Digital Tone Detection E1 8

8.1 OVERVIEW

ADSP-2100 Family DSPs are well suited for applications that detect
sinusoidal tones. These applications include telephone signaling, remotely
controlled equipment, test instruments for tone based systems, and tone-
encoded data transmission.

One of the most common examples of tone detection is the touch-tone
signaling standard used in telephones. This standard is called DTMF, or
dual-tone, multi-frequency signaling. Since DTMF is an in-band signaling
system (superimposed on the voice channel), it rejects interference from
the simultaneously present voice frequencies. Telephones systems also use
other standards, for example, trunk switching circuits may use out-of-
band MF (multi-frequency) signaling, while other switching equipment
may use single-tone signaling.

Another common application for tone detection is remotely controlled
equipment, such as a remotely-piloted drone aircraft. These applications
pass servo instructions to the drone aircraft by radio control. These
instructions are binary numbers that are coded in frequency. Each binary
digit is assigned a frequency. The receiver reconstructs binary numbers by
detecting the presence (logic “1”) or the absence (logic ““0”) of each
possible tone.

Digital tone detection applications usually have fast execution speeds and
require minimum memory storage. You can take advantage of these
features by coding tone detection as a sub task of a larger, single-chip DSP
application, or by using a single DSP to simultaneously handle tone
processing for many independent channels.

DTMF tone detection and generation is covered in Chapter 14, of Digital
Signal Processing Applications Using the ADSP-2100 Family, Volume 1. Refer
to that chapter for more details on the Goertzel method of tone detection
and validation, as well as precision sine wave generation using fast
polynomial expansions.

481

8

482

Digital Tone Detection

8.2 IMPLEMENTATION

This section outlines the steps you can use to implement the tone detection
subroutines included at the end of this chapter.

8.21 Choosing A Sampling Frequency

Sometimes your application dictates the sampling frequency. This is true
for telephone band applications where the local telephone administration
specifies a sampling frequency (8000 Hz, for example). For applications
where you choose the frequency, remember that the Nyquist theory states
that the minimum sampling frequency must be at least twice the
frequency of the highest frequency you want to process.

Once you have a list of frequencies, to help you select the best sampling
frequency, factor each frequency into its prime factors. Listings 8.1 and 8.2
contain two C programs (FACTOR.C and PRIMES.C) to help you. Once
each frequency is broken down into its constituent prime factors, pick out
the prime factors that are most common to the greatest number of
frequencies, then multiply the prime factors together. Call the resulting
product “A”. The best sampling frequency is an integer multiple of “A”
that is greater than or equal to twice the highest input frequency of
interest.

Listing 8.3 (BESTFS.C) is a C program that verifies if the chosen sampling
frequency is the best fit. The program sweeps through the specified range
of sampling frequencies and calculates the maximum squared mismatch
error for the tone set. The mismatch error is how closely the tone of
interest matches the integral subdivisions of the sampling frequency.
Frequencies with many common prime factors will match more precisely.

For a given tone set, the mismatch error-squared is calculated for each
individual tone. The largest mismatch in the tone set is chosen as the
maximum error-squared value for the tone set at that sampling frequency.
This is the term that should be minimized. The following equation
describes the mismatch error-squared:

() = e 0 D [
A e (VB ()

where E2(i) is the mismatch error-squared and n is the nearest integer.

BESTFS.C stores the resulting error values in a file called BESTFS.ERR and
displays them on the terminal screen. To find the best sampling frequency,

Digital Tone Detection

sort the error file alphabetically using any sort utility. You may want to
plot the error values before sorting them to graphically identify a
minimum.

8.22 Picking The Best Value Of N For The Goertzel Iterations

The Goertzel algorithm operates on a sample-by-sample basis, like an IR
filter. After N iterations, or N samples received, the output value of this
algorithm is the Goertzel output of interest. This output value is
equivalent to what a single-frequency DFT calculates. You can think of the
Goertzel algorithm as an IIR filter with an output that is sampled after
every N samples. Consider the following parameters when you select a
value for N:

= Leakage Loss
= Frequency Resolution

e Detection Time

8221 Leakage Loss

The Goertzel algorithm has the same frequency characteristics as the DFT
algorithm. In other words, if an N-point DFT is performed on a data
sequence sampled at frequency Fg, the output frequency samples,
sometimes called frequency bins, are equally spaced at Fs/N. If a tone is
present that matches an integer multiple of Fg/N, it is completely
contained in one of the output frequency bins. If however, the tone falls
between the center of two adjacent frequency bins, the total energy is
distributed among several neighboring frequency bins. This phenomenon
is called spillage, or leakage. See Chapter 6, One-Dimensional FFTs, of
Digital Signal Processing Applications Using the ADSP-2100 Family, Volume
1 for more information.

You can think of the frequency samples as if they were output frequency
samples of an FFT or DFT calculation. Therefore, you can imagine that all
frequency samples are present, even though the actual implementation
only calculates the frequency samples of interest. As a result, spillage into
neighboring bins appears to decrease the level present in the bin of
interest. In a tone detection application, the missing energy (that,
mathematically, is spilled into nearby bins) is never seen in the
neighboring bins since the neighboring bin levels are not calculated.

483

8

484

Digital Tone Detection

Because of leakage, for a given sampling frequency and a given frequency
to detect, some values of N show poor performance, some values have
better performance, and some values perform optimally. In the optimal
case, the tone to detect is an exact integer multiple of Fs/N, for example
when Ftone=k*Fs/N. When decoding several frequencies, try to pick one
value of N for all frequencies. This means that some frequencies will
closely match k*Fs/N, and some will not. The reason you should try to
use a single N value for multiple frequencies is because the valid Goertzel
outputs are available after N samples are processed, so the valid output of
all frequencies is available at the same time.

8222 Frequency Resolution

Frequency resolution is the second consideration. Larger values for N
provide better frequency resolution. If N is large, Fs/N (the individual
frequency bin widths, or the spacing of the resulting frequency samples) is
small. This means that the detector will reject more off-frequency tones, or
resolve between two tones that are close together.

8223 Detection Time

You must also consider detection time. When you choose a larger value
for N, it takes longer for N samples to be received, and consequently, the
time between valid Goertzel outputs is longer. This directly affects the
speed at which the decoder detects the presence of a tone.

Listing 8.4, called BESTN.C, tests the “goodness of fit” for values of N
within a specified range, given the sampling frequency. BESTN.C stores
the results in a file called BESTN.ERRand displays them on the terminal
screen. To find the best values for N, sort the error file alphabetically using
any sort utility. The result is a list of the best values for N at the chosen
sampling frequency in descending order of “goodness of fit.”

8.2.2.4 Tone Detection Categories
Tone detection code falls into two categories:

= Symbol detection (applications such as DTMF)—More than one tone is
detected, then tested for relative amplitudes, number of tones present,
etc. to validate the presence of a symbol (made up tones).

= Independent, single, tone, presence detection—Any number of tones
can be present, and the indication of a tone’s presence is the only
requirement. Tests, such as relative amplitudes and number of tones,
are not necessary in this case.

Digital Tone Detection

Symbol detection follows the DTMF decoder described in Chapter 14 of
Volume 1. That example only listens for two tones from a predetermined
alphabet. By changing coefficients and post-testing thresholds, the symbol
detector can be fine-tuned or reprogrammed for other tone standards,
such as CCITT 2-of-6 Multi-Frequency (MF), call progress tones, US Air
Force 412L, US Army TA-314/PT, etc.

Of the two categories of tone detection code, single tone presence
detection is simpler to implement. Most of the post-testing can be
eliminated and replaced by simpler energy presence (threshold
comparison) tests. Section 8.2.3.5 contains an example.

Both categories use the basic Goertzel algorithm for each tone. Voice
rejection requires the monitoring of energy content at the intended tone’s
second harmonic. Slight changes must be made when switching from
single-channel decoding to multiple-channel decoding. When decoding
several channels, the input samples of all channels are stored in a circular
buffer. The buffer length is equal to the number of channels. When you
decode a single channel, the replace the circular buffer with a single data
memory variable.

8225 Tone Detection Example

This example was designed for single tone detection on the frequencies
shown in Table 8.1. Using FACTOR.C, the prime factors of the frequencies
of interest are also shown in Table 8.1. To choose a good sampling
frequency, pick the prime factors that are common to most of the
frequencies of interest. In this example, most of the frequencies have the
prime factors 3, 3, 5, 5, and 7. Multiply them together (the product is 1575),
and select the integer multiple of that product that is the next one higher
than twice the highest input frequency of interest.

Frequencies Of Interest Prime Factors
11025 Hz 3,3,55,5,7
12600 Hz 2,2,2,3,3,55,7
14175 Hz 3,333,557
15750 Hz 2,3,3,5505,7
17325 Hz 3,3,55/7,11
18900 Hz 2,2,3,3,3,55,7
20475 Hz 3,3,55/7,13
23175 Hz 3,3,5,5,103

Table 8.1 Sample Frequencies & Prime Factors

8

485

8 Digital Tone Detection

The highest frequency of interest is 23175 Hz, therefore sampling must
occur at a minimum frequency of 46350 Hz. The smallest integer multiple
of 1575 that is greater than 46350 is 47250. This example uses BESTFS.Cto
verify the choice (47250 Hz). You can verify the sampling frequency by
testing all integer frequencies between 46350 Hz and 49000 Hz with the
following syntax:

c:> bestfs 46350 49000 1 | sort | more

Table 8.2 is an example of the resulting output. You can see that 47250 Hz
is not the best choice; within the range 46350-49000 Hz, the best sampling
frequency is 48600 Hz.

*** gcanning f_sample from 46350.000000 Hz to 49000.000000 Hz,
stepping 1.000000 Hz ***

0.183674 = maxerrsq
0.183719 = maxerrsq
0.183734 = maxerrsq
0.183764 = maxerrsq
0.183794 = maxerrsq
0.183810 = maxerrsq
0.183855 = maxerrsq
0.183855 = maxerrsq
0.183900 = maxerrsq
0.183915 = maxerrsq
0.183946 = maxerrsq
0.183976 = maxerrsq
0.183991 = maxerrsq
0.184036 = maxerrsq
0.184036 = maxerrsq
0.184082 = maxerrsq
0.184097 = maxerrsq
0.184127 = maxerrsq
0.184158 = maxerrsq

etc,
0.24.9947 = maxerrsq

0.249947 = maxerrsq
0.250000 = maxerrsq

(at f_sample = 48600.000000)
(at f_sample = 48599.000000)
(at f_sample = 48601.000000)
(at f_sample = 48598.000000)
(at f_sample = 48602.000000)
(at f_sample = 48597.000000)
(at f_sample = 48596.000000)
(at f_sample = 48603.000000)
(at f_sample = 48595.000000)
(at f_sample = 48604.000000)
(at f_sample = 48594.000000)
(at f_sample = 48605.000000)
(at f_sample = 48593.000000)
(at f_sample = 48592.000000)
(at f_sample = 48606.000000)
(at f_sample = 48591.000000)
(at f_sample = 48607.000000)
(at f_sample = 48590.000000)
(at f_sample = 48608.000000)

(at f_sample = 47249.000000)
(at f_sample = 47251.000000)
(at f_sample = 47250.000000)

Table 8.2 Sorted Sampling Frequencies (BESTFS.ERR)

Next, look for the best value for N. For this example, assume that you
must detect tones within 10 ms, and you want a frequency resolution of
approximately 100 Hz. You can use the following syntax to select N:

c:> bestn 46350 0 600 | sort | more

486

Digital Tone Detection 8

This example evaluates all values for N from N=0 through N=600, at a
sampling frequency of 48600 Hz. The program calculates the maximum
square error of all tones of interest and their respective closest integer
multiples of Fs/N. The program also displays the associated detection
time in milliseconds and frequency resolution width in Hertz. Table 8.3 is
a sample of the resulting output. The results show that several values for
N are acceptable. If N=463, or N=493, it fits the requirements fairly well. If
N=432, the tone set matches optimally with the sampling frequency of
48600 Hz, the detection time is less than 9 ms, but the frequency resolution

is wider than the 100 Hz. For this example, let N=463.

*** gcanning N from o to 600, where f_sample = 48600.000000 Hz ***
0.000000 = maxerrsq (N= 0) detect= 0.000 ms

0.000000 = maxerrsq (N= 216) detect=
0.000000 = maxerrsq (N= 432) detect=
0.047346 = maxerrsq (N= 31) detect=
0.047346 = maxerrsqg (N= 185) detect=
0.047346 = maxerrsq (N= 247) detect=
0.047346 = maxerrsqg (N= 401) detect=
0.047346 = maxerrsqg (N= 463) detect=
0.057955 = maxerrsqg (N= 308) detect=
0.057955 = maxerrsqg (N= 340) detect=
0.057955 = maxerrsq (N= 524) detect=
0.057955 = maxerrsq (N= 556) detect=
0.057957 = maxerrsq (N= 92) detect=
0.057957 = maxerrsq (N= 124) detect=
0.090552 = maxerrsq (N= 371) detect=
0.090552 = maxerrsq (N= 493) detect=
0.090552 = maxerrsq (N= 587) detect=
0.090557 = maxerrsq (N= 61) detect=
0.090557 = maxerrsq (N= 155) detect=
0.090557 = maxerrsq (N= 277) detect=
0.105024 = maxerrsq (N= 34) detect=
0.105024 = maxerrsq (N= 182) detect=
0.105024 = maxerrsq (N= 250) detect=
0.105029 = maxerrsqg (N= 398) detect=
0.105029 = maxerrsq (N= 466) detect=
0.111108 = maxerrsq (N= 354) detect=
0.111108 = maxerrsqg (N= 510) detect=

etc,
0.250000 = maxerrsq (N= 585) detect=

0.250000 = maxerrsq (N= 588) detect=
0.250000 = maxerrsqg (N= 594) detect=

Table 8.3 Sorted Values For N (BESTN.ERR)

4.444 ms
8.889 ms
0.638 ms

3.807 ms
5.082 ms
8.251 ms
9.527 ms
6.337 ms
6.996 ms
10.782 ms
11.440 ms
1.893 ms

2.551 ms
7.634 ms
10.144 ms
12.078 ms
1.255 ms

3.189 ms
5.700 ms
0.700 ms

3.745 ms
5.144 ms
8.189 ms
9.588 ms
7.284 ms
10.484 ms

12.037 ms
12.099 ms
12.222 ms

resolu= Infinity Hz
resolu= 225.000 Hz
resolu= 112.500 Hz
resolu= 1567.742 Hz
resolu= 262.703 Hz
resolu= 196.761 Hz
resolu= 121.197 Hz
resolu= 104.968 Hz
resolu= 157.792 Hz
resolu= 142.941 Hz
resolu= 92.748 Hz
resolu= 87.410 Hz
resolu= 528.261 Hz
resolu= 391.935 Hz
resolu= 130.997 Hz
resolu= 98.580 Hz
resolu= 82.794 Hz
resolu= 796.721 Hz
resolu= 313.548 Hz
resolu= 175.451 Hz
resolu= 1429.412 Hz
resolu= 267.033 Hz
resolu= 194.400 Hz
resolu= 122.111 Hz
resolu= 104.292 Hz
resolu= 137.288 Hz
resolu= 95.294 Hz

resolu= 83.077 Hz
resolu= 82.653 Hz
resolu= 81.818 Hz

487

8

488

Digital Tone Detection

Next, the Goertzel coefficients must be calculated. Use the following
syntax to start COEFGEN.(QListing 8.5):

c:> coefgen
N > 463
f sample > 48600

The resulting output is shown in Table 8.4. The columns show each tone to
detect with its associated k(flt), k(int), and k(err) values. The k(flt) value is
the floating point value of N*(ftone/fsample); k(int) is the closest integer
to k(flt). This integer is the index of the frequency bin for the closest
match. If k(flt) and k(int) are equal, they are perfectly matched and there is
no leakage loss occurs. Discrepancies between k(flt) and k(int) lead to
leakage losses, and this difference is measured in the k(err) variable. The
“goodness of fit” of the N value is judged by the largest squared k(err)
value of all the individual ftgne values.

N=463.000000
fs=48600.000000

f _tone[0]= 11025.00 Hz

k(flt)=105.032410

k(int)=105

k(err)= +0.032410

coef(flt)= +0.290734 coef(2.14 hex)=0x129B
f_tone[1]= 12600.00 Hz

k(flt)=120.037041

k(int)=120

k(err)= +0.037041

coef(flt)= -0.115286 coef(2.14 hex)=0xF89F
f _tone[2]= 14175.00 Hz

k(flt)=135.041672

k(int)=135

k(err)= +0.041672

coef(flt)= -0.516546 coef(2.14 hex)=0xDEF1
f_tone[3]= 15750.00 Hz

k(flt)=150.046295

k(int)=150

k(err)= +0.046295

coef(flt)= -0.896475 coef(2.14 hex)=0xC6A0
f _tone[4]= 17325.00 Hz

k(flt)=165.050919

k(int)=165

k(err)= +0.050919

coef(flt)= -1.239387 coef(2.14 hex)=0xBOAE

Digital Tone Detection

f_tone[5]= 18900.00 Hz

k(flt)=180.055557

k(int)=180

k(err)= +0.055557

coef(flt)= -1.531119 coef(2.14 hex)=0x9E02
f_tone[6]= 20475.00 Hz

k(flt)=195.060181

k(int)=195

k(err)= +0.060181

coef(flt)= -1.759627 coef(2.14 hex)=0x8F62
f _tone[7]= 23175.00 Hz

k(flt)=220.782410

k(int)=221

k(err)= +0.217590

coef(flt)=-1.979731 coef(2.14 hex)=0x814C

Table 8.4 Goertzel Coefficients

The Goertzel algorithm uses a single, real coefficient for each ftgne to
detect. That coefficient is listed in a column with the hexadecimal
equivalent for the ADSP-2100 family software. Since the equation for the
coefficient is 2*cos(21*k(int)/N), the coefficient values are in the range -
2.0<coef<2.0. For this reason, the coefficients are interpreted by the
Goertzel algorithm is 2.14 format.

Listing 8.6 is an example of ADSP-2100 tone detection code. It establishes
a routine that waits for interrupts. For each interrupt, the sample is
counted and fed into the Goertzel feedback loop. When the sample count
reaches N, the Goertzel feedforward instructions are executed, and a
frequency-domain sample is calculated. Since N is the same for all tones
being detected, all the results are available during the interrupt period.
The following software checks the energy level found in each frequency
bin of interest, and compares it to the predefined threshold. If the
threshold is exceeded, a routine indicates the presence of that particular
tone.

8.3 BENCHMARKS FOR THE EXAMPLE PROGRAM

The example detailed above detects the presence of energy in eight
frequencies. The levels are threshold tested, and a binary number is
output as a result every N input samples. Benchmarks will vary as specific
applications deviate from this example, although this example is
fundamental enough to demonstrate how you can evaluate your own
benchmarks. Table 8.5 shows typical benchmark performance of the
ADSP-2100A in this example application, as well as processor loading
values for a similar example sampled at 8 kHz instead of the 48600 Hz.

8

489

490

Digital Tone Detection

Memory Usage: PM RAM DM RAM

102 Locations 302 Locations
DSP Processor Speed Number of Cycles Execution Time
ADSP-2101/2111 20 MHz 75 3.75 us
ADSP-2171 33 MHz 75 2.25 us

Table 8.5 Typical Benchmark Performance

Monitoring more frequencies requires more computation time. Having a
faster sampling rate reduces the amount of time available for Goertzel
feedback iterations between interrupts. The number of instructions
available between interrupts is equal to the sampling period divided by
the instruction cycle time.

The above example assumes that the ADSP-2100A is executing at a 12.5
MHZz instruction rate. Dividing 12.5 MHz by the sampling frequency of
48600 Hz yields 257 available instructions between interrupts to maintain
real-time processing.

Choosing different values of N has no impact on the computational
benchmark. As long as the Goertzel feedback iterations can be performed
between input samples, the Goertzel algorithm works. Large values of N
mean that it takes the algorithm longer to generate an output value after N
input iterations.

The example code uses very little memory. A major portion of the data
memory storage (256 places out of 302 total) is taken by a lookup table for
the p-law PCM conversion. The ADSP-2101/2 has this function built into
its serial ports and it does not usurp data memory storage.

Program memory is limited to 94 total instructions with 8 coefficients. All
program memory and data memory requirements are easily fulfilled by
the on-chip memory of the ADSP-2100 Family processors, leaving the
remaining on-chip memory space for other DSP functions.

8.4 LISTINGS

This sections contains the listing for this chapter.

Digital Tone Detection 8

#include <stdio.h>

int prime[2000], factor[2000];
FILE *fp;

int isaprime(a, howmany)
int a, howmany;

L
inti;
for (i=0; i<howmany; i++)
if (a==prime[i]) return(1);
return(0);

int findaprime(a, howmany)
int a, howmany;

L
int1,
for (i=1; i<howmany; i++)

if ((a%prime]i])==0) return(primel[i]);
return(0);

main(argc,argv)
int argc; char **argv;

{
inti, j, orig, freq, num, maxprimes;

if (argc!=2)
{

printf(“number to factor> *);
scanf(“%d”,&freq);

}
sscanf(argv[1],"%d",&freq);

else

fp=fopen(“primes.dat”,"r");

!f (fp==NULL) {printf(“\nerror opening primes.dat\n”);return(-1);}

i=0;

while (feof(fp)) fscanf(fp,”%d",&prime[i++]);
maxprimes=i-1;

printf(\n%d primes read\n”, maxprimes);
fclose(fp);

(listing continues on next page)

491

8 Digital Tone Detection

orig=freq;
i=0;
while(1)

if (isaprime(freq,maxprimes)==1) { factor[i++]=freq; break; }
num=findaprime(freq,maxprimes);

freq=freq/num;

factor[i++]=num;

}
printf(“\n %d factored out = “, orig);
for (j=0; j<i; j++) printf(“%d “, factor]j]);
printf(“\n");
}

Listing 8.1 Prime Factors Routine (FACTOR.C)

#include <stdio.h>

int fact, num, k, prime[1000];
FILE *fp;

main()

fp=fopen(“primes.dat”,"w");
fprintf(fp,"%4d\n",1);
fprintf(fp,"%4d\n",2);
num=2;

k=0;

while(num<=2000)

fact=num-1;
while((num/fact*fact)!=num)

—fact;
if (fact<=1)

prime[k] = num;

fprintf(fp,"%4d\n”,prime[K]);
k++;

}

printf(“\r%d”,num);
++num;

}
printf("\nDONE.\n");

Listing 8.2 Prime Numbers Routine (PRIMES.C)

492

Digital Tone Detection 8

#include <string.h>
#include <stdio.h>
#include “tones.def”

int round(x)
float x;

{

}

if (x>0) return ((int) (x+0.5));

else if (x<0) return ((int) (x-0.5));

else if (x==0) return (0);

else printf(*\7bad data in round() function!”);
return(-1);

char flname[]="bestfs.err";
char f2name[]="bestfs.fs";

main(argc,argv)
int argc;
char **argv;

{

int i, Kint;

float f_min, f_max, f_incr, f_sample;
float kflt, maxerrsqr, errsqr;

FILE *f1, *f2;

if (argc!=4)

printf(\n\7usage: %s <f_min> <f_max> <f_incr>\n",argv[0]);
printf(\n(where f_min, f_max, f_incr are real numbers)\n”);
return(-1);

sscanf(argv[1],"%f",&f_min);

sscanf(argv[2],"%f",&f _max);

sscanf(argv[3],"%f",&f_incr);

printf(“*** scanning f_sample from %f Hz to %f Hz,
stepping %f Hz **\n”,f _min,f_max,f_incr);

if (f_min>=f_max)

printf(“f_min>=f_max!");
return(-1);

else if ((f_max<f_min+f_incr)||(f_incr<=0))

printf(“bad f_incr value!™);
return(-1);

(listing continues on next page)

493

8

494

Digital Tone Detection

else for (i=0; i<HOW_MANY_TONES; i++)
{
if (f_min<(2*f_toneli]))
{

printf(“\n\7Nyquist violation:\nf_tone=%f
at f_sampling=%f\n",f_toneJi],f_min);
return(-1);

}
fl=fopen(flname,"w"); if (f1==NULL) printf(“\nerror opening %s\n",f1);
f2=fopen(f2name,"w"); if (f2==NULL) printf(“\nerror opening %s\n",f2);
for (f_sample=f_min; f_sample<=f_max; f_sample=f_sample+f_incr)

maxerrsqr=0;
for (i=0; i<kHOW_MANY_TONES; i++)

{

kflt=f_sample/f_tone[i];

kint=round(kflt);
errsqr=(kflt-(float)(kint))*(kflt-(float) (kint));
if (errsgr>maxerrsqgr) maxerrsqr=errsqr;

printf(“\n%f = maxerrsqr (at f_sample = %f)”,
maxerrsqr, f_sample);
if ((f1)&&(f2))

fprintf(f1,"%f\n",maxerrsqr);
fprintf(f2,"%f\n",f_sample);

printf(\nyou may want to pipe output to sort utility”);
printf(“\nor plot %s vs %s\n”,flname,f2name);
fclose(fl); fclose(f2);

Listing 8.3 Best Sampling Frequency Routine (BESTFS.C)

Digital Tone Detection 8

#include <string.h>
#include <stdio.h>
#include “tones.def”

int round(x)
float x;

{

}

if (x>0) return ((int) (x+0.5));

else if (x<0) return ((int) (x-0.5));

else if (x==0) return (0);

else printf(*\7bad data in round() function!”);
return(-1);

char finame[]="bestn.err”;
char f2name[]="bestn.N";

main(argc,argv)
int argc;
char **argv;

{

int i, N, minN, maxN, kint;
float f_sample, kflt, errsqr, maxerrsqr, detect, binwidth;
FILE *f1, *f2;

if (argc!=4)

printf(\nusage: %s <f_sample Hz [%%f] > <minN [%%d] > <maxN [%%d]
>\n",argv[0]);
return(-1);

sscanf(argv[1],"%f",&f_sample);

sscanf(argv[2],"%d”,&minN);

sscanf(argv[3],"%d",&maxN);

printf(“*** scanning N from %d to %d, where f_sample
= %f Hz ***\n”,minN,maxN,f_sample);

if (minN>=maxN)

printf(“minN>=maxN!");
return(-1);

}

(listing continues on next page)

495

8 Digital Tone Detection

fl=fopen(flname,"w"); if (f1==NULL) printf(“\nerror opening %s\n",f1);
f2=fopen(f2name,"w"); if (f2==NULL) printf(“\nerror opening %s\n",f2);
for (N=minN; N<=maxN; N++)

{

maxerrsqr=0;

binwidth=f_sample/(float)N;

for (i=0; i<kHOW_MANY_TONES; i++)

{

kflt=((float)(N))*(f_tone[i]/f_sample);
kint=round(kflt);
errsqr=(kflt-(float)(kint))*(kflt-(float) (kint));
if (errsgr>maxerrsqr) maxerrsqr=errsqr;

}
detect=((float)(N)*1000.0)/f_sample;
printf(“\n%f =maxerrsqr “,maxerrsqr);
printf(“(N=%6d) “,N);
printf(“detect= %10.3f ms “,detect);
printf(“resolu= %10.3f Hz",binwidth);
if ((f1)&&(f2))

{
fprintf(f1,"%f\n",maxerrsqr);
fprintf(f2,"%d\n",N);

}

printf(\nyou may want to pipe output to sort utility”);
printf(\nsort according to incr maxerrsqr”);
printf(“\nor plot %s vs %s\n”,flname,f2name);
fclose(f1);

fclose(f2);

}
Listing 8.4 Best Number Of Samples Routine (BESTN.C)

496

Digital Tone Detection 8

#include <math.h>
#include <stdio.h>
#include “tones.def”

int round(x)
float x;
{
if (x>0) return ((int) (x+0.5));
else if (x<0) return ((int) (x-0.5));
else if (x==0) return (0);
else printf(*\7bad data in round() function!”);
return(-1);

}

int flt_to_Q15(x, txt)
float x;

char txt[];

{

int i, err=0;

i = round(x*32768.0);

if (x>=1.0) {i=Ox7FFF; err=1;}

if (x<(-1.0)) {i=0x8000; err=(-1); }
sprintf(txt, “%08X\n”, i);
txt[0]=txt[4]; txt[1]=txt[5]; txt[2]=txt[6];
txt[3]=txt[7]; txt[4]="\000";

return(err);

}

main(argc,argv)

int argc;

char **argv;

{
int i, kint;
float N, f_sample, kflt, kerr, coef;
char Q15coef[255];

switch(argc) /* get missing arguments */

case 1. printf("N > *); scanf(“%f",&N);

case 2: printf(“f_sample > *“); scanf(“%f",&f_sample);

case 3: break;

default: printf("\n\7usage: %s <N [%%f]> <f_sample [%%f]>\n");
return(-1);

}

(listing continues on next page)

497

8 Digital Tone Detection

switch(argc) /* read the arguments */

case 3: sscanf(argv[2],"%f",&f _sample);
case 2: sscanf(argv[1],"%f",&N);
case 1. break;

}
printf("\nN=%f\nfs=%Mfn",N,f_sample);
for (i=0; i<HOW_MANY_TONES; i++)

{
kflt=N*(f_tone][i]/f_sample);
kint=round(kflt);
kerr=kflt-(float)(kint);
coef=2*cos((2*PI*(float)kint)/N);
flt_to_Q15(coef/2, Q15coef);
printf(“\nf_tone[%2d]=%10.2f Hz",i,f _tonel[i]);
printf(“\n\t\tk (flt)=%10.6f" kflt);
printf(“\n\t\tk(int)=%4d" kint);
printf(“\n\t\tk(err)=%+10.6f" kerr);
printf(“\n\t\tcoef(flt)=%+10.6f coef(2.14 hex)=0x%s",coef,Q15coef); }
printf(“\n");

}

Listing 8.5 Coefficient Generating Routine (COEFGEN.C)

498

Digital Tone Detection 8

.module/ram/abs=0 Tone_Detection;

{
This example shows digital tone detection using the Goertzel algorithm.
This example was designed to run on the ADSP-2100 Evaluation Board.
Actual implementation in other systems would require modifications
such as redefining the i/o ports and the data i/o handling.
Analog Devices, Inc. — DSP Division — Norwood, MA 02062 — 4-April-1989
}
.const f sample =48600;
.const N =463;

.const tones =8;
.const tones_x_2 =16;

varlcirc Q1Q2_buffftones_x_2]; { Goertzel feedback loop storage elements }
var outcode;

var in_sample; { input samples (scaled down 8 bits) }
.var countN; {counts samples 1, 2, 3, ..., N }
var mu_lookup_table[256]; { mu-law to linear tbl(scaled down 8 bits) }
var min_tone_level[tones]; { min “tone-present” mnsqr level }
var mnsgr[tones]; { 1.15 mnsqr Goertzel result values }
var bits[tones]; { 1.15 mnsqr Goertzel result values }
.var/pm/ram/circ

coefs[tones]; {2.14 Goertzel coefs: 2*cos(2*PI*k/N) }
.var/pm trashbin; { see release note about writes to pm(14) }
.port codec; { telephone band speech i/o on Eval. Bd. }
.port cntl_port; { part of above hardware
.port dac; { D/A converter used to monitor decode out }
Jinit coefs[00]: h#129B00, h#F89F00, h#DEF100, h#C6A000;
Jinit coefs[04]: h#BOAEOO, h#9E0200, h#8F6200, h#814C00;

.init mu_lookup_table:< mu255.¢g8 >;
.init min_tone_level: h#0003,h#0003,h#0003,h#0003,h#0003,h#0003,h#0003,h#0003;

.init bits: h#0001,h#0002,h#0004,h#0008,h#0010,h#0020,h#0040,h#0080;
{
{ MAIN CODE
{
IRQO: rti;
IRQ1: rti;
IRQ2: rti;
IRQ3: jump sample;
id="trashbin; { see release note about writes to pm(14) }
call setup;
call restart;
imask=b#1000; { enable IRQ3 for samples }
here: jump here;

(listing continues on next page)

499

8 Digital Tone Detection

{
{ INTERRUPT SERVICE ROUTINE
{
{ GET A SAMPLE TO PROCESS
{
sample: ax0=h#00FF;
ax1="mu_lookup_table;
ayO=dm(codec); { read codec, mu-law data
af=ax0 and ayO0;
ar=axl1+af;
i6=ar;
si=dm(i6,m4); { look-up scaled, linear value
dm(in_sample)=si; { store input sample }
i0="Q1Q2_buff;
i5="coefs;
{——DECREMENT SAMPLE COUNTER
{
decN: ayO=dm(countN);
ar=ay0-1,
dm(countN)=ar;
if It jump skip_backs;
{——GOERTZEL FEEDBACK PHASE
{
feedback:
ayl=dm(in_sample); {get input sample AY1=1.15
cntr=tones;
do backs until ce;
mx0=dm(i0,m0), myO=pm(i5,m4); {get Q1 and COEF Q1=1.15, COEF=2.14}
mr=mx0*my0(rnd), ay0O=dm(i0,m1); {mult, get Q2 MR=2.30, Q2=1.15 }
sr=ashift mrl by +1 (hi); {change 2.30to 1.15
ar=srl-ay0; {Q1*COEF - Q2
ar=ar+ayl; {Q1*COEF - Q2 + input
dm(i0,m0)=ar; {result = new Q1
backs: dm(i0,m0)=mx0; {old Q1 = new Q2
rti;
{—WHEN FEEDBACK PHASE IS DONE
{
skip_backs:

call feedforward;

call test_and_output;
call restart;

rti;

500

Digital Tone Detection 8

SUBROUTINES

{
{
{
{

%6%%%%%%%%%%%%%%%%%% ONE TIME ONLY SETUP %%%%%%%%%%%%%%%%%%}
{ initializes TP3051 codec control ports (ADSP-2100 Evaluation Board), }

{ M and L registers in address generators, and sets ICNTL to edge-sens. }
{

s

etup: si=0;
dm(cntl_port)=si;

I0 =tones_x_2;

1= 0;

2 = 0;

I3 = 0;

14 = 0;

I5 =tones_x_2;

16 = 0;

mo = 1;

ml=-1,

m4 = 1;

icntl=b#01111;

rts;
{%%%%%%%% %% %% %% %% %% %% EVERY TIME SET U P %%%%%%%%%%%%%%%%%%%%%%%%%)
{ resets pointers to top of buffers, resets counter values, }
{ clears Goertzel feedback buffers to zero, etc }
{ }
restart:

i0="Q1Q2_buff;

i5="coefs;

cntr=tones_x_2;
do zloop until ce;

zloop: dm(i0,m0)=0;
ax0=N;
dm(countN)=axo;
rts;

(listing continues on next page)

501

8 Digital Tone Detection

{%%%%%%%%%% GOERTZEL FEEDFORWARD PHASE %%%%%%%%%%%%}

}
feedforward: cntr=tones;
i2="mnsqr;
do forwards until ce;
mx0=dm(i0,m0); { get two copies of Q1 1.15 }
my0=mx0;
mx1=dm(i0,m0); { get two copies of Q2 1.15 }
myl=mx1;
ar=pm(i5,m4); { get COEF 2.14 }
mr=0;
mf=mx0*my1(rnd); { Q1*Q2 1.15 }
mr=mr-ar*mf(rnd); {-Q1*Q2*COEF 2.14 }
sr=ashift mrl by +1 (hi); {2.14 ->1.15 format conv. 1.15 }
mr=0;
mrl=sri,
mr=mr+mx0*myO0(ss); {Q1*Ql + -Q1*Q2*COEF 1.15 }
mr=mr+mx1*my1(rnd); {Q1*Q1l + Q2*Q2 + -Q1*Q2*COEF 1.15 }
forwards: dm(i2,m0)=mr1; { store in mnsqr buffer 1.15 }
rts;
{%%%%% TEST TONE LEVELS AND OUTPUT COD E %%%%%%}
{ }
test_and_output:
i3="bits;
i1="min_tone_level,
i2="mnsqr;
cntr=tones;
af=pass 0;
do thresholds until ce;
ax1=dm(i3,m0); { get bit position to set/clear }
ax0=dm(i2,m0); { get tone mnsqr calculated value }
ay0=dm(i1,mO0); { get min tone level threshold value }
ar=ax0-ay0; { mnsqgr - min_tone_level }
thresholds:
if gt af=ax1 or af;
ar=pass af;
dm(outcode)=ar; { write bit-coded result to output }
rts;
.endmod;

Listing 8.6 Tone Detection Routine (EXAMPLE.DSP)

502

	Table of Contents
	Chapter 8: Digital Tone Detection
	8.1 Overview
	8.2 Implementation
	8.2.1 Choosing a Sampling Frequency
	8.2.2 Picking the Best Value of N for the Goertzel Iterations
	8.2.2.1 Leakage Loss
	8.2.2.2 Frequency Resolution
	8.2.2.3 Detection Time
	8.2.2.4 Tone Detection Categories
	8.2.2.5 Tone Detection Example

	8.3 Benchmarks for the Example Program
	8.4 Listings

