
Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design 99999

503503503503503

9.19.19.19.19.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
The ADSP-2100 family of Digital Signal Processors is well suited for
implementing complex measurement and control algorithms in embedded
control systems with high sampling rates. This is mainly due to their
computing speed, which is much greater than that of conventional
microcontrollers and microprocessors. Typical application areas include
servo motor control, process control, robot arm control, disk drive head
control, flight control and general servomechanisms.

This chapter presents the implementation of several common control
algorithms on the ADSP-2100 family of DSP processors, and presents
software and hardware design methods as well as guidelines for
designing high speed digital control systems with the ADSP-2100 family.
A table of representative benchmarks for common digital control
algorithms can be found at the end of this chapter.

9.29.29.29.29.2 DIGITAL CONTROL SYSTEMS OVERVIEWDIGITAL CONTROL SYSTEMS OVERVIEWDIGITAL CONTROL SYSTEMS OVERVIEWDIGITAL CONTROL SYSTEMS OVERVIEWDIGITAL CONTROL SYSTEMS OVERVIEW
A controller is a system used to control closed-loop feedback systems. It
implements algebraic algorithms, such as filters and compensators, in
order to regulate, correct, or change the behavior of a controlled system.
Controllers can be implemented using analog or digital circuitry. A digital
control system is comprised of a digital controller, the controlled plant (or
system), and the necessary input/output devices. A general digital control
system is shown in Figure 9.1. Note the analog-to-digital (A/D) and
digital-to-analog (D/A) converters that are used to interface the digital
controller with the plant (which is a continuous time system). There are
several advantages to using a digital controller implementation instead of
an analog one. In the case of digital controllers, complex control
algorithms can be implemented in software or firmware rather than in
special hardware. Digital controller designs and parameters can be
changed without affecting the hardware. In digital control systems
increased noise immunity is guaranteed and parameter drift is eliminated.
Such systems are more reliable, maintainable, and testable. Finally, digital
control systems feature reduced size, power, weight and costs.

99999

504504504504504

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

+
DIGITAL

CONTROLLER D/A

OUTPUTS
COMMAND

INPUTS

-+
PLANT

A/D

Figure 9.1 General Digital Control SystemFigure 9.1 General Digital Control SystemFigure 9.1 General Digital Control SystemFigure 9.1 General Digital Control SystemFigure 9.1 General Digital Control System

Analog Devices’ ADSP-2100 family of Digital Signal Processors has
several beneficial features for implementing digital controllers. These
features include the following:

• Single-cycle instruction execution
• Three arithmetic function units arranged in parallel
• Single-cycle 16x16-bit multiplications
• Single-cycle ([16x16]+40 bit) multiply-accumulate operations with 40-

bit results
• Single-cycle 16-bit additions, subtractions and logical operations
• Single-cycle bit shifts (up to 32 bits at a time)
• Efficient execution of 32-bit (or higher) arithmetic operations
• Efficient modulo addressing for data and coefficient arrays in memory
• No cycle penalty for looped code execution
• Single-cycle access of internal and external memory
• Single or multi-cycle parallel accesses of external peripherals

(i.e., A/D, D/A)
• Up to four levels of nested external interrupts
• On-chip interval timer and serial ports
• Low power consumption (CMOS) and power down “idle” mode
• Easy-to-read algebraic assembly language syntax
• Complete set of hardware and software development tools

9.39.39.39.39.3 DIGITAL CONTROL SYSTEM MODELDIGITAL CONTROL SYSTEM MODELDIGITAL CONTROL SYSTEM MODELDIGITAL CONTROL SYSTEM MODELDIGITAL CONTROL SYSTEM MODEL
Most practical control systems use feedback in their operation. Figure 9.2
shows a model for a typical closed-loop digital control system. R(z), E(z),
U(z) and Y(z) are the z-transforms of the reference input, the error signal,
the control signal, and the plant output respectively. G(z) is the transfer
function corresponding to the digital controller, while P(z) is the transfer
function describing the input-output behavior of the object to be

505505505505505

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

controlled (e.g., plant). This does not imply that the object to be controlled
(e.g., a plant) must be a discrete system, but rather that it must be modeled
as one. P(z) is also assumed to contain the transfer characteristics of the
A/D and the D/A converters that are needed to implement a real system.

∑ G(z)

-

+
P(z)

E(z) U(z)
Y(z)R(z)

Figure 9.2 Digital Control System ModelFigure 9.2 Digital Control System ModelFigure 9.2 Digital Control System ModelFigure 9.2 Digital Control System ModelFigure 9.2 Digital Control System Model

9.49.49.49.49.4 DIGITAL CONTROL SYSTEM HARDWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM HARDWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM HARDWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM HARDWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM HARDWARE IMPLEMENTATION
A digital controller G(z), as shown in Figure 9.2, must be able to observe
and alter certain characteristics of the controlled system. For example, an
ADSP-2100 family-based digital controller can be used to control fast and
accurate positioning of an actuator shaft upon an external command R(z).
In this case, the output of the controller can be used to alter the amount of
current U(z) that is fed into the actuator windings which in turn would
move the actuator shaft. In a closed-loop system, the same controller
would also need to observe the position of the actuator at all times. This
can be achieved by recording the position Y(z) of the shaft at specific
intervals and feeding it back to the controller. This would allow the
controller to compare the desired shaft position to the actual measured
position and make the necessary adjustments in the actuator current. This
simple controller example can serve as a starting point for constructing an
actual hardware implementation.

The block diagram for a digital control system based on the ADSP-2102 is
shown in Figure 9.3. The ADSP-2102 performs the digital control
algorithms by executing instructions from its on-chip program memory
ROM. The ROM is also used to store fixed coefficients and scale factors.
The processor uses its on-chip data memory RAM and program memory
RAM to store incoming data values and other intermediate variables.

The ADSP-2102 accepts up to three external hardware interrupts. In a
typical digital control system, the processor operation is interrupt-driven.
In the system shown in Figure 9.3, an external clock (sample clock) drives
one of the ADSP-2102 interrupts. The same clock is typically used to
initiate A/D conversions at regular intervals. Other interrupts can be set
by the host to notify the ADSP-2102 of new commands, expiration of a
watchdog timer, etc.

99999

506506506506506

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

SAMPLING
CLOCK

A/D
CV

OE

ANALOG IN

ANALOG OUTD/A

ADDRESS
DECODING

ADSP-2102

HOST SERIAL LINK SPORT0

F0

A0:13

D0:15 DATA

CS

RD

WRDMS

IRQ2

TASK DONE FLAG

(POSITION
FEEDBACK)

(CURRENT
OUTPUT)

Figure 9.3 ADSP-2101-Based Actuator ControllerFigure 9.3 ADSP-2101-Based Actuator ControllerFigure 9.3 ADSP-2101-Based Actuator ControllerFigure 9.3 ADSP-2101-Based Actuator ControllerFigure 9.3 ADSP-2101-Based Actuator Controller

The ADSP-2102 outputs its control current via a D/A converter, whose
output is amplified before it is fed into the motor. The processor receives
its feedback from a position encoder which can be an optical shaft
encoder, a synchro-to-digital converter, a resolver-to-digital converter, or
some other circuitry with an A/D converter. The A/D label is used in the
figure since feedback essentially involves an analog-to-digital conversion.
Data transfers between the processor and the converters are done over the
16-bit data bus. The converters are mapped into the ADSP-2102’s external
data memory space. This allows the processor to access them as memory
locations. The address decoding circuitry shown in Figure 9.3 is used to
map every converter to a separate data memory location. If the converters
have slow data bus interfaces, the processor can extend the duration of the
converter access cycles by inserting wait states. The data converters can
also be tied to the ADSP-2102’s serial ports if it is more convenient to do
so. Several serial input and serial output converters are available from
Analog Devices, such as the AD766, AD7772, AD7868, and AD7878.

507507507507507

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

The ADSP-2102 receives its reference position command R(z) from a host
processor or an internal software routine that is running concurrently with
the shaft positioning program. Figure 9.3 depicts the case where serial port
0 on the ADSP-2102 is used to exchange commands and results with a host
processor. The flag out pin on the ADSP-2102 can be used to notify the
host of the completion of a specific task.

The ADSP-2100 family processors can interface with multiple A/D and
D/A converters in order to monitor and control several motors, actuators,
or processes. These converters can simply be added as memory-mapped
peripherals like the ones shown in Figure 9.3. Several general purpose and
special purpose data converters for digital control applications are
available from Analog Devices.

9.59.59.59.59.5 DIGITAL CONTROL SYSTEM SOFTWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM SOFTWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM SOFTWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM SOFTWARE IMPLEMENTATIONDIGITAL CONTROL SYSTEM SOFTWARE IMPLEMENTATION
The software running in a digital controller system is responsible for
executing the control algorithms which are represented by G(z) in the
model on Figure 9.2. Typically, G(z) can be broken into smaller sub-tasks.
For example it may be necessary to execute a state estimator, several notch
filters and some PID (Proportional, Integral, Derivative) control as a whole
function. Generally, a separate portion of the software must manage the
input/output operations of the controller with the host and other
peripherals. A diagnostic error checking and handling routine is also
usually developed, to be run at powerup or at specified intervals during
program execution. Finally there is a main manager routine that is
responsible for the orchestration of these different subroutines.

The software must be organized in a modular manner in order for the
main managing program to call every sub-task as a subroutine. The
ADSP-2100 Family Development Software tools encourage modular
programming. The subroutines can be written, assembled, and debugged
as independent modules which can later be linked with the main manager
program. Parameter passing and symbolic coding is supported on the
assembler, linker and simulator. An example of a fully coded notch filter
algorithm is shown in a later section of this application note. The ADSP-
2100 Assembler and Simulator manuals describe the software tools.

Memory management is very straightforward in the ADSP-2100 family
processors. The Data memory (DM) space is typically used for variables
and data storage. The incoming A/D samples can be stored in data
memory buffers. A large number of variables and intermediate values can

99999

508508508508508

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

also be stored in DM space. The Program memory (PM) space is divided
into two sections: the PM instruction space and the PM data space. The
instruction space is used to store the programs to be executed. The PM
space can also be freely used for additional data and variable storage. This
data space is usually used to store filter coefficients and various other
tables that may need to be present during program execution. The ADSP-
2100 family processors can read or write to both DM and PM locations in a
single instruction cycle and execute an arithmetic operation at the same
time. This not only allows classical control algorithms to execute at very
high speeds but also allows very efficient implementation of adaptive
control algorithms. This is due to the fact that in adaptive control, filter
coefficients must be updated periodically with every new incoming
sample. These coefficient values can be updated easily in the PM space
and can be readily available on the next processing cycle.

The following sections discuss the implementation of first, second, and
higher-order control algorithms with the ADSP-2100 family processors.

9.69.69.69.69.6 DIGITAL PID CONTROLLER DESIGNDIGITAL PID CONTROLLER DESIGNDIGITAL PID CONTROLLER DESIGNDIGITAL PID CONTROLLER DESIGNDIGITAL PID CONTROLLER DESIGN
The controller G(z) shown in Figure 9.2 can be designed to vary its output
U(z) in relation to the error feedback E(z). A PID (Proportional, Integral,
Derivative) controller derives its name from the fact that its output U(z) is
a weighted sum of the error signal, its integral, and its derivative. PID
controllers are widely-used building blocks in a large variety of servo
control applications.

Since analog PID controllers are well understood, it is often desirable to
start a digital PID controller design in the continuous domain and then
create discrete equivalents. In the continuous time case if E(t) is the error
feedback, the PID output U(t) can be expressed as:

U(t) = Kp•E(t) + Kd•dE(t)/dt + Ki• o∫ t E(π)dπ (1)

where Kp, Kd, and Ki are the gains associated with the proportional,
derivative, and integral terms, respectively. Equation (1) can be
represented in the frequency domain by using Laplace transforms:

U(s) = Kp•E(s) + Kd•s•E(s) + (Ki/s) E(s) (2)

where it is assumed that the initial conditions are 0. The equations (1) and
(2) are graphically represented in Figure 9.4.

509509509509509

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

∑ U(s)E(s)

Kp

s.Kd

Ki/s

The coefficients Kp, Kd and Ki must be determined during the design
process. These coefficients will depend on the desired controller
characteristics and will be varied in different systems.

Other types such as PD (Proportional, Derivative) and PI (Proportional,
Integral) controllers can also be expressed in a similar manner to the PID
relationships in (1) and (2). These controllers lack either the differential or
the integral term that exists in the relationships above.

The next step is to derive the discrete equivalent for the controller
described by equations (1) and (2). The backward difference is defined as
the discrete-time equivalent for the continuous-time derivative of a
function. It is obtained by:

∆ƒ(t) = [ƒ(t) – ƒ(t–T)] / T (3)

where T is the sample period.

The definite sum is defined as the discrete time equivalent for the
continuous time integral of a function. It is obtained by:

a 
 b ƒ(τ) = T [ƒ(a+T) + ƒ(a+2T) + · · · · + ƒ(b)] (4)

where T is the sample period.

Figure 9.4 PID Block DiagramFigure 9.4 PID Block DiagramFigure 9.4 PID Block DiagramFigure 9.4 PID Block DiagramFigure 9.4 PID Block Diagram

99999

510510510510510

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

By applying the relationships shown in (3) and (4) to the ones shown in (1)
and (2) we obtain U(n) and U(z), which are the discrete equivalents of the
PID output U(t):

U(n) = U(n-1) + A1•E(n) + A2•E(n-1) + A3•E(n-2) (5)

and

U(z) / E(z) = [A1•z2 + A2•z + A3] / [z
2 - z] (6)

with

A1 = Kp + Ki•T + Kd / T
A2 = - [Kp + 2Kd /T]
A3 = Kd / T

Transfer functions and difference equations for PD and PI controllers can
also be derived in a similar manner. Figure 9.5 shows the results for these
as well as for the PID controllers.

PD Controller PI Controller PID Controller

Definitions A1 = +KP
KD

T

= –A
2

KD

T

A1 = KP + KI T

= –A
2

KP

A1 = KP + KI T
KD

T
+

= –A
2

[KP + 2
KD

T

A
3

=
KD

T

Transfer

Function,

C (z)

E (z)

A1 z + A
2

z

A1 z + A
2

z – 1

A1 z A
2

2 z+ + A
3

z 2 – z

Difference

Equation
U (n)= E (n) + A1 A

2
E (n–1)

U (n) = U (n–1) + E (n)A1
+ A

2
E (n–1)

U (n) = U (n–1) + E (n)A1
+ E (n–1) + A

3
E (n–2)

]

A
2

Figure 9.5 PD, PI, & PID ControllersFigure 9.5 PD, PI, & PID ControllersFigure 9.5 PD, PI, & PID ControllersFigure 9.5 PD, PI, & PID ControllersFigure 9.5 PD, PI, & PID Controllers

511511511511511

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

9.79.79.79.79.7 PID CONTROLLER IMPLEMENTATIONPID CONTROLLER IMPLEMENTATIONPID CONTROLLER IMPLEMENTATIONPID CONTROLLER IMPLEMENTATIONPID CONTROLLER IMPLEMENTATION
An ADSP-2100 family assembly language subroutine that implements the
PID algorithm is shown in Listing 9.1. There are a number of registers that
need to be initialized in order to execute this subroutine. It may be
sufficient to do this initialization only once (e.g. on powerup) if other
algorithms that are being executed do not need to use these registers. In
most typical cases, however, some of these registers may need to be set
every time the PID subroutine is called.

The PID routine in Listing 9.1 takes its input from the AR register. This
register must contain the 16-bit error input E(n). E(n) is assumed to be
already computed before the PID subroutine is called. The output of the
PID algorithm, U(n), is made available in the SR1 register.

After the initial design of a digital PID controller, all coefficients must be
scaled down by the same factor. This is necessary in order to conform to
the 16-bit fixed-point fractional number format as well as to insure that
overflows won’t occur in the final stage of the multiply-accumulate
operations. The scaled down coefficients are the ones that get stored in the
processor’s memory. The result of the multiply and accumulate operations
is eventually scaled up before being output to the controlled system. The
choice of a proper scaling factor depends greatly on the design objectives
and in some cases it may even be unnecessary. The PID controller
coefficients are usually designed with a commercial software package in
higher precision arithmetic than 16 bits. System performance deviates
from ideal when such high precision PID coefficients are quantized to 16
bits and further scaled down. In systems that require stringent PID
specifications, careful simulations of quantization and scaling effects must
be performed.

During the initialization for the PID routine, the scaling factor for the
coefficients must be stored in the SE register. The index register I0 points
to the circular data memory buffer that contains the previous error inputs
and the previous PID output. This buffer must be initialized to zero at
powerup unless some non-zero initial condition is desired. The index
register I4, on the other hand, points to the circular program memory
buffer that contains the scaled PID coefficients. These coefficients include
a term “B” (for U(n-1)), which is equal to the value “ 1/scaling factor ”.
This value is derived from the fact that the real coefficient for U(n-1) is “ 1
” and that it must be scaled down along with the other coefficients. The
order that these scaled coefficients are stored in program memory is: A2,
A1, A0, B.

99999

512512512512512

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

.MODULE PID_CONTROLLER;

{ This is a PID controller subroutine that executes the following equation:

U(n) = B • U(n-1) + A0 • E(n) + A1 • E(n-1) + A2 • E(n-2)

Calling Parameters:

AR= error input E(n), [E(n) = Y(n) - R(n)]
I0 —> circular delay line buffer for E(n-2), E(n-1) and U(n-1)

this delay line buffer must be initialized to zero at powerup
I4 —> circular buffer for the scaled coefficients A2, A1, A0, B
M0,M4= 1
L0 = 3
L4 = 4
SE= scaling factor for the coefficients

Return Value:
SR1= output sample U(n)

Altered Registers:
MX0, MX1, MY0, MR, SR

Computation Time:
ADSP2101 : 8 Instruction Cycles
ADSP2102 : 8 Instruction Cycles
ADSP2100 : 12 Instruction Cycles
ADSP2100A : 12 Instruction Cycles

All coefficients and data values are assumed to be in 1.15 format
}

.ENTRY PID;

PID: MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MX0*MY0 (SS), MX1 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX1*MY0 (SS), MY0 = PM(I4,M4);
MR = MR+AR*MY0(SS), MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX0*MY0 (RND), DM(I0,M0)= MX1;
SR = ASHIFT MR1 (HI), DM(I0,M0) = AR;
DM(I0,M0) = SR1;
RTI;

.ENDMOD;

Listing 9.1 PID_CONTROLLER RoutineListing 9.1 PID_CONTROLLER RoutineListing 9.1 PID_CONTROLLER RoutineListing 9.1 PID_CONTROLLER RoutineListing 9.1 PID_CONTROLLER Routine

513513513513513

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

The PID core routine fetches the coefficients and data values from memory
following the sequence that they have been stored. These values are
multiplied and accumulated until all of them are accessed. Note that both
of the address generators are used in parallel with the multiply-
accumulator throughout these operations. Finally, the data memory buffer
is updated with the new samples and the output is obtained by scaling up
the result of the multiplication and accumulation operations.

The PID routine executes in 8 instruction cycles on the ADSP-2101 and
ADSP-2105. It executes in 12 instruction cycles on the ADSP-2100 and
ADSP2100A. In the case that the initialization registers have been
modified by other routines, it may be necessary to execute up to 7
overhead setup cycles before calling the core PID routine.

9.89.89.89.89.8 N’TH ORDER DIGITAL CONTROLLER DESIGNN’TH ORDER DIGITAL CONTROLLER DESIGNN’TH ORDER DIGITAL CONTROLLER DESIGNN’TH ORDER DIGITAL CONTROLLER DESIGNN’TH ORDER DIGITAL CONTROLLER DESIGN
There are several methods to design high order digital controllers. This
section briefly outlines three approaches and cites some references on this
topic. The three methodologies are “analog-controller-based digital
design”, “direct digital design” and “state-space design”.

9.8.19.8.19.8.19.8.19.8.1 Analog-Controller-Based Digital DesignAnalog-Controller-Based Digital DesignAnalog-Controller-Based Digital DesignAnalog-Controller-Based Digital DesignAnalog-Controller-Based Digital Design
This is a very common way of designing digital controllers. In this
method, an analog controller that satisfies the desired requirements is first
created using well established analog design procedures. This controller is
then transformed into the digital domain and implemented.

The analog controller design may be performed in the s-plane using
common design techniques such as root-locus methods, Bode plots, the
Routh-Hurwitz criterion, state variable techniques and other methods. The
resulting analog transfer function is then transformed into a digital
transfer function in the z-domain. Finally, the z-domain transfer function
is inverse-z transformed into a difference equation that can be
implemented on a digital processor.

The transformation from the s-domain to the z-domain can be
accomplished using various techniques such as the matched pole-zero
method, the bilinear (Tustin) transformation the method of mapping
differentials, the impulse-invariance method, the step-invariance method,
and the zero-order hold technique.

99999

514514514514514

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

The most commonly used of these methods is the bilinear transformation.
This transformation approximates the s-domain transfer function with a z-
domain transfer function by use of the substitution:

s = (2/T) (z-1/z+1) (7)

Analog controllers that are in parallel or cascade maintain their respective
structures after going through this transformation. The Tustin
transformation maps the stable region of the s-plane exactly into the stable
region of the z-plane although the entire jω-axis of the s-plane is stuffed
into the 2π-length of the unit circle. Obviously a great deal of distortion
takes place in the mapping in spite of the consistency of the stability
regions. This distortion can be corrected by using a frequency pre-warping
scheme. The pre-warping matches the single most important critical
frequency in the analog domain and the digital domain. This method
replaces each “s” in the analog transfer function with

(ω1 / ω2) s

where w1 is the frequency to be matched in the digital transfer function
and with

ω2 = (2/T) tan (ω1T/2) (8)

Bilinear transformation with frequency pre-warping is one of the most
commonly used analog based design techniques. The most significant
drawback of this type of design is that the digital controller that results
from it is only an approximation to the analog one. The analog controller
puts an implicit upper bound on the digital controller’s performance.
More information on the other analog based controller design methods
can be found in References 1 and 3.

9.8.29.8.29.8.29.8.29.8.2 Direct Digital DesignDirect Digital DesignDirect Digital DesignDirect Digital DesignDirect Digital Design
This method allows us to perform the control system design directly in the
digital domain. Thus, the design can be carried out in the z-plane. The
approximations and limitations that arise from starting in the s-domain
and transforming into the z-domain are eliminated. Conventional design
techniques can be used to place the closed-loop poles and zeros exactly
where appropriate. Some of these z-domain techniques include the root-
locus method, the pole-zero cancellation method and the w-transform.
More detailed information on these methods can be found in References 1
and 3.

515515515515515

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

9.8.39.8.39.8.39.8.39.8.3 State-Space DesignState-Space DesignState-Space DesignState-Space DesignState-Space Design
The digital controller design methods discussed above are designated as
classical design methods. Same design tasks can be accomplished by using
a different set of techniques based on the state-space or modern control
formulation. Modern control design methodology is especially
advantageous when designing controllers for multi-input and multi-
output systems. However, single-input and single-output systems that are
discussed in this application note can also be efficiently designed using
state-space methods. More detailed information on this topic can be found
in References 1 and 3.

9.99.99.99.99.9 N’TH ORDER DIGITAL CONTROLLER STRUCTURESN’TH ORDER DIGITAL CONTROLLER STRUCTURESN’TH ORDER DIGITAL CONTROLLER STRUCTURESN’TH ORDER DIGITAL CONTROLLER STRUCTURESN’TH ORDER DIGITAL CONTROLLER STRUCTURES
Standard second-order (N=2) digital controller implementation is directly
analogous to IIR (Infinite Impulse Response) filter implementations. These
second-order controller blocks can be implemented as biquad second
order IIR filter sections. A second-order biquad section is shown on Figure
9.6 and its corresponding transfer function in the z-domain is given by:

G(z) = U(z)/E(z) = (B0 + B1•z-1 + B2•z-2)/(1 + A1•z-1 + A2•z-2) (9)

Z –1

B0X(n) Y(n)+

Z –1

Z –1

Z –1

B
1

B
2

A
1

A
2

Figure 9.6 Second-Order Biquad StructureFigure 9.6 Second-Order Biquad StructureFigure 9.6 Second-Order Biquad StructureFigure 9.6 Second-Order Biquad StructureFigure 9.6 Second-Order Biquad Structure

99999

516516516516516

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

where A1, A2, B0, B1 and B2 are coefficients that determine the desired
impulse response of the system G(z). Furthermore, the corresponding
difference equation for a biquad section is given by:

U(n) = B0•E(n) + B1•E(n-1) + B2•E(n-2) – A1•U(n-1) – A2•U(n-2) (10)

Higher order (N’th order) controllers can be obtained by cascading several
biquad sections with appropriate coefficients. An example is shown on
Figure 9.7 where three biquad sections are cascaded to construct the
overall G(z) transfer function. Another way to design higher order
controllers is to use only one complicated single section. This approach is
also called the direct form implementation. The block diagram of a direct
form fourth-order controller is shown on Figure 9.8 as an example.

E(n) U(n)

G(z) =
U(z)

E(z)
= (z)D

1 2
D (z)

3
D (z)

D (z)1 2D (z) 3D (z)

• •

Figure 9.7 Cascaded Biquad SectionsFigure 9.7 Cascaded Biquad SectionsFigure 9.7 Cascaded Biquad SectionsFigure 9.7 Cascaded Biquad SectionsFigure 9.7 Cascaded Biquad Sections

The direct form implementation executes faster but generates larger
numerical errors than the biquad implementation. The biquads can be
scaled separately and then cascaded in order to minimize the coefficient
quantization and the recursive accumulation errors. The coefficients and
data in the direct form implementation must be scaled all at once, which
gives rise to larger errors. Another disadvantage of the direct form
implementation is that the poles of such single stage high order
polynomials get increasingly sensitive to quantization errors. The second-
order polynomial sections (i.e., biquads) are less sensitive to quantization
effects.

517517517517517

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

U(n)+

+

+

+

+

Z –1

Z –1

Z –1

Z –1

1A

+

+

+

+

E(n)

2A

3A

4A

1B

2B

3B

4B

0B

Figure 9.8 Fourth-Order Direct Form ControllerFigure 9.8 Fourth-Order Direct Form ControllerFigure 9.8 Fourth-Order Direct Form ControllerFigure 9.8 Fourth-Order Direct Form ControllerFigure 9.8 Fourth-Order Direct Form Controller

9.109.109.109.109.10 N’TH ORDER CONTROLLER IMPLEMENTATIONN’TH ORDER CONTROLLER IMPLEMENTATIONN’TH ORDER CONTROLLER IMPLEMENTATIONN’TH ORDER CONTROLLER IMPLEMENTATIONN’TH ORDER CONTROLLER IMPLEMENTATION
An ADSP-2100 family assembly language subroutine that implements a
high order controller is shown in Listing 9.2. The subroutine is arranged as
a module and is labeled BIQUAD_CONTROLLER. There are a number of
registers that need to be initialized in order to execute this subroutine. It
may be sufficient to do this initialization only once (e.g. on powerup) if
other executed algorithms do not need these registers. In most typical
cases, however, some of these registers may need to be set every time the
BIQUAD_CONTROLLER subroutine is called. It may sometimes be
beneficial, from a modular software point of view, to always initialize all
the setup registers as a part of this subroutine.

The BIQUAD_CONTROLLER routine in Listing 9.2 takes its input from
the SR1 register. This register must contain the 16 bit error input E(n). E(n)
is assumed to be already computed before this subroutine was called. The
output of the controller is also made available in the SR1 register.

99999

518518518518518

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

After the initial design of a high order controller, all coefficients must be
scaled down in each biquad stage separately. This is necessary in order to
conform to the 16-bit fixed-point fractional number format as well as to
insure that overflows won’t occur in the final multiply-accumulate
operations in each stage. The scaled down coefficients are the ones that get
stored in the processor’s memory. The operations in each biquad are
performed with scaled data and coefficients and are eventually scaled up
before being output to the next one. The choice of a proper scaling factor
depends greatly on the design objectives and in some cases it may even be
unnecessary. The controller coefficients are usually designed with a
commercial software package in higher precision arithmetic than 16 bits.
System performance deviates from ideal when such high precision
coefficients are quantized to 16 bits and further scaled down. In systems
that require stringent specifications, careful simulations of quantization
and scaling effects must be performed.

During the initialization of the BIQUAD_CONTROLLER routine, the
index register I0 points to the data memory buffer that contains the
previous error inputs and the previous biquad section outputs. This buffer
must be initialized to zero at powerup unless some non-zero initial
condition is desired. The index register I1 points to another buffer in data
memory that contains the individual scale factors for each biquad. The
buffer length register L1 is set to zero if the controller has only one biquad
section. L1 is initialized with the number of biquad sections in the case of
multiple biquads. The index register I4, on the other hand, points to the
circular program memory buffer that contains the scaled biquad
coefficients. These coefficients are stored in the order : B2, B1, B0, A2, A1
for each biquad. All of the individual biquad coefficient groups must be
stored in the same order that the biquads were cascaded in such as: B2, B1,
B0, A2, A1, B2*, B1*, B0*, A2*, A1*,B2**...etc The buffer length register L4 must
be set to the value given by: (5 x number of biquad sections). Finally, the
loop counter register “CNTR” must be set to the number of biquad
sections since the controller code will be executed as a loop.

The core of the BIQUAD_CONTROLLER routine starts its execution at the
“biquad” label. The routine is organized in a looped fashion where the
end of the loop is the instruction labeled “sections”. Each iteration of the
loop executes the computations for one biquad. The number of loops to be
executed is determined by the CNTR register contents. The SE register is
loaded with the appropriate scaling factor for the particular biquad at the
beginning of each loop iteration. After this operation, the coefficients and
the data values are fetched from memory in the sequence that they have

519519519519519

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

.MODULE BIQUAD_CONTROLLER;

{ This is an Nth order cascaded biquad controller subroutine

Calling Parameters:

SR1= error input E(n), [E(n) = Y(n) - R(n)]
I0 —> delay line buffer for E(n-2), E(n-1), Y(n-2), Y(n-1)
L0 = 0
I1 —> scaling factors for each biquad section
L1 = 0 (in the case of a single biquad)
L1 = number of biquad sections (for multiple biquads)
I4 —> scaled biquad coefficients
L4 = 5 x [number of biquads]
M0,M4 = 1
M1 = -3
M2 = 1 (in the case of multiple biquads)
M2 = 0 (in the case of a single biquad)
M3 = (1 - length of delay line buffer)

Return Value:
SR1 = output sample U(n)

Altered Registers:
SE, MX0, MX1, MY0, MR, SR

Computation Time (with N even):
ADSP-2101/2102: (8 x N/2) + 5 instruction cycles
ADSP-2100/2100A: (8 x N/2) + 5 + 5 instruction cycles

All coefficients and data values are assumed to be in 1.15 format
}

.ENTRY CONTROLLER;

BIQUAD: CNTR = number of biquads
DO SECTIONS UNTIL CE;

SE = DM(I1,M2);
MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MX0*MY0(SS), MX1 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX1*MY0(SS), MY0=PM(I4,M4);
MR = MR+SR1*MY0(SS), MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX0*MY0(SS), MX0 = DM(I0,M1), MY0 = PM(I4,M4);
DM(I0,M0) = MX1, MR = MR+MX0*MY0(RND);

SECTIONS: DM(I0,M0) = SR1, SR = ASHIFT MR1 (HI);
DM(I0,M0) = MX0;
DM(I0,M3) = SR1;
RTS;

.ENDMOD;

Listing 9.2 BIQUAD_CONTROLLER RoutineListing 9.2 BIQUAD_CONTROLLER RoutineListing 9.2 BIQUAD_CONTROLLER RoutineListing 9.2 BIQUAD_CONTROLLER RoutineListing 9.2 BIQUAD_CONTROLLER Routine

99999

520520520520520

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

been stored. These numbers are multiplied and accumulated until all of
the values for a particular biquad have been accessed. The result of the last
multiply accumulate is rounded to 16 bits and upshifted by the scaling
value. At this point the “biquad” loop is executed again or the controller
computations are completed by doing the final update to the delay line.
The delay lines for data values are always being updated within the
biquad loop as well as outside of it.

The controller coefficients must be scaled appropriately so that no
overflows occur after the upshifting operation between the biquads. If this
is not insured by design, it may be necessary to include some overflow
checking between the biquads.

The execution time for an N’th order BIQUAD_CONTROLLER routine
can be calculated as follows (assuming that the appropriate registers have
been initialized and N is a power of 2):

ADSP2101/2105 : (8 x N/2) + 4 processor cycles
ADSP2100/2100A : (8 x N/2) + 4 + 5 processor cycles

It may take up to a maximum of 11 cycles to initialize the appropriate
registers every time the controller is called. But typically this number will
be lower in most applications.

9.119.119.119.119.11 NOTCH FILTER EXAMPLE FOR THE ADSP-2100ANOTCH FILTER EXAMPLE FOR THE ADSP-2100ANOTCH FILTER EXAMPLE FOR THE ADSP-2100ANOTCH FILTER EXAMPLE FOR THE ADSP-2100ANOTCH FILTER EXAMPLE FOR THE ADSP-2100A
A fully coded ADSP-2100A notch filter program is presented in this
section. The program executes two cascaded biquad sections and is
designed to run standalone on an ADSP-2100A. The processor reads the
input samples from a data memory mapped A/D converter and sends the
filtered output to a data memory mapped D/A converter. The operation
of the ADSP-2100A is interrupt driven. The occurrence the IRQ0 interrupt
notifies the processor that there is a new sample ready at the A/D
converter output. The ADSP-2100A normally waits in a wait loop,
processes the incoming samples upon an interrupt and returns to the wait
loop again. This process starts with a reset or powerup and repeats until a
powerdown or another reset occurs. The full code of the notch filter is
shown in Listing 9.3.

The program starts with some variable, constant and port declarations.
These declarations allow the program to refer to specific memory
addresses symbolically. This greatly eases the software maintenance and

521521521521521

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

debugging tasks at the assembly level. In order to run this program, the
NOTCH_FILTER assembly module shown in Listing 9.3 must be first
assembled using the ADSP-2100 assembler. It must then be linked with an
architecture description file that was built using the ADSP-2100 system
builder. This architecture file should be specific to the particular hardware
configuration that the ADSP-2100A is being built in. The assembly module
also needs to be linked with three data files along with the architecture
file. The first data file must contain the scale factors, the second one must
contain the scaled coefficients and the third one must contain the initial
values for the delay taps of the filter.

{THIS IS AN ADSP2100A ASSEMBLY PROGRAM THAT EXECUTES A FOURTH}
{ORDER NOTCH FILTER IN A CASCADED BIQUAD IMPLEMENTATION}

.MODULE/RAM NOTCH_FILTER; {The name of the module}

.VAR/PM/CIRC COEFFICIENTS[10]; {These are the declarations for}

.VAR/DM DATA_BUFFER[6]; {data and program memory buffers}

.VAR/DM/CIRC SCALE_FACTORS[2];

.PORT AD_CONVERTER; {There is one input port and one}

.PORT DA_CONVERTER; {output port in the system}

.INIT COEFFICIENTS: <COEFF.DAT>; {The memory buffers}

.INIT DATA_BUFFER: <INITIAL.DAT>; {are initialized here}

.INIT SCALE_FACTORS: <SCALE.DAT>;

JUMP BIQUAD; {Interrupt vector for IRQ0}
RTI;
RTI;
RTI;

I0 = ^DATA_BUFFER; {These are the proper initializations}
L0 = 0; {for the index, length and modify}
I1 = ^SCALE_FACTORS; {registers to be used}
L1 = %SCALE_FACTORS;
I4 = ^COEFFICIENTS;
L4 = %COEFFICIENTS;
M0 = 1;
M1 = -3;
M2 = 1;
M3 = -5;
M4 = 1;
ICNTL = B#00001; {Set IRQ0 to be edge sensitive}
IMASK = B#0001; {Enable IRQ0 interrupt only}

WAIT: JUMP WAIT; {Wait for IRQ0 interrupt to occur}

(listing continues on next page)

99999

522522522522522

Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

{The interrupt service routine below executes the two biquad sections of the filter}

BIQUAD: SR1=DM(AD_CONVERTER); {Read the A/D converter}
CNTR = %SCALE_FACTORS;
DO SECTIONS UNTIL CE;

SE = DM(I1,M2);
MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MX0*MY0(SS), MX1 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX1*MY0(SS), MY0=PM(I4,M4);
MR = MR+SR1*MY0(SS), MX0 = DM(I0,M0), MY0 = PM(I4,M4);
MR = MR+MX0*MY0(SS), MX0 = DM(I0,M1), MY0 = PM(I4,M4);
DM(I0,M0) = MX1, MR = MR+MX0*MY0(RND);

SECTIONS: DM(I0,M0) = SR1, SR = ASHIFT MR1 (HI);
DM(I0,M0) = MX0;
DM(I0,M3) = SR1;
DM(DA_CONVERTER) = SR1; {Send the filtered output to the D/A}
RTI; {Return to the wait loop}

.ENDMOD;

 ADSP-2100 Family Benchmarks For Digital Control Applications

 ADSP-2101 (60 ns) ADSP-2105 (100 ns)

PID Loop 0.48 µs 0.8 µs

FIR Filter 60 ns/tap 100 ns/tap

IIR Biquad – 16 Bit (2nd Order) 0.72 µs 1.2µs

IIR Biquad – 16 Bit (nth Order) 4N + 4 cycles 4N + 9 cycles

IIR Biquad – 32 Bit (2nd Order) 2.64 µs 4.4 µs

IIR Biquad – 32 Bit (nth Order) 16N + 12 cycles 16N + 22 cycles

256-Point FFT (Complex) 0.405 ms 0.675 ms

Matrix Multiply (3x3 * 3x1) 3.12 µs 5.2 µs

Stochastic Gradient (LMS) 2N + 9 cycles 2N + 9 cycles
N Tap Coefficient Update

Listing 9.3 NOTCH_FILTER RoutineListing 9.3 NOTCH_FILTER RoutineListing 9.3 NOTCH_FILTER RoutineListing 9.3 NOTCH_FILTER RoutineListing 9.3 NOTCH_FILTER Routine

523523523523523

99999Digital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System DesignDigital Control System Design

9.129.129.129.129.12 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Borrie, J. A. 1986. “Modern Control Systems”. Englewood Cliffs, NJ:
Prentice-Hall Inc.

Franklin, G.F., J.D. Powell and M.L. Workman 1990. “Digital Control of
Dynamic Systems”. Reading, MA: Addison-Wesley Publishing Company.

Kazanzides, P. 1985. “A Microprocessor Based Control System with
Robotics Applications”. Brown University, LEMS, Providence, RI.

Oppenheim, A. V. and A. Willsky 1983. “Signals and Systems”. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

	Table of Contents
	Chapter 9: Digital Control System Design
	9.1 Overview
	9.2 Digital Control Systems Overview
	9.3 Digital Control System Model
	9.4 Digital Control System Hardware Implementation
	9.5 Digital Control System Software Implementation
	9.6 Digital PID Controller Design
	9.7 PID Controller Implementation
	9.8 N'th Order Digital Controller Design
	9.8.1 Analog-Controller-Based Digital Design
	9.8.2 Direct Digital Design
	9.8.3 State-Space Design

	9.9 N'th Order Digital Controller Structures
	9.10 N'th Order Controller Implementation
	9.11 Notch Filter Example for the ADSP-2100A
	9.12 References

