR0; {Increase exponent}
AX0=AR;

397397397397397

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

divide: AF=AX0-AY0, AX0=MX0;
MR=0;
AR=AX0+AF, AY0=MR1;
AF=PASS AX1, AX1=AY1; {Add bias}
DIVS AF, AX1; {Divide fractions}
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
MR0=AY0, AF=PASS AR;
SI=AY0, SE=EXP MR0 (HI);
AX0=SE, SR=NORM SI (HI); {Normalize}
AR=AX0+AF; {Compute exponent}
RTS;

{%%}

.ENDMOD;

Listing 6.7 Coefficient Conversion Routine (CONVERT.DSP)Listing 6.7 Coefficient Conversion Routine (CONVERT.DSP)Listing 6.7 Coefficient Conversion Routine (CONVERT.DSP)Listing 6.7 Coefficient Conversion Routine (CONVERT.DSP)Listing 6.7 Coefficient Conversion Routine (CONVERT.DSP)

66666

398398398398398

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

LIB_FUNC.DSP

The routines in this module perform two different operations on templates. A
routine is present that adds a currently stored unknown word into the template
library, updating the library catalog and catalog size in the process.

The other operation allows a library template to be played back through an
external speaker. Since this is (currently) only possible when the stored
features are the reflection coefficients, conditional assembly is used for
these routines - they can easily be removed.

The conditional assembly options and a description of each follows. At a
minimum, assembly must include:

asm21 LIB_FUNC -cp

The other options are: -Dplayback allows playback of library templates
if reflection coefficients are the
stored features

-Dinit_lib used to initialize the template library
with data contained in the file
library.dat

___}

.MODULE/RAM/BOOT=0 library_functions;

.ENTRY put_in_library;

.VAR/DM/RAM catalog_size, library_catalog[30], next_catalog_entry; {32 total}

.VAR/PM/RoM template_library[14144]; { 14K-(32 from above)-(160 hamm coeff)}

.GLOBAL catalog_size, library_catalog, template_library;

.GLOBAL next_catalog_entry;

.EXTERNAL library_feature_dimension;

.EXTERNAL unknown_feature_dimension;

399399399399399

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{..}
{ conditional assembly use -Dplayback }
#ifdef playback
.ENTRY shuffle_play, play_library, play_single;

.VAR/DM/RAM current_selection;

.VAR/DM/RAM shuffle_pntr;

.EXTERNAL output_template;
#endif {...}
{..}
{ conditional assembly use -Dinit_lib }
#ifdef init_lib
.INIT template_library : <library.dat>;
#endif {...}

{%%}
{%%}

{_______________________Store Template in Library____________________________}

{%%}
{%%}

{ required inputs: I0 - location of word to be stored
AX0 - length of word to be stored }

put_in_library:
I1 = DM(next_catalog_entry);
AY0 = DM(I1,M1);
I5 = AY0; { start of next library location }
DM(I1,M1) = AX0; { store template length (# of vectors) }
DM(next_catalog_entry) = I1;

M3 = DM(unknown_feature_dimension);
CNTR = AX0; { AX0 holds length }
DO store_vectors UNTIL CE;

I2 = I0; { I0 points to word }
CNTR = DM(library_feature_dimension);
DO store_features UNTIL CE;

MX0 = DM(I2,M1);
store_features: PM(I5,M5) = MX0;
store_vectors: MODIFY(I0,M3);

M3 = 2;
AX0 = I5;
DM(I1,M0) = AX0; { set start of next template }

AY0 = DM(catalog_size);
AR = AY0 + 1; { increment catalog size }
DM(catalog_size) = AR;

RTS;

(listing continues on next page)

66666

400400400400400

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{..}
{ conditional assembly use -Dplayback }
#ifdef playback

{%%}
{%%}

{_______________________Play All Library Templates___________________________}

{%%}
{%%}

play_library:
AX0 = DM(catalog_size);
AR = PASS AX0;
IF LE RTS;

AR = ^library_catalog;
DM(current_selection) = AR; CNTR = AX0;
DO playit UNTIL CE;

I3 = DM(current_selection);
CALL play_single;

playit: NOP;
RTS;

{%%}
{%%}

{_______________________Play Single Library Template_________________________}

{%%}
{%%}

{ required inputs: I3 - location of library_catalog entry }

play_single:MX0 = DM(I3,M1);
I5 = MX0; { start of library word }
AX0 = DM(I3,M1); { length }
AX1 = DM(library_feature_dimension);
DM(current_selection) = I3;

CALL output_template;
IMASK = 0;
RTS;

401401401401401

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{%%}
{%%}

{_____________________Play Ranked Library Templates in order_________________}

{%%}
{%%}

{ required inputs: AX0 - # of templates to play, in order
AY0 - shuffled order of templates }

shuffle_play:
MR0 = DM(catalog_size);
AR = PASS MR0;
IF LE RTS;

DM(shuffle_pntr) = AY0;
CNTR = AX0;
DO play_shuffled UNTIL CE;

I1 = DM(shuffle_pntr);
AX0 = DM(I1,M1);
I3 = AX0;
DM(shuffle_pntr) = I1;

CALL play_single;

play_shuffled: NOP;

RTS;

#endif
{..}

.ENDMOD;

Listing 6.8 Library Functions Routine (LIB_FUNC.DSP)Listing 6.8 Library Functions Routine (LIB_FUNC.DSP)Listing 6.8 Library Functions Routine (LIB_FUNC.DSP)Listing 6.8 Library Functions Routine (LIB_FUNC.DSP)Listing 6.8 Library Functions Routine (LIB_FUNC.DSP)

66666

402402402402402

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.MODULE/RAM/BOOT=0 coarse_distance;

.VAR/DM/RAM unknown_addr, unknown_length;

.VAR/DM/RAM candidate_distance1[30];

.VAR/DM/RAM candidate_distance2[30];

.VAR/DM/RAM candidate_distance3[30];

.VAR/DM/RAM candidate_distance4[30];

.VAR/DM/RAM current_compare, result_buffer;

.VAR/DM/RAM distance_routine;

.EXTERNAL catalog_size, library_catalog;
{.EXTERNAL coarse_euclidean, fine_euclidean;}
.EXTERNAL warp_words;
{.EXTERNAL full_euclidean;}
.EXTERNAL cepstral_projection;
.EXTERNAL set_bank_select;
.EXTERNAL inc_bank_select;
.EXTERNAL show_bank;
.EXTERNAL blank_hex_led;
.EXTERNAL init_catalog;

.GLOBAL candidate_distance1;

.GLOBAL candidate_distance2;

.GLOBAL candidate_distance3;

.GLOBAL candidate_distance4;

{.ENTRY coarse_compare, fine_compare, full_compare;}
.ENTRY cepstral_compare;

{%%}
{%%}
{ }
{%%}
{%%}

{coarse_compare: AX1 = ^coarse_euclidean;
JUMP compare;

}

{%%}
{%%}
{ }
{%%}
{%%}
{fine_compare: AX1 = ^fine_euclidean;

JUMP compare;
}

403403403403403

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{%%}
{%%}
{ }
{%%}
{%%}
{full_compare: AX1 = ^full_euclidean;

JUMP compare;
}

{%%}
{%%}
{ }
{%%}
{%%}
{ required inputs: I0 -> location of unknown word

AX0 -> length of unknown word
}
cepstral_compare:

DM(unknown_addr) = I0;
DM(unknown_length) = AX0;

AR = 0;
CALL set_bank_select; { set memory bank }
CALL show_bank; { display memory bank }
CALL init_catalog; { initialize library catalog }

{ initialize results pointer, distance measure }
I1 = ^candidate_distance1;
AX1 = ^cepstral_projection;
CALL compare;

CALL inc_bank_select; { set memory bank }
CALL show_bank; { display memory bank }
CALL init_catalog; { initialize library catalog }

{ initialize results pointer, distance measure }
I1 = ^candidate_distance2;
AX1 = ^cepstral_projection;
CALL compare;

CALL inc_bank_select; { set memory bank }
CALL show_bank; { display memory bank }
CALL init_catalog; { initialize library catalog }

{ initialize results pointer, distance measure }
I1 = ^candidate_distance3;
AX1 = ^cepstral_projection;
CALL compare;

(listing continues on next page)

66666

404404404404404

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

CALL inc_bank_select; { set memory bank }
CALL show_bank; { display memory bank }
CALL init_catalog; { initialize library catalog }

{ initialize results pointer, distance measure }
I1 = ^candidate_distance4;
AX1 = ^cepstral_projection;

CALL compare;

CALL knn_routine;

CALL blank_hex_led;
RTS;

{%%}
{%%}
{ }
{%%}
{%%}
{ required inputs: I1 -> location of results buffer

AX1 -> pointer to distance measure
}

compare: AY0 = DM(catalog_size);
AR = PASS AY0;
IF LE RTS;

CNTR = AY0;
DM(distance_routine) = AX1;
AR = ^library_catalog;
DM(current_compare) = AR;
DM(result_buffer) = I1; { stored as msw, lsw for each }

DO calc_dist UNTIL CE;
I0 = DM(unknown_addr);
AX0 = DM(unknown_length);
I3 = DM(current_compare);
I6 = DM(distance_routine);
I5 = DM(result_buffer);

CALL warp_words;

I1 = DM(result_buffer);
MODIFY(I1,M3);
DM(result_buffer) = I1;

I3 = DM(current_compare);
MODIFY(I3,M3);

calc_dist: DM(current_compare) = I3;

RTS;

405405405405405

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{%%}
{%%}
{%%}
{ }
{%%}
{%%}
knn_routine:

AY0 = DM(catalog_size);
AR = PASS AY0;
IF LE RTS;

CNTR = AY0;
I0 = ^candidate_distance1;
I1 = ^candidate_distance2;
I2 = ^candidate_distance3;
I3 = ^candidate_distance4;
I4 = ^candidate_distance1;
DO compute_knn UNTIL CE;

I5 = I0;
comp12: AX1 = DM(I0,M1);

AX0 = DM(I0,M2);
AY1 = DM(I1,M1);
AY0 = DM(I1,M2);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP comp23;
I5 = I1;
AX1 = AY1;
AX0 = AY0;

comp23: AY1 = DM(I2,M1);
AY0 = DM(I2,M2);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP comp34;
I5 = I2;
AX1 = AY1;
AX0 = AY0;

comp34: AY1 = DM(I3,M1);
AY0 = DM(I3,M2);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP store_best;
I5 = I3;
AX1 = AY1;
AX0 = AY0;

(listing continues on next page)

66666

406406406406406

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

store_best: SR1 = AX1;
SR0 = AX0;
AX1 = H#7FFF;
DM(I5,M5) = AX1;
AX0 = H#FFFF;
DM(I5,M5) = AX0;

comp12_2: AX1 = DM(I0,M1);
AX0 = DM(I0,M1);
AY1 = DM(I1,M1);
AY0 = DM(I1,M1);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP comp23_2;
AX1 = AY1;
AX0 = AY0;

comp23_2: AY1 = DM(I2,M1);
AY0 = DM(I2,M1);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP comp34_2;
AX1 = AY1;
AX0 = AY0;

comp34_2: AY1 = DM(I3,M1);
AY0 = DM(I3,M1);
AR = AY0 - AX0;
AR = AY1 - AX1 + C -1;
IF GE JUMP sum_top_2;
AX1 = AY1;
AX0 = AY0;

sum_top_2: AY1 = SR1;
AY0 = SR0;
AR = AX0 + AY0;
ENA AR_SAT;
AX0 = AR, AR = AX1 + AY1 + C;
DIS AR_SAT;
DM(I4,M5) = AR;

compute_knn:DM(I4,M5) = AX0;

RTS;

{%%}

.ENDMOD;

Listing 6.9 Word Comparison Routine (COMPLIB.DSP)Listing 6.9 Word Comparison Routine (COMPLIB.DSP)Listing 6.9 Word Comparison Routine (COMPLIB.DSP)Listing 6.9 Word Comparison Routine (COMPLIB.DSP)Listing 6.9 Word Comparison Routine (COMPLIB.DSP)

407407407407407

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

RANKDIST.DSP

The routine in this module will rank the recognition results based upon
distances contained in the candidate distance buffer. All the words of the
catalog are ranked (up to 15). The results are stored in two forms.
Candidate_order contains a pointer to the catalog entry for each word, and
order_number contains the number (zero to fourteen) each word has in the
library. Both these buffers have the best recognition candidate first, then
the second best, and so on.

___}

.MODULE/RAM/BOOT=0 rank_candidates_distances;

.VAR/DM/RAM candidate_order[15], order_number[15];

.EXTERNAL candidate_distance1;

.EXTERNAL catalog_size;

.EXTERNAL library_catalog;

.ENTRY rank_candidates;

{%%}
{%%}

{_______________________Rank Candidates by Distance__________________________}

{%%}
{%%}

rank_candidates:
MR0 = DM(catalog_size);
AR = PASS MR0;
IF LE RTS;

I1 = ^order_number;
I2 = ^candidate_order;
AX1 = H#7FFF;
AX0 = H#FFFF;
CNTR = MR0; { MR0 holds catalog_size }
DO sort_candidates UNTIL CE;

I0 = ^candidate_distance1;
I3 = ^library_catalog;
AF = PASS 0; { initialize library entry # }
CNTR = MR0;
DO least_dist UNTIL CE;

(listing continues on next page)

66666

408408408408408

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AY1 = DM(I0,M1);
AY0 = DM(I0,M1);
AR = AY0 - AX0;
AR = AY1 - AX1 + C - 1;
IF GE JUMP inc_word_count;

MX0 = I3;
DM(I2,M0) = MX0; { store library_catalog pointer}

AR = PASS AF;
DM(I1,M0) = AR; { store library entry/order # }
AX1 = AY1; { update threshold }
AX0 = AY0;
MR1 = I0; { save till loop complete }

inc_word_count: AF = AF + 1;
least_dist: MODIFY(I3,M3);

MODIFY(I2,M1); { pointer to candidate_order }
MODIFY(I1,M1); { pointer to order_number }
I0 = MR1;
MODIFY(I0,M2);
MODIFY(I0,M2);
AX1 = H#7FFF;
AX0 = H#FFFF; { effectively removes the least}
DM(I0,M1) = AX1; { distance found from the }

sort_candidates:
DM(I0,M1) = AX0; { candidate_distance buffer }

AY0 = ^candidate_order;
AY1 = DM(order_number);
RTS;

.ENDMOD;

Listing 6.10 Word Ranking Routine (RANKDIST.DSP)Listing 6.10 Word Ranking Routine (RANKDIST.DSP)Listing 6.10 Word Ranking Routine (RANKDIST.DSP)Listing 6.10 Word Ranking Routine (RANKDIST.DSP)Listing 6.10 Word Ranking Routine (RANKDIST.DSP)

409409409409409

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

(listing continues on next page)

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

WARPSHELL.DSP

The routine contained in this module will calculate the distance between a
library template and an unknown word. It accomplishes this using dynamic time
warping and a selected distance measure. The resulting distance is a double
precision value, stored as msw, lsw.

The routine first calculates several necessary values. As it begins the
warping, it branches into one of three code regions, depending on the
relationship between Xa and Xb.

Each of these regions is divided into two or three different warping sections.
Each section has a different set of warping constraints, so y_min and y_max
must be calculated differently. Pointers to the correct min/max routines are
initialized in each section.

Following this, the warp_section routine performs the actual Dynamic Time
Warping for the current section. Y values are calculated each time through the
loop. The x_coordinate is incremented each time through the loop.

Update_sums copies previous results, stored in the vector_distance_buffer,
into the intermediate sums buffer. A new column of distance is then calculated
and stored in the vector distance buffer. Finally, the time warping occurs,
and the x value is incremented for the next loop.

___}

.MODULE/RAM/BOOT=0 dtw_shell;

.VAR/DM/RAM Xa, Xb; { points where warping constraint changes }

.VAR/DM/RAM M, N; { # of vectors in library template,unknown word}

.VAR/DM/RAM x_coordinate; { current x value }

.VAR/DM/RAM y_min_routine, y_max_routine;

.VAR/DM/RAM library_word_start, x_vector_pntr;

.VAR/DM/RAM old_y_min;

.VAR/DM/RAM vector_distance_buffer[180];
{filled with distance matrix col.}

.VAR/DM/RAM intermediate_sum_buffer[192]; {minimum sum of possible
 warping paths, stored as msw,
 lsw, previous warping slope }

.VAR/DM/RAM result_pntr, distance_measure;

66666

410410410410410

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

.EXTERNAL pre_Xa_y_max, post_Xa_y_max;

.EXTERNAL pre_Xb_y_min, post_Xb_y_min;

.EXTERNAL y_min, y_max, y_range;

.EXTERNAL calc_y_range;

.EXTERNAL build_vd_buff;

.EXTERNAL compute_warp, update_sums;

.EXTERNAL unknown_feature_dimension;

.GLOBAL M, N;

.GLOBAL x_vector_pntr;

.GLOBAL old_y_min;

.GLOBAL vector_distance_buffer, intermediate_sum_buffer;

.ENTRY warp_words;

{%%}
{%%}

{_______________use dynamic time warping to compare two words________________}

{%%}
{%%}

{ required inputs:
I3 -> location of word in template catalog
I0 -> location of unknown word
AX0 -> length (# of vectors) of unknown word
I6 -> pointer to distance routine
I5 -> location of results (msw, lsw) }

warp_words:
DM(x_vector_pntr) = I0;
AY0 = AX0;
AR = AY0 - 1; { axis starts at 0, not 1 }
DM(N) = AR;

MX0 = DM(I3,M1); { read lib template location }
DM(library_word_start) = MX0;
AY0 = DM(I3,M2); { read lib template length }
AX0 = AR, AR = AY0 - 1; { y axis starts at 0, not 1 }
DM(M) = AR;

DM(distance_measure) = I6;
DM(result_pntr) = I5;

411411411411411

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________check if (2*M-N < 3)_______________________________}

AY0 = AR;
AR = AR + AY0, AY1 = AX0;
AR = AR - AY1;
MX0 = AR; { MX0 = (2 * M) - N }
AY1 = 3;
AR = AR - AY1;
IF LT JUMP cannot_warp;

{_______________________check if (2*N-M < 2)_______________________________}

AF = PASS AX0;
AR = AX0 + AF;
AR = AR - AY0; { AR = (2 * N) - M }
AY1 = 2;
AF = AR - AY1;
IF LT JUMP cannot_warp;
AY1 = AR;
AR = AR + AY1;
MX1 = AR; { MX1 = 2*((2*N) - M) }

{_______________________compute Xa, Xb_______________________________________}

MY0 = H#2AAB; { MY0 = (1/3) that always rounds down }
MR = MX0 * MY0 (UU);
DM(Xa) = MR1; { Xa = (1/3) * ((2*M) - N) }
AY1 = MR1, MR = MX1 * MY0 (UU);
DM(Xb) = MR1; { Xb = (2/3) * ((2*N) - M) }

{_______________________setup for warping____________________________________}

AX0 = 0;
DM(y_min) = AX0;
AX0 = 1;
DM(y_range) = AX0;
DM(x_coordinate) = AX0;

{_______________calculate distance between first vectors (x,y = 0)___________}

I0 = DM(x_vector_pntr);
I4 = DM(library_word_start);
I6 = DM(distance_measure);
CALL (I6);
I3 = ^vector_distance_buffer;
DM(I3,M1) = SR1;
DM(I3,M3) = SR0;

(listing continues on next page)

66666

412412412412412

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

I0 = DM(x_vector_pntr);
M3 = DM(unknown_feature_dimension);
MODIFY(I0,M3); { I0 points to next x vector }
M3 = 2;
DM(x_vector_pntr) = I0;

{_______________________find relationship of Xa, Xb__________________________}

AX0 = DM(Xa);
AY0 = DM(Xb);
AR = AX0 - AY0; { AR = Xa - Xb }
IF GT JUMP Xa_gt_Xb;
IF LT JUMP Xb_gt_Xa;

{====================== match words - Xa equal to Xb ========================}

Xa_eq_Xb:
CNTR = DM(Xa); {# of x vectors in first section is Xa }

AX0 = ^pre_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^pre_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;
AX0 = DM(Xb);
AY0 = DM(N);
AR = AY0 - AX0;
CNTR = AR; { # of x vectors in final section is (N-Xb) }
AX0 = ^post_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^post_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

JUMP write_result;

{====================== match words - Xb greater than Xa ====================}

Xb_gt_Xa:
CNTR = DM(Xa); {# of x vectors in first section is Xa }

AX0 = ^pre_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^pre_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

AX0 = DM(Xa);
AY0 = DM(Xb);
AR = AY0 - AX0;
CNTR = AR; {# of x vectors in middle section is (Xb-Xa) }

413413413413413

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AX0 = ^post_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^pre_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

AX0 = DM(Xb);
AY0 = DM(N);
AR = AY0 - AX0;
CNTR = AR; {# of x vectors in final section is (N-Xb) }
AX0 = ^post_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^post_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

JUMP write_result;

{==================== match words - Xa greater than Xb ======================}

Xa_gt_Xb:CNTR = DM(Xb); {# of x vectors in first section is Xb }

AX0 = ^pre_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^pre_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

AX0 = DM(Xb);
AY0 = DM(Xa);
AR = AY0 - AX0;
CNTR = AR; {# of x vectors in middle section is (Xa-Xb) }
AX0 = ^pre_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^post_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

AX0 = DM(Xa);
AY0 = DM(N);
AR = AY0 - AX0;
CNTR = AR; {# of x vectors in final section is (N-Xa) }
AX0 = ^post_Xa_y_max;
DM(y_max_routine) = AX0;
AX0 = ^post_Xb_y_min;
DM(y_min_routine) = AX0;
CALL warp_section;

JUMP write_result;

(listing continues on next page)

66666

414414414414414

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{====================== cannot warp due to M, N =============================}

cannot_warp:
I3 = ^vector_distance_buffer;
AX0 = H#7FFF; { sets word distance score to }
DM(I3,M1) = AX0; { maximum double-precision }
AX0 = H#FFFF; { value. }
DM(I3,M1) = AX0;

{==================== write word distance result and return =================}

write_result:
I3 = ^vector_distance_buffer;
I0 = DM(result_pntr);
AX0 = DM(I3,M1);
DM(I0,M1) = AX0;
AX0 = DM(I3,M1);
DM(I0,M1) = AX0;

RTS;
{==}
{_______________________warp an entire section_______________________________}
{==}

warp_section:
DO section UNTIL CE;
SR0 = DM(y_min);
DM(old_y_min) = SR0;

SR0 = DM(x_coordinate); { current x value }
I6 = DM(y_max_routine);
CALL (I6); { calculate maximum y value }
I6 = DM(y_min_routine);
CALL (I6); { calculate minimum y value }

CALL update_sums; { copy previous results to sums buffer }

CALL calc_y_range; { calculate range of y for warp}

I6 = DM(distance_measure);
I5 = DM(library_word_start);

CALL build_vd_buff; {compute distance matrix column}

CALL compute_warp; {warp sums buffer into current column}

415415415415415

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

I0 = DM(x_vector_pntr);
M3 = DM(unknown_feature_dimension);
MODIFY(I0,M3); {next unknown(x) feature vector}
M3 = 2;
DM(x_vector_pntr) = I0;
AY0 = DM(x_coordinate);
AR = AY0 + 1; {increment x value counter}

section: DM(x_coordinate) = AR;
RTS;

{%%}

.ENDMOD;

Listing 6.11 Library Template/Word Distance Routine (WARPSHEL.DSP)Listing 6.11 Library Template/Word Distance Routine (WARPSHEL.DSP)Listing 6.11 Library Template/Word Distance Routine (WARPSHEL.DSP)Listing 6.11 Library Template/Word Distance Routine (WARPSHEL.DSP)Listing 6.11 Library Template/Word Distance Routine (WARPSHEL.DSP)

66666

416416416416416

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___
Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

YMINMAX.DSP
The routines in this module calculate the minimum, maximum, and range of the
ycoordinate for dynamic time warping, using Itakura warping constraints. The
points Xa and Xb are the x-coordinate locations where the constraining slope
changes for the upper and lower boundaries, respectively.
___}

.MODULE/RAM/BOOT=0 find_y_bounds;

.VAR/DM/RAM y_min, y_max, y_range;

.GLOBAL y_min, y_max, y_range;

.EXTERNAL N, M;

.ENTRY pre_Xb_y_min, post_Xb_y_min;

.ENTRY pre_Xa_y_max, post_Xa_y_max;

.ENTRY calc_y_range;

{%%}
{%%}
{_______________________routines to find y_min, y_max________________________}
{%%}
{%%}

{ required inputs: SR0 -> current x_coordinate
}

{______________________________ y_min = .5 * x ______________________________}

pre_Xb_y_min:
MR = 0, MX0 = SR0;
MY0 = H#4000; { .5 in fixed-point format }
MR0 = H#8000;
MR = MR + MX0 * MY0 (UU);
DM(y_min) = MR1;
RTS;

{______________________________ y_min = 2(x-N) + M __________________________}

post_Xb_y_min:
AY0 = DM(N);
AR = SR0 - AY0; { AR = x_coordinate - N }
AY0 = AR;
AR = AR + AY0; { AR = 2 * (x_coordinate - N) }

417417417417417

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

AY1 = DM(M);
AR = AR + AY1; { AR = 2 * (x_coordinate - N) + M }
DM(y_min) = AR;
RTS;

{______________________________ y_max = 2 * x _______________________________}

pre_Xa_y_max:
AY0 = SR0;
AR = SR0 + AY0;
DM(y_max) = AR;

RTS;
{______________________________ y_max = .5*(x-N) + M ________________________}

post_Xa_y_max:
AY0 = DM(N);
AR = SR0 - AY0;
MR = 0;
MR1 = DM(M);
MY0 = H#4000; { .5 in fixed-point format }
MR = MR + AR * MY0 (SS);
DM(y_max) = MR1;
RTS;

{%%}
{%%}

{_______________________routine to find y_range______________________________}

{%%}
{%%}

{______________________ y_range = y_max - y_min + 1 _________________________}

calc_y_range:
AX0 = DM(y_max);
AY0 = DM(y_min);
AF = AX0 - AY0;
AR = AF + 1;
DM(y_range) = AR;
RTS;

{%%}

.ENDMOD;

Listing 6.12 Y Coordinate Range Routine (YMINMAX.DSP)Listing 6.12 Y Coordinate Range Routine (YMINMAX.DSP)Listing 6.12 Y Coordinate Range Routine (YMINMAX.DSP)Listing 6.12 Y Coordinate Range Routine (YMINMAX.DSP)Listing 6.12 Y Coordinate Range Routine (YMINMAX.DSP)

66666

418418418418418

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___

Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

TIMEWARP.DSP

Two distinct routines are contained in this module, both dealing with dynamic
time warping. The first update_sums copies the current vector_distance_buffer
contents into the intermediate_sum_buffer. The future illegal warping paths
are removed by saturating the boundary distances before and after copying,
using the y_offset value. y_offset measures the difference between the minimum
y value of two adjacent columns.

The second routine, compute_warp, will perform the dynamic time warping
between two columns. One column is the intermediate_sum_buffer, which contains
the results of all previous warps. The other column is the
vector_distance_buffer, which contains a column of the distance matrix. A
column consists of the distances between a single unknown and many library
template feature vectors.

The sum buffer is warped into the distance buffer. The previous warping path
is examined in each case to prevent an illegal warp, and the accumulated sums
are stored into the distance buffer.

The y_offset is the difference (in the y direction) between the y_min of the
(x)th column and y_min (stored as old_y_min) of the (x-1)th column.
___}

.MODULE/RAM/BOOT=0 dynamic_time_warping;

.EXTERNAL intermediate_sum_buffer, vector_distance_buffer;

.EXTERNAL y_min, old_y_min, y_range;

.ENTRY compute_warp;

.ENTRY update_sums;

{==}
{==}

{_______________________move vector_distance to intermediate_sum_____________}

{==}
{==}

419419419419419

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

update_sums:
I1 = ^intermediate_sum_buffer;
AX1 = H#7FFF;
AX0 = H#FFFF;
DM(I1,M1) = AX1; { initialize D(x-1,y-2) }
DM(I1,M3) = AX0;
DM(I1,M1) = AX1; { initialize D(x-1,y-1) }
DM(I1,M3) = AX0; { leaves I1 pointing to D(x-1,y) }

AR = DM(y_min);
AY0 = DM(old_y_min);
AR = AR - AY0; { AR is y_offset }

AY1 = -3;
AY0 = -6;
AF = PASS 1, MR0 = AR; { MR0 is y_offset }
AR = PASS 0;
AF = AF - MR0;
IF LT AR = PASS AY0;
IF EQ AR = PASS AY1; { now AR holds real offset value }

M3 = AR;
MODIFY(I1,M3); { now I1 points to }
M3 = 2; { (D(x-1,y) + real offset value) }

I5 = ^vector_distance_buffer;
CNTR = DM(y_range);
DO copy_sum UNTIL CE;

CNTR = 3;
DO copy_parts UNTIL CE;

AY0 = DM(I5,M5);
copy_parts: DM(I1,M1) = AY0;
copy_sum: NOP;

DM(I1,M1) = AX1; { initialize D(x-1,y_max+1) }
DM(I1,M3) = AX0;
DM(I1,M1) = AX1; { initialize D(x-1,y_max+2) }
DM(I1,M3) = AX0;

RTS;

(listing continues on next page)

66666

420420420420420

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{==}
{==}

{_______________________warp one column in x dimension_______________________}

{==}
{==}

{ required inputs: y_range = (y_max - y_min + 1) }

{_______________________setup__}

compute_warp:
M0 = -5;
M1 = -4;
M2 = 1;
M3 = 8;
M7 = 2;
I5 = ^vector_distance_buffer;
I1 = ^intermediate_sum_buffer + 6; { points to D(x-1,y) }

CNTR = DM(y_range);
DO warp_buffer UNTIL CE;

{_______________________compare D(x-1,y-1), D(x-1,y)_________________________}

compare_warp_1:
AF = PASS 0, AX1 = DM(I1,M2); {init warp_value in AF }

AX0 = DM(I1,M2); { read D(x-1,y) }

AR = DM(I1,M0); { read old_warp_value }

AY1 = DM(I1,M2);
AR = PASS AR, AY0 = DM(I1,M1); { read D(x-1,y-1) }
IF NE JUMP do_comparison; {jump if old_warp_value NE 0}

AR = DM(y_range); { if old_warp_value = 0, only }

AF = PASS AR; { allow consecutive warps of 0 }

AR = CNTR; { when it’s the first warp of }

AR = AR - AF; { the column }

IF NE JUMP set_warp_1;
AF = PASS 0; { reset state }

421421421421421

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

do_comparison:
AR = AX0 - AY0;
AR = AX1 - AY1 + C - 1;
IF LT JUMP compare_warp_2;

set_warp_1:
AF = PASS 1, AX1 = AY1; { change warp_value }
AX0 = AY0; { move D(x-1,y-1) to AXn }

{_______________compare D(x-1,y-2), minimum[D(x-1,y),D(x-1,y-1)]_____________}

compare_warp_2:
AY1 = DM(I1,M2);
AY0 = DM(I1,M3); { read D(x-1,y-2) }
AR = AX0 - AY0;
AR = AX1 - AY1 + C - 1;
IF LT JUMP compute_sum;

set_warp_2: AX1 = AY1;
AY1 = 2; { change warp_value }
AF = PASS AY1, AX0 = AY0; { move D(x-1,y-2) to AXn }

{_______compute sum of d(x,y), minimum[D(x-1,y),D(x-1,y-1),D(x-1,y-2)]_______}

compute_sum:AY1 = DM(I5,M5);
AY0 = DM(I5,M4); { read d(x,y) }
AR = AX0 + AY0;

ena ar_sat;

DM(I5,M6) = AR, AR = AX1 + AY1 + C; { write D(x,y) lsw }

dis ar_sat;

{ if av trap;}
DM(I5,M7) = AR, AR = PASS AF; { write D(x,y) msw }

warp_buffer:DM(I5,M5) = AR; { write D(x,y) warp_value }

{_______________________restore state__}

M0 = 0;
M1 = 1;
M2 = -1;
M3 = 2;
M7 = 2;
RTS;

{==}

.ENDMOD;

Listing 6.13 Dynamic Time Warping Routine (TIMEWARP.DSP)Listing 6.13 Dynamic Time Warping Routine (TIMEWARP.DSP)Listing 6.13 Dynamic Time Warping Routine (TIMEWARP.DSP)Listing 6.13 Dynamic Time Warping Routine (TIMEWARP.DSP)Listing 6.13 Dynamic Time Warping Routine (TIMEWARP.DSP)

66666

422422422422422

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___
Analog Devices Inc., DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Assistance: (617) 461-3672

__

VECTDIST.DSP

This routine will calculate the distances necessary to fill one column of the
distance matrix. It uses a single vector of the unknown word (x dimension) and
the correct range of the library template vectors (y dimension). The resulting
distances are stored in the vector_distance_buffer.

There are two implemented distortion measures, the full euclidean and the
cepstral projection. A pointer to the selected measure is passed to this
module in I6. Additional distortion measures can easily be added, following
the structure of the current measures.
___}

.MODULE/RAM/BOOT=0 build_vector_distance;

.EXTERNAL y_min, y_range;

.EXTERNAL x_vector_pntr, vector_distance_buffer;

.EXTERNAL library_feature_dimension;

.ENTRY build_vd_buff;

.ENTRY full_euclidean;

.ENTRY cepstral_projection;

{%%}
{%%}

{_______________________calculate distance matrix column_____________________}

{%%}
{%%}

{ required inputs: I5 -> start of library template
I6 -> start of distance measure routine}

{_______________calculate offset from start of library template______________}

build_vd_buff:
MX0 = DM(y_min);
SI = DM(library_feature_dimension);
SR = ASHIFT SI BY -1 (HI); { (# of features)/2 }
MY0 = SR1;
MR = MX0 * MY0 (UU); { 2 * y_min * (# features)/2 }

M7 = MR0;
MODIFY(I5,M7); { I5 now points to y_min feature vector}

423423423423423

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{_______________________setup__}

M7 = DM(library_feature_dimension);
I3 = ^vector_distance_buffer;
CNTR = DM(y_range);

{______________________calculate vector distances and store__________________}

DO build_buffer UNTIL CE;
I0 = DM(x_vector_pntr); { location of unknown vector }
I4 = I5; { location of library template vector }

CALL (I6); { calls distance measure routine }

DM(I3,M1) = SR1; { store distance msw }
DM(I3,M3) = SR0; { store distance lsw, skip warp_value }

build_buffer:
MODIFY(I5,M7); { I5 points to next library template vector }

{_______________________reset state and return_______________________________}

M7 = 2;
RTS;

{%%}
{%%}

{_______________________distance measure routines____________________________}

{%%}
{%%}

{ required inputs: I0 -> start of DM vector
I4 -> start of PM vector}

{====================== full euclidean distance =============================}

full_euclidean:
CNTR = 12;
MR = 0, AX0 = DM(I0,M1), AY0 = PM(I4,M5);
DO full_sumdiffsq UNTIL CE;

AR = AX0 - AY0, AX0 = DM(I0,M1); { calculate difference }

MY0 = AR;

(listing continues on next page)

66666

424424424424424

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

full_sumdiffsq:
MR = MR + AR * MY0 (SS), AY0 = PM(I4,M5); {accumulat difsq}

SR = ASHIFT MR2 BY 5 (HI); { leaves seven bits for warping}
SR = SR OR LSHIFT MR1 BY -11 (HI);
SR = SR OR LSHIFT MR0 BY -11 (LO);
RTS;

{====================== cepstral projection distance ======================}

cepstral_projection:
CNTR = 12;
MR = 0, MX0 = DM(I0,M1);
MY0 = PM(I4,M5);
DO dot_product UNTIL CE; {calculates negative of dot product}

MR = MR - MX0 * MY0 (SS), MX0 = DM(I0,M1);
dot_product:

MY0 = PM(I4,M5);

SR = ASHIFT MR2 BY 5 (HI); { leaves seven bits for warping}
SR = SR OR LSHIFT MR1 BY -11 (HI);
SR = SR OR LSHIFT MR0 BY -11 (LO);
RTS;

{%%}

.ENDMOD;

Listing 6.14 Vector Distance Routine (VECTDIST.DSP)Listing 6.14 Vector Distance Routine (VECTDIST.DSP)Listing 6.14 Vector Distance Routine (VECTDIST.DSP)Listing 6.14 Vector Distance Routine (VECTDIST.DSP)Listing 6.14 Vector Distance Routine (VECTDIST.DSP)

425425425425425

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ DISBOOT.DSP 3-10-90 }
{ }
{___}
.MODULE/RAM/BOOT=0 display;
.PORT led_and_bank;
.PORT display_base;
.INCLUDE <vocab.h>;
.VAR/DM bank_select; {stored PM EPROM bank, 1 of 4}
.VAR/DM hex_led; {stores value of hex led}
.VAR/DM/STATIC digit_count; {passed to boot page 2}
.VAR/DM/STATIC phone_number[16]; {passed to boot page 2}
.GLOBAL digit_count, phone_number;
.VAR/DM/STATIC long_distance_flag; {passed to boot page 2}
.GLOBAL long_distance_flag;
.VAR/DM timed_pntr;

.ENTRY display_digit;

.ENTRY add_a_digit;

.ENTRY display_text;

.ENTRY clear_display;

.ENTRY display_number;

.ENTRY set_local_call;

.ENTRY set_long_distance;

.ENTRY show_bank;

.ENTRY inc_bank_select;

.ENTRY set_bank_select;

.ENTRY display_numpls;

.ENTRY display_dial;

.ENTRY reset_display;

.ENTRY timed_display;

.ENTRY reset_timed;

.ENTRY blank_hex_led;
{___}
{ Wait_Some @ 12.28 MHz }
{ Count = (desired time in sec)/(5*cycletime). }
{ AY0 = lsw of count }
{ AY1 = msw of count }
{ alters: AX0,AY0,AX0,AR }

(listing continues on next page)

66666

426426426426426

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

wait_four: CALL wait_two; {wait four seconds}
wait_two: CALL wait_one; {wait two seconds}
wait_one: CALL wait_half; {wait one second}
wait_half: CALL wait_quarter; {half second}
wait_quarter: CALL wait_eighth; {quarter second}
wait_eighth: CALL wait_sixteenth; {eighth second}
wait_sixteenth: CALL wait_thirtysec; {sixteenth second}
wait_thirtysec: AY0=0X2c00; {lsw of count for 1/32 sec}

AY1=0X0001; {msw of count for 1/32 sec}
wait_some: AX0=0; {for borrow}
time_loop: AR=AY0-1;

AY0=AR, AR=AY1-AX0+C-1;
AY1=AR;
AR=AR OR AY0;
IF NE JUMP time_loop;

RTS;
{___}
{ Display_Text }
{ I4 = ^ascii text buffer in PM }
{ Format of text buffer:<# characters, ascii data;> }
{ alters: I4,L4,I2,L2,AR,AY0,AY1 }

display_text:
CALL clear_display;
L4=0;
AY0=PM(I4,M5); {get # characters}
CALL display_spaces; {display leading spaces}
CNTR=AY0; {#characters to display}

char_loop: AR=PM(I4,M5); {get character}
CALL disp_char; {display one character}
IF NOT CE JUMP char_loop;

RTS;

{___}
{ Display One Character }
{ AR = ascii character }
{ I2 = display pointer, decremented by one }
{ alters: AY0,AR,I2 }

disp_char: AY1=0x0080;
AR=AR OR AY1; {WR high}
DM(I2,M0)=AR, AR=AR XOR AY1;
DM(I2,M0)=AR; {WR low}
AR=AR OR AY1;
NOP;
DM(I2,M2)=AR; {WR high}
RTS;

427427427427427

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Clear the ASCII display with N spaces }
{ CNTR = number of spaces }
{ I2 = returned with the current characters location }
{ alters: I2,L2,AR,AY0 }

clear_display: AY0 = -16; {Entry to clear entire display}

display_spaces: I2=^display_base + 15; {Entry to clear leading spaces}
L2=0;
AR=16;
AR=AR-AY0; {center the word}
IF LE JUMP spaces_done;
SR=LSHIFT AR BY -1 (LO); {SR0=(16-#characters)/2}
AR = PASS SR0;
IF LE JUMP spaces_done;
CNTR=SR0;
AR=0x0020; {space}

clear_loop: CALL disp_char;
IF NOT CE JUMP clear_loop;

spaces_done: RTS;

{___}
{ Display Number }
{ Displays digit_count characters from digit buffer in DM. }
{ Format of text buffer:<# characters, ascii data;> }
{ alters: I4,L4,I2,L2,AR,AY0,AY1 }
{ Modified to inset dash after 3 digits. }

display_number: CALL clear_display;
I4=^phone_number;
L4=0;
AY0=DM(digit_count); {get # digits}
CALL display_spaces; {display leading spaces}
CNTR=AY0; {#characters to display}
AF=PASS 0; {counts digits}
AY0=0x30; {ascii 0 offset}

digd_loop: AX0=3;
AR=AX0-AF;
IF EQ CALL display_dash;
AF=AF+1;
AR=DM(I4,M5); {get digit}
AR=AR+AY0; {offset for ascii}
CALL disp_char; {display one character}
IF NOT CE JUMP digd_loop;

RTS;

display_dash:
AR=0x2d; {ascii dash}
CALL disp_char;
RTS;

(listing continues on next page)

66666

428428428428428

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Display a Digit }
{ AY1 = index of digit to display }

display_digit:
AR=^word_catalog;
AR=AR+AY1;
I4=AR;
AR = PM(I4,M4);
I4 = AR;
CALL display_text;
CALL wait_quarter;
CALL wait_sixteenth;
RTS;

{___}
{ Add a Digit to the Phone Number }
{ Adds a digit to phone_number and increments digit_count }
{ AY1 = digit to add }
{ alters: AY0,AR,I4 }

add_a_digit:
AY0=DM(digit_count);
AR=AY0+1;
AY0=12;
AF=AR-AY0;
IF GE RTS;
DM(digit_count)=AR;
AY0=^phone_number;
AR=AR+AY0;
I4=AR;
MODIFY(I4,M6); {^ + # digits - 1 to get address}
AR = 10;
AR = AR - AY1;
IF NE AR = PASS AY1; { (oh) is tenth in the list }
DM(I4,M4) = AR;
RTS;

{___}
{ Set Local Call }

set_local_call:
AR=0;
DM(long_distance_flag)=AR;
RTS;

{___}
{ Set Long Distance Call }

set_long_distance:
AR=1;
DM(long_distance_flag)=AR;
RTS;

429429429429429

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Blank the HEX LED }
{ alters: SR0 }

blank_hex_led:
SR0=0x0010;
CALL set_hex_led;
RTS;

{___}
{ Display to HEX LED }
{ SR0 = Hex value to display }
{ alters: AR, SR }

show_bank: SR0=DM(bank_select); {entry to display bank}
set_hex_led:dm(hex_led)=SR0; {normal entry}

AR=DM(bank_select);
SR=SR OR LSHIFT AR BY 8 (LO);
DM(led_and_bank)=SR0;
RTS;

{___}
{ Set the PM EPROM Bank Select }
{ AR = bank value }
{ alters: SR,AY0 }

inc_bank_select:
AY0=DM(bank_select); {entry to inc bank}
AR=AY0+1;
AY0 = 3;
AR = AR AND AY0;

set_bank_select:
DM(bank_select)=AR; {normal entry}
SR0=DM(hex_led);
SR=SR OR LSHIFT AR BY 8 (LO);
DM(led_and_bank)=SR0;
RTS;

{___}
{ display particular text }

display_numpls:
I4 = ^num_;
JUMP display_text;

display_dial:
I4 = ^dial;
JUMP display_text;

(listing continues on next page)

66666

430430430430430

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{__}
{ initialize display variables }

reset_display:
AR = 0;
DM(bank_select) = AR;
CALL show_bank;

reset_timed:
CALL clear_display;
AR = H#FF;
DM(0X3FFB) = AR; { TSCALE }
I4 = ^timed_catalog;
AR = PM(I4,M5);
DM(0X3FFC) = AR; { TCOUNT }
AX0 = PM(I4,M5);
AR = PM(I4,M5);
DM(0X3FFD) = AR; { TPERIOD }
DM(timed_pntr) = I4;
I4 = AX0;
CALL display_text;
RTS;

{___}
{ display opening on timer interrupts }

timed_display:
ENA SEC_REG;
MR1 = I4; { save state }
MR0 = L4; { save state }

I4 = DM(timed_pntr);
L4 = 48;
MY0 = PM(I4,M5);
MY1 = PM(I4,M5);
DM(timed_pntr) = I4;
L4 = 0;

DM(0X3FFD) = MY1; { TPERIOD }
I4 = MY0;
MY0 = I2; { save state }
MY1 = L2; { save state }
CALL display_text;

I4 = MR1; { restore state }
L4 = MR0; { restore state }
I2 = MY0; { restore state }
L2 = MY1; { restore state }
RTI;

{___}

.ENDMOD;

Listing 6.15 Display Driver Routine (DEMOBOX.DSP)Listing 6.15 Display Driver Routine (DEMOBOX.DSP)Listing 6.15 Display Driver Routine (DEMOBOX.DSP)Listing 6.15 Display Driver Routine (DEMOBOX.DSP)Listing 6.15 Display Driver Routine (DEMOBOX.DSP)

431431431431431

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

(listing continues on next page)

{ DTMF Signal Generator

ADSP-2101 EZ-LAB demonstration

Analog Devices, Inc.
DSP Division
P.O.Box 9106
Norwood, MA 02062

}

.module/boot=1 DTMF_Dialer;

.ENTRY eight_khz;

.ENTRY new_digit;

.ENTRY dm_inits;

.ENTRY make_tones;

.ENTRY make_silence;

{ sine routine variables}
.VAR/PM sin_coeff[5];
.INIT sin_coeff: H#324000, H#005300, H#AACC00, H#08B700, H#1CCE00;

{ dynamic scratchpad variables }
.var hertz1, hertz2, { row and col frequency in Hertz }

sum1, sum2, { row and col phase accumulators }
sin1, sin2; { returned values from calling sin }

.VAR/DM maketones_or_silence;

{ fixed variables to be loaded from booted PM }
.var scale, { attenuation of each sine before summing }

hz_list[32]; { lookup table for digit row,col freqs }

{ NOTE *** put all fixed DM inits into PM and copy over into DM !! *** NOTE }

.const PM_copy_length=33;

.var/pm PM_scale, PM_hz_list[32];

{altered so that A == dial tone}
.init PM_scale: h#FFFF;
.init PM_hz_list[00]:h#03AD,h#0538,h#02B9,h#04B9,h#02B9,h#0538,h#02B9,h#05C5;
.init PM_hz_list[08]:h#0302,h#04B9,h#0302,h#0538,h#0302,h#05C5,h#0354,h#04B9;
.init PM_hz_list[16]:h#0354,h#0538,h#0354,h#05C5,h#01B8,h#015E,h#0302,h#0661;
.init PM_hz_list[24]:h#0354,h#0661,h#03AD,h#0661,h#03AD,h#04B9,h#03AD,h#05C5;

66666

432432432432432

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{———}
{ Eight KHz Interrupt Routine }

eight_khz:
ENA SEC_REG;
AR=DM(maketones_or_silence); {0 = quite, 1 = maketones}
AR=PASS AR;
IF EQ JUMP quiet;

se=dm(scale);
tone1: ay0=dm(sum1);

si=dm(hertz1); { freq stored as Hz in DM }
sr=ashift si by 3 (hi);
my0=h#4189; { mult Hz by .512 * 2 }
mr=sr1*my0(rnd); { i.e. mult by 1.024 }
sr=ashift mr1 by 1 (hi);
ar=sr1+ay0;
dm(sum1)=ar;
ax0=ar;
call boot_sin;
sr=ashift ar (hi); { scale value in SE }
dm(sin1)=sr1;

tone2: ay0=dm(sum2);
si=dm(hertz2); { freq stored as Hz in DM }
sr=ashift si by 3 (hi);
my0=h#4189; { mult Hz by .512 * 2 }
mr=sr1*my0(rnd); { i.e. mult by 1.024 }
sr=ashift mr1 by 1 (hi);
ar=sr1+ay0;
dm(sum2)=ar;
ax0=ar;
call boot_sin;
sr=ashift ar (hi); { scale value in SE }
dm(sin2)=sr1;

add_em: ax0=dm(sin1);
ay0=dm(sin2);
ar=ax0+ay0;

sound: sr=ashift ar by -2 (hi); { compand 14 LSBs only! }
tx0=sr1; { send “signal” sample to SPORT }

DIS SEC_REG;
rti;

quiet: ar=0;
tx0=ar; { send “silence” sample to SPORT }

DIS SEC_REG;
rti;

433433433433433

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{———}
{————— S U B R O U T I N E S ———}
{———}

{———}
{ Change the Digit }
{ AX0 = digit }

new_digit:
ay0=h#000F;
ar=ax0 and ay0;
sr=lshift ar by 1 (hi);
ay0=^hz_list;
ar=sr1+ay0;
i1=ar;
ax0=dm(i1,m1); { look up row freq for digit }
dm(hertz1)=ax0;
ax0=dm(i1,m1); { look up col freq for digit }
dm(hertz2)=ax0;

SI=0;
DM(sum1)=SI;
DM(sum2)=SI;

rts;

{———}
{ Maketones or Makesilence }
make_tones:

AR=1;
DM(maketones_or_silence)=AR;
RTS;

make_silence:
AR=0;
DM(maketones_or_silence)=AR;
RTS;

{———}
{ Initialize PM }

dm_inits:
i0=^scale;
m1=1;
l0=0;
i4=^PM_scale;
m5=1;
l4=0;
cntr=PM_copy_length;
do boot_copy until ce;

si=pm(i4,m5);
sr=lshift si by 8 (hi);
si=px;
sr=sr or lshift si by 0 (hi);

boot_copy: dm(i0,m1)=sr1;
rts;

(listing continues on next page)

66666

434434434434434

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{

Sine Approximation
Y = boot_sin(x)

Calling Parameters
AX0 = x in scaled 1.15 format
M7 = 1
L7 = 0

Return Values
AR = y in 1.15 format

Altered Registers
AY0,AF,AR,MY1,MX1,MF,MR,SR,I7

Computation Time
25 cycles

}

boot_sin:
M5=1;
L7=0;
I7=^sin_coeff; {Pointer to coeff. buffer}
AY0=H#4000;
AR=AX0, AF=AX0 AND AY0; {Check 2nd or 4th quad.}
IF NE AR=-AX0; {If yes, negate input}
AY0=H#7FFF;
AR=AR AND AY0; {Remove sign bit}
MY1=AR;
MF=AR*MY1 (RND), MX1=PM(I7,M5); {MF = x2}
MR=MX1*MY1 (SS), MX1=PM(I7,M5); {MR = C1x}
CNTR=3;
DO approx UNTIL CE;

MR=MR+MX1*MF (SS);
approx: MF=AR*MF (RND), MX1=PM(I7,M5);

MR=MR+MX1*MF (SS);
SR=ASHIFT MR1 BY 3 (HI);
SR=SR OR LSHIFT MR0 BY 3 (LO); {Convert to 1.15 format}
AR=PASS SR1;
IF LT AR=PASS AY0; {Saturate if needed}
AF=PASS AX0;
IF LT AR=-AR; {Negate output if needed}
RTS;

.ENDMOD;

Listing 6.16 DTMF Signal Generator Routine (DTMF.DSP)Listing 6.16 DTMF Signal Generator Routine (DTMF.DSP)Listing 6.16 DTMF Signal Generator Routine (DTMF.DSP)Listing 6.16 DTMF Signal Generator Routine (DTMF.DSP)Listing 6.16 DTMF Signal Generator Routine (DTMF.DSP)

435435435435435

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Dial Phone Number and Display }
{___}

.MODULE/RAM/BOOT=1/ABS=0 dial_n_display;

.PORT led_and_bank;

.PORT display_base;

.EXTERNAL eight_khz, new_digit, dm_inits, make_tones, make_silence;

.EXTERNAL digit_count, phone_number, long_distance_flag;

.INCLUDE <vocab.h>;

reset_vec: CALL dm_inits;
CALL init_control_regs;
JUMP start;
NOP;

irq2: RTI;NOP;NOP;NOP;
s0_tx: RTI;NOP;NOP;NOP;
s0_rx: JUMP eight_khz;NOP;NOP;NOP;
s1_tx_irq1: RTI;NOP;NOP;NOP;
s1_rx_irq0: RTI;NOP;NOP;NOP;
timer_exp: JUMP timeout;NOP;NOP;NOP;

start: L0=0;L1=0;L2=0;L3=0;
L4=0;L5=0;L6=0;L7=0;
M0=0;M1=1;M2=-1;M3=2; {standard setup}
M4=0;M5=1;M6=-1;M7=0;

CALL make_silence;
ICNTL=0x00111;
IMASK=b#001001; {enable timer & rx0 interrupt}

AX0=0xA; {dial tone}
CALL new_digit;
CALL make_tones;
CALL wait_one;
CALL wait_half;
CALL wait_quarter;
CNTR=DM(digit_count);
AR=0;
DM(digit_count)=AR;
I4=^phone_number;

(listing continues on next page)

66666

436436436436436

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

each_tone: AX0=DM(I4,M5);
CALL new_digit;
CALL make_tones;

AY0=DM(digit_count); {display sucessive digits}
AR=AY0+1;
DM(digit_count)=AR;
CALL display_number;

CALL wait_sixteenth;
CALL make_silence;
CALL wait_eighth;
IF NOT CE JUMP each_tone;

CALL wait_two;
I4=^gsm_;
CALL display_text;
AR=0x029b; {boot page 2}
DM(0x3FFF)=AR;

{____________________Now Go To Boot Page One____________________________}

{___}
{ Subroutines }
{___}

{___}
{ Wait using timer interrupt }
wait_four: CALL wait_two;
wait_two: CALL wait_one;
wait_one: CALL wait_half;
wait_half: CALL wait_quarter;
wait_quarter: CALL wait_eighth;
wait_eighth: CALL wait_sixteenth;
wait_sixteenth: AY0=0xFF;

AY1=0x0BC4;
wait_timer: DM(0x3FFB)=AY0; {TSCALE}

DM(0x3FFC)=AY1; {TCOUNT}
DM(0x3FFD)=AY1; {TPERIOD}
AY0=0;
ENA TIMER;

wait_here: AR=PASS AY0;
IF EQ JUMP wait_here;
DIS TIMER;
RTS;

437437437437437

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Timer Interrupt Handler }

timeout: AY0=0xFFFF; {set the timer expired flag}
RTI;

{___}
{ Display_Text }
{ I4 = ^ascii text buffer in PM }
{ Format of text buffer:<# characters, ascii data;> }
{ alters: I4,L4,I2,L2,AR,AY0,AY1 }

display_text:
CALL clear_display;
L4=0;
AY1=PM(I4,M5); {get # characters}
AR=16;
AR=AR-AY1; {center the word}
SR=LSHIFT AR BY -1 (LO); {SR0=(16-#characters)/2}
CNTR=SR0;
CALL display_spaces; {display leading spaces}
CNTR=AY1; {#characters to display}

char_loop: AR=PM(I4,M5); {get character}
CALL disp_char; {display one character}
IF NOT CE JUMP char_loop;

RTS;

{___}
{ Display One Character }
{ AR = ascii character }
{ I2 = display pointer, decremented by one }
{ alters: AY0,AR,I2 }

disp_char:
AY0=0x0080;
AR=AR OR AY0; {WR high}
DM(I2,M0)=AR, AR=AR XOR AY0;
DM(I2,M0)=AR; {WR low}
AR=AR OR AY0;
NOP;
DM(I2,M2)=AR; {WR high}
RTS;

(listing continues on next page)

66666

438438438438438

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Clear the ASCII display with N spaces }
{ CNTR = number of spaces }
{ I2 = returned with the current characters location }
{ alters: I2,L2,AR,AY0 }

clear_display:
CNTR=16; {Entry to clear entire display}

display_spaces:
I2=^display_base + 15; {Entry to clear leading spaces}
AR=CNTR;
AR=PASS AR;
IF EQ JUMP exit_clear; {Return if no leading zeros}
L2=0;
AR=0x0020; {space}

clear_loop: CALL disp_char;
IF NOT CE JUMP clear_loop;

RTS;
exit_clear: POP CNTR;

RTS;

{___}
{ Display Number }
{ Displays digit_count characters from digit buffer in DM. }
{ Format of text buffer:<# characters, ascii data;> }
{ alters: I4,L4,I2,L2,AR,AY0,AY1 }

display_number:
CALL clear_display;
I4=^phone_number;
L4=0;
AY1=DM(digit_count); {get # digits}
CNTR=3;
CALL display_spaces; {display leading spaces}
CNTR=AY1; {#characters to display}
AF=PASS 0; {counts digits}
AY1=0x30; {ascii 0 offset}

digd_loop: AX0=3;
AR=AX0-AF;
IF EQ CALL display_dash;
AF=AF+1;
AR=DM(I4,M5); {get digit}
AR=AR+AY1; {offset for ascii}
CALL disp_char; {display one character}
IF NOT CE JUMP digd_loop;

RTS;

display_dash:
AR=0x2d; {ascii dash}
CALL disp_char;
RTS;

439439439439439

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

{___}
{ Init Control Registers }
{ Set Up SPORTS and TIMER on EZ-LAB board after RESET }
{ used for ADSP-2101 EZ-LAB demonstrations }
{ Altered Registers: I0,M1,L0 }

init_control_regs:
L0=0;
M1=1;
I0=h#3FEF; {point to last DM-mapped control registers }

{ h#3FEF } DM(I0,M1)=H#0000; {SPORT1 AUTOBUFF DISABLED}
{ h#3FF0 } DM(I0,M1)=H#0000; {SPORT1 RFSDIV NOT USED}
{ h#3FF1 } DM(I0,M1)=H#0000; {SPORT1 SCLKDIV NOT USED}
{ h#3FF2 } DM(I0,M1)=H#0000; {SPORT1 CNTL DISABLED}
{ h#3FF3 } DM(I0,M1)=H#0000; {SPORT0 AUTOBUFF DISABLED}
{ h#3FF4 } DM(I0,M1)= 255; {RFSDIV for 8 kHz interrupt rate}
{ h#3FF5 } DM(I0,M1)= 2; {SCLKDIV=2 makes 2.048 MHz

 with 12.288 MHz xtal}
 { h#3FF6 } DM(I0,M1)=H#6927; {Int SCLK,

 RFS req, TFS req,
 Int RFS, Int TFS,
 u_law, 8-bit PCM }

{ h#3FF7 } DM(I0,M1)=H#0000; {TRANSMIT MULTICHANNELS}
{ h#3FF8 } DM(I0,M1)=H#0000;
{ h#3FF9 } DM(I0,M1)=H#0000; {RECEIVE MULTICHANNELS}
{ h#3FFA } DM(I0,M1)=H#0000;
{ h#3FFB } DM(I0,M1)=H#0000; {TIMER NOT USED, CLEARED}
{ h#3FFC } DM(I0,M1)=H#0000;
{ h#3FFD } DM(I0,M1)=H#0000;
{ h#3FFE } DM(I0,M1)=H#0000; {DM WAIT STATES}
{ h#3FFF } DM(I0,M1)=H#101B; {SPORT0 ENABLED}

{BOOT PAGE 0, 3 PM WAITS}
{3 BOOT WAITS}

rts;

{___}

.ENDMOD;

Listing 6.17 Automatic Dialing Routine (DTMFMAIN.DSP)Listing 6.17 Automatic Dialing Routine (DTMFMAIN.DSP)Listing 6.17 Automatic Dialing Routine (DTMFMAIN.DSP)Listing 6.17 Automatic Dialing Routine (DTMFMAIN.DSP)Listing 6.17 Automatic Dialing Routine (DTMFMAIN.DSP)

66666

440440440440440

Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

6.66.66.66.66.6 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Atal, B.S. June 1974. “Effectiveness of Linear Prediction Characteristics of
the Speech Wave for Automatic Speaker Identification and Verification,”
Journal of the Acoustical Society of America, vol. 55, No. 6, pp. 1304-1312.

Gray, A.H. and J. D. Markel. October 1976. “Distance Measures for Speech
Processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-24, No. 5, pp. 380-391.

Gray, R.M., A. Buzo, A. H. Gray, and Y. Matsuyama. August 1980.
“Distortion Measures for Speech Processing,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-28, No. 4, pp. 376-376.

Itakura, F. February 1975. “Minimum Prediction Residual Principle
Applied to Speech Recognition,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. ASSP-23, No. 1, pp. 67-72.

Juang, B.H., L. R. Rabiner, and J. G. Wilpon. July 1987. “On the Use of
Bandpass Liftering in Speech Recognition,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-35, No. 7, pp. 947-954.

Makhoul, J. April 1975. “Linear Prediction: A Tutorial Review,”
Proceedings of the IEEE, vol. 63, No. 4, pp. 561-580.

Mansour, D. and B. H. Juang. November 1989. “A Family of Distortion
Measures Based Upon Projection Operation for Robust Speech
Recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, No. 11, pp. 1659-1671.

Nocerino, N., F. K. Soong, L. R. Rabiner, and D. H. Klatt. December 1985.
“Comparative Study of Several Distortion Measures for Speech
Recognition,” Speech Communication, vol. 4, pp. 317-331.

Paliwal, K.K. 1982. “On the Performance of the Quefrency-Weighted
Cepstral Coefficients in Vowel Recognition,” Speech Communication, vol. 1,
pp. 151-154.

Rabiner, L.R., S. E. Levinson, A. E. Rosenberg, and J. G. Wilpon. August
1979. “Speaker Independent Recognition of Isolated Words Using
Clustering Techniques,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-27, No. 4, pp. 336-349.

441441441441441

66666Speech RecognitionSpeech RecognitionSpeech RecognitionSpeech RecognitionSpeech Recognition

Rabiner. L.R. and M. R. Sambur. February 1975. “An Algorithm for
Determining the Endpoints of Isolated Utterances,” The Bell System
Technical Journal, vol. 54, No. 2, pp. 297-315.

Rabiner, L.R. and R. W. Schafer. 1978. Digital Processing of Speech Signals,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Rabiner, L.R. and J. G. Wilpon. 1987. “Some Performance Benchmarks for
Isolated Word Speech Recognition Systems,” Computer Speech and
Language, vol. 2, pp. 343-357.

Schroeder, M.R. April 1981. “Direct (Nonrecursive) Relations Between
Cepstrum and Predictor Coefficients,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-29, No. 2, pp. 297-301.

Tohkura, Y. April 1986. “A Weighted Cepstral Distance Measure for
Speech Recognition,” Proceedings of ICASSP 1986, pp. 761-764.

	Table of Contents
	6.1 Overview
	6.2 Speech Recognition Systems
	6.2.1 Voice Production & Modeling
	6.2.2 Training Phase
	6.2.3 Recognition Phase

	6.3 Software Implementation
	6.3.1 Word Acquisition & Analysis
	6.3.1.1 Receive Shell
	6.3.1.2 Frame Analysis
	6.3.1.3 Endpoint Detection
	6.3.1.4 Coefficient Conversion

	6.3.2 Isolated Word Recognition
	6.3.2.1 Library Routines
	6.3.2.2 Comparison
	6.3.2.3 Dynamic Time Warping
	6.3.2.4 Ranking

	6.3.3 Main Shell Routines
	6.3.3.1 Executive Shell
	6.3.3.2 Demonstration Shell

	6.4 Hardware Implementation
	6.5 Listings

