
C.1 OVERVIEW
ADSP-2100 family processors support 16-bit fixed-point data in hardware.
Special features in the computation units allow you to support other
formats in software. This appendix describes various aspects of the 16-bit
data format. It also describes how to implement a block floating-point
format in software.

C.2 UNSIGNED OR SIGNED: TWOS-COMPLEMENT FORMAT
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least
significant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-2100 family are in
twos-complement format. Signed-magnitude, ones-complement, BCD or
excess-n formats are not supported.

C.3 INTEGER OR FRACTIONAL
The ADSP-2100 family supports both fractional and integer data formats,
with the exception that the ADSP-2100 processor does not perform integer
multiplication. In an integer, the radix point is assumed to lie to the right
of the LSB, so that all magnitude bits have a weight of 1 or greater. This
format is shown in Figure C.1, which can be found on the following page.
Note that in twos-complement format, the sign bit has a negative weight.

CNumeric Formats

C – 1

C Numeric Formats

C – 2

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
15 14 13 2 1 0

Sign
Bit

Weight

Bit

Signed Integer

15 14 13

• • •

2 1 0

2 2 2 2 2 2
15 14 13 2 1 0

Weight

Bit

Unsigned Integer

Radix Point

Radix Point

Figure C.1 Integer Format

Figure C.2 Example Of Fractional Format

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
12 11 10 –1 –2 –3

Sign
Bit

Weight

Bit

Signed Fractional (13.3)

15 14 13

• • •

2 1 0

2 2 2 2 2 2
12 11 10 –1 –2 –3

Weight

Bit

Unsigned Fractional (13.3)

4 3

2 2
1 0

4 3

2 2
1 0

Radix Point

Radix Point

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure C.2, the assumed radix point lies to the left of the
3 LSBs, and the bits have the weights indicated.

CNumeric Formats

C – 3

The notation used to describe a format consists two numbers separated by
a period (.); the first number is the number of bits to the left of radix point,
the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the radix
point. The format in Figure C.2 is 13.3.

Table C.1 shows the ranges of numbers representable in the fractional
formats that are possible with 16 bits.

Format Number of Number of Largest Positive Largest Negative Value of 1 LSB
Integer Fractional Value (0x7FFF) Value (0x8000) (0x0001)
Bits Bits In Decimal In Decimal In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125
2.14 2 14 1.999938964843750 –2.0 0.000061035156250
3.13 3 13 3.999877929687500 –4.0 0.000122070312500
4.12 4 12 7.999755859375000 –8.0 0.000244140625000
5.11 5 11 15.999511718750000 –16.0 0.000488281250000
6.10 6 10 31.999023437500000 –32.0 0.000976562500000
7.9 7 9 63.998046875000000 –64.0 0.001953125000000
8.8 8 8 127.996093750000000 –128.0 0.003906250000000
9.7 9 7 255.992187500000000 –256.0 0.007812500000000
10.6 10 6 511.984375000000000 –512.0 0.015625000000000
11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000
12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000
13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000
14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000
15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000
16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000

Table C.1 Fractional Formats And Their Ranges

C.4 BINARY MULTIPLICATION
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result
format is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-2100 family assembly
language allows you to specify whether the inputs are both signed, both
unsigned, or one of each (mixed-mode). The location of the radix point in
the result can be derived from its location in each of the inputs. This is

C Numeric Formats

C – 4

shown in Figure C.3. The product of two 16-bit numbers is a 32-bit
number. If the inputs’ formats are M.N and P.Q, the product has the
format (M+P).(N+Q). For example, the product of two 13.3 numbers is a
26.6 number. The product of two 1.15 numbers is a 2.30 number.

M.N

P.Q

(M+P) . (N+Q)

1.111

11.11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.011 1001

1.3 format

2.2 format

3.5 format = (1+2) . (2+3)

General Rule: 4-Bit Example: 16-Bit Examples:

5.3

5.3

10.6

1.15

1.15

2.30

Figure C.3 Format Of Multiplier Result

C.4.1 Fractional Mode And Integer Mode
A product of 2 twos-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit.
Additionally, if one of the inputs was a 1.15 number, the left shift causes
the result to have the same format as the other input (with 16 bits of
additional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a 5.27
number, or a 5.11 number plus 16 LSBs.

The ADSP-2100 family provides a mode (called the fractional mode) in
which the multiplier result is always shifted left one bit before being
written to the result register. (On the ADSP-2100 processor, this mode is
always active; on other processors, the left shift can be omitted.) This left
shift eliminates the extra sign bit when both operands are signed, yielding
a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a fractional data format, it is most
convenient to use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use if
both operands are integers (in the 16.0 format). The 32-bit multiplier result
is in 32.0 format, also an integer. On the ADSP-2100 only, the integer mode

CNumeric Formats

C – 5

is not available; the 32.0 result gets shifted to 31.1 format. Because the MSB
is still available in the 40-bit accumulator, a right shift can correct the
result.

In all processors other than the ADSP-2100, fractional and integer modes
are controlled by a bit in the MSTAT register. At reset, these processors
default to the fractional mode, for compatibility with the ADSP-2100.

C.5 BLOCK FLOATING-POINT FORMAT
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional
programming is required to maintain a block floating-point format,
however.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set (block)
of data values share a common exponent. To convert a block of fixed-point
values to block floating-point format, you would shift each value left by
the same amount and store the shift value as the block exponent.

Typically, block floating-point format allows you to shift out non-
significant MSBs, increasing the precision available in each value. You can
also use block floating-point format to eliminate the possibility of a data
value overflowing. Figure C.4 shows an example. The three data samples
each have at least 2 non-significant, redundant sign bits. Each data value

0x0FFF

0x1FFF

0x07FF

=

=

=

0000

0001

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

To detect bit growth into 2 guard bits, set SB=–2

Figure C.4 Data With Guard Bits

C Numeric Formats

C – 6

can grow by these two bits (two orders of magnitude) before overflowing;
thus, these bits are called guard bits. If it is known that a process will not
cause any value to grow by more than these two bits, then the process can
be run without loss of data. Afterward, however, the block must be
adjusted to replace the guard bits before the next process.

Figure C.5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows. Initially, the
value of SB is –2, corresponding to the 2 guard bits. During processing,
each resulting data value is inspected by the EXPADJ instruction, which
counts the number of redundant sign bits and adjusts SB is if the number
of redundant sign bits is less than 2. In this example, SB=–1 after
processing, indicating that the block of data must be shifted right one bit
to maintain the 2 guard bits. If SB were 0 after processing, the block would
have to be shifted two bits right. In either case, the block exponent is
updated to reflect the shift.

0x1FFF

0x3FFF

0x07FF

=

=

=

0001

0011

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

1 Guard Bit

Sign Bit

EXPADJ instruction checks
exponent, adjusts SB

Exponent = –2

Exponent = –1

Exponent = –4

SB = –2

SB = –1

SB = –1

0x0FFF

0x1FFF

0x03FF

=

=

=

0000

0001

0000

1111

1111

0011

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

1. Check for Bit Growth

2. Shift Right to Restore Guard Bits

Figure C.5 Block Floating-Point Adjustment

	Table of Contents
	Index
	C Numeric Formats
	C.1 OVERVIEW
	C.2 UNSIGNED OR SIGNED: TWOS-COMPLEMENT FORMAT
	C.3 INTEGER OR FRACTIONAL
	C.4 BINARY MULTIPLICATION
	C.4.1 Fractional Mode And Integer Mode

	C.5 BLOCK FLOATING-POINT FORMAT

