
4 DATA ADDRESS
GENERATORS

Figure 4-0.

Table 4-0.

Listing 4-0.
Overview
This chapter describes the units that control the movement of data to and
from the processor and from one data bus to another within the processor.
These units include the following:

• Data address generators (DAGs)

• Program Memory Data (PMD) bus and Data Memory Data
(DMD) bus exchange unit

Data Address Generators (DAGs)
Every device in the ADSP-218x family contains two independent data
address generators so that both program and data memories can be
accessed simultaneously. The DAGs provide indirect addressing capabili-
ties. Both perform automatic address modification. For circular buffers,
the DAGs can perform modulo address modification.

The two DAGs differ: DAG1 generates only Data Memory (DM)
addresses, but provides an optional bit-reversal capability; DAG2 can gen-
erate both Data Memory and Program Memory (PM) addresses, but has
no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs, bear in mind that the ADSP-218x family development software
(assembler and linker) provides a direct method for declaring data buffers
as circular or linear.
ADSP-218x DSP Hardware Reference 4-1

DAG Registers
The software also provides a method for managing the placement of the
buffer in memory. Only the initializing of DAG registers must be explic-
itly programmed (see “Indirect Addressing” on page 4-4 and “Modulo
Addressing (Circular Buffers)” on page 4-5).

DAG Registers
Figure 4-1, shows a block diagram of a single data address generator.
There are three register files: the modify (M) register file, the index (I) reg-
ister file, and the length (L) register file. Each of the register files contains
four 14-bit registers that can be read from and written to via the DMD
bus.

L
REGISTERS

4 X 14

MUX

ADDRESS

DMD BUS

FROM
INSTRUCTION

ADD

I
REGISTERS

4 X 14

M
REGISTERS

4 X 14

MODULUS
LOGIC

BIT
REVERSE

142 14 14 14

14

DAG1 ONLY

FROM

INSTRUCTION

2

Figure 4-1. Data Address Generator Block Diagram
4-2 ADSP-218x DSP Hardware Reference

Data Address Generators
The I (index) registers (I0-I3 in DAG1, I4-I7 in DAG2) contain the
actual addresses used to access memory. When data is accessed in indirect
mode, the address stored in the selected I register becomes the memory
address. With DAG1, the output address can be bit-reversed by setting the
appropriate mode bit in the mode status register (MSTAT) as discussed
below or by using the ENA BIT_REV instruction. Bit-reversal facilitates FFT
addressing.

The data address generators employ a post-modify scheme; after an indi-
rect data access, the specified M (modify) register (M0-M3 in DAG1, M4-M7
in DAG2) is added to the specified I register to generate the updated I
value. The choice of the I and M registers are independent within each
DAG. In other words, any register in the I0-I3 set may be modified by
any register in the M0-M3 set in any combination, but not by those in
DAG2 (M4-M7). The modification values stored in M registers are signed
numbers so that the next address can be either higher or lower.

The address generators support both linear addressing and circular
addressing. The value of the L (length) register corresponding to an I reg-
ister (for example, L0 would correspond to I0) determines which
addressing scheme is used for that I register. For circular buffer address-
ing, the L register is initialized with length of the buffer. For linear
addressing, the modulus logic is disabled by setting the corresponding
L register to zero.

Each time an I register is selected, the corresponding L register provides
the modulus logic with the length information. If the sum of the M register
and the I register crosses the buffer boundary, the modified I register
value is calculated by the modulus logic using the L register value.

All data address generator registers (I, M, and L registers) are loadable and
readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are
sign-extended.
ADSP-218x DSP Hardware Reference 4-3

DAG Registers
Indirect Addressing
The ADSP-218x family processors allow two addressing modes for Data
Memory fetches: direct and register indirect. Indirect addressing is accom-
plished by loading an address into an I (index) register and specifying one
of the available M (modify) registers.

The L registers are provided to facilitate wraparound addressing of circular
data buffers. A circular buffer is only implemented when an L register is
set to a non-zero value. For linear (i.e. non-circular) indirect addressing,
the L register corresponding to the I register used must be set to zero.

! Do not assume that the L registers are automatically initialized or
may be ignored; the I, M, and L registers contain random values fol-
lowing processor reset. Your program must initialize the L registers
corresponding to any I registers it uses.

Linear Indirect Addressing

Setting an L register to a non-zero value activates the processor’s circular
addressing modulus logic. For linear indirect addressing, you must set the
appropriate L register to zero to disable the modulus logic.

Listing 4-1 provides an example of simple linear indirect addressing.
Listing 4-2 provides an example of linear indirect addressing that uses a
memory variable to store an address pointer.

Listing 4-1. Simple Linear Indirect Addressing

I3=0x3800;
M2=0;
L3=0;
AX0=DM(I3,M2);
4-4 ADSP-218x DSP Hardware Reference

Data Address Generators
Listing 4-2. Linear Indirect Addressing Using a Memory Variable

.VAR addr_ptr; /* variable holds address to be */
/* accessed */

I3=DM(addr_ptr); /* I3 loaded using direct addressing */
L3=0; /* disable circular addressing */
M1=0; /* no post-modify of I3 */
AX0=DM(I3,M1); /* AX0 loaded using indirect */

/* addressing */

Modulo Addressing (Circular Buffers)
The modulus logic implements automatic modulo addressing for accessing
circular data buffers. To calculate the next address, the modulus logic uses
the following information:

• The current location, found in the I register (unsigned).

• The modify value, found in the M register (signed).

• The buffer length, found in the L register (unsigned).

• The buffer base address.

From these inputs, the next address is calculated according to the formula:

Next Address = (I + M – B) Modulo (L) + B

where:

I=current address
M=modify value (signed)
B=base address
L=buffer length
M + I=modified address
ADSP-218x DSP Hardware Reference 4-5

DAG Registers
The inputs are subject to the condition:

|M| < L

This condition insures that the next address cannot wrap around the
buffer more than once in one operation.

Calculating the Base Address

The base address of a circular buffer of length L is 2n or a multiple of 2n,
where n satisfies the condition:

In other words, the base address is L “rounded” upwards to the closest
power of 2 (or its multiple). This rule implies that a certain number of
low-order bits of the base address must be zeroes.

In practice, you do not need to calculate n yourself; the linker automati-
cally places circular buffers at a proper address.

Circular Buffer Base Address Example 1

For example, let us assume that the buffer length is eight. The length of

the buffer must be less than or equal to some value 2n; n therefore, must
be three or greater. The left side of the inequality rule specifies that the

buffer length must be greater than the value 2n-1; n therefore must be
three or less. The only value of n that satisfies both inequalities is three.

Valid base addresses are multiples of 2n, so in this example valid base
addresses are multiples of eight: 0x0008, 0x0010, 0x0018, and so on.

2n 1– L 2n≤<
4-6 ADSP-218x DSP Hardware Reference

Data Address Generators
Circular Buffer Base Address Example 2

As a second example, assume a buffer length of seven. The inequality again
yields the same value for n, namely, three. With a buffer length of seven,
therefore, the valid base addresses are multiples of eight: 0x0008, 0x0010,
0x0018, and so on.

Circular Buffer Operation Example 1

Suppose that I0 = 5, M0 = 1, L0 = 3, and the base address = 4. The next
address is calculated as:

(I0 + M0 - B) mod L0 + B = (5 + 1 - 4) mod 3 + 4 = 6

The successive address calculations using I0 for indirect addressing pro-
duce the sequence: 5, 6, 4, 5, 6, 4, 5 …. For M0 = –1 (0x3FFF), I0 would
produce the sequence: 5, 4, 6, 5, 4, 6, 5, 4 ….

Circular Buffer Operation Example 2

Assume that I0 = 9, M0 = 3, L0 = 5, and the base address = 8. The
five-word buffer resides at locations 8 through 12 inclusive. The next
address is calculated as:

(I0 + M0 – B) mod L0 + B = (9 + 3 – 8) mod 5 + 8 = 12

The successive address calculations using I0 for indirect addressing pro-
duce the sequence: 9, 12, 10, 8, 11, 9 ... This example highlights the fact
that the address sequence does not have to result in a “direct hit” of the
buffer boundary.
ADSP-218x DSP Hardware Reference 4-7

DAG Registers
Bit-Reverse Addressing
The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAG1. The pivot
point for the reversal is the midpoint of the 14-bit address, between bits 6
and 7. This is illustrated in the following chart.

Individual address lines (ADDRN)

Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a mode
bit in the mode status register (MSTAT). When enabled, all addresses gener-
ated using index registers I0-3 are bit-reversed upon output. (The
modified valued stored back after post-update remains in normal order.)
This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits wide. You must
determine the first address and also initialize the M register to be used with
a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

2(14 – N)

where N is the number of bits you wish to output reversed. For a complete
example of this, refer to Section 6.6.5.2 “Modified Butterfly” in
Chapter 6, “One-Dimensional FFTs” of the applications handbook Digi-
tal Signal Processing Applications Using the ADSP-2100 Family (Volume 1).
4-8 ADSP-218x DSP Hardware Reference

Data Address Generators
Programming Data Accesses
The ADSP-218x family development software supports the declaration
and use of a simple data structure: one-dimensional arrays (or buffers).
The array may contain a single value (a variable) or multiple values (an
array). In addition, the array may be used as a circular buffer. Here is a
brief discussion of each instance, with an example of how they are declared
and used in assembly language. Complete syntax for all assembler direc-
tives is given in the Assembler Manual for ADSP-218x & ADSP-219x
Family DSPs.

Variables and Arrays
Arrays are the basic data structure of the ADSP-218x. In our literature, the
words “array,” “data buffer,” and “variable” are used interchangeably.
Arrays are declared with assembler directives and can be:

• Referenced indirectly and by name

• Initialized from immediate values in a directive or from external
data files

• Linear or circular with automatic wraparound

An array is declared and initialized with a directive such as

.VAR coefficients[128] = “filename.dat”;

This directive declares an array of 128 16-bit values located in Data Mem-
ory. The following is an example of the way in which you can reference
the array’s address and length, respectively:

I0=coefficients; /* point to address of buffer */
L0=0; /* set L register to zero */
MX0=DM(I0,M0); /* load MX0 from buffer */
ADSP-218x DSP Hardware Reference 4-9

Programming Data Accesses
These instructions load a value into MX0 from the beginning of the coeffi-
cients buffer in Data Memory. With the automatic post-modify of the
DAGs, you could execute the second of these instructions in a loop and
continuously advance through the buffer.

Alternatively, when you only need to address the first location, you can
directly use the buffer name as a label in many circumstances such as

MX0=DM(coefficients);

The linker substitutes the actual address for the label.

An array or data buffer with a length of one is a simple single-word vari-
able, and is declared in this way:

.VAR coefficient;

Circular Buffers
A common requirement in DSPs is the circular buffer. The circular buffer
is directly implemented by the processors’ DAGs, using the L (length) reg-
isters. First, you must declare the buffer as circular:

.VAR/CIRC coefficients[128];

This identifies it to the linker for placement on the proper address bound-
ary. Next, you must initialize the L register and, in the example below, the
I register and M register:

L0=length (coefficients); /* length of circular buffer */
I0=coefficients; /* point to first address of */

/* buffer */
M0=1; /* increment by 1 location each */

/* time */
4-10 ADSP-218x DSP Hardware Reference

Data Address Generators
Now a statement like

MX0=DM(I0,M0); /* load MX0 from buffer */

placed in a loop, cycles continuously through coefficients and wraps
around automatically.

PMD-DMD Bus Exchange
The PMD-DMD bus exchange unit couples the Program Memory Data
bus and the Data Memory Data bus, allowing them to transfer data
between them in both directions. Since the Program Memory Data bus is
24 bits wide, while the Data Memory Data bus is 16 bits wide, only the
upper 16 bits of PMD can be directly transferred. An internal register (PX)
is loaded with (or supplies) the additional 8 bits. This register can be
directly loaded or read when the full 24 bits are required.

Note that when reading data from Program Memory and Data Memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computational units. This read-only
path does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

PMD-DMD Bus Exchange Structure
Figure 4-2 shows a block diagram of the PMD-DMD bus exchange. There
are two types of connections provided by this circuitry.

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is nor-
mally used when data is exchanged between the Program Memory and one
of the registers connected to the DMD bus. This is the path used to write
data to Program Memory; it is not shown in the individual computational
unit block diagrams.
ADSP-218x DSP Hardware Reference 4-11

PMD-DMD Bus Exchange
The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or
the lower 8 bits of the PMD bus. Its contents can also be read to the lower
8 bits of either bus.

PM D B US

DM D BU S

16 (UPP ER)

24

16

16

M

U

X

PX

R

E

G

I

S

T

E

R

8

8
8 (LOW ER)

16

8 (LOW ER)

8 (LOW ER) 16 (UPP ER)

Figure 4-2. PMD-DMD Bus Exchange Block Diagram
4-12 ADSP-218x DSP Hardware Reference

Data Address Generators
From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read
from Program Memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit Program Memory
word are loaded into AX0 and the lower 8 bits are automatically
loaded into PX.

2. Read out automatically as the lower 8 bits when data is written to
Program Memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits
of a 24-bit Program Memory word. The 8 bits of PX are automati-
cally stored to the 8 lower bits of the memory word.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are
used and the upper 8 are discarded.

PX = AX0;

2. Read with a data move instruction, explicitly specifying the PX reg-
ister as a source. The upper 8 bits of the value read from the
register are all zeroes.

AX0 = PX;

Whenever any register is written out to Program Memory, the source reg-
ister supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to Program Memory (through the PMD bus) are important,
you should load the PX register from the DMD bus before the Program
Memory write operation.
ADSP-218x DSP Hardware Reference 4-13

Using DAGs with Hardware Overlays
Using DAGs with Hardware Overlays
Special care must be taken by the system programmer when using the
Data address generators to access hardware overlay memory regions. The
DAGs (as well as the program sequencer) work independently of the value
of the PMOVLAY and DMOVLAY registers. Thus, since memory access may not
be from the desired target memory overlay region, data corruption or
undesired program operation could occur. The following are some exam-
ples of instances where special care is required:

• Autobuffering— Since autobuffering works with the current value
of the PMOVLAY and DMOVLAY registers only, precautions must be
made to ensure that memory is not overwritten by the autobuffering
mechanism when performing serial port autobuffering.

• Register Indirect Jumps or Calls—Since DAG register points to the
absolute address location of the active Program Memory Overlay
region, switching context between Program Memory Overlays
before performing a register indirect jump or call may result in
undesired program behavior.

• Circular Buffers—Switching between overlay regions when using
circular buffering will result in data accesses from the same physical
address but from a different overlay region. However, you could use
this behavior for a positive purpose: bouncing data back and forth
between multiple overlay regions via the DAGs and an overlay pag-
ing scheme. (See “Serial Port Autobuffering on the
ADSP-2187/2188/2189 Processors” in Chapter 5 “Serial Ports” for
more information.)
4-14 ADSP-218x DSP Hardware Reference

	Contents
	4 Data Address Generators
	Overview
	Data Address Generators (DAGs)
	DAG Registers
	Figure 4-1. Data Address Generator Block Diagram
	Indirect Addressing
	Linear Indirect Addressing
	Listing 4-1. Simple Linear Indirect Addressing
	Listing 4-2. Linear Indirect Addressing Using a Memory Variable

	Modulo Addressing (Circular Buffers)
	Calculating the Base Address
	Circular Buffer Base Address Example 1
	Circular Buffer Base Address Example 2
	Circular Buffer Operation Example 1
	Circular Buffer Operation Example 2

	Bit-Reverse Addressing

	Programming Data Accesses
	Variables and Arrays
	Circular Buffers

	PMD-DMD Bus Exchange
	PMD-DMD Bus Exchange Structure
	Figure 4-2. PMD-DMD Bus Exchange Block Diagram

	Using DAGs with Hardware Overlays

	Index

