ViU UDSP - 4.5

Linker and Utilities Manual

Revision 2.0, April 2006

Part Number
82-000420-03

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.
Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, the CROSSCORE logo, Visual DSP++,
Blackfin, SHARC, TigerSHARC, and EZ-KIT Lite are registered trade-

marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE

Purpose of This Manualccoooiiiiiiiiiiiiiiecce Xix
Intended AUdIENCEouviiiiiiiiiiiiie e Xix
ManUual CONTENES covvuuiiiiiiee i e e eeaaas XX
What’s New in This Manualccoveeeiiiiiiiiiiiiiieeeeeee XX1
Technical or Customer SUPPOIT .oocuvvviviiiiiiiiiiiiiiiie e xxii
Supported Processorscoccuviiriiieriiieiniieenieceeieee e xxili
Product INformationcoooviuiiiiieeieieeiiiiiieee e XXiv
MyAnalog.comcoooiiiiiiiiiiiiiiiiic e Xxiv
Processor Product Informationccoeeveiiiviieiiiiiiiieiiiiieeeeeen, XXV
Related Documentsccoeeeeivuiieeiiiiiiieeiiiiiee e Xxvi
Online Technical Documentationccoeeeeivviuieeeiiiinneenennn. Xxvil
Accessing Documentation From Visual DSP++ ... xXxvil
Accessing Documentation From Windowsccccc...e. xxvili
Accessing Documentation From the Web Xxviii
Printed Manualsooouuiiiiiiiiiiiiiiee e XXiX
Visual DSP++ Documentation Setc..coovveeeiiiiieeeeiiinnnnnnn. XXIX
Hardware Tools Manualscooeiiiiiiiiiiiiiiiieeice e, XXix
Processor Manualsooouviiiiiiiiiiiiiiieeceee e XXIX

VisualDSP++ 4.5 Linker and Utilities Manual

11l

CONTENTS

Data Sheets .ooouveviiiiiiiiiiiiiic e XXix
Notation CONVENTIONS ...euvvvrrireriririeeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeees XXX
INTRODUCTION
Software Development Flowcoociiiiiiiiiiiiicec 1-2
Compiling and Assemblingccccccooiiiiiiiiiiiiiii 1-3
Inputs — C/C++ and Assembly Sourcesccocvveviiviiriiiinnnnenn. 1-3
Input Section Directives in Assembly Codecccvveriiiiinnncne 1-4
Input Section Directives in C/C++ Source Filesccovviiiiinn. 1-5
LInKIng .oooouiiiiiiiieee e 1-7
Linker and Assembler Preprocessorcccceevviiiniiiiiniiceninneen. 1-8
Loading and Splittingcccccciiiiiiiiiiiiiiiiiiii i 1-10
LINKER

Linker Operationccocueiiiiiiiiiiiiiiiceieeeeeeeeeee e 2-2
Directing Linker Operationccoeceveeriiiiniieeinieeinieeenieeenne 2-3
Linking Process Rulescccccooiiiiiiniiiniiiniiiiiicc, 2-4
Linker Description File Overviewcccccceeviiiiniiieniieennneenns 2-5
Linking Environment for Windowscccoooiiiniiiiniiiciniicinineens 2-6
Project Buildscccoviiiiiiiiiiiiiiiiii 2-6
Expert Linkercccooiiiiiiiiiiiiiec e 2-9
Linker Warning and Error Messagescccoceeeviiiiniiienniecnneeenns 2-10
Link Target Descriptioncccccevieiiiiiiiieniiieniiiiicceesieeeeeee 2-11
Representing Memory Architectureccceeveuvienciiennneeennnen. 2-12
Specifying the Memory Mapccccovvviiniiiiniiiiniieciieceieene 2-12

iv Visual DSP++ 4.5 Linker and Utilities Manual

CONTENTS

Memory Usage and Default Memory Sections 2-13
Default Memory Sections for SHARC Processors 2-14
DS et 2-15
o 2-15
SEZ TR Loiiii 2-15

R o UL PP 2-15
SEZ INT_COAR ..vviiiiiiiiiiiiiiiiii i 2-15
SEE_PINICO oviiiiiiiiiiiiiiiiiieee e et ettt et e e e e e e e e e e e e 2-15
SEZ PIMIAA weviiiiiiiiiiii e 2-16
SEZ ATEV .eviiiiiiiiiiie ittt e et 2-16
SEZ CUAIM weiiiiiiiiiiiic et 2-16
$e€ dmda ...oooiiiiiii 2-16
$€Z heap oiiiiiiiiiii 2-16
SEZSTAK teetiiiiiiie it 2-16
$eZ VEDL i 2-17
Other Memory Sectionsc.cceeevvieeiniiiiniiieniieeiieenne 2-17
Default Memory Sections for TigerSHARC Processors 2-17
DSZ et 2-19
DSZ IIIE ettt e 2-19
CTOL ittt ettt e ettt e e e e e e et e b e e e e e e eenaaaaaaaaes 2-19
datal oo 2-19
data2 o 2-19
8Tt o 0 T = 2-20
e 4 ¥ o o 2-20

Visual DSP++ 4.5 Linker and Utilities Manual v

CONTENTS

VEDL e 2-20
Other Memory Sectionsccceeveveenieeeniineeniieeniieeene 2-20
Default Memory Sections for Blackfin Processors 2-20
PIrOZIamloooooiiiiiiiiiiiiiiiiiii 2-21
datal .oeeeeiii e 2-21
CPIb_code neiiiiiiiii 2-21
CONSEAATA .neeiiiiieiiiiiec ettt 2-21
Cplb_data cooveiiiiiii 2-21
LI_DATA_A oo 2-21
LI_DATA B oottt 2-22
VOIdATA evvieiiiiiiiicc 2-22
0) PN 2-22
DSZ e 2-22
DSZ IIT ettt et e 2-22
STACK et 2-22
REAP weiiiiiii e 2-23
NoNCaChe COde wouiiimiiiie et 2-23
SAramO ...ooiiiii 2-23
sdram0_bank{1|2|3} ...c.cccoiiiniiniiiiii 2-23
SATAM. DCZ e 2-23
sdram_shared ... 2-23
VEDL Lo 2-24
Other Memory Sectionsccceevveeeniieeniiieeniiieneeeene 2-24
Special “Table” Memory Sectionsccccceeeveuveernveeenneeenne. 2-24

vi Visual DSP++ 4.5 Linker and Utilities Manual

CONTENTS

G Lo 2-24
Gl e 2-25
EAT ceite e 2-25
CRt e 2-25
BT ettt 2-25
primio_atomic_lock ..o 2-25
MC_dATA weviiiiiiiiii e 2-25
FEEL weeeeteeeeeeeteeeee e et ettt e ettt ettt ettt e e et e e et e eeeeeeeeeeeererereeerererereees 2-25
CPID e 2-25
Input Sections Provided in Deflaut LDFs for User Code and Data
2-26
Ll data eeeeeiee e 2-26
L1 data @ ceeeeeeee e 2-26
L1 data b oo 2-26
L1_COME ettt 2-26
L1 DCZ it 2-26
L2 DCZ it 2-26
L2_SIamcocciiiiiiiiiiiiiiiiiic i 2-26
12_sram ..o 2-27
| R Vs o N T TPt 2-27
L2 sram_b oo 2-27
12 Shared .oeeeeeeee e 2-27
Memory Characteristics OVerviewccococeevvvverniuveeniuneenns 2-27
SHARC Memory Characteristicsccceevvuveenniveernueenn. 2-27
TigerSHARC Memory Characteristicsccoocuveenunenn. 2-30

Visual DSP++ 4.5 Linker and Utilities Manual vii

CONTENTS

Linker MEMORY{} Command in .Idf Fileccccceeee. 2-32
Entry Addresscooceeeviiieniiiiiiiiieicccec e 2-34
Wildcard Charactersccueeeeiiiiieieiiiiiiiieeeiiiieee e 2-35
Placing Code on the Targetccccoooviiiiiiiiniiiiiiiii, 2-35
Specifying Two Buffers in Different Memory Segments 2-39
Linking with Attributes - Overviewcccocceiiniiiiinneeenne. 2-40
Profile-Guided Optimization SUppOrtceeevvveeriiieernieeennee. 2-41
Passing Arguments for Simulation or Emulation 2-42
Linker Command-Line Referencecocoovvivevniiiiiiiiniieieenniinen. 2-43
Linker Command-Line Syntaxcccooveeimiiiiniiiiiniieeiiecen 2-43
Command-Line Object Filesccccoeeriiiiiiiiiniiiiniienn 2-44
Command-Line File Namesccccccevviiiiieiniiiiiiiniieees 2-45
Object File Typescoovviiiiiiiiiiiiiiiiiiiicccc 2-47
Linker Command-Line Switchesccccovviiiiiiiiniiiiiiiieeee, 2-47
Linker Switch Summary and Descriptionsccccccovveeee. 2-49
@FIleName ..oooeeiiiiiiiiiiiiee e 2-51
“DProcessorooiiiiiiiiiiiii 2-51
SLopath oo 2-52
LY LSRR 2-52
MM e e 2-52
-Map filenameccoviiiiiniiiiiii 2-53
-MDmacro[=def] oo, 2-53
SMUDMACIO i 2-53

S e 2-54

viii Visual DSP++ 4.5 Linker and Utilities Manual

CONTENTS

ST filename ..oeeeeeeiiiiieeei e 2-54
SWwarn [NUMDBEr] cooveiiiiiiieiiiee e 2-54
-Wnumber[,number]ooiiiiiiiii 2-54
IO PP PP RO PPPUUPPRRTPNt 2-55
ek sectioNNAME ..ooevviviiiiiiiiiiiee e 2-55
€5 SECIONINAMIE oviieiieeeeieeeee e 2-55
SEIIELY weeeeeeieiiitte ettt e e e e e et e e e e e e e e e e e e et 2-56
S AT 2-56
-flags-meminit -optl[,-0Pt2... .eooviiiiniiiiniiieniec e 2-56
-flags-pp-opt1[,-0pt2...] eeiiiiiiiiiiiiiiiiii 2-56
ShLEIP] o 2-56
AT dIFECEOTY wevtieiiieiieit et 2-56
e | T 2-57
FGES2L e 2-57
FGES2IH e 2-58
-keep symbolNameccoceiiiiiiiiiiiii 2-58
115300 ¥ 1 L OO PP PPPPPRRT 2-58
-nonmemcheckcoociiiiii 2-58
-0 filenameooooiiiiiiiii e 2-59
~0d dIFECTOIY weiiiiiiiiiiiiiiiie e 2-59
SPP eeeereee e 2-59
“PIOC PIOCESSOL ovvuuununniiiiiiiiiiiiiie e e e eetiiiii e e e e e erraaaaaaes 2-59
S ettt a e 2-60
“SAVE-TEITIPS -evvveeernuirireeeainteeeeairreeeeseinneeeessnaneeeeannneeesannnee 2-60

VisualDSP++ 4.5 Linker and Utilities Manual

X

CONTENTS

=S1-T@VISION VEISIOMN .uvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee 2-60

TSP ettt et 2-61

h e e e 2-61

O SO PRSP OO PP O PO P RPRPRPOPPPPPPPPPRPPRt 2-61

SV IDOSE] it 2-61
SVEESIOM uuiiitiiteeeeeeeeniitt ettt e e e e e e sttt e e e e e s e st e e eeeeeeeaaaas 2-62
SWALTLOTICE .ttt 2-62

SXTEE e e e e e e rra e e e e e e e e 2-62

LINKER DESCRIPTION FILE

LDF File OVErvIEW .ccocuiviiiiiiiiiiieeiiiiiee ettt 3-3
Generated LDFs .ooooiiiiiiiiiiiiie e 3-4
Default LDFS .ooviiiiiiiiiiiiieee e 3-4
Example 1 — Basic .1df File for Blackfin Processorscc........ 3-7
Memory Usage in Blackfin Processorsc.ccevvvieviiiiiiennnens 3-9
Example 2 — Basic .1df File for TigerSHARC Processors 3-10
Example 3 — Basic .1df File for SHARC Processors 3-11
Common Notes on Basic .Idf File Examplescccccoeeennneee. 3-12
LDF STrucCture ..ooeeveviiiiiieeee et 3-17
Command SCOPING ..eeevviiiriiiiiiiiieiiceic et 3-18
LDF EXPIesSIONS ..occcuuueviieieiieiiiiiiiiiiieeeeeesiiieeeeeeeeeeeeiiieeeeee e 3-19
LDF Keywords, Commands, and Operatorsccccceeevueeennnenns 3-20
Miscellaneous LDF Keywordsc..covvivieriiiiiniiiiniiiiniieenee. 3-21
LDF OPerators ...ccocccuuuuiiiiiieiiiiiiiiiiiiieeeeeeeiieieeeee e 3-22
ABSOLUTE() Operatorccceeeeiiiiiieiiiiiieeiiiiiieeeeeeee e 3-22

X Visual DSP++ 4.5 Linker and Utilities Manual

CONTENTS

ADDR() OPeratorccoccueieemniuieeeeniiiieeeiiiiieeeeniieeeeeeiieeee e 3-23
DEFINED() Operatorccooviiiiiiiiiiiiieiiiiieeeceiieee e 3-24
MEMORY_END() Operatorccccceevvuieeeeniiieeeiniieeeeneeeee. 3-25
MEMORY_SIZEOF() Operatorccocceeeevieeenieeeniieeniieennne. 3-25
MEMORY_START() Operatorcccoccuveeiiiiiiiiiiiiiieeenneen. 3-26
SIZEOF() OPEratorccoecuvveeieriiiieeieniiiiee e 3-26
Location Counter (L) wouviiieeiie e eetee et e e e s eaans 3-27
| 310 Y B el ¥ 3-27
Built-In LDF Macros ...ccccuvveeeiiiiiieeiiiiieeeesiieee e 3-29
User-Declared Macrosoooocuuviviiiiiieiiiiiiiiiieeeee e 3-30
LDF Macros and Command-Line Interactioncccuuveeee. 3-30
LDF Commandscceeeruiiireiiiiiiieeiiiieeeeeiiieeeesiieee e e e 3-31
ALIGIN() oottt e e e e 3-32
ARCHITECTURE() teeoeiiiiiiiiieee ettt e e 3-32
ELIMINATE() tiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 3-33
ELIMINATE_SECTIONS() weeeeeiieeeeiiiiiieeeeiiieee e 3-34
ENTRY() oovooeeoeeeeeeeeoeeeeeeeeeeeeeeeeee oo 3-34
INCLUDE(Q) oottt 3-35
INPUT_SECTION_ALIGN() eovvveeeiiiiieeeeiiiieeeeeiiieee e 3-35
KEEP() oo, 3-36
KEEP_SECTIONS() tiititiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 3-37
LINK_AGAINST() weeeeeeiiiiiiiieeeeee e 3-37
IMAP(Q) et e e e e e 3-38
MEMORY{} e 3-38

Visual DSP++ 4.5 Linker and Utilities Manual xi

CONTENTS

Segment Declarationscccoccceiviiiiiiiiiiiiiiini, 3-39
SEZMENT_NAMIE «evveerrennreeereeireetreeteesueesireenteeenseeeneenane 3-40
START (address_number)oeeviiiiiiiiiiiiiiiiiiiiieeeee, 3-40
TYPEQ) weeeeeiiiie ettt 3-40
LENGTH(length_number)/END(address_number) 3-41
WIDTH (width_number)ccooviiiiiiiiiiiiiiieiiiiieeeeeeee, 3-41

MPMEMORY{} oot 3-42
OVERLAY_GROUP} oo 3-42
PACKING() teeeeiiiiiieeiiiiiee ettt e e 3-42

Packing in SHARC Processorsc.cccocvveeviiiniieniiennennnens 3-44
Overlay Packing Formats in SHARC Processors 3-46
External Execution Packing in SHARC Processors 3-47

PLIT{} oot e e e aee e e 3-48
PROCESSOR} coiiiiiiiiiieee ettt 3-48
RESERVE() otiiiiiiiiiiieieiee et 3-50

Linker Error Resolutionsccccceevviiiiiiiiiiiiieiniiiee e, 3-51

Example coooviiiiiiiiii 3-52
RESERVE_EXPAND() tooeeiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 3-53
RESOLVE() wetiiiiiiiiiieeiiie ettt 3-53
SEARCH_DIR() tevviiieeiiiiiieeeiiiieeeeeiieeeeesireeeeeeiraeeeeeiavaee e 3-54
SECTIONS{} oot 3-55

INPUT_SECTIONS() weveeeeiiiiieeeeiiiiee e 3-58
Using Optional Filter Expressionccccocoveviiiennneenne. 3-59

INPUT_SECTIONS_PIN/INPUT_SECTIONS_PIN_EXCLUSIV

E Commands ...cccuvvviiiieiiiiiiiiiiiiieee e 3-60

Xil

VisualDSP++ 4.5 Linker and Utilities Manual

EXPLESSION ueiiiiiiiiiieeeeeieiiiiti et e e e e e s e e e e e e e iban e eeeee s 3-62

FILL(hex number)cccooooiiiiiiiiiiiiiieeeeiieeeeicceeee e, 3-63
PLIT{plit_commands}ccccceermriiimiiiiniiiiniiiciieceieeene 3-63
OVERLAY_INPUT{overlay_commands}ccccceeeernnnnee. 3-63
SHARED_MEMORY{} ...ooiiiiiiiiiiiiiiceceeceeeceeceee 3-65
EXPERT LINKER

Expert Linker OVerviewcccoocviiriiiiiniiiiiniiieiiiciicc e 4-2
Launching the Create LDF Wizardccccoooviiiiiiiiiiniiiiiiiiicns 4-4
Step 1: Specifying Project Informationcccceeviiviiniiiennniens 4-5
Step 2: Specifying System Informationccccccevvviiniiiennneens 4-6
Step 3: Completing the LDF Wizardccccceviiiniiininnnane. 4-10
Expert Linker Window Overviewcccoccceevviiiniiiiennieciniieenne. 4-11
Input Sections Paneccceeeviiiiiiiiiiiiiiiiiicceee e 4-13
Input Sections Menucoccuveeieiiiiiieiiniiiiee e 4-13
Mapping an Input Section to an Output Section 4-15
Viewing Icons and Colorsoocveeiiiiiiniiiiniiiiiiiciieceeene 4-16
Sorting Objectscoooiiiiiiiiiiiiiiiiiiii 4-17
Memory Map Panecoocvieviiiiiiiiiiiiiciiceeceee e 4-19
Context Menuooovviiiiiiiiiiiiiiiiiiiiicccic e 4-22
Tree View Memory Map Representationccccceevvuieeeennnne. 4-24
Graphical View Memory Map Representationccccceeeenee. 4-25
Specifying Pre- and Post-Link Memory Map View 4-31
Zooming In and Out on the Memory Mapccoceeevviincnnne. 4-32
Adding a Memory SEZmENtcoccueeerureeriiieeenireenieeenieeennne 4-34

VisualDSP++ 4.5 Linker and Utilities Manual

X111

Inserting a Gap Into a Memory Segmentccccceiiiiiiniinns 4-36

Working With Overlayscccocoeeeviiiiniiiiiiiiinecccece, 4-37
Viewing Section CONTENTSuveeeeriiireeeiniiiieeeiiieeeeeriireee e 4-40
Viewing Symbols ..o 4-44
Profiling Object Sectionscocvveeeviiiiniiiiniiiienieceiec e 4-45
Adding Shared Memory Segments and Linking Object Files ... 4-49
Managing Object Propertiescccceeviiiiiiiiiiiiiiiiniiiiiicciiees 4-54
Managing General Global Propertiescccocveeriiieniiecnnnn. 4-55
Managing Processor Propertiescccccovcviieiiniiiiiiiinniiieeeenns 4-56
Managing PLIT Properties for Overlayscccccevviiiniiinnnne 4-58
Managing Elimination Propertiesccccccevviiiiiniiicnnnecnnnn. 4-59
Managing Symbols Propertiescccocveerviiiiniiiieniieenniecennn 4-61
Managing Memory Segment Propertiesccccoociiiiiiiennnnn. 4-64
Managing Output Section Propertiesccccccevvviiiiiiiniiinnnn. 4-65
Managing Packing Propertiesccocveerviiiiniieenineeniecee 4-68
Managing Alignment and Fill Propertiescccocceiviiiennnn. 4-70
Managing Overlay Propertiescccoeveerviiiiniieeenineennieeenn 4-72
Managing Stack and Heap in Processor Memoryc....... 4-74
Managing Shared Memory Propertiesccccceevvievviiiniiinnins 4-77

MEMORY OVERLAYS AND ADVANCED LDF
COMMANDS

OVEIVIEW oiiiiiiiiiiiiiiiiiiic i 5-2
Memory Management Using Overlayscccccceeeviiiiniiiiniiiinnnnen. 5-4
Introduction to Memory Overlayscccoceeeviiiiniiiiiniiiinneenns 5-5

X1V Visual DSP++ 4.5 Linker and Utilities Manual

Overlay Managersccceeiviiiiiiiiiiiiiiiiicciec e 5-6

Breakpoints on Overlaysccoooviiiiiiiiiiiiiniiiiceecee, 5-7
Memory Overlay SUPPOIT ...coiviiiiriiiiiiiiciiceec e 5-8
Example — Managing Two Overlayscccccoeviiiiiiiinninnnn 5-13
Linker-Generated Constantsc.cceeeeuveeenieeeniieeeniieeennieeennnn 5-15
Overlay Word Sizescoocviiiiiiiniiiiiiiiiiiccececee 5-16
Storing Overlay ID ..o, 5-19
Overlay Manager Function Summarycccocoeeniiiinniennne. 5-19
Reducing Overlay Manager Overheadccccoocviiniiiiininenne. 5-20
Using PLIT{} and Overlay Managercccccooeiiiiiiiiinnnnne. 5-24

Inter-Overlay Callsooooiiiiiiiiiiii e 5-26

Inter-Processor Callscccoooviiiiiiiiiiiiiiiiiiii 5-27

Advanced LDF Commandsccccoeiiiiiiiiiiiiiniiiiiiiiiiicieee 5-29
OVERLAY_GROUPH} .coiiiiiiiiiiieeecceccceeee e 5-29

Ungrouped Overlay Executionccocceivviiiniiiiniiiinnnecns 5-31

Grouped Overlay Executionccocccveiiiniiiiiiniiiiciennnnen. 5-32
PLIT{} oottt 5-33

PLIT SYNtax ..coccccvveeemiiiieeiiiiiee e 5-34

Command Evaluation and Setupcccovvviiiiiniiiiiinnnne.. 5-35

Overlay PLIT Requirements and PLIT Examples 5-35

PLIT — SUMMATLY ..oiiiiiiiiiiiiiiiiieeeiiieec e 5-36

Linking Multiprocessor SysStemsccccccveevuieriiieniieniennieenneenn 5-37
Selecting Code and Data for Placementccocceeeviienieennnee. 5-38
Using LDF Macrosccccccviviiiiiiiiiiiiiiiiiicciiiieeceen 5-39

VisualDSP++ 4.5 Linker and Utilities Manual

Mapping by Section Nameccccoeviiiiiiiiiiiiiii, 5-41

Mapping Using Attributescoocoveeriiieiniiiiiniieeniieeiiee e, 5-42
Mapping Using Archivesccoocveiniiiiniiiiniiiciiiceneceeeen 5-42
MPMEMORY{} oot 5-44
SHARED_MEMORY{} .ooiiieoiiiiieiiiiieee et 5-45
COMMON_MEMORY{} oo 5-51
ARCHIVER
INErOAUCTION weiiiiiiiiiiiiiiiitee e e e e e 6-2
Archiver GUIdEevviiiiiiieiieiiiee e 6-3
Creating a Librarycooooiiiiiiiiiiiiiccc 6-3
Making Archived Functions Usableccceiiiiiiiinniinninnne. 6-4
Writing Archive Routines: Creating Entry Points 6-4
Accessing Archived Functions From Your Code 6-5
Specifying Object Filescocooevviiiniiiiiiiiiiiiiiiiiiiiicce, 6-6
Tagging an Archive With Version Information 6-7
Basic Version Informationcccoevvvieiiiiiiiieiiniiieeenne, 6-7
User-Defined Version Informationcccccceeeeviiieeennnnee. 6-8
Printing Version Informationccccccevviiiniiiinninennnne. 6-9
Removing Version Information From an Archive 6-10
Checking Version Numberccocceviiiiiiininiininne. 6-10
Archiver Symbol Name Encryptioncccecviiniiiiniiiinnnnen. 6-11
Archiver Command-Line Referenceccccevviiiiiiiniiiiiiiniiieene, 6-14
elfar Command Syntaxcooceeeviiiiiiiiiiniiiceee 6-14
Archiver Parameters and Switchesccccceeevviiiiiiiiiiieeeein, 6-15

Xvi

VisualDSP++ 4.5 Linker and Utilities Manual

Command-Line CONSIaingS .oe.ueeeneeeneeemeeeeeeeeeeeeeeeeeeeneeeeeenaees 6-17

MEMORY INITIALIZER

Memory Initializer OVEIVIEW ...c..c.ccoviiiiiriiiieriiiieiiiieeniee e 7-2
Basic Operation of Memory Initializerccocceviiiniiiniiiniinnn. 7-3
Input and Output Filescccooooiiiiiiiiiii, 7-3
Initialization Stream Structureccccvveeeeeeeiiiiiiiiiiieee e e, 7-5
Run-Time Library Routine Basic Operationccccoeveiriieennneenns 7-6
Using the Memory Initializerccocoiiiiiiiiiiiiiiiis 7-7
Preparing the Linker Description File (.1df) ... 7-7
Preparing the Source Filescoooviiiiniiiiniiiiiiiiiiiceeces 7-8
Invoking the Memory Initializercccccocveviiiiiiiniiiniiennnns 7-10

Invoking Memory Initializer from the VisualDSP++ IDDE 7-10
Invoking Memory Initializer from Command Line 7-11
Invoking Memory Initializer from Linker’s Command Line 7-11

Invoking Memory Initializer from Compiler’s Command Line 7-11

Invoking Memory Initializer with Callback Executables 7-11
Memory Initializer Command-Line Switchescccocoveeriieennnnee. 7-13
-BeginInit Initsymbolccocoiiiiiiiiiiiii 7-14
B 7-15
-IgnoreSection Sectionnamecccooviiiiiiiiii, 7-15
-Init Initcode.dxe .oouviiiiiiiiiiiiiiiie 7-15
InputFile.dXe ...cooviiiiiiiiiiiiiiiii e 7-16
SNOAULO i 7-16
“INOETASE woviviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 7-16

Visual DSP++ 4.5 Linker and Utilities Manual xvii

-0 Outputfile.dXe ..oooviiiiiiiiiiiiiiic 7-17

-Section SectionnNameoouuuuiiieeiiiiiiiiiiiiiie e 7-17
TV et e ettt e e e e et e 7-17
FILE FORMATS
Source Files .ooooiiiiiiiiiiiiiie e A-2
C/C++ Source Files .oooouuiiiiiiiiiiiiiiiiiiiiiee e A-2
Assembly Source Files (.asm) ...cceeoviiiiniiiiiiiiiiicniceneee A-3
Assembly Initialization Data Files (DAT)ccooviiiiiiiiiiicennnn A-3
Header Files ((H) ovvvviiiiiiiiiiicceeee e A-4
Linker Description Files (.Idf) ..oocvviriiiiiiiiiiie A-4
Linker Command-Line Files (TXT) ..ooviviieiiiiiiiiieeeiiiieeeeeeinn, A-5
Build FIles ooiiiieiiiiiiiiiee e A-5
Assembler Object Files (.doj) «oooovviiniiiiniiiiiiiiicccc A-5
Library Files (.dID) oeeeiiiiiiiiiiiccec e A-6
Linker Output Files (.dxe, .sm, and .ovl)ccocoveiiniiiiniiinnncn. A-6
Memory Map Files (.xml) .ooooieiiiiiiiiiiiiiiiiiciicececee A-6
Loader Output Files in Intel Hex-32 Format (.Idr) ... A-6
Splitter Output Files in ASCII Format (.1dr)coocveiniiiininiinns A-8
Debugger Files ...coouiiiiiiiiiiiiiiiicce e A-9
Format Referencescooovuiiiiiiiiiiieiiiiiiee e A-10
UTILITIES
elfdump — ELF File Dumperccccocviiiiiiiiiniiiiicniecieceieeee B-1
Disassembling a Library Membercccocoviiiiiiiiniiiniiiiineene B-3

xviii Visual DSP++ 4.5 Linker and Utilities Manual

Dumping Overlay Library Filescccccoooiiiniiiini. B-4
PHOKET oo B-4

LDF PROGRAMMING EXAMPLES FOR TIGERSHARC
PROCESSORS

Linking a Single-Processor Systemccccceevviiiriiiiiiiiienniieiieens C-2
Linking Large Uninitialized or Zero-InitializedVariables C-4
Linking an ADSP-TS101 MP Shared Memory System C-6
Linking for Overlay Memorycccocveiviiiiniiiiiiiciieceec e, C-12

LDF PROGRAMMING EXAMPLES FOR SHARC
PROCESSORS

Linking a Single-Processor SHARC Systemcocovveviiiiiniieennnen. D-2
Linking Large Uninitialized Variablesccccccooiiiiniiiiniiinnnninn D-4
Linking for MP and Shared Memoryccoceeviiiiiiiniieniiiniennen. D-6

Reflective Semaphorescoocveeviiiiiiiiiiniiienieciieccece D-12
Linking for Overlay Memoryccocveiriiiiniiiiiiiiciiecenec e D-14

LDF PROGRAMMING EXAMPLES FOR BLACKFIN
PROCESSORS

Linking for a Single-Processor Systemccoceeeriiiiiniiiiniieennnen. E-2
Linking Large Uninitialized or Zero-initialized Variables E-4
Linking for Assembly Source Fileccccoooiiiiiiiniiiiiii. E-6
Linking for C Source File — Example 1 ...ccooviiiiiiiiiiiiiiiiiciieens E-8
Linking for Complex C Source File — Example 2cccccocieniee. E-11
Linking for Overlay Memorycccoccvieriiiiniiiiiniiciniecneeeeen E-17

VisualDSP++ 4.5 Linker and Utilities Manual

INDEX

XX Visual DSP++ 4.5 Linker and Utilities Manual

PREFACE

Thank you for purchasing Analog Devices development software for digi-
tal signal processors (DSPs).

Purpose of This Manual

The VisualDSP++ 4.5 Linker and Utilities Manual contains information
about the linker and utilities programs for 16-bit fixed-point Blackfin®
(ADSP-BFxxx) processors, and 32-bit (floating-point and fixed-point)
TigerSHARC® (ADSP-TSxxx) and SHARC® (ADSP-21xxx) processors
which set a new standard of performance for digital signal processors,
combining multiple computation units for floating-point and fixed-point
processing as well as wide word width. The manual describes the linking
process in the VisualDSP++ Windows application environment.

This manual provides information on the linking process and describes
the syntax for the linker’s command language—a scripting language that
the linker reads from the linker description file. The manual leads you
through using the linker, archiver, and utilities to produce DSP programs
and provides reference information on the file utility software.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices

Visual DSP++ 4.5 Linker and Utilities Manual Xix

Manual Contents

processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.

Manual Contents

The manual contains:

Chapter 1, “Introduction”
This chapter provides an overview of the linker and utilities.

Chapter 2, “Linker”
This chapter describes how to combine object files into reusable
library files to link routines referenced by other object files.

Chapter 3, “Linker Description File”
This chapter describes how to write an . 1df file to define the
target.

Chapter 4, “Expert Linker”
This chapter describes Expert Linker, which is an interactive
graphical tool to set up and map processor memory.

Chapter 5, “Memory Overlays and Advanced LDF Commands”
This chapter describes how overlays and advanced LDF commands
are used for memory management.

Chapter 6 “Archiver”

This chapter describes the e1far archiver utility used to combine
object files into library files, which serve as reusable resources for
code development.

Chapter 7 “Memory Initializer”

This chapter describes the Memory Initializer utility that is used to
generate a single initialization stream and save it in a section in the
output executable file.

XX

VisualDSP++ 4.5 Linker and Utilities Manual

Preface

* Appendix A, “File Formats”
This appendix lists and describes the file formats that the develop-

ment tools use as inputs or produce as outputs.

* Appendix B, “Utilities”
This appendix describes the utilities that provide legacy and file
conversion support.

* Appendix C, “LDF Programming Examples for TigerSHARC Pro-
cessors”

This appendix provides code examples of .LDF files used with
TigerSHARC processors.

* Appendix D, “LDF Programming Examples for SHARC Proces-
sors”

This appendix provides code examples of .LDF files used with
SHARC processors.

e Appendix E, “LDF Programming Examples for Blackfin Proces-
sors”
This appendix provides code examples of .LDF files used with
Blackfin processors.

What’s New in This Manual

This manual documents linking support for all currently available Analog
Devices 32-bit floating-point and fixed-point SHARC and TigerSHARC
processors, as well as 16-bit fixed-point Blackfin processors. The manual
describes the linking process in the Visual DSP++ Windows application
environment.

Loader/splitter information is available in a separate Loader manual.

Refer to VisualDSP++ 4.5 Product Bulletin for information on all new and
updated features and other release information.

Visual DSP++ 4.5 Linker and Utilities Manual XX1

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following
ways:

* Visit the Embedded Processing and DSP products Web site at

http://www.analog.com/processors/technicalSupport

* E-mail tools questions to
processor.tools.support@analog.com

* E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Phone questions to 1-800-ANALOGD

* Contact your Analog Devices, Inc. local sales office or authorized
distributor

* Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.0. Box 9106

Norwood, MA 02062-9106
USA

xXxii Visual DSP++ 4.5 Linker and Utilities Manual

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in

Visual DSP++ 4.5.

TigerSHARC (ADSP-TSxxx) Processors
The name 7igerSHARC refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203
SHARC (ADSP-21xxx) Processors
The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors:

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062
ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261
ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21363
ADSP-21364 ADSP-21365 ADSP-21366 ADSP-21367
ADSP-21368 ADSP-21369

VisualDSP++ 4.5 Linker and Utilities Manual

xxl1il

Product Information

Blackfin (ADSP-BFxxx) Processors
The name Blackfin refers to a family of 16-bit, embedded processors.
Visual DSP++ currently supports the following Blackfin processors:

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)
ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)
ADSP-BF534 ADSP-BF536

ADSP-BF537 ADSP-BF538

ADSP-BF539 ADSP-BF561

ADG6903 ADG6531

ADG6901 ADG6902

Product Information

You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

XX1V Visual DSP++ 4.5 Linker and Utilities Manual

Preface

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information

For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

* E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

e Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Visual DSP++ 4.5 Linker and Utilities Manual XXV

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

Product Information

Related Documents

For information on product related development software, see these
publications:

* VisualDSP++ 4.5 Getting Started Guide
o VisualDSP++ 4.5 User’s Guide
* VisualDSP++ 4.5 C/C++ Compiler and Library Manual for SHARC

Processors

* VisualDSP++ 4.5 C/C++ Compiler and Library Manual for
TigerSHARC Processors

* VisualDSP++ 4.5 C/C++ Compiler and Library Manual for Blackfin
Processors

* VisualDSP++ 4.5 Assembler and Preprocessor Manual

* Device Drivers and System Services Manual for Blackfin Processors
* VisualDSP++ 4.5 Product Release Bulletin

o VisualDSP++ Kernel (VDK) User’s Guide

* Quick Installation Reference Card

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicallibrary

XXVi Visual DSP++ 4.5 Linker and Utilities Manual

Online

Preface

Technical Documentation

Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum

Abridged C++ library, and Flexible License Manager (FlexLM) network

license

manager software documentation. You can easily search across the

entire VisualDSP++ documentation set for any topic of interest using the

Search

function of VisualDSP++ Help system. For easy printing, supple-

mentary . PDF files of most manuals are also provided.

Each documentation file type is described as follows.

File Description

. CHM Help system files and manuals in Help format

.HTM or Dinkum Abridged C++ library and FlexLM network license manager software doc-

CHTML umentation. Viewing and printing the . HTML files requires a browser, such as
Internet Explorer 5.01 (or higher).

.PDF Visual DSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the . PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.5 or higher).

Access the online documentation from the Visual DSP++ environment,

Windows® Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the Visual DSP++ environment:

Access Visual DSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Visual DSP++ 4.5 Linker and Utilities Manual xxVil

Product Information

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open Visual DSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder of VisualDSP++
environment. The . PDF files are located in the Docs folder of your
Visual DSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

* Double-click the vdsp-help.chn file, which is the master Help sys-
tem, to access all the other .cHM files.

* Open your Visual DSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

* Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, Visual DSP++, and
Visual DSP++ Documentation.

Accessing Documentation From the Web

Download manuals in PDF format at the following Web site:
http://www.analog.com/processors/resources/technicallLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

xxviii Visual DSP++ 4.5 Linker and Utilities Manual

Preface

Printed Manuals

For general questions regarding literature ordering, call the Literature

Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase Visual DSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emularor (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

Visual DSP++ 4.5 Linker and Utilities Manual XXIX

Notation Conventions

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions

Text conventions used in this manual are identified and described as

follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

XXX

Visual DSP++ 4.5 Linker and Utilities Manual

Preface

Example

Description

Note: For correct operation, ...

A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

X ©

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Visual DSP++ 4.5 Linker and Utilities Manual XXX1

Notation Conventions

XXXil Visual DSP++ 4.5 Linker and Utilities Manual

1 INTRODUCTION

This chapter provides an overview of VisualDSP++ development tools and
their use in the [DSP] project development process.

The code examples in this manual have been compiled using
Visual DSP++ 4.5. The examples compiled with other versions of
Visual DSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

This chapter includes:

* “Software Development Flow” on page 1-2
Shows how linking, loading, and splitting fit into the project devel-
opment process.

e “Compiling and Assembling” on page 1-3
Shows how compiling and assembling the code fits into the project
development process.

e “Linking” on page 1-7
Shows how linking fits into the project development process.

* “Loading and Splitting” on page 1-10
Shows how loading and splitting fit into the project development
process.

Visual DSP++ 4.5 Linker and Utilities Manual 1-1

Software Development Flow

Software Development Flow

The majority of this manual describes linking, a critical stage in the
program development process for embedded applications.

The linker tool (1inker) consumes object and library files to produce exe-
cutable files, which can be loaded onto a simulator or target processor.
The linker also produces map files and other output that contain informa-
tion used by the debugger. Debug information is embedded in the
executable file.

After running the linker, you test the output with a simulator or emulator.
Refer to online Help for information about debugging.

Finally, you process the debugged executable file(s) through the loader or
splitter to create output for use on the actual processor. The output file
may reside on another processor (host) or may be burned into a PROM.

The VisualDSP++ 4.5 Loader Manual describes loader/splitter functional-
ity for the target processors.

The processor software development flow can be split into three phases:

1. Compiling and Assembling — Input source files C (.c), C++ (.cpp),
and assembly (.asm) yield object files (. doj)

2. Linking — Under the direction of the Linker Description File
(.1df), a linker command line, and Visual DSP++ Project Options
dialog box settings, the linker utility consumes object files (.doj)
to yield an executable (. dxe) file. If specified, shared memory (. sm)
and overlay (.ov1) files are also produced.

3. Loading or Splitting — The executable (. dxe) file, as well as shared
memory (.sm) and overlay (.ov1) files, are processed to yield
output file(s). For TigerSHARC and Blackfin processors, these are
boot-loadable (.1dr) files or non-bootable PROM image files,

which execute from the processor’s external memory.

1-2

VisualDSP++ 4.5 Linker and Utilities Manual

Introduction

Compiling and Assembling

The process starts with source files written in C, C++, or assembly. The
compiler (or a code developer who writes assembly code) organizes each
distinct sequence of instructions or data into named sections, which
become the main components acted upon by the linker.

Inputs — C/C++ and Assembly Sources

The first step towards producing an executable file is to compile or assem-
ble C, C++, or assembly source files into object files. The VisualDSP++
development software assigns a .doj extension to object files (Figure 1-1).

Source Files Object Files
(.C, .CPP, .ASM) (.DOJ)

Compiler and
Assembler

Figure 1-1. Compiling and Assembling

Object files produced by the compiler (via the assembler) and by the
assembler itself consist of input sections. Each input section contains

a particular type of compiled/assembled source code. For example, an
input section may consist of program opcodes or data, such as variables
of various widths.

Some input sections may contain information to enable source-level
debugging and other Visual DSP++ features. The linker maps each input
section (via a corresponding output section in the executable) to a memory
segment, a contiguous range of memory addresses on the target system.

Visual DSP++ 4.5 Linker and Utilities Manual 1-3

Compiling and Assembling

Each input section in the .1df file requires a unique name, as specified in
the source code. Depending on whether the source is C, C++, or assembly,
different conventions are used to name an input section (see “Linker
Description File”).

Input Section Directives in Assembly Code

A .SECTION directive defines a section in assembly source. This directive
must precede its code or data.

SHARC Code Example
.SECTION/DM asmdata; // Declares section asmdata
.VAR inputl[3]; // Declares data buffer in asmdata
.SECTION/PM asmcode; // Declares section asmcode
RO = 0x1234; // Three lines of code in asmcode
R1 = 0x4567;
R3 = R1 + RZ;

In this example, the /dm asmdata input section contains the array input,
and the /pm asmcode input section contains the three line of code.

Blackfin Code Example

.SECTION Library_Code_Space; /* Section Directive */

.GLOBAL _abs;

_abs:
RO = ABS RO; /* Take absolute value of input */
RTS;

_abs.end;

In this example, the assembler places the global symbol/label _abs and the
code after the label into the input section Library_Code_Space, as it pro-
cesses this file into object code.

In the example, the linker knows what code is associated with the label
_abs because it is delimited with the label _abs.end. For some linker fea-
tures, especially unused section elimination (see

1-4 VisualDSP++ 4.5 Linker and Utilities Manual

Introduction

“ELIMINATE_SECTIONS()” on page 3-34), the linker needs to be able
to determine the end of code or data associated with a label. In assembly

code, the end of a function data block can be marked with a label with the
same name as the label at the start of the name with .end appended to it.
It is also possible to prepend a “.” in which case the label will not appear
in the symbol table which can make debugging easier.

Listing 1-1 shows uses of .end labels in assembly code.

Listing 1-1. Using Labels in Assembly Code

start_label:

// code
start_label.end // marks end of code section
new_label:
// code
new_label .END: // end label can be in upper case
one_entry: // function oneentry includes the code in
// second entry
second_entry: // more code
.one_entry.end:
.second_entry.end: // prepended “.” keeps end label from the

// symbol table

Input Section Directives in C/C++ Source Files

Typically, C/C++ code does not specify an input section name, so the
compiler uses a default name. By default, the input section names are
program (for code) and datal (for data). Additional input section names
are defined in .1df files (see “Specifying the Memory Map” on page 2-12
for more information on memory mapping).

In C/C++ source files, you can use the optional section(“name”) C lan-
guage extension to define sections.

Visual DSP++ 4.5 Linker and Utilities Manual 1-5

Compiling and Assembling

Example 1

While processing the following code, the compiler stores the temp variable
in the ext_data input section of the .D0J file and also stores the code gen-
erated from funcl in an input section named extern.

section ("ext_data") int temp; /* Section directive */
section ("extern") void funcl(void) { int x = 1; }

Example 2

The section ("name") extension is optional and only applies to the decla-
ration to which it is applied. Note that the new function (func2) does not
have section ("extern") and will be placed in the default input section
program. For more information on LDF sections, refer to “Specifying the
Memory Map” on page 2-12.

section ("ext_data") int temp;
section ("extern") void funcl(void) { int x = 1; }
int func2(void) { return 13; } /* New */

For information on compiler default section names, refer to the
VisualDSP++ 4.5 C/C++ Compiler and Library Manual for appropriate
target processors and “Placing Code on the Target” on page 2-35.

Identify the difference between input section names, output sec-
tion names, and memory segment names because these types of
names appear in the .1df file. Usually, default names are used.
However, in some situations you may want to use non-default
names. One such situation is when various functions or variables
(in the same source file) are to be placed into different memory
segments.

1-6

VisualDSP++ 4.5 Linker and Utilities Manual

Introduction

Linking

After you have (compiled and) assembled source files into object files, use
the linker to combine the object files into an executable file. By default,

the development software gives executable files a . dxe extension
(Figure 1-2).

Library Files
(.DLB)
Object Files Executables
(.DOJ) (.DXE, .SM, .OVL)
[
:| Linker
Linker Description Project Options
File (LDF) Dialog Box Settings

Figure 1-2. Linking Diagram

Linking enables your code to run efficiently in the target environment.
Linking is described in detail in Chapter 3, “Linker”.

When developing a new project, use the Expert Linker to generate

the project’s .1df file. See Chapter 4, “Expert Linker” for more
information.

Visual DSP++ 4.5 Linker and Utilities Manual 1-7

Linking

Linker and Assembler Preprocessor

The linker and assembler preprocessor program (pp) evaluates and pro-
cesses preprocessor commands in source files. With these commands, you
direct the preprocessor to define macros and symbolic constants, include
header files, test for errors, and control conditional assembly and
compilation.

The pp preprocessor is run by the assembler or linker from the operating
system’s command line or within the Visual DSP++ environment. These
tools accept and pass this command information to the preprocessor. The
preprocessor can also operate from the command line using its own com-
mand-line switches.

Assembler/Linker Preprocessor treats the character “.” as part of an
identifier

The preprocessor matches the assembler which uses “.” as part of assem-
bler directives and as a legal character in labels. This behavior does create a
possible problem for users that have written preprocessor macros that rely
on identifiers to break when encountering the “.” character, usually seen
when processing register names. For example,

jidefine Loadd(reg, val) \
reg.l = val; \
reg.h = val;

The above example would not work in VisualDSP++ 4.5 because Visu-
alDSP++ 4.5 does not provide any replacement since reg is not parsed as a
separate identifier. The macro has to be rewritten using the operator ##
such as:

ffdefine Loadd(reg, val) \
reg #HF .1 = val; \
reg #H .h = val;

1-8 Visual DSP++ 4.5 Linker and Utilities Manual

Introduction

The preprocessor supports ANSI C standard preprocessing with
extensions but differs from the ANSI C standard preprocessor in
several ways. For more information on the pp preprocessor, see the
VisualDSP++ 4.5 Assembler and Preprocessor Manual.

@ The compiler has it own preprocessor that allows you to use pre-

processor commands within your C/C++ source. The compiler
preprocessor automatically runs before the compiler. For more
information, see the VisualDSP++ 4.5 C/C++ Compiler and Library
Manual for the appropriate target archtecture.

Visual DSP++ 4.5 Linker and Utilities Manual 1-9

Loading and Splitting

Loading and Splitting

After debugging the . dxe file, you process it through a loader or splitter to
create output files used by the actual processor. The file(s) may reside on
another processor (host) or may be burned into a PROM.

For more information, refer to the VisualDSP++ 4.5 Loader Manual
which provides detailed descriptions of the processes and options used to
generate boot-loadable . 1dr (loader) files for the appropriate target pro-
cessors. This manual also describes the splitting utility, which (when used)
creates the non-bootloadable files that execute from the processor’s exter-
nal memory.

In general:

The SHARC ADSP-2106x/ADSP-21160 processors use the loader
(e1floader.exe) to yield a boot-loadable image (.1dr file), which
resides in memory external to the processor (PROM or host proces-
sor). Use the splitter utility (e1fsp121k) to generate non-bootable
PROM image files, which execute from the processor’s external
memory (often used with the ADSP-21065L processors).

The SHARC ADSP-2116x/2126x/2136x processors use the loader
(elfloader) to yield a boot-loadable image (. 1dr file), which trans-
ported to (and run from) processor memory. To make a loadable
file, the loader processes data from a boot-kernel file (.DXE) and one
or more other executable files (.dxe).

The TigerSHARC processors use the loader (e1floader.exe) to
yield a boot-loadable image (.1dr file), which transported to (and
run from) processor memory. To make a loadable file, the loader
processes data from a boot-kernel file (.dxe) and one or more other
executable files (.dxe).

VisualDSP++ 4.5 Linker and Utilities Manual

Introduction

* Both TigerSHARC and SHARC processors use the splitter utility
(e1fsp121k) to generate non-bootable PROM image files, which
execute from the processor’s external memory.

* The Blackfin processors use the loader (e1floader) to yield a
boot-loadable image (. 1dr file), which resides in memory external
to the processor (PROM or host processor. To make a loadable file,
the loader processes data from a boot-kernel file (.dxe) and one or
more other executable files (.dxe).

Figure 1-3 shows a simple application of the loader. In this example, the
loader’s input is a single executable (.dxe) file. The loader can accommo-
date up to two .dxe files as input plus one boot kernel file (.dxe).

Executables

(DXE, .SM, .OVL) Debugger
(Simulator, ICE, or EZ-KIT Lite)

Loader
Boot Image
(LDR)
Boot Kernel
(.DXE)

Figure 1-3. Loading Diagram

For example, when a TigerSHARC processor is reset, the boot kernel por-
tion of the image is transferred to the processor’s core. Then, the
instruction and data portion of the image are loaded into the processor’s
internal RAM (as shown in Figure 1-4) by the boot kernel.

Visual DSP++ 4.5 Linker and Utilities Manual 1-11

Loading and Splitting

EPROM
Processor
1
Boot Kernel (———
Internal
5 Memory
—>
Instructions
and
Data

Figure 1-4. Booting from a Bootloadable ((LDR) File

VisualDSP++ includes boot kernel files (.dxe), which are automatically
used when you run the loader. You can also customize boot kernel source

files (included with Visual DSP++) by modifying and rebuilding them.

Figure 1-5 shows how multiple input files—in this case, two executable
(.dxe) files, a shared memory (.sm) file, and overlay (.ov1) files—are
consumed by the loader to create a single image file (. 1dr). This example
illustrate the generation of a loader file for a multiprocessor architecture.

The .smand .ov1 files must reside in the same directory that con-
tains the input . dxe file(s) or in the current working directory. If
your system does not use shared memory or overlays, .smand .ov1
files are not required.

This example has two executable files that share memory. Overlays are also
included. The resulting output is a compilation of all the inputs.

1-12 Visual DSP++ 4.5 Linker and Utilities Manual

Introduction

Loader

Figure 1-5. Input Files for a Multiprocessor System

Visual DSP++ 4.5 Linker and Utilities Manual 1-13

Loading and Splitting

1-14 Visual DSP++ 4.5 Linker and Utilities Manual

2 LINKER

Linking assigns code and data to processor memory. For a simple single
processor architecture, a single .dxe file is generated. A single invocation
of the linker may create multiple executable (. dxe) files for multiprocessor
(MP) or multicore architectures. Linking can also produce a shared mem-
ory (.sm) file for an MP system. A large executable file can be split into a
smaller executable file and overlays (.ov1) files, which contain code that is
called in (swapped into internal processor memory) as needed. The linker
performs this task.

You can run the linker from a command line or from the Visual DSP++
Integrated Development and Debugging Environment (IDDE).

You can load the link output into the VisualDSP++ debugger for simula-
tion, testing, and profiling.

This chapter includes:
* “Linker Operation” on page 2-2
e “Linking Environment for Windows” on page 2-6
e “Linker Warning and Error Messages” on page 2-10
e “Link Target Description” on page 2-11

e “Linker Command-Line Reference” on page 2-43

Visual DSP++ 4.5 Linker and Utilities Manual 2-1

Linker Operation

Linker Operation

Figure 2-1 illustrates a basic linking operation. The figure shows several
object (. doj) files being linked into a single executable (.dxe) file. The
Linker Description File (.LDF) directs the linking process.

RR

Linker

Figure 2-1. Linking Object Files to Produce an Executable File

When developing a new project, use the Expert Linker to generate
the project’s .1df file. See Chapter 4, “Expert Linker” for more
information.

In a multiprocessor system, a . dxe file for each processor is generated. For
example, for a two-processor system, you must generate two .dxe files.
The processors in a multiprocessor architecture may share memory. When
directed by statements in the .1df file, the linker produce a shared mem-
ory (.sm) executable file, whose code is used by multiple processors.

Overlay files, another linker output, support applications that require
more program instructions and data than the processor’s internal memory
can accommodate. Refer to “Memory Management Using Overlays” on
page 5-4 for more information.

2-2 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Similar to object files, executable files are partitioned into ouzpur sections

with unique names. Output sections are defined by the Executable and
Linking Format (ELF) file standard to which VisualDSP++ conforms.

The executable’s input section names and output section names
occupy different namespaces. Because the namespaces are indepen-
dent, the same section names may be used. The linker uses input
section names as labels to locate corresponding input sections
within object files.

The executable file(s) (.0XE) and auxiliary files (.sm and .ov1) are not
loaded into the processor or burned onto an EPROM. These files are used
to debug the system.

Directing Linker Operation

Linker operations are directed by these options and commands:

e Linker (1inker) command-line switches (options). Refer to “Linker
Command-Line Reference” on page 2-43.

* Windows environment: Settings (options) on the Link page of the
Project Options dialog box. See “Project Builds” on page 2-6.

* LDF commands. Refer to “LDF Commands” on page 3-31 for a
detailed description.

Linker options control how the linker processes object files and library
files. These options specify various criteria such as search directories, map
file output, and dead code elimination.

LDF commands in a Linker Description File (.1df) define the target
memory map and the placement of program sections within processor
memory. The text of these commands provides the information needed to
link your code.

Visual DSP++ 4.5 Linker and Utilities Manual 2-3

Linker Operation

The VisualDSP++ Project window displays the .1df file as a source
file, though the file provides linker command input.

Using directives in the .1df file, the linker:

Reads input sections in the object files and maps them to output
sections in the executable file. More than one input section may be
placed in an output section.

Maps each output section in the executable to a memory segment,
a contiguous range of memory addresses on the target processor.
More than one output section may be placed in a single memory
segment.

Linking Process Rules

The linking process observes these rules:

Each source file produces one object file.

Source files may specify one or more input sections as destinations

for compiled/assembled object(s).

The compiler and assembler produce object code with labels that
direct one or more portions to particular output sections.

As directed by the .1df file, the linker maps each input section
in the object code to an output section in the .dxe file.

As directed by the .1df file, the linker maps each output section
to a memory segment.

Each input section may contain multiple code items, but a code
item may appear in one input section only.

More than one input section may be placed in an output section.

Each memory segment must have a specified width.

2-4

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

* Contiguous addresses on different-width hardware must reside in
different memory segments.

* More than one output section may map to a memory segment if
the output sections fit completely within the memory segment.

Linker Description File Overview

Whether you are linking C/C++ functions or assembly routines, the mech-
anism is the same. After converting the source files into object files, the
linker uses directives in an .1df file to combine the objects into an execut-
able (.dxe) file, which may be loaded into a simulator for testing.

Executable file structure conforms to the Executable and Linkable
Format (ELF) standard.

Each project must include one . 1df file that specifies the linking process
by defining the target memory and mapping the code and data into that
memory. You can write your own . 1df file, or you can modify an existing
file; modification is often the easier alternative when there are few changes
in your system’s hardware or software. VisualDSP++ provides an . 1df file
that supports the default mapping of each processor type.

When developing a new project, use the Expert Linker to generate
the project’s .1df file, as described in Chapter 4, “Expert Linker”.

Similar to an object (.doj) file, an executable (.dxe) file consists of
different segments, called ouzput sections. Input section names are inde-
pendent of output section names. Because they exist in different
namespaces, input section names can be the same as output section names.

Refer to Chapter 3, “Linker Description File” for further information.

Visual DSP++ 4.5 Linker and Utilities Manual 2-5

Linking Environment for Windows

Linking Environment for Windows

The linking environment refers to Windows command-prompt windows
and the VisualDSP++ IDDE. At a minimum, run development tools (such
as the linker) via a command line and view output in standard output.

Visual DSP++ provides an environment that simplifies the processor pro-
gram build process. From Visual DSP++, you specify build options from
the Project Options dialog box and modify files, including the Linker
Description File (.1df). The Project Options dialog box’s Type option
allows you to choose whether to build a library (. d1b) file, an executable
(.dxe) file, or an image file (.1dr or others). Error and warning messages
appear in the Output window.

Project Builds

The linker runs from an operating system command line, issued from the
Visual DSP++ IDDE, or a command prompt window. The Visual DSP++
IDDE provides an intuitive interface for processor programming. When
you open VisualDSP++, a work area contains everything needed to build,
manage, and debug a DSP project. You can easily create or edit an .1df
file, which maps code or data to specific memory segments on the target.

For information about the Visual DSP++ environment, refer to the
VisualDSP++ User’s Guide or online Help. Online Help provides
powerful search capabilities. To obtain information on a code item,
parameter, or error, select text in an Visual DSP++ IDDE Editor
window or Output window and press the keyboard’s F1 key.

Within Visual DSP++, specify tool settings for project builds. Use the

Project menu to open Project Options dialog box.

These dialog boxes allow you to select the target processor, type and name
of the executable file, as well as Visual DSP++ tools available for use with
the selected processor.

2-6 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

When using the VisualDSP++ IDDE, use the Link option from the
Project Options dialog box () to select and/or set linker functional
options.

Project Options for MewProject] EHE

=y Project J3) = Project : Link : Gener:

- Options
B3 General [~ Generate ohject trace [~ Warn once on undefined symhal
-Bgh Source Langua [~ Strip debug symhbaols [~ Strip all symbaols

- Preprocessor
- Processar (1)
- Processor (2) rAddiional Output——————— Optimizations
- Profile-guided ¢ [~ Generate symbaol map r Individually map functions and data

- Warning [~ Generate xref items
- Assemble :
=Tl Link [~ Savetempararyfiles

[Elirmination
.. Processar
=-fz] Load

- Options
- Kemel
- Splitter

- Pre-build Additional options:
[Posthuild = I e

4 I I 3

-4 LDF Preproces Search directories:

L

oK I Cancel

Figure 2-2. Project Options — Link: General Page

There are four sub-pages you can access—General, LDF Preprocessing,
Elimination, and Processor. Figure 2-2 shows a sample Project:Link:Gen-
eral sub-page. Almost every setting option has a corresponding compiler
command-line switch described in “Linker Command-Line Switches” on

page 2-47.

The Additional options field in each sub-page is used to enter the appro-
priate file names and options that do not have corresponding controls on
the Link sub-page but are available as compiler switches.

Visual DSP++ 4.5 Linker and Utilities Manual 2-7

Linking Environment for Windows

Due to different processor architectures, the processors may provide dif-
ferent Link tab selection options. Use the VisualDSP++ context-sensitive
online Help for each target architecture to obtain information on linker
options you can specify in Visual DSP++. To do that, click on the ? button
and then click in a field or box you need information about.

2-8

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

Expert Linker

The Visual DSP++ IDDE provides an interactive tool, Expert Linker,
to map code or data to specific memory segments. When developing
a new project, use the Expert Linker to generate the .1df file.

Windows-hosted Expert Linker graphically displays the .1df information
(object files, LDF macros, libraries, and a target memory description).
With Expert Linker, use drag-and-drop operations to arrange the object
files in a graphical memory mapping representation. When you are satis-
fied with the memory layout, generate the executable (. dxe) file.

Figure 2-3 shows the Expert Linker window, which comprises two panes:
Input Sections and Memory Map (output sections). Refer to Chapter 4,
“Expert Linker”, for detailed information.

Expert Linker x|
Input Sections: bemaory Map:
ll""""'ﬂ y Segment/Section | Start sddress | End Address 2]
&[] i1 B mem INT_INTT4 Dxlcl Tl df
&[] Min12 B mem_INT_INTTS Dled 01
&[] Min3 B < mem_itab (4200 05241
[Ivint14 B mem_code 04242 07
-3 MintS H e mem_data2 048000 Duaeff
[Ivintd B mem_heap af00 Db 71t
[Wint5 B <R mem_stack 046800 Dubif
L it Fw mem_datal 0000 Dt
H-E] Wint? E
- vintd i
5[] I = Sieo |

Figure 2-3. Expert Linker Window

Visual DSP++ 4.5 Linker and Utilities Manual 2-9

Linker Warning and Error Messages

Linker Warning and Error Messages

Linker messages are written to the VisualDSP++ Output window or to the
standard output (when the linker is run from a command line). Messages
describe problems the linker encountered while processing the . 1df file.
Warnings indicate processing errors that do not prevent the linker from
producing a valid output file, such as unused symbols in your code. Errors
are issued when the linker encounters situations that prevent the produc-
tion of a valid output file.

Typically, these messages include the name of the . 1df file, the line num-
ber containing the message, a six-character code, and a brief description of
the condition. For example,

>linker -proc ADSP-unknown a.doj

[Error 1110101 The processor ‘“ADSP-unknown’ is
unknown or unsuppported.

Interpreting Linker Messages
You can access descriptions of linker messages by selecting a six-character
code (for example, 111010) and pressing the F1 key.

Within Visual DSP++, the Output window’s Build tab displays project
build status and error messages. In most cases, double-clicking a message
displays the line in the source file causing the problem.

Some build errors, such as a reference to an undefined symbol, do not cor-
relate directly to source files. These errors often stem from omissions in
the .1df file.

For example, if an input section from the object file is not placed by the
.1df file, a cross-reference error occurs at every object that refers to labels
in the missing section. Fix this problem by reviewing the .1df file and
specifying all sections that need placement. For more information, refer to
online Help.

2-10 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Link Target Description

Before defining the system’s memory and program placement with linker
commands, analyze the target system to ensure you can describe the target
in terms the linker can process. Then, produce an .1df file for your project
to specify these system attributes:

e Physical memory map
e Program placement within the system’s memory map

If the project does not include an . 1df file, the linker uses a default
.1df file for the processor that matches the -proc <processor>
switch on the linker’s command line (or the Processor selection
specified on the Project page of the Project Options dialog box in
the Visual DSP++ IDDE).

Be sure to understand the processor’s memory architecture, which is
described in the appropriate processor’s hardware reference manual and in
its data sheet.

This section contains:
* “Representing Memory Architecture” on page 2-12
* “Speciftying the Memory Map” on page 2-12
e “Placing Code on the Target” on page 2-35
e “Profile-Guided Optimization Support” on page 2-41

e “Passing Arguments for Simulation or Emulation” on page 2-42

Visual DSP++ 4.5 Linker and Utilities Manual 2-11

Link Target Description

Representing Memory Architecture

The .1df file’s MEMORY { } command is used to represent the memory archi-
tecture of your processor system. The linker uses this information to place
the executable file into the system’s memory.

Perform the following tasks to write a MEMORY { } command:

* Memory Usage — List the ways your program uses memory in your
system. Typical uses for memory segments include interrupt tables,
initialization data, program code, data, heap space, and stack space.

Refer to “Specifying the Memory Map” on page 2-12.

* Memory Characteristics — List the types of memory in your pro-
cessor system and the address ranges and word width associated
with each memory type. Memory type is defined as RAM or ROM.

e MEMORY{} Command — Construct a MEMORY {} command to
combine the information from the previous two lists and to declare
your system’s memory segments.

For complete information, refer to “MEMORY/{}” on page 3-38.

Specifying the Memory Map

An embedded program must conform to the constraints imposed by the

processor’s data path (bus) widths and addressing capabilities. The follow-
ing information describes an . 1df file for a hypothetical project. This file
specifies several memory segments that support the SECTIONS{} command,

as shown in “SECTIONS{}” on page 3-55.

The three topics are important when allocating memory:
* “Memory Usage and Default Memory Sections” on page 2-13
* “Memory Characteristics Overview” on page 2-27

e “Linker MEMORY{} Command in .Idf File” on page 2-32

2-12 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Memory Usage and Default Memory Sections

Input section names are generated automatically by the compiler or are
specified in the assembly source code. The .1df file defines memory sec-
tion names and output section names. The default . 1df file handles all
compiler-generated input sections (refer to the “Input Section” column in
Table 2-1, Table 2-2, and Table 2-3). The produced . dxe file has a corre-
sponding output section for each input section. Although programmers
typically do not use output section labels, the labels are used by down-
stream tools.

Use the ELF file dumper utility (e1fdump) to dump contents of an output
section (for example, datal) of an executable file. See “elfdump — ELF File
Dumper” on page B-1 for information about this utility.

The following sections show how input sections, output sections, and
memory segments correspond in the default .1df files for the appropriate
target processor.

Refer to your processor’s default . 1df file and to the hardware ref-
erence manual for details. Also see “Wildcard Characters” on

page 2-35.

Typical uses for memory segments include interrupt tables, initialization
data, program code, data, heap space, and stack space, etc. For detailed
processor-specific information, refer to:

e “Default Memory Sections for SHARC Processors”
e “Default Memory Sections for TigerSHARC Processors”
e “Default Memory Sections for Blackfin Processors”

* “Special “Table” Memory Sections”

Visual DSP++ 4.5 Linker and Utilities Manual 2-13

Link Target Description

Default Memory Sections for SHARC Processors

Table 2-1 shows section mapping in the default .1df file for ADSP-21161
processor (as a simplified example for SHARC processors)

Table 2-1. Section Mapping in the Default SHARC LDF

Input Section Output Section Memory Section
seg_pmco seg_pmco seg_pmco
seg_dmda seg_dmda seg_dmda
seg_pmda seg_pmda seg_pmda
seg_rth seg_rth seg_rth
seg_init seg_init seg_init
seg_init_code seg_init_code seg_init_code
seg_argv seg_argv seg_argv
seg_ctdm dxe_ctdm mem_ctdm
seg_ctdml

seg_vthbl seg_vthbl seg_dmda
.bss .bss seg_dmda
.gdt seg_dmda seg_dmda
.gdtl

frt seg_dmda seg_dmda
.cht seg_dmda seg_dmda
.edt seg_dmda seg_dmda
.rtti seg_dmda seg_dmda
For 2136x Only:

seg_stak seg_stak seg_stak
seg_heap seg_heap seg_heap

2-14 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

For more information on stack and heap allocation, see “Memory Usage”
in the C/C++ Compiler and Library Manual for SHARC Processors. There
are several input/memory sections used in the default . 1df files for
ADSP-210xx/211xx/212xx/213xx processors, which must be present in

user’s own . 1df files. These sections are described in detail below.

.bss

This section contains global zero-initialized data. The linker places the
contents of this data section in seg_dmda).

JItti

This section is used by the C++ runtime type identification support, when

enabled.

seg_rth

This section contains the interrupt vector table (by default, this is located
in the start-up file (for example, 060_hdr.doj).

seg_init

This section contains location and size information about the stack and
heap; also contains compressed data created by the memory initialization
tool. (See “-meminit” on page 2-58 for more information.)

seg_int_code

Code that modifies interrupt latch registers must not be executed from
external memory. To minimize the impact of this restriction, the library
functions that modify the latch registers are located in the seg_init_code
section, which should be located in internal memory.

seg_pmco

This section is the default location for program code.

Visual DSP++ 4.5 Linker and Utilities Manual 2-15

Link Target Description

seg_pmda

This section is the default location for global program data that is quali-
fied with the “pm” keyword. For example,

int pm xyz[100]; // Located in seg_pmda
seg_argv
This section contains the command-line arguments that are used as part of
Profile-Guided Optimization (PGO).

seg_ctdm

This section contains the addresses of constructors that are called before
the start of a C++ program (such as constructors for global and static
objects). This section must be terminated with the symbol
“___ctor_NULL_marker” (the default .1df files ensure this). It is required if
compiling with C++ code.

seg_dmda

This section is the default location for global data, and also for data that is
qualified with the “dm” keyword. For example,

int abc[1007; // Located in seg_dmda
int dm def[100]; // Located in seg_dmda

seg_heap

This section is the area from which memory allocation functions and
operators (new, malloc(), and so on) allocate memory.

seg_stak

This section is the area where the run-time stack is located. Local vari-
ables, function parameters, and so on are stored here.

2-16 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

seg_vtbl

This section contains C++ virtual function tables. The default . 1df files
place the virtual function tables into the default data memory area but this
can be re-mapped as required. You can also direct the compiler to use a
different section for C+ virtual function tables, by using the -section
compiler switch.

Other Memory Sections

The compiler and libraries also use other data sections that are linked into
one of the above memory sections. These data sections include:

seg_ctdml

The symbol “___ctor_NULL_marker” (located in the C++ run-time library)
marks the end of the list of global and static constructors and is placed in
this data section. The linker ensures that the contents of this data section
are the last items in seg_ctdm.

.gdt .gdtl .frt .cht .edt

These data sections are used to hold data used during the handling of
exceptions. The linker places the contents of these data sections in
seg_dmda. See “Special “Table” Memory Sections” on page 2-24.

Default Memory Sections for TigerSHARC Processors

Table 2-2 shows section mapping in the default .1df file for ADSP-TS101
processor (as a simplified example for TigerSHARC processors)

Table 2-2. Section Mapping in the Default TigerSHARC LDF

Input Section Output Section Memory Section
program code MOCode
datal datal MlData

Visual DSP++ 4.5 Linker and Utilities Manual 2-17

Link Target Description

Table 2-2. Section Mapping in the Default TigerSHARC LDF (Contd)

Input Section Output Section Memory Section
data? data? M2Data
mem_argv mem_argv M1Data
bsz bsz M1Data
bsz_init bsz_init MlData
ctor datal M1Data
ctor0 datal M1Data
ctorl datal M1Data
ctor?2 datal M1Data
ctor3 datal M1Data
ctord datal M1Data
.gdt datal Ml1Data
.gdtl

.frt datal MlData
.cht datal MlData
.edt datal MlData
.rtti datal MlData
vtbl vtbl vtbl

There are several input/memory sections used in the default .1df files for
ADSP-TSxxx processors, which must be present in user’s own .1df files.
These sections are described in detail below.

For more information on stack and heap allocation, see “Allocation of
memory for stacks and heaps in LDFs” in the C/C++ Compiler and Library
Manual for TigerSHARC Processors.

2-18 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

bsz

This section is a BSS-style section for global zero-initialized data.
bsz_init

This section contains run-time initialization data. (See “~-meminit” on
page 2-58 for more information.)

ctor

This section contains the addresses of constructors that are called before
the start of a C++ program (such as constructors for global and static
objects). This section must be terminated with the symbol
“___ctor_NULL_marker” (the default .1df files ensure this). It is required if
compiling with C++ code.

When all ctor sections are merged, they form a table containing a list of
all constructors for all global C++ objects. The table is only used at startup
and can be placed in ROM. When linking, it is important that all ctor
sections are merged in sequence (no other sections in between) and the
run-time library or the VDK run-time library is placed with the first ctor
section. Note that the default LDF’s “___ctor_NULL_marker” symbol is

placed in a section named “ctor1” which must be the last of the ctor sec-
tions to be used as input. The final letter in this name is a lower-case “L”.

datal
This section is the default location for global program data.

data?2

This section is the default location for global program data specified with
the pm memory qualifier.

Visual DSP++ 4.5 Linker and Utilities Manual 2-19

Link Target Description

mem_argv

This section contains the command-line arguments that are used as part of

Profile-Guided Optimization (PGO).

program

This section is the default location for program code.

vtbl

This section contains C++ virtual function tables. The default . 1df files
place the virtual function tables into the default data memory area but this
can be re-mapped as required. You can also direct the compiler to use a
different section for C+ virtual function tables, by using the -section
compiler switch.

Other Memory Sections

The compiler and libraries also use other data sections that are linked into
one of the above memory sections. These data sections include:

ctorl

This section contains the terminator for the ctor table section. It must be
mapped immediately after the ctor sections.

.gdt .gddl .frt .cht .edt .reti

These data sections are used to hold data used during the handling of
exceptions. The linker places the contents of these data sections in
seg_dmda. See “Special “Table” Memory Sections” on page 2-24.

Default Memory Sections for Blackfin Processors

The default LDFs in Blackfin/1df show the mapping of input sections to
output sections and memory segments. There are several input sections
present in the default . 1df files and their uses are detailed below.

2-20 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

See “Linker Description File” in Chapter 3, Linker Description File for
more information on .1df files and help on customization. Before cus-
tomizing any default .1df files, consider using the LDF wizard available
in the IDDE. Generation and configuration of a custom LDF is available
when creating a new project, or in the project options dialog box.

program
This section is the default location for program code.
datal

This section is the default location for global program data.

cplb_code

This section stores the run-time library’s CPLB management routines. It
is usually mapped into L1 Instruction SRAM. In particular, if CPLB

replacement is a possibility, this section must be mapped to memory that
is guaranteed to always available; this means that it must be addressed by a

locked CPLB.

constdata

This section is used for global data that is declared as constant, and for lit-
eral constants such as strings and array initializers.

cplb_data

This section stores CPLB configuration tables. In particular, the
cplbtabx.doj files (where x indicates the target) mapped by the LDFs are
placed into this section.

L1_DATA_A

This section is used to allow data to be mapped explicitly into L1 Data A
SRAM using the SECTION directive. By default, the compiler does not gen-
erate data here. This section is analogous to L1_code.

Visual DSP++ 4.5 Linker and Utilities Manual 2-21

Link Target Description

L1_DATA_B

This section is similar to L1_DATA_A, except that it is used to map data into

L1 Data B SRAM.

voldata

This section is used for data that may change due to external influences

(such as DMA), and should not be placed into cached data areas.
ctor

This section contains addresses of C++ constructor functions which are to
be called before main() to construct static objects. The mapping of ctor
must be directly followed by the mapping of ctor.

bsz

This section is used to map global zero initialized data. This section does
not actually contain data; it is zero-filled upon loading via the Visu-
alDSP++ IDDE, via a command line, or when processed by the loader.

bsz_init

This section contains run-time initialization data. (See “-meminit” on
page 2-58 for more information.) It is expected that this section is mapped
into read-only memory. When a . dxe file has been processed by the Mem-
ory Initializer utility and the program starts running, other data sections
(such as datal and constdata) are initialized by data copied from this
section.

stack

This section is the area where the run-time stack is located. Local vari-
ables, function parameters, and so on are stored here.

2-22 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

heap

This section is the area where the heap is located. Dynamically allocated
data is placed here.

noncache_code

This section is mapped to areas of memory that cannot be cache and take
program code. This section would be used if you have a function that
turns on the cache to ensure that the function itself does not reside in
cache (as executing code from a cache memory address causes a hardware
exception).

sdramO

In most LDFs and LDF configurations this section allows code or data to
be mapped explicitly into external memory by using the SECTION directive.
This can be used to place large, infrequently-used data or functions into
external memory to free up valuable internal memory.

sdram0_bank{1] 2] 3}

This section is used to map code and data into separate SDRAM banks
which are defined when SDRAM partitioned in the default LDF files.

sdram_bcz

This section is the same as section bsz except it gets placed in sdram, when
sdram is enabled.

sdram_shared

This section is used to map code and data into the part of memory shared
between core A and core B on multicore systems.

Visual DSP++ 4.5 Linker and Utilities Manual 2-23

Link Target Description

vibl

This section contains C++ virtual function tables. The default . 1df files
place the virtual function tables into the default data memory area but this
can be re-mapped as required. You can also direct the compiler to use a
different section for C+ virtual function tables, by using the -section
compiler switch.

Other Memory Sections

The compiler and libraries also use other data sections that are linked into
one of the above memory sections. These data sections include:

ctorl

This section contains the terminator for the ctor table section. It must be
mapped immediately after the ctor section.

.gdt .gdtl .frt .cht .edt .rtti

These data sections are used to hold data used during the handling of
exceptions. See “Special “Table” Memory Sections”.

Special “Table” Memory Sections

The following “table” data sections are used to hold data used during the
handling of exceptions. The linker is generally mapping these sections into
read-only memory.

.gdt

This section (Global Dispatch Table) is used by the C++ Exception
Library to determine which area of code to which a particular address
belongs. This section must be contiguous in memory.

2-24 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

.gdtl

This section contains the terminator for the .gdt table section. It must be
mapped immediately after the . gdt section.

.edt

This section (Exception Dispatch Table) is used by the C++ Exception
Library to map from try blocks to catch blocks.

.cht
This section (Catch Handler Types Table) is used to map to the RTTI

type information. The C++ Exception Library uses it to determine the
types that correspond to catch entries for a try block.

frt

This section (Function Range Table) is used by the C++ Exception
Library during exception processing to unwind the stack of active
functions.

primio_atomic_lock

This section is used by the control variable that is used to ensure atomic
file I/O. It must be in shared memory and not cached.

mc_data
This section is used to hold the core-specific storage on multicore systems.

It

This section is used by the C++ runtime type identification support, when

enabled.
cplb

This section is in the .1df files for legacy reasons.

Visual DSP++ 4.5 Linker and Utilities Manual 2-25

Link Target Description

Input Sections Provided in Deflaut LDFs for User Code and
Data

@ These sections are not normally used by the compiler and libraries.

L1 data

This section is used to allow global data to be mapped explicitly into L1
data SRAM using the section pragma or directive. This input section maps
data to both banks A and B where present on the target.

L1 data_a
These sections are not normally used by the compiler and libraries.
L1 data b

This section is similar to L1_data_a, except that it is used to map data into

L1 data B SRAM where it is present on the target chip.

L1 _code

This section is used to allow code to be mapped explicitly into L1 code
SRAM using the section pragma or directive.

L1 bcz

This section is used to map global zero initialized data into L1 data SRAM
using the section pragma or directive.

L2 bcz

This section is used to map global zero-initialized data to L2 for parts
which have L2 memory using the section pragma or directive.

L2_sram

This section can be used to map code and data into L2 for non-multicore
parts that have L2 SRAM.

2-26 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

[2_sram

This section can be used on a multicore system to map code and data into
L2 for parts which have L2 memory.

L2 sram_a

This section is used to map code and data into the part of L2 memory
reserved for core A on a multicore system.

L2_sram_b

This section is used to map code and data into the part of L2 memory
reserved for code B on a multicore system.

I2_shared

This section is used to map code and data into the part of L2 memory
shared between core A and core B.

Memory Characteristics Overview

This section provides an overview of basic memory information (including
addresses and ranges) for sample target architectures.

Some portions of the processor memory are reserved. Refer to the
hardware reference manual for target processor for more
information.

SHARC Memory Characteristics

As an example of the SHARC memory architecture, the ADSP-21161
processor contains a large, dual-ported internal memory for single-cycle,
simultaneous, independent accesses by the core processor and I/O proces-
sor. The dual-ported memory in combination with three separate on-chip
buses allow two data transfers from the core and one transfer from the I/0
processor in a single cycle. Using the 1O bus, the I/O processor provides
data transfers between internal memory and the processor’s communica-

Visual DSP++ 4.5 Linker and Utilities Manual 2-27

Link Target Description

tion ports (link ports, serial ports, and external port) without hindering
the processor core’s access to memory. The processor provides access to
external memory through the processor’s external port.

The processor contains one megabit of on-chip SRAM, organized as two
blocks of 0.5 Mbits. Each block can be configured for different combina-
tions of code and data storage. All of the memory can be accessed as
16-bit, 32-bit, 48-bit, or 64-bit words. The memory can be configured in
each block as a maximum of 16 Kwords of 32-bit data, 8 Kwords of 64-bit
data, 32K words of 16-bit data, 10.67 Kwords of 48-bit instructions (or
40-bit data), or combinations of different word sizes up to 0.5 Mbit. This
gives a total for the complete internal memory: a maximum of 32 Kwords
of 32-bit data, 16 Kwords of 64-bit data, 64 Kwords of 16-bit data, and
21 Kwords of 48-bit instructions (or 40-bit data).

The processor features a 16-bit floating-point storage format that effec-
tively doubles the amount of data that may be stored on-chip. A single
instruction converts the format from 32-bit floating-point to 16-bit
floating-point.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
(typically, Block 1) for transfers, and the other block (typically, Block 0)
stores instructions and data using the PM bus. Using the DM bus and PM
bus with one dedicated to each memory block assures single-cycle execu-
tion with two data transfers. In this case, the instruction must be available
in the cache.

Internal Memory

The ADSP-21161 processor has 2 MBits of internal memory space; 1
Mbit is addressable. The 1 Mbit of memory is divided into two 0.5 Mbit
blocks: Block 0 and Block 1. The additional 1 MBit of the memory space
is reserved on the ADSP-21161 processor. Table 2-3 shows the maximum
number of data or instruction words that can fit in each 0.5 MBit internal
memory block.

2-28 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Table 2-3. Words Per 0.5 MBit Internal Memory Block

Word Type Bits Per Word Maximum Number of
Words Per 0.5 Mbit Block
Instruction 48-bits 10.67 Kwords
Long Word Data 64-bits 8 Kwords
Extended Precision Normal Word Data 40-bits 10.67 Kwords
Normal Word Data 32-bits 16 Kwords
Short Word Data 16-bits 32 Kwords
External Memory

While the processor’s internal memory is divided into blocks, the proces-
sor’s external memory spaces are divided into banks. The internal memory
blocks and the external memory spaces may be addressed by either data
address generator. External memory banks are fixed sizes that can be con-
figured for various waitstate and access configurations.

There are 254 Mwords of external memory space that the processor can
address. External memory connects to the processor’s external port, which
extends the processor’s 24-bit address and 32-bit data buses off the proces-
sor. The processor can make 8, 16, 32, or 48-bit accesses to external
memory for instructions and 8,16, or 32-bit accesses for data. Table 2-4
shows the access types and words for processor’s external memory accesses.
The processor’s DMA controller automatically packs external data into
the appropriate word width during data transfer.

The external data bus can be expanded to 48-bits if the link ports
are disabled and the corresponding full width instruction packing
mode (IPACK) is enabled in the SYSCON register. Ensure that link
ports are disabled when executing code from external 48-bit
memory.

Visual DSP++ 4.5 Linker and Utilities Manual 2-29

Link Target Description

Table 2-4. Internal-to-External Memory Word Transfers

Word Type Transfer Type

Packed Instruction 32, 16, or 8- to 48-bit packing
Normal Word Data 32-bit word in 32-bit transfer
Short Word Data Not supported

The total addressable space for the fixed external memory bank sizes
depends on whether SDRAM or Non-SDRAM (such as SRAM,
SBSRAM) is used. Each external memory bank for SDRAM can address
64 Mwords. For Non-SDRAM memory, each bank can address up to 16
Mwords. The remaining 48 Mwords are reserved. These reserved
addresses for non-SDRAM accesses are aliased to the first 16 Mspaces
within the bank.

TigerSHARC Memory Characteristics

As an example of the TigerSHARC memory architecture, the
ADSP-TS101 processor has three internal memory blocks: M0, M1, and
M2. Each memory block consists of 2 Mbits of memory space, and is con-
figured as 64 kwords each 32 bits in width. There are three separate
internal 128-bit data buses, each connected to one of the memory blocks.
Memory blocks can store instructions and data interchangeably, with one
access per memory block per cycle. If the programmer ensures that pro-
gram and data are in different memory blocks, then data access can occur
at the same time as program fetch. Therefore, in one cycle, up to three
128-bit transfers can occur within the core (two data transfers and one
program instruction transfer).

The I/0O Processor can use only one internal bus at a time, and the I/O
Processor competes with the core for use of the internal bus. Therefore, in
one cycle, the processor can fetch four 32-bit instructions, and load or
store 256 bits of data (four 64-bit words or eight 32-bit words or sixteen
16-bit words or thirty-two 8-bit words).

2-30 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

The TigerSHARC processor 32-bit address bus provides an address space
of four gigawords. This address space is common to a cluster of Tiger-
SHARC processors that share the same cluster bus.

The zones in the memory space are made up of the following regions.

* External memory bank space—the region for standard addressing

of off-chip memory (including SDRAM, MBO0, MB1, and Host)

* External multiprocessor space—the on-chip memory of all other
TigerSHARC processors connected in a multiprocessor system

* Internal address space—the region for standard internal addressing

In the example system, the ADSP-TS101 processor has internal memory
addresses from 0x0 to 0x17FFFF. Refer to Table 2-5.

Table 2-5. ADSP-TS101 Processor Memory Structure

Block Range Word Size
MO memory block 0x0000 0000 - 0x0000 FFFF | 32-bit instructions
0x0001 0000 - 0x0007 FFFF | Reserved
M1 memory block 0x0008 0000 - 0x0008 FFFF | 32-bit instructions
0x0009 0000 - 0x0009 FFFF | Reserved
M2 memory block 0x0010 0000 - 0x0010 FFFF | 32-bit instructions
0x0011 0000 - 0x0017 FFFF | Reserved
Internal registers 0x0018 0000 - 0x0018 07FF | Control, status, and I/O registers.
This cannot be used in . 1df files.
Internal registers are memory
accessible in MP space only.
0x0018 0800 - 0x01BF FFFF | Reserved
0x01C0 0000 - 0x03FF FFFF | Broadcast and multiprocessor (not
used in . 1df file)
SDRAM 0x0400 0000 - Ox07FF FFFF | 32-bit instructions

VisualDSP++ 4.5 Linker and Utilities Manual

2-31

Link Target Description

Details of the Blackfin Processor memory characteristics can be found in
the data sheets for individual processors, available at
www.analog.com/processors/productsDatasheets/dataSheets.html, or
in more detail in the appropriate hardware reference manuals.

Linker MEMORY{} Command in .Idf File

Referring to information in sections “Memory Usage and Default Mem-
ory Sections” and “Memory Characteristics Overview”, you can specify
the target’s memory with the MEMORY { } command for any of target proces-
sor architectures (Listing 2-1, Listing 2-2, and Listing 2-3 provide code
examples for specific processors).

Listing 2-1. ADSP-21161 MEMORY{} Command Code

MEMORY

{

seg_rth { TYPE(PM RAM) START(0x00040000) END(0x000400ff)
WIDTH(48) }

seg_init { TYPE(PM RAM) START(0x00040100) END(0x000401ff)
WIDTH(48) }

seg_int_code { TYPE(PM RAM) START(0x00040200) END(0x00040287)
WIDTH(48) }

seg_pmco { TYPE(PM RAM) START(0x00040288) END(0x000419ff)
WIDTH(48) }

seg_pmda { TYPE(PM RAM) START(0x00042700) END(O0x00043fff)
WIDTH(32) }

seg_dmda { TYPE(DM RAM) START(0x00050000) END(O0x00051fff)
WIDTH(32) }

seg_heap { TYPE(DM RAM) START(0x00052000) END(0x00052fff)
WIDTH(32) }

seg_stak { TYPE(DM RAM) START(0x00053000) END(0x00053fff)
WIDTH(32) }

}

2-32 Visual DSP++ 4.5 Linker and Utilities Manual

Listing 2-2. ADSP-TS101 MEMORY/{} Command

Linker

MEMORY
{
/* Internal memory blocks are 0x10000 (64K bytes) */
/* Start of TS101_memory.1df */
MOCode {TYPE(RAM) START(0x00000000) END(OxOOO0OFFFF) WIDTH(32)}
M1Data {TYPE(RAM) START(0x00080000) END(OxO008BFFF) WIDTH(32)}
MIStack {TYPE(RAM) START(0x0008C000) END(OxOO008FFFF) WIDTH(32)}
M2Data {TYPE(RAM) START(0x00100000) END(OxO010BFFF) WIDTH(32)}
M2Heap {TYPE(RAM) START(0x0010C000) END(OxXO0010C7FF) WIDTH(32)}
M2Stack {TYPE(RAM) START(0x0010C800) END(OxO010FFFF) WIDTH(32)}
SDRAM {TYPE(RAM) START(0x04000000) END(OXO7FFFFFF) WIDTH(32)}
MSO {TYPE(RAM) START(0x08000000) END(OXOBFFFFFF) WIDTH(32)}
MS1 {TYPE(RAM) START(0x0C000000) END(OXOFFFFFFF) WIDTH(32)}
/* end of TS101_memory.ldf file */
}
Listing 2-3. ADSP-BF533 MEMORY{} Command Code
MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
MEM_L2_CODE
{ TYPE(RAM) START(O0xFO000000) END(OxFOO2FFFF) WIDTH(8) }
MEM_LI_DATA_A
{ TYPE(RAM) START(OxFF800000) END(OxFF803FFF) WIDTH(8) }
MEM_LI1_DATA_B
{ TYPE(RAM) START(OxFF900000) END(OxFF903FFF) WIDTH(8) }
MEM_HEAP
{ TYPE(RAM) START(OxFO030000) END(OxFOO37FFF) WIDTH(8)
MEM_STACK
{ TYPE(RAM) START(OxFO038000) END(OxFOO3DFFF) WIDTH(8)
MEM_ARGV
{ TYPE(RAM) START(OxFOO3FEOO) END(OXxFOO3FFFF) WIDTH(8)
MEM_SDRAMO
VisualDSP++ 4.5 Linker and Utilities Manual 2-33

Link Target Description

{ TYPE(RAM) START(0x00000004) END(OxO7FFFFFF) WIDTH(8) }

The above examples apply to the preceding discussion of how to
write a MEMORY { } command and to the following discussion of the
SECTIONS{} command. The SECTIONS{} command is not atomic; it
can be interspersed with other directives, including location
counter information. You can define new symbols within the .1df
file. These examples define the starting stack address, the highest
possible stack address, and the heap’s starting location and size.
These newly-created symbols are entered in the executable’s symbol

table.

Entry Address

In previous VisualDSP++ releases, the entry address was filled in from a
global symbol “start” (no underscore), if present. The “start” symbol
could either be a global file symbol or an LDF symbol.

Currently, the entry address field can also be set using;:

The -entry command-line switch (on page 2-56), where option’s
argument is a symbol.

The ENTRY (symbol) or ENTRY (address) command (on page 3-34)
in the .1df file. If -entry and ENTRY () are both present, they must
be the same. Neither overrides the other. If there is a mismatch, the
linker detects an error.

In the absence of the -entry switch or the ENTRY () command, the
value of the global file symbol start, or LDF symbol start, is
used, if present.

If none of the above is used, the address is 0.

2-34

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

Multiprocessor/multicore Applications

The -entry switch for a multiprocessor/multicore LDF applies the same
entry address to all processors. If the entry addresses differ (for multipro-
cessor systems), use ENTRY () commands in the .1df file — do not use the
-entry switch.

If the -entry switch is specified, it is an error if any of the processors uti-
lize an ENTRY () command with a different specification.

Wildcard Characters

The linker supports the use of wildcards in input section name specifica-
tions in the .1df file. The * and ? wildcard characters are provided on
input section names.

* — Matches any number of characters

? — Matches any one character

Placing Code on the Target

Use the SECTIONS{} command to map code and data to the physical mem-
ory of a processor in a processor system.

To write a SECTIONS{} command:
1. List all input sections defined in the source files.

* Assembly files — List each assembly code .SECTION directive,
identify its memory type (PM or CODE, or DM or DATA), and note
when location is critical to its operation. These .SECTIONS por-
tions include interrupt tables, data buffers, and on-chip code or
data. (See “Specifying Two Buffers in Different Memory Seg-
ments” on page 2-39 for TigerSHARC-specific information.)

Visual DSP++ 4.5 Linker and Utilities Manual 2-35

Link Target Description

®

C/C++ source files — The compiler generates sections with the
name “program” or “code” for code, and the names “datal” and
“data2” for data. These sections correspond to your source
when you do not specify a section by means of the optional
section() extension.

Compare the input sections list to the memory segments specified
in the MEMORY{} command. Identify the memory segment into
which each .SECTION must be placed.

Combine the information from these two lists to write one or more
SECTIONS{} commands in the .1df file.

SECTIONS{} commands must appear within the context of
the PROCESSOR{} or SHARED_MEMORY () command.

Listing 2-4 presents a SECTIONS{} command that would work with the
MEMORY {} command in Listing 2-1.

Listing 2-4. ADSP-21161 SECTIONS{} Command in the .Idf File

SECTIONS

{

/* Begin output sections */

seg_rth { // run-time header and interrupt table

INPUT_SECTIONS($0BJS(seg_rth) $LIBS(seg_rth))
} >seg_rth

seg_init { // Initialization

1df_seginit_space = .
INPUT_SECTIONS($0BJS(seg_init) $LIBS(seg_init))
} >seg_init

seg_init_code { // Initialization data

INPUT_SECTIONS($0BJS(seg_init_code) $LIBS(seg_init_code))
} >seg_init_code

seg_pmco { // PM code

INPUT_SECTIONS($0BJS(seg_pmco) $LIBS(seg_pmco))
} >seg_pmco

seg_pmda { // PM data

2-36

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

INPUT_SECTIONS($0BJS(seg_pmda) $LIBS(seg_pmda))
} >seg_pmda
.bss ZERO_INIT {
INPUT_SECTIONS($0BJS(.bss) $LIBS(.bss))
} >seg_dmda
seg_dmda { // DM data

INPUT_SECTIONS($0BJS(seg_dmda) $LIBS(seg_dmda))
} >seg_dmda

heap {
// allocate a heap for the application
1df_heap_space = .;
1df_heap_length = MEMORY_SIZEOF(seg_heap);
1df_heap_end = 1df_heap_space + 1df_heap_Tlength - 1;
} > seg_heap;
} // end sections

Listing 2-5 presents a SECTIONS{} command that would work with the
MEMORY {} command in Listing 2-2.

Listing 2-5. ADSP-TS101 SECTIONS{} Command in the .1df File

SECTIONS
{ /* List of sections for processor PO */
sec_rth {INPUT_SECTIONS ($0BJECTS(rth))} > seg_rth
sec_code INPUT_SECTIONS ($0BJECTS(code)} seg_code

{ >
sec_code2 {INPUT_SECTIONS ($O0BJECTS(y_input)} > seg_code
sec_datal {INPUT_SECTIONS ($0BJECTS(datal))} > seg_datal
1
}

Listing 2-6 presents a SECTIONS{} command that would work with the
MEMORY {} command in Listing 2-3.

Listing 2-6. ADSP-BF535 SECTIONS{} Command in the .ldf File

SECTIONS
{ /* List of sections for processor PO */

Visual DSP++ 4.5 Linker and Utilities Manual 2-37

Link Target Description

L1_code

{

}

INPUT_SECTION_ALIGN(2)

/* Align all code sections on 2 byte boundary */
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(constdata) $LIBRARIES(constdata))
INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))

>MEM_L2_CODE

program

{

// Align all code sections on 2 byte boundary

J

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTIONS($0OBJECTS(cplb) $LIBRARIES(cplb))
INPUT_SECTIONS($0BJECTS(cplb_code) $LIBRARIES(cplb_code))
INPUT_SECTIONS($0BJECTS(cplb_data) $LIBRARIES(cplb_data))
INPUT_SECTIONS($0BJECTS(constdata) $LIBRARIES(constdata))
INPUT_SECTIONS($0BJECTS(voldata) $LIBRARIES(voldata))
>MEM_PROGRAM

stack

{

}

1df_stack_space = .;
1df_stack_end =
1df_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;

>MEM_STACK

heap

{

J

/* Allocate a heap for the application */
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEQOF(MEM_HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
>MEM_HEAP

2-38

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

argy
{ /* Allocate argv space for the application */
1df_argv_space = .;
1df_argv_end =
1df_argv_space + MEMORY_SIZEQOF(MEM_ARGYV) - 1;
1df_argv_length =
1df_argv_end - 1df_argv_space;
} >MEM_ARGV

b /* end SECTIONS */

Specifying Two Buffers in Different Memory Segments

On TigerSHARC processors, the linker is enhanced to support efficient
programming using the . SEPARATE_MEM_SEGMENTS assembler directive.

e The .SEPARATE_MEM_SEGMENTS assembler directive (or the compiler
pragma ffpragma separate_mem_segments) specifies two buffers
directing the linker to place the buffers into different memory seg-
ments. For example,

.SECTION datal;

VAR bufl;

VAR buf2;

LEXTERN buf3;
.SEPARATE_MEM_SEGMENTS(bufl, buf2)
.SEPARATE_MEM_SEGMENTS(bufl, buf3)

* The set of available memory segments for each buffer is defined by
using the linker’s “one-to-many” feature—mapping the input sec-
tion(s) that contain the buffer into multiple memory segments. For
example,

data2 {
INPUT_SECTIONS($0BJECTS(datal))
} >M2DataA

datad |

Visual DSP++ 4.5 Linker and Utilities Manual 2-39

Link Target Description

INPUT_SECTIONS($0BJECTS(datal))
b >M4DataA

* Linker tries to satisfy placement constraint requirements by allocat-
ing the buffers to different memory segments.

a. If the linker fails to satisfy some or all of the requirements,
the linker produces a warning.

b. All symbols mentioned in . SEPARATE_MEM_SEGMENTS are
mapped before anything else by the linker (with the excep-
tion of absolute placement).

c. Reference to symbol in . SEPARATE_MEM_SEGMENTS is a weak
reference. If such symbol is defined in a library, linker does
NOT bring the symbol from the library (unless the symbol

is referenced directly or indirectly from an object file.

d. The linker ignores the cases where the symbol is mentioned
in . SEPARATE_MEM_SEGMENTS assembler directive is unde-

fined or is not defined in an input section (for example, as
an LDF symbol).

See “Pragmas” in Chapter 1 of the VisualDSP++ 4.5 C/C++ Com-
piler and Library Manual for TigerSHARC Processors for more
information.

Linking with Attributes - Overview

Attributes are used within the LDF to create virtual “sub-libraries” from
the usual input sources. Attributes are associated with . doj files, including
those within the library. Once created, these sub-libraries exist for the
duration of the link, and can be used anywhere a library or object list
would normally appear, within an LDF.

2-40 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Within the LDF, attributes are used to reduce the usual set of input files
into more manageable subsets. Inputs are in two forms: objects and librar-
ies, both of which appear in lists within the LDF. Filters can be applied to
these lists to winnow out momentarily-undesirable objects.

An attribute is a name/value pair of strings. A valid attribute name is a

valid C identifier

Attribute names and attribute values are both case-sensitive. Windows file-
names can be used as values, with care and consistency.

An attribute is associated with an object (. doj), but not with a library
(.d1b), not with a symbol name, and not with an ELF section. An object
has zero or more attributes associated with it. A given object may have
more than one attribute with the same name, associated with it.

Using attributes, the filtering process can be used to remove some objects
from consideration, providing that the same objects are not included else-
where via other filters, or through unfiltered mappings. A filter operation
is done with curly braces, and can be used to define sub-lists and
sub-libraries. It may also be used in INPUT_SECTIONS commands (refer to

“INPUT_SECTIONS()” on page 3-58).

The linker reads the LDF and uses the {...} filter commands (for example,
INPUT_SECTIONS commands) to eliminate some input objects from consid-
eration before resolving symbols. The linker is not changing its behavior if
no filter commands are present in the LDF.

Profile-Guided Optimization Support

The SHARC, TigerSHARC and Blackfin processor architectures support
Profile-Guided Optimization (PGO). PGO is the process of gathering
information about a running application over many invocations of the
executable with different input data, and then re-optimizing it using that
gathered information.

Visual DSP++ 4.5 Linker and Utilities Manual 2-41

Link Target Description

The process relies upon the same application being run with different data
sets, which often means that the application acts upon sample data sets
stored in files. More specifically, it means that the application is instructed
to process each file via command-line options passed to main().

The .1df files and the VisualDSP++ IDDE collaborate to provide support
for command-line arguments. Under normal circumstances, a typical
embedded program is not interested in command-line arguments, and
receives none. In these normal cases, the run-time header invokes a func-
tion to parse a global string __argv_string[] and finds it empty.

To support PGO, the LDF option IDDE_ARGS can be used to define a
memory section called MEM_ARGV, and __argv_string[] is mapped directly
to the start of this section. The VisualDSP++ IDDE follows the conven-
tion that command-line arguments can be passed to an application by
writing the argument string into memory starting at the beginning of
MEM_ARGV.

Refer to VisualDSP++ 4.5 C/C++ Compiler and Library Manual for
the appropriate processor architecture for more information on

Profile-Guided Optimization.

Passing Arguments for Simulation or Emulation

The symbol _argv_string is a null-terminated string that, if it contains
anything other than null, will be split at each space character and placed in
the argv[] array that gets passed to the main function on system startup.

2-42 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Linker Command-Line Reference

This section provides reference information, including:
* “Linker Command-Line Syntax” on page 2-43
e “Linker Command-Line Switches” on page 2-47

@ When you use the linker via the VisualDSP++ IDDE, the settings
on the Link tab of the Project Options dialog box correspond
to linker command-line switches. Provided here is the detailed
descriptions of the linker’s command-line switches and their syn-
tax. For more information, refer to VisualDSP++ online Help.

Linker Command-Line Syntax

Run the linker by using one of the following normalized formats of the
linker command line.

lTinker -proc processor -switch [-switch ..] object [object ..]
lTinker -T target.ldf-switch [-switch ..] object [object ..]

The linker command requires -proc processor ora-T <1df name>
for the link to proceed. If the command line does not include
-proc processor, the .1df file following the -T switch must con-
tain a -ARCHITECTURE command. The linker command may contain
both but then the ARCHITECTURE() command in the .1df file must
match the -proc processor.

Use -proc processor instead of the deprecated -Darchitecture on
the command line to select the target processor. See Table 2-7 on
page 2-49 for more information.

Visual DSP++ 4.5 Linker and Utilities Manual 2-43

Linker Command-Line Reference

All other switches are optional, and some commands are mutually
exclusive.

The following are the example linker commands.

linker -proc ADSP-21161 p0O.doj -T target.ldf -t -o program.dxe
linker -proc ADSP-TS201 pO.doj -T target.ldf -t -o program.dxe
linker -proc ADSP-BF535 p0O.doj -T target.ldf -t -o program.dxe

The linker command line (except for file names) is case sensitive.
For example, 1inker -t differs from Tinker -T.

The linker can be controlled by the compiler via the -flags-1ink com-
mand-line switch that passes explicit options to the linker. For more
information, refer to Chapter 1 of the VisualDSP++ 4.5 C/C++ Compiler
and Library Manual for appropriate processors.

When using the linker’s command line, be familiar with the following
topics:

* “Command-Line Object Files”
e “Command-Line File Names”

* “Object File Types” on page 2-47

Command-Line Object Files

The command line must list at least one (typically more) object file(s)
to be linked together. These files may be of several different types.

* Standard object (.doj) files produced by the assembler

* One or more libraries (archives), each with a .DLB extension.
Examples include the C run-time libraries and math libraries
included with VisualDSP++. You may create libraries of common
or specialized objects. Special libraries are available from DSP algo-
rithm vendors. For more information, see Chapter 6, “Archiver”.

2-44 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

* An executable (.dxe) file to be linked against. Refer to
$COMMAND_LINE_LINK_AGAINST in “Built-In LDF Macros” on
page 3-29.

Object File Names
An object file name may include:
* The drive, directory path, file name, and file extension

* The directory path may be an absolute path or a path relative to the
directory where the linker is invoked

* Long file names enclosed within straight quotes

If the file exists before the link begins, the linker opens the file to verify its

type before processing the file. Table 2-6 lists valid file extensions used by
the linker.

Command-Line File Names

Some linker switches take a file name as a parameter. Table 2-6 lists the
types of files, names, and extensions that the linker expects on file name
arguments. The linker follows the conventions for file extensions in

Table 2-6.

Table 2-6. File Extension Conventions

Extension File Description

.d1b Library (archive) file
.doj Object file

.dxe Executable file

.1df Linker Description File
.ov] Overlay file

.sm Shared memory file

Visual DSP++ 4.5 Linker and Utilities Manual 2-45

Linker Command-Line Reference

The linker supports relative and absolute directory names, default directo-
ries, and user-selected directories for file search paths. File searches occur
in the following order.

1. Specified path — If the command line includes relative or absolute
path information, the linker searches that location for the file.

2. Specified directories — If you do not include path information
on the command line and the file is not in the default directory,
the linker searches for the file in the search directories specified
with the -L (path) command-line switch, and then searches direc-
tories specified by SEARCH_DIR commands in the .1df file.
Directories are searched in order of appearance on the command
line or in the .1df file.

3. Default directory — If you do not include path information in the
.1df file named by the -T switch, the linker searches for the . 1df
file in the current working directory. If you use a default . 1df file
(by omitting LDF information in the command line and instead
specifying -proc <processor>), the linker searches in the proces-
sor-specific LDF directory; for example, $ADI_DSP/Blackfin/1df.

¢ For more information on file searches, see “Built-In LDF Macros”

on page 3-29.
When providing input or output file names as command-line parameters:
* Use a space to delimit file names in a list of input files.

* Enclose file names that contain spaces within straight quotes; for
example, “Tong file name”.

* Include the appropriate extension to each file. The linker opens
existing files and verifies their type before processing. When the
linker creates a file, it uses the file extension to determine the type
of file to create.

2-46 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

Object File Types

The linker handles an object (file) by its file type. File type is determined
by the following rules.

* Existing files are opened and examined to determine their type.
Their names can be anything.

 Files created during the link are named with an appropriate exten-
sion and are formatted accordingly. A map file is generated in XML
format only and is given an .xm1 extension. An executable is writ-
ten in the ELF format and is given a .dxe extension.

The linker treats object (.doj) and library (.d1b) files that appear on the
command line as object files to be linked. The linker treats executable
(.dxe) and shared memory (.sm) files on the command line as executables
to be linked against.

For more information on objects, see the $COMMAND_LINE_OBJECTS macro.
For information on executables, see the $COMMAND_LINE_LINK_AGAINST
macro. Both are described in “Built-In LDF Macros” on page 3-29.

If link objects are not specified on the command line or in the . 1df file,

the linker generates appropriate informational or error messages.

Linker Command-Line Switches

This section describes the linker’s command-line switches. Table 2-7 on
page 2-49 briefly describes each switch with regard to case sensitivity,
equivalent switches, switches overridden or contradicted by the one
described, and naming and spacing constraints for parameters.

The linker provides switches to select operations and modes. The standard
switch syntax is:

-switch [argument]

Visual DSP++ 4.5 Linker and Utilities Manual 2-47

Linker Command-Line Reference

Rules

®

Switches may be used in any order on the command line. Items in
brackets [] are optional. Items in 7zalics are user-definable and are
described with each switch.

Path names may be relative or absolute.

File names containing white space or colons must be enclosed by
double quotation marks, though relative path names such as
../../test.dxe do not require double quotation marks.

Different switches require (or prohibit) white space between the
switch and its parameter.

Example

Tinker -proc ADSP-BF535 p0.doj pl.doj p2.doj -T target.l1df -t -o program.dxe

Note the difference between the -T and the -t switches. The command
calls the linker as follows:

-proc ADSP-BF535
Specifies the processor.

p0.doj, pl.doj, and p2.doj
Links three object files into an executable file.

-T target.ldf
Uses a secondary . 1df file to specify executable program
placement.

-t
Turns on trace information, echoing each link object’s name to
stdout as it is processed.

-0 program.dxe
Specifies a name of the linked executable file.

2-48

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

Typing 1inker without any switches displays a summary of command-line
options. Using no switches is the same as typing 1inker -help.

Linker Switch Summary and Descriptions

Table 2-7 briefly describes each linker switch. Each individual switch is
described in detail following this table. See “Project Builds” on page 2-6
for information on the Visual DSP++ Project Options dialog box.

Table 2-7. Linker Command-Line Switches — Summary

Switch Description More Info
@file Uses the specified file as input on the command line | on page 2-51
-DprocessorlD Specifies the target processor ID. The use of on page 2-51
-proc processorlID is recommended.
-L path Adds the path name to search libraries for objects | on page 2-52
-M Produces dependencies on page 2-52
-MM Builds and produces dependencies on page 2-52
-Map file Outputs a map of link symbol information to a file | on page 2-53
-MDmacrol=def] Defines and assigns value def to a preprocessor on page 2-53
macro
-MUDmacro Undefines the preprocessor macro on page 2-53
-S Onmits debugging symbols from the output file on page 2-54
-T filename Names the LDF on page 2-54
-Wwarn number Demotes the specified error message to a warning | on page 2-54
-Wnumber Selectively disables warnings by one or more mes- | on page 2-54
sage numbers. For example, -W1010 disables warn-
ing message 111010.
-e Eliminates unused symbols from the executable on page 2-55
-ek secName Specifies a section name in which elimination on page 2-55
should not take place
Visual DSP++ 4.5 Linker and Utilities Manual 2-49

Linker Command-Line Reference

Table 2-7. Linker Command-Line Switches — Summary (Contd)

Switch Description More Info
-es secName Names input sections (secName list) to which elim- | on page 2-55
ination algorithm is applied
-ev Eliminates unused symbols verbosely on page 2-56
-entry Specifies entry address where an argument can be | on page 2-56
cither a symbol or an address
-flag-meminit Passes each comma-separated option to the on page 2-56
Memory Initializer utility
-flag-pp Passes each comma-separated option to the prepro- | on page 2-56
cessor
-h Outputs the list of command-line switches and exits | on page 2-56
-help
-i path Includes search directory for preprocessor include | on page 2-56
files
ip Fills fragmented memory with individual data on page 2-57
objects that fit
-jes2l Converts out-of-range short calls and jumps to the | on page 2-57
longer form. It also allows the linker to convert
out-of-range branches to indirect calls and jump
sequences.
-jcs21+ Same as - jcs21+. on page 2-58
-keep symName Keeps symbols from being eliminated on page 2-58
-meminit Causes post-processing of the executable file on page 2-58
-nonmemcheck Turns off LDF memory checking on page 2-58
-0 filename Outputs the named executable file on page 2-59
-od filename Specifies the output directory on page 2-59
-pp Stops after preprocessing on page 2-59
-proc processor Selects a target processor on page 2-59
-s Strips symbol information from the output file on page 2-60

2-50

VisualDSP++ 4.5 Linker and Utilities Manual

Linker

Table 2-7. Linker Command-Line Switches — Summary (Contd)

Switch Description More Info
-save-temps Saves temporary output files on page 2-60
-si-revision version | Specifies silicon revision of the specified processor | on page 2-60
-sp Skips preprocessing on page 2-61
-t Outputs the names of link objects on page 2-61
-tx Outputs full names of link objects on page 2-61
-V Verbose: Outputs status information on page 2-61
-verbose

-version Outputs version information and exits on page 2-62
-warnonce Warns only once for each undefined symbol on page 2-62
-xref Produces a cross-reference file on page 2-62

The following sections provide the detailed descriptions of the linker’s
command-line switches.

@filename

This switch causes the linker to treat the contents of £i7emname as input to
the linker command line. The @ switch circumvents environmental com-
mand-line length restrictions. The fi7ename may not start with “1inker”
(that is, it cannot be a linker command line). White space (including
“newline”) in filename serves to separate tokens.

-Dprocessor

The -Dprocessor (define processor) switch specifies the target processor
(architecture); for example, -DADSP-BF533.

The -proc processor switch (on page 2-59) is a preferred option
to be used as a replacement for the -Dprocessor command line
entry to specify the target processor.

Visual DSP++ 4.5 Linker and Utilities Manual 2-51

Linker Command-Line Reference

White space is not permitted between -D and processor. The architecture
entry is case sensitive and must be available in your VisualDSP++ installa-
tion. This switch (or -proc processor switch) must be used if no .1df file
is specified on the command line. (See -T on page 2-54.) This switch (or
-proc processor switch) must be used if the specified . 1df file does not
specify ARCHITECTURE (). Architectural inconsistency between this switch
and the .1df file causes an error.

-L path

The -Lpath (search directory) switch adds path name to search libraries
and objects. This switch is case sensitive and spacing is unimportant. The
path parameter enables searching for any file, including the . 1df file itself.
Repeat this switch to add multiple search paths. The paths named with
this switch are searched before arguments in the SEARCH_DIR{} command.

-M

The -M (generate make rule only) switch directs the linker to check a
dependency and to output the result to stdout.

-MM

The -MM (generate make rule and build) switch directs the linker to output
a rule, which is suitable for the make utility, describing the dependencies
of the source file. The linker check for a dependency, outputs the result
to stdout, and performs the build. The only difference between -MM and
-M actions is that the linking continues with -MM. See “-M” for more
information.

2-52 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

-Map filename

The -Map filename (generate a memory map) switch directs the linker to

output a memory map of all symbols. The map file name corresponds to

the filename argument. The linker generates the map file in XML format
only. For example, if the file name argument is test, the map file name is
test.map.xml. The.xml extension is added where necessary.

Opening an .xm1 map file in a Web browser provides an organized view of
the map file. By using hyperlinks, it becomes easy to quickly find any rele-
vant information. Since the format of .xm1 files can be extended between
Visual DSP++ releases, the map file is dependant on particular installation
of Visual DSP++. Thus, the .xm1 map file can be used only on a machine it
was generated. In order to view the map file on a different machine, the
file should be transformed to HTML format using the “xmimap2htmi.exe”
command-line utility. The utility makes it possible to view the map on
virtually any machine with any browser.

-MDmacro[=def]

The -MDmacro[=def] (define macro) switch declares and assigns value def
to the preprocessor macro named macro. For example, -MDTEST=BAR exe-
cutes the code following #ifdef TEST==BAR in the .1df file (but not the
code following #ifdef TEST==XXX).

If =def is not included, macro is declared and set to “1” to ensure the code
following #ifdef TEST is executed. This switch may be repeated.

-MUDmacro

The -MUDmacro (undefine macro) switch undefines the preprocessor macro
where macro specifies a name. For example, -MUDTEST undefines macro
TEST. The switch is processed after all -MDmacro switches have been pro-
cessed. The -MUDmacro switch may be repeated on the command line.

Visual DSP++ 4.5 Linker and Utilities Manual 2-53

Linker Command-Line Reference

-S

The -S (strip debug symbol) switch directs the linker to omit debugging
symbol information (noz all symbol information) from the output file.
Compare this switch with the -s switch on page 2-60.

-T filename

The -T filename (linker description file) switch directs the linker to use
filename to name an .1df file. The .1df file specified following the -T
switch must contain an ARCHITECTURE () command if the command line
does not have -proc <processor>. The linker requires the -T switch when
linking for a processor for which no VisualDSP++ support has been
installed. In such cases, the processor ID does not appear in the Target
processor field of the Project Options dialog box.

The filename must exist and be found (for example, via the - L option).
White space must appear before fi7ename. A file’s name is unconstrained,
but must be valid. For example, a.b works if it is a valid .1df file, where
.LDF is a valid extension but not a requirement.

-Wwarn [number]

The -Wwarn (override error message) switch directs the linker to demote
the specified error message to a warning. The number argument specifies
the message to demote.

-Wnumber[,number]

The -Wnumber or -wnumber (warning suppression) switch selectively dis-
ables warnings specified by one or more message numbers. For example,
-W1010 disables warning message 111010. This switch optionally accepts a
list, such as [,number ...1.

2-54 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

The -e switch directs the linker to eliminate unused symbols from the exe-
cutable file.

@ In order for the C and C++ run-time libraries to work properly, the
following symbols should be retained with the “KEEP()” LDF
command (described on page 3-36):
_ctor_NULL_markerand __ 1ib_end_of_heap_descriptions

-ek sectionName

The -ek sectionName (no elimination) switch specifies a section to which
the elimination algorithm is not applied. Both this switch and the
KEEP_SECTIONS() LDF command (on page 3-37) may be used to specify a
section name in which elimination should 7oz take place.

-es sectionName

The -es sectionName (eliminate listed section) switch specifies a section to
which the elimination algorithm is to be applied. This switch restricts
elimination to the named input sections. The -es switch may be used on a
command line more than once. In the absence of the -es switch or the
ELIMINATE_SECTIONS() LDF command (on page 3-34), the linker applies
elimination to all sections. Both this switch and the
ELIMINATE_SECTIONS() LDF command may be used to specify sections
from which unreferenced code and data are to be eliminated.

@ In order for the C and C++ run-time libraries to work properly, the
following symbols should be retained with the “KEEP()” LDF
command (described on page 3-36):

_ctor_NULL_markerand __ 1ib_end_of_heap_descriptions

Visual DSP++ 4.5 Linker and Utilities Manual 2-55

Linker Command-Line Reference

-entry
The -entry switch indicates the entry address where an argument can be

either a symbol or an address.

-ev
The -ev switch directs the linker to eliminate unused symbols and pro-

vides reports on each eliminated symbol.

-flags-meminit -optl[,-opt2...
The -flags-meminit switch passes each comma-separated option to the
Memory Initializer utility. (See “Memory Initializer” for more

information.)

-flags-pp-optl[,-opt2...]
The -flags-pp switch passes each comma-separated option to the
preprocessor.

Use -flags-pp with caution. For example, if the pp legacy com-
ment syntax is enabled, the comment characters become
unavailable for non-comment syntax.

-h[elp]
The -h or -help switch directs the assembler to output to <stdout> a list
of command-line switches with a syntax summary.

-i]I directory
The -idirectory or -Idirectory (include directory) switch directs the
linker to append the specified directory or a list of directories separated by
semicolons (5) to the search path for included files.

2-56 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

The -ip (individual placement) switch directs the linker to fill in frag-
mented memory with individual data objects that fit. When the -ip
switch is specified on the linker’s command line or via the VisualDSP++
IDDE, the default behavior of the linker—placing data blocks in consecu-
tive memory addresses—is overridden. The -ip switch allows individual
placement of a grouping of data in processor memory to provide more
efficient memory packing.

Absolute placements take precedence over data/program section place-
ments in contiguous memory locations. When remaining memory space is
not sufficient for the entire section placement, the link fails. The -ip
switch allows the linker to extract a block of data for individual placement
and fill in fragmented memory spaces.

-jcs2l
@ Used with Blackfin processors only.

The -jcs21 (jump/call short to long) switch directs the linker to convert
out-of-range calls and jump instructions to a code sequence that will use
an indirect jump or call. Because the indirect sequence uses a register P1,
the expansion will only apply be applied to instructions that use the
CALL.X or JUMP.X opcodes.

The following table shows how the Blackfin linker handles jump/call

conversions.
Instruction Without -jes2l With -jcs2l
JUMP. S short short
Jump short or long short or long
JUMP. L long long
JUMP . X short or long short, long or indirect

Visual DSP++ 4.5 Linker and Utilities Manual 2-57

Linker Command-Line Reference

Instruction Without -jcs2l With -jes2l
CALL CALL CALL
CALL.X CALL CALL or indirect

Refer to the instruction set reference for target architecture for more infor-
mation on jump and call instructions.

-jcs2l+

Used with Blackfin processors only.
This is a deprecated switch equivalent to the -jcs2l switch.

-keep symbolName

The -keep symbolName (keep unused symbols) switch directs the linker to
keep symbols from being eliminated. It directs the linker (when -e or -ev
is enabled) to retain listed symbols in the executable even if they are
unused.

-meminit

The -meminit (post-processing executable file) switch directs the linker to
post-process the .dxe file through the Memory Initializer utility. (See
“Memory Initializer” for more information.) This action causes the sec-
tions specified in the .LDF file to be “run-time” initialized by the C
run-time library. By default, if this flag is not specified, all sections are ini-
tialized at “load” time (for example, via the VisualDSP++ IDDE or the
boot loader). Refer to “SECTIONS{}” on page 3-55 for more information

on section initialization.

-nonmemcheck

The -nonmemcheck (memory checking off) switch allows you to turn off
memory checking in any .1df file.

2-58 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

-o filename

The -0 filename (output file) switch sets the value of
$COMMAND_LINE_OUTPUT_FILE macro which is normally used as a parameter
in LDF 0UTPUT () command which specifies the output file name. If no -o
is present on command line, the $COMMAND_LINE_OUTPUT_FILE macro gets
a value of “a.dxe”.

-od directory

The -od directory switch directs the linker to specify the value of the
$COMMAND_LINE_OUTPUT_DIRECTORY LDF macro. This switch allows you to
make a command-line change that propagates to many places without
changing the .1df file. Refer to “Built-In LDF Macros” on page 3-29.

-pp

The -pp (end after preprocessing) switch directs the linker to stop after the
preprocessor runs without linking. The output (preprocessed LDF) is
printed to a file with the same name as the . 1df file with the extension
.is. This file is in the same directory as the .1df file.

-proc processor

The -proc processor (target processor) switch directs the linker to pro-
duce code suitable for the specified processor. For example,

linker -proc ADSP-BF533 p0.doj pl.doj p2.doj -o program.dxe

See also “-si-revision version” for more information on silicon revi-
sion of the specified processor.

Visual DSP++ 4.5 Linker and Utilities Manual 2-59

Linker Command-Line Reference

The -s (strips all symbols) switch directs the linker to omit all symbol
information from the output file.

Some debugger functionality (including “run to main”), all stdio
functions, and the ability to stop at the end of program execution
rely on the debugger’s ability to locate certain symbols in the exe-
cutable file. This switch removes these symbols.

-save-temps

The -save-temps switch directs the linker to save temporary (intermedi-
ate) output files.

-si-revision version

The -si-revision version (silicon revision) switch directs the linker to
build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter “version”
represents a silicon revision of the processor specified by the -proc switch
(on page 2-59). For example,

linker -proc ADSP-BF533 -si-revision 0.1

If silicon version “none” is used, then no errata workarounds are enabled,
whereas specifying silicon version “any” will enable all errata workarounds
for the target processor.

If the -si-revision switch is not used, the linker builds for the latest
known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be

enabled.

If the silicon revision is set to “any”, the __SILICON_REVISION__ macro is
set to Oxffff and if the -si-revision switch is set to “none”, the linker
will not set the __SILICON_REVISION__ macro.

2-60 Visual DSP++ 4.5 Linker and Utilities Manual

Linker

The linker will pass the -si-revision <silicon version> switch when
invoking another VisualDSP++ tool, for example when the linker invokes
the assembler.

Example:
The Blackfin linker invoked as

linker -proc ADSP-BF533 -si-revision 0.1 ..
invokes the assembler with

easmblkfn -proc ADSP-BF533 -si-revision 0.1

_Sp

The -sp (skip preprocessing) switch directs the linker to link without pre-
processing the .1df file.

The -t (trace) switch directs the linker to output the names of link objects
to standard output as the linker processes them.

-tx

The -tx (full trace) switch directs the linker to output the full names of
link objects (full directory path) to standard output as the linker
processes them.

-v[erbose]

The -v or -verbose (verbose) switch directs the linker to display version
and command-line information for each phase of linking.

Visual DSP++ 4.5 Linker and Utilities Manual 2-61

Linker Command-Line Reference

-version

The -version (display version) switch directs the linker to display version
information for the linker.

-warnonce

The -warnonce (single symbol warning) switch directs the linker to warn
only once for each undefined symbol, rather than once for each reference
to that symbol.

-xref

The -xref switch directs the linker to produce a cross-reference file
(xref.xml file).

2-62 Visual DSP++ 4.5 Linker and Utilities Manual

3 LINKER DESCRIPTION FILE

Every DSP project requires one Linker Description File (. 1df). The .1df
file specifies precisely how to link projects. Chapter 2, “Linker”, describes
the linking process and how the .1df file ties into the linking process.

When generating a new . 1df file, use the Expert Linker to generate
an .1df file. Refer to Chapter 4, “Expert Linker” for details.

The .1df file allows code development for any processor system. It
defines your system to the linker and specifies how the linker cre-
ates executable code for your system. This chapter describes .1df
file syntax, structure and components. Refer to Appendix C, “LDF
Programming Examples for TigerSHARC Processors”, Appendix
D, “LDF Programming Examples for SHARC Processors”, and
Appendix E, “LDF Programming Examples for Blackfin Proces-
sors” for the LDF examples for typical systems.

This chapter contains:

“LDF File Overview” on page 3-3

“LDF Structure” on page 3-17

“LDF Expressions” on page 3-19

“LDF Keywords, Commands, and Operators” on page 3-20
“LDF Operators” on page 3-22

“LDF Macros” on page 3-27

“LDF Commands” on page 3-31

Visual DSP++ 4.5 Linker and Utilities Manual 3-1

The linker runs the preprocessor on the .LDF file, so you can use
preprocessor commands (such as ffdefines) within the file. For
information about preprocessor commands, refer to a VisualDSP++
4.5 Assembler and Preprocessor Manual for an appropriate target
processor architecture.

Assembler section declarations in this document correspond to the
assembler’s . SECTION directive.

Refer to example DSP programs shipped with VisualDSP++ for
sample .1df files supporting typical system models.

3-2

VisualDSP++ 4.5 Linker and Utilities Manual

Linker Description File

LDF File Overview

The .1df file directs the linker by mapping code or data to specific mem-
ory segments. The linker maps program code (and data) within the system
memory and processor(s), and assigns an address to every symbol, where:

symbol = Tlabel
symbol = function_name
symbol = variable_name

If you neither write an .1df file nor import an .1df file into your
project, nor have Visual DSP++ generate an .1df file, Visual DSP++
links the code using a default .1df file. The chosen default .1df file
is determined by the processor specified in the Visual DSP++
Project Options dialog box. Default . 1df files are packaged with
your processor tool distribution kit in a subdirectory specific to
your target processor’s family. One default .1df file is provided for
each processor supported by your Visual DSP++ installation (see
“Default LDFs”).

The .1df file combines information, directing the linker to place input
sections in an executable file according to the memory available in the
DSP system.

The linker may output warning messages and error messages. You
must resolve the error messages to enable the linker to produce
valid output. See “Linker Warning and Error Messages” on

page 2-10 for more information.

Visual DSP++ 4.5 Linker and Utilities Manual 3-3

LDF File Overview

Generated LDFs

On Blackfin, the VisualDSP++ New Project Wizard and the Project
Options dialog allow you to generate and configure a custom Linker
Description File (LDF). This is the quickest and easiest way to customize
your LDF. See the VisualDSP++ 4.5 User's Guide for more information
about the New Project Wizard and Project Options dialog.

Default LDFs

The name of each .1df file indicates the intended processor (for example,
ADSP-BF531.1df). If the .1df file name has no suffix, it is the “default . 1df
file”. That is, when no .1df file is explicitly specified, the default file is
used to link an application when building for that processor. Therefore,
ADSP-BF531.1df is the default .1df file for the ADSP-BF531 processor.

If no .1df file is specified explicitly via the -T command-line switch, the
compiler driver selects the default . 1df file for the target processor. For
example, the first of the following commands uses the default . 1df file,
and the second uses a user-specified file:

cchblkfn -proc ADSP-BF531 hello.c # uses default ADSP-BF531.1df
cchblkfn -proc ADSP-BF531 hello.c -T ./my.1df # uses ./my.ldf

On non-Blackfin platforms, for each processor, there are three . 1df files
with suffixes _C, _CPP, and _ASM, respectively (for example,
ADSP-21363_C.1df).

On non-Blackfin platforms, these .1df files are templates for the Expert
Linker. If you use the Expert Linker to create a custom . 1df file for your
project, the Expert Linker will do so by querying you for the kind of . 1df
file you want to create (asm, C, or C++) and then copying one of the
above templates. The suffixes indicate the kind of . 1df files they support.

The cPP template is a superset of the C template, and the C template is a
superset of the ASM template. The differences are as follows:

3-4 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

e The cPP template links against C++ run-time libraries, C++ excep-
tion libraries, and the run-time headers built to initialize C++
constructors. It maps data sections that contain information con-
trolling how thrown exceptions are caught.

e The C template is currently identical to the CPP template, since a
C project may link against local or system libraries that have been
implemented in C++; there may be differences in a future release.

e The ASM template does not include a run-time header, and does not
permit command-line arguments to applications. The ASM template
is not suitable for use with the compiler’s Profile-Guided Optimi-
zation. Since the ASM template has no run-time header, it does not
mandate a “start” symbol resolved to the Reset address. It does
not map the C++ exception sections into memory.

Each .1df file handles a variety of demands, allowing applications to be
built in multiple configurations, merely by supplying a few command-line
options. This flexibility is achieved by extensive use of preprocessor mac-
ros within the .1df file. Macros serve as flags to indicate one choice or
another, and as variables within the .1df file to hold the name of a chosen
file or other link-time parameter. This reliance on preprocessor operation
can make the .1df file seem an imposing sight.

In simple terms, different .1df file configurations are selected by defining
preprocessor macros on the linker command line. This can be specified

from the Link tab of the VisualDSP++ IDDE’s Project Options dialog

box or directly from the command line.

At the top of the default Blackfin LDFs, you will find documentation on
the macros you can use to configure the default LDFs.

You can use an .1df file written from scratch. However, modifying an
existing LDF (or a default .LDF file) is often the easier alternative when
there are no large changes in your system’s hardware or software.

See Listing 3-1 on page 3-7, Listing 3-2 on page 3-10, and Listing 3-3 on

Visual DSP++ 4.5 Linker and Utilities Manual 3-5

LDF File Overview

page 3-11 as examples of basic .1df files for supported processors. See
“Common Notes on Basic .1df File Examples” on page 3-12 for basic
information on LDF structure.

See Appendix C, Appendix D, and Appendix E for code examples for Tig-
ertSHARC, SHARC, and Blackfin processors, respectively.

3-6 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

Example 1 — Basic .Idf File for Blackfin Processors

Listing 3-1 is an example of a basic . 1df file for ADSP-BF535 processors
(formatted for readability). Note the MEMORY { } and SECTIONS{} commands
and refer to “Common Notes on Basic .Idf File Examples” on page 3-12.
Other .1df file examples are provided in “LDF Programming Examples
for Blackfin Processors”.

Listing 3-1. Example .1df File for ADSP-BF535 Processor

ARCHITECTURE(ADSP-BF535)
SEARCH_DIR($ADI_DSP\Blackfin\1ib)
$0BJECTS = CRT, $COMMAND_LINE_OBJECTS ENDCRT;

MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
MEM_L2
{ TYPE(RAM) START(OxF0000000) END(OxFOO2FFFF) WIDTH(8) }
MEM_HEAP
{ TYPE(RAM) START(OxF0030000) END(OxFOO37FFF) WIDTH(8) }
MEM_STACK
{ TYPE(RAM) START(O0xF0038000) END(OxFOO3DFFF) WIDTH(8) }
MEM_SYSSTACK
{ TYPE(RAM) START(OxFOO3E000) END(OxFOO3FDFF) WIDTH(8) }
MEM_ARGV
{ TYPE(RAM) START(OxFOO3FEOO) END(OxXxFOO3FFFF) WIDTH(8) }
}

PROCESSOR PO { /* the only processor in the system */
QUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{ /* List of sections for processor PO */

L2
{
INPUT_SECTION_ALIGN(2)
/* Align all code sections on 2 byte boundary */

Visual DSP++ 4.5 Linker and Utilities Manual 3-7

LDF File Overview

INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(constdata)
$LIBRARIES(constdata))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))
} >MEM_L2

stack
{
1df_stack_space = .;
ldf_stack_end =
1df_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
b >MEM_STACK

heap
{ /* Allocate a heap for the application */
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >MEM_HEAP

argv
{ /* Allocate argv space for the application */
1df_argv_space = .;
1df_argv_end =
1df_argv_space + MEMORY_SIZEOF(MEM_ARGV) - 1;
1df_argv_length =
1df_argv_end - 1df_argv_space;
} >MEM_ARGV

b /* end SECTIONS */

} /* end PROCESSOR pQ */

3-8 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

Memory Usage in Blackfin Processors

The default . 1df files define memory areas for all defined spaces on the
processor.! Not all of these memory areas are used within the .1df files.
Instead, the .1df files provide three basic memory configurations:

* The default configuration specifies that only internal memory is
available and caching is disabled. Thus, no code or data is mapped
to SDRAM unless explicitly placed there, and all of the available

L1 space is used for code or data.

* Defining the USE_CACHE macro selects the alternative configuration,
where code and data caches are enabled and external SDRAM is
used. Code and data are mapped into L1 where possible, but the

Cache/SRAM areas are left empty; any spill-over goes into the
SDRAM.

* Defining the USE_SDRAM macro has the same effect as defining the

USE_CACHE macro, except that code and data get mapped to the L1
Cache/SRAM areas.

If USE_CACHE is used, caches may safely be turned on, because doing so will
not corrupt code or data. Selecting this option does not actually enable the
caches — that must be done separately (for example, through the
___cplb_ctrl configuration variable). Instead, this option ensures that the
memory layout allows caches to be enabled later.

A common user error is to enable cache despite not having specified
USE_CACHE, which would lead to code or data corruption as cache activity
overwrites the contents of SRAM. Therefore, the .1df files use the follow-
ing “guard symbols”:

__11_code_cache

__11 data_cache_a

1 With the exception of the core MMRs, which the linker considers “out of bounds”.

Visual DSP++ 4.5 Linker and Utilities Manual 3-9

LDF File Overview

__ 11 _data_cache_b

These symbols are defined by the .1df files and are given values (that is,
resolved to addresses 0 or 1), depending on whether USE_CACHE is defined.
The run-time library examines these symbols when cache configuration is
requested, and refuses to enable a cache if the corresponding guard symbol
is zero, indicating that valid information already occupies this space.

For more information, refer to VisualDSP++ 4.5 C/C++ Compiler and
Library Manual, section “Caching and Memory Protection”.

Example 2 — Basic .ldf File for TigerSHARC
Processors

Listing 3-2 is an example of a basic .1df file for the ADSP-TS101 proces-
sor (formatted for readability). Note the MEMORY {} and SECTIONS{)
commands and refer to “Common Notes on Basic .Idf File Examples” on
page 3-12. Other .1df file examples are provided in “LDF Programming
Examples for TigerSHARC Processors”.

Listing 3-2. Example .Idf File for ADSP-TS201 Processor

ARCHITECTURE(ADSP-TSI101)
SEARCH_DIR($ADI_DSPA\TS\Tib)
$0BJECTS = main.doj, $COMMAND_LINE_OBJECTS;

MEMORY { /* Define and label system memory */
/* List of global memory segments */
MOCode {TYPE(RAM) START(0x000000) END(OXOOFFFF) WIDTH(32)}
M1Data {TYPE(RAM) START(0x080000) END(OxXO8FFFF) WIDTH(32)}
M2Data {TYPE(RAM) START(0x100000) END(Ox10FFFF) WIDTH(32)}
}
PROCESSOR PO { /* the only processor in the system */
OUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS{
code { INPUT_SECTIONS ($0BJECTS(program))} > MOCode
datal { INPUT_SECTIONS ($OBJECTS(datal))} > MlData
data?2 { INPUT_SECTIONS ($OBJECTS(data2))} > M2Data

3-10 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

} /* End of SECTIONS command for processor PO */
} /* End of PROCESSOR command. /*

Example 3 — Basic .lIdf File for SHARC Processors

Listing 3-3 is an example of a basic . 1df file for the ADSP-21161 proces-
sor (formatted for readability). Note the MEMORY {} and SECTIONS{)
commands and refer to “Common Notes on Basic .Idf File Examples” on
page 3-12. Other examples for assembly and C source files are in “LDF
Programming Examples for SHARC Processors”.

Listing 3-3. Example .1df File for ADSP-21161 Processor

// Link for the ADSP-21161
ARCHITECTURE(ADSP-21161)

SEARCH_DIR ($ADI_DSP\211xx\1ib)

MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

// $ADI_DSP is a predefined linker macro that expands to
// the VisualDSP++ installation directory. Search for objects
// in directory 21k\1ib relative to the installation directory

// 1ibléel.d1b is an ADSP-2116x-specific library and must precede
// precede 1ibc.dlb, C Tibrary to link 2116x-specific routines

$LIBS

1ib161.d1b, Tibc.dlb;

// single.doj is a user-generated file.

// The Tinker will be invoked as follows:

// linker -T single-processor.1df single.doj.

// $COMMAND_LINE_OBJECTS is a predefined linker macro.
// The linker expands this macro into the name(s) of the
// the object(s) (.doj files) and libraries (.dlb files)
// that appear on the command line. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

// 161_hdr.doj is the standard initialization file for 2116x
$0BJS = $COMMAND_LINE_OBJECTS, 161_hdr.doj;

// A linker project to generate a .dxe file
PROCESSOR PO

Visual DSP++ 4.5 Linker and Utilities Manual 3-11

LDF File Overview

QUTPUT (.\SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory command
{ INCLUDE(*21161_memory.h”) }

SECTIONS // Specify the output sections
{
INCLUDE(*21161_sections.h”)
} // end PO sections
} // end PO processor

Common Notes on Basic .Idf File Examples

In the following description, the MEMORY { } and SECTIONS{} commands
connect the program to the target processor. For complete syntax informa-
tion on LDF commands, see “LDF Commands” on page 3-31.

These notes describe features of a typical .1df file (as presented in
Listing 3-1, Listing 3-2, and Listing 3-3).

* ARCHITECTURE(ADSP-xxxxx) specifies the target architecture (pro-
cessor). For example, ARCHITECTURE(ADSP-BF533). The architecture
dictates possible memory widths and address ranges, the register
set, and other structural information for use by the debugger,
linker, and loader. The target architecture must be installed in

Visual DSP++.

* SEARCH_DIR() specifies directory paths searched for libraries and
object files (on page 3-54). For example, the argument
$ADI_DSP/Blackfin/1ib specifies one search directory for Blackfin
libraries and object files.

The linker supports a sequence of search directories presented as an
argument list (directoryl, directory2, ...). The linker follows this
sequence and stops at the first match.

3-12 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

* $LIBRARIES is a list of the library and object files searched to resolve
references, in the required order. Some of the options specify the
selection of one library over another.

* $0BJECTS is an example of a user-definable macro, which expands to
a comma-delimited list of file names. Macros improve readability
by replacing long strings of text. Conceptually similar to preproces-
sor macro support (#defines) also available in the .1df file, string
macros are independent. In this example, $0BJECTS expands to a
comma-delimited list of the input files to be linked.

Note: In this example and in the default .1df files that accompany
Visual DSP++, $0BJECTS in the SECTIONS () command specifies the
object files to be searched for specific input sections.

As another example, $ADI_DSP expands to the VisualDSP++ home
directory.

* $COMMAND_LINE_OBJECTS (on page 3-29) is an LDF command-line
macro, which expands in the . 1df file into the list of input files that
appears on the command line.

Note: The order in which the linker processes object files (which
affects the order in which addresses in memory segments are
assigned to input sections and symbols) is determined by the listed
order in the SECTIONS{} command. As noted above, this order is
typically the order listed in $0BJECTS ($COMMAND_LINE_OBJECTS).

Visual DSP++ generates a linker command line that lists objects in
alphabetical order. This order carries through to the $0BJECTS
macro. You may customize the . 1df file to link objects in any
desired order. Instead of using default macros such as $0BJECTS,
each INPUT_SECTION command can have one or more explicit object
names.

Visual DSP++ 4.5 Linker and Utilities Manual 3-13

LDF File Overview

The following examples are functionally identical:

dxe_program { INPUT_SECTIONS (main.doj(program)
fft.doj(program)) } > mem_program

$D0JS = main.doj, fft.doj;
dxe_program {
INPUT_SECTIONS ($D0JS(program))

} >mem_program;

The MEMORY { } command (on page 3-38) defines the target system’s
physical memory and connects the program to the target system.
Its arguments partition the memory into memory segments. Each
memory segment is assigned a distinct name, memory type, a start
and end address (or segment length), and a memory width. These
names occupy different namespaces from input section names and
output section names. Thus, a memory segment and an output sec-
tion may have the same name.

Each PROCESSOR{} command (on page 3-48) generates a single exe-
cutable file.

The 0UTPUT() command (on page 3-49) produces an executable
(.dxe) file and specifies its file name.

In basic example, the argument to the OUTPUT() command is the
$COMMAND_LINE_OUTPUT_FILE macro (on page 3-29). The linker
names the executable file according to the text following the -o
switch (which corresponds to the name specified in the Project
Options dialog box when the linker is invoked via the

Visual DSP++ IDDE).

>linker ... -0 outputfilename

SECTIONS{} (on page 3-55) specifies the placement of code and

data in physical memory. The linker maps input sections (in object
files) to output sections (in executable files), and maps the output
sections to memory segments specified by the MEMORY {} command.

3-14

VisualDSP++ 4.5 Linker and Utilities Manual

Linker Description File

The INPUT_SECTIONS() statement specifies the object file the linker
uses as an input to resolve the mapping to the appropriate memory
segment declared in the .1df file.

For example, in TigerSHARC processors, the following
INPUT_SECTIONS() statement directs the linker to place the program
input section in the code output section and to map it to the
MOCode memory segment.

code { INPUT_SECTIONS ($0BJECTS(program))} > MOCode

For SHARC processors, the following INPUT_SECTIONS() statement
directs the linker to place the isr_tb1 input section in the dxe_isr
output section and to map it to the mem_isr memory segment.

dxe_isr{ INPUT_SECTIONS ($OBJECTS (isr_tbl)) } > mem_isr

For Blackfin processors, the following two input sections (program
and datal) are mapped into one memory segment (L2), as shown

below.
dxe_L2
1 INPUT_SECTIONS_ALIGN (2)
2 INPUT_SECTIONS($0OBJECTS(program) $LIBRARIES(program))
3 INPUT_SECTIONS_ALIGN (1)
4 INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))

}O>MEM_L2

The second line directs the linker to place the object code assem-
bled from the source file’s “program” input section (via the
“.section program” directive in the assembly source file), place the
output object into the “DXE_L2” output section, and map the out-
put section to the “MEM_L2” memory segment. The fourth line does
the same for the input section “datal” and output section

Visual DSP++ 4.5 Linker and Utilities Manual 3-15

LDF File Overview

“DXE_L2”, mapping them to the memory segment “MEM_L2”.
The two pieces of code follow each other in the program memory
segment.

The INPUT_SECTIONS() commands are processed in the same order
as object files appear in the $0BJECTS macro. You may intersperse
INPUT_SECTIONS() statements within an output section with other
directives, including location counter information.

3-16

VisualDSP++ 4.5 Linker and Utilities Manual

Linker Description File

LDF Structure

One way to produce a simple and maintainable . 1df file is to parallel the
structure of your DSP system. Using your system as a model, follow these
guidelines.

e Split the file into a set of PROCESSOR{} commands, one for each
DSP in your system.

e Place a MEMORY { } command in the scope that matches your system
and define memory unique to a processor within the scope of the
corresponding PROCESSOR{} command.

e Ifapplicable, place a SHARED_MEMORY { } command in the .1df file’s
global scope. This command specifies system resources available as
shared resources in a multiprocessor environment.

Declare common (shared) memory definitions in the global scope
before the PROCESSOR{} commands. See “Command Scoping” for
more information.

Comments in the .1df File
C-style comments begin with /* and may cross “newline” boundaries until
a */ terminator is encountered.

A C++ style comment begins with // and ends at the end of the line.
For more information on LDF structure, see:

e “Link Target Description” on page 2-11

e “Placing Code on the Target” on page 2-35

Also see Appendix C, Appendix D, and Appendix E for code and LDF
structure examples for TigertSHARC, SHARC and Blackfin processors,

respectively.

Visual DSP++ 4.5 Linker and Utilities Manual 3-17

LDF Structure

Command Scoping

The two LDF scopes are global and command. A global scope occurs outside
commands. Commands and expressions that appear in the global scope are
always available and are visible in all subsequent scopes. LDF macros are
available globally, regardless of the scope in which the macro is defined
(see “LDF Macros” on page 3-27).

A command scope applies to all commands that appear between the braces
({ }) of another command, such as a PROCESSOR{} or PLIT{} command.
Commands and expressions that appear in the command scopes are lim-
ited to those scopes.

Figure 3-1 illustrates some scoping issues. For example, the MEMORY {}
command that appears in the LDF’s global scope is available in all com-
mand scopes, but the MEMORY {} command that appear in command scopes
is restricted to those scopes.

((" MEMORY{}

MPMEMORY { }
Scope of SHARED_MEMORY [} < STARED—MEMORY
OUTPUT()

SECTIONS{}
Global ~ }

LDF < (PROCESSOR PO
Scope {

OUTPUT()
MEMORY { }
Scope of PROCESSOR PO{} < SECTIONS{}

RESOLVE{}

Figure 3-1. LDF Command Scoping Example

3-18 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

LDF Expressions

LDF commands may contain arithmetic expressions that follow the same

syntax

rules as C/C++ language expressions. The linker:

Evaluates all expressions as type unsigned long and treats con-
stants as type unsigned Tong

Supports all C/C++ language arithmetic operators
Allows definitions and references to symbolic constants in the LDF
Allows reference to global variables in the program being linked
Recognizes labels that conform to these constraints:

* Must start with a letter, underscore, or point

* May contain any letters, underscores, digits, and points

* Are delimited by white space

* Do not conflict with any keywords

* Are unique

Table 3-1. Valid Items in Expressions

Convention Description

Current location counter (a period character in an address expres-
sion). See “Location Counter (.)” on page 3-27.

0xnumb

er Hexadecimal number (a Ox prefix)

number

Decimal number (a number without a prefix)

Visual DSP++ 4.5 Linker and Utilities Manual 3-19

LDF Keywords, Commands, and Operators

Table 3-1. Valid Items in Expressions (Contd)

Convention Description

numberk A decimal number multiplied by 1024
or

numberK

B#number A binary number
or

b#fnumber

LDF Keywords, Commands, and
Operators

Table 3-2 lists .1df file keywords (used in Blackfin, SHARC and Tiger-
SHARC processor families). Descriptions of LDF keywords, operators,
macros, and commands are provided in the following sections.

e “Miscellaneous LDF Keywords” on page 3-21
e “LDF Operators” on page 3-22

e “LDF Macros” on page 3-27

* “LDF Commands” on page 3-31

@ Keywords are case sensitive; the linker recognizes a keyword only
when the entire word is UPPERCASE.

Table 3-2. LDF File Keywords Summary

ABSOLUTE ADDR ALGORITHM

ALIGN ALL_FIT ARCHITECTURE
BEST_FIT BOOT DEFINED

DYNAMIC ELIMINATE ELIMINATE_SECTIONS
ENTRY END

3-20 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description

Table 3-2. LDF File Keywords Summary (Contd)

File

FALSE

FILL

FIRST_FIT

INCLUDE

INPUT_SECTION_ALIGN

INPUT_SECTIONS

INPUT_SECTIONS_PIN

INPUT_SECTIONS_PIN_
EXCLUSIVE

KEEP

KEEP_SECTIONS LENGTH LINK_AGAINST
MAP MEMORY MEMORY_SIZEOF
MPMEMORY NUMBER_OF_OVERLAYS OUTPUT
OVERLAY_GROUP OVERLAY_ID OVERLAY_INPUT
OVERLAY_QUTPUT PACKING PLIT
PLIT_SYMBOL_ADDRESS PLIT_SYMBOL_OVERLAYID PROCESSOR

RAM RESERVE RESOLVE
RESERVE_EXPAND ROM

SEARCH_DIR SECTIONS SHARED_MEMORY
SHT_NOBITS SIZE SIZEOF

START TYPE

VERBOSE WIDTH XREF

Miscellaneous LDF Keywords

The following linker keywords are not operators, macros, or commands.

Table 3-3. Miscellaneous LDF File Keywords

Keyword Description

FALSE A constant with a value of 0

TRUE A constant with a value of 1

XREF A cross-reference option setting. See “-xref” on page 2-62.

Visual DSP++ 4.5 Linker and Utilities Manual 3-21

LDF Operators

For more information about other .1df file keywords, see “LDF Opera-
tors” on page 3-22, “LDF Macros” on page 3-27, and “LDF Commands”
on page 3-31.

LDF Operators

LDF operators in expressions support memory address operations. Expres-
sions that contain these operators terminate with a semicolon, except
when the operator serves as a variable for an address. The linker responds
to several LDF operators including the location counter.

Each LDF operator is described in the following sections.

ABSOLUTE() Operator
Syntax:
ABSOLUTE(expression)

The linker returns the value expression. Use this operator to assign an
absolute address to a symbol. The expression can be:

* A symbolic expression in parentheses; for example:
1df_start_expr = ABSOLUTE(start + 8);

This example assigns 1df_start_expr the value corresponding to
the address of the symbol start, plus 8, as in:

ldf_start_expr = start + 8;

* An integer constant in one of these forms: hexadecimal, decimal, or
decimal optionally followed by “K” (kilo [x1024]) or “M” (Mega
[x1024x1024])

* A period, indicating the current location (see “Location Counter

(.)” on page 3-27)

3-22 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

The following statement, which defines the bottom of stack space
in the LDF

1df_stack_space = .;
can also be written as:
1df_stack_space = ABSOLUTE(.);

* A symbol name

ADDR() Operator

Syntax:
ADDR(section_name)

This operator returns the start address of the named output section
defined in the .1df file. Use this operator to assign a section’s absolute
address to a symbol.

Blackfin Code Example:

If an .LDF file defines output sections as,

dxe_L2_code
{

INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
}> mem_L2

dxe_L2_data
{

INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
}> mem_L2

the .1df file may contain the command:
1df_start_L2 = ADDR(dxe_L2_code)

The linker generates the constant 1df_start_L2 and assigns it the start
address of the dxe_L2 output section.

Visual DSP++ 4.5 Linker and Utilities Manual 3-23

LDF Operators

SHARC Code Example:
If an .1df file defines output sections as,

dxe_pmco
{

INPUT_SECTIONS($0BJECTS(seg_pmco) $LIBRARIES(seg_pmco))
}> mem_pmco

dxe_dmda
{

INPUT_SECTIONS($0BJECTS(seg_dmda) $LIBRARIES(seg_dmda))
}> mem_seg_dmda

the .1df file may contain the command:
ldf_start_dmda = ADDR(mem_seg_dmda)

The linker generates the constant 1df_start_dmda and assigns it the start
address of the mem_seg_dmda output section.

DEFINED() Operator

Syntax:
DEFINED(symbol)

The linker returns 1 when the symbol appears in the global symbol table,
and returns 0 when the symbol is not defined. Use this operator to assign
default values to symbols.

Example:

If an assembly object linked by the .1df file defines the global symbol
test, the following statement sets the test_present constant to 1. Other-
wise, the constant has the value 0.

test_present = DEFINED(test);

3-24 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

MEMORY_END() Operator
Syntax:
MEMORY_END(segment_name)

This operator returns the end address (the address of the last word) of the
named memory segment.

Example:
This example reserves 6 words at the end of a mem_stack memory segment
using the MEMORY_END operator.

RESERVE(reserved_space = MEMORY_END(mem_stack) - 6 + 1,
reserved_space_length = 6);

MEMORY_SIZEOF() Operator
Syntax:
MEMORY_SIZEQF (segment_name)

This operator returns the size (in words) of the named memory segment.
Use this operator when a segment’s size is required to move the current
location counter to an appropriate memory location.

Example:
This example (from a default . 1df file) sets a linker-generated constant
based on the location counter plus the MEMORY_SIZEOF operator.

sec_stack {

1df_stack_Timit = .;

ldf_stack_base = . + MEMORY_SIZEOF(mem_stack) - 1;
} > mem_stack

The sec_stack section is defined to consume the entire mem_stack
memory segment.

Visual DSP++ 4.5 Linker and Utilities Manual 3-25

LDF Operators

MEMORY_START() Operator
Syntax:
MEMORY_START (segment_name)

This operator returns the start address (the address of the first word) of the
named memory segment.

Example:
This example reserves 4 words at the start of a mem_stack memory segment
using the MEMORY_START operator.

RESERVE(reserved_space =
MEMORY_START (mem_stack), reserved_space_length

4,

The sec_stack section is defined to consume the entire mem_stack
memory segment.

SIZEOF() Operator

Syntax:
SIZEQOF(section_name)

This operator returns the size (in bytes) of the named output section. Use
this operator when a section’s size is required to move the current location
counter to an appropriate memory location.

SHARC Code Example:
The following LDF fragment defines the _sizeofdatal constant to the
size of the seq_dmda section.

seg_dmda

{
INPUT_SECTIONS($0BJECTS(seg_dmda) $LIBRARIES(seg_dmda))
_sizeofdatal = SIZEOF(seg_dmda);

} > seg_dmda

3-26 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

Blackfin Code Example:
The following LDF fragment defines the _sizeofdatal constant to the
size of the datal section.

datal

{
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
_sizeofdatal = SIZEOF(datal);

} > MEM_DATAIL

Location Counter (.)

The linker treats a “.” (period surrounded by spaces) as the symbol for the
current location counter. The location counter is a pointer to the memory
location at the end of the previous linker command. Because the period
refers to a location in an output section, this operator may appear only
within an output section in a SECTIONS{} command.

Observe these rules:

* Use a period anywhere a symbol is allowed in an expression.

e Assign a value to the period operator to move the location counter
and to leave voids or gaps in memory.

* The location counter may not be decremented.

LDF Macros

LDF macros (or linker macros) are built-in macros. They have predefined
system-specific procedures or values. Other macros, called wuser macros, are
user-definable.

LDF macros are identified by a leading dollar sign ($) character. Each
LDF macro is a name for a text string. You may assign LDF macros with
textual or procedural values, or simply declare them to exist.

Visual DSP++ 4.5 Linker and Utilities Manual 3-27

LDF Macros

The linker:

* Substitutes the string value for the name. Normally, the string
value is longer than the name, so the macro expands to its textual

length.

e Performs actions conditional on the existence of (or value of) the
macro

* Assigns a value to the macro, possibly as the result of a procedure,
and uses that value in further processing

LDF macros funnel input from the linker command line into predefined
macros and provide support for user-defined macro substitutions. Linker
macros are available globally in the .LDF file, regardless of where they are
defined. For more information, see “Command Scoping” on page 3-18
and “LDF Macros and Command-Line Interaction” on page 3-30.

LDF macros are independent of preprocessor macro support,
which is also available in the .LDF file. The preprocessor places pre-
processor macros (or other preprocessor commands) into source
files. Preprocessor macros repeat instruction sequences in your
source code or define symbolic constants. These macros facilitate
text replacement, file inclusion, and conditional assembly and
compilation. For example, the assembler’s preprocessor uses the
#define command to define macros and symbolic constants.

For more information, refer to the VisualDSP++ 4.5 Compiler and
Library Manual and the VisualDSP++ 4.5 Assembler and

P7€p7'0€€5507' Manual for appropriate target processors.

3-28 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

Built-In LDF Macros

The linker provides the following built-in LDF macros.

e $COMMAND_LINE_OBJECTS

This macro expands into the list of object (. doj) and library (.DLB)
files that are input on the linker’s command line. Use this macro
within the INPUT_SECTIONS() syntax of the linker’s SECTIONS{}
command. This macro provides a comprehensive list of object file
input that the linker searches for input sections.

* $COMMAND_LINE_LINK_AGAINST

This macro expands into the list of executable (.dxe or .sm) files
that one input on the linker’s command line. This macro provides
a comprehensive list of executable file input that the linker searches
to resolve external symbols.

e $COMMAND_LINE_OUTPUT_FILE

This macro expands into the output executable file name, which is
set with the linker’s -0 switch. This file name corresponds to the
<projectname.dxe> set via the VisualDSP++ Project Options dia-
log box. Use this macro only once in your .1df file for file name
substitution within an OUTPUT() command.

e $COMMAND_LINE_OUTPUT_DIRECTORY

This macro expands into the path of the output directory, which is
set with the linker’s -od switch (or -o switch when -od is not speci-
fied). For example, the following statement permits a configuration
change (Release vs. Debug) without modifying the . 1df file.

OVERLAY_OUTPUT($COMMAND_LINE_OUTPUT_DIRECTORY\OVLI.ov1)

Visual DSP++ 4.5 Linker and Utilities Manual 3-29

LDF Macros

e $ADI_DSP

This macro expands into the path of the VisualDSP++ installation
directory. Use this macro to control how the linker searches for

files.

User-Declared Macros

The linker supports user-declared macros for file lists. The following syn-
tax declares $macroname as a comma-delimited list of files.

$macroname = filel, file2, file3, ... ;

After $macroname has been declared, the linker substitutes the file list
when $macroname appears in the .1df file. Terminate a $macroname decla-
ration with a semicolon. The linker processes the files in the listed order.

LDF Macros and Command-Line Interaction

The linker receives commands through a command-line interface, regard-
less of whether the linker runs automatically from the Visual DSP++
IDDE or explicitly from a command window. Many linker operations,
such as input and output, are controlled through the command-line
entries. Use LDF macros to apply command-line inputs within the LDEF.

Base your decision on whether to use command-line inputs in the . 1df file
or to control the linker with LDF code on the following considerations.

* An .1df file that uses command-line inputs produces a more
generic LDF that can be used in multiple projects. Because the
command line can specify only one output, an .1df file that relies
on command-line input is best suited for single-processor systems.

* An.1df file that does not use command-line inputs produces a
more specific LDF that can control complex linker features.

3-30 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

LDF Commands

Commands in the . 1df file (called LDF commands) define the target sys-
tem and specify the order in which the linker processes output for that
system. LDF commands operate within a scope, influencing the operation
of other commands that appear within the range of that scope. For more
information, see “Command Scoping” on page 3-18.

The linker supports the use of wildcards in section name specifica-

tions in the .1df file. The * and ? are provided on input section
names.

The linker supports these LDF commands (not all commands are used
with specific processors):

“ALIGN()” on page 3-32
“ARCHITECTURE()” on page 3-32
“ELIMINATE()” on page 3-33
“ELIMINATE_SECTIONS()” on page 3-34
“INCLUDE()” on page 3-35
“INPUT_SECTION_ALIGN()” on page 3-35
“KEEP()” on page 3-36
“KEEP_SECTIONS()” on page 3-37
“LINK_AGAINST()” on page 3-37
“MEMORY{}” on page 3-38
“MPMEMORY{}” on page 3-42
“OVERLAY_GROUP{}” on page 3-42

Visual DSP++ 4.5 Linker and Utilities Manual 3-31

LDF Commands

* “PACKING()” on page 3-42

e “PLIT{}” on page 3-48

e “PROCESSOR({}” on page 3-48

e “RESERVE()” on page 3-50
 “RESERVE_EXPAND()” on page 3-53
* “RESOLVE()” on page 3-53

e “SEARCH_DIR()” on page 3-54

e “SECTIONS{}” on page 3-55

e “SHARED_MEMORY{}” on page 3-65

ALIGN()

The ALIGN(number) command aligns the address of the current location
counter to the next address that is a multiple of number, where number is a
power of 2. The number is a word boundary (address) that depends on the
word size of the memory segment in which the ALIGN() takes action.

ARCHITECTURE()

The ARCHITECTURE() command specifies the target system’s processor.
An .1df file may contain one ARCHITECTURE() command only.

The ARCHITECTURE() command must appear with global LDF scope,
applying to the entire . 1df file.

The command’s syntax is:
ARCHITECTURE(processor)

The ARCHITECTURE () command is case sensitive. For example, a valid entry
is ADSP-BF533. Thus, ADSP-BF533 is valid, but adsp-BF533 is not.

3-32 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

If the ARCHITECTURE () command does not specify the target processor, you
must identify the target processor via the linker command line

(Tinker -proc processor ...). Otherwise, the linker cannot link the
program.

If processor-specific MEMORY { } commands in the . 1df file conflict with the
processor type, the linker issues an error message and halts.

Test whether your Visual DSP++ installation accommodates
a particular processor by typing the following linker command.

linker -proc processor

If the architecture is not installed, the linker prints a message to
that effect.

ELIMINATE()

The ELIMINATE() command enables object elimination, which removes
symbols from the executable file if they are not called. Adding the VERBOSE
keyword, ELIMINATE(VERBOSE), reports on objects as they are eliminated.
This command performs the same function as the -e command-line
switch (see on page 2-55).

When using either the linker’s data elimination feature (via the Expert
Linker or command-line switches) or the ELIMINATE() command in an
.1df file, it is essential that certain objects are continue to use the KEEP ()
command, so that the C/C++ run-time libraries function properly. The
safest way to do this is to copy the KEEP() command from the default .LDF
file into your own .LDF file.

For the C and C++ run-time libraries to work properly, retain the
following symbols with “KEEP()” (on page 3-306):

_ctor_NULL_marker and 1 ib_end_of_heap_descriptions

Visual DSP++ 4.5 Linker and Utilities Manual 3-33

LDF Commands

In order to allow efficient elimination, the structure of the assembly
source has to be such that the linker can unambiguously identify the
boundaries of each “source object” in the input section (a “source object”
is a function or a data item). Specifically, an input section must be fully
covered by non-overlapping source objects with explicit boundaries. The
boundary of a function item is specified by the function label and its cor-
responding “.end” label. If an input section layout does not conform to
the rule described above, no elimination is performed in the section. See
the VisualDSP++ 4.5 Assembler and Preprocessor Manual for more details
on using “.end” labels.

ELIMINATE_SECTIONS()

The ELIMINATE_SECTIONS(sectionlist) command instructs the linker to
remove unreferenced code and data from listed sections only.

The sectionlist is a comma-delimited list of input sections. Both this
LDF command and the linker’s -es command-line switch (on page 2-55)
may be used to specify sections where unreferenced code and data should
be eliminated.

ENTRY ()

The ENTRY (symbol) command specifies the entry address. The entry
address is usually filled from a global symbol “start” (no underscore), if
present. Refer to “Entry Address” on page 2-34 for more information.

Both this LDF command and the linker’s -entry command-line switch
(on page 2-56) may be used to specify the entry address.

3-34 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

INCLUDE()

The INCLUDE() command specifies additional .1df files that the linker
processes before processing the remainder of the current LDF. Specify any
number of additional .1df files. Supply one file name per INCLUDE()
command.

Only one of these additional .1df files is obligated to specify a target

architecture. Normally, the top-level .1df file includes the other .1df
files.

INPUT_SECTION_ALIGN()

The INPUT_SECTION_ALIGN(number) command aligns each input section
(data or instruction) in an output section to an address satisfying number.
The number argument, which must be a power of 2, is a word boundary
(address). Valid values for number depend on the word size of the memory
segment receiving the output section being aligned.

The linker fills empty spaces created by INPUT_SECTION_ALIGN() com-
mands with zeros (by default), or with the value specified with the

preceding FILL command valid for the current scope. See FILL under
“SECTIONS{}” on page 3-55.

The INPUT_SECTION_ALIGN() command is valid only within the scope of
an output section. For more information, see “Command Scoping” on
page 3-18. For more information on output sections, see the syntax

description for “SECTIONS{}” on page 3-55.

Example:

In the following Blackfin example, input sections from a.doj, b.doj, and
c.doj are aligned on even addresses. Input sections from d.doj and e.doj
are not quad-word aligned because INPUT_SECTION_ALIGN(1) indicates
subsequent sections are not subject to input section alignment.

Visual DSP++ 4.5 Linker and Utilities Manual 3-35

LDF Commands

SECTIONS

{
program
{
INPUT_SECTION_ALIGN(2)

INPUT_SECTIONS (a.doj(program))
INPUT_SECTIONS (b.doj(program))
INPUT_SECTIONS (c.doj(program))

// end of alignment directive for input sections
INPUT_SECTION_ALIGN(1)

// The following sections will not be aligned.
INPUT_SECTIONS (d.doj(datal))
INPUT_SECTIONS (e.doj(datal))

} >MEM_PROGRAM

KEEP()

The linker uses the KEEP (keepList) command when section elimination is
enabled, retaining the listed objects in the executable file even when they
are not called. The keepList is a comma-delimited list of objects to be
retained.

When utilizing the linker’s data elimination capabilities, it is essential that
certain objects continue to use the KEEP() command, so that the C/C++
run-time libraries function properly. The safest way to do this is to copy
the KEEP() command from the default .LDF file into your own .LDF file.

For the C and C++ run-time libraries to work properly, retain the
following symbols with KEEP:

__ctor_NULL_marker and 11 b_end_of_heap_descriptions
A symbol specified in keeplist must be a global symbol.

3-36 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

KEEP_SECTIONS()

The linker uses the KEEP_SECTIONS() command to specify a section name
in which elimination should not take place. This command can appear
anywhere the ELIMINATE_SECTION command appears. You may either use
the KEEP_SECTIONS() command or the -ek linker switch (on page 2-55).

LINK_AGAINST()

The LINK_AGAINST() command checks specific executables to resolve vari-
ables and labels that have not been resolved locally.

To link programs for multiprocessor systems, you must use the
LINK_AGAINST() command in the .1df file.

This command is an optional part of the PROCESSOR{ } and
SHARE_MEMORY { } commands. The syntax of the LINK_AGAINST () command
(as part of a PROCESSOR{} command) is:

PROCESSOR Pn
{

LINK_AGAINST (executable_file_names)

where:
* Pnis the processor name; for example, PO or P1.

* executable_file_names is a list of one or more executable (.dxe)
or shared memory (.sm) files. Separate multiple file names with
commas. However, Expert Linker allows the use of white spaces to
separate multiple file names.

The linker searches the executable files in the order specified in the
LINK_AGAINST() command. When a symbol’s definition is found, the
linker stops searching. Override the search order for a specific variable or

label by using the RESOLVE() command (see “RESOLVE()” on page 3-53),

Visual DSP++ 4.5 Linker and Utilities Manual 3-37

LDF Commands

which directs the linker to use the specified resolver, thus ignoring
LINK_AGAINST() for a specific symbol. The LINK_AGAINST () command for
other symbols still applies.

MAP()

The MAP(filename) command outputs a map (.xm1) file with the specified
name. You must supply a file name. Place this command anywhere in the

LDF.

The MAP(filename) command corresponds to and may be overridden by
the linker’s -Map <fi7ename> command-line switch (on page 2-53). In
VisualDSP++, if project options (Link tab of the Project Options dialog
box) specify the generation of a symbol map, the linker runs with -Map
<projectname>.xml asserted and the LDF’s MAP() command generates a
warning.

MEMORY{}

The MEMORY { } command specifies the memory map for the target system.
After declaring memory segment names with this command, use the mem-
ory segment names to place program sections via the SECTIONS{]
command.

The LDF must contain a MEMORY { } command for global memory on the
target system and may contain a MEMORY {} command that applies to each
processor’s scope. There is no limit to the number of memory segments
you can declare within each MEMORY {} command. For more information,
see “Command Scoping” on page 3-18.

In each scope scenario, follow the MEMORY { } command with a SECTIONS{)
command. Use the memory segment names to place program sections.
Only memory segment declarations may appear within the MEMORY {} com-
mand. There is no limit to section name lengths.

3-38 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

If you do not specify the target processor’s memory map with the

MEMORY { } command, the linker cannot link your program. If the combined
sections directed to a memory segment require more space than exists in
the segment, the linker issues an error message and halts the link.

The syntax for the MEMORY {} command appears in Figure 3-2, followed by
a description of each part of a segment declaration.

MEMORY { segment_commands}
L |

segment_name {
TYPE(RAM|ROM)
START (address_expression)
LENGTH (length_expression) | END (address_expression)
WIDTH (width_expression)

Figure 3-2. MEMORY{} Command Syntax Tree

Segment Declarations

A segment declaration declares a memory segment on the target proces-
sor. Although an .1df file may contain only one MEMORY { } command that
applies to all scopes, there is no limit to the number of memory segments
declared within a MEMORY { } command.

Each segment declaration must contain a segment_name, TYPE(),
START (), LENGTH() or END(), and a WIDTH(). Parts of a segment declaration
are described below.

Visual DSP++ 4.5 Linker and Utilities Manual 3-39

LDF Commands

segment_name

The segment_name identifies the memory region. The segment_name must
start with a letter, underscore, or point, may include any letters, under-
scores, digits, and points, and must not conflict with LDF keywords.

START(address_number)

The START() command specifies the memory segment’s start address. The
address_number must be an absolute address.

TYPE()

The TYPE() command identifies the architecture-specific type of memory
within the memory segment.

Not all target processors support all types of memory. The linker
stores this information in the executable file for use by other devel-
opment tools.

For Blackfin and TigerSHARC processors, use TYPE() to specify the func-
tional or hardware locus (RAM or ROM). The RAM declarator specifies
segments that need to be booted. ROM segments are not booted; they are
executed/loaded directly from off-chip PROM space.

For SHARC (ADSP-21xxx) processors, use TYPE()to specify two parame-
ters: memory usage (PM for program memory or DM for data memory),

and functional or hardware locus (RAM or ROM, as described above).

On ADSP-21261/2/6/7 and 21362/3/4/5/6 processors, it is not possible
to access external memory directly, but through DMA. To validate place-
ment of code accessible through DMA in external memory, use the
“DMAONLY” segment qualifier to mark a memory segment in the LDF as
external memory. For example,

seg_dmda
TYPE(DM DMAONLY)
START(0x00200000)

3-40 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

END(OX3FFFFFFF)

WIDTH(32)

}
<D
seg_dmda{INPUT_SECTIONS($0BJECTS(seg_extm))}
> seg_dmda

The linker identifies the section as “dmaonly”. At link time, the linker ver-
ifies that the section must reside in external memory identified with the
“DMAONLY” qualifier. More importantly, the linker checks that only sec-
tions marked “dmaonly” are placed in external memory. The linker issues
an error if there is any inconsistency between memory the section is
mapped to and that section’s qualifier:

[Error e12017] 1Invalid/missing memory qualifier for memory
tion name.

sec-

LENGTH(length_number)/END(address_number)

The LENGTH/END() command identifies the length of the memory segment
(in words) or specifies the segment’s end address. When you state the
length, Tength_number is the number of addressable words within the
region or an expression that evaluates to the number of words. When you
state the end address, address_number is an absolute address.

WIDTH(width_number)

The WIDTH() command specifies the physical width (number of bits) of
the on-chip or off-chip memory interface. The width_number parameter
must be a whole number.

For Blackfin processors, width must be 8 (bits)
for TigerSHARC processors, width must be 32 (bits); and
for SHARC processors, width may be 8, 16, 32, 48 or 64 (bits).

Visual DSP++ 4.5 Linker and Utilities Manual 3-41

LDF Commands

MPMEMORY{}

The MPMEMORY { } command specifies the offset of each processor’s physical
memory in a multiprocessor target system. After you declare the processor
names and memory segment offsets with the MPMEMORY {} command, the
linker uses the offsets during multiprocessor linking.

Refer to “MPMEMORY/{}” on page 5-44 for a detailed description of the
MPMEMORY { } command.

OVERLAY_GROUP{}

The OVERLAY_GROUP{} command is deprecated. This command provides
support for defining a set of overlays that share a block of run-time
memory.

For detailed command description, refer to “OVERLAY_GROUP{}” on
page 5-29. Refer to “Memory Management Using Overlays” on page 5-4
for a detailed description of overlay functionality.

PACKING()

In VisualDSP++ 4.5, the PACKING() command is used with
ADSP-21xxx (SHARC) processors only (as described in “Packing
in SHARC Processors” on page 3-44) .

Processors exchange data with their environment (on-chip or off-chip)
through several buses. The configuration, placement, and amounts of
memory are determined by the application. Specify memory of width(s)
and data transfer byte order(s) that suit your needs.

The linker places data in memory according to the constraints imposed by
your system’s architecture. The LDF’s PACKING() command specifies the
order the linker uses to place bytes in memory. This ordering places data
in memory in the sequence the processor uses as it transfers data.

3-42 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

The PACKING() command allows the linker to structure its executable out-
put to be consistent with your installation’s memory organization. This
command can be applied (scoped) on a segment-by-segment basis within
the .1df file, with adequate granularity to handle heterogeneous memory
configurations. Any memory segment requiring more than one packing
command may be divided into homogeneous segments.

Syntax
The syntax of the PACKING() command is:

PACKING (number_of_bytes byte_order_list)
where:

* number_of_bytes is an integer specifying the number of bytes to
pack (reorder) before repeating the pattern

* byte_order_list is the output byte ordering — what the linker
writes into memory. Each list entry consists of “B” followed by the
byte’s number (in a group) at the storage medium (memory). The
list follows these rules:

* DParameters are whitespace-delimited
* The total number of non-null bytes is number_of_bytes
e If null bytes are included, they are labeled B0

For example, in SHARC processors, the first byte is B1 (not B0). The sec-
ond byte is B2, and so on.

PACKING (12 B1 B2 B3 B4 BO B11 B12 B5 B6 BO B7 B8 B9 B10 BO)

Non-default use of the PACKING() command reorders bytes in executable
files (.dxe, .sm, or .ov1), so they arrive at the target in the correct number,
alignment, and sequence. To accomplish this task, the command specifies
the size of the reordered group, the byte order within the group, and

Visual DSP++ 4.5 Linker and Utilities Manual 3-43

LDF Commands

whether and where “null” bytes must be inserted to preserve alignment on
the target. The term “null” refers to usage — the target ignores a null byte;
the linker sets these bytes to zeros.

The order used to place bytes in memory correlates to the order the pro-
cessor may use while unpacking the data when the processor transfers data
from external memory into its internal memory. The processor’s unpack-
ing order can relate to the transfer method.

@ Visual DSP++ comes with the packing.h file in the ...\include

folder. This file provides macros that define packing commands for
use in a Linker Description File (.1df). The macros support vari-
ous types of packing for Direct Memory Access functionality (used
in overlays) and for direct external execution. To use these macros,
place them in an .1df file’s SECTIONS{} command when a
PACKING() command is needed.

Packing in SHARC Processors

On SHARC processors, PACKING() applies to the processor’s external port.
Each external port buffer contains data packing logic that allows the pack-
ing of 8-, 16-, or 32-bit external bus words into 32- or 48-bit internal
words. This logic is fully reversible.

The following information describes how the PACKING() command may
apply in an .LDF file for your ADSP-21xxx processor.

In some Direct Memory Access (DMA) modes, SHARC processors
unpack three 32-bit words to build two 48-bit instruction words when the
processor receives data from 32-bit memory. For example, the unpacked

order and storage order (Table 3-4) could apply to a DMA mode.

The order of unpacked bytes does not match the transfer (stored) order.
Because the processor uses two bytes per short word, the above transfer
translates into the format in Table 3-5.

3-44 Visual DSP++ 4.5 Linker and Utilities Manual

Table 3-4. DMA Packing Order

Linker Description File

Transfer Order
(from storage in a 32-bit external memory)

Unpacked Order
Two 48-bit internal words
(after the third transfer)

B1 and B2 (word 1, bits 47-32)
B3 and B4 (word 1, bits 31-16)

B11 and B12 (word 2, bits 15-0)
B5 and B6 (word 1, bits 15-0)

B7 and B8 (word 2, bits 47-32)
B9 and B10 (word 2, bits 31-16)

B1, B2, B3, B4, B5, B6
(word 1, bits 47-0)

B7, B8, B9, B10, B11, B12
(word 2, bits 47-0)

Table 3-5. Storage Order vs. Unpacked Order

Storage Order

(in 32-bit external memory)

Unpacked Order

(two 48-bit internal words)

B1, B2, B3, B4, B11, B12
B5, B6, B7, B8, B9, B10

B1, B2, B3, B4, B5, B6
B7, B8, B9, B10, B11, B12

You specify to the linker how to accommodate processor-specific byte
packing (for example, non-sequential byte order) with the PACKING() syn-
tax within the OVERLAY_INPUT{} command. The above example’s byte
ordering translates into the following PACKING() command syntax, which
supports 48-bit to 32-bit packing over the processor’s external port.

PACKING (12 B1 B2 B3 B4 BO B11 B12 B5 B6 BO B7 B8 B9 B10 BO)

The above PACKING() syntax places instructions in an overlay stored in a
32-bit external memory, but is unpacked and executed from 48-bit inter-

nal memory.

Refer to fft_ovly.fft, which uses a macro that defines the packing.
This file is included with the overlay3 example that ships with

VisualDSP++.

VisualDSP++ 4.5 Linker and Utilities Manual

3-45

LDF Commands

Overlay Packing Formats in SHARC Processors
Use the PACKING() command when:

* Data and instructions for overlays are executed from external mem-
ory (by definition those overlays “live” in external memory)

e The width or byte order of stored data differs from its run-time
organization

The linker word-aligns the packing instruction as needed.

Table 3-6 indicates packing format combinations for SHARC DMA over-
lays available under each of the two operations.

Table 3-7 indicates packing format combinations for ADSP-21161N
overlays available for storage in 8-bit-wide memory; 8-bit packing is avail-
able on ADSP-2106x and ADSP-21160 processors during EPROM
booting only.

Table 3-6. Packing Formats for SHARC DMA Opverlays

Execution Storage
Memory type Memory type Packing Instruction

32-bit PM 16-bit DM PACKING(6 BO BO Bl B2 B5 BO BO B3 B4 B6)
32-bit DM 16-bit DM PACKING(4 BO BO B1 B2 BO BO B3 B4 B5)
48-bit PM 16-bit DM PACKING(6 BO BO B1 B2 BO BO BO B3 B4

BO BO BO B5 B6 BO)

48-bit DM 32-bit DM PACKING(12 Bl B2 B3 B4 BO BB5 B6 Bll
Bl12 BO B7 B8 B9 B10 BO)

3-46 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

Table 3-7. Additional Packing Formats for DMA Overlays

Execution Storage
Memory type Memory type | Packing Instruction

48-bit PM 8-bit DM PACKING(6 BO BO BO B1 BO BO BO B2 BO BO BO B3
BO BO BO BO B4 BO BO BO BO B5 BO BO
BO BO B6 BO BO BO BO BO BO BO BO BO
BO BO)

32-bit DM 8-bit DM PACKING(4 BO BO BO B1 BO BO BO BO B2 BO
BO BO BO B3 BO BO BO BO B4 BO)

16-bit DM 8-bit DM PACKING(2 BO BO BO B1 BO BO BO BO B2 BO)

External Execution Packing in SHARC Processors

The only two processors that require packed memory for external execu-
tion are the ADSP-21161N and the ADSP-21065L chips. The
ADSP-21161N processor supports 48-, 32-, 16-, and 8-bit-wide external
memory. The ADSP-21065L processor supports 32-bit external memory
only.

Previous to VisualDSP++ 3.5, it was required to use “packing”
commands in the . 1df file to cause the code to be placed properly.
In VisualDSP++ 3.5 and latter releases, the Visual DSP++ tools are
enhanced to perform packing automatically.

In order for the VisualDSP++ tools to execute packing directly from exter-
nal memory on ADSP-21065L and ADSP-21161N processors, the tools
“pack” the code into the external memory providing the following condi-
tions are met:

1. Ensure the “type” of the external memory is PM (Program
Memory)

2. Ensure the data width matches the “real/actual” memory width:
ADSP-21065L processor — 32 bits; ADSP-21161N processor — 48,
32, 16 and 8 bits

Visual DSP++ 4.5 Linker and Utilities Manual 3-47

LDF Commands

3. If the .1df file has the PACKING() command for the particular sec-
tion, remove the command.

When defining memory segments (required for external memory), the
“type” of a memory section is recommended to be:

* PM — code or 40-bit data (data requires PX register to access)

e DM — all other sections

Width should be the “actual/physical” width of the external memory.

PLIT{}

The PLIT{} (procedure linkage table) command in an .1df file inserts
assembly instructions that handle calls to functions in overlays. The
PLIT{} commands provide a template from which the linker generates
assembly code when a symbol resolves to a function in overlay memory.

Refer to “PLIT{}” on page 5-33 for a detailed description of the PLIT{}
command. Refer to “Memory Management Using Overlays” on page 5-4
for a detailed description of overlay and PLIT functionality.

PROCESSOR{}

The PROCESSOR{} command declares a processor and its related link infor-
mation. A PROCESSOR{} command contains the MEMORY { }, SECTIONS{},
RESOLVE{}, and other linker commands that apply only to that specific
processor.

The linker produces one executable file from each PROCESSOR{} command.
If you do not specify the type of link with a PROCESSOR{} command, the
linker cannot link your program.

The syntax for the PROCESSOR{} command appears in Figure 3-3.

3-48 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

P RO C E S S O R pryce&.rar_name
{

OQUTPUT (file_name . DXE
[MEMORY { segment_commands 1]
[PLIT {plit_commands}]
SECTIONS { section_commands}
RESOLVE(meMJwDMW)

Figure 3-3. PROCESSOR{} Command Syntax Tree

The PROCESSOR{} command syntax is defined as:

processor_name

Assigns a name to the processor. Processor names follow the same
rules as linker labels. For more information, see “LDF Expressions”
on page 3-19.

OUTPUT(file_name.dxe)

Specifies the output file name for the executable (. dxe) file.
An OUTPUT() command in a scope must appear before the
SECTIONS{} command in that same scope.

MEMORY { segment_commands}

Defines memory segments that apply only to this specific proces-
sor. Use command scoping to define these memory segments
outside the PROCESSOR{} command. For more information, see
“Command Scoping” on page 3-18 and “MEMORY{}” on

page 3-38.

PLIT{plit_commands}

Defines procedure linkage table (PLIT) commands that apply only
to this specific processor. For more information, see “PLIT{}” on

page 3-48.

Visual DSP++ 4.5 Linker and Utilities Manual 3-49

LDF Commands

e SECTIONS{section_commands}

Defines sections for placement within the executable (.dxe) file.
For more information, see “SECTIONS{}” on page 3-55.

® RESOLVE{symbol, resolver}

Ignores any LINK_AGAINST() command. For details, see the
“RESOLVE()” command.

Multiprocessor/Multicore Applications

The PROCESSOR{} command may be used in linking projects on multipro-
cessor/multicore Blackfin architectures such as the ADSP-BF561
processor. For example, the command syntax for two-processor system is
as follows:

PROCESSOR pO0 |
)
PROCESSOR pl |
)

See also “LINK_AGAINST()” on page 3-37, “MPMEMORY{}” on
page 5-44, “COMMON_MEMORY/{}” on page 5-51, and
“SHARED_MEMORY({}” on page 5-45.

RESERVE()

The RESERVE (start_symbol, length_symbol, min_size [,align])
command allocates address space and defines symbols start_symbol and
length_symbol. The command allocates the largest free memory block
available, larger than or equal to min_size. Given an optional parameter
align, RESERVE allocates aligned address space.

Input:

* The min_size parameter defines a required minimum size of mem-
ory to allocate.

3-50 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

e The align parameter is optional and defines alignment of allocated
address space.

Output:

e The start_symbol is assigned the starting address of the allocated
address space.

e The Tength_symbol is assigned the size of the allocated address
space.

A user may restrict the command by defining the start and Tength sym-
bols together or individually. For example,

RESERVE (start_symbol = address, length_symbol, min_size)
RESERVE (start_symbol = address, length_symbol = size)
RESERVE (start_symbol, length_symbol = size [,align])

The RESERVE() command is valid only within the scope of an output sec-
tion. For more information on output sections, see “Command Scoping”
on page 3-18 and “SECTIONS{}” on page 3-55. Also see

“RESERVE_EXPAND()” on page 3-53 for more information on how to

claim any unused memory after input sections have been mapped.

Linker Error Resolutions

Linker error 111224:

When a user defines Tength_symbol, the min_size parameter is redundant
and not included in the command. When a user defines start_symbol, the
align parameter is redundant and not included in the command.

Linker errors 111221 , 171222, 1i11223:
When user defines start_symbol = address, the align parameter is
redundant and should not be included in the command.

Visual DSP++ 4.5 Linker and Utilities Manual 3-51

LDF Commands

When user defines align parameter, length_symbol or min_size parame-

ter should be divisible by a1ign; the align parameter must be a power of
2.

Given the start_symbol is not restricted (not defined), RESERVE allocates
address space, starting from a segment end address.

Example

Consider an example where given memory segment [0 - 8]. Range [0 - 2]
is used by an input section. To allocate address space of minimum size 4
and aligned by 2, the RESERVE command has minimum length require-
ment of 4 and alignment 2.

MO {START(O0), END(8), WIDTH(I1)}
out{.. RESERVE(start, Tength, 4, 2) } >MO

1. Allocate 4 words {5, 6, 7, 8},

start = 5
length = 4

2. To satisfy alignment by 2, allocate address space {4, 5, 6, 7, 8}

start = 4
length =5

3. Consider length exactly 4 (not minimum 4). Allocated address
space is {4, 5, 6, 7}. Address [8] is freed.

start = 4
length = 4

3-52 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

RESERVE_EXPAND()

The RESERVE_EXPAND(start_symbol, length_symbol, min_size) com-
mand may be applied following RESERVE command and is used to define
same symbols as RESERVE. Ordinarily, RESERVE_EXPAND is specified last in
an output section to claim any unused memory after input sections have
been mapped. RESERVE_EXPAND attempts to allocate memory adjacent to
the range allocated by RESERVE. Accordingly, start_symbol and
lTength_symbol are redefined to include expanded address range. Refer to
“RESERVE()” on page 3-50 for more information.

RESOLVE()

Use the RESOLVE(symbol_name, resolver) command to ignore a
LINK_AGAINST() command for a specific symbol. This command overrides
the search order for a specific variable or label. Refer to the

“LINK_AGAINST()” on page 3-37 for more information.

The RESOLVE (symbol_name, resolver) command uses the resolver to
specify an address of a particular symbol (variable or label). The resoilver
is an absolute address or a file (.dxe or .sm) that contains the definition of
the symbol.

For example,
RESOLVE(start, OxFFA00000)

If the symbol is not located in the designated file, an error is issued.

Visual DSP++ 4.5 Linker and Utilities Manual 3-53

LDF Commands

For the RESOLVE (symbol_name, resolver) command:

e When the symbol is not defined in the current processor scope, the
<resolver> supplies a file name, overriding any LINK_AGAINST ().

* When the symbol is defined in the current processor scope, the
<resolver> supplies to the linker the symbol location address.

@ Resolve a C variable by prefixing the variable with an underscore in

the RESOLVE() command (for example, _symbol_name).

SEARCH_DIR()

The SEARCH_DIR() command specifies one or more directories that the
linker searches for input files. Specify multiple directories within a
SEARCH_DIR command by delimiting each path with a semicolon (;). On
Windows, enclose long directory names with embedded spaces within
straight quotes.

The search order follows the order of the listed directories. This command
appends search directories to the directory selected with the linker’s -L
command-line switch (on page 2-52). Place this command at the begin-
ning of the .LDF file to ensure that the linker applies the command to all
file searches.

Example

ARCHITECTURE (ADSP-Blackfin)
MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

SEARCH_DIR($ADI_DSP/Blackfin/1ib; ABC/XYZ)
// $ADI_DSP is a predefined linker macro that expands
// to the VisualDSP++ install directory. Search for objects
// in directory Blackfin/lib relative to the install directory
// and to the ABC/XYZ directory.

3-54 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

SECTIONS{}

The SECTIONS{} command uses memory segments (defined by MEMORY { }
commands) to specify the placement of output sections into memory.
Figure 3-4 shows syntax for the SECTIONS{} command.

SECTIONS{section_statements}
L J

l

expression
section_name [section_type 1 {(section_commands} [> memory_segment
L |

J

FORCE_CONTIGUITY |NO_FORCE_CONTIGUITY

INPUT_SECTIONS(file_source [archive_member (input_labels)])
[

) LDF macro
expression list_of_files

OVERLAY_OUTPUT(file_name.OVL)
INPUT_SECTIONS (input_section_command
FILL(hex number) ALGORITHM(CALL_FIT)

SIZE(expression)
RESOLVE_LOCALLY(TRUE|FALSE)

PLIT{plit_commands}

OVERLAY_INPUT (overlay_commands) >overlay_live_memory_segment

Figure 3-4. SECTIONS{} Command Syntax Tree

An .1df file may contain one SECTIONS{} command within each of the
PROCESSOR{} commands. The SECTIONS{} command must be preceded by
a MEMORY {} command, which defines the memory segments in which the
linker places the output sections. Though an .1df file may contain only
one SECTIONS{} command within each processor command scope, multi-
ple output sections may be declared within each SECTIONS{} command.

Visual DSP++ 4.5 Linker and Utilities Manual 3-55

LDF Commands

The SECTIONS{} command’s syntax includes several arguments.

expressions

or

section_declarations

Use expressions to manipulate symbols or to position the current loca-
p Y
tion counter. Refer to “LDF Expressions” on page 3-19.

Use a section_declaration to declare an output section. Each
section_declaration hasa section_name, optional section_type,
section_commands, and a memory_segment.

Parts of a SECTION declaration are:

section_name

Starts with a letter, underscore, or period and may include any let-
ters, underscores, digits, and points. A section_name must not
conflict with any LDF keywords.

The special section name .PLIT indicates the procedure linkage
table (PLIT) section that the linker generates when resolving sym-
bols in overlay memory. Place this section in non-overlay memory
to manage references to items in overlay memory.

The special section name .MEMINIT indicates where to place the
“run-time” initialization structures used by the C run-time library.
The linker “places” this section into the largest available unused
memory at the specified memory segment. The memory initializa-
tion post-process fills this space with the data needed by the CRTL
for run-time initialization. The .MEMINIT section should be placed
in non-overlay memory. See “Memory Initializer” for more
information.

init_qualifier
Specifies run-time initialization type (optional).

3-56

VisualDSP++ 4.5 Linker and Utilities Manual

Linker Description File

The qualifiers are:

* NO_INIT — Contains un-initialized data. There is no data
stored in the .DXE file for this section (equivalent to
SHT_NOBITS legacy qualifier).

* ZERO_INIT — Contains only “zero-initialized” data. If
invoked with the -meminit switch (on page 2-58), the
“zeroing” of the section is done at runtime by the C
run-time library. If -meminit is not specified, the “zeroing”
is done at “load” time.

® RUNTIME_INIT — If the linker is invoked with the -meminit
switch, this section fills at runtime. If -meminit is not spec-
ified, the section fills at “load” time.

section_commands
May consist of any combination of such commands and/or expres-
sions, such as:

“INPUT_SECTIONS()” on page 3-58

“expression” on page 3-62

“FILL(hex number)” on page 3-63
“PLIT{plit_commands}” on page 3-63
“OVERLAY_INPUT{overlay_commands}” on page 3-63

memory_segment
Declares that the output section is placed in the specified memory
segment.

The memory_segment is optional. Some sections, such as those for
debugging, need not be included in the memory image of the exe-
cutable file, but are needed for other development tools that read
the executable file.

Visual DSP++ 4.5 Linker and Utilities Manual 3-57

LDF Commands

By omitting a memory segment assignment for a section, you direct
the linker to generate the section in the executable, but prevent sec-
tion content from appearing in the memory image of the
executable file.

INPUT_SECTIONS()

The INPUT_SECTIONS() portion of a section_command identifies the parts
of the program to place in the executable file. When placing an input sec-
tion, you must specify the file_source. Optionally, you could also specify
a filterexpr. When file_source is a library, specify the input section’s
archive_member and input_Tlabels.

The command syntax is:

INPUT_SECTIONS(Tibrary.dlb [member.doj (input_label) 1)

@ Note that spaces are significant in this syntax.

In the INPUT_SECTIONS() of the LDF command:

file_source may be a list of files or an LDF macro that expands
into a file list, such as $COMMAND_LINE_OBJECTS. Delimit the list of
object files or library files with commas.

archive_member names the source-object file within a library. The
archive_member parameter and the left/right brackets ([1) are
required when the file_source of the input_label is a library.

input_Tlabels are derived from run-time .SECTION names in assem-
bly programs (for example, program). Delimit the list of names
with commas.

Example

To place section “program” of object “foo.doj” in library “myLib.d1b":

INPUT_SECTIONS(myLib.d1b [foo.doj (program) 1)

3-58

VisualDSP++ 4.5 Linker and Utilities Manual

Linker Description File

Using Optional Filter Expression

The filter operation is done with curly braces, and can be used to define
sub-lists and sub-libraries. It can be used for linking with attributes.

INPUT_SECTIONS($FILES { expr } (program))

The optional filter expr is a Boolean expression that may contain:

[Attribute operators:

name
returns true if the object has one or more attributes called
name, regardless of value. Otherwise, returns false.

name("string")

returns true if the attribute name has a value that matches
string. The comparison 1s case-sensitive string. This oper-
ator may be used on multi-valued attributes. Note that
string must be quoted.

name cmp-op "string"”

returns true if the attribute name has a single value that
matches string, according to cmp-op. Otherwise, returns
false. Cmp-op can be “==" or “I=7, for equality and inequal-
ity, via case-sensitive string comparison. Note that string
must be quoted. This operator may only be used on sin-
gle-valued attributes. If the attribute does not have exactly
one value, the linker generates an error.

name cmp-op number

returns true if the attribute name has a single value that
numerically matches integer number (which can be nega-
tive). Otherwise, returns false. Cmp-op can be “==", “I=7,
“<, “<=7, 57 or “>=". This operator may only be used on
single-valued attributes. If the attribute does not have

exactly one value, the linker generates an error.

Visual DSP++ 4.5 Linker and Utilities Manual 3-59

LDF Commands

[1 Logical operators: “&&”, “||” and “!”, having the usual C meanings
and precedence.

[Parentheses, for grouping: “(" and “)”

Example:

$0BJS_1_and_2 = $0BJS {attrl && attr2 };

$0BJS_3_and_2 = $0BJS { attr3("valuel3") && attr2 == "value2" };
OQutsec {

INPUT_SECTIONS($0BJS_1_and_2(program))

INPUT_SECTIONS($0BJS_3_and_2(program))

INPUT_SECTIONS($0BJS_2 { attr2 } (program))
} >mem

INPUT_SECTIONS_PIN/INPUT_SECTIONS_ PIN_EXCLUSIVE Com-
mands

The INPUT_SECTIONS_PIN/INPUT_SECTIONS_PIN_EXCLUSIVE commands are
used to allow mapping of an input section in one of several output sec-
tions, as in “one input section to many output section” linker feature. For
example,

os_meml {
INPUT_SECTIONS($0OBJECTS(program))
} > meml

os_mem2 {
INPUT_SECTIONS($OBJECTS(program))
} > mem?2

In the above example, if some of the input sections included in
$0BJECTS (program) do not fit in os_mem1, the linker will try to map them
into os_mem?2.

3-60 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

An input section listed in an INPUT_SECTIONS_PIN() command will not be
mapped by any INPUT_SECTIONS commands that appear later in the LDF,
and an input section listed in INPUT_SECTIONS_PIN_EXCLUSIVE com-
mand(s) will not be mapped by any other INPUT_SECTIONS command.

Each time an input sections is mentioned in an INPUT_SECTIONS com-
mand, the linker is instructed to "give another chance" to the input
section by trying to map it in different output section (given the section
has not been already mapped), thus achieving the effect of “one-to-many”

mapping.

The INPUT_SECTIONS_PIN() and INPUT_SECTIONS_PIN_EXCLUSIVE() com-
mands limit the effect of “one-to-many” mapping — once the input section
is mentioned inside INPUT_SECTIONS_PIN(), the linker will not map it in
any of the following output sections; an input section mentioned inside
INPUT_SECTIONS_PIN_EXCLUSIVE() command can not be mapped in any
other output section.

The commands help to avoid breaking existing LDF macros. To achieve
the same affect without using INPUT_SECTIONS_PIN and

INPUT_SECTIONS_PIN_EXCLUSIVE commands, the definition of the output
sections would have be:

os_meml {
INPUT_SECTIONS(b.doj(program))
INPUT_SECTIONS(c.doj(program) d.doj(program))
> meml

os_mem2 f
INPUT_SECTIONS(c.doj(program) d.doj(program))
INPUT_SECTIONS(a.doj(program))

b > mem2

Please note that without the use of general LDF macros and
INPUT_SECTIONS_PIN commands, the LDF will have to change
every time the list of objects changes.

Visual DSP++ 4.5 Linker and Utilities Manual 3-61

LDF Commands

If the same section is mentioned in more than one of

INPUT_SECTIONS_PIN() commands, linker will honor the first command
only.

In conjunction with attribute expressions, the commands can be used to
control the order of input section placement without explicitly mention-

ing the object files.

os_internal f{
INPUT_SECTIONS_PIN($0BJECTS{high_priority}(program))
INPUT_SECTIONS($0BJECTS(program))

} > mem_internal

os_external ({
INPUT_SECTIONS($0BJECTS(program))
INPUT_SECTIONS_EXCLUSIVE($0BJECTS{Tow_priority}(program))
} > mem_external

In the above example:

* “program” input sections from input files marked with
“high_priority” attribute can be mapped to “mem_internal” only

* “program” input sections from input files marked with
“Tow_priority” attribute can be mapped to “mem_external” only

 all other “program” input section can be mapped to either
“mem_internal” or “mem_external”

expression

In a section_command, an expression manipulates symbols or positions
the current location counter. See “LDF Expressions” on page 3-19 for
details.

3-62 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

FILL(hex number)

Ina section_command, the FILL() command fills gaps (created by aligning
or advancing the current location counter) with hexadecimal numbers.

The FILL() command is used only within a section declaration.

By default, the linker fills gaps with zeros. Specify only one FILL() com-
mand per output section. For example,

FILL (0x0)
or
FILL (OxFFFF)

PLIT{plit_commands}

In a section_command, a PLIT{} command declares a locally-scoped pro-
cedure linkage table (PLIT). It contains its own labels and expressions.
For more information, see “PLIT{}” on page 5-33.

OVERLAY_INPUT{overlay_commands}

In a section_command, OVERLAY_INPUT(} identifies the parts of the pro-
gram to place in an overlay executable (.ov1) file. For more information
on overlays, see “Memory Management Using Overlays” on page 5-4 and
“OVERLAY_GROUP{}” on page 5-29. For overlay code examples, see
“Linking for Overlay Memory” on page C-12 and “Linking for Overlay
Memory” on page D-14.

The overlay_commands item consists of at least one of the following com-
mands: INPUT_SECTIONS(), OVERLAY_IDC(), NUMBER_OF_OVERLAYS(),
OVERLAY_OUTPUT(), ALGORITHM(), RESOLVE_LOCALLY (), or SIZE().

The overlay_memory_segment item (optional) determines whether the
overlay section is placed in an overlay memory segment. Some overlay sec-
tions, such as those loaded from a host, do not need to be included in the
overlay memory image of the executable file, but are required for other

Visual DSP++ 4.5 Linker and Utilities Manual 3-63

LDF Commands

tools that read the executable file. Omitting an overlay memory segment
assighment from a section retains the section in the executable file, but
marks the section for exclusion from the overlay memory image of the exe-
cutable file.

The overilay_commands portion of an OVERLAY_INPUT{} command follows
these rules.

® DEFAULT_OVERLAY()
When the DEFAULT_OVERLAY () command is used, the linker initially
places the overlay in the run-time space (that is, without running
the overlay manager). .

® OVERLAY_OUTPUT()
Outputs an overlay (.0VL) file for the overlay with the specified
name. The OVERLAY_OUTPUT() in an OVERLAY_INPUT{} command
must appear before any INPUT_SECTIONS() for that overlay.

INPUT_SECTIONS()

Has the same syntax within an OVERLAY_INPUT{} command as
when it appears within an output_section_command, except that a
.PLIT section may not be placed in overlay memory. For more

information, see “INPUT_SECTIONS()” on page 3-58.

* OVERLAY_ID(O)
Returns the overlay ID.

* NUMBER_OF_OVERLAYS()
Returns the number of overlays that the current link generates
when the FIRST_FIT or BEST_FIT overlay placement for ALGO-
RITHM() is used.

Note: Not currently available.

* ALGORITHM()
Directs the linker to use the specified overlay linking algorithm.
The only currently available linking algorithm is ALL_FIT.

3-64 Visual DSP++ 4.5 Linker and Utilities Manual

Linker Description File

For ALL_FIT, the linker tries to fit all the OVERLAY_INPUT{} into a
single overlay that can overlay into the output section’s run-time
memory segment.

(FIRST_FIT — Not currently available.
For FIRST_FIT, the linker splits the input sections listed in
OVERLAY_INPUT{} into a set of overlays that can each overlay the

output section’s run-time memory segment, according to
First-In-First-Out (FIFO) order.

(BEST_FIT — Not currently available.

For BEST_FIT, the linker splits the input sections listed in
OVERLAY_INPUT{} into a set of overlays that can each overlay the
output section’s run-time memory segment, but splits these over-
lays to optimize memory usage.

e SIZE(Q)
Sets an upper limit to the size of the memory that may be occupied
by an overlay.

® FORCE_CONTIGUITY
Forces contiguous placement of sections. NOFORCE_CONTIGUITY sup-
presses a linker warning about non-contiguous placement of
sections in the operating system.

SHARED_MEMORY{}

The linker can produce two types of executable output—. dxe files and
.sm files. A .dxe file runs in a single-processor system’s address space.
Shared memory executable (.sm) files reside in the shared memory of a
multiprocessor system. The SHARED_MEMORY { } command is used to pro-
duce . s files.

For more information, see “SHARED_MEMORY{}” on page 5-45.

Visual DSP++ 4.5 Linker and Utilities Manual 3-65

LDF Commands

3-66 Visual DSP++ 4.5 Linker and Utilities Manual

4 EXPERT LINKER

The linker (1inker) combines object files into a single executable object
module. Using the linker, you can create a new Linker Description File
(LDF), modify an existing . 1df file, and produce an executable file (files).
The linker is described in Chapter 2, “Linker”, of this manual.

The Expert Linker is a graphical tool that simplifies complex tasks such as
memory-mapping manipulation, code and data placement, overlay and
shared memory creation, and C stack/heap adjustment. This tool comple-
ments the existing Visual DSP++ .1df file format by providing a
visualization capability enabling new users to take immediate advantage of
the powerful LDF format flexibility.

Graphics in this chapter demonstrate Expert Linker features.
Some graphics show features not available to all processor families.
Processor-specific features are noted in neighboring text.

This chapter contains:
* “Expert Linker Overview” on page 4-2
e “Launching the Create LDF Wizard” on page 4-4
e “Expert Linker Window Overview” on page 4-11
e “Input Sections Pane” on page 4-13
e “Memory Map Pane” on page 4-19
e “Managing Object Properties” on page 4-54

Visual DSP++ 4.5 Linker and Utilities Manual 4-1

Expert Linker Overview

Expert Linker Overview

Expert Linker is a graphical tool that allows you to:
* Define a target processor’s memory map
* Dlace a project’s object sections into that memory map

* View how much of the stack or heap has been used after running

the DSP program

Expert Linker takes available project information in an .1df file as input
(object files, LDF macros, libraries, and target memory description) and
graphically displays it. You can then use drag-and-drop action to arrange
the object files in a graphical memory-mapping representation. When you
are satisfied with the memory layout, you can generate the executable
(.dxe) file via Visual DSP++ project options.

Use default . 1df files that come with Visual DSP++, or use the
Expert Linker interactive wizard to create new . 1df files.

When opening Expert Linker in a project that has an existing .LDF file,
Expert Linker parses the .1df file and graphically displays the target’s
memory map and the object mappings. The memory map displays in the
Expert Linker window (Figure 4-1).

Use this display to modify the memory map or the object mappings.
When the project is ready to be built, Expert Linker saves the changes to
the .LDF file.

Expert Linker is able to show graphically how much space is allocated for
program heap and stack. After you load and run the program, Expert
Linker can show how much of the heap and stack has been used. You can
interactively reduce the amount of space allocated to heap or stack if they
are using too much memory. Freeing up memory enables you to store
other things like processor code or data.

4-2 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

There are three ways to launch the Expert Linker from VisualDSP++:
* Double-click the .LDF file in the Project window.

* Right-click the .LDF file in the Project window to display a menu
and then choose Open in Expert Linker.

* From the Visual DSP++ main menu, choose Tools -> Expert

Linker -> Create LDF.

The Expert Linker window appears.

Expert Linker x|
[npuk Sectionz: tdemony bap:
|'"""”-1 U Segment/Section | Start sddress | End Address [+
[Wint11 - mem_INT_INT14 O¢1cO Owl ot
-0 Vink12 g men_INT_INT1S 01e0 0411t
[Ivintt3 B mem_itab 0200 04241
[Wit 4 o mem_code 04242 07
[Wintt5 o mem_data? 02000 Oxaeff
[Wintd LG mem_heap Oxaf00 Oxb7H
[Wints Fl-SB mem_stack 0xbE00 Db
-0 int B mem_datal D000 Dufi
- vine? =l
-0 wvind T (ee

Figure 4-1. Expert Linker Window

Visual DSP++ 4.5 Linker and Utilities Manual 4-3

Launching the Create LDF Wizard

Launching the Create LDF Wizard

@ The Create LDF Wizard is not available for the Blackfin processor.

From the Visual DSP++ main menu, choose Tools -> Expert Linker ->
Create LDF to invoke a wizard for creating and customizing a new .LDF
file. Use the Create LDF option when creating a new project.

Create LDF HE

Welcome to the Create LDF
Wizard

Thiz wizard will guide vou through the creation of a new LOF
file.

To continue, click Mest.

< Bach I Mest » I Cancel | Help

Figure 4-2. Welcome Page of the Create LDF Wizard

4-4 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

If an .LDF file is already in the project, you are prompted to confirm
whether to create a new .LDF file to replace the existing one. This menu
command is disabled when VisualDSP++ does not have a project opened
or when the project’s processor-build target is not supported by Expert
Linker. Press Next to run the wizard.

Step 1: Specifying Project Information
The first wizard window is displayed.
Create LDF - Step 1 of 3 H B3 I

Project Information
Chooze the LDF file name and the project type.

LDF filename:

o hewampleshdot_product_c Idf |

— Project type
*C

[C++
i~ szzembly
O WisualDSP++ kemel [VDE]

< Back I Mewxt > I Cancel Help

Figure 4-3. Selecting File Name and Project Type

You may use or specify the default file name for the .LDF file. The default
file name is project_name.1df, where project_name is the name of the
currently opened project.

Visual DSP++ 4.5 Linker and Utilities Manual 4-5

Launching the Create LDF Wizard

The Project type selection specifies whether the LDF is for a C, C++,
assembly, or a VDK project. The default setting depends on the source
files in the project. For example, if . c files are in the project, the default is
C; if a VDK H file is in the project, the default is VDK, and so on. This set-

ing determines which template is used as a starting point.
ting det hich templat d tarting t

For a case where there is a mix of assembly and C files (or any other file
combination), the most abstract programming language should be
selected. For example, for a project with C and assembly files, a C LDF
should be selected. Similarly, for a C++ and C project, the C++ LDF
should be selected.

Press Next.

Step 2: Specifying System Information

Choose whether the project is for a single-processor system or a multipro-
cessor (MP) system.

By default, the .LDF file is set for single processors. Under System type,
select Single processor or Multiprocessor.

* For a single-processor system, the Processors list shows only one
processor and the MP address columns do not appear.

* For a multiprocessor system, right-click in the Processor Proper-
ties box to add the desired number of processors included in the
.LDF file, name each processor, and set the processor order (which
will determine each processor’s MP memory address range).

Processor type identifies the DSP system’s processor architecture. This
setting is derived from the processor target specified via the Project

Options dialog box in Visual DSP++.

4-6 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Create LDF - Step 2 of 3 [] =]

System Information
Configure the DSP gpstem by choosing the processars in pour system and the processor lype.

— System type Processar ppe;

= Single processor I.&DSF‘-EFEBE j
i~ Multiproceszar

™| Setiup system from debug|session setings

— Procezsor propertiez

Frocessors: Cutput file
Pracessar | |$EDMM£—‘«N D_LINE_DUTPUT_FILE
PO

Erecutables to link against:

< Back I M et > I Cancel Help

Figure 4-4. Selecting System and Processor Types

By selecting Set up system from debug session settings, the processor
information (number of processors and the processor names) is filled auto-
matically from the current settings in the debug session. This field is

grayed out when the current debug session is not supported by the Expert
Linker.

You can also specify the Output file name and the Executables to link
against (object libraries, macros, and so on).

When you select a processor in the Processors list, the system displays the
output file name and the list of executable files to link against for that pro-
cessor appear. You can change these files by typing a new file name. The

Visual DSP++ 4.5 Linker and Utilities Manual 4-7

Launching the Create LDF Wizard

file name may include a relative path, an LDF macro, or both. In addition,
if the processor’s ID is detected, the processor is placed in the correct posi-
tion in the processor list.

For multiprocessor systems, the window (Figure 4-5) shows the list of pro-
cessors in the project. Expert Linker automatically displays MP address
range for each processor space providing specific MP addresses and multi-
processor memory space (MMY) offsets which makes using MP
commands much easier. This is an automatic replacement for the MPMEM-
ORY linker command used in the LDF source file.

4-8

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

Create LDF - Step 2 of 3 ed |

Cystem Information
Confiqure the DSF system by choosing the processzors in wour systemn and the processar bype.

— System type Proceszsor type;

i~ Cingle processor I'&'D SP-TS101 d
£+ Multiprocessor

[T St up syzten from debug session estings

Er-nc:essnr propesties

Processorg: Output file
Processor | MP Stat .. | MPERdA = |$I:IIIMM.-’-'-.ND_LINE_DUTF'UT_EJIFiEI:TEIFi‘
F' 2000000 D236
P 2400000 Q27 Executables ta link against:

(k2800000 DxZbre
Cx2c00000 O2FeFE

PN T Tala Tl nln] T

3

< Back I Hest » I Cancel Help

Figure 4-5. Processors and MMS Offset

The MP address range is available only for processors that have MP
memory space.

Press Next to advance to the Wizard Completed page.

Visual DSP++ 4.5 Linker and Utilities Manual 4-9

Launching the Create LDF Wizard

Step 3: Completing the LDF Wizard

From the Wizard Completed page, you can go back and verify or modify

selections made up to this point.

When you click the Finish button, Expert Linker copies a template .LDF
file to the same directory that contains the project file and adds it to the
current project. The Expert Linker window appears and displays the con-
tents of the new .LDF file.

Create LDF - Step 3 of 3 [:

Wizard Completed

The Create LDF “Wizard now has enough information to create
wour LOF file.

Surmmary of choices:
LDF file name: C:\exampleshdat_product_c.Idf j

Project type: C
System type: Mulbprocessor
Processar ype: ADSP-21080
Processors:
PO
Cutput file narme; $COMMAND_LIME_OUTPIUT_FILE

MP Offzet; 0480000 .
T | _>|_I

Click Finizh to cloge thiz wizard, create the new LDF file, and
wvigw the LDF file with Expert Linker.

< Back I Finizh I Cancel Help

Figure 4-6. Wizard Completed Page of the Create LDF Wizard

4-10 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker Window Overview

The Expert Linker window contains two panes:

Expert Linker

e The Input Sections pane (Figure 4-7) provides a tree display of the
project’s input sections (see “Input Sections Pane” on page 4-13).

e The Memory Map pane displays each memory map in a tree or
graphical representation (see “Memory Map Pane” on page 4-19).

Expert Linker

[x|

I Start Address | End Address I;l

mem_IMT_IMNT14 Owx1c0
mem_IMT_IMT15 0<1e0

=200
242
(3000
D=af0o
=b300
Q=c000

Ox1df
01 ff
=241
O FFff
0= aeff
Oxb 7
D=k ff
O fFff

|nput Sections: kemary b ap:

I'int Segrment S ection

w-E Tintl1)

o[Mind 2 TP

I"-.-"!nt'|3 Q' mern_itab

IVirt14 B~ mem_code
I"-.-"!nt'|5 | {3- menm,_data?
|"-.-"!r'|t4 ':3\ mem_heap
I"-I!ntE - sR mem_stack
I"u"!ntE B < mem_datal
w-[vint?

E-0 wins T ee

Figure 4-7. Expert Linker Window

Using LDF commands, the linker reads the input sections from object

(.doj) files and places them in output sections in the executable file. The
.1df file defines the processor’s memory and indicates where within that
memory the linker is to place the input sections.

Using drag-and-drop, you can map an input section to an output section

in the memory map. Each memory segment may have one or more output
sections under it. Input sections that have been mapped to an output sec-

VisualDSP++ 4.5 Linker and Utilities Manual

4-11

Expert Linker Window Overview

tion are displayed under that output section. For more information, refer
to “Input Sections Pane” on page 4-13 and “Memory Map Pane” on
page 4-19.

Access various Expert Linker functions with your mouse.
Right-click to display appropriate menus and make selections.

4-12 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Input Sections Pane

The Input Sections pane initially displays a list of all the input sections
referenced by the .LDF file, and all input sections contained in the object
files and libraries. Under each input section, a list of LDF macros, librar-
ies, and object files may be contained in that input section. You can add or
delete input sections, LDF macros, or objects/library files in this pane.

Input Sections Menu

Right-click an object in the Input Sections pane, and a menu appears as
shown in Figure 4-8.

Input 5 ections: ‘ kemary bap:
L1 IMEM sart by 8 [StaitAddiess | EndAddiess
B bz agd 8 040 0w 1fiF
E-E bsz it g 040000 D
-1 datal oo all LDF Macros 0450000 K5
-] datal S enend. OXE0000 D
B0 datal el Properties. 0430000 D
datac OO0 Ot
(] dataZ v Allow Docking 0xd0000 Dueeli
woE) dataZ ide 0100000 01 DI
-] datad o 0x110000 Rl i
datad Float In Main Window 0140000 0w 46
-0 databia H-h M10DataR 0150000 0wl Silff
[datab R MSD 030000000 DT
0] datada g MST 033000000 e
B[] datagb R MSSD0 040000000 O 21
[program i M550 050000000 OIS 3fFFFFE
g MSSD2 0460000000 DB
- gh MSSD3 070000000 07
_x.’;a. HIOST MSN0nnn TS FFFEFFE
4 [¥ PO I

Figure 4-8. Input Sections Right-Click Menu

Visual DSP++ 4.5 Linker and Utilities Manual 4-13

Input Sections Pane

The main menu functions include:

Sort by — Sorts objects by input sections or LDF macros. These
selections are mutually exclusive.

Add - Adds input sections, object/library files, and LDF macros.
Appropriate menu selections are grayed out when right-clicking on
a position (area) in which you cannot create a corresponding
object.

Create an input section as a shell, without object/library files or
LDF macros in it. You can even map this section to an output sec-
tion. However, input sections without data are grayed out.

Delete — Deletes the selected object (input section, object/library
file, or LDF macro).

Remove — Removes an LDF macro from another LDF macro but
does not delete the input section mappings that contain the
removed macro. The difference between Delete and Remove is that
Delete completely deletes the input section macros that contain the
deleted macro.

NOTE: The Remove option becomes available only if you
right-click on an LDF macro that is part of another LDF macro.

Expand All LDF Macros — Expands all the LDF macros in the
input sections pane so that the contents of all the LDF macros are
visible.

View Legend — Displays the Legend dialog box which shows icons
and colors used by the Expert Linker.

4-14

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

* View Section Contents — Opens the Section Contents dialog box,
which displays the section contents of the object file, library file, or
.dxe file. This command is available only after you link or build
the project and then right-click on an object or output section.

* View Global Properties — Displays the Global Properties dialog
box which provides the map file name (of the map file generated
after linking the project) as well as access to various processor and
setup information (see Figure 4-43 on page 4-55).

Mapping an Input Section to an Output Section

Using the Expert Linker, you can map an input section to an output sec-
tion. By using Windows drag-and-drop action, click on the input section,
drag the mouse pointer to an output section, and then release the mouse

button to drop the input section onto the output section.

All objects, such as LDF macros or object files under that input section,
are mapped to the output section. Once an input section has been
mapped, the icon next to the input section changes to denote that it is

mapped.

If an input section is dragged onto a memory segment with no output sec-
tion in it, an output section with a default name is automatically created

and displayed.

A red “x” on an icon indicates the object/file is not mapped. Once an
input section has been completely mapped (that is, all object files that
contain the section are mapped), the icon next to the input section
changes to indicate that it is now mapped; the “x” disappears. See

Figure 4-9.

As you drag the input section, the icon changes to a circle with a diagonal
slash if it is over an object where you are not allowed to drop the input
section.

Visual DSP++ 4.5 Linker and Utilities Manual 4-15

Input Sections Pane

Viewing lcons and Colors

Use the Legend dialog box to display all possible icons in the tree pane as
well as short descriptions of each icon. (Figure 4-9)

Legend

lcons | Colors I

,ﬂ[LOF Macma

ﬂ Unmapped LOF Macro
& Library Fil=

E IInmapped Library File
@ Object File

* IInmapped Object File
Ohbject Section

IInmapped Object Section
@ Finned Object Section
Processor

o Memary Segment

5 Invalid temony Segrment
2P Shared M Emaory

8) Ltput Section

(A0 utput Section that Overflow
1 Overlay [Live Space]
Overlay [Run Space]

Figure 4-9. Legend Dialog Box — Icons Page

@ The red “x” on an icon indicates this object/file is not mapped.

Click the Colors tab to view the Colors page (Figure 4-10). This page
contains a list of colors used in the graphical memory map view; each
item’s color can be customized. The list of displayed objects depends on
the processor family.

4-16 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

legend ———————@m|

lconz Colaors I

[Internal M ermary

[External Memony

[Urused Memarny

[Reserved Memary

] Output Section

[] Object Section

[] Overay [Live Space]

[] Overay [Fun Space]

[] Hardware Owverlay [Live Space]
] Hardware Owverlay [Fun Space]
[Hardware Overlap [Live and Run Space]

Figure 4-10. Legend Dialog Box — Colors Page

To change a color:

1. Double-click the color. You can also right-click on a color and
select Properties.

The system displays the Select a Color dialog box (Figure 4-11).
2. Select a color and click OK.
Click Other to select other colors from the advanced palette.

Click Reset to reset all memory map colors to the default colors.

Sorting Objects

Objects in the Input Sections pane can be sorted by input sections
(default) or by LDF macros, like $0BJECTS or $COMMAND_LINE_OBJECTS.
The Input Sections and LDF Macros menu selections are mutually exclu-
sive—only one can be selected at a time. Refer to Figure 4-12 and

Figure 4-13.

Visual DSP++ 4.5 Linker and Utilities Manual 4-17

Input Sections Pane

Scloct o Color EE

HEE |
;;IEI! Concel
Reaet
EE] L
Qther... I

Figure 4-11. Select a Color Dialog Box

[npuk Sections:

mycode

prograr

Figure 4-12. Expert Linker Window — Sorted by Input Sections

[nput Sectionz:
$COMMAMD_LINE_OBJECTS

=il $LIBRARIES

&gl $HEWMACRO

=] $0BJECTS

Figure 4-13. Expert Linker Window — Sorted by LDF Macros

Other macros, object files, or libraries may appear under each macro.
Under each object file are input sections contained in that object file.

When the tree is sorted by LDF macros, only input sections can be
dragged onto output sections.

4-18 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Memory Map Pane

In an .LDF file, the linker’s MEMORY () command defines the target system’s
physical memory. Its argument list partitions memory into memory seg-
ments and specifies start and end addresses, memory width, and memory
type (such as program, data, stack, and so on). It connects your program
to the target system. The 0UTPUT () command directs the linker to produce
an executable (.DXE) file and specifies its file name. Figure 4-14 shows a

typical memory map pane.

ADSP-218x DSPs only

Expert Linker

Input Sections: bemorny Map: |PM =
I‘-.ﬁnt'l[l = Segment/S ection | Start Address | End
=-[0 Wint11 s mem_INT_RSTI 040 0w
-] SLIBRARIES B mem_INT_PWRDWN 0420 e
“ﬂ S0BJELTS B3 Wpwidwn_dse
@ 219w int_tab.do [$0BJECTS (vp..
@ dotprod_main.doj = [sLIBRARIES (V...
[Wint12 F-s mem_INT_KERNEL 0x40 05
-] Wint13 B mem_INT_STKI 0450 0T
[Wint14 md mem_INT_INT4 0x80 0wt
E-E MinkS L e e INT INTS Meal Mok
&0 vind J|| B

Processor tab -

Figure 4-14. Expert Linker Window — Memory Map

For Blackfin, SHARC, and TigerSHARC processors, the combo

box (located to the right of the Memory Map label) is not

available.

VisualDSP++ 4.5 Linker and Utilities Manual

4-19

Memory Map Pane

This section describes:

e “Context Menu” on page 4-22

e “Tree View Memory Map Representation” on page 4-24

e “Graphical View Memory Map Representation” on page 4-25
* “Specifying Pre- and Post-Link Memory Map View” on page 4-31
e “Zooming In and Out on the Memory Map” on page 4-32

e “Adding a Memory Segment” on page 4-34

* “Inserting a Gap Into a Memory Segment” on page 4-36

* “Working With Overlays” on page 4-37

e “Viewing Section Contents” on page 4-40

* “Viewing Symbols” on page 4-44

* “Profiling Object Sections” on page 4-45

* “Adding Shared Memory Segments and Linking Object Files” on
page 4-49

The Memory Map pane has tabbed pages. You can page through the
memory maps of the processors and shared memories to view their
makeup. The two viewing modes are a tree view and a graphical view.

Select these views and other memory map features by means of the
right-click (context) menu. All procedures involving memory map han-
dling assume the Expert Linker window is open.

The Memory Map pane displays a tooltip when the mouse cursor moves
over an object in the display. The tooltip shows the object’s name,
address, and size. The system also uses representations of overlays, which
display in “run” space and “live” space.

Use the right-click menu (“Context Menu” on page 4-22) to select and
perform major memory map functions.

4-20 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Invalid Memory Segment Notification:

When a memory segment is invalid (for example, when a memory range
overlaps another memory segment or if the memory width is invalid), the
tree shows an Invalid Memory Segment icon (see Figure 4-15). Move the
mouse pointer over the icon and a tooltip displays a message describing
why the segment is invalid.

Invalid Memory Segment

Expert Linker

Input Sectionz: bd ernary bap:

. IV?nHD Segmeplf'ﬁectiun | Start Address |End.-'1‘«ddr33$ |;|
[i1 - mem_INT_RSTI 0aD %]

e[W2 B mem INT_PWR. 0x20 31

-] i3 B mem_INT_KERN.. 0xd0 05t

e[Wi B mem INT_STKI 0460 w71

e[M5 - mem INT_INT4 0480 %]

L] intd - mem_INT_INTE (ixal Db

- Wil B mem_INT_INTE (cD Dl

L] Wint o mem_INT_INT? Oxed Ot

Iint? Lo el mem INT INTR 01D [AAT; =
i B Do |

Figure 4-15. Memory Map With Invalid Memory Segments

Visual DSP++ 4.5 Linker and Utilities Manual 4-21

Memory Map Pane

Context Menu
Display the context menu by right-clicking in the Memory Map pane.
The menu (Figure 4-16) allows you to select and perform major func-
tions. The available right-click menu commands are listed below.

Input Sections: kemony bMap:
. MEM_ARG Segment
- MZDatah ::ZE ials : 040000
...(;3. 2D atab e , 50000
- MaDatas 0=30000
b M4DalaB Dl 030000
w3 MED atad Pin b0 Qukpuk Section Q0000
- MEDataB ellde] Cxd0000
3 MIDatad View Section Contents. .. 0=1 00000
datada - <R MBDatab Wiew Symbals, .. 01710000
datadh o M10D atad, Properties,.. 0140000
databa - <@ M10D atab Expand All 0150000
databhb s M50 Yiew Legend. .. 030000000
datada I ... G MST Yiew Global Properties. .. 038000000
o] dataBb pHE) S MSSD0 040000000
- program || | <3 MSSD1 v Allow Docking 50000000
...... g MS5D2 Hide 0=E0000000
i EEEEE Float In Main Window 2:;2222222
1| | ¥ _ PO I

Figure 4-16. Memory Map Main Menu

View Mode

* Memory Map Tree — Displays the memory map in a tree represen-
tation (see Figure 4-17 on page 4-25)

* Graphical Memory Map — Displays the memory map in graphical
blocks (see Figure 4-18 on page 4-26)

4-22 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

View

e Mapping Strategy (Pre-Link) — Displays the memory map that
shows the placement of your object sections.

* Link Results (Post-Link) — Displays the memory map that shows
the actual placement of the object sections.

New

* Memory Segment — Specifies the name, address range, type, size,
and so on for memory segments you want to add.

* Output Section — Adds an output section to the selected memory
segment. (Right-click on the memory segment to access this com-
mand.) If you do not right-click on a memory segment, this
option is disabled.

e Shared Memory — Adds a shared memory to the memory map.

* Opverlay — Invokes a dialog box that allows adding a new overlay to
the selected output section or memory segment. The selected out-
put section is the new overlay’s run space (see Figure 4-54 on

page 4-72).
Delete — Deletes the selected object.

Expand All — Expands all items in the memory map tree so that their con-
tents are visible.

Pin to Output Section — Pins an object section to an output section to
prevent it from overflowing to another output section. This command
appears only when right-clicking an object section that is part of an output
section specified to overflow to another output section.

View Section Contents — Invokes a dialog box that displays the contents
of the input or output section. It is available only after you link or build
the project and then right-click on an input or object section (see

Figure 4-31 on page 4-42).

Visual DSP++ 4.5 Linker and Utilities Manual 4-23

Memory Map Pane

View Symbols — Invokes a dialog box that displays the symbols for the
project, overlay, or input section. It is available only after you link the
project and then right-click on a processor, overlay, or input section (see

Figure 4-43 on page 4-55).

Properties — Displays a Properties dialog box for the selected object. The
Properties menu is context-sensitive; different properties are displayed for
different objects. Right-click a memory segment and choose Properties to
specify a memory segment’s attributes (name, start address, end address,
size, width, memory space, PM/DM/(BM), RAM/ROM, and internal or
external flag).

View Legend — Displays the Legend dialog box showing tree view icons
and a short description for each icon. The Colors page lists the colors used
in the graphical memory map. You can customize each object’s color. See
Figure 4-9 on page 4-16 and Figure 4-10 on page 4-17.

View Global Properties — Displays a Global Properties dialog box that
lists the map file generated after linking the project. It also provides access
to some processor and setup information (see Figure 4-44 on page 4-56).

Tree View Memory Map Representation

In the tree view (selected by right-clicking and choosing View Mode ->
Memory Map Tree), the memory map is displayed with memory seg-
ments at the top level.

Each memory segment may have one or more output sections under it.
Input sections mapped to an output section appear under that output
section.

The start address and size of the memory segment display in separate col-
umns. If available, the start address and the size of each output section are
displayed (for example, after you link the project).

4-24 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

ADSP-218x DSPs only

Expert Linker

Input Sections:

ERERT

- int 1

- $LIBRARIES
=i $0BJECTS
@ 2194 int_tab

['irt1 2
['irt13
['irt1 4
ikl 5
['itd

ITAPLET =

e e e e
EEEEE

|+

.dnj
@ datprad_main.daj 57

Memary Map: [PM |

Segment/Section Start &ddresz | Eru
F-w mem INT_RSTI 00 01
- mem_IMNT_PWwWRDWwWN 020 Ox:
- Wpwidwin_dwe

- $OBJECTS (Vp...

-] $LIBRARIES V...

- mem_INT_KERMEL O] O
- mem INT_STK (k60 O
- mem_NT_INT4 080 0=z
L i mem INT INTR Mvall Nt
Oy

Processor tah —

Figure 4-17. Expert Linker Window — Memory Map Tree View

Graphical View Memory Map Representation

In the graphical view (selected by right-clicking in the Memory Map pane
and choosing View Mode -> Graphical Memory Map), the graphical
memory map displays the processor’s hardware memory map (refer to
your processor’s hardware reference manual or data sheet). Each hardware
memory segment contains a list of user-defined memory segments.

View the memory map from two perspectives: pre-link view and post-link
view (see “Specifying Pre- and Post-Link Memory Map View” on
page 4-31). Figure 4-18 through Figure 4-22 show examples of graphical

memory map representations.

VisualDSP++ 4.5 Linker and Utilities Manual

4-25

Memory Map Pane

tdemory b ap: ﬂ Q Q
foooonoon MEM_FROGRAM foooooao
Output -
section T 7
nuse CO02EFer &s:r:geﬁned
MEM_PCI_IC ¥
segments
hAFRA_HF AR
Lnused
Input — e T T T
o | MEM_STALK
Unused
MEM_SYSSTACE
rniused
JTon3fdff
FMEM_ARGY | £003f=00
rooorrrer

Figure 4-18. Graphical Memory Map Representation

4-26 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

In graphical view, the memory map comprises blocks of different colors
that represent memory segments, output sections, objects, and so on. The
memory map is drawn with these rules:

* An output section is represented as a vertical header with a group
of objects to the right of it.

* A memory segment’s border and text change to red (from its nor-
mal black color) to indicate that it is invalid. When moving the
mouse pointer over the invalid memory segment, a tooltip displays
a message, describing why the segment is invalid.

e The height of the memory segments is not scaled as a percentage of
the total memory space. However, the width of the memory seg-
ments is scaled as a percentage of the widest memory.

e Object sections are drawn as horizontal blocks stacked on top of
each other. Before linking, the object section sizes are not known
and are displayed in equal sizes within the memory segment. After
linking, the height of the objects is scaled as a percentage of the
total memory segment size. Object section names appear only
when there is enough room to display them.

* Addresses are listed in ascending order from top to bottom.

Three buttons at the top right of the Memory Map pane permit zooming.
If there is not enough room to display the memory map when zoomed in,
horizontal and/or vertical scroll bars allow you to view the entire memory
map (for more information, see “Zooming In and Out on the Memory

Map” on page 4-32).

You can drag-and-drop any object except memory segments. See

Figure 4-19.

Visual DSP++ 4.5 Linker and Utilities Manual 4-27

Memory Map Pane

MMEm_pci_io ff906fdo

AIBRARIES (o)) 1. Select
Crmanes i

ffapgefs the input

mem_stack ££907000 section

L N .

0 $LIBRARIES [pei_io] —————— 2. Drag itto an
i output section
[h]

Figure 4-19. Dragging and Dropping an Object (1)

ﬁ 1. Select

Bl $LIBRARIES [peiio) an output

IIIJ| section

ol

o

v

MEM_SYY ¢ |BRARIES [peiin) [2. Drag it
to a new
location

Figure 4-20. Dragging and Dropping an Object (2)

Select a memory segment to display its border. Memory segments, when
selected, display a tiny box at their top and bottom borders (Figure 4-21).
Drag the border (at this box) to change the memory segment’s size. By
doing this, the size of the selected and adjacent memory segments change.

4-28 Visual DSP++ 4.5 Linker and Utilities Manual

b emory kap: ﬁl@ll@

D3fff

£t£9
t£904000 t£904000

t£907fff
f£908000

t£907200

fE9fffff
ffa00000

=]

[

ffa07fff

tfa08000 ffaliffc

ffalafff
tf=14000

| ffal3fff

i

" Do

Expert Linker

Move this
bhox to
adjust
the size
of the
memory
segment

Figure 4-21. Adjusting the Size of a Memory Segment

When the mouse pointer is on top of the box, the resize cursor appears as

4
-

When an object is selected in the memory map, it is highlighted as
shown in Figure 4-22 on page 4-30. If you move the mouse pointer
over an object in the graphical memory map, a yellow tooltip dis-

plays the information about the object (such as name, address, and

size).

VisualDSP++ 4.5 Linker and Utilities Manual

4-29

Memory Map Pane

anon merm_dataZ aooo
L] | gl04ds
rerm_heap g04h
ruszed
8191
(A S
Highlighted Ll | ;
H | [
Object R —— TP
PRIMES.DOJ [datal)

]

=

T

[| LIBIO.DLE [datal]

-

o

)

3

I

IIruzed

ffff gazc

Figure 4-22. A Highlighted Memory Segment in the Memory Map

4-30 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Specifying Pre- and Post-Link Memory Map View

View the memory map from two perspectives: pre-link view and post-link
view. Pre-link view is typically used to place input sections. Post-link view
is typically used to view where the input sections are placed after linking
the project. Other information (such as the sizes of each section, symbols,
and the contents of each section) is available after linking.

* To enable pre-link view from the Memory Map pane, right-click
and choose View and Mapping Strategy (Pre-Link). Figure 4-23

on page 4-31 illustrates a memory map before linking.

Memaory Map: ﬁl'&;l&

fooooooo MEMM_PROGRARM fooooono
fO02ffef
MER_FCI_ID fO0zZf£d0
MEM_HEAF foo30000
FOO037EEE
MEM_STALK foo03s000
FO03dfEL
MMEM_SYSSTACK f003e000
fFO03fdfE
MEM_ARGY f003fe00
fO03ffEf

Figure 4-23. Memory Map Pane in Pre-Link View

Visual DSP++ 4.5 Linker and Utilities Manual 4-31

Memory Map Pane

* To enable post-link view from the Memory Map pane, right-click
and choose View and Link Results (Post-Link). Figure 4-24 on
page 4-32 illustrates a memory map after linking.

tdermory b ap: ﬁl@&la

fooooooon FMEM_FPROGRAR foooooon
Hnused FO0ZEfef
FER_FCI_IO fO02££40
FMEW_HEAF £O0030000

Unused
fO037ffF
MEM_STACK £0038000

Unused
fO03dfff
MEM_S'S5TACK f003=000

Unused
fO03fd4EE
FEW_ARGY fO003f=00

fO03LEEE

Figure 4-24. Memory Map Pane in Post-Link View

Zooming In and Out on the Memory Map

From the Memory Map pane, you can zoom in or out incrementally or
zoom in or out completely. Three buttons at the top right of the pane per-
form zooming operations. Horizontal and/or vertical scroll bars appear
when there is not enough room to display a zoomed memory map in the

Memory Map pane (see Figure 4-25 on page 4-33).

4-32 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Expert Linker®

Input Sections: kernary bap: I PR I

@[] Wint0
Wint11 Zoom Options

[EEEs I LS]

Figure 4-25. Memory Map — Zoom Options
To:

e Zoom in, click on the magnifying glass icon with the + sign above
the upper right corner of the memory map window.

e Zoom out, click on the magnifying glass icon with the - sign above
the upper right corner of the memory map window.

«w_»

* Exit zoom mode, click on the magnifying glass icon with the “x
above the upper right corner of the memory map window.

* View a memory object by itself by double-clicking on the memory
object.

* View the memory object containing the current memory object by
double-clicking on the white space around the memory object

Visual DSP++ 4.5 Linker and Utilities Manual 4-33

Memory Map Pane

Adding a Memory Segment

You can add memory segments to the memory map. This procedure
assumes that the Expert Linker window (Memory Map pane) is open.

To add a memory segment:
1. Right-click in the Memory Map pane.

2. Choose New and then choose Memory Segment. The Memory
Segment Properties dialog box appears (Figure 4-26).

3. In Name, type a name for the memory segment.

4. Specity the following attributes:

4-34 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Segment Properties

Memary Segment |

Expert Linker

[] =]

Marne:

Start Address:

End Address:

Size: Width:

" P
DM
= B
" DATARA

temory Space

| | |

ROk /Rukd |nternal/E=termal
' RaM " Irtemnal
" Extemal

< ROM
()4 I

Cancel |

Figure 4-26. Memory Segment Properties Dialog Box

Start address
End Address

Size (hexadecimal)

It is only necessary to specify either “End Address” or
“Length” and not both.

Width

Memory Space

For Blackfin and TigerSHARC processors, this option is
unavailable, because VisualDSP employs a unified memory
space.

ROM/RAM

Internal/External (memory location)

VisualDSP++ 4.5 Linker and Utilities Manual

4-35

Memory Map Pane

5. Click OK.

Inserting a Gap Into a Memory Segment

A gap may be inserted into a memory segment in the graphical memory
map.

To insert a gap:
1. Right-click on a memory segment.

2. Choose Insert gap. The Insert Gap dialog box appears, as shown in
Figure 4-27. It displays the start address, end address, and size of
the selected memory segment.

Insert Gap |

— kemorny segment properties
Start addrezs: 0x22000

End address: =236
Size: (=2000

— Location of gap

' Start of memony segment

™ End of memony zegment

— Size of gap

Start address: IUHEEUDD Size: I
End addresz: I

] I Cancel |

Figure 4-27. Insert Gap Dialog Box

4-36 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

You may insert a gap at the start of the memory segment or the end of it.

If the Start... is chosen, the Start address for the gap is grayed out

and you must enter an End Address or Size (of the gap).

you must enter a Start Address or Size.

Working With Overlays

If the End... is chosen, the End address of the gap is grayed out and

Overlays appear in the memory map window in two places: “run” space
and “live” space. Live space is where the overlay is stored until it is
swapped into run space. Because multiple overlays can exist in the same

“run” space, the overlays display as multiple blocks on top of each other in
cascading fashion.

Figure 4-28 shows an overlay in “live” space, and Figure 4-29 shows an
overlay in “run” space.

Input Sections: hdamony kep: ﬁl@sl'&
I?--. constd ata, =]
E@ datnl LWE_SPALCE Boaon J
I
B-F oz owaH . doj (o 1)
- pragrarm
overd . doj (od1)
CWERALATE DO (oA 2)
GEEE
L &
=L

Figure 4-28. Graphical Memory Map Showing an Overlay in “Live” Space

VisualDSP++ 4.5 Linker and Utilities Manual

4-37

Memory Map Pane

Overlays in a “run” space appear one at a time in the graphical memory

map. The scroll bar next to an overlay in “run” space allows you to specify
an overlay to be shown on top. Drag the overlay on top to another output
section to change the “run” space for an overlay.

Click the Up arrow or Down arrow button in the header to display a pre-
vious overlay or next overlay in “run” space. Click the browse button to
display the list of all available overlays. The header shows the number of
overlays in this “run” space as well as the current overlay number.

Input Sectione: M emony kap: ﬂlaalaa
-Hl =
2_. 3:?:{“"“ TYLY_FUN FPEOLOED
E-E ot =
B oz
B-E program M .
™ areetlen coj fowil)
B
Pl -
1y
e | doj il
£ E mvBrlay2 .doj (owl1)
93
£
ffa032d45
L =
O |
Browse Button —

Figure 4-29. Graphical Memory Map Showing an Overlay “Run” Space

4-38

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

To create an overlay in the “run” space:

1. Right-click on an output section.
2. Choose New -> Overlay.

3. Select the “live” space from the Overlay Properties dialog box (see
“Managing Overlay Properties” on page 4-72). The new overlay
appears in the “run” and “live” spaces in two different colors in the
memory map.

Visual DSP++ 4.5 Linker and Utilities Manual 4-39

Memory Map Pane

Viewing Section Contents

To view the contents of an input section or an output section, specify the
particular memory address and the display’s format.

This capability employs the el fdump utility (e1fdump.exe) to obtain the
section contents and display it in a window similar to a memory window
in Visual DSP++. Multiple Section Contents dialog boxes may be dis-
played. For example, Figure 4-30 shows output section contents in HEX
format.

B

Section Contents

Section

=

IPﬁme&duiheg_pmcﬂ

Section contents:

[000000] [LE07FFEeet

[00001E]
[00003C]
[000054]
[000078]
[000096]
[0000E4]
[0000D2]
[0000FO0]
[00010E]
[00012c]
[000144]

4]

=6715£8100

0000ad0Zff

FfffsS0f02 2

nfolo00o00o
O=00140000
adlcfffifff
073=000000
nfooooooao
013=0000a0
71lef8a0000
SftedlO0oon
acOZ2ffffff
71lefda0000
nfos000000

0lad0lffff
0d59b=0000
fdacO2ffff
le0f040000
go073=0000
2107040000
001604££££
0oSttebli0
e7013=0002
001e04ffff
145ff=8400

ff=70£1400
00005bbeg0
ff=e70£0100
nooolgo4ao
004c073=00
002d013=00
ff=8493=04
0o00013=00
9120ad01ff
ff=8493=80
0000130400
|

poooonylet
poooooooon
ooool4013e
goooonEife
DDDDdcaCDE-J
029010ad00
0ooo0Nac04
p2lo000700
ffff=e7ac00
ooonoNacic
0Oo00NEfife -

L3

Figure 4-30. Output Section Contents in Hex Format

4-40

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

To display the contents of an output section:
1. In the Memory Map pane, right-click an output section.

2. Choose View Section Contents from the menu.
The Section Contents dialog box appears.

By default, the memory section content appears in Hex format.

3. Right-click anywhere in the section view to display a menu with
these selections:

* Go To — Displays an address in the window.

¢ Select Format — Provides a list of formats: Hex, Hex and
ASCII, and Hex and Assembly. Select a format type to
specify the memory format.

Figure 4-31 and Figure 4-32 illustrate memory data formats available for
the selected output section.

Visual DSP++ 4.5 Linker and Utilities Manual 4-41

Memory Map Pane

Section Contents [=] I
Section:
| PRIMES.DOJ (program) B

Section contents:

[000030] (09901340 003a0f8bc 96400001 400=8015 @ =
[0Oo040] 70011570 11ilcO004 01202008 fcB8708fc p..p. ..
[0O0050] 75082fch 40014523 =%9%2a1800 05082£fd5 uw. .~ @ E
[0O00A0] NDEBefchS2a =Y9=al800 05086fdd4 22200f08 o = ..
[000070] bfdendod4 71040611 010cad41S 0057082cg..
[ooo0a0] 951c0004 225792218 0001082c 9522615f*y.-J
[000090] 08bc9e40 000a08bf delcOO0O00 O8afc?08 . @,
[0O00AD] RfcH2228 0f08bfcek 082c950d 047b040e o (. ..
[0O00BO] 11010cad 15101715 70114000 05157051 0. .
[0O00CO] 80000115 7011100 04012030 082c9522 .. . p. .
[0000D0O] 615£08bc 9640000a 08bfdelc 00004000 & ... @,
[00O00EOD] 01157011 1=000401 20104000 0110000 ..p...;fj
1 | 3

Figure 4-31. Output Section Contents in Hex and ASCII Format

4-42 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Section Contents ﬂ E
Section:
Idﬂ.duj (program) j

Section contents:

[000000] 403b3aBe j26 = j27 - 0xX40;; [
[000001] 403b3a% k26 = k27 - 0xX40;;

[000002] £0bL4067 [j27 += OXFFFFFFFO] = cjmp;;
[000003] 043b3k% k27 = k27 - OX4;;

[000004] 00B04488 vyrd = 0::

[000005] 3e3a4484 [j26 + OX3E] = yr4::

(]

(]

(]

(]

(]

(]

000006e] Jedalcdl =xrl2 = [j2b6 + ODX3E]:: [

ooooo7] 40800488 =rl3 = 0x40::

ooooog] 8d0118ad4 =zCOMP(rlZ, rl3)::

ooooos] 110051kl IF nxalt, JUMP Oxl1(WHP)::

00000&] 140z0zg8 j10 = =zrilZ::

0O000B] 003f0k0c 000000L2 j11 = j31 + D;imex;;l_ﬁl
¥

i

Figure 4-32. Output Section Contents in Hex and Assembly Format

Visual DSP++ 4.5 Linker and Utilities Manual 4-43

Memory Map Pane

Viewing Symbols

Symbols can be displayed per a processor program (.dxe), per overlay
(.OVL), or per input section. Initially, symbol data is in the same order in
which it appears in the linker’s map output. Sort symbols by name,
address, and so on by clicking the column headings.

To view symbols (Figure 4-33):

ViewSymbols @[]
I ame | Addrezs | Size | Binding | File Mame | Section I;l

_LME7 .. («286 10 STB_LOCaL PRIMES.DOJ program
_LM$8__m.. 0Ox23e (0 STB_LOCaL PRIMES.DOJ program
_LME3 . (w292 10 STB_LOCaL PRIMES.DOJ program

_L 250002 0x23e =0 STE_LOCAL FRIMES.DOJ program
_L_250004 Ox2bd =0 STE_LOCAL PRIMES.DOJ program
_L 250005 0=2392 00 STE_LOCAL PRIMES.DOJ program

_L_2R0007 OxZaf =0 STE_LOCAL PRIMES.DOJ program
_L_2R0008 OxZab =0 STE_LOCAL PRIMES.DOJ program
_L_316000 OxZcd =0 STE_LOCAL PRIMES.DOJ program

_LHe00 w231 10 STEB_LOCAL PRIMES.DOJ program
_L He002 w284 0 STB_LOCAL PRIMES.DOJ program
__EPC_test 0x273 (0 STB_LOCaL PRIMES.DOJ program
_main 0=273 0=0 STE_GLOB... PRIMES.DOJ program

progran Q273 (0 STB_LOCaL PRIMES.DOJ program

Figure 4-33. View Symbols Dialog Box

1. In the post-link view of the Memory Map pane, select the item
(memory segment, output section, or input section) whose symbols
you want to view.

2. Right-click and choose View Symbols.

The View Symbols dialog box displays the selected item’s symbols.
The symbol’s address, size, binding, file name, and section appear
beside the symbol’s name.

4-44 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Profiling Object Sections

Use Expert Linker to profile object sections in your program. After doing
so, Expert Linker graphically displays how much time was spent in each
object section so you can locate code “hotspots” and move the code to
faster, internal memory.

The following is a sample profiling procedure.

Start by selecting Profile execution of object sections in the General page

of the Global Properties dialog box (Figure 4-34).

Global Properties HE |

General |F'n:u:e&su:ur| PLIT | Eliminatiu:unl

Linker map

II::'xe:-:amples'xm_l,lpn:uiect.ldf

[Show stack/heap usage

¥ Frofile execution of object sections

QK I Cancel

Figure 4-34. General Page of the Global Properties Dialog Box

Then build the project and load the program. After the program is loaded,
Expert Linker sets up the profiling bins to collect the profiling
information.

When the program run is complete, Expert Linker colors each object sec-
tion with a different shade of red to indicate how much time was spent
executing that section. For an example, see Figure 4-35.

Visual DSP++ 4.5 Linker and Utilities Manual 4-45

Memory Map Pane

|nput Sections: b ermony kap: ﬂl Ql Q
. zeg_chdm ﬂ

_: z:i:i':da 20000 [T e mem 20000

- seq_pmco libc.dib (seg_pmen)
zeg_pmda
seg_tth libio. dlb [zeq_pmco]

zeq_proco)

axt_nmam

‘I—
4
-
=
:
t
-
|

_Plll

Figure 4-35. Colored Object Sections

The fir.doj (seg_pmco) section appears in the brightest shade of red,
indicating that it takes up most of the execution time. The shading of the
libio.d1b (seg_pmco) section is not as bright. This indicates that it takes
up less execution time than fir.doj (seg_pmco). The shading of the
libc.d1b (seg_pmco) section is black, indicating that it takes up a negligi-
ble amount of the total execution time.

From Expert Linker, you can view PC sample counts for object sections.
To view an actual PC sample count (Figure 4-36), move the mouse
pointer over an object section and view the PC sample count.

To view sample counts for functions located within an object section,

double-click on the object section (Figure 4-37).

4-46 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

axt_rmam

fir.doj [zeg_pmco] [0220c5e - 0x218a4)
PC Sample Count = 210796 [57 63%)
T

Figure 4-36. PC Sample Count

Input Sections: M emorny Map: ﬂ Q Q
. zeqg_chdm

; -- zeg_dmda
-- zed_init
] seq_pmea

20cEe

rnain|] -

pre_filker(] -

dio_filker(] - 17

218b6

JEI 0
Cieo |

:
¢
g
3

Figure 4-37. Sample Count of Functions Within Object Section

Functions are available only when objects are compiled with debug
information.

You can view detailed profile information such as the sample counts for
each line in the function (Figure 4-38). To view detailed profile informa-
tion, double-click on a function.

Visual DSP++ 4.5 Linker and Utilities Manual 4-47

Memory Map Pane

Figure 4-38. Detailed Profile Information

Histagraml Zl Execution ni = ‘leine |C:\C—FIR\f ir.c
4 65% =theputcha. .. 6. 64% 207 for (1 =0, temp = 0; 1
0.70% printf_ 32.... 21 1G5 208 temp += coefficients
0.00% mdecimal d... 209
0.00% mdecimal_=. .. 210 < ocompller generated o
0.00% =print_e f. .. 211 <o lentr=16, dol(pc, L$3
0.00% =print_f f. .. 212 A0 mrf=Emri+r2*rl (S51).
0.00% =print_g f. .. 213 A7 _L5%316001 :

B 10.22% =mprnt_32.d... 214

] 57.76% [fir.doj . 0.36% 215 output[k] = temp;

[| 17 .86% do filter() 216

[] .97k pre_filter(_|| 0.70% 217 for (j = tap=—1; 71 » ta

F 30.93% maini) || 0.52% 218 state[j+1] = state[]

‘ | » 219

Total Samples: 2EE1E5 Elapgzed Time: 00

To view PC samples as a percentage of total samples, view the memory

map tree (Figure 4-39).

_Plll

b ermory b ap:
Segment/Section | Start Addressl End .-’-'«ddressl 4 | Count |
[F- 5@ seg_rth (2000 (< 20fF
L -3 seg_tth 08000 (k805
o] 0B5L_hdr.dojlseq_rth]l 08000 0808 004% 135
-5 seq_dmda 03900 Ol
- seq_heap 03000 O3
-5 seq stak 03500 O3
-8 seqini Owc000 O OF
H- 5% seg_pmoo Q=110 Dxckif
-5 seq_pmda DxdB00 Dxdlfft
¢ L3 zed_prda M i M A,
[=@ ext_mem (20000 [2fFFe
23 ext_mem 020000 0x218ad
#-E] libe.db (seq_pmeo) 020000 02033 B.80% 24845
libio.dib [s20_prcal Ow2033f 0x20:5d 348z 129681
fir.daj [ze0_pmiza) Ox20c5e Ox218ad 57.BO% 210796

Figure 4-39. Percentage of Total PC Sample Count

4-48

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

Adding Shared Memory Segments and Linking
Object Files

In many DSP applications where large amounts of memory for multipro-
cessing tasks and sharing of data are required, an external resource in the
form of shared memory may be desired.

Refer to Engineer-To- Engineer Note EE-202 “Using the Expert
Linker for Multiprocessor LDF” for a detailed description and proce-
dure. Find this EE Note on Analog Devices Web site at
http://www.analog.com/ee-notes.

System Information
Configure the DSP suztem by choozing the proceszors in your system and the processor type.

— SustEm ype Froceszsor twpe:
{7 Cingle proceszar I'é'D SP-TS101 ;I

i+ Muliprocessor

[Setup spsten from debug session setings

E Proceszzor properties
Proceszors:

Froceszor | MH atart .. | MHEnd & =
F'IZI (2000000 Do 3FEFEF
(2200000 D2 FRFeF

i

Dutput file
|$EEII'.'1M.5.N D_LINE_OUTPUT_DMRECTOR

Erecutables ta link againz:

(2800000

< Back I Mest » I Carnicel Help

Figure 4-40. Multiprocessor LDF Selection

Visual DSP++ 4.5 Linker and Utilities Manual 4-49

Memory Map Pane

To add a shared memory section to the .LDF file, right-click in the
Memory Map pane and select New/Shared Memory. Then specify a name
for the shared memory segment (.SM) and select the processors that have
access to this shared memory segment. Refer to “Managing Shared Mem-
ory Properties” on page 4-77 for more information.

As shown in Figure 4-41, a new shared memory segment, visible to pro-
cessors PO and P1, has been successfully added to the system. Note that
variables declared in the shared memory segment will be accessed by both
processors in the system. In order for the linker to be able to correctly
resolve these variables, the link against command should be used once
again.

Shared Memory Properties

Shared Memony | Elimination |

Output file name: |
shared.am Expert Linker - MP TS101_1d#™
Input Sections: MMermory: kMap:

Processars sharing
bsz o
bsz_init 10000
datal aoonn
dataz 90000
w1 program 100000 [[MeData 1

110000

180000

150800

400000
100000
2000000
2400000
2500000
200000
3000000
3400000
3500000
3c00ooo
4000000
s0000o00
000000 hAS o
l0000000

4| | » Heo | [Fea | TP chared =m IJ

Figure 4-41. Shared Memory Segment

4-50 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Expert Linker automatically adds shared memory segments, and therefore
no any additional modifications to the LDF are needed.

Confirm that Expert Linker has correctly added the .SM file to the link
against command line by selecting View Global Properties in the Mem-
ory Map pane and clicking on the Processor tab.

The shared. sm file should now be contained in the Executables to Link
Against box for each processor.

Use Expert Linker to detect non-linked input sections, such as a variable
declared in external SDRAM memory, which belongs to the shared mem-
ory segment.

When both processors and the shared memory segments have been prop-
erly configured, and Expert Linker has detected all input sections, you can
link the object files from different input sections to their corresponding
memory sections.

In general, the linking process consists of these steps:

1. Sort the left pane of the Expert Linker window by LDF macros
instead of input sections (default setting). To do that, right-click
on the left pane and select Sort by/LDF Macros.

2. Right-click on the LDF Macro window and add a new macro for
PO (Add/LDF Macro). For example, $0BJECTS_PO. Repeat the

same step for P1 and shared.sm.

3. Add the object (.D09) files that correspond to each processor as well
as to the shared memory segment.
To do this, right-click on each recently created LDF macro and
then select Add/Object/Library File. The use of LDF macros
becomes extremely useful in systems where there is more than one
object files, .doj files per processor or shared memory segments, in
which case the same step previously explained should be followed
for each .p0J file.

Visual DSP++ 4.5 Linker and Utilities Manual 4-51

Memory Map Pane

4. Delete the LDF macro, $COMMAND_LINE_OBJECTS, from the
$0BJECTS macro to avoid duplicate object files during the linking
process. Right-click on the $COMMAND_LINE_0BJECTS macro and
click Remove.

5. The left pane needs to be sorted by Input Sections instead of LDF
macros. To do that, right-click on the left pane and select Sort
by/Input Sections. Additionally, in the right pane, change the
Memory Map View Mode from Graphical to Tree mode.
Right-click on the Memory Map window, select View Mode, and
then Memory Map Tree.

6. Map the new macros into memory. To do this, place each macro
into its corresponding memory section.

7. Repeat the same steps for processor P1 ($0BJECTS_P1) and for the

shared memory segment, shared.sm (place $0BJECTS_SM in the
SDRAM section).

8. Press Rebuild All.

9. Select one of the processors by clicking on the processor’s name
tab. In this case, PO is selected first. Then, place (drag-and-drop)
the recently created LDF macro, $0BJECTS_PO, in its corresponding
memory segment. The red crosses denoting the “non-linked” sec-
tions have disappeared, indicating that the input sections have been
properly mapped into memory.

@ Also, note that the LDF macros that were moved from the Input
Sections window (left pane) to their corresponding sections in the
Memory Map window (right pane) have been automatically

replaced during the linking process with the actual object files used

by the linker.

The LDF is now complete. Figure 4-42 illustrates the generated .LDF file
in the Source Code View mode.

4-52 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Expert Linker

Input S echons: Memorn Map:
EREET Segnent/Section | Star Adiress
| @l $COMMAND_LINE_OBJECTS o< MiCode 04
gl $0BJECTS D 5-C3 code 00
mlﬂ $0BJECTS_PO [101.doj [orogram] 00
-4l $OBJECTS_P1 B MiData 080000
- D0 doj L e datat 0-80000
LRI dnj Hatal) MR
; El- 5 M2Data 04100000
(gl $TOMMAND_LINE_DBJECTS 54 data? 04100000
~lll $OBJECTS : 101, doj [dataz) 0100000
Al goeecTs P01] L < SDRAM 4000000
o gl soejecTs P HE g Msl LU
- 100 doi @ MST 0000000
@ 1D doj g HOST 0x1 0000000
e | s HOSTH 0+20000000
-l SCOMMAND_UNE_DRIECTS ||| | . @ HOSTZ 0-50000000
-l $OBECTS SM @ HOST3 0+70000000
R datad s HOST4 030000000
EI-- program g HOSTS O+b0000000
i glf] $COMMAND_LINE_DBJECTS Lo HOSTE Oed 000000
= Al $0RIECTS Lgs HOSTT 0-f0000000
-l $0RIECTS_PO
gl $0BJECTS_P1
i@ 1D0doj
L 101, doj
Oro | Ole1 | O shareasm |

Figure 4-42. Expert Linker Multiprocessor LDF

The multiprocessor linker commands, MPMEMORY, SHARED MEMORY and LINK
AGAINST, as well as the corresponding LDF macros, were successfully gen-
erated by the Expert Linker in a way absolutely transparent to the user.

The complete project is now ready to be built. Once again, perform a
Rebuild All and start debugging with the application code.

Visual DSP++ 4.5 Linker and Utilities Manual 4-53

Managing Object Properties

Managing Object Properties

You can display different properties for each type of object. Since different
objects may share certain properties, their Properties dialog boxes share

pages.

The following procedures assume the Expert Linker window is
open.

To display a Properties dialog box, right-click an object and choose Prop-
erties. You may choose these functions:

* “Managing General Global Properties” on page 4-55

e “Managing Processor Properties” on page 4-56

e “Managing PLIT Properties for Overlays” on page 4-58
e “Managing Elimination Properties” on page 4-59

e “Managing Symbols Properties” on page 4-61

* “Managing Memory Segment Properties” on page 4-64
* “Managing Output Section Properties” on page 4-65

* “Managing Packing Properties” on page 4-68

* “Managing Alignment and Fill Properties” on page 4-70
* “Managing Overlay Properties” on page 4-72

* “Managing Stack and Heap in Processor Memory” on page 4-74
* “Managing Shared Memory Properties” on page 4-77

4-54 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Managing General Global Properties

To access Global Properties, right-click in the Input Sections pane and
choose Properties.

The Global Properties dialog box appears.

The General tab of the Global Properties dialog box provides these selec-
tions (Figure 4-43):

* Linker map file displays the map file generated after linking the
project. This is a read-only field.

* If Show stack/heap usage is selected after you run a project, Expert
Linker shows how much of the stack and heap were used.

* If Profile execution of object sections is selected, Expert Linker
enables the profiling feature that allows you to see “hotspots” in
object sections and to fine-tune the placement of object sections.

Global Properties = 1=]|

General |F'n:ncessar| PLIT I Eliminatianl

Linker map

IE: hexamplesimyproject. Idf

[Show stack/heap usage

W PFrofile execution of object sections

(] I Cancel

Figure 4-43. General Page of the Global Properties Dialog Box

Visual DSP++ 4.5 Linker and Utilities Manual 4-55

Managing Object Properties

Managing Processor Properties
To specify processor properties:

1. In the Memory Map pane, right-click on a Processor tab and
choose Properties.

The Processor Properties dialog box appears.

2. Click the Processor tab (Figure 4-44).

The Processor tab allows you to reconfigure the processor setup.

Processor Properties B E

Processor | Eliminatinnl S_l,lmbu:ulal

— Suztem type Proceszsor lype:
' Single processor [#D5P-21160 -l
™ Multiprocessor
— Processzor properties
Proceszszors: Dutput file
Pracessar | |$EDMM¢«ND_LINE_DLITF'LIT_FILE

=Fo

Executables to link against:

OF. | Cancel I

Figure 4-44. Processor Page of the Processor Properties Dialog Box

4-56 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

With a Processor tab in focus, you can:

* Specify System Type — It may be a Single processor or Multipro-
cessor selection. (The Processors list displays the names of all the
processors in the project and the address range for each processor.)

* Select a Processor type (such as ADSP-21060).

e Specify an Output file name — The file name may include a relative
path and/or LDF macro. Specify an output file for each processor.

* Specify Executables to link against — Multiple files names are per-
mitted, but must be separated with space characters or commas.
Only .SM, .DLB, and .DXE files are permitted. A file name may
include a relative path, LDF macro, or both.

Additionally, a processor can be renamed by selecting the processor,
right-clicking, choosing Rename Processor, and typing a new name.

For multiprocessor systems, you can add, delete, and rearrange processor
order. Right-click in the Processors box, choose Add Processor, and type
a name for the new processor, or choose Delete Processor. To move a pro-
cessor, select the processor and drag it to another position in the
Processors list.

When a processor in a multiprocessor system is moved to a differ-
ent position, its address range changes. The MP Start Addr. and
MP End Addr. information is static.

Visual DSP++ 4.5 Linker and Utilities Manual 4-57

Managing Object Properties

Managing PLIT Properties for Overlays

The PLIT tab allows you to view and edit the function template used in
overlays. Assembly instructions observe the same syntax coloring
as specified for editor windows.

@ Enter assembly code only. Comments are not allowed.
To view and edit PLIT information:
1. Right-click in the Input Sections pane.

2. Choose Properties.
The Global Properties dialog box appears.

3. Click the PLIT tab (Figure 4-45).

Global Properties HE |

Generall Frocessor FLIT |Eliminati|:|n|

Frocedure Linkage Table(PLIT):

J4
J5

PLIT 3YMBOL OVERLAYTID;; ;I
PLIT 3YMEBOL ADDRE3S; ;

JUMEP CwerlayManager;;

Ok Cancel |

Figure 4-45. PLIT Page of the Global Properties Dialog Box

4-58 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Managing Elimination Properties

Eliminate unused code from the target .DXE file. Specify the input sections
from which to eliminate code and the symbols you want to keep.

Select the Global Properties dialog box by right-clicking in the Input
Sections pane and choosing Properties.

Use the Elimination tab to perform elimination (Figure 4-46).

Global Properties HEBA

Generall F'ru:u:essu:url PLIT Elimination I

[ignable elimination of unuzed objects

¥ Merbose linker oukput of eliminated objects

Sectionz to apply elimination;

¥ [4int1 1 i|
it 1
lint1 2
lint1 3

Syrbolz to keep:

_main

Yerhmee (inken autput af elimitated objects OF. I Cancel

Figure 4-46. Elimination Tab

Selecting the Enable elimination of unused objects option enables elimi-
nation. This check box is grayed out when elimination is enabled through
the linker command line or when the .LDF file is read-only.

Visual DSP++ 4.5 Linker and Utilities Manual 4-59

Managing Object Properties

When Verbose linker output of eliminated objects is selected, the elimi-
nated objects are shown as linker output in the Output window’s Build
page during linking. This check box is grayed out when the Enable elimi-
nation of unused objects check box is cleared. It is also grayed out when
elimination is enabled through the linker command line or when the .LDF
file is read-only.

The Sections to apply elimination box lists all input sections with a check
box next to each section. Elimination applies to the sections that are
selected. By default, all input sections are selected.

The Symbols to keep box displays a list of symbols to be retained (see
“Managing Symbols Properties” on page 4-61 for more information).

4-60 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Managing Symbols Properties

You can view the list of symbols resolved by the linker. You can also add
and remove symbols from the list of symbols kept by the linker. The sym-
bols can be resolved to an absolute address or to a program (.DXE) file. It is
assumed that the elimination of unused code is enabled.

To add or remove a symbol:
1. Right-click in the Input Sections pane.
2. Choose Properties. The Global Properties dialog box appears.
3. Click the Elimination tab to add or remove a symbol

(Figure 4-47).

Global Properties 7 =] I

Generall F'ru:u:essu:url PLIT Elimination |

r ;I_E__nable elirnination of unuzed objects

™ | Werboze linken output af eliminated abjects

Sectionz to apply elimination:

v|["/int10 il
] [ink11
W [int12
W [int13

Symbaols to keep:

_main
_ctor_MULL_marker

QE. I Cancel

Figure 4-47. Elimination Page of the Global Properties Dialog Box

Visual DSP++ 4.5 Linker and Utilities Manual 4-61

Managing Object Properties

4. Right-click in the Symbols to keep box.

Using the menu, choose Add Symbol to open the dialog box and
type a new symbol name (names) at the end of the existing list.
To delete a symbol, select the symbol, right-click, and choose
Remove Symbol.

To specify symbol resolution:
1. In the Memory Map pane, right-click a Processor tab.

2. Choose Properties.
The Processor page of the Processor Properties dialog box appears.
The Symbols tab allows you to specify how symbols are to be
resolved by the linker (Figure 4-48).

Processor Properties [=]

Frocessor I EIiminatiu:unI S_I,Iml:u:lsl

Spmbals bo resolve

Symbal ||| Address or File Mame
foo1 0x10000
fooZ cilexamplesiprograms, dxe

]:4 | Cancel I

Figure 4-48. Processor Properties Dialog Box — Symbols Tab

4-62 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

The symbols can be resolved to an absolute address or to a program file.
Right-clicking in the Symbols field allows you to add or remove symbols.

Choosing Add Symbol from the menu invokes the Add Symbol to
Resolve dialog box (Figure 4-49), which allows you to pick a symbol by
either typing the name or browsing for a symbol. Using Resolve with, you
can also decide whether to resolve the symbol from a known absolute
address or file name (.DXE or .SM) file.

Add Symbol to Resolve [7]

Symboal:

IfDD Browse... |

Fesalve with
& Absolute Address:

ID)d onoo

" FEile MName:

| |

Figure 4-49. Add Symbol to Resolve Dialog Box

The Browse button is grayed out when no symbol list is available; for
example, if the project has not been linked. When this button is active,
click it to display the Browse Symbols dialog box, which shows a list of all
the symbols.

Selecting a symbol from that list places it in the Symbol box of the Edit
Symbol to Resolve dialog box.

To delete a symbol from the resolve list:
1. Click Browse to display the Symbols to resolve list (Figure 4-49).
2. Select the symbol to delete.

3. Right-click and choose Remove Symbol.

Visual DSP++ 4.5 Linker and Utilities Manual 4-63

Managing Object Properties

Managing Memory Segment Properties

Specify or change the memory segment’s name, start address, end address,
size, width, memory space, memory type, and internal/external flag.

To display the Memory Segment Properties dialog box (Figure 4-50):

1. Right-click a memory segment (for example, PROGRAM or MEM_CODE)
in the Memory Map pane.

2. Choose Properties.

The selected segment properties are displayed.

Memory Segment Properties HEA

b emaony Segment |

Start Addrezs: End Address: Size: Width:

Ox242 (=i 0=7 dbe 24 j
bemony Space ROM/BAM ——— Intemal/Extemnal
= PM {* Rk £ [termal
[" ROM) Evtemal
€1 BRA

| Ok I Cancel

Figure 4-50. Memory Segment Properties Dialog Box

4-64 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Managing Output Section Properties

Use the Output Section tab to change the output section’s name or to set
the overflow. Overflow allows objects that do not fit in the current output
section to spill over into the specified output section. By default, all
objects that do not fit (except objects that are manually pinned to the cur-
rent output section) overflow to the specified section.

To specify output section properties:

1. Right-click an output section (for example, PROGRAM_DXE or
CODE_DXE) in the Memory Map pane.

2. Choose Properties (Figure 4-51).

Output Section Properties [7 %]

Output Section |Packing | Alignmentl

MNarne: Initialization:
Iprogram INDne j
— Owerflowe

Cuput section to which objects overflow:

INone j

— Contiguity of Input Sections

& Display linker warning if section is not mapped contiguously
" Force contiguous placement of sections

" Suppraess linker waming about non-contiguous placement of sections

— FPlacement

Address: Mot availakle

Size (inwords): Mot available

0K I Cancel |

Figure 4-51. Output Section Properties Dialog Box — Output Section Tab

Visual DSP++ 4.5 Linker and Utilities Manual 4-65

Managing Object Properties

The selections in the output section/segment list include “None” (for no
overflow) and “All” output sections. Pin objects to an output section by
right-clicking the object and choosing Pin to output section.

You can:

Type a name for the output section in Name.

In Overflow, select an output section into which the selected out-
put section will overflow; select None for no overflow. This setting
appears in the Placement box.

Before linking the project, the Placement box indicates the output
section’s address and size as “Not available”. After linking is done,
the box displays the output section’s actual address and size.

Initialization allows you to choose the initialization qualifier for an
output section. The section qualifier set by this option controls the
operation of run-time initialization by tools that process the exe-
cutable file and the run-time initialization that can be achieved by
enabling the meminit utility.

The choices are:

* None: Stipulates no special treatment for the section — the
section data are statically initialized according to their defi-
nition in the source, no runtime initialization is called for.
Please note that data that have no explicit initialization in
source are initialized to 0.

* No initialization: Stipulates no data initialization, even stat-
ically. No data for the section are in the executable file. This

is equivalent to specifying a section qualifier SHT_NOBITS in
the LDF.

* Initialize to zero: The memory space for this section will be
initialized to zero at either “load” or “runtime”, if invoked
with the linker’s -meminit switch. If the -meminit switch is

4-66

VisualDSP++ 4.5 Linker and Utilities Manual

Expert Linker

not used, the memory is initialized at “load” time when the
.dxe file is loaded via Visual DSP++ IDDE, or boot-loaded
by the boot kernel. If the memory initializer is invoked, the
C/C++run-time library (CRTL) will process embedded
information to initialize the memory space during the
CRTL initialization process.

¢ Initialize at runtime: If the linker is invoked with the -mem-
init switch, this section will be filled at runtime. If the
-meminit switch is not specified, the section is filled at
“load” time.

* Contiguity of Input Sections allows you to choose whether or not
code or data in an output section should be mapped contiguously.
The choices are:

* Display linker warning if section is not mapped
contiguously

* Force contiguous placement of sections

* Suppress linker warning about non-contiguous placement
of sections in the operating system

* Specify the Packing (on page 4-68) and Alignment (with Fill
value) properties (on page 4-70) as needed.

Visual DSP++ 4.5 Linker and Utilities Manual 4-67

Managing Object Properties

Managing Packing Properties

Use the Packing tab to specify the packing format that the linker employs
to place bytes into memory. The choices include No packing or Custom
packing. You can view byte order, which defines the order that bytes will
be placed into memory, and you can change this order. It can be viewed
via the Packing order box.

To specifypacking properties:
1. Right-click a memory segment in the Memory Map pane.

2. Choose Properties and click the Packing tab (Figure 4-52).

Output Section Properties HE |

Output Section Packing | Alignment I

FPacking Mumber of butes:

Packing order:

[Custam

Figure 4-52. Memory Segment Properties Dialog Box — Packing Tab

4-68 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

3. In Packing method, select a method.

Method Description

No packing Specifies no packing. Number of bytes
and Packing order are grayed out.

Custom Permits the selection of number of bytes
and packing order.

other choices- Specifies the number of bytes and packing
order of the selected method.

The list of packing methods is derived
from the included packing.h file.
Packing method information (number of
bytes and packing order) appears, but you
cannot change it.

4. In Number of bytes (if Custom is selected), specify the number of
bytes to be reordered at one time. This value does not include the
number of null bytes inserted into memory.

5. In Packing order, specify byte packing. To do that, select a byte

and perform one of these actions:
* Click the keyboard's Up arrow or Down arrow key.
* Drag and drop it to a new location.
* Insert a null byte by clicking on Insert.

* Delete a null byte by selecting the null byte and clicking
Delete.

6. Click OK.

Visual DSP++ 4.5 Linker and Utilities Manual 4-69

Managing Object Properties

Managing Alignment and Fill Properties

Use the Alignment tab to set the alignment and fill values for the output
section. When the output section is aligned on an address, the linker fills
the gap with zeros (0), NOP instructions, or a specified value.

To specify alignment properties:
1. Right-click a memory segment in the Memory Map pane.
2. Choose Properties.

3. Click the Alignment tab (Figure 4-53).

Output Section Properties HE

DutputSectiDnI Packing Alignment |

— Alignment
i+ Mo dlignment

= Align each input zection to the nest address that |4 vI

iz a multiple of;

— Fill vwalue
i+ Fill gaps with the default walue of 0

= Fill gaps with MOP instruction

= Fill gaps with the value; I

ak I Cancel |

Figure 4-53. Output Section Properties — Alignment Tab

4-70 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

If you select No Alignment, the output section is not be aligned on an

address.

If you choose Align each input section to the next address that is a multi-
ple of, select an integer value from the drop-down list to specify the
output section alignment.

When the output section is aligned on an address, a gap is filled by the
linker. Based on the processor architecture, Expert Linker determines the
opcode for the NOP instruction.

The Fill value is either 0 (default), a NOP instruction, or a user-specified
value (a hexadecimal value entered in the entry box).

Visual DSP++ 4.5 Linker and Utilities Manual 4-71

Managing Object Properties

Managing Overlay Properties

Use the Overlay tab to add/choose the output file for the overlay, its “live”
memory, and its linking algorithm.

To specify overlay properties:
1. Right-click an overlay object in the Memory Map pane.
2. Choose Properties and click the Overlay tab (Figure 4-54)

Overlay Properties HE I

Overlay | Packing |

Output file narme;

I-:u'-.-'erla_l,l'l Lowl

Live Memory Owerlay inking

| mem_code R I El
Flacement
Live Address: Mot available Size [in Mat available

Fun Address: Mot available

] I Cancel

Figure 4-54. Overlay Properties Dialog Box — Overlay Tab

Use the Output file name box to specify the name of the overlay file

(.ov1).

4-72 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

The Live Memory drop-down list contains all output sections or memory
segments within one output section. The “live” memory is where the over-
lay is stored before it is swapped into memory.

The Overlay linking algorithm box permits one overlay algorithm—
ALL_FIT. Expert Linker does not currently allow changes to this setting.
When ALL_FIT is used, the linker tries to fit all of the mapped objects into
one overlay.

The Placement box provides the following information:
* Live Address—The starting address of the overlay

* Run Address—The starting address where the overlay is swapped
into memory at runtime

* Size—The overlay’s size
Click the Packing tab to specify byte packing order.

The Browse button is only available after the overlay build and when the
symbols are available. Clicking Browse opens the Browse Symbols dialog
box.

You can choose the address for the symbol group or let the linker choose

the address.

Visual DSP++ 4.5 Linker and Utilities Manual 4-73

Managing Object Properties

Managing Stack and Heap in Processor Memory

Expert Linker shows how much space is allocated for your program’s heap
and stack.

Figure 4-55 shows stack and heap output sections in the Memory Map
pane. Right-click on either of them to display its properties.

Expert Linker E
Input Sections: b ernomy b ap:
. SegmentdS ection | Start Address | End Address |;|
[Wint11 Bl mem_INT_INT14 Ox1cO DuTdf
- Mintt2 g mem_INT_INT15 (el Dttt
- Mintt3 - mem_itab 0x200 0x241
[Wint4 FlG mem_cods (242 07t
w0 Wints e mem_data 0x2000 Oxaeff
[Wintd Bl mem_heap Oaf00 Oxb7H
[Wints Fl- i mem_stack Oxb200 Db
el Wit B g mem_datal D000 i
-] Mint? =
w0 wine T e

Figure 4-55. Memory Map Window With Stack and Heap Sections

Use the Global Properties dialog box to select Show stack/heap usage
(Figure 4-56). This option graphically displays the stack/heap usage in
memory (Figure 4-57).

4-74 Visual DSP++ 4.5 Linker and Utilities Manual

Expert Linker

Global Properties H B
General | F'rucessnrl PLIT I Eliminatiunl

Linker map

IE: \eramplesimyproject. df

¥ Show stack/heap usage

¥ Piolile execution of ohject sections

(] 4 I Cancel |

Figure 4-56. Global Properties — Selecting Stack and Heap Usage
The Expert Linker can:

* Locate stacks and heaps and fill them with a marker value.

This occurs after loading the program into a processor target. The
stacks and heaps are located by their output section names, which
may vary across processor families.

 Search the heap and stack for the highest memory locations written
to by the DSP program.

This action occurs when the target halts after running the program.
(assume the unused portion of the stack or heap starts here). The
Expert Linker updates the memory map to show how much of the
stack and heap are unused.

Use this information to adjust the size of your stack and heap. This infor-
mation helps make better use of the processor memory, so the stack and
heap segments do not use too much memory.

Visual DSP++ 4.5 Linker and Utilities Manual 4-75

Managing Object Properties

Use the graphical view (View Mode -> Graphical Memory Map) to dis-
play stack and heap memory map blocks. Figure 4-57 shows a possible
memory map after running a project program.

Expert Linker x|

[nput Sections: b emaory Map: ﬁl Ql Q
EREITTT =

: Iink11 2000 [T mem daiaz 2000
ink12

[Wint13
[wint14 LIBC.DLE [dataz)

Vint15 alda
[Wfimtd rnerm_heap a04b
[Vinth
[Vinta
[int?
[Vintd
[intd 8191
Ikermnel mem_stack. a19z
[prardian

[Yreset |
I stackint nuzed
datal g2e0 o
dataz rnerm_datal a261

lib_irt_table | I]

program |- | | =
PO |

e~ - - - -2 - -0 - - B - - E- - -
EEHEHEEEEEHEHEEEEEEHEEE

Figure 4-57. Graphical Memory Map Showing Stack and Heap Usage

4-76 Visual DSP++ 4.5 Linker and Utilities Manual

Managing Shared Memory Properties

Expert Linker

Specify the path and name of the file used by shared memory. This proce-
dure assumes the Expert Linker window is open.

To specify shared memory properties:

1. In the Memory Map pane, click the Shared Memory tab (located

at the bottom of dialog box).

Shared Memory Properties 7

Shared kMemory I Elimination I

Output file name:

Ishared.sm Expert Linker - MP TS5101 .1df™

Input Sections:

R EhA_AR]
bsz
bsz_init
datal
dataz
3 B | program

Frocessors sharing

4| =

hermory kdagp:

u]

10000
s0000
Soo00o0
100000
110000
130000
150800
400000
lcO0oao
2000000
2400000
2800000
Zc:00000
30o0o0ooo
400000
3500000
JcO00ooo
4000000
Soooooo
coooooo
10000000

rOCode

=1
kS

PO F1 || 29 shared_sm
.

Figure 4-58. Shared Memory Tab

VisualDSP++ 4.5 Linker and Utilities Manual

4-77

Managing Object Properties

. Right-click anywhere on the Memory Map pane.

Note: Do not right-click on a memory segment, output section,
input section, or overlay.

. Choose Properties.

The Shared Memory page of the Shared Memory Properties dia-
log box appears.

. In Output file name, specify the name of the output file for the

shared memory.

. In Processors sharing this memory, select the processors that share

the file whose name appears in Output file name. Selecting a pro-
cessor links its executable file against this shared memory file.

. Optionally, click the Elimination tab (see “Managing Elimination

Properties” on page 4-59) and specify options.

. Click OK.

4-78

VisualDSP++ 4.5 Linker and Utilities Manual

5 MEMORY OVERLAYS AND
ADVANCED LDF
COMMANDS

This chapter describes memory management with the overlay functions as
well as several advanced LDF commands used for memory management.

This chapter includes:

e “Overview” on page 5-2
Provides an overview of Analog Devices processor’s overlay strategy

e “Memory Management Using Overlays” on page 5-4
Describes memory management using the overlay functions

e “Advanced LDF Commands” on page 5-29
Describes LDF commands that support memory management with
overlay functions, the implementation of physical shared memory,
and multiprocessor support

This chapter generally uses code examples for Blackfin processors.
If used, other processor’s code examples are marked accordingly.

Visual DSP++ 4.5 Linker and Utilities Manual 5-1

Overview

Overview

Analog Devices processors generally have a hierarchy of memory. The fast-
est memory is the “internal” memory that is integrated with the processor
on the same chip. For some processors, like the Blackfin, there are two lev-
els of internal memory, with L1 memory being faster than L2 memory.
Users can configure their system to include “external” memory, usually

SDRAM or ROM that is connected to the part.

Ideally, a program can fit in internal memory for optimal performance.
Large programs need to be expanded to use external memory. When that
happens, accessing code and data in slower memory can affect program
performance.

One way to address performance issues is to partition the program so that
time-critical memory accesses are done using internal memory while parts
of the program that are not time-critical can be placed into external mem-
ory. The placement of [program] sections into specific memory sections
can be done using the LDF’s MEMORY { } and SECTION{} commands.

Another way to address performance issues is via memory architecture.
Some memory architectures, for example, Blackfin architecture, have
instruction and data cache. The processor can be configured to bring
instruction and data into faster memory for fast processing.

The third way to optimize performance is to use overlays. In an overlay
system, code and data that is in slower memory is moved into faster mem-
ory when it is to be used. For architectures without cache, this method is
the only way to have large parts of the program run out of fast internal
memory. Even on processors that have cache support, users may want to
use overlays to have direct control of what is placed in internal memory
for more deterministic behavior.

5-2 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The overlay manager is a user-defined function responsible for insuring
that a required symbol (function or data) within an overlay is in the
run-time memory when it is needed. The transfer usually occurs using the
direct memory access (DMA) capability of the processor. The overlay
manager may also handle other advanced functionality described in
“Introduction to Memory Overlays” on page 5-5 and “Overlay Managers”
on page 5-0.

Visual DSP++ 4.5 Linker and Utilities Manual 5-3

Memory Management Using Overlays

Memory Management Using Overlays

To reduce DSP system costs, many applications employ processors with
small amounts of on-chip memory and place much of the program code
and data off-chip. The linker supports the linking of executable files for
systems with overlay memory. Applications notes on the Analog Devices
Web site provide detailed descriptions of this technique; for example,

This section describes the use of memory overlays. The topics are:

“Introduction to Memory Overlays” on page 5-5
“Overlay Managers” on page 5-6

“Memory Overlay Support” on page 5-8

“Example — Managing Two Overlays” on page 5-13
“Linker-Generated Constants” on page 5-15
“Overlay Word Sizes” on page 5-16

“Storing Overlay ID” on page 5-19

“Overlay Manager Function Summary” on page 5-19
“Reducing Overlay Manager Overhead” on page 5-20
“Using PLIT{} and Overlay Manager” on page 5-24

The following LDF commands facilitate overlay features.

“OVERLAY_GROUP{}” on page 5-29
“PLIT{}” on page 5-33

5-4

VisualDSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Introduction to Memory Overlays

Memory overlays support applications that cannot fit the program instruc-
tions into the processor’s internal memory. In such cases, program
instructions are partitioned and stored in external memory until they are
required for program execution. These partitions are memory overlays,
and the routines that call and execute them are called overlay managers.

Overlays are “many to one” memory-mapping systems. Several overlays

may “live” (be stored) in unique locations in external memory, but “run”
y q y

(execute) in a common location in internal memory. Throughout the fol-

lowing description, the overlay storage location is referred to as the “live”

location, and the internal location where instructions are executed is

referred to as the “run” (run-time) space.

Overlay functions are written to overlay (.ovl) files, which are specified as
one type of linker executable output file. The loader can read .ov1 files to
generate an .1dr file.

Figure 5-1 demonstrates the concept of memory overlays. The two mem-
ory spaces are: internal and external. The external memory is partitioned
into the live space for four overlays. The internal memory contains the
main program, an overlay manager function, and two memory segments
reserved for execution of overlay program instructions (run space).

In this example, overlays 1 and 2 share the same run-time location within
internal memory, and overlays 3 and 4 also share a common run-time
memory. When FUNC_B is required, the overlay manager loads overlay 2 to
the location in internal memory where overlay 2 is designated to run.
When FUNC_D is required, the overlay manager loads overlay 3 into its des-
ignated run-time memory.

Visual DSP++ 4.5 Linker and Utilities Manual 5-5

Memory Management Using Overlays

External Memory Internal Memory
Overlay 1 FUNC_A Main: call FUNC_H
call .plt_FUNC_A
FUNC_B
Overlay 2 FUNC_C OverlayManager
FUNC_D
Overlay 3 »
FUNC_E \ Overlay 1 and 2
Runtime Memory
Overlay 4 FUNC_F
FUNC G Overlay 3 and 4
B Runtime Memory

Figure 5-1. Memory Overlays

The transfer is typically implemented with the processor’s Direct Memory
Access (DMA) capability. The overlay manager can also handle advanced
functionality, such as checking whether the requested overlay is already in
run-time memory, executing another function while loading an overlay,
and tracking recursive overlay function calls.

Overlay Managers

An overlay manager is a user-definable routine responsible for loading a
referenced overlay function or data buffer into internal memory (run
space). This task is accomplished with linker-generated constants and
PLIT{} commands.

5-6 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Linker-generated constants inform the overlay manager of the overlay’s
live address, where the overlay resides for execution, and the number of
words in the overlay PLIT{} commands inform the overlay manager of the
requested overlay and the run-time address of the referenced symbol.

An overlay manager’s main objective is to transfer overlays to a run-time
location when required. Overlay managers may also:

* Set up a stack to store register values

* Check whether a referenced symbol has already been transferred
into its run-time space as a result of a previous reference

If the overlay is already in internal memory, the overlay transfer is
bypassed and execution of the overlay routine begins immediately

* Load an overlay while executing a function from a second overlay
(or a non-overlay function)

You may require an overlay manager to perform other specialized tasks to
satisfy the special needs of a given application. Overlay managers are
application-specific and must be developed by the user.

Breakpoints on Overlays

The debugger relies on the presence of the __ov_start and__ov_end sym-
bols to support breakpoints on overlays. These symbols should appear in
the user’s overlay manager for debugger support of overlays. The symbol
manager sets a silent breakpoint at each symbol.

The more important of the two symbols is the breakpoint at _ov_end.
Code execution in the overlay manager passes through this location once
an overlay is fully swapped in. At this point, the debugger may probe the
target to determine which overlays are in context. The symbol manager
now sets any breakpoints requested on the overlays and resume execution.

Visual DSP++ 4.5 Linker and Utilities Manual 5-7

Memory Management Using Overlays

The second breakpoint is at symbol _ov_start. The label _ov_start is
defined in the overlay manager (in code always executed immediately
before the transfer of a new overlay begins). The breakpoint disables all of
the overlays in the debugger—the idea being that while the target is run-
ning in the overlay manager, the target is “unstable” in the sense that the
debugger should 7oz rely on the overlay information it may gather since
the target is “in flux”. The debugger still functions without this break-
point, but there may be some inconsistencies while overlays are being
moved in and out.

Memory Overlay Support

The overlay support provided by the DSP tools includes:
* Specification of the live and run locations of each overlay
* Generation of constants
* Redirection of overlay function calls to a jump table

Overlay support is partially user-designed in the . 1df file. You specify
which overlays share run-time memory and which memory segments
establish the “live” and “run” space.

Listing 5-1 shows the portion of an .1df file that defines two overlays.
This overlay declaration configures the two overlays to share a common
run-time memory space. The syntax for the OVERLAY_INPUT{} command is

described in “OVERLAY_INPUT{overlay_commands}” on page 3-63..

In this code example, 0VLY_one contains FUNC_A and lives in memory seg-
ment ovl_live; OVLY_two contains functions FUNC_B and FUNC_C and also
lives in memory segment ov1_live.

5-8 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Listing 5-1. Overlay Declaration in an . 1d T File

.dxe_code
{ OVERLAY_INPUT {
OVERLAY_QUTPUT (OVLY_one.ovl)
INPUT_SECTIONS (FUNC_A.doj(program))
} >ovi_live

OVERLAY_INPUT {
OVERLAY_OUTPUT (OVLY_two.ovT)
INPUT_SECTIONS (FUNC_B.doj(program) FUNC_C.doj(sec_code))
b >ovl_live
} >ovi_run

The common run-time location shared by overlays 0VLY_one and 0VLY_two
is within the ov1_run memory segment.

The .1df file configures the overlays and provides the information
necessary for the overlay manager to load the overlays. The information
includes the following linker-generated overlay constants (where # is the
overlay ID).

_ov_startaddress_#
_ov_endaddress_#
_ov_size_ i
_ov_word_size_run_it
_ov_word_size_Tlive_g#
_ov_runtimestartaddress_#

Each overlay has a word size and an address, which is used by the overlay
manager to determine where the overlay resides and where it is executed.
One exception, _ov_size_#, specifies the total size in bytes.

Visual DSP++ 4.5 Linker and Utilities Manual 5-9

Memory Management Using Overlays

Overlay “live” and “run” word sizes differ when internal memory and
external memory widths differ. A system containing either 16-bit-wide or
32-bit-wide external memory requires data packing to store an overlay
containing instructions.

The Blackfin processor architecture supports byte addressing that
uses 16-bit, 32-bit, or 64-bit opcodes. Thus, no data packing is
required.

Redirection

In addition to providing constants, the linker replaces overlay symbol ref-
erences to the overlay manager within your code. Redirection is
accomplished by means of a procedure linkage table (PLIT). A PLIT is
essentially a jump table that executes user-defined code and then jumps to
the overlay manager. The linker replaces an overlay symbol reference
(function call) with a jump to a location in the PLIT.

You must define PLIT code within the .1df file. This code prepares the
overlay manager to handle the overlay that contains the referenced sym-
bol. The code initializes registers to contain the overlay ID and the
referenced symbol’s run-time address.

The linker reserves one word (or two bytes in Blackfin processors)
at the top of an overlay to house the overlay ID.

The following is an example call instruction to an overlay function:
CALL FUNC_A;; /* Call to function in overlay */

If FUNC_A is in an overlay, the linker replaces the function call with the fol-
lowing instruction:

CALL .pTt_FUNC_A; / * Call to PLIT entry */

5-10 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The .p1t_FUNC_A is the entry in the PLIT that contains defined instruc-
tions. These instructions prepare the overlay manager to load the overlay
containing FUNC_A. The instructions executed in the PLIT are specified
within the LDF. The user must supply the PLIT code to match the over-
lay manager.

Listing 5-2 is an example PLIT definition from an .1df file, where register
RO is set to the value of the overlay ID that contains the referenced symbol
and register R1 is set to the run-time address of the referenced symbol. The
last instruction branches to the overlay manager that uses the initialized
registers to determine which overlay to load (and where to jump to exe-
cute the called overlay function).

Listing 5-2. PLIT Definitions in LDF

PLIT /7 Blackfin PLIT
{

RO.1 = PLIT_SYMBOL_OVERLAYID;
Rl1.h = PLIT_SYMBOL_ADDRESS;
R1.1 = PLIT_SYMBOL_ADDRESS;

JUMP QOverlayManager;
}

The linker expands the PLIT definition into individual entries in a table.
An entry is created for each overlay symbol as shown in Listing 5-2. The

redirection function calls the PLIT table for overlays 1 and 2 (Figure 5-2).
For each entry, the linker replaces the generic assembly instructions with

specific instructions (where applicable).

For example, the first PLIT entry in Figure 5-2 is for the overlay symbol
FUNC_A. The linker replaces the constant name PLIT_SYMBOL_OVERLAYID
with the ID of the overlay containing FUNC_A. The linker also replaces the
constant name PLIT_SYMBOL_ADDRESS with the run-time address of FUNC_A.

Visual DSP++ 4.5 Linker and Utilities Manual 5-11

Memory Management Using Overlays

Overlay 1

FUNC_A

Overlay 2
FUNC_B

FUNC_C

Internal Memory

call

call
call

call

Main:

.p1t_FUNC_A

.p1t_FUNC_C
.p1t_FUNC_B
.p1t_FUNC_C

Plit_table

.p1t_FUNC_A

.p1t_FUNC_B

.p1t_FUNC_C

RO.L = 0x00001;
R1.H = 0x00000;

R1I.L = 0x22000;
jumpOverlayManager;

RO.L 0x00002;
R1.H = 0x00000;

R1I.L = 0x22000;
jumpOverlayManager;

RO.L = 0x00002;
R1.H = 0x00000;

R1.L = 0x23000;
jumpOverlayManager;

Figure 5-2. Expanded PLIT Table (for TigerSHARC Processors)

When the overlay manager is called via the jump instruction of the PLIT
table, RO contains the referenced function’s overlay ID and R1 contains the
referenced function’s run-time address. The overlay manager uses the
overlay ID and run-time address to load and execute the referenced

function.

VisualDSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Example — Managing Two Overlays

Overlay manager are user-written and the following is an example of what
an overlay manager can do. This example has two overlays, each contain-
ing two functions. Overlay 1 contains the functions fft_first_two_stages
and fft_last_stage. Overlay 2 contains functions fft_middle_stages
and fft_next_to_last.

For examples of overlay manager source code, refer to the example pro-
grams shipped with the development software.

The overlay manager:
* Creates and maintains a stack for the registers it uses
* Determines whether the referenced function is in internal memory
* Sets up a DMA transfer
e Executes the referenced function

Several code segments for the LDF and the overlay manager follow with
appropriate explanations.

Listing 5-3. FFT Overlay Example 1

{ OVERLAY_INPUT
{
OVERLAY_OUTPUT (fft_one.ovl)
INPUT_SECTIONS (Fft_lst_last.doj(program))
b > ovl_livee // Overlay to live in section ovI_live

OVERLAY_INPUT
{
OVERLAY_OQUTPUT (fft_two.ovl)
INPUT_SECTIONS (Fft_mid.doj(program))
b > ovli_live // QOverlay to live in section ovl_live
} > ovil_run

Visual DSP++ 4.5 Linker and Utilities Manual 5-13

Memory Management Using Overlays

The two defined overlays (fft_one.ov1 and fft_two.ov1) live in memory
segment ov1_live (defined by the MEMORY {} command), and run in sec-
tion ov1_run. All instruction and data defined in the program memory
segment within the Fft_1st_last.doj file are part of the fft_one.ov]
overlay. All instructions and data defined in program within the file
Fft_mid.doj are part of overlay fft_two.ov1. The result is two functions
within each overlay.

The first and the last called functions are in overlay fft_one. The two
middle functions are in overlay fft_two. When the first function
(fft_one) is referenced during code execution, overlay id=1 is transferred
to internal memory. When the second function (fft_two) is referenced,
overlay id=2 is transferred to internal memory. When the third function
(in overlay fft_two) is referenced, the overlay manager recognizes that it is
already in internal memory and an overlay transfer does not occur.

To verify whether an overlay is in internal memory, place the overlay ID
of this overlay into a register (for example, P0) and compare this value to
the overlay ID of each loaded overlay. This is done by loading these over-
lay values into a register (for example, R1).

/* Is overlay already in internal memory? */
CC = p0 == pl;

/* 1If so, do not transfer it in. */
if CC jump skipped_DMA_setup;

Finally, when the last function (fft_one) is referenced, overlay id=1is
again transferred to internal memory for execution.

The following code segment calls the four FFT functions.

fftrad2:
call fft_first_2_stages;;
call fft_middle_stages;;
call fft_next_to_last;;
call fft_last_stage;;
wait:
NOP;;
Jjump wait;;

5-14 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The linker replaces each overlay function call with a call to the appropriate

entry in the PLIT. For this example, only three instructions are placed in
each entry of the PLIT.

PLIT

{
RO.1 = PLIT_SYMBOL_OVERLAYID;
Rl1.h = PLIT_SYMBOL_ADDRESS;
R1.1 = PLIT_SYMBOL_ADDRESS;

JUMP OverlayManager;
}

Register RO contains the overlay ID with the referenced symbol, and regis-
ter R1 contains the run-time address of the referenced symbol. The final
instruction jumps to the starting address of the overlay manager. The
overlay manager uses the overlay ID in conjunction with the overlay con-
stants generated by the linker to transfer the proper overlay into internal
memory. Once the transfer is complete, the overlay manager jumps to the
address of the referenced symbol stored in R1.

Linker-Generated Constants

The following constants, generated by the linker, are used by the overlay
manager.

.EXTERN _ov_startaddress_1;
.EXTERN _ov_startaddress_2;
.EXTERN _ov_endaddress_1;
.EXTERN _ov_endaddress_2;
.EXTERN _ov_size_1;

.EXTERN _ov_size_2;

.EXTERN _ov_word_size_run_1;
.EXTERN _ov_word_size_run_2;
.EXTERN _ov_word_size_live_1;
.EXTERN _ov_word_size_live_2;

Visual DSP++ 4.5 Linker and Utilities Manual 5-15

Memory Management Using Overlays

.EXTERN _ov_runtimestartaddress_1;
.EXTERN _ov_runtimestartaddress_2;

The constants provide the following information to the overlay manager.
* Opverlay sizes (both run-time word sizes and live word sizes)
 Starting address of the “live” space

* Starting address of the “run” space

Overlay Word Sizes

Each overlay has a word size and an address, which the overlay manager
uses to determine where the overlay resides and where it is executed.

Table 5-1 shows the linker-generated constants and examples of
processor-specific addresses.

Table 5-1. Linker-Generated Constants and Processor-Specific Addresses

Constant Blackfin Processors
_ov_startaddress_1 0x00000000
_ov_startaddress_2 0x00000010
_ov_endaddress_1 0x0000000F
_ov_endaddress_2 0x00001F
_ov_word_size_run_1 0x00000010
_ov_word_size_run_2 0x00000010
_ov_word_size_Tive_1 0x00000010
_ov_word_size_Tlive_2 0x00000010
_ov_runtimestartaddress_1 0xF0001000
_ov_runtimestartaddress_2 0xF0001000

5-16 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The overlay manager places the constants in arrays as shown in Figure 5-3
and Figure 5-4. The arrays are referenced by using the overlay ID as the
index to the array. The index or ID is stored in a Modify register (Jn/Kn
for TigerSHARC processors and M# for SHARC and Blackfin processors),
and the beginning address of the array is stored in the Index register

(dm/km for TigerSHARC processors and 1# for SHARC and Blackfin

processors).

.VAR TiveAddresses[2]
.VAR runAddresses[2]
VAR runWordSize[2]

VAR TiveWordSizel[2]

External Memory

Address 0x04000000
Overlay 1
(24 x 32-bits)
FUNC_A
0x0400007F
0x04000080
Overlay 2
(60 x 32-bits)
FUNC_B
FUNC_C
0x040000FF

_ov_startaddress_1,
_ov_startaddress_2;

_ov_runtimestartaddress_1,
_ov_runtimestartaddress_2;

_ov_word_size_run_1,

_ov_word_size_run_2;

_ov_word_size_Tlive_1,

_ov_word_size_Tlive_2;

Address 0x00001000

\5\\\\““““‘~%>>

/

Internal Memory

Overlay Runtime Memory
(40 x 48-bits)

Overlay 1 Overlay 2
16 x 48 bits 40 x 48 bits

Figure 5-3. TigerSHARC Overlay Live and Run Memory Sizes

VisualDSP++ 4.5 Linker and Utilities Manual

5-17

Memory Management Using Overlays

External Memory Internal Memory
Address 0x2 0000
Overlay 1 Address 0x8800
(24 x 32-bits) Overlay Runtime Memory
\ (40 x 48-bits)
0x2 0017 FUNC_A
0x2 0018 Overlay 1 Overlay 2
/ 16 x 48 bits 40 x 48 bits
Overlay 2
(60 x 32-bits)
FUNC_B
FUNC_C
0x2 0053

Figure 5-4. SHARC Opverlay Live and Run Memory Sizes

Figure 5-4 shows the difference between overlay “live” and “run” size in
SHARC processor memory:

* Overlays 1 and 2 are instruction overlays with a run word width of

48 bits.
* Because external memory is 32 bits, the live word size is 32 bits.

* Opverlay 1 contains one function with 16 instructions. Overlay 2
contains two functions with a total of 40 instructions.

* The “live” word size for overlays 1 and 2 are 24 and 60 words,
respectively.

* The “run” word size for overlay 1 and 2 are 16 and 40 words,
respectively.

5-18 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Storing Overlay ID

The overlay manager stores the ID of an overlay currently residing in
internal memory. When an overlay is transferred to internal memory, the
overlay manager stores the overlay ID in internal memory in the buffer
labeled ov_id_loaded. Before another overlay is transferred, the overlay
manager compares the required overlay ID with the ID stored in the
ov_id_loaded buffer. If they are equal, the required overlay is already in
internal memory and a transfer is not required. The PC is sent to the
proper location to execute the referenced function. If they are not equal,
the value in ov_id_loaded is updated and the overlay is transferred into its
internal run space via DMA.

On completion of the transfer, the overlay manager restores register values
from the run-time stack, flushes the cache, and then jumps the PC to the
run-time location of the referenced function. It is very important to flush
the cache before moving the PC to the referenced function. Otherwise,
when code is replaced or modified, incorrect code execution may occur. If
the program sequencer searches the cache for an instruction and an
instruction from the previous overlay is in the cache, that instruction may
be executed because the expected cache miss is not received.

Overlay Manager Function Summary
In summary, the overlay manager routine:

* Maintains a run-time stack for registers being used by the overlay
manager.

* Compares the requested overlay’s ID with that of the previously
loaded overlay (stored in the ov_id_loaded buffer).

* Sets up the DMA transfer of the overlay (if it is not already in
internal memory).

* Jumps the PC to the run-time location of the referenced function.

Visual DSP++ 4.5 Linker and Utilities Manual 5-19

Memory Management Using Overlays

These are the basic tasks that are performed by an overlay manager. More
sophisticated overlay managers may be required for individual
applications.

Reducing Overlay Manager Overhead

The example in this section incorporates the ability to transfer one overlay
to internal memory while the core executes a function from another over-
lay. Instead of the core sitting idle while the overlay DMA transfer occurs,
the core enables the DMA, and then begins executing another function.

This example uses the concept of overlay function loading and executing.
A function Toad is a request to load the overlay function into internal
memory but not execute the function. A function execution is a request
to execute an overlay function that may or may not be in internal memory
at the time of the execution request. If the function is not in internal
memory, a transfer must occur before execution.

In several circumstances, an overlay transfer can be in progress while the
core is executing another task. Each circumstance can be labeled as dezer-
ministic or non-deterministic. A deterministic circumstance is one where
you know exactly when an overlay function is required for execution. A
non-deterministic circumstance is one where you cannot predict when an
overlay function is required for execution. For example, a deterministic
application may consist of linear flow code except for function calls. A
non-deterministic example is an application with calls to overlay functions
within an interrupt service routine (ISR) where the interrupt occurs
randomly.

The example provided by the software contains deterministic overlay
function calls. The time of overlay function execution requests are known
as the number of cycles required to transfer an overlay. Therefore, an over-
lay function load request can be placed to complete the transfer by the
time the execution request is made. The next overlay transfer (from a load
request) can be enabled by the core, and the core can execute the instruc-
tions leading up to the function execution request.

5-20 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Since the linker handles all overlay symbol references in the same way
(jump to PLIT table and then overlay manager), it is up to the overlay
manager to distinguish between a symbol reference requesting the load of
an overlay function and a symbol reference requesting the execution of an
overlay function. In the example, the overlay manager uses a buffer in
memory as a flag to indicate whether the function call (symbol reference)
is a load or an execute request.

The overlay manager first determines whether the referenced symbol is in
internal memory. If not, it sets up the DMA transfer. If the symbol is not
in internal memory and the flag is set for execution, the core waits for the
transfer to complete (if necessary) and then executes the overlay function.
If the symbol is set for load, the core returns to the instructions immedi-
ately following the location of the function load reference.

Every overlay function call requires initializing the load/execute flag
buffer. Here, the function calls are delayed branch calls. The two slots in
the delayed branch contain instructions to initialize the flag buffer. Regis-
ter j4 is set to the value placed in the flag buffer, and the value in j4 is
stored in memory; 1 indicates a load, and 0 indicates an execution call. At
each overlay function call, the load buffer must be updated.

The following code is from the main FFT subroutine. Each of the four
function calls are execution calls so the pre-fetch (load) buffer is set to
zero. The flag buffer in memory is read by the overlay manager to deter-
mine whether the function call is a load or an execution call.

RO =0 (2);
p0.h = prefetch;
p0.1 = prefetch;
[PO] = RO;

call fft_first_2_stages;
RO =0 (2);

pO0.h = prefetch;
p0.1 = prefetch;
[PO] RO;

Visual DSP++ 4.5 Linker and Utilities Manual 5-21

Memory Management Using Overlays

call fft_middle_stages;

RO =0 (Z);
pO0.h = prefetch;
p0.1 = prefetch;
[PO] = RO;
call fft_next_to_last;
RO =0 (Z);
p0.h = prefetch;
p0.1 = prefetch;
[PO] = RO;

call fft_last_stage;

The next set of instructions represents a load function call.

RO =1 (2);
p0.h = prefetch;
p0.1 = prefetch;
[PO] = RO:

/* Set prefetch flag to 1 to indicate a load */
call fft_middle_stages;

/* Pre-loads the function into the */

/* overlay run memory. */

The code executes the first function and transfers the second function and
so on. In this implementation, each function resides in a unique overlay
and requires two run-time locations. While one overlay loads into one
run-time location, a second overlay function executes in another run-time
location.

The following code segment allocates the functions to overlays and forces
two run-time locations.

OVERLAY_GROUPIT {
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_one.ovl)

5-22 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

INPUT_SECTIONS(Fft_ovl.doj (program))
} >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT

{

ALGORITHM(ALL_FIT)

OVERLAY_OUTPUT(fft_three.ovl)

INPUT_SECTIONS(Fft_ovl.doj (program))
} >ovl_code // Overlay to live in section ovl_code

} > mem_code

OVERLAY_MGR ¢{
INPUT_SECTIONS(ovly_mgr.doj(program))

} > mem_code

OVERLAY_GROUPZ2 {
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_two.ovl)
INPUT_SECTIONS(Fft_ovl.doj(program))
} >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_last.ovl)
INPUT_SECTIONS(Fft_ovl.doj(program))
} >ovl_code // Overlay to live in section ovl_code

} > mem_code

The first and third overlays share one run-time location, and the second
and fourth (last) overlays share the second run-time location.

Additional instructions are included to determine whether the function
call is a load or an execution call. If the function call is a load, the overlay
manager initiates the DMA transfer and then jumps the PC back to the

Visual DSP++ 4.5 Linker and Utilities Manual 5-23

Memory Management Using Overlays

location where the call was made. If the call is an execution call, the over-
lay manager determines whether the overlay is currently in internal
memory. If so, the PC jumps to the run-time location of the called func-
tion. If the overlay is not in internal memory, a DMA transfer is initiated
and the core waits for the transfer to complete.

The overlay manager pushes the appropriate registers on the run-time
stack. It checks whether the requested overlay is currently in internal
memory. If not, the overlay manager sets up the DMA transfer. It then
checks whether the function call is a load or an execution call.

If it is a load call, the overlay manager begins the transfer and returns the
PC back to the instruction following the call. If it is an execution call, the
core is idle until the transfer is completed (if the transfer was necessary).
The PC then jumps to the run-time location of the function.

@ Specific applications may require specific code modifications,

which may eliminate some instructions. For instance, if your appli-
cation allows the free use of registers, you may not need a run-time
stack.

Using PLIT{} and Overlay Manager

The PLIT{} command inserts assembly instructions that handle calls to
functions in overlays. The instructions are specific to an overlay and are
executed each time a call to a function in that overlay is detected.

Refer to “PLIT{}” on page 5-33 for basic syntax information. Refer to
“Introduction to Memory Overlays” on page 5-5 for detailed information
on overlays.

Figure 5-5 shows the interaction between a PLIT and an overlay manager.

5-24 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Non-Overlay Memory

main()
{
int (*pf)() = X;
Y(O);
}

/* PLIT & overlay manager handle calls,
using the PLIT to resolve calls
and Toad overlays as needed */
.pTt_X: call OM

.plt_Y: call OM

Overfay 1 Storage XCO) {0} // function X defined
Overlay 2 Storage YO (...} // function Y defined
Run-time Overlay Memory // currently loaded overlay

Figure 5-5. PLITs and Overlay Memory; main() Calls to Overlays

To make this kind of interaction possible, the linker generates special sym-
bols for overlays. These overlay symbols are:

e ov_startaddress_#

® ov_endaddress_#

e _ov_size_#

* _ov_word_size_run_#
® ov_word_size live_ i

® ov_runtimestartaddress_#

Visual DSP++ 4.5 Linker and Utilities Manual 5-25

Memory Management Using Overlays

The # indicates the overlay number.

Overlay numbers start at 1 (not 0) to avoid confusion when these
elements are placed into an array or buffer used by an overlay
manager.

The two functions in Figure 5-5 describe different overlays. By default,
the linker generates PLIT code only when an unresolved function refer-
ence is resolved to a function definition in overlay memory.

The main function calls functions X () and Y (), which are defined in over-
lay memory. Because the linker cannot resolve these functions locally, the
linker replaces the symbols X and Y with .plit_X and .plit_v. Unresolved
references to X and Y are resolved to .plit_X and .plit_Y.

When the reference and the definition reside in the same executable file,
the linker does not generate PLIT code. However, you can force the linker
to output a PLIT, even when all references can be resolved locally. The
PLIT code sets up data for the overlay manager, which first loads the over-
lay that defines the desired symbol, and then branches to that symbol.

Inter-Overlay Calls

PLITs resolve inter-processor overlay calls, as shown in Figure 5-6, for sys-
tems that permit one processor to access the memory of another processor.

When one processor calls into another processor’s overlay, the call
increases the size of the .p1it section in the executable file that manages
the overlay.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading
overlays.

Placing global variables in non-overlay memory optimizes overlays.
This action ensures that the proper overlay is loaded before a global
variable is referenced.

5-26 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Inter-Processor Calls

PLITs resolve inter-processor overlay calls, as shown in Figure 5-6, for sys-
tems that permit one processor to access the memory of another processor.

Processor P1 Processor P2
Non-Overlay Memory Non-Overlay Memory
main()

P2_0Overlay_Manager()

-p1t_foo(): // manager routines

}

/* PLIT & overlay manager
handle calls using the
PLIT to resolve calls
and load overlays as
needed */

.plt_foo:
call P2_Overlay_Manager

Processor P2
Overlay Storage

P2 Overlay
foo() { ... !}

Processor P2
Overlay Memory

// current overlay

Figure 5-6. PLITs and Overlay Memory — Inter-Processor Calls

Visual DSP++ 4.5 Linker and Utilities Manual 5-27

Memory Management Using Overlays

When one processor calls into another processor’s overlay, the call
increases the size of the .p1it section in the executable file that manages
the overlay.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading
overlays.

Not putting global variables in overlays optimizes overlays. This
action ensures that the proper overlay is loaded before a global is
referenced.

5-28 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Advanced LDF Commands

Commands in the . 1df file define the target system and specify the order
in which the linker processes output for that system. The LDF commands
operate within a scope, which influences the operation of other commands
that appear within the range of that scope.

The following LDF commands support advanced memory management
functions, overlays, multiprocessor and shared memory features.

 “MPMEMORY{}” on page 5-44

e “OVERLAY_GROUP{}” on page 5-29
e “PLIT{}” on page 5-33

e “SHARED_MEMORY{}” on page 5-45

For detailed information on other LDF commands, refer to “LDF Com-
mands” on page 3-31.

OVERLAY_GROUP{}

The OVERLAY_GROUP{} command provides legacy support. This command
is deprecated and is not recommended for use. When running the linker,
the following warning may occur.

[Warning 1125341 More than one overlay group or explicit
OVERLAY_GROUP command is detected in the output section
'seg_datal'. Create a separate output section for each group
of overlays. Expert Linker makes the change automatically upon
reading the .1df file.

Memory overlays support applications whose program instructions and
data do not fit in the internal memory of the processor.

Visual DSP++ 4.5 Linker and Utilities Manual 5-29

Advanced LDF Commands

Overlays may be grouped or ungrouped. Use the OVERLAY_INPUT{}
command to support ungrouped overlays. Refer to “Memory Overlay
Support” on page 5-8 for a detailed description of overlay functionality.

Overlay declarations syntactically resemble the SECTIONS{} commands.
They are portions of SECTIONS{} commands.

The OVERLAY_GROUP{} command syntax is:

OVERLAY_GROUP
{
OVERLAY_INPUT

{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT()
INPUT_SECTIONS()
}

}

Figure 5-7 demonstrates grouped overlays.

OVERLAY_GROUP{

OVERLAY_INPUT{ ”t—olne'o"' Main: call
fft_one.ovl} overlay call
OVERLAY_INPUT{
fft_two.ovl} fft two.ovl
} _two.
OVERLAY_GROUP{ overlay

OVERLAY_INPUT{ Overlay Manager

fft_three.ovl}
— fft_three.ovl
OVERLAY_INPUT{ overlay
fft_last.ovl} Overlay Group 1
} Runtime
Memory

fft_last.ovl
overlay

Overlay Group 2
Runtime
Memory

Figure 5-7. Example of Overlays — Grouped

5-30 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

In the simplified examples in Listing 5-4 and Listing 5-5, the functions
are written to overlay (.ov1) files. Whether functions are disk files or
memory segments does not matter (except to the DMA transfer that
brings them in). Overlays are active only while being executed in run-time
memory, which is located in the program memory segment.

Ungrouped Overlay Execution

In Listing 5-4, as the FFT progresses and overlay functions are called in
turn, they are brought into run-time memory in sequence as four function
transfers. Figure 5-8 shows the ungrouped overlays.

“Live” locations reside in several different memory segments. The
linker outputs the executable overlay (.ov1) files while allocating
destinations for them in the program section.

fft_one.ovl Main: call
OVERLAY_INPUT
Overlay call
{fft_one.ovl}
fft_two.ovl Overlay
OVERLAY_INPUT
Overlay Manager
{fft_two.ovl}
fft_three.ovl Overlay Run-time

_
OVERLAY_INPUT Overlay > Memory
{fft_three.ovl}
fft_last.ovl
OVERLAY_INPUT

Overlay
{fft_last.ovl}

Figure 5-8. Example of Overlays — Not Grouped
Listing 5-4. LDF Overlays — Not Grouped

// This is part of the SECTIONS{} command for processor PO
// Declare which functions reside in which overlay.
// The overlays have been split into different segments

Visual DSP++ 4.5 Linker and Utilities Manual 5-31

Advanced LDF Commands

// in one file, or into different files.
// The overlays declared in this section (seg_pmco)
// will run in segment seg_pmco.

OVERLAY_INPUT { // Overlays to live in section ovl_code
ALGORITHM (ALL_FIT)
OVERLAY_OUTPUT (fft_one.ovl)
INPUT_SECTIONS (Fft_lst.doj(program)) } >ovl_code

OVERLAY_INPUT {
ALGORITHM (ALL_FIT)
OVERLAY_QUTPUT (fft_two.ovl)
INPUT_SECTIONS (Fft_2nd.doj(program)) } >ovl_code

OVERLAY_INPUT {
ALGORITHM (ALL_FIT)
OVERLAY_QUTPUT (fft_three.ovl)
INPUT_SECTIONS (Fft_3rd.doj(program)) } >ovl_code

OVERLAY_INPUT f{
ALGORITHM (ALL_FIT)
OVERLAY_QUTPUT (fft_Tast.ovl)
INPUT_SECTIONS (Fft_Tast.doj(program)) } >ovl_code

Grouped Overlay Execution

Listing 5-5 shows a different implementation of the same algorithm.
The overlay functions are grouped in pairs. Since all four pairs of routines
reside simultaneously, the processor executes both routines before paging.

Listing 5-5. LDF Overlays — Grouped

OVERLAY_GROUP { // Declare first overlay group
OVERLAY_INPUT { // QOverlays to live in section ovl_code
ALGORITHM (ALL_FIT)

OVERLAY_QUTPUT (fft_one.ovl)
INPUT_SECTIONS (Fft_lst.doj(program))
} >ovl_code

OVERLAY_INPUT f{

5-32 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

ALGORITHM (ALL_FIT)
OVERLAY_OUTPUT (fft_two.ov1)
INPUT_SECTIONS (Fft_mid.doj(program))

} >ovl1_code
}
OVERLAY_GROUP { // Declare second overlay group
OVERLAY_INPUT { // QOverlays to live in section ovl_code
ALGORITHM (ALL_FIT)

OVERLAY_OQUTPUT (fft_three.ovl)
INPUT_SECTIONS (Fft_last.doj(program))
} >ovl1_code

OVERLAY_INPUT ¢{
ALGORITHM (ALL_FIT)
OVERLAY_OQUTPUT (fft_last.ovl)
INPUT_SECTIONS (Fft_last.doj(program))
} >ovl1_code

PLIT{}

The linker resolves function calls and variable accesses (both direct and
indirect) across overlays. This task requires the linker to generate extra
code to transfer control to a user-defined routine (an overlay manager)
that handles the loading of overlays. Linker-generated code goes in a spe-
cial section of the executable file, which has the section name .PLIT.

The PLIT{} command in an .1df file inserts assembly instructions that
handle calls to functions in overlays. The assembly instructions are specific
to an overlay and are executed each time a call to a function in that overlay
is detected.

The PLIT{} command provides a template from which the linker generates
assembly code when a symbol resolves to a function in overlay memory.
The code typically handles a call to a function in overlay memory by
calling an overlay memory manager. Refer to “Memory Overlay Support”
on page 5-8 for a detailed description of overlay and PLIT functionality.

Visual DSP++ 4.5 Linker and Utilities Manual 5-33

Advanced LDF Commands

A PLIT{} command may appear in the global LDF scope, within

a PROCESSOR{} command or within a SECTIONS{} command. For an
example of using a PLIT{} command, see “Using PLIT{} and Overlay
Manager” on page 5-24.

When writing the PLIT{} command in the LDF, the linker generates an
instance of the PLIT, with appropriate values for the parameters involved,
for each symbol defined in overlay code.

PLIT Syntax

Figure 5-9 shows the general syntax of the PLIT{} command and indicates
how the linker handles a symbol (symbo1) local to an overlay function.

PLIT{plit_commands}

instruction
symbol = PLIT_SYMBOL_OVERLAYID [symbol]
symbol = PLIT_SYMBOL_ADDRESS
symbol = PLIT_DATA_OVERLAY_ID

Figure 5-9. PLIT{} Command Syntax Tree

Parts of the PLIT{} command are:

* instruction — None, one, or multiple assembly instructions.
The instructions may occur in any reasonable order in the com-
mand structure and may precede or follow symbols. The following
two constants contain information about symbo/ and the overlay in
which it occurs. You must supply instructions to handle that
information.

® PLIT_SYMBOL_OVERLAYID — Returns the overlay ID

* PLIT_SYMBOL_ADDRESS — Returns the absolute address of the
resolved symbol in run-time memory

5-34 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Command Evaluation and Setup

The linker first evaluates the sequence of assembly code in each
plit_command. Each line is passed to a processor-specific assembler, which
supplies values for the symbols and expressions. After evaluation, the
linker places the returned bytes into the .PLIT output section and manages
the addressing in that output section.

To help write an overlay manager, the linker generates PLIT constants for
each symbol in an overlay. Data can be overlaid, just like code. If an over-
lay-resident function calls for additional data overlays, include an
instruction for finding them.

After the setup and variable identification are completed, the overlay itself
is brought (via DMA transfer) into run-time memory. This process is con-
trolled by assembly code called an overlay manager.

The branch instruction, such as jump OverlayManager, is normally
the last instruction in the PLIT{} command.

Overlay PLIT Requirements and PLIT Examples

Both the .p1it output section (allocating space for PLIT) and the PLIT{}
command are necessary when specifying PLIT for overlays. The .14df file
must allocate space in memory to hold PLITs built by the linker. Typi-
cally, that memory resides in the program code memory segment.

No input section is associated with the .p1it output section. The LDF
allocates space for linker-generated routines, which do not contain (input)
data objects.

A typical LDF declaration for that purpose is:

!/ ... [In the SECTIONS command for Processor PO]
// Plit code is to reside and run in mem_program segment
.plit {} > mem_program

Visual DSP++ 4.5 Linker and Utilities Manual 5-35

Advanced LDF Commands

This segment allocation does not take any parameters. You write the struc-
ture of this command according to the PLIT syntax. The linker creates an
instance of the command for each symbol that resolves to an overlay. The
linker stores each instance in the .p1it output section, which becomes
part of the program code’s memory segment.

A PLIT{} command may appear in the global LDF scope, within a
PROCESSOR{} command or within a SECTIONS{} command.

Simple PLIT — States are not Saved

A simple PLIT merely copies the symbol’s address and overlay ID into
registers and jumps to the overlay manager. The following fragment is
extracted from the global scope (just after the MEMORY { } command)

of sample fft_group.1df. Verify that the contents of P0 and P1 are either
safe or irrelevant. For example,

PLIT

{
PO = PLIT_SYMBOL_OVERLAY_ID;
Pl.L = PLIT_SYMBOL_ADDRESS;
Pl1.H = PLIT_SYMBOL_ADDRESS;

P _OverlayManager;

}

As a general rule, minimize overlay transfer traffic. Improve performance
by designing code to ensure overlay functions are imported and use mini-
mal (or no) reloading.

PLIT — Summary

A PLIT is a template of instructions for loading an overlay. For each
overlay routine in the program, the linker builds and stores a list of PLIT
instances according to that template, as it builds its executable file. The
linker may also save registers or stack context information. The linker does
not accept a PLIT without arguments.

If you do not want the linker to redirect function calls in overlays, omit
the PLIT{} commands entirely.

5-36 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

To help write an overlay manager, the linker generates PLIT_SYMBOL con-
stants for each symbol in an overlay.

The overlay manager can also:

* Be helped by manual intervention. Save the target’s state on the
stack or in memory before loading and executing an overlay func-
tion, to ensure it continues correctly on return. However, you can
implement this feature within the PLIT section of your LDF.
Note: Your program may not need to save this information.

 Initiate (jump to) the routine that transfers the overlay code to
internal memory, after given the previous information about its
identity, size and location: _OverlayManager. “Smart” overlay man-
agers first check whether an overlay function is already in internal
memory to avoid reloading the function.

Linking Multiprocessor Systems

The linker has several commands that can be used to build executable
images for multiprocessor systems. Selecting the right multiprocessor link-
ing commands and how to use them will depend on both the system you
are building and which Analog Devices processor is in your system.

The linker will only support linking for homogeneous multiprocessors.
That is the system uses the same kind of processor throughout. If you are
building a heterogeneous multiprocessing environment you will need to
build the system with more than one link step, using an LDF for each
kind of processor in your system.

A homogeneous multiprocessor system can be linked with a single LDF
file. The LDF file will have a PROCESSOR{} command that describes which
object files and libraries are to be linked into the memory for each proces-
sor. Every PROCESSOR({} command will produce a separate executable file

(.dxe).

Visual DSP++ 4.5 Linker and Utilities Manual 5-37

Linking Multiprocessor Systems

For processors that have the ability to access the local memory of other
processors, for example through link ports, the MPMEMORY {} command can
be used to define the offset of each processor's physical memory. The
MPMEMORY { } command is described below.

In addition, it is possible to define what code and data is to be placed into
memory that is shared between processors. There are two commands avail-
able for placing objects and libraries into shared memory:

SHARED_MEMORY { } and COMMON_MEMORY { }. Which of these commands you
use will depend on how you intend to use the shared memory and the lim-
itations of the processor architecture. The SHARED_MEMORY { } command can
be used if the shared memory in the system does not contain any refer-
ences to memory that is internal to an individual processor, or if the
processor architecture supports addressing the internal memory of other
processors. For other processors, for example the ADSP-BF561, where one
processor can not access the internal memory of the other processor, the
COMMON_MEMORY { } command should be used. These commands, and their
usage, are described in more detail below.

Regardless of which of the linker commands you use, you will have to
make decisions regarding which code is going to run on which processor,
where data will be placed, and what processors have access to what data.
Once you have a partitioning of your code and data you can use the LDF
to instruct the linker on placement.

Selecting Code and Data for Placement

There are many ways to identify code and data objects for placement in a
multiprocessor system. The methods are the same methods used when
being selective about placement of objects in internal or external memory.
There are advantages and disadvantages for each of the methods, and an
LDF may use a combination of many of these methods.

5-38 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Using LDF Macros

The easiest way to partition code and data between processors is to explic-
itly place the object files by name. In the example below, the code that is

to be placed in CoreA are in object files that are explicitly named in the
LDF.

PROCESSOR COREA

{

OQUTPUT ($COMMAND_LINE_OUTPUT_DIRECTORY\corea.dxe)
SECTIONS

{

code

{

INPUT_SECTIONS (corea.doj(program) coreamain.doj(program))
} > CoreaCode

}

PROCESSOR COREB

{

OUTPUT ($COMMAND_LINE_OQOUTPUT_DIRECTORY\coreb.dxe)
SECTIONS

{

code

{

INPUT_SECTIONS (coreb.doj(program) corebmain.doj(program))
} > CorebCode

}
Doing placement explicitly by object file can be made easier through the

use of LDF macros. The example could be simplified with macros for the
objects to be placed in each core.

$COREAQOBJECTS
$COREBOBJECTS

corea.doj, coreamain.doj;

coreb.doj, corebmain.doj;

Visual DSP++ 4.5 Linker and Utilities Manual 5-39

Linking Multiprocessor Systems

PROCESSOR COREA
{

SECTIONS
{
code
{
INPUT_SECTIONS ($COREAOBJECTS(program))
} > CoreaCode
}

By using an LDF macro it is much easier to make changes if functionality
is going to be moved from one processor to another.

Object files can appear in more than one LDF macro. Depending on the
system, the same object file may be mapped to more than one processor.

The main advantages of explicitly naming object files when placing object
files to processors is that it is explicit in the LDF where each object file
goes. By using LDF macros the list of object files can be localized. A disad-
vantage for explicitly naming object files is that every time a new file is
added to your system the LDF must be modified to explicitly reference the
file. Also, it is not possible to share the LDF with other projects that are
built on the same multiprocessing system.

5-40 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Mapping by Section Name

Both the compiler and assembler provide you the ability to give names to
sections in the object files. In the assembler this is done using the .SEC-
TION directive:

.SECTION Corea_Code;

The compiler has two ways to name a section. The first method uses the
section() qualifier:

section("Corea_Code") main() {...}

The section name can also be specified using the section pragma. Using
the pragma is recommended since it is more flexible and will also result in
code that is portable.

f#fipragma section ("Corea_Code")
mainC) {...}

Users can use section names to identify code that is to be placed with a
particular processor.

PROCESSOR COREA

{

OUTPUT ($COMMAND_LINE_OQOUTPUT_DIRECTORY\corea.dxe)
SECTIONS

{

code

{

INPUT_SECTIONS ($0BJECTS(Corea_Code))

} > CoreaCode

Visual DSP++ 4.5 Linker and Utilities Manual 5-41

Linking Multiprocessor Systems

The advantage of mapping by section name is that the LDF can be made
generic and reused for other projects using the same multiprocessor. The
disadvantage is that it requires making changes to C and assembly source
code files to make the mapping. It also may not be possible to modify
source code for some libraries or code supplied by third parties.

Mapping Using Attributes

Beginning with VisualDSP++ 4.5, the linker supports mapping by
attributes. When compiling and assembling, users can assign attributes to
object files. These attributes can then be used to filter object files for
inclusion (or exclusion) during mapping. Users can assign attributes to
object files that identify a core that the object files should be mapped to, a
core that an object file shouldn't be mapped to, code that is safe to be
shared by all processors, etc.

The runtime libraries are built using attributes so it possible to select areas
within the runtime libraries for placement. For example, it is possible to
select the objects in the runtime libraries that are needed for I/O and have
them only placed in external memory.

An advantage of using attributes is that the LDF can be made generic and
reused for other projects using the same multiprocessor. The disadvantage
is that changing where an object is placed requires rebuilding the object
file in order to change the attributes. Also, if all of the object files are
being built in the same project it can be inconvenient to use file specific
build options. It also may not be possible to rebuild the object for some
libraries.

Mapping Using Archives

Another way to partition files is to build an object archive or library.

5-42 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

As an example, you could create a project just for building the object files
to be placed in CoreA. The target of the project would be an archive
named corea.d1b. The project that actually did the linking of the multi-
processor system would include corea.dlb. In fact it is easiest to build a
project group in which the linking project would have dependencies on
the projects that build the archives it depends on. The LDF would then
use the archive for linking:

PROCESSOR COREA
{
OUTPUT ($COMMAND_LINE_OUTPUT_DIRECTORY\corea.dxe)
SECTIONS
{
code
{
INPUT_SECTIONS (corea.dlb(program))
} > CoreaCode

}

The disadvantage of using archives for mapping is that it requires organiz-
ing more than one project. The advantage is that it can be easy to add,
delete, or move objects from one processor to another. Removing an
object from a project will remove it from the archive when the project is
rebuilt. Adding a file to a project that builds an archive will automatically
add the file to the link without needing to make changes to source. This

flexibility makes it easy to create an LDF that can be shared by users
building for the same architecture.

The COMMON_MEMORY { } command requires archives when mapping objects
into memory that is shared between processors. This command is
described in more detail below.

Visual DSP++ 4.5 Linker and Utilities Manual 5-43

Linking Multiprocessor Systems

MPMEMORY{}

@ The MPMEMORY { } command is not used with Blackfin processors.

The MPMEMORY { } command specifies the offset of each processor’s physical
memory in a multiprocessor target system. After you declare the processor
names and memory segment offsets with the MPMEMORY {} command, the
linker uses the offsets during multiprocessor linking. Refer to “Memory
Overlay Support” on page 5-8 for a detailed description of overlay
functionality.

Your .1df file (and other .1df files that it includes), may contain one
MPMEMORY { } command only. The maximum number of processors that you
can declare is architecture-specific. Follow the MPMEMORY { } command with
PROCESSOR processor_name!)} commands, which contain each processor’s
MEMORY { } and SECTIONS{} commands.

Figure 5-10 shows MPMEMORY { } command syntax.

MPMEMORY { shared_segment_commands}
| |

processor_name {
START(address_expression)
}

Figure 5-10. MPMEMORY/{} Command Syntax Tree

5-44 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Definitions for parts of the MPMEMORY {} command’s syntax are:

* shared_segment_commands — Contains processor_name declara-
tions with a START{} address for each processor’s offset in
multiprocessor memory. Processor names and linker labels follow
the same rules. For more information, refer to “LDF Expressions”

on page 3-19.

* processor_name{placement_commands} - Applies the
processor_name offset for multiprocessor linking.
Refer to “PROCESSOR({}” on page 3-48 for more information.

@ The MEMORY { } command specifies the memory map for the target

system. The LDF must contain a MEMORY { } command for global
memory on the target system and may contain a MEMORY { } com-
mand that applies to each processor’s scope. An unlimited number
of memory segments can be declared within each MEMORY {} com-
mand. For more information, see “MEMORY{}” on page 3-38.
See “Memory Characteristics Overview” on page 2-27 for memory
map descriptions.

SHARED_MEMORY{}

The SHARED_MEMORY{} command creates an executable output that maps
code and data into a memory space that is shared by multiple processors.
The output is given the extension .SM for shared memory. The
SHARED_MEMORY { } command is similar in structure to the PROCESSOR{ }
command. The PROCESSOR{} command contains, among other commands,
an OUTPUT () command that specifies a . DXE file for the output, and uses
SECTIONS{} command to map selected sections from object files into spec-
ified sections in processor memory. Similarly, the SHARED_MEMORY { }
command uses an OUTPUT() command and SECTIONS{} command to create
a .SM file.

Figure 5-11 on page 5-46 shows the syntax for the SHARED_MEMORY { } com-
mand, followed by definitions of its components.

Visual DSP++ 4.5 Linker and Utilities Manual 5-45

Linking Multiprocessor Systems

SHARED_MEMORY
{
QUTPUT (file_name.SM)

SECTIONS {section_commands}
}

Figure 5-11. SHARED_MEMORY{} Command Syntax
The command components are:

* OUTPUT() — Specifies the output file name (fi7e_name.SM) of the
shared memory executable (. sm) file. An OUTPUT() command in a
SHARED_MEMORY {} command must appear before the SECTIONS{)
command in that scope.

* SECTIONS() — Defines sections for placement within the shared
memory executable (.sm) file.

* The LDF will have a MEMORY {} command that defines the memory
configuration for the multiprocessor. The SHARED_MEMORY {} com-
mand must appear in the same LDF scope as the MEMORY { |
command. The PROCESSOR{} commands for each processor in the
system should also appear at this same LDF scope.

Figure 5-12 on page 5-47 shows the scope of SHARED_MEMORY {} commands
in the LDE

The mapping of objects into processors and shared memory is made useful
by being able to have processors and shared memory "link against” each
other. The LINK_AGAINST () command specifies a . DXE file or . SM file gen-
erated by the mapping for another processor or shared memory and makes
the symbols in that file available for resolution for the current processor.

5-46 Visual DSP++ 4.5 Linker and Utilities Manual

—{>

Memory Overlays and Advanced LDF Commands

The MEMORY({} command appears in a scope that is available to any
SHARED_MEMORY {} command or PROCESSOR{} command that uses the shared
memory. To achieve this type of scoping across multiple Tinks, place
the shared MEMORY{} command in a separate LDF and use the INCLUDE()
command to include that memory in both Tinks.

MEMORY
{ my_shared_ram
{ TYPE(PM RAM) START(5120k) LENGTH(8k) WIDTH(32)
} }

— SHARED_MEMORY

{
OUTPUT (shared.sm)

SECTIONS
{
my_shared_sections {section_commands)
> my_shared_ram
}
}
PROCESSOR pO{
processor_commands with link against shared memory |
PROCESSOR plf

processor_commands with link against shared memory}

Figure 5-12. LDF Scopes for SHARED_MEMORY/{}

When the .DXE or .M file that is named in the LINK_AGAINST () command
is generated by another . 1df file, the linker will read in the executable file
just as it reads in object files and archives. When the .DXE of . SM file that is
named is being generated in the same .1df file the linker will use the exe-

Visual DSP++ 4.5 Linker and Utilities Manual 5-47

Linking Multiprocessor Systems

cutable file as it is being generated. When the processor and shared
memory appear in the same LDF the order that the processor or shared
memory commands appear is not important.

For example, consider that the object file data.doj contains the global
data buffer DBUF, and the object file main.doj contains code that refer-
ences that data. Further, the data buffer DBUF is placed in shared
memory so that it is available to multiple processors, while main.doj con-
tains code that is going to be executed from CoreA. An LDF that does this
mapping would include:

SHARED_MEMORY

{

QUTPUT("shared_memory.sm")
SECTIONS

{

data_sm

{
INPUT_SECTIONS(data.doj(data))
} > mem_shared_mem

}

}

PROCESSOR CoreA

{

QUTPUT("corea.dxe™")
LINK_AGAINST("shared_memory.sm")
SECTIONS

{

code_corea

{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}

}

5-48 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

In the example LDF, the SHARED_MEMORY {} command creates the output
file shared_memory.sm. The data from the object file data.doj is mapped
into the output file and placed into the memory named mem_shared_mem.
(The memory definition is not shown.) Later in the LDF the mapping for
CoreA is done with a PROCESSOR{ } command. In addition to creating the
output file corea.dxe and mapping the program sections from the object
file main.doj, it also "links against" the file corea.dxe.

The LINK_AGAINST() command has the following effect. After all of the
objects and sections for processor CoreA have been mapped, the symbol
table in the file shared_memory.sm is used to find any symbols that could
not be resolved. In the example, the object file main.doj contains a refer-
ence to the symbol DBUF but none of the object files mapped into CoreA
contained that symbol. The symbols in shared_memory.sm are then read
and DBUF is found to have been mapped into shared memory. The linker
will resolve the reference in CoreA to be the address in shared memory
that DBUF was mapped into by processing the SHARED_MEMORY { } com-
mand that produced shared_memory.sm.

The processing order described above is slightly modified if there are sym-
bols that have weak linkage. A symbol with strong linkage in an executable
named in a LINK_AGAINST() command will take precedence over a "weak"
symbol.

The LINK_AGAINST() command takes effect only after mapping of objects
and libraries in the input sections for the processor. Object from libraries
will be mapped if needed to resolve references, even if those symbols are
available in the shared memory .SM file named in the LINK_AGAINST()
command. If both the processor and shared memory both map the same
library files it is possible that an object from that library may both get
mapped into the processor and the shared memory. The multiple mapping
is unlikely to make the program incorrect, but it can be a waste of
memory.

Visual DSP++ 4.5 Linker and Utilities Manual 5-49

Linking Multiprocessor Systems

The LINK_AGAINST() command can also appear within a SHARED_MEMORY { }
command. It is possible for a shared memory to link against a processor
.dxe. The LINK_AGAINST() works in the same way. After mapping objects
and libraries that are listed in INPUT_SECTIONS() commands, if there are
symbols that have not been resolved, the .dxe (or .sm) file that is specified
in the LINK_AGAINST () will be used.

It is possible for more than one LINK_AGAINST() command to appear in
the same processor or shared memory. The .dxe or .sm files that are named
will be searched in the order they appear to resolve references.

It is also possible to have a processor link against a shared memory and
have the same shared memory link against that processor. The bidirec-
tional link against can allow code in the processor memory to call code
that exists in shared memory that can then call code that is in the proces-
sor memory. As mentioned above, linking behavior does not depend on
the order that processors and shared memory appear in the . 1df file. This
order independence is still true with a bidirectional link against.

Note that references from shared memory into processor memory may not
be supported by all processors. For example, for a multi-core Blackfin pro-
cessor like the ADSP-BF561, it is not possible for code executing in one
core to access memory that is in internal memory of the other processor. If
there is code in shared memory that makes a reference to internal memory
of CoreA, that code can only be executed on CoreA. If CoreB executes the
code, once CoreB tries to reference the internal memory on CoreA the
part will halt because of a hardware exception.

Also note that on parts where processors can access the internal memory of
the other processors, that access may be slow and affect the performance of
your program.

If you don't have LINK_AGAINST() commands within a SHARED_MEMORY { }
command then there won't be any references from shared memory back to
internal memory of any of the cores. If your system needs to have refer-
ences from shared memory back to processors it is best to use the

5-50 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

COMMON_MEMORY { } command. If there are references from shared memory
back to processor internal memory for the Blackfin processors,
COMMON_MEMORY { } is required.

One solution that can be used is to partition shared memory into a section
reserved for CoreA, a section reserved for CoreB, and a section that is
memory shared between the two processors. The partitioning is managed
by using the MEMORY {} command. Then the PROCESSOR{} command for
CoreA will map into the CoreA internal memory and into the section of
shared memory reserved for CoreA. It will also typically link against the
shared memory. The PROCESSOR{} command for CoreB will map into the
CoreB internal memory and into the section of shared memory reserved
for CoreB, and link against the shared memory. The SHARED_MEMORY { }}
command is used to map the program and data that is common to both
processors.

COMMON_MEMORY{}

The COMMON_MEMORY { } command is another way to map objects into mem-
ory that is shared by more than one processor. The mapping is done in the
context of the processors that will use the shared memory; these processors
are identified as a "master” of the common memory. The

COMMON_MEMORY { } command will also manage references from the shared
memory back to internal memory of the processors so that each processor
will not reference memory that is in another processor's internal memory.
The COMMON_MEMORY { } command looks like the PROCESSOR{} and
SHARED_MEMORY { } commands in that it will use INPUT_SECTIONS() com-
mands for mapping. A restriction is that within a COMMON_MEMORY { }
command only archives may be mapped and not individual object files.

The following example shows the basic components of the
COMMON_MEMORY { } command.

COMMON_MEMORY
{

Visual DSP++ 4.5 Linker and Utilities Manual 5-51

Linking Multiprocessor Systems

OUTPUT("common_memory.cm")
MASTERS(CoreA, CoreB)
SECTIONS

{

data_cm

{
INPUT_SECTIONS(common.dlb(data))
} > mem_common_mem

}

}

PROCESSOR CoreA

{

OUTPUT("corea.dxe")
SECTIONS

{

code_corea

{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}

}

PROCESSOR CoreB

{

QUTPUT("coreb.dxe™")
SECTIONS

{

code_corea

{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}

}

5-52 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The COMMON_MEMORY {} command uses the OUTPUT() to name the file that
will hold the result of the mapping. The command uses the extension .CM
for the file. The COMMON_MEMORY { } command also uses the SECTIONS{ }
command to map files into memory segments. However, the only files
that can be mapped are archive (.d1b) files. Individual object files can not
be mapped from inside of a COMMON_MEMORY { } command.

The biggest syntactic difference in the COMMON_MEMORY {} command is the
The MASTERS() command. This command explicitly identifies the proces-
sors that are going to share the memory. The processor names are the
name used in the PROCESSOR{} commands also appearing in the same . 1df
file. Within the PROCESSOR{} command there is no need for a
LINK_AGAINST() command specifying the common memory. The MAS-
TERS() command describes the connection.

The mapping of the archives in the COMMON_MEMORY { } is really done when
the mapping is done for the masters named in the The MASTERS(). While
mapping for each of the processors named as a master, the linker will treat
each INPUT_SECTIONS() command in the common memory as if they
appeared within the PROCESSOR{} command. Since only archives are
allowed, only the objects within the archive that are needed to satisfy ref-
erences for the processor will be mapped. The mapping will be into the
memory sections in the common memory.

For example, the effect of the previous example will be as if the
INPUT_SECTIONS() in the COMMON_MEMORY { } were part of the PROCESSOR{ }:

// NOT ACTUAL LDF - EFFECT OF COMMON_MEMORY{}
PROCESSOR CoreA

{

QUTPUT("corea.dxe™")

SECTIONS

{

code_corea

{

INPUT_SECTIONS(main.doj(program))

Visual DSP++ 4.5 Linker and Utilities Manual 5-53

Linking Multiprocessor Systems

} > corea_a_mem

// when mapping CoreA, the input sections from
// the common memory are mapped as if they were
// part of this PROCESSOR{} because CoreA is
// Tisted as a MASTER

data_cm

{

INPUT_SECTIONS(common.dlb(data))

} > mem_common_mem

}

}

Of course, by specifying with COMMON_MEMORY { } the same mapping for the
objects in common.d1b will also be done for CoreB, and the objects that are
shared by the two processors will only be mapped once into the shared
memory space.

The mapping will be done for each of the processors named as a master.
Some symbols will be needed for each processor and in simple cases the
common memory will share the code or data between the processors. If
there is an object that is mapped into common memory that has a refer-
ence that goes back into internal memory of a processor, the linker will if
necessary make a copy of the object file so that both cores can safely use
common memory. This behavior is described in the example below.

To demonstrate the complexities of multiprocessing linking the example
has several dependencies. The abbreviated C examples show the depen-
dencies for several object files.

// file mainA.doj

void mainA() {

// the main code in CoreA references 2 common functions
commonfuncl();

commonfunc2();

}

// file mainB.doj

5-54 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

void mainB() {

// the main code in CoreB references 3 common functions
commonfuncl();

commonfunc2();

commonfunc3();

}

// file funcl.doj

void commonfuncl() {

// a common function with a reference to a Tibrary
Tibfuncl();

}

// file func2.doj

void commonfunc2() {

// a common function with a reference to a library
Tibfunc2();

}

// file func3.doj

void commonfunc3() {

// no further references

}

// file Tibfuncl.doj and libfunc2.doj have no further references
// create archives for common files

elfar -c common.dlb funcl.doj func2.doj func3.doj
elfar -c commonlib.dlb Tibfuncl.doj Tibfunc2.doj

Each of the processors has its own main function. Each of the main func-
tions makes calls to common functions. Some of the common functions
make further calls to library functions. The common functions have been
placed in an archive named common.d1b and the library files have been
placed in an archive named commonlib.d1b.

The LDF to build the multiprocessor system is shown below.

COMMON_MEMORY
{

Visual DSP++ 4.5 Linker and Utilities Manual 5-55

Linking Multiprocessor Systems

OUTPUT("common_memory.cm")
MASTERS(CoreA, CoreB)

SECTIONS

{

data_cm

{

// the common Tibraries are mapped into common memory
INPUT_SECTIONS(common.dIb(program) commonlib.dlb(program))
} > mem_common_mem

}

}

PROCESSOR CoreA

{

QUTPUT("corea.dxe™")

SECTIONS

{

code_corea

{

INPUT_SECTIONS(mainA.doj(program))

// for performance reasons map libfuncl.doj into this core
INPUT_SECTIONS(Tibfuncl.doj(program))
} > corea_a_mem

}

}

PROCESSOR CoreB

{

QUTPUT("coreb.dxe™")

SECTIONS

{

code_coreb

{

INPUT_SECTIONS(mainB.doj(program))

} > corea_b_mem

5-56 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

}
}

Notice that processor CoreA explicitly maps 1ibfuncl.doj into its inter-
nal memory. CoreB does not map a version of Tibfuncl.doj. Both
processors link against the common memory that does mapping against
the archives that contain common functions.

To understand the operation of COMMON_MEMORY { } we will walk through
the mapping of the objects into memory, beginning with CoreA. The
INPUT_SECTIONS() commands for CoreA will map mainA.doj and
libfuncl.doj into the memory corea_a_mem. The references to
commonfuncl and commonfunc2 will cause the object files funcl.doj and
func2.doj to be pulled out of the archive common.d1b and they will be
mapped into the common memory mem_common_mem. The object file
funcl.doj has a reference to 1ibfuncl. This symbol was already mapped
when 1ibfuncl.doj was mapped into the core memory. The object file
func2.doj has a reference to 1ibfunc2 so the object 1ibfunc2.doj will be
pulled out of the archive common1ib.d1b and it will also be mapped into
mem_common_mem. Note that this mapping only considers the files required
for CoreA so commonfunc3 is not considered.

The mapping for CoreB will be similar. The INPUT_SECTIONS() command
for CoreB will map mainB.doj into the memory coreb_b_mem. The refer-
ences to the common functions will cause the object files funcl.doj,
func2.doj, and func3.doj to be pulled out of the archive common.d1b and
to be mapped into mem_common_mem. The references in the common func-
tions to the library functions will cause the library objects to be pulled
from the commonlib.d1b so 1ibfuncl.doj and Tibfunc?.doj will be
mapped into the common memory mem_common_mem. Note that this map-
ping only considers the files for CoreB and the common memory. In
particular the fact that 1ibfuncl.doj was mapped into CoreA memory is
not considered for this mapping.

Visual DSP++ 4.5 Linker and Utilities Manual 5-57

Linking Multiprocessor Systems

Now the linker ensures that all the objects mapped into common memory
can be shared; for those files that can't be shared, it will fix them by mak-
ing duplications. Those object files mapped into common memory that do
not have any further references (the leaf functions func3.doj,
Tibfuncl.doj, and 1ibfunc2.doj) are fine as they are. The function
commonfunc? references 1ibfunc2.doj (which is only mapped into com-
mon memory), so it is also fine. The function commonfuncl references
Tibfuncl.doj. In the context of CoreA, funcl.doj will call the version of
libfuncl that is mapped into CoreA internal memory. In the context of
CoreB, funcl.doj will call the version of 1ibfuncl that is mapped into
common memory. To resolve this problem, the linker will create a copy of
funcl.doj. The mainA function will call the version that references back to
the version of 1ibfuncl that is in CoreA memory while mainB will call the
version that references back to the version of 1ibfuncl that is in common
memory.

It is rare that an object mapped into common memory will be duplicated.
In the cases that an object is duplicated, the linker will only duplicate the
minimal amount needed to keep integrity. The duplication will only hap-
pen in cases where using the SHARED_MEMORY { } command would have
resulted in a runtime exception, because a processor was accessing memory
in another processor's internal memory.

5-58 Visual DSP++ 4.5 Linker and Utilities Manual

6 ARCHIVER

The Visual DSP++ archiver (e1far) combines object (.doj) files into
library files, which serve as reusable resources for code development. The
Visual DSP++ linker rapidly searches library files for routines (library

members) referred to by other object files and links these routines into the
executable program.

This chapter provides:

e “Introduction” on page 6-2
Introduces the archiver’s functions

* “Archiver Guide” on page 6-3

Describes the archiver’s functions

* “Archiver Command-Line Reference” on page 6-14
Describes archiver operations by means of command-line switches

Visual DSP++ 4.5 Linker and Utilities Manual 6-1

Introduction

Introduction

The elfar utility combines and indexes object files (or any other files) to
produce a searchable library file. It performs the following operations, as
directed by options on the elfar command line:

Creates a library file from a list of object files

Appends one or more object files to an existing library file
Deletes file(s) from a library file

Extracts file(s) from a library file

Prints the contents of object files of an existing library file to
stdout

Replaces file(s) in an existing library file
Encrypts symbol(s) in an existing library file

Embeds version information into a library built with el1far

The archiver can run only one of these operations at a time. However, for

commands that take a list of file names as arguments, the archiver can
input a text file that contains the names of object files (separated by white
space). The operation makes long lists easily manageable.

The archiver, which is sometimes called a librarian, is a general-purpose
utility. It combines and extracts arbitrary files. This manual refers to DSP
object (. doj) files because they are relevant to DSP code development.

6-2

VisualDSP++ 4.5 Linker and Utilities Manual

Archiver

Archiver Guide

The elfar utility combines and indexes object files (or any other files) to
produce a searchable library file. This section describes the following
archiver functions:

e “Creating a Library”
e “Making Archived Functions Usable” on page 6-4

* “Archiver Symbol Name Encryption” on page 6-11

Creating a Library

To create an archive, use the -c switch when invoking the archiver from
the command line (as shown in “Archiver Command-Line Reference” on
page 6-14). The command line should include the name of the archive
being created and the list of objects files to be added.

Example
elfar -c my_lib.dIb fft.doj sin.doj cos.doj tan.doj

If the objects files were created using the C/C++ compiler, it is recom-
mended that the compiler driver and the compiler’s -build-1ib switch are
used to build the library (the compiler driver invokes elfar to build the
library). Refer to an appropriate VisualDSP++ 4.5 C/C++ Compiler and

Library Manual for more information.
Example
ccblkfn -build-1ib -o my_1lib.dlb fft.doj sin.doj cos.doj tan.doj

On Window systems, it is possible to build a library from within the Visu-
alDSP++ development environment. VisualDSP++ writes its output to
<projectname>.dlb.

Visual DSP++ 4.5 Linker and Utilities Manual 6-3

Archiver Guide

To maintain code consistency, use the conventions in Table 6-1.

Table 6-1. File Name Extensions used with Archiver

Extension File Description

.d1b Library file

.doj Object file. Input to archiver.

Jtxt Text file used as input with the -1 switch

Making Archived Functions Usable

In order to use the archiver effectively, you must know how to write
archive files, which make your DSP functions available to your code (via
the linker), and how to write code that accesses these archives.

Archive usage consists of two tasks:

» Creating /ibrary routines, functions that can be called from other
programs, and library data, variables, that can be referenced from

programs

* Accessing library routines and data from your code

Writing Archive Routines: Creating Entry Points

A library routine (or function) in code can be accessed by other programs.
Each routine must have a globally visible start label (entry point). Library
data must be given a visible label. Code that accesses that routine must
declare the entry point’s name as an external symbol in the calling code.

To create visible external symbol:

1. Declare the start label of each routine and each variable as a global
symbol with the assembler’s . GLOBAL directive. This defines the
entry point.

6-4

VisualDSP++ 4.5 Linker and Utilities Manual

Archiver

The following code fragment has a visible entry point for the func-
tion dIriir and creates a visible symbol for the variable FAE.

.global dIriir;
.section datal;
.byte2 FAE = 0x1234,0x4321;

.section program;
.global FAE;
dIriir: RO=N-2;

P2 = FAE;

2. Assemble the files into object files containing the global segments.

3. You can also write library functions in C and C++. Functions
declared in your C/C++ file will be given globally visible symbols
that can be referenced by other programs. Use the C/C++ compiler
to create objects files, and use the compiler driver and its
-build-1ib switch to create the library.

Accessing Archived Functions From Your Code

Programs that call a library routine must use the assembler’s . EXTERN
directive to specify the routine’s start label as an external label. When link-
ing the program, specify one or more library (.d1b) files to the linker,
along with the names of the object (.doj) files to link. The linker then
searches the library files to resolve symbols and links the appropriate rou-
tines into the executable file.

Any file containing a label referenced by your program is linked into the
executable output file. Linking libraries is faster than using individual
object files, and you do not have to enter all the file names, just the library
name.

In the following example, the archiver creates the filter.d1b library con-
taining the object files: taps.doj, coeffs.doj, and go_input.doj.

Visual DSP++ 4.5 Linker and Utilities Manual 6-5

Archiver Guide

elfar -c filter.dlb taps.doj coeffs.doj go_input.doj

If you then run the linker with the following command line, the linker
links the object files main.doj and sum.doj, uses the default .1df file (for
example, ADSP-BF533.1df), and creates the executable file (nain.dxe).

Tinker -DADSP-BF533 main.doj sum.doj filter.dIb -o main.dxe

Assuming that one or more library routines from filter.d1b are called
from one or more of the object files, the linker searches the library,
extracts the required routines, and links the routines into the executable

file.

Specifying Object Files

The list of object files on the command line is used to specify objects to be
added to the archive. Such commands are -c (create), -a (add) or -r
(replace). The list can also be used to specify objects in the library to be
extracted using the -e (extract) command.

When the list refers to object files to be added to the archive, the file name
is specified the way the file names are specified for the host operating sys-
tem. The file name can include path information — relative or absolute. If
path information is not included, the archiver will look for the file in the
current working directory.

When the list refers to object files already in the archive, the file names
should not include any path information. The archiver only saves the base
file name for the object files in the archive.

The archiver accepts the wildcard character “*” in the specification of the
object file names. On Windows systems, the archiver does all interpreta-
tion of the wildcard character. When it appears in a list of object files to
be added, the archiver searches the file system for files that match this
specification. When a wildcard appears in a list of objects already in the
library, the archiver will search through the object files in the library for
matches.

6-6

VisualDSP++ 4.5 Linker and Utilities Manual

Archiver

Tagging an Archive With Version Information

The archiver supports embedding version information into a library built
with elfar.

Basic Version Information

You can “tag” an archive with a version. The easiest way to tag an archive
is with the -t switch (see Table 6-2 on page 6-15), which takes an argu-
ment (the version number). For example,

elfar -t 1.2.3 1ib.d1b

The -t switch can be used in addition to any other el far command. For
example, a version can be assigned at the same time that a library is
created:

elfar -c -t "Steve's sandbox Rev 1" Tib.dlb *.doj

To hold version information, the archiver creates an object file,
__version.doj, that has version information in the .strtab section. This
file is not made visible to the user.

An archive without version information will not have the __version.doj
entry. The only operations on the archive using e1far that add version
information are those that use the -t switch. That is, an archive without
version information does not pick up version information unless specifi-
cally requested.

If an archive contains version information (__version.doj is present), all
operations on the archive preserve that version information, except opera-
tions that explicitly request version information to be stripped from the
archive (see “Removing Version Information From an Archive” on

page 6-10).

Visual DSP++ 4.5 Linker and Utilities Manual 6-7

Archiver Guide

If an archive contains version information, that information can be
printed with the -p command.

elfar -p 1ib.dlb

::User Archive Version Info: Steve's sandbox Rev 1
a.doj

b.doj

The archiver adds “::” to the front of the version information to highlight
it.

User-Defined Version Information

You can provide any number of user-defined version values by supplying a
text file with those values. The text file can have any number of entries.
Each line in the file begins with a name (a single token with no embedded
white space), followed by a space and then the value associated with that
name. As an example, consider the file foo. txt:

my_name neo
my_location zion
CVS_TAG matrix_v_8_0

other version value can be many words; name is only one

This file defines four version names: my_name, my_Tocation, CVS_TAG, and
other. The value of my_name is neo; the value of other is “version value
can be many words; name is only one”.

To tag an archive with version information from a file, use the -tx switch
(see Table 6-2 on page 6-15) which accepts the name of that file as an
argument:

elfar -c -tx foo.txt Tib.dlb object.doj

elfar -p 1ib.dlb

::CVS_TAG matrix_v_8_0

::my_location zion

::my_name neo

::other version value can be many words; name is only one

6-8 VisualDSP++ 4.5 Linker and Utilities Manual

Archiver

Version information can be added to an archive that already has version
information. The effect is additive. Version information already in the
archive is carried forward. Version information that is given new values is
assigned the new values. New version information is added to the archive
without destroying existing information.

Printing Version Information

As mentioned above, when printing the contents of an archive, the -p
command (see Table 6-2 on page 6-15) prints any version information.
Two more forms of the -p switch can be used to examine version
information.

The -pv switch prints only version information, and does not print the
contents of the archive. This switch provides a quick way to check the ver-
sion of an archive.

The -pva switch prints all version information. Version names without
values cannot not be printed with -p or -pv but are shown with -pva. In
addition, the archiver keeps two additional kinds of information:

elfar -a 1lib.dlb t*.doj
elfar -pva lib.dlIb
::User Archive Version Info: 1.2.3
::elfar Version: 4.4.5.2
:__log: -a lib.dlb t*.doj]

The archiver version that created the archive is stored in __version.doj
and is available using the -pva switch. Also, if any operations that cause
the archive to be written were executed since adding version information,
these commands appear as part of special version information called
<« » . .

__10g”. The log prints a line for every command that has been done on
the archive since version information was added to the archive.

Visual DSP++ 4.5 Linker and Utilities Manual 6-9

Archiver Guide

Removing Version Information From an Archive

Every operation has a special form of switch that can cause an archive to
be written and request that the version information is not written to the
archive. Version information already in the archive would be lost. Adding
“nv” (no version) to a command strips version information. For example,

elfar -anv Tib.dIb new.doj
elfar -dnv 1lib.dlb *

In addition, a special form of the -t switch (see Table 6-2 on page 6-15),
which takes no argument, can be used for stripping version information
from an archive:

elfar -tnv 1ib.dlb // only effect is to remove version info
Checking Version Number

You can have version numbers conform to a strict format. The archiver
confirms that version numbers given on the command line conform to an
nn.nn.nn format (three numbers separated by “.”). The -twc switch (see
Table 6-2 on page 6-15) causes the archiver to raise a warning if the ver-
sion number is not in this form. The check ensures that the version

number starts with a number in this format. For example,

elfar -twc "1.2 new library" Tib.dlb

[Warning ar0081] Version number does not match num.num.num format
Version 0.0.0 will be used.

elfar -pv Tib.dlb

::User Archive Version Info: 0.0.0 1.2 new library

6-10 Visual DSP++ 4.5 Linker and Utilities Manual

Archiver

Archiver Symbol Name Encryption

Symbol name encryption protects intellectual property contained in an
archive (.d1b) library that might be revealed when using meaningful sym-
bol names. Code and test a library with meaningful symbol names, and
then use archive library encryption on the fully tested library to disguise
the names.

Source file names in the symbol tables of object files in the archive
are not encrypted. The encryption algorithm is not reversible. Also,
encryption does not guarantee a given symbol is encrypted the
same way when different libraries, or different builds of the same
library, are encrypted.

The -s switch (see Table 6-2) is used to encrypt symbols in
<in_library_file> to produce <library_file>. Symbols in
<exclude_file> are not encrypted, and <type-letter> provides the first
letter of scrambled names.

Command Syntax
The following command line encrypts symbols in an existing archive file.
elfar -s [-v] Tibrary_file in_library_file exclude_file type-letter
where:
-s — Selects the encryption operation.

-v — Selects verbose mode, which provides statistics on the
encrypted symbols.

library_file — Specifies the name of the library (.d1b) file to be
produced by the encryption process

in_library_file — Specifies the name of the archive (.d1b) file to
be encrypted. This file is not altered by the encryption process,
unless in-archive is the same as out-archive.

Visual DSP++ 4.5 Linker and Utilities Manual 6-11

Archiver Guide

exclude-file — Specifies the name of a text file containing a list of
symbols not to be encrypted. The symbols are listed one or more to
a line, separated by white space.

type-letter — The initial letter of type-Tetter provides the initial
letter of all encrypted symbols.

Encryption Constraints

All local symbols can be encrypted, unless they are correlated with a sym-
bol having external binding that should not be encrypted. Symbols with
external binding can be encrypted when they are used only within the
library in which they are defined. Symbols with external binding that are
not defined in the library (or are defined in the library and referred to out-
side of the library) should not be encrypted. Symbols that should not be
encrypted must be placed in a text file, and the name of that file given as
the exclude-file command-line argument.

Some symbol names have a prefix or suffix that has special meaning. The
debugger does not show a symbol starting with “.” (period), and a symbol
starting with “.” and ending with “.end” is correlated with another sym-
bol. For example, “.bar” would not be shown by the debugger, and
“._foo.end” would correlated with the symbol “_foo” appearing in the
same object file. The encryption process encrypts only the part of the sym-
bol after any initial “.” and before any final “.end”. This part is called the
root of the symbol name. Since only the root is encrypted, a name with a
prefix or suffix having special meaning retains that special meaning after
encryption.

The encryption process ensures that a symbol with external binding is
encrypted the same way in all object files contained in the library. This
process also ensures that correlated symbols within an object file are
encrypted the same way, so they remain correlated.

The names listed in the exclude-file are interpreted as root names. Thus,

4

“_fo0o” in the exclude-file prevents the encryption of the symbol names

“ foo”, “. _foo”,“ foo.end”, and “. foo.end”.

6-12 Visual DSP++ 4.5 Linker and Utilities Manual

Archiver

The type-letter argument, which provides the first letter of the
encrypted part of a symbol name, ensures that the encrypted names in dif-
ferent archive libraries can be made distinct. If different libraries are
encrypted with the same type-letter argument, unrelated external sym-
bols of the same length may be encrypted identically.

Visual DSP++ 4.5 Linker and Utilities Manual 6-13

Archiver Command-Line Reference

Archiver Command-Line Reference

The archiver processes object files into a library file with a . d1b extension,
which is the default extension for library files. The archiver can also
append, delete, extract, or replace member files in a library, as well as list
them to stdout. This section provides the following reference information
on the archiver command line and linking.

* “elfar Command Syntax”
e “Archiver Parameters and Switches”

e “Command-Line Constraints”

elfar Command Syntax

Use the following syntax to run elfar from the command line.
elfar -[a|c|d|e|p|r] <options> library_file object_file ...
Table 6-2 describes each switch.
Example
elfar -v -¢c my_1lib.dlb fft.doj sin.doj cos.doj tan.doj
This command line runs the archiver as follows:
-v — Outputs status information
-¢c my_1ib.d1b — Creates a library file named my_1ib.d1b

fft.doj sin.doj cos.doj tan.doj — Places these object files in the
library file

Table 6-1 on page 6-4 lists typical file types, file names, and extensions.

6-14 Visual DSP++ 4.5 Linker and Utilities Manual

Archiver

Symbol Encryption
When employing symbol encryption, use the following syntax.

elfar -s [-v] Tibrary_file in_library_file exclude_file type-letter

Refer to “Archiver Symbol Name Encryption” on page 6-11 for more

information.

Archiver Parameters and Switches

Table 6-2 describes each archiver part of the command. Switches must
appear before the name of the archive file.

Table 6-2. Command-Line Options and Entries

Item Description

lib_file Specifies the library that the archiver modifies. This parameter appears after
the switch.

obj_file Identifies one or more object files that the archiver uses when modifying the
library. This parameter must appear after 17b_f7le. Use the -1 switch to
input a list of object files.

-a Appends one or more object files to the end of the specified library file

-anv Appends one or more object files and clears version information

-C Creates a new] 7b_f11e containing the listed object files

-d Removes the listed object files from the specified 17b_file

-dnv Removes the listed 0bj_file(s) from the specified 17b_f7le and clears
version information

-e Extracts the specified file(s) from the library

-i filename Uses filename, a list of object files, as input. This file lists 0bj_file(s)
to add or modify in the specified 77b_fiTe (.d1b).

-M Prints dependencies. Available only with the -c¢ switch.

-MM Prints dependencies and creates the library. Available only with the -¢
switch.

Visual DSP++ 4.5 Linker and Utilities Manual 6-15

Archiver Command-Line Reference

Table 6-2. Command-Line Options and Entries (Cont'd)

Item Description

-p Prints a list of the obj_fiTe(s) (.doj) in the selected 7ib_file (.d1b) to
standard output

-pv Prints only version information in library to standard output

-pva Prints all version information in library to standard output

-r Replaces the specified object file in the specified library file. The object file
in the library and the replacement object file must have identical names.

-s Specifies symbol name encryption. Refer to “Archiver Symbol Name
Encryption” on page 6-11.

-t verno Tags the library with version information in string

-tx filename Tags the library with full version information in the file

-twe ver Tags the library with version information in the num.num.num form

-tnv Clears version information from a library

-V (Verbose) Outputs status information as the archiver processes files

-version Prints the archiver (e1far) version to standard output

W Removes all archiver-generated warnings

-Wnnnn Selectively disables warnings specified by one or more message numbers. For
example, -W0023 disables warning message ar0023.

The elfar utility enables you to specify files in an archive by using the
wildcard character “*’. For example, the following commands are valid:

elfar
elfar
elfar
elfar
elfar
elfar

-c lib.d1b *.doj // create using every .doj file

-a lib.d1b s*.doj // add objects starting with 's'

-p 1ib.dlb *1%* // print the files with "1" in their name
-e lib.dlb * // extract all files from the archive
-d 1ib.dlb t*.doj // delete .doj files starting with 't’
-r Tib.d1b *.doj // replace all .doj files

6-16

VisualDSP++ 4.5 Linker and Utilities Manual

Archiver

The -c, -a, and -r switches use the wildcard to look up the file names in
the file system. The -p, -e, and -d switches use the wildcard to match file
names in the archive.

Command-Line Constraints

The elfar command is subject to the following constraints.

Select one action switch (a, ¢, d, e, p, r, or s) only in a single
command.

Do not place the verbose operation switch, -v, in a position where
it can be mistaken for an object file. It may not follow the 77p_fiTe
during an append or create operation.

The file include switch, -1, must immediately precede the name of
the file to be included. The archiver’s -1 switch enters a list of
members from a text file instead of listing each member on the
command line.

Use the library file name first, following the switches. The -i and
-v switches are not operational switches, and can appear later.

When using the archiver’s -p switch, it is not necessary to identify
members on the command line.

Enclose file names containing white space or colons within straight
quotes.

Append the appropriate file extension to each file. The archiver
assumes nothing, and does not do it for you.

Wildcard options are supported with the use of the wildcard char-
acter “*7).

Visual DSP++ 4.5 Linker and Utilities Manual 6-17

Archiver Command-Line Reference

e The obj_file name (.doj object file) can be added, removed, or
replaced in the 77b_file.

e The archiver’s command line is #ot case sensitive.

6-18 Visual DSP++ 4.5 Linker and Utilities Manual

/ MEMORY INITIALIZER

Visual DSP++ 4.5 supports the Memory Initializer (MemInit) tool. The
Memory Initializer’s main function is to modify executable files (.dxe
files) so that the programs are self-initializing. It does this by converting
the program’s RAM-based contents into an initialization stream which it
embeds into the executable file.

This chapter provides:
* “Memory Initializer Overview” on page 7-2
* “Basic Operation of Memory Initializer” on page 7-3
* “Initalization Stream Structure” on page 7-5
* “Run-Time Library Routine Basic Operation” on page 7-6
e “Using the Memory Initializer” on page 7-7

e “Memory Initializer Command-Line Switches” on page 7-13

Visual DSP++ 4.5 Linker and Utilities Manual 7-1

Memory Initializer Overview

M

emory Initializer Overview

The Memory Initializer may be used with processor systems where the
RAM memory needs to be initialized with the code and data stored in the
ROM memory before the execution of the application code begins. This is
generally true for a processor system running in NO-BOOT mode.

The initialization stream generated by the Memory Initializer is consumed
by a dedicated Run-Time Library (RTL) routine. Following a system
reset, the RTL routine searches the initialization stream and initializes the
processor’s RAM memory with the data in the initialization stream before
the call to main(), the starting point of the application code.

In creating the initialization stream, the Memory Initializer can, in most
cases, effectively reduce the overall size of an executable file by combining
contiguous, identical initialization into a single block. For example, a large
zero-initialized array in an executable file can be compressed to a single
small data block by the Memory Initializer.

In addition to a primary executable file (.dxe), the Memory Initializer
accepts one or more additional executable files called “callback” executable
files, and includes their data and instructions in the initialization stream.
The RTL routine is able to call and execute them before conducting the
process of the memory initialization for the primary application. This
allows you to perform memory configuration and any other set-up func-
tions that must occur before the code and data are extracted from ROM
memory.

7-2

VisualDSP++ 4.5 Linker and Utilities Manual

Memory Initializer

Basic Operation of Memory Initializer

This section describes the basic operations of the Memory Initializer, its
input and output files, as well as basic initialization stream generated by
the Memory Initializer.

Input and Output Files

The Memory Initializer takes an executable file (.dxe) as a primary input
file and augments it by adding an initialization stream. The enhanced exe-
cutable file is written as the output file.

Processing the Primary Input Executable File

After opening an input primary executable file, the Memory Initializer
looks for sections, marked with the initialization flag in their section head-
ers or specified from the command line, and extracts the data and
instructions from them to make the primary initialization stream.

By default, the stream is saved in the dedicated memory section called
“.meminit” in the output file. For the sections from which the Memory
Initializer extracts no data, the Memory Initializer simply copies them
from the input file to the output file. Sections that are processed by the
Memory Initializer to form the initialization stream are not needed in the
output executable file, as their contents will be regenerated at run time
when the initialization stream is processed. Therefore, by default such sec-
tions are not copied to the output file in order to reduce the size of the
executable file.

Processing Callback Input Executable Files
In addition to a primary input executable file, the Memory Initializer
optionally accepts a number of individually-built “callback” executable

files specified with the -init switch (on page 7-15).

Visual DSP++ 4.5 Linker and Utilities Manual 7-3

Basic Operation of Memory Initializer

The Memory Initializer sequentially processes the callback executable files,
one at a time. After opening an input callback executable file, the Memory
Initializer looks for all of the sections marked with the initialization flag
and PROGBITS qualifier (it indicates the section contains either the instruc-
tions or data or both), and extracts the data and instructions from them
make a callback initialization stream. When this stream is built up, all the
callback .dxe files are processed in the order they are specified on the com-
mand line.

The Memory Initializer continues making a callback initialization stream
from each of the callback executable files and pre-pending it to the pri-
mary initialization stream in the same sequence the callback executable
files appear in the command line until the last callback executable file is
processed.

When processing a callback executable file, the Memory Initializer extracts
all the code and data from it to make up the callback initialization stream
regardless of the Memory Initializer command-line switches used only for
the primary input file. Those switches are:

e “-Beginlnit Initsymbol” on page 7-14
e “Init Initcode.dxe” on page 7-15

e “-NoAuto” on page 7-16

e “-NoErase” on page 7-16

e “-Section Sectionname” on page 7-17

This ensures the integrity of the code and data from each callback execut-
able file in the callback initialization stream — the code can be executed
independently and successfully regardless of the Memory Initializer com-
mand-line switches.

By taking multiple input files, the Memory Initializer supports those sys-
tems which have to run a number of independent service applications
before starting the primary application.

7-4 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

Initialization Stream Structure

An initialization stream made from the Memory Initializer has three major
portions:

e The header of the initialization stream which holds the basic infor-
mation for the run-time library (RTL) routine such as the number
of data blocks in the initialization stream

* The callback executable file which itself may have a number of the
sub-portions with each containing a piece of the callback
executable

* The initialization data and code from the primary application

Figure 7-1 shows the basic structure of the initialization stream:

Initialization Stream Header

First Callback Code (optional)

Second Callback Code (optional)

Additional Callback Code (optional)

Code and Data for
the Primary Executable

Figure 7-1. Memory Initializer Basic Initialization Stream Structure

Visual DSP++ 4.5 Linker and Utilities Manual 7-5

Run-Time Library Routine Basic Operation

Run-Time Library Routine Basic Operation

A Run-Time Library (RTL) routine performs the memory initialization
with the initialization stream created by the Memory Initializer during
runtime. It can be a dedicated RTL routine or user-provided routine
called _mi_initialize (from the assembly code).

For more information on the definition of the initialization stream,
see EE-239 for Blackfin processors

Following a system reset, the RTL routine is invoked by the application’s
start-up code.

The RTL routine:

1. searches for the initialization stream
2. digests the stream header

3. for each callback executable specified, the RTL routine first copies
“callback” code into RAM, and then executes it. It is done piece by
piece and continue until execution is complete

4. brings the code and data from the primary executable file into the
processor’s memory

Once each callback executable has been executed, it is no longer needed in
RAM; it may be overwritten by future callback executables or by the code
or data spaces of the primary executable. After all the “callback” codes are
executed, the RTL routine starts to initialize the processor’s memory with
the initialization stream created from the primary input executable file,
and overwrites the memory spaces previously initialized with the “call-
back” codes. After that, the RTL routine returns execution to the start-up
header, and the application proceeds as normal.

If there are no callback executables to be executed, the RTL routine imme-
diately starts the process of initializing memory for the primary
application.

7-6 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

Using the Memory Initializer

There are several reasons why it may be beneficial to use the Memory
Initializer:

e The system needs to initialize the RAM memory from the data
stored in ROM.

e It is desirable to reduce the overall size of the executable.

* Initialization executable files need to run to configure the system,
before the primary application starts.

If it is decided to use the Memory Initializer, the preparation starts from
the linker description file (.1df) and the source files of the project.

Preparing the Linker Description File (.1df)

If a section is to be processed by the Memory Initializer in order to create
the initialization stream, the section must be marked in the . 1df file to
indicate the kind of initialization required. This is done using initializa-
tion qualifiers. The qualifiers that are used here are ZERO_INIT and
RUNTIME_INIT. The sections marked with ZERO_INIT may contain only
“zero-initialized” data, and the sections marked with RUNTIME_INIT may
contain the data with any initialization values.

Refer to the SECTIONS description for detailed information on these
qualifiers (see on page 3-55).

The following example shows how to use the ZERO_INIT and RUNTIME_INIT
qualifiers in a . 1df file to set up the section type.

my_zero_section ZERO_INIT
{
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($0BJECTS(my_zero_section)
$LIBRARIES(my_zero_section))
b >MEM_L1_DATA_A

Visual DSP++ 4.5 Linker and Utilities Manual 7-7

Using the Memory Initializer

my_data_section RUNTIME_INIT
{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($0BJECTS(my_data_section))
FO>MEM_L1_DATA_A

The section my_zero_section is intended to hold all the zero-initialized
data, and the section my_data_section is to hold any other initialized
data. After the program is first linked, the sections in the .dxe file have
flags set according to the qualifiers in the .1df file. Then the Memory Ini-
tializer runs and processes the DXE sections according to those flags, and
produces a modified output . dxe file.

The Memory Initializer is able to identify the DXE sections with the dis-
tinct initialization flag and extract the data from them to make an
initialization stream. Any number of sections can be set as either
ZERO_INIT or RUNTIME_INIT type in an .1df file.

Please note that there are two memory sections specified in a default . 1df
file, which also serve the Memory Initializer: bsz_init and .meminit. The
bsz_init section is used to hold the pointer generated by the Memory Ini-
tializer, which points to the start address of the initialization stream, while
the section .meminit is used to hold the actual initialization stream gener-
ated by the Memory Initializer. Although other sections may be selected as
alternatives (using the appropriate command-line switches), it is not rec-
ommended to do so.

Preparing the Source Files

The sections marked with the ZERO_INIT and RUNTIME_INIT qualifiers need
to be initialized with the proper values in the source files before being
compiled. The following example shows one way to initialize a section.

#include <stdio.h>
#fpragma section("my_data_section”, RUNTIME_INIT)
unsigned int A [100] =

7-8 VisualDSP++ 4.5 Linker and Utilities Manual

Memory Initializer

{ Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbcedd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbcedd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,O0xaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbcedd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbcedd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbcedd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd };

ffpragma section("my_zero_section", ZERO_INIT)
unsigned int B [128 1;

int void main()
{
int i;
int not_init = 0, not_zero = 0;

for (i = 0; 1 < 100; i++)
if (A [i] != Oxaabbccdd)
not_init++;

for (i = 0; i < 128; i++)
it (B L1 1 1!=20)
not_zero++;

printf ("A[]: %d elements not initialized\n", not_init);
printf ("B[]: %d elements not zeroed\n", not_zero);
return 0;

Visual DSP++ 4.5 Linker and Utilities Manual 7-9

Using the Memory Initializer

Invoking the Memory Initializer

There are several ways to invoke the Memory Initializer, either from the
IDDE or from a command line.

Invoking Memory Initializer from the VisualDSP++ IDDE

Use the Project menu in the Visual DSP++ main screen to select Project ->
Project Options -> Link (see Figure 7-2) The Link option is displayed.
Type -meminit in the Additional options field and then click OK. When
the project is built, the linker calls the Memory Initializer.

Project Options for NewProjectl T
Bl ﬁﬁ Project 3l B Project © Link : Processor

o[y General

E‘E Compile Branch instruction expansian: I,-’.\Ilow indirect j
5k General (1) — Libraries Floating Paint
[General (2) . .

[Use workaround libraries &' High performance
[l Preprocessor
[Processor (1) [” Use C++ exceptions libraries " Stict IEEE compliance
--[gh Processor (2)
[warning L1 Memory Usage
[workarounds {* [nstruction and Data Fidkd
B .ﬁfssemble {~ Cache [setz USE_CACHE macra]

[—]E Link,
- General
@ LDF Preprocessing
-[igly Elirmination
@ Processor

[—:IE Load
[Options
[l Kernel
@ Splitter 1 Additional options:

@ Ere.b.u”l.:.'. ~| I -meminit

ak I Cancel |

Figure 7-2. Invoking the Memory Initializer from the Visual DSP++ IDDE

7-10 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

Invoking Memory Initializer from Command Line
The simplest command line to invoke the Memory Initializer is:
mem2lk.exe input.dxe -o output.dxe

The Memory Initializer identifies all the sections with initialization flags
in the input file, produces an initialization stream, and places it in the out-
put file. The Memory Initializer command-line switches are listed in

Table 7-1.

Invoking Memory Initializer from Linker’s Command Line

The simplest way to invoke the Memory Initializer from the linker’s com-
mand line is to use the linker’s -meminit switch. The linker also provides

the -flag-meminit switch that passes each comma-separated option to the
Memory Initializer. For example,

linker -proc ADSP-BF535 -meminit input.dxe -o output.dxe

Invoking Memory Initializer from Compiler’'s Command Line

The simplest command line to invoke the Memory Initializer from the
compiler’s command line is (for example, for Blackfin processors):

ccblkfn -proc ADSP-BF535 -mem input.dxe -o output.dxe

Invoking Memory Initializer with Callback Executables

To directly invoke the Memory Initializer from a command line, use the
-Init switch for each “callback” executable as shown below:

meminit Input.dxe -o Output.dxe
-Init Callbackl.dxe -Init Callback2.dxe

For VisualDSP++ IDDE, select Project -> Project Options -> Link. The
Link option is displayed. Use the Additional options field to process call-
back executable files.

Visual DSP++ 4.5 Linker and Utilities Manual 7-11

Using the Memory Initializer

For example, if you have two callback executable files, cal1backl.dxe and
callback2.dxe, and you wish to pass them to the Memory Initializer, you
can enter them in the Additional options window as

-meminit -flag-meminit -Init callbackl.dxe -Init callback?2.dxe

then click OK (see Figure 7-3).

Project Options for NewProject1 T
Bl Project Il = Project : Link : Processor

. [ih General

E‘E Compile Branch instruction expansion: I,L‘-,Ilow indirect j
- seneral (1) — Libraries Floating Paint
- [y General (2) L .

[T Use workaround libraries 7+ High performance
[Preprocessor
[y Processor (1) [Use C++ exceptions libraries " Strict [EEE compliance
[Processor (2)
- [igh warning — L1 Memary zage
- (g Workarounds % Instruction and Data BAM
@ .ﬁ:ssemble ' Cache [sets USE_CACHE macro)

EIE Link.
- [gh General
@ LOF Preprocessing
[y Elimination
rocessor

E-[ta
[Options
gl Kernel
@ Spliter —1 Additional options:

[k Pre-build LI I -meminit -flag-meminit -init callbackt .dxe -init callbaxk2 dxe
1 - PR

ak. I Cancel |

Figure 7-3. Invoking Callback Executable from the VisualDSP++ IDDE

7-12 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

Memory Initializer Command-Line
Switches

The Memory Initializer provides a number of command line switches.
They are not case-sensitive. Table 7-1 provides a summary of the Memory
Initializer switches. It is followed by a detailed description of each switch.

The listed switches are mostly optional. For a project in which the linker
description file is well-defined (the .meminit and bsz_init memory sec-
tions are defined and the ZERO_INIT and RUNTIME_INIT qualifiers are set on
the proper sections) and the sections are all initialized properly in the
source files, most of these optional switches may not be necessarily
required. By default, the Memory Initializer automatically handles every-
thing that is needed to create an initialization stream.

Table 7-1. Command-Line Options and Entries

Item Description

-BeginInit Initsymbol Specifies a symbol name for a variable that holds a pointer

on page 7-14 pointing to the start address of an initialization stream.

-h on page 7-15 Displays the list of Memory Initializer switches.

-IgnoreSection Sectionname Directs the Memory Initializer to NOT process a section

on page 7-15 selected in the primary input file

-Init Initcode.dxe Specifies an executable file to be inserted into the initial-

on page 7-15 ization stream and executed as a callback.

InputFile.dxe Specifies a primary input file.

on page 7-16

-NoAuto Directs the Memory Initializer to NOT process sections

on page 7-16 in the primary input file based on the section header flags
(the section specified by a user as either ZERO_INIT and
RUNTIME_INIT qualifier in the . 1df file), but to only
process sections specified on the command line
through-Section SectionName. This switch is optional.

Visual DSP++ 4.5 Linker and Utilities Manual 7-13

Memory Initializer Command-Line Switches

Table 7-1. Command-Line Options and Entries (Contd)

Item Description

-NoErase Directs the Memory Initializer not to erase the data of the

on page 7-16 processed sections in the primary executable file.

-0 Outputfile.dxe Specifies an output file.

on page 7-17

-Section Sectionname Specifies a section from which the data will be extracted

on page 7-17 by the Memory Initializer. This switch can be repeated to
specify a number of the sections from the specified input
primary file.

-v (Verbose) Outputs status information as the Memory Ini-

on page 7-17 tializer processes files

The following sections provide the detailed descriptions of the com-
mand-line switches.

-BeginlInit Initsymbol

The -BeginInit Initsymbol switch is used to specify a symbol name for a
variable that holds a pointer pointing to the start address of an initializa-
tion stream. The Memory Initializer updates this pointer with the start
address of the initialization stream produced by the Memory Initializer.

If this switch is absent, the default symbol name “___inits” (it has three
leading underscores, when called from assembly) is searched, which, by
default, is in the bsz_init memory section. An error message is issued if
this symbol cannot be found in the input primary file. If a symbol other
than “___inits” is specified using this switch in a section other than
“bsz_init”, the symbol must not be in any of the sections specified via the
-Section Sectionname switch (on page 7-17). It also must be able to hold
a value which is no less than the maximum address value for the particular
processor. The run-time library provides a default symbol of “___inits”

7-14 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

for the Memory Initializer and, therefore, it is not necessary to use this
switch in most cases. This switch has no effect on callback executable files
specified using the “-Init Initcode.dxe” on page 7-15.

-h

The -nlelp] switch is used to display the list of Memory Initializer
switches.

-lgnoreSection Sectionname

The -IgnoreSection Sectionname switch is used to specify a section that is
not to be processed by the Memory Initializer. This switch can be repeated
to specify a number of sections not to be processed in the primary input
file. All the specified sections must exist in the primary input file.

The -IgnoreSection switch is optional. It is normally easier to remove a
section’s initialization qualifier (ZERO_INIT or RUNTIME_INIT) from the
.1df file than to use this switch. The switch does not affect a callback exe-
cutable file specified using the -Init Sectionname switch.

-Init Initcode.dxe

The -Init Initcode.dxe switch is used to specify an executable file to be
inserted into the initialization stream and executed as a callback. Any
number of executable files can be specified this way, and it is allowed to
specify the same file name a number of times. The callback executable file
must exist before the Memory Initializer is run. All the code and data from
callback executable files are extracted to make up the initialization stream.
This is an optional switch.

Visual DSP++ 4.5 Linker and Utilities Manual 7-15

Memory Initializer Command-Line Switches

InputFile.dxe

The InputFile.dxe parameter is used to specify a primary input file. The
Memory Initializer issues an error message if no primary input file is

specified.

-NoAuto

The -NoAuto switch directs the Memory Initializer to not process sections
in the primary input file based on the section header flags (the section
specified as either ZERO_INIT and RUNTIME_INIT qualifier in the .1df file),
but to only process sections specified on the command line using the
-section SectionName switch.

By default, the Memory Initializer automatically processes only the sec-
tions with ZERO_INIT and RUNTIME_INIT qualifiers in the .1df file. This
switch has no effect on the the code and data of callback executable files
specified using the -init switch. All the code and data sections of a call-
back executable file are processed by the Memory Initializer regardless of
this switch being used or not. This switch is optional.

-NoErase

The -NoErase switch directs the Memory Initializer not to erase the data
of the processed sections. By default, the Memory Initializer empties the
sections from which the data are extracted to make up the initialization
stream. This switch is valid for the primary input file only and has no
effect on callback executable files. The Memory Initializer does not carry
any sections of a callback executable file over to the output file, nor erase
any sections, but only extracts the code and data from it to form the ini-
tialization stream.

7-16 Visual DSP++ 4.5 Linker and Utilities Manual

Memory Initializer

-0 Outputfile.dxe

The -0 Outputfile.dxe switch is used to specify an output file. If this
switch is absent, the Memory Initializer makes up an output file name
from the root of the input file name. For example, the output file name is
created as InputFilel.dxe if the input file name is InputFile.dxe. This
switch is optional.

-Section Sectionname

The -Section Sectionname switch is used to specify a section from which
the data is extracted by the Memory Initializer. This switch can be
repeated to specify a number of the sections from the specified input
primary file. All the section specified must exist in the specified input
primary file. Note that the section name specified via the -IgnoreSection
switches cannot be used with the -Section switch.

It is not necessary to use this switch to specify any sections which already
have the ZERO_INIT or RUNTIME_INIT qualifiers in the linker description
file (.1df), as the Memory Initializer processes such sections automati-
cally. Using initialization qualifiers in the .1df file is usually the simpler
and recommended method. The -Section SectionName switch has no
effect on callback executable files specified via the -Init switch. There-
fore, do not use this switch to specify any sections in callback executable

files.

-V

The -v or -verbose (verbose) switch directs the Memory Initializer to out-
put status information as it processes files.

Visual DSP++ 4.5 Linker and Utilities Manual 7-17

Memory Initializer Command-Line Switches

7-18 Visual DSP++ 4.5 Linker and Utilities Manual

A FILE FORMATS

The Visual DSP++ development tools support many file formats. In some
cases, several file formats for each development tool are supported. This
appendix describes file formats that are prepared as input for the tools and
points out the features of files produced by the tools.

This appendix discusses three types of file formats:
e “Source Files” on page A-2
e “Build Files” on page A-5
e “Debugger Files” on page A-9

Most of the development tools use industry-standard file formats. Sources
that describe these formats appear in “Format References” on page A-10.

Visual DSP++ 4.5 Linker and Utilities Manual A-1

Source Files

Source Files

This section describes these input file formats:
e “C/C++ Source Files” on page A-2
* “Assembly Source Files (.asm)” on page A-3
e “Assembly Initialization Data Files (.DAT)” on page A-3
e “Header Files ((H)” on page A-4
e “Linker Description Files (.1df)” on page A-4
* “Linker Command-Line Files ((TXT)” on page A-5

C/C++ Source Files

These are text files (with extensions such as .c, .cpp, .CXX, and so on)
containing C/C++ code, compiler directives, possibly a mixture of
assembly code and directives, and (typically) preprocessor commands.

Several “dialects” of C code are supported: pure (portable) ANSI C, and at
least two subtypes' of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives used by the linker to structure and place executable files.

For information on using the C/C++ compiler and associated tools, as well
as a definition of ADI extensions to ANSI C, see the Visual/DSP++ 4.5
C/C++ Compiler and Library Manual for appropriate target architectures.

1 With and without built-in function support; a2 minimal differentiator. There are others.

A-2 VisualDSP++ 4.5 Linker and Utilities Manual

File Formats

Assembly Source Files (.asm)

Assembly source files are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see your processor’s Programming
Reference.

The instruction set is supplemented with assembler directives. Preproces-
sor commands control macro processing and conditional assembly or
compilation.

For information on the assembler and preprocessor, see the VisualDSP++
4.5 Assembler and Preprocessor Manual.

Assembly Initialization Data Files (.DAT)

Assembly initialization data (. DAT) files are text files that contain fixed- or
floating-point data. These files provide the initialization data for an
assembler . VAR directive or serve in other tool operations.

When a . VAR directive uses a . DAT file for data initialization, the assembler
reads the data file and initializes the buffer in the output object (. doj) file.
Data files have one data value per line and may have any number of lines.

The .dat extension is explanatory or mnemonic. A directive to #include
<file> can take any file name (or extension) as an argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal-, hexadecimal-, octal-, or binary-base values. The assembler uses
the prefix conventions in Table A-1 to distinguish between numeric
formats.

For all numeric bases, the assembler uses 16-bit words for data storage;
24-bit data is for the program code only. The largest word in the buffer
determines the size for all words in the buffer. If there is some 8-bit data

Visual DSP++ 4.5 Linker and Utilities Manual A-3

Source Files

in a 16-bit wide buffer, the assembler loads the equivalent 8-bit value into
the most significant eight bits in the 8-bit memory location and zero-fills
the lower eight bits.

Table A-1. Numeric Formats

Convention Description
Oxnumber Hexadecimal number
Hifnumber

hitnumber

number Decimal number
Di#fnumber

d#number

B#number Binary number.
bitnumber

Ofnumber Octal number.
offnumber

Header Files (.H)

Header files are ASCII text files that contain macros or other preprocessor
commands that the preprocessor substitutes into source files. For informa-
tion on macros or other preprocessor commands, see the Visual/DSP++ 4.5
C/C++Compiler and Library Manual for appropriate target architectures.
For information on the assembler and preprocessor, see the VisualDSP++
4.5 Assembler and Preprocessor Manual.

Linker Description Files (.1df)

Linker Description Files are ASCII text files that contain commands for
the linker in the linker’s scripting language. For information on this
scripting language, see “LDF Commands” on page 3-31.

A-4 VisualDSP++ 4.5 Linker and Utilities Manual

File Formats

Linker Command-Line Files (.TXT)

Linker command-line files are ASCII text files that contain command-line
input for the linker. For more information on the linker command line,
see “Linker Command-Line Reference” on page 2-43.

Build Files

Build files are produced by the VisualDSP++ development tools when
building a project. This section describes these build file formats:

* “Assembler Object Files (.doj)” on page A-5

e “Library Files (.dlb)” on page A-6

e “Linker Output Files (.dxe, .sm, and .ovl)” on page A-6

e “Memory Map Files (.xml)” on page A-6

* “Loader Output Files in Intel Hex-32 Format (.Idr)” on page A-6
e “Splitter Output Files in ASCII Format (.Idr)” on page A-8

Assembler Object Files (.doj)

Assembler output object (.doj) files are in binary, executable and linkable
file (ELF) format. Object files contain relocatable code and debugging
information for a DSP program’s memory segments. The linker processes
object files into an executable (. dxe) file. For information on the object
file’s ELF format, see “Format References” on page A-10.

Visual DSP++ 4.5 Linker and Utilities Manual A-5

Build Files

Library Files (.dlb)

Library files, the archiver’s output, are in binary, executable and linkable
file (ELF) format. Library files (called archive files in previous software
releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the
code. For information on the ELF format used for executable files, refer to
“Format References” on page A-10.

Linker Output Files (.dxe, .sm, and .ovl)

The linker’s output files are in binary, executable and linkable file (ELF)
format. These executable files contain program code and debugging
information. The linker fully resolves addresses in executable files. For
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-10.

The archiver automatically converts legacy input objects from

COFF to ELF format.

Memory Map Files (.xml)

The linker can output memory map files that contain memory and symbol
information for your executable file(s). The map file contains a summary
of memory defined with MEMORY {} commands in the .1df file, and pro-
vides a list of the absolute addresses of all symbols. Memory map files are
available only in .xm1 format.

Loader Output Files in Intel Hex-32 Format (.Idr)

The loader can output Intel hex-32 format (. 1dr) files. These files support
8-bit-wide PROMs. The files are used with an industry-standard PROM

programmer to program memory devices for a hardware system. One file

contains data for the whole series of memory chips to be programmed.

A-6 VisualDSP++ 4.5 Linker and Utilities Manual

File Formats

The following example shows how the Intel hex-32 format appears in the
loader’s output file. Each line in the Intel hex-32 file contains an extended
linear address record, a data record, or an end-of-file record.

:020000040000FA Extended linear address record
:0402100000FEO3FOF9 Data record
:00000001FF End-of-file record

Extended linear address records are used because data records have a
4-character (16-bit) address field, but in many cases, the required PROM
size is greater than or equal to OxFFFF bytes. Extended linear address
records specify bits 16-31 for the data records that follow.

Table A-2 shows an example of an extended linear address record.

Table A-2. Example — Extended Linear Address Record

Field Purpose

:020000040000FA Example record

Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Table A-3 shows the organization of an example data record, and

Table A-4 shows an end-of-file record.

For more information, refer to the VisualDSP++ 4.5 Loader Manual.

Visual DSP++ 4.5 Linker and Utilities Manual A-7

Build Files

Table A-3. Example — Data Record

Field

Purpose

:0402100000FEO3FOF9

Example record

Start character

04

Byte count of this record

0210

Address

00

Record type

00

First data byte

FO

Last data byte

F9

Checksum

Table A-4. Example — End-of-File Record

Field

Purpose

:00000001FF

End-of-file record

Start character

00

Byte count (zero for this record)

0000

Addpress of first byte

01

Record type

FF

Checksum

Splitter Output Files in ASCII Format (.Idr)

When the loader is invoked as a splitter, its output can be an ASCII for-
mat file. ASCII format files are text representations of ROM memory
images that you can use in post-processing. For more information, refer to
no-boot mode information in the VisualDSP++ 4.5 Loader Manual..

A-8 VisualDSP++ 4.5 Linker and Utilities Manual

File Formats

Debugger Files

Debugger files provide input to the debugger to define simulation or emu-
lation support of your program. The debugger supports all the executable
file types produced by the linker (.dxe, .sm, .ov1). To simulate I/O, the
debugger also supports the assembler’s data file (.DAT) format and the
loader’s loadable file (.LDR) formats.

The standard hexadecimal format for a SPORT data file is one integer
value per line. Hexadecimal numbers do not require a 0x prefix. A value
can have any number of digits, but is read into the SPORT register as:

* The hexadecimal number which is converted to binary

* The number of binary bits read which matches the word size set for
the SPORT register, which starts reading from the LSB. The
SPORT register then fills with zero values shorter than the word
size or conversely truncates bits beyond the word size on the MSB

end.

Example

In this example, a SPORT register is set for 20-bit words and the data file
contains hexadecimal numbers. The simulator converts the HEX numbers
to binary and then fills or truncates to match the SPORT word size. In
Table A-5, the A5A5 number is filled and 123456 is truncated.

Table A-5. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

ABASA 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010
FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001
ABAS 1010 0101 1010 0101 0000 1010 0101 1010 0101
5ABA5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101
11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001
123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Visual DSP++ 4.5 Linker and Utilities Manual A-9

Format References

Format References

The following texts define industry-standard file formats supported by
Visual DSP++.

Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly &
Associates, Newton, MA

(1993) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.1, Tools Interface Standards
(TIS) Committee

Go to: http://developer.intel.com/vtune/tis.htm

(1993) Debugging Information Formar (DWARF) V1.1 from the
Portable Formats Specification V1.1, UNIX International, Inc.

Go to: http://developer.intel.com/vtune/tis.htm

Visual DSP++ 4.5 Linker and Utilities Manual

B UTILITIES

The Visual DSP++ development software includes several utilities, such as:
e “elfdump — ELF File Dumper”

e “plinker”

elfdump — ELF File Dumper

The ELF file dumper (e1fdump) utility extracts data from ELF-format exe-
cutable (.dxe) files and yields text showing the ELF file’s contents.

The e1fdump utility is often used with the archiver (e1far).

Refer to “Disassembling a Library Member” on page B-3 for details.
Also refer to “Dumping Overlay Library Files” on page B-4 on how to
extract and view the contents of overlay library files.

Syntax:
elfdump [switches] [objectfilel

Table B-1 shows switches used with the e1fdump command.

Table B-1. ELF File Dumper Command-Line Switches

Switch Description

e Stabs to mdebug conversion
-fh Prints the file header

-arsym Prints the library symbol table

Visual DSP++ 4.5 Linker and Utilities Manual B-1

elfdump - ELF File Dumper

Table B-1. ELF File Dumper Command-Line Switches (Contd)

Switch Description

-arall Prints every library member

-help Prints the list of elfdump switches to stdut

-ph Prints the program header table

-s Prints contents as a list of disassembled machine instructions. Also prints labels.

-sh Prints the section header table. This switch is the default when no options are
specified.

-notes Prints note segment(s)

-n name Prints contents of the named section(s).

The name may be a simple ‘glob’-style pattern, using “?” and “*” as wildcard
characters. Each section’s name and type determines its output format, unless
overridden by a modifier.

-1 x0[-x1] Prints contents of sections numbered x0 through x1, where x0 and x1 are
decimal integers, and x1 defaults to x0 if omitted. Formatting rules are the
same as for the -n switch.

-all Prints everything. This is the same as -fh -ph -sh -notes -n “*’.

-ost Onmits string table sections

-V Prints version information

objectfile | Specifies the file whose contents are to be printed.

It can be a core file, executable, shared library, or relocatable object file. If the
name is in the form A(B), A is assumed to be a library and B is an ELF member
of the library. B can be a pattern similar to the one accepted by -n.

The -nand -1 switches can have a modifier letter options after the main
option character to force section contents to be formatted as:

* a— Dumps contents in hex and ASCII, 16 bytes per line.

* x — Dumps contents in hex, 32 bytes per line.

* xN — Dumps contents in hex, N bytes per group (default is N = 4).

B-2

VisualDSP++ 4.5 Linker and Utilities Manual

* t — Dumps contents in hex, N bytes per line, where N is the sec-
tion’s table entry size. If N is not in the range 1 to 32, 32 is used.

* hN — Dumps contents in hex, N bytes per group.
* HN — Dumps contents in hex, (MSB first order), N bytes per group.
e i — Prints contents as list of disassembled machine instructions.

e s — Prints contents as list of disassembled machine instructions and
also prints labels.

Disassembling a Library Member

The elfar and el fdump utilities are more effective when their capabilities
are combined. One application of these utilities is for disassembling a
library member and converting it to source code. Use this technique when
the source of a particularly useful routine is missing and is available only
as a library routine.

For information about el far, refer to “Archiver” on page 6-1.

The following procedure lists the objects in a library, extracts an object,
and converts the object to a listing file. The first archiver command line
lists the objects in the library and writes the output to a text file.

elfar -p Tibc.dIlb > Tlibc.txt
Open the text file, scroll through it, and locate the object file you need.

To convert the object file to an assembly listing file with labels, use the
following e1fdump command line, which references the library and the
object file in the library.

elfdump -ns * libc.dlb (fir.doj) > fir.asm

The output file is practically source code. Just remove the line numbers
and opcodes.

Visual DSP++ 4.5 Linker and Utilities Manual B-3

plinker

Disassembly yields a listing file with symbols. Assembly source with sym-
bols can be useful if you are familiar with the code and hopefully have
some documentation on what the code does. If the symbols are stripped
during linking, the dumped file contains no symbols.

Disassembling a third-party’s library may violate the license for the
third-party software. Ensure there are no copyright or license issues
with the code’s owner before using this disassembly technique.

Dumping Overlay Library Files

Use the e1far and e1fdump utilities to extract and view the contents of
overlay library (.ov1) files.

For example, the following command lists (prints) the contents (library
members) of the clone2.ov1 library file.

elfar -p clone2.ovl

The following command allows you to view one of the library members
(clone2.elf).

elfdump -all clone2.ovli(clone2.elf)
The following commands extract clone2.el1f and print its contents.

elfar -e clone2.ovl cloneZ2.elf
elfdump -all clone2.elf

@ Switches for the e1fdump commands are case sensitive.

plinker

In Visual DSP++ 4.1, the plinker command-line tool provides “partial
linker” functionality.

B-4 Visual DSP++ 4.5 Linker and Utilities Manual

The plinker tool is a specialized linker that produces a partially-linked
relocatable object file instead of a fully-linked executable. It is similar in
function to a standard UNIX linker (1d) invoked with the -r switch.

The partial linker performs two main functions:

* It combines a number of input object files into a single output file
by concatenating sections having the same name into a single sec-
tion in the output file. All references to offsets or indices within the
input files are modified to reflect the new locations of sections, and
of records within sections, in the output file.

e For symbols with external linkage, it resolves multiple occurrences
of the same symbol to a single instance. Local function and object
symbols are made unique by adding a suffix in order to satisfy
linker input requirements.

The partial linker can link both object files and archive libraries. The
ordering of object file and library arguments in the p1inker command line

is highly significant.

If a referenced external symbol has no global definition and multiple weak
definitions, the symbol is resolved to the first weak definition that is
encountered.

For example, consider the following p1inker command line:

plinker -o out.o inl.o in2.0 -1 Tibl.a in3.0 -1 1ib2.a

Library “1ib1.a” will be searched only for references encountered in
“inl.0:;” and “in2.0”. It will not be searched again after “in3.0” and
library “1ib2.a” have been read. If either “in3.0” or “1ib2.a” has refer-
ences that should be resolved by “1ib1.a”, the “1ib1.a” must be specified
a second time, later in the command line.

»

If invoked with no arguments, or with “-h” or “-help”, the partial linker
g p p
prints command-line information. The -info switch provides additional
details, including current bugs and limitations. Tracing of linker actions
g g g

can be enabled and finely controlled with the -t, -tr, and -ntr switches.

Visual DSP++ 4.5 Linker and Utilities Manual B-5

plinker

B-6

VisualDSP++ 4.5 Linker and Utilities Manual

C LDF PROGRAMMING
EXAMPLES FOR TIGERSHARC
PROCESSORS

This appendix provides several typical LDFs used with TigerSHARC pro-
cessors. As you modify these examples, refer to the syntax descriptions in

“LDF Commands” on page 3-31.

This appendix provides the following examples.

®

®

“Linking a Single-Processor System” on page C-2

“Linking Large Uninitialized or Zero-InitializedVariables” on

page C-4

“Linking an ADSP-TS101 MP Shared Memory System” on
page C-6

“Linking for Overlay Memory” on page C-12

The source code for several programs is bundled with your devel-
opment software. Each program includes an . 1df file. For working
examples of the linking process, examine the .1df files that come
with the examples. Examples are in the following directory.

<VisualDSP++ InstallationPath>/TS/Examples

A variety of processor-specific default . 1df files come with the
development software, providing information about each proces-
sor’s internal memory architecture. Default . 1df files are in the
following directories.

<VisualDSP++ InstallationPath>/TS/1df

Visual DSP++ 4.5 Linker and Utilities Manual C-1

Linking a Single-Processor System

Linking a Single-Processor System

When linking an executable for a single-processor system, the LDF
describes the processor’s memory and places code for that processor. The
LDF in Listing C-1 shows a single-processor LDF. Note the following
commands in this LDF:

* ARCHITECTURE() defines the processor type.

* SEARCH_DIR() adds the 1ib and current working directory to the
search path.

* $0BJS and $L1BS macros get object (.doj) and library (.DLB) file
input.

* MAP() outputs a map file.
* MEMORY({} defines memory for the processor.

* PROCESSOR{} and SECTIONS(} defines a processor and place pro-
gram sections for that processor’s output file, using the memory
definitions.

Listing C-1. Single-Processor System LDF Example
ARCHITECTURE(ADSP-TS201)
SEARCH_DIR ($ADI_DSP/TS/T1ib)
MAP (SINGLE-PROCESSOR.MAP) // Generate a MAP file
// $ADI_DSP is a predefined Tinker macro that expands to

// the VisualDSP++ installation directory. Search for objects
// in directory TS/1ib relative to the installation directory

C-2 Visual DSP++ 4.5 Linker and Utilities Manual

$LIBS = 1libc.dlb;

// single.doj is a user-generated file.

// The Tinker will be invoked as follows:

// linker -T single-processor.1df single.doj.

// $COMMAND_LINE_OBJECTS is a predefined linker macro.
// The Tinker expands this macro into the name(s) of the
// the object(s) (.doj files) and libraries (.dIb files)
// $COMMAND_LINE_OBJECTS = single.doj

// ts_header.doj is the standard initialization file for TSxxx
$0BJS = $COMMAND_LINE_OBJECTS, ts_hdr.doj;
!/ A Tinker project to generate a .dxe file

PROCESSOR PO
{
QUTPUT (./SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory command
{ INCLUDE(“TS201_memory.1df”) }

SECTIONS // Specify the output sections
{
INCLUDE(C “TS201_sections.1df”)
} // end PO sections
} // end PO processor

Visual DSP++ 4.5 Linker and Utilities Manual C-3

Linking Large Uninitialized or Zero-InitializedVariables

Linking Large Uninitialized or
Zero-InitializedVariables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing C-2 shows an example of assembly source code. Listing C-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The LDF can omit an output section from the output file. The NO_INIT
qualifier directs the linker to omit data for that section from the output

file.

Refer to “SECTIONS{}” on page 3-55 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

The NO_INIT qualifier corresponds to the /UNINIT segment qualifier
in previous (.ACH) development tools. Even if NO_INIT is not used,
the boot loader removes variables initialized to zeros from the .1dr
file and replaces them with instructions for the loader kernel to
zero-out the variable. This action reduces the loader’s output file
size, but still requires execution time for the processor to initialize
the memory with zeros.

C-4 Visual DSP++ 4.5 Linker and Utilities Manual

Listing C-2. Large Uninitialized Variables: Assembly Source

LSECTION/NO_INIT sdram_area; /* 1Mx32 SDRAM */
.VAR huge_buffer[0x10000001];

Listing C-3. Large Uninitialized Variables: LDF Source

ARCHITECTURE(ADSP-TS201)
$0BJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command line
MEMORY {
SDRAM {
TYPE(RAM) START(0x04000000) END(OXO7FFFFFF) WIDTH(32)
} // end segment
} // end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTION {
sdram_output NO_INIT ({
INPUT_SECTIONS($O0BJECTS (sdram_area))}
>mem_sdram;
SECTION {
zero_sdram_output ZERO_INIT {
INPUT_SECTIONS ($0BJECTS (zero_sdram_area))}
>mem_sdram;
} // end section
} // end processor PO

Visual DSP++ 4.5 Linker and Utilities Manual C-5

Linking an ADSP-TS101 MP Shared Memory System

Linking an ADSP-TS101 MP Shared
Memory System

When linking executable files for a multiprocessor system using shared
memory, the . 1df file describes the multiprocessor memory offsets, shared
memory, each processor’s memory, and places code for each processor.
Note the following in the example . 1df file in Listing C-4 on page C-6:

The ARCHITECTURE() command defines the processor type, which
can only be one type.

The MPMEMORY { } command defines each processor’s offset within
multiprocessor memory.

The SHARED_MEMORY { } command identifies the output for the
shared memory items.

The MEMORY { } command defines memory for the processors.

The PROCESSOR{} and SECTIONS{} commands define each processor
and place program sections using memory definitions for each pro-
cessor’s output file.

The LINK_AGAINST() commands resolve symbols within multipro-
cessor memory.

Listing C-4. LDF for a Multiprocessor System With Shared Memory

ARCHITECTURE(CADSP-TS101)
SEARCH_DIR($ADI_DSP/TS/1ib)

/7
/7
/7
/7

Allocate multiprocessor memory space with the MPMEMORY{}
command. The values represent an “addend” that the Tinker
uses to resolve undefined symbols in one DXE file to symbols
defined in another DXE file. The addend is added to each

C-6

VisualDSP++ 4.5 Linker and Utilities Manual

/7
/7
/7
/7
/7
/7

defi
For
symb
at a
to “
0x22

MPMEMOR
{
PSHO
PSH1
}
MEMORY
{
/
/

/

MOCode
M1Data
M1Stack
MZData
M2Heap
M2Stack
SDRAM
MSO

MS1

}

$LIBRAR
//
//
//

SHARED_

//
//

$SHARED

_0BJECTS

ned symbol’s value.

example, PROCESSOR project PSHO contains the undefined
ol “buffer”, and PROCESSOR project PSH1 defines “buffer”
ddress 0x22000. The linker will “fix up” the reference
buffer” in PSHO’s code to address:

000 + MPMEMORY(PSH1) = 0x22000 + 0x2400000= 0x2422000

Y

{ START
{ START

(0x2000000) '}
(0x2400000) }

/ This is used for all processors. Alternatively,
/ a PROCESSOR can describe its own memory.

* Internal memory blocks are 0x10000 (64K bytes) */

TYPE
TYPE
TYPE
TYPE

{ RAM
{

{

{

{TYPE

{

{

{

{

RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM

START(0x00000000)
START(0x00080000)
START(0x0008C000)
START(0x00100000)
START(0x0010C000)
START(0x0010C800)
START(0x04000000)
START(0x08000000)
START(0x0C000000)

END
END
END
END
END
END
END
END
END

0x0000FFFF)
0x0008BFFF)
0x0008FFFF)
0x0010BFFF)
0x0010C7FF)
0x0010FFFF)
0x07FFFFFF)
0XxOBFFFFFF)
OXOFFFFFFF)

WIDTH
WIDTH
WIDTH
WIDTH
WIDTH
WIDTH
WIDTH
WIDTH
WIDTH

32)}
32)}
32)}
32)}
32)}
TYPE }
TYPE }
TYPE }
TYPE }

32)
32)
32)

(
(
(
(
(
(
(
(
(32)

) ((
) ((
) ((
) ((
) ((
) ((
) ((
) ((
) ((

IES = Tibc.dl1b;

Three Tink projects are specified in one LDF
The first LDF is a shared memory Tink project
against which the PROCESSOR projects are Tinked

MEMORY {
The file containing the shared data buffers
is defined in shared.c

shared.doj;

VisualDSP++ 4.5 Linker and Utilities Manual

C-7

Linking an ADSP-TS101 MP Shared Memory System

// The output name of this shared object is used
// subsequently in the LINK_AGAINST command
// of the PROCESSOR projects.

QUTPUT(shared.sm)

// shared.c has data declarations only. There is no need
// to specify any output other than “data2”.

SECTIONS {
data?2 |
INPUT_SECTIONS ($SHARED_OBJECTS(data?2))
} >M1Data
} // end shared sections
} // end shared memory

// The second link project described in this LDF
// is a DXE project which will be Tinked
// against the SHARED Tink project defined above.

PROCESSOR_PSHO {

$PSHO_OBJECTS = psh0.doj, ts_hdr.doj;
LINK_AGAINST(shared.sm)

QUTPUT (psh0.dxe)

SECTIONS {
// places code (instructions) in MO (internal memory)
code {
FILL(Oxb3c00000)
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS(
$PSHO_OBJECTS(program) $LIBRARIES(program)
)
} >M0Code

// place data in M2 (internal memory)
datalf
INPUT_SECTIONS(
$PSHO_OBJECTS(datal) $LIBRARIES(datal)

C-8 VisualDSP++ 4.5 Linker and Utilities Manual

)
} >M2Data

// place data in M1 (internal memory)
data?{
INPUT_SECTIONS(
$PSHO_OBJECTS(data2) $LIBRARIES(data2)
)
} >M1Data

// place C RTL initializers in M2 (internal memory)
ctor({
INPUT_SECTIONS($LIBRARIES(ctor0)
INPUT_SECTIONS($LIBRARIES(ctorl)
INPUT_SECTIONS($LIBRARIES(ctor?)
(
(

INPUT_SECTIONS($LIBRARIES(ctor3)
INPUT_SECTIONS($LIBRARIES(ctor))
} >M2Data

// place C RTL heap table in M2 (internal memory)
heaptab{
INPUT_SECTIONS(
$PSHO_OBJECTS(heaptab) $LIBRARIES(heaptab)
)
} >M2Data

// place C RTL JALU stack in M2 (internal memory)
jstacksegf
1df_jstack_Timit = .;
1df_jstack_base = . + MEMORY_SIZEOF(M2Stack);
} >M2Stack

// place C RTL KALU stack in M1 (internal memory)
kstacksegf
1df_kstack_Timit = .;
1df_kstack_base = . + MEMORY_SIZEOF(M1Stack);
} >M1Stack

// place C RTL heap in M2 (internal memory)
defheapsegf

VisualDSP++ 4.5 Linker and Utilities Manual

C-9

Linking an ADSP-TS101 MP Shared Memory System

1df_defheap_base =
1df_defheap_size
} >M2Heap
} // end PSHO sections
} // end PSHO processor

. + MEMORY_SIZEOF(M2Heap);

// The third and final link project defined in this LDF file
// is another DXE project and will be linked against
// both the SHARED project and the PSHO DXE project.

PROCESSOR_PSHI {
$PSHI_OBJECTS = pshl.doj, ts_hdr.doj;
LINK_AGAINST(shared.sm, psh0.dxe)
OUTPUT (pshl.dxe)

SECTIONS {
// places code (instructions) in MO (internal memory)
code{
FILL(Oxb3c00000)
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS(
$PSH1_OBJECTS(program) $LIBRARIES(program)

)
} >M0Code

// place data in M2 (internal memory)
datalf
INPUT_SECTIONS(
$PSH1_OBJECTS(datal) $LIBRARIES(datal)
)
} >M2Data

// place data in M1 (internal memory)
data?|
INPUT_SECTIONS(
$PSH1_OBJECTS(data2) $LIBRARIES(data?2)
)
} >M1Data

// place C RTL initializers in M2 (internal memory)

C-10 VisualDSP++ 4.5 Linker and Utilities Manual

ctor{
INPUT_SECTIONS($LIBRARIES(ctor0))
INPUT_SECTIONS($LIBRARIES(ctorl))
INPUT_SECTIONS($LIBRARIES(ctor2))
INPUT_SECTIONS($LIBRARIES(ctor3))
INPUT_SECTIONS($LIBRARIES(ctor))

} >M2Data

// place C RTL heap table in M2 (internal memory)
heaptab{
INPUT_SECTIONS(
$PSH1_OBJECTS(heaptab) $LIBRARIES(heaptab)
)
} >M2Data

// place C RTL JALU stack in M2 (internal memory)
jstacksegf
ldf_jstack_Timit = .;
1df_jstack_base = . + MEMORY_SIZEOF(M2Stack);
} >M2Stack

// place C RTL KALU stack in M1 (internal memory)
kstacksegf
1df_kstack_Timit = .;
1df_kstack_base = . + MEMORY_SIZEOF(M1Stack);
} >M1Stack

// place C RTL heap in M2 (internal memory)
defheapseg|
1df_defheap_base = .;
1df_defheap_size = . + MEMORY_SIZEOF(M2Heap);
} >M2Heap
} // end PSH1 sections
} // end PSH1 processor

Visual DSP++ 4.5 Linker and Utilities Manual C-11

Linking for Overlay Memory

Linking for Overlay Memory

When linking executable files for an overlay memory system, the . 1df file
describes the overlay memory, the processors that use the overlay memory,
and each processor’s unique memory. The .1df file places code for each
processor in the .PLIT section.

ARCHITECTURE(ADSP-TSI101)
SEARCH_DIR($ADI_DSP/TS/T1ib)

MAP(overlay.map)

/*

This simple overlay example uses internal memory as overlay
storage memory. Typically, overlays are never stored

in internal memory - they are loaded there at runtime.

*/

// Internal memory blocks are 0x10000 (64K)

MEMORY {

M0Code {TYPE(RAM) START(0x00000000) END(Ox00007FFF) WIDTH(32)}
MO_ovly {TYPE(RAM) START(0x00008000) END(OxO0000FFFF) WIDTH(32)}
M1Data {TYPE(RAM) START(0x00080000) END(OxO008BFFF) WIDTH(32)}
M1Stack {TYPE(RAM) START(0x0008C000) END(OxO0008FFFF) WIDTH(32)}
M2Data {TYPE(RAM) START(0x00100000) END(OxOO0LO0BFFF) WIDTH(32)}
MZ2Heap {TYPE(RAM) START(0x0010C000) END(Ox0010C7FF) WIDTH(32)}
M2Stack {TYPE(RAM) START(0x0010C800) END(OxO0LO0FFFF) WIDTH(32)}
SDRAM {TYPE(RAM) START(0x04000000) END(OXO7FFFFFF) WIDTH(32)}
MSO {TYPE(RAM) START(0x08000000) END(OXOBFFFFFF) WIDTH(32)}
MS1 {TYPE(RAM) START(0x0C000000) END(OXOFFFFFFF) WIDTH(32)}

}
/* end of memory */
/* the MO_ovly segment is for overlay storage */

PLIT {
// assign the overlay ID of resolved symbol to j4
j4 = PLIT_SYMBOL_OVERLAYID;;

C-12 VisualDSP++ 4.5 Linker and Utilities Manual

// assign “run” address of resolved symbol to jb
jb = PLIT_SYMBOL_ADDRESS;;

JUMP _OverlayManager;;
}

$LIBRARIES = Tibc.dl1b;
$0BJECTS = ts_hdr.doj;

PROCESSOR PO {
$PO_OBJECTS = main.doj, manager.doj;

OUTPUT(Mgrovly.dxe)

SECTIONS {
// .text output section
Code {
INPUT_SECTIONS(
$PO_OBJECTS(program) $LIBRARIES(program))

// Specify the first overlay. This overlay is stored
// in the memory defined by “MO_ovly”. It runs in the
// memory space defined by “MOCode”.

OVERLAY_INPUT f{

// The output archive file (overlay.olv) contains the code
// and symbol table for this overlay.
OVERLAY_OUTPUT (overlayl.ovl)

// Take the code from overlayl.doj only. If there is data

// that this code needs, it must be the INPUT of a data

// overlay or the INPUT to non-overlay data memory.
INPUT_SECTIONS (overlayl.doj (program))

b > MO_ovly
// This is the second overlay. Note that the OVERLAY_INPUT

// commands must be contiguous in the LDF file to occupy
// the same runtime memory.

Visual DSP++ 4.5 Linker and Utilities Manual C-13

Linking for Overlay Memory

OVERLAY_INPUT {
OVERLAY_OQUTPUT (overlay2.ovl)
INPUT_SECTIONS (overlay2.doj (program))
b > MO_ovly
} > MOCode

// Instructions generated by the Tinker in the .plit section
// must be placed in non-overlay memory.

// Here is the one-and-only specification

// telling the Tlinker where to place these instructions.

plit |
// linker inserts instructions here.
} > MOCode

datal |
INPUT_SECTIONS(
$PO_OBJECTS(datal) $LIBRARIES(datal))
} > M2Data

dataz |
INPUT_SECTIONS(
$PO_OBJECTS(dataz) $LIBRARIES(dataz))
} > MlData

// place C RTL initializers in MO (internal memory)
ctor({
INPUT_SECTIONS($LIBRARIES(ctorQ))
INPUT_SECTIONS($LIBRARIES(ctorl))
INPUT_SECTIONS($LIBRARIES(ctor2))
INPUT_SECTIONS($LIBRARIES(ctor3))
INPUT_SECTIONS($LIBRARIES(ctor))
} >M2Data

// place C RTL heap table in MO (internal memory)
heaptab{
INPUT_SECTIONS(
$PSHO_OBJECTS(heaptab) $LIBRARIES(heaptab)
)
} >M2Data

C-14 VisualDSP++ 4.5 Linker and Utilities Manual

// place C RTL JALU stack in MO (internal memory)
jstacksegf
1df_jstack_Timit = .;
1df_jstack_base = . + MEMORY_SIZEOF(M2Stack);
} >M2Stack

// place C RTL KALU stack in M1 (internal memory)
kstacksegf
1df_kstack_Timit = .;
1df_kstack_base = . + MEMORY_SIZEOF(M1Stack);
} >M1Stack

// place C RTL heap in MO (internal memory)
defheapsegf
1df_defheap_base =
1df_defheap_size
} >M2Heap
} // end PO sections
} // end PO processor

. + MEMORY_SIZEOF(M2Heap);

Visual DSP++ 4.5 Linker and Utilities Manual C-15

Linking for Overlay Memory

C-16 VisualDSP++ 4.5 Linker and Utilities Manual

D LDF PROGRAMMING
EXAMPLES FOR SHARC
PROCESSORS

This appendix provides several typical LDFs used with SHARC proces-
sors. As you modify these examples, refer to the syntax descriptions in

“LDF Commands” on page 3-31.
This appendix provides the following examples:
e “Linking a Single-Processor SHARC System” on page D-2
e “Linking Large Uninitialized Variables” on page D-4
e “Linking for MP and Shared Memory” on page D-6
e “Linking for Overlay Memory” on page D-14
@ The source code for several programs is bundled with your devel-

opment software. Each program includes an . 1df file. For working
examples of the linking process, examine the .1df files that come
with the examples. Examples are in the following directory.

<VisualDSP++ InstallationPath>/21k/Examples

@ A variety of processor-specific default . 1df files come with the

development software, providing information about each proces-
sor’s internal memory architecture. Default . 1df files are in the
following directory.

<VisualDSP++ InstallationPath>/21k/1df

Visual DSP++ 4.5 Linker and Utilities Manual D-1

Linking a Single-Processor SHARC System

Linking a Single-Processor SHARC
System

When linking an executable for a single-processor system, the LDF
describes the processor’s memory and places code for that processor.
Listing D-1 shows a single-processor . 1df file. Note the following com-
mands in this file:

* ARCHITECTURE() defines the processor type.

* SEARCH_DIR() adds the 1ib and current working directory to the
search path.

e $0BJS and $LIBS macros get object (.doj) and library (.DLB) file
input.
* MAP() outputs a map file.

* MEMORY({} defines memory for the processor.

* PROCESSOR{} and SECTIONS{} defines a processor and place pro-
gram sections for that processor’s output file, using the memory
definitions.

Listing D-1. Single-Processor System LDF Example

// Link for the ADSP-21161
ARCHITECTURE(ADSP-21161)

SEARCH_DIR ($ADI_DSP/211xx/1ib)

MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

// $ADI_DSP is a predefined Tinker macro that expands to
// the VisualDSP++ installation directory. Search for objects

// in directory 21k/1ib relative to the installation directory

// 1ibl61.d1b is an ADSP-2116x-specific Tibrary

D-2 Visual DSP++ 4.5 Linker and Utilities Manual

// and must precede libc.dlb, the C Tibrary
// to Tink the 2116x-specific routines.

$LIBS = 1ibl6l.dl1b, Tlibc.dlb;

// single.doj is a user-generated file.

// The Tinker will be invoked as follows:

// linker -T single-processor.ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined linker macro.
// The Tinker expands this macro into the name(s) of the
// the object(s) (.doj files) and Tibraries (.dlb files)
// that appear on the command line. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

// 161_hdr.doj is the standard initialization file for 2116x
$0BJS = $COMMAND_LINE_OBJECTS, 161_hdr.doj;

// A linker project to generate a .dxe file
PROCESSOR PO
{
QUTPUT (./SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory command
{ INCLUDE(“21161_memory.h”) }

SECTIONS // Specify the output sections
{
INCLUDE(“21161_sections.h”)
} // end PO sections
} // end PO processor

Visual DSP++ 4.5 Linker and Utilities Manual D-3

Linking Large Uninitialized Variables

Linking Large Uninitialized Variables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing D-2 shows an example of assembly source code. Listing D-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The LDF can omit an output section from the output file. The NO_INIT
qualifier directs the linker to omit data for that section from the output

file.

Refer to “SECTIONS{}” on page 3-55 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

@ The NO_INIT qualifier corresponds to the /UNINIT segment qualifier

in previous (.ach) development tools. Even if NO_INIT is not used,
the boot loader removes variables initialized to zeros from the .1dr
file and replaces them with instructions for the loader kernel to
zero-out the variable. This action reduces the loader’s output file
size, but still requires execution time for the processor to initialize
the memory with zeros.

Listing D-2. Large Uninitialized Variables: Assembly Source

.SECTION/DM/NO_INIT sdram_area; /* 1Mx32 SDRAM */
.VAR huge_buffer[0x1000001];

D-4 Visual DSP++ 4.5 Linker and Utilities Manual

Listing D-3. Large Uninitialized Variables: LDF Source

ARCHITECTURE(ADSP-21161)
$OBJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command line
MEMORY {
mem_sdram {
TYPE(DM RAM) START(0x3000000) END(Ox30FFFFF) WIDTH(32)
}// end segment

}// end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
QUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTION {
sdram_output NO_INIT {
INPUT_SECTIONS($O0BJECTS (sdram_area))}
>mem_sdram;
SECTION {
zero_sdram_output ZERO_INIT {
INPUT_SECTIONS ($0BJECTS (zero_sdram_area))}
>mem_sdram;
} // end section
} // end processor PO

Visual DSP++ 4.5 Linker and Utilities Manual D-5

Linking for MP and Shared Memory

Linking for MP and Shared Memory

When linking executable files for a multiprocessor system using shared
memory, the . 1df file describes the multiprocessor memory offsets, shared
memory, each processor’s memory, and places code for each processor.
Note the following in the example .1df file in Listing D-4 on page D-7:

The ARCHITECTURE() command defines the processor type, which
can be one type only.

The SEARCH_DIR() command adds the 1ib and current working
directory to the search path.

The $0BJS and $LIBS macros get object (.doj) and library (.DLB)
file input.

The MPMEMORY { } command defines each processor’s offset within
multiprocessor memory.

The SHARED_MEMORY { } command identifies the output for the
shared memory items.

The MAP() command outputs map files.
The MEMORY { } command defines memory for the processors.

The PROCESSOR{ } and SECTIONS{} commands define each processor
and place program sections using memory definitions for each pro-
cessor’s output file.

The LINK_AGAINST() commands resolve symbols within multipro-
cessor memory.

D-6

VisualDSP++ 4.5 Linker and Utilities Manual

Listing D-4. LDF for a Multiprocessor System With Shared Memory

ARCHITECTURE(ADSP-21161)
SEARCH_DIR($ADI_DSP/211xx/1ib)

// Allocate multiprocessor memory space with the MPMEMORY{}

// command. The values represent an “offset” that the Tinker

// uses to resolve undefined symbols in one DXE file to symbols
// defined in another DXE file. That is, the offset is added

// to each defined symbol’s value.

// For example, PROCESSOR project PSHO references the undefined
// symbol “buffer”, and PROCESSOR project PSH1 defines “buffer”
// at address 0x22000. The Tinker will “fix up” the reference
// to “buffer” in PSHO’s code to address:

// 0x22000 + MPMEMORY(PSH1) = 0x22000 + 0x120000 = 0x142000

MPMEMORY
{
PSHO { START (0x100000) }
PSH1 { START (0x120000) }
}
MEMORY
{
// This is used for all processors. Alternatively,
// a PROCESSOR can describe its own memory.

seg_rth { TYPECPM RAM) START(0x00040000) END(0x000400ff)
WIDTH(48) }

seg_init { TYPECPM RAM) START(0x00040100) END(0x000401ff)
WIDTH(48) }

seg_int_code { TYPE(PM RAM) START(0x00040200) END(0x00040287)
WIDTH(48) }

seg_pmco { TYPECPM RAM) START(0x00040288) END(0x000419ff)
WIDTH(48) }

seg_pmda { TYPECPM RAM) START(0x00042700) END(0x00043fff)
WIDTH(32) }

seg_dmda { TYPE(DM RAM) START(0x00050000) END(Ox00051fff)
WIDTH(32) }

Visual DSP++ 4.5 Linker and Utilities Manual D-7

Linking for MP and Shared Memory

seg_heap { TYPE(DM RAM) START(0x00052000) END(0x00052fff)
WIDTH(32) }

seg_stak { TYPE(DM RAM) START(0x00053000) END(0x00053fff)
WIDTH(32) }

$LIBRARIES = Tlibclé6l.dlb;
// Three 1link projects are specified in one LDF file.
// The first 1ink project is a shared memory link project
// against which the PROCESSOR projects are linked.

SHARED_MEMORY {
// The file containing the shared data buffers
// is defined in “shared.c”.

$SHARED_OBJECTS = shared.doj;
// The output name of this shared object is used
// subsequently in the LINK_AGAINST command
// of the PROCESSOR projects.

QUTPUT (shared.sm)

// shared.c has data declarations only. There is no need
// to specify any output other than “seg_dmda”.

SECTIONS {
sec_dmda f
INPUT_SECTIONS ($SHARED_OBJECTS(seg_dmda))
} >mem_dmda

} // end shared sections
t // end shared memory

// The second 1ink project described in this .1df file
// is a DXE project which will be Tinked
// against the SHARED Tink project defined above.

PROCESSOR_PSHO {
$PSHO_OBJECTS = psh0.doj, 161_hdr.doj;
LINK_AGAINST(shared.sm)

D-8 Visual DSP++ 4.5 Linker and Utilities Manual

OUTPUT (psh0.dxe)

SECTIONS {

dxe_pmco{ INPUT_SECTIONS(
$PSHO_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco)
} >mem_pmco

dxe_pmda{ INPUT_SECTIONS(
$PSHO_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda)
} >mem_pmda

dxe_dmda{ INPUT_SECTIONS(
$PSHO_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda)
} >mem_dmda

dxe_init{ INPUT_SECTIONS(
$PSHO_OBJECTS(seg_init) $LIBRARIES(seg_init)
} Smem_init

dxe_rth { INPUT_SECTIONS(
$PSHO_OBJECTS(seg_rth) $LIBRARIES(seg_rth)
} >mem_rth

stackseg | // Allocate a stack for the application.
1df_stack_space = .;
1df_stack_length = 0x2000;
} >mem_stak

heap { // Allocate a heap for the application.
1df_heap_space = .;
1df_heap_end = 1df_heap_space + 0x2000;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >mem_heap

} // end PSHO sections
} // end PSHO processor

// The third and final Tlink project defined in this LDF file
// is another DXE project and will be linked against
// both the SHARED project and the PSHO DXE project.

PROCESSOR_PSHI {
$PSH1_0OBJECTS = pshl.doj, 161_hdr.doj;
LINK_AGAINST(shared.sm, psh0.dxe)
OUTPUT (pshl.dxe)

Visual DSP++ 4.5 Linker and Utilities Manual D-9

Linking for MP and Shared Memory

SECTIONS {

//
//

dxe_pmco{ INPUT_SECTIONS(
$PSHI_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco)
} >mem_pmco
dxe_pmda{ INPUT_SECTIONS(
$PSHI_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda)
} >mem_pmda
dxe_dmda{ INPUT_SECTIONS(
$PSH1_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda)
} >mem_dmda
dxe_init{ INPUT_SECTIONS(
$PSH1_OBJECTS(seg_init) $LIBRARIES(seg_init)
} Smem_init
dxe_rth { INPUT_SECTIONS(
$PSHI_OBJECTS(seg_rth) $LIBRARIES(seg_rth)
} >mem_rth
stackseg | // Allocate a stack for the application.
1df_stack_space = .;
1df_stack_length = 0x2000;
} >mem_stak
heap { // Allocate a heap for the application.
1df_heap_space = .;
1df_heap_end = 1df_heap_space + 0x2000;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >mem_heap

The following definition sections are needed only
for pre-VisualDSP combatibility woth COFF objects.

.coff.stringstab {INPUT_SECTIONS(
$PSH1_OBJECTS(.coff.stringstab)
$LIBRARIES(.coff.stringstab))

}

.coff.SDB {INPUT_SECTIONS(
$PSH1_OBJECTS(.coff.SDB)
$LIBRARIES(.coff.SDB))

}

.Inno.seg_pmco {INPUT_SECTIONS(
$PSH1_OBJECTS(.Inno.seg_pmco)
$LIBRARIES(.1nno.seg_pmco))

VisualDSP++ 4.5 Linker and Utilities Manual

}
} // end PSH1 sections
} // end PSHI1 processor

Visual DSP++ 4.5 Linker and Utilities Manual D-11

Linking for MP and Shared Memory

Reflective Semaphores

Semaphores may be used in multiprocessor (MP) systems to permit
processors to share resources such as memory or I/O. A semaphore is a flag
that can be read and written by any of the processors sharing the resource.
A semaphore’s value indicates when the processor can access the resource.
Reflective semaphores permit communication among processors that share a
multiprocessor memory space.

Use broadcast writes to implement reflective semaphores in an MP system.
Broadcast writes allow simultaneous transmission of data to all the
SHARC processors in an MP system. The master processor can broadcast
writes to the same memory location or IOP register on all the slaves.
During a broadcast write, the master also writes to itself unless the broad-
cast is a DMA write.

Broadcast writes can also be used to simultaneously download code or data
to multiple processors.

Bus lock can be used in combination with broadcast writes to implement
reflective semaphores in an MP system. The reflective semaphore should
be located at the same address in internal memory (or IOP register) of

each SHARC processor.
SHARC processors have a “broadcast” space. Use . 1df file (or header files)

to define a memory segment in this space, just as in internal memory or
any processor MP space. The broadcast space aliases internal space, so if
there is a memory segment defined in the broadcast space, the . 1df file
cannot have a memory segment at the corresponding address in the inter-
nal space (or in the MP space of any processor). Otherwise, the linker
generates an error indicating that the memory definition is not valid.

To check the semaphore, each SHARC processor reads from its own inter-
nal memory. Any object in the project can be mapped to an appropriate
memory segment defined in the broadcast space for use as a reflective

D-12 Visual DSP++ 4.5 Linker and Utilities Manual

semaphore. If an object defining symbol SemA is mapped to a broadcast
space, when the program writes to SemA, the written value appears at the
aliased internal address of each processor in the cluster. Each processor
may read the value using SemA, or read it from internal memory by select-
ing (SemA-0x380000), thus avoiding bus traffic.

To modify the semaphore, a SHARC processor requests bus lock and then

performs a broadcast write to the semaphore address (for example, Sema).

The processors should read the semaphore before modifying it to
verify that another processor has not changed it.

For more information on semaphores, refer to your processor’s Hardware
Reference manual.

Visual DSP++ 4.5 Linker and Utilities Manual D-13

Linking for Overlay Memory

Linking for Overlay Memory

When linking executable files for an overlay memory system, the .1df file
describes the overlay memory, the processors that use the overlay memory,
and each processor’s unique memory. The .1df file places code for each
processor in the .PLIT section.

ARCHITECTURE(ADSP-21161)
SEARCH_DIR($ADI_DSP/211xx/1ib)

MAP(overlay.map)

/*

This simple overlay example uses internal memory as overlay
storage memory. Typically, overlays are never stored

in internal memory, but are loaded there at runtime.

*/

MEMORY {

seg_rth {TYPE(PM RAM) START(0x00040000) END(0x000400ff) WIDTH(48)}
seg_init {TYPE(PM RAM) START(0x00040100) END(Ox000401ff) WIDTH(48)}
seg_init_code {TYPE(PM RAM) START(0x00040200) END(0x00040287) WIDTH(48)!}
seg_pmco {TYPE(PM RAM) START(0x00040288) END(0x000409ff) WIDTH(48
seg_ovly {TYPE(PM RAM) START(0x00040100) END(0x000419ff) WIDTH(48
seg_pmda {TYPE(PM RAM) START(0x00042700) END(Ox00043fff) WIDTH(32
seg_dmda {TYPE(DM RAM) START(0x00050000) END(Ox00051fff) WIDTH(32
seg_heap {TYPE(DM RAM) START(0x00052000) END(Ox00052fff) WIDTH(32

}
}
}
}
}
seg_stak {TYPE(DM RAM) START(0x00053000) END(Ox00053fff) WIDTH(32)}

— e — — — —

/* mem_pmco is the “run” memory segment */
/* mem_ovly is the “live” memory segment */

// Processor and application-specific assembly language
// instructions. One instance of these instructions is
// generated for each symbol resolved in overlay memory.

VisualDSP++ 4.5 Linker and Utilities Manual

PLIT {
// Each of five instructions are duplicated

// for each symbol in an overlay.

RO = PLIT_SYMBOL_OVERLAYID;
// Assigns overlay ID of the resolved symbol to RO.
Rl = PLIT_SYMBOL_ADDRESS;

// Assigns “run” address of resolved symbol to RI.
dm(_overlayID) = RO;
dm(_pf) = R1;
JUMP _OverlayManager;
}

$LIBRARIES = Tibclél.dl1b;
$0BJECTS = 161_hdr.doj;

PROCESSOR PO {
$PO_OBJECTS = main.doj, manager.doj;

OUTPUT(mgrovly.dxe)

SECTIONS {
// .text output section
seg_pmco {
INPUT_SECTIONS(
$P0O_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))

// Specify the first overlay. This overlay is stored
// in the memory defined by “mem_ovly”. It runs in the
// memory space defined by “mem_pmco”.

OVERLAY_INPUT {

// The output archive file (overlayl.olv) contains the code
// and symbol table for this overlay.
OVERLAY_OUTPUT (overlayl.ovl)

// Take the code from overlayl.doj only. If there is data

// that this code needs, it must be the INPUT of a data

// overlay or the INPUT to non-overlay data memory.
INPUT_SECTIONS (overlayl.doj (program))

Visual DSP++ 4.5 Linker and Utilities Manual D-15

Linking for Overlay Memory

// Tell the Tinker that all code must fit
// into the “run” memory all at once. Other ALGORITHM
// commands provide more optimized overlay support.

ALGORITHM(ALL_FIT)
} > mem_ovly

// This is the second overlay. Note that the OVERLAY_INPUT
// commands must be contiguous in the LDF file to occupy
// the same run-time memory.

OVERLAY_INPUT ¢{
OVERLAY_OUTPUT (overlay2.ovl)

INPUT_SECTIONS (overlay2.doj (seg_pmco))
} > mem_ovly
} > dxe_pmco

// Instructions generated by the Tinker in the .plit section
// must be placed in non-overlay memory.

// Here is the one-and-only specification

// telling the linker where to place these instructions.

plit |
// linker inserts instructions here.
} > mem_pmco

dxe_pmda {
INPUT_SECTIONS(
$PO_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))
} > mem_pmda

dxe_dmda {
INPUT_SECTIONS(
$PO_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))
} > mem_dmda

seg_init {
INPUT_SECTIONS(
$PO_OBJECTS(seg_init) $LIBRARIES(seg_init))

D-16 Visual DSP++ 4.5 Linker and Utilities Manual

}> mem_init

dxe_rth {
INPUT_SECTIONS(

$PO_OBJECTS(seg_rth) $LIBRARIES(seg_rth))
} > mem_rth

stackseg | // Allocate a stack for the application.

1df_stack_space = .;
1df_stack_length = 0x2000;
} > mem_stak

heap { // Allocate a heap for the application.
1df_heap_space = .;
1df_heap_end = 1df_heap_space + 0x2000;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} > mem_heap

VisualDSP++ 4.5 Linker and Utilities Manual

D-17

Linking for Overlay Memory

D-18 Visual DSP++ 4.5 Linker and Utilities Manual

E LDF PROGRAMMING
EXAMPLES FOR BLACKFIN
PROCESSORS

This appendix provides several typical LDFs. used with Blackfin proces-
sors. As you modify these examples, refer to the syntax descriptions in

“LDF Commands” on page 3-31.

This appendix provides the following examples.

“Linking for a Single-Processor System” on page E-2

“Linking Large Uninitialized or Zero-initialized Variables” on

page E-4

“Linking for Assembly Source File” on page E-6

“Linking for C Source File — Example 1” on page E-8

“Linking for Complex C Source File — Example 2” on page E-11
“Linking for Overlay Memory” on page E-17

The source code for several programs is bundled with the
development software. Each program includes an .1df file. For
working examples of the linking process, examine the . 1df files
that come with the examples. These examples are in the directory:

VisualDSP++ InstallPath>/Blackfin/examples
The development software includes a variety of default . 1df files.

These files provide an example .1df for each processor’s internal
memory architecture. The default . 1df files are in the directory:

<VisualDSP++ InstallPath>/Blackfin/1df

Visual DSP++ 4.5 Linker and Utilities Manual E-1

Linking for a Single-Processor System

Linking for a Single-Processor System

When you link an executable file for a single-processor system, the .1df
file describes the processor’s memory and places code for that processor.
The .1df file in Listing E-1 is for a single-processor system. Note the fol-
lowing commands in this example . 1df file.

* ARCHITECTURE() defines the processor type

* SEARCH_DIR() commands add the 1ib and current working direc-
tory to the search path

* $0BJS and $LIBS macros retrieve object (.doj) and library (.DLB)
file input

* MAP() outputs a map file
* MEMORY{} defines memory for the processor
* PROCESSOR{} and SECTIONS{} commands define a processor and
place program sections for that processor’s output file by using the
memory definitions
Listing E-1. Example .1df File for a Single-Processor System
ARCHITECTURE(ADSP-BF535)
SEARCH_DIR($ADI_DSP/BTlackfin/1ib)
MAP(SINGLE-PROCESSOR.MAP) // Generate a MAP file
// $ADI_DSP is a predefined linker macro that expands

// to the VDSP install directory. Search for objects in
// directory Blackfin/1ib relative to the install directory

E-2 Visual DSP++ 4.5 Linker and Utilities Manual

LIBS libc.dlb, Tibevent.dlb, Tibsftflit.dlb, Tibcpp_blkfn.dlb,

Tibcpprt_blkfn.dlb, Tibdsp.dlb
$LIBRARIES = LIBS, librt.dlb;

// single.doj is a user generated file. The linker will be
// invoked as follows

// linker -T single-processor.ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined Tinker macro

// The Tlinker expands this macro into the name(s) of the
// the object(s) (.doj files) and archives (.dlb files)

// that appear on the command Tine. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

$0BJECTS = $COMMAND_LINE_OBJECTS;
// A Tinker project to generate a DXE file
PROCESSOR PO

{
QUTPUTC(SINGLE.dxe) // The name of the output file

MEMORY // Processor specific memory command

{ INCLUDE(“BF535_memory.1df”) }

SECTIONS // Specify the Output Sections
{ INCLUDE(*“BF535_sections.1df” }
// end PO sections
} // end PO processor

VisualDSP++ 4.5 Linker and Utilities Manual

E-3

Linking Large Uninitialized or Zero-initialized Variables

Linking Large Uninitialized or
Zero-initialized Variables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing E-2 shows an example of assembly source code. Listing E-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The LDF can omit an output section from the output file. The NO_INIT
qualifier directs the linker to omit data for that section from the output

file.

Refer to “SECTIONS{}” on page 3-55 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

The NO_INIT qualifier corresponds to the /UNINIT segment qualifier
in previous (.ach) development tools. Even if you do not use
NO_INIT, the boot loader removes variables initialized to zeros from
the .1dr file and replaces them with instructions for the loader ker-
nel to zero out the variable. This action reduces the loader’s output
file size, but still requires execution time for the processor to ini-
tialize the memory with zeros.

E-4

Visual DSP++ 4.5 Linker and Utilities Manual

Listing E-2. Large Uninitialized Variables: Assembly Source

.SECTION/NO_INIT extram_area; /* 1Mx8 EXTRAM */
.BYTE huge_buffer[0x0060001];

.SECTION/ZERO_INIT zero_extram_area;

.BYTE huge_zero_buffer[0x0060007;

Listing E-3. Large Uninitialized Variables: .1df File Source

ARCHITECTURE(ADSP-BF535)
$OBJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command Tine
MEMORY {
mem_extram |{
TYPE(RAM) START(0x10000) END(Ox15fff) WIDTH(8)
} // end segment
} // end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
QUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTION {
extram_output NO_INIT f{
INPUT_SECTIONS($OBJECTS (extram_area))}
>mem_extram;
SECTION {
zero_extram_output ZERO_INIT {
INPUT_SECTIONS ($0BJECTS (zero_extram_area))}
>mem_extram;
} // end section
} // end processor PO

Visual DSP++ 4.5 Linker and Utilities Manual E-5

Linking for Assembly Source File

Linking for Assembly Source File

Listing E-5 shows an example . 1df file for an ADSP-BF535 DSP that
describes a simple memory placement of an assembly source file. The file
in Listing E-4 contains code and data that is to reside in, and execute
from, L2 SRAM. This example assumes that the code and data declared in
L2 memory is cacheable within L1 code and data memories. The LDF file
includes two commands, MEMORY and SECTIONS, which are used to describe
specific memory and system information. Refer to Notes for Listing E-2
for information on items in this basic example.

Listing E-4. MyFile.asm

.SECTION program;
.GLOBAL main;

main:

p0.1 = myArray;
p0.h = myArray;
ro = [p0++1;

.SECTION datal;
.GLOBAL myArray;
VAR myArray[256] = "myArray.dat";

Listing E-5. Simple .1df File Based on Assembly Source File Only

jfdefine L2_START 0xf0000000
jtdefine L2_END OxfO03ffff

// Declare specific DSP Architecture here (for Tinker)
ARCHITECTURE (ADSP-BF535)

// LDF macro equals all object files in project command Tine
$0BJECTS = $COMMAND_LINE_OBJECTS;

// Describe the physical system memory below

MEMORY {

E-6 Visual DSP++ 4.5 Linker and Utilities Manual

// 256KB L2 SRAM memory segment for user code

// and data L2SRAM

MEM_L2SRAM {TYPE(RAM) START(LZ2_START) END(L2_END) WIDTH(8)}
}

PROCESSOR pOf
QUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS{

LZ2SRAM{
// Align L2 instruction segments on a 2-byte boundaries
INPUT_SECTION_ALIGN(?2)
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
// Align L2 data segments on 1-byte boundary
INPUT_SECTION_ALIGN(INPUT_SECTIONS

($0BJECTS(datal) $LIBRARIES(datal))

>MEM_L2SRAM
} // end section

} // end processor PO

MyFile ASM MvFile D nJ LI SEAM
-:}":l':-:]'l J’“:'? HAIL, Ofbject Section = prosaain Tam
II:nﬂjn. liame. pod = (pvAray & O,
Ll nEANL . 10T = oy Aamay 14,

Pl = oAy & il = [piH=];

Pkl = fnayAmay S oy pit s = {yArray == 16); SR

b= (yAmray == 16); 0 - [p])

1t = [pi

v Array 0]

CHject Section = datal
ject Hection = data oy Ay [1]

section datal ;
global my Array: oy Array[(]

var myAmmviia] = myArrav[1] iy Array[255]
A ay Al U

oy Array] 255]

Assembler Linker

Figure E-1. Assembly-to-Memory Code Placement

Visual DSP++ 4.5 Linker and Utilities Manual E-7

Linking for C Source File - Example 1

Linking for C Source File - Example 1

Listing E-7 shows an example LDF that describes the memory placement
of a simple C source file (Listing E-6) which contains code and data that is
to reside in, and execute from, L2 SRAM. This example also assumes that
the code and data declared in L2 memory is cacheable within L1 code and
data memories. The LDF file includes two commands, MEMORY and SEC-
TIONS, which are used to describe specific memory and system
information. Refer to Notes for Listing E-2 for information on items in
this basic example.

Listing E-6. Simple C Source File Example 1

int myArray[25617;

void main(void){
int 1;

for(i=0; i<256; i++)
myArray[i]l = 1;

} // end main ()
Listing E-7. Example: Simple C-based .1df File for ADSP-BF535 Processor

ARCHITECTURE(CADSP-BF535)
SEARCH_DIR($ADI_DSP/Blackfin/1ib)

fidefine LIBS 1ibsmall1535.d1b 1ibc535.d1b 1ibm3free535.d1b
libevent535.d1b 1ibio535.d1b Tibcpp535.d1b Tlibcpprt535.dlb
1ibdsp535.d1b Tibsftf1t535.d1b Tibetsi535.d1b idleb535.doj
$LIBRARIES = LIBS, 1ibrt535.d1b;

$0BJECTS = crts535.doj, $COMMAND_LINE_OBJECTS crtnb35.doj;

E-8 Visual DSP++ 4.5 Linker and Utilities Manual

MEMORY {
// 248KB of L2 SRAM memory segment for user code and data
MEM_L2SRAM {TYPE(RAM) START(0xf0000000) END(OxFOO3dfff) WIDTH(8)}
// 4KB of L2 SRAM memory for C run-time stack (user mode)
MEM_STACK {TYPE(RAM) START(0xf003e000) END(Oxf0O03efff) WIDTH(8)}
// 4KB of Scratch SRAM for Heap memory segment
MEM_HEAP {TYPE(RAM) START(OxFFBO0O0O00O) END(OxXxFFBOOFFF) WIDTH(8)}
}

PROCESSOR pOf
OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS{}
// Declare L2 Input objects below..
LZ2_SRAM{
// Align L2 instruction segments on a 2-byte boundaries
INPUT_SECTION_ALIGN(2)
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program)
// Align L2 data segments on a 1l-byte boundary
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal)
INPUT_SECTIONS($0BJECTS(cplb) $LIBRARIES(cplb))
INPUT_SECTIONS($0BJECTS(cplb_code) $LIBRARIES(cplb_code))
INPUT_SECTIONS($0BJECTS(cplb_data) $LIBRARIES(cplb_data))
// Align L2 constructor data segments on a 1-byte boundary
// (C++ only)
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(constdata) $LIBRARIES(constdata))
} >MEM_LZ2SRAM

// Allocate memory segment for C run-time stack segment stack
// Assign start address of stack to 'ldf_stack_space'
// variable using the LDF's current location counter
1df_stack_space = .;

// Assign end address of stack to 'ldf_stack_end' variable
1df_stack_end = 1df_stack_space + MEMORY_SIZEOF(MemStack) - 4;
} >MEM_STACK

// Allocate a heap segment (for dynamic memory allocation)

Visual DSP++ 4.5 Linker and Utilities Manual E-9

Linking for C Source File - Example 1

// heap

// Assign start address of heap to 'ldf_heap_space' variable
// using the LDF's current location counter "."
1df_heap_space = .;

// Assign end address of heap to 'ldf_heap_length' variable
1df_heap_end = 1df_heap_space + MEMORY_SIZEOF(MemHeap) - 1;
// Assign length of heap to 'ldf_heap_length' variable
1df_heap_length = 1df_heap_end - 1df_heap_space;

} >MEM_HEAP

} // end SECTIONS{}
// end PROCESSOR pO{}

E-10 VisualDSP++ 4.5 Linker and Utilities Manual

Linking for Complex C Source File -
Example 2

Listing E-8 shows an example LDF that describes the memory placement
of a C source file. This file contains code and data that is to reside in, and
execute from, L1, L2, Scratchpad SRAM, and external SDRAM Banks 0
through 3. The .LDF file includes two commands, MEMORY and SECTIONS,
which are used to describe specific memory and system information. Refer
to Notes for Listing E-2 for information on items in this complex
example.

Listing E-8. Complex C Source File Example

static section ("Fast_Code") void MEM_DMA_ISR(void){

}

static section ("SDRAM_0") int page_buffl1[0x08000000];
static section ("SDRAM_1") int page_buff2[0x08000000];

static section ("SDRAM_2") int page_buff3[0x08000000];
static section ("SDRAM_3") int page_buff4[0x08000000];

static section ("Data_BankA") int coeffsl[256];
static section ("Data_BankB") int input_array[0x2000];

int x, vy, z;
void main(void){
int i;

x = 0x5555;

Visual DSP++ 4.5 Linker and Utilities Manual E-11

Linking for Complex C Source File - Example 2

The following is an example of an LDF file (for ADSP-BF535 DSP)
which is based on the complex C source from Listing E-8. Also see
Listing E-2 on page E-5.

Listing E-9. C .ldf File Example - SDRAM.Idf

ARCHITECTURE(CADSP-BF535)
SEARCH_DIR($ADI_DSP/Blackfin/Tib

fidefine LIBS T1ibsmall1535.d1b 1ibc535.d1b 1ibm3free535.d1b
lTibevent535.d1b 1ibio535.d1b Tibcpp535.d1b libcpprt535.dib
1ibdsp535.d1b Tibsftf1t535.d1b Tibetsi535.d1b idleb35.doj

$LIBRARIES = LIBS, 1ibrt535.d1b;
$OBJECTS = crts535.doj, $COMMAND_LINE_OBJECTS crtnb35.doj;

// Define physical system memory below..
MEMORY {
// 16KB of user code in L1 SRAM segment
MEM_L1_CODE_SRAM {TYPE(RAM) START(OxXxFFA00000) END(OXxFFAO3FFF)
WIDTH(8)}
// 16KB of user data in L1 Data Bank A SRAM
MEM_L1_DATAA_SRAM {TYPE(RAM) START(OxFF800000) END(OxFF803FFF)
WIDTH(8)}
// 16KB of user data in L1 Data Bank B SRAM
MEM_L1_DATAB_SRAM {TYPE(RAM) START(OxFF900000) END(OXxFF903FFF)
WIDTH(8)}

// 4KB of L1 Scratch memory for C run-time stack (user mode)
MeM_SCRATCH_STACK {TYPE(RAM) START(OxFFBOO00O) END(OXFFBOO7FF)
WIDTH(8)}

// 248KB of user code and data in L2 SRAM segment
MEM_L2_SRAM {TYPE(RAM) START(OxFO000000) END(OxFOO3DFFF)
WIDTH(8)}
// 4KB for heap in L2 SRAM (for dynamic memory allocation)
MEM_HEAP {{TYPE(RAM) START(OxFOO3E000) END(OxFOO3EFFF)
WIDTH(8)}

E-12 VisualDSP++ 4.5 Linker and Utilities Manual

// 4KB for system stack in L2 SRAM (supervisor mode stack)
MEM_SYSSTACK {TYPE(RAM) START(OxFOO3F000) END(OXFOO3FFFF)
WIDTH(8)}

// 4 x 128MB External SDRAM memory segments

MEM_SDRAM_BANKQO {TYPE(RAM) START(0x00000000) END(OxXO7FFFFFF)
WIDTH(8)}

MEM_SDRAM_BANK1 {TYPE(RAM) START(0x08000000) END(OXOFFFFFFF
WIDTH(8)}

MEM_SDRAM_BANK2 {TYPE(RAM) START(0x10000000) END(Ox17FFFFFF)
WIDTH(8)}

MEM_SDRAM_BANK3 {TYPE(RAM)
WIDTH(8)}

} // end MEMORY{}

START(0x18000000) END(OXIFFFFFFF)

PROCESSOR pOf
OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS{
// Input section declarations for L1 code memory
L1_CODE_SRAM{
// Align L1 code segments on a 2-byte boundary
INPUT_SECTION_ALIGN(2)
INPUT_SECTIONS($0BJECTS(Fast_Code)
}>MEM_L1_CODE_SRAM

// Input section declarations for L1 data bank A memory
L1_DATAA_SRAM{
// Align L1 data segments on a 1l-byte boundary
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(Data_BankA)
}>MEM_L1_BANKA_SRAM

// Input section declarations for L1 data bank B memory
L1_BANKB_SRAM({
// Align L1 data segments on a 1l-byte boundary
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(Data_BankB)
}>MEM_L1_BANKB_SRAM

Visual DSP++ 4.5 Linker and Utilities Manual E-13

Linking for Complex C Source File - Example 2

stack({
1df_stack_space = .;
1df_stack_end = 1df_stack_space +
MEMORY_SIZEOF (Mem_Scratch_Stack) - 4;
} >MEM_SCRATCH_STACK

heap{
1df_heap_space = .;
1df_heap_end = 1df_heap_space + MEMORY_SIZEOF(Mem_Heap)
1df_heap_length = 1df_heap_end - 1df_heap_space;

} >MEM_HEAP

L2_SRAM{
// Align L2 code segments on a 2-byte boundary
INPUT_SECTION_ALIGN(2)
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
// Align L2 data segments on a 1l-byte boundary
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))

1;

// Align L2 constructor data segments on a 1-byte boundary

// (C++ only)
INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(constdata) $LIBRARIES(constdata))

}>MEM_L2_SRAM

SDRAM_O{

// Align external SDRAM data segments on a 1-byte boundary

INPUT_SECTION_ALIGN(I)
INPUT_SECTIONS($0BJECTS(SDRAM_0))
} >MEM_SDRAM_BANKO

SDRAM_1{

// Align external SDRAM data segments on a 1-byte boundary

INPUT_SECTION_ALIGN(I)
INPUT_SECTIONS($0BJECTS(SDRAM_1))
} >MEM_SDRAM_BANK1

SDRAM_2 {

// Align external SDRAM data segments on a 1-byte boundary

E-14 VisualDSP++ 4.5 Linker and Utilities Manual

INPUT_SECTION_ALIGN(I)
INPUT_SECTIONS($0BJECTS(SDRAM_2))
} >MEM_SDRAM_BANK?Z

SDRAM_3{
// Align external SDRAM data segments on a 1-byte boundary
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(SDRAM_3))

} >MEM_SDRAM_BANK3

} // End Sections{}
) // End PROCESSOR pO{}

Visual DSP++ 4.5 Linker and Utilities Manual E-15

Linking for Complex C Source File - Example 2

21535 Internal SRAM

L1 Code SRAM L2 SRAM
wvaid MEM_DMA_ISFrvoid){ «
. ¥
. z
t
static section ("Fast Code") void MEM_DMA_ISR(void){ L1 Data A SRAM
d main(woid) |
coeffs1[0] woue "
} coeffsi[1] x=Dx3555;
static section ("SDRAM_0") int page buffl [0x080000007; coeffs1[235] i
static section ("SDRAM 1" int page buff2[0x030000007,
static section ("SDRAM_2") int page buff3[0x050000007,
static section ("SDRAM_3") int page_buffd[0x02000000]; L1 Data B SRAM Scratch SRAM
static section ("Data Bankd"™) int coeffs1[256]; Input_amray(0]
static section ("Data_BankB") int input_array[0x2000]; pt_amay
coeffsi[1] i
w3 3, coes1[255]
void mainvoid) {
mt 1, 4
External SDRAM
= 0x5355;
o SDRAM Bank 0 SDRAM Bank 1
page_buffl[0] page_buff2[0]
} page_buffl[1] page_buff2[1]
page buffi[134217727] page_buff2[134217727]
SDRAM Bank 2 SDRAM Bank 3
page_buff3[0] page_buffa[0]
page_buff3[1] page_buffa[l]
page_buff3[134217727] page_buffa[134217727]

Figure E-2. C-to-Memory Code Placement

E-16 Visual DSP++ 4.5 Linker and Utilities Manual

Linking for Overlay Memory

When you link executable files for an overlay memory system, the . 1df file
describes the overlay memory, the processor(s) that use the overlay
memory, and each processor’s unique memory. The .1df file places code
for each processor and the special PLIT{} section.

Listing E-10 shows an example .1df file for an overlay-memory system.
For more information on this . 1df file, see the comments in the listing.

Listing E-10. Example .Idf File for an Overlay-Memory System

ARCHITECTURE(BF535)
SEARCH_DIR($ADI_DSP\BTackfin\1ib)

{

MAP(overlay.map)

// This simple example uses internal memory for overlays
// (Real overlays would never “live” in internal memory)

MEMORY
{
MEM_PROGRAM { TYPE(RAM) START(0xF0000000) END(OXxFOO2FFFF)
WIDTH(8) }
MEM_HEAP { TYPECRAM) START(0xF0030000) END(OxFOO37FFF)
WIDTH(8) }
MEM_STACK { TYPECRAM) START(0xF0038000) END(OxFOO3DFFF)
WIDTH(8) }
MEM_SYSSTACK { TYPE(RAM) START(OxFOO3EOO0O0) END(OxFOO3EFFF)
WIDTH(8) }
MEM_OVLY { TYPECRAM) START(0x00000000) END(0x08000000)
WIDTH(8) }
}

PROCESSOR p0
{

Visual DSP++ 4.5 Linker and Utilities Manual E-17

Linking for Overlay Memory

LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)
SECTIONS
{
reset { INPUT_SECTIONS($OBJECTS(IVreset))
} >MEM_PROGRAM
itab { INPUT_SECTIONS($0BJECTS(IVpwrdwn))
} >MEM_PROGRAM

// Processor and application specific assembly Tlanguage

// instructions, generated for each symbol that is resolved
// in overlay memory.

PLIT

{
PO = PLIT_SYMBOL_OVERLAYID;
Pl.L = PLIT_SYMBOL_ADDRESS;
Pl1.H = PLIT_SYMBOL_ADDRESS;
JUMP _OverlayManager;

}

ftdefine LIBS Tibsmal1535.d1b 1ibc535.d1b 1ibm3free535.d1b
libevent535.d1b Tibio535.d1b Tibcpp535.dlb Tibcpprt535.dib
1ibdspb35.d1b Tibsftf1tb35.d1b Tibetsib35.d1b idleb535.doj

$LIBRARIES = LIBS, Tibrt535.d1b;
$OBJECTS = crts535.doj, $COMMAND_LINE_OBJECTS crtnb535.doj;

PROCESSOR PO {
$PO_OBJECTS = main.doj , manager.doj;
QUTPUT(mgrovly.dxe)
QUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{
program
{
// Align all code sections on 2 byte boundary
INPUT_SECTION_ALIGN(2)

E-18 Visual DSP++ 4.5 Linker and Utilities Manual

INPUT_SECTIONS

($OBJECTS(program) $LIBRARIES(program))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS

($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTIONS($0BJECTS(cplb) $LIBRARIES(cplb))
INPUT_SECTIONS

($OBJECTS(cplb_code) $LIBRARIES(cplb_code))
INPUT_SECTIONS

($OBJECTS(cplb_data) $LIBRARIES(cplb_data))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS

($0BJECTS(constdata) $LIBRARIES(constdata))

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS
($OBJECTS(ctor) $LIBRARIES(ctor))
} >MEM_PROGRAM

stack

{

INPUT_SECTIONS $0BJECTS(stack))
} >MEM_STACK

heap
{
// Allocate a heap for the application
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >MEM_HEAP

OVERLAY_INPUT {
// The output archive file “overlayl.ovl” will
// contain the code and symbol table for this
// overlay

OVERLAY_OUTPUT(overlayl.ovl)

Visual DSP++ 4.5 Linker and Utilities Manual E-19

Linking for Overlay Memory

/* Only take the code from the file overlayl.doj.
If this code needs data, it must be either the INPUT of a
data overlay or the INPUT to non-overlay data memory. */

INPUT_SECTIONS(overlayl.doj(program))

// Tell the Tinker that all of the code in the overlay must
// fit into the “run” memory all at once. ALGORITHM(ALL_FIT)
// allows the Tinker to break the code into several

// overlays as necessary (in the event that not all

// of the code fits).

ALGORITHM(C ALL_FIT)
SIZE(0x100)

MEM_OVLY

// This is the second overlay. Note that these

// OVERLAY_INPUT commands must be contiguous in the LDF
// to occupy the same “run-time” memory.

OVERLAY_INPUT ¢{

OVERLAY_OQUTPUT(overlay2.ovl)
INPUT_SECTIONS(overlay2.doj(program)))

ALGORITHM(ALL_FIT)

SIZE(0x100)

> MEM_OVLY

program

/* The instructions generated by the linker in the .plit
section must be placed in non-overlay memory. Here is
the sole specification telling the linker where to
place these instructions */

plit | // Tinker insert instructions here
} > MEM_PROGRAM

DATATL |

INPUT_SECTIONS ($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(constdata) $LIBRARIES(constdata))

E-20

VisualDSP++ 4.5 Linker and Utilities Manual

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))
} >MEM_PROGRAM

stack
{

INPUT_SECTIONS($0BJECTS(stack))
b >MEM_STACK

heap
{
// Allocate a heap for the application
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEOF(HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >MEM_HEAP

Visual DSP++ 4.5 Linker and Utilities Manual E-21

Linking for Overlay Memory

E-22 VisualDSP++ 4.5 Linker and Utilities Manual

| INDEX

A

-a archiver switch, 6-15
absolute data placements, 2-57
ABSOLUTE() LDF operator, 3-22
adding

input sections, 4-13

LDF macros, 4-13

library files, 4-13

memory segments to memory map, 4-34

object files, 4-13
address space, allocating, 3-50
ADDR() LDF operator, 3-23
$ADI_DSP LDF macro, 3-30
ADSP-21xxx processors

broadcast space, D-12

external memory, 2-29

internal memory, 2-28

memory architecture, 2-27

overlays, D-14
ADSP-TSxxx processors

allocating buffers to different memory

segments, 2-39

external memory, 2-31

internal memory, 2-30

memory architecture, 2-30

overlays, C-12

see also TigertSHARC
ALGORITHM() LDF command, 3-64
ALIGN() LDF command, 3-32
alignment

setting, 4-70

specifying properties, 4-70

ALL_FIT LDF identifier, 4-73, 3-64
-anv archiver switch, 6-15
ARCHITECTURE() LDF command, 3-32
archive

files, see library files

functions, making usable, 6-4

members, A-6

routines, creating entry points, 6-4

routines, writing, 6-4

specify objects in, 6-6

writing library files in, 6-4
archiver

about, 6-1

accesing archived functions, 6-5

adding version information, 6-7

checking version number, 6-10

command constraints, 6-17

command-line switches, 6-15

command-line syntax, 6-14

deleting version information, 6-10

handling arbitrary files, 6-2

printing version information, 6-9

removing version information, 6-10

running, 6-14, 6-15

symbol name encryption, 6-11

tagging with version, 6-7, 6-8

use in code disassembly, B-3

wildcard character, 6-6, 6-16
ASM files

assembler, A-3

VisualDSP++ 4.5 Linker and Utilities Manual

INDEX

assembler
initialization data files (DAT), A-3
object files (.DOJ), A-5
source files (ASM), 1-3, A-3
assembler directives, using with archiver,
6-5
attribute, linking, 2-41

B

-Beginlnit InitSymbol switch, 7-14
BEST_FIT LDF identifier, 3-65
Blackfin memory sections
bsz_init, 2-22
constdata, 2-21
cplb_code, 2-21
cplb_data, 2-21
ctor, 2-22
ctorl, 2-24
datal, 2-21
.gdt .gddl fre frel .che .chd .edt .edd,
2-24
heap, 2-23
L1_DATA_A, 2-21
L1_DATA_B, 2-22
noncache_code, 2-23
program, 2-21
sdram0, 2-23
sdram(_bank, 2-23
sdramQ_shared, 2-23
sdram_bcz, 2-23
stack, 2-22
voldata, 2-22
vtbl, 2-24
Blackfin processors
basic memory configurations, 3-9
memory usage in, 3-9
branch
expansion instruction, 2-57, 2-60
instructions, 5-35
breakpoints, on overlays, 5-7

broadcast space, D-12
broadcast writes, D-12
.bss input section, 2-14, 2-15
bsz_init input section, 2-18, 2-19, 2-22
bsz_init memory section, 7-8
bsz input section, 2-18, 2-19, 2-22
buffers, allocating to different memory
segments, 2-40
build errors, linker, 2-10
build files, description of, A-5
built-in LDF macros, 3-29
bus lock
broadcast writes, D-12
multiprocessor systems, D-12
byte
order, 4-68
packing, 4-69

C

caching, external memory, 3-9

callback executable file, 7-3, 7-5, 7-15

calls

inter-overlay, 5-26
inter-processor, 5-27

-c archiver switch, 6-15

C/C++, source files, A-2

.cht input section, 2-14, 2-25

color selection, in Expert Linker, 4-16

command LDF scope, 3-18

$COMMAND_LINE_LINK_AGAINST
LDF macro, 3-29

$COMMAND_LINE_OBJECTS LDF
macro, 3-13, 3-29

$COMMAND_LINE_OUTPUT_DIRE
CTORY LDF macro, 3-29

$COMMAND_LINE_OUTPUT_DIRE
CTORY macro, 2-59

$COMMAND_LINE_OUTPUT_FILE
LDF macro, 3-14, 3-29

I-2 VisualDSP++ 4.5 Linker and Utilities Manual

$COMMAND_LINE_OUTPUT_FILE
macro, 2-59
commands, LDF, 3-31, 5-29
comma-separated option, 2-56
comments, .LDF file, 3-17
compiler, source files (.C .CC), 1-3
constdata input section, 2-21
constructors, 2-16, 2-19
converting
library members to source code, B-3
out-of-range short calls and jumps, 2-57
cplb_code input section, 2-21
___cplb_ctrl configuration variable, 3-9
cplb_data input section, 2-21
cplb input section, 2-25
Create LDF wizard, 4-4
ctor0 input section, 2-18
ctorl input section, 2-18
ctor3 input section, 2-18
ctor4 input section, 2-18
ctor input section, 2-18, 2-19, 2-22
ctorl input section, 2-24
___ctor_NULL_marker symbol, 2-19,
3-36

D

-d archiver switch, 6-15

datal input section, 2-17, 2-19, 2-21

data2 input section, 2-18, 2-19

data placement, 2-57

data sections, exception handling, 2-24

.DAT files, initialization data, A-3

debugger, files, A-9

declaring, macros, 3-30

default LDF file, 3-4

DEFAULT_OVERLAY () LDF command,
3-64

DEFINED() LDF operator, 3-24

INDEX

directories, supported by linker, 2-46
disassembly

library member, B-3

using archiver, B-3

using dumper, B-3
.DLB files

defined, A-6

description of

extension convention, 2-45

symbol name encryption, 6-11
DMA

accessing external memory, 3-40
DMAONLY memory segment qualifier,

3-40

-dnv archiver switch, 6-15
.DOJ files

about, A-5

extension conventions, 2-45
-Dprocessor (target architecture) linker

switch, 2-51

dram, 2-23
DSPs, development software, 1-2
dumper, use in code disassembly, B-3
DWARE, references, A-10
.DXE files

data extraction, B-1

described, 1-7

diagram, 1-7

extension conventions, 2-45

linker, A-6

linker output files described, A-6

E

-e archiver switch, 6-15

.edt input section, 2-14, 2-18, 2-25

-e (eliminate unused symbols) linker
switch, 2-55

-ek (no elimination) linker switch, 2-55

Visual DSP++ 4.5 Linker and Utilities Manual I-3

INDEX

elfar.exe
about, 6-1
command-line reference, 6-14
constraints, 6-17
elfdump.exe
command-line switches, B-1
file dumper, B-1
used by Expert Linker, 4-40
ELF file contents, B-1
ELF file dumper
about, B-1
command-line switches, B-1
extracting data, B-1
overlay library files, B-4
references, A-10
elfloader.exe loader utility, 1-10
elfspl21k.exe splitter utility, 1-10
ELIMINATE() LDF command, 3-33
ELIMINATE_SECTIONS() LDF
command, 3-34
elimination
enabling, 3-33, 3-36
specifying properties, 4-59
encryption
constraints, 6-12
symbol names in libraries, 6-11
end address, memory segment, 3-41
.end label, 3-34
END() LDF identifier, 3-41
entry address
ENTRY() command, 3-34
-entry switch, 2-56
global start symbol, 2-34
multiprocessor system, 2-35
setting, 2-34

-entry (entry address) linker switch, 2-56

ENTRY() LDF command, 3-34
errata workaround, 2-60
errors, linker, 2-10
-es (eliminate listed sections) linker switch,
2-55
-ev (eliminate unused symbols, verbose)
linker switch, 2-56
executable files, 1-7, A-6
EXPAND() LDF command, 3-53
Expert Linker
about, 4-1
adding input sections, 4-14
adding LDF macros, 4-14
adding object files, 4-14
adding output section to memory
segment, 4-23
adding overlay, 4-23
adding shared memory, 4-23
adding shared memory segments, 4-49
alignment properties, 4-70
allocating for heap, 4-74
allocating for stack, 4-74
choosing initialization qualifier, 4-66
color selection, 4-16
context menu, 4-22
deleting objects, 4-14
deleting selected object, 4-23
displaying global properties, 4-15
displaying section contents, 4-15
elimination properties, 4-59
expanding items, 4-23
expanding LDF macros, 4-14
Global Properties, 4-55
heap properties, 4-74
icons, 4-16
Input Sections pane, 4-13

I-4

Visual DSP++ 4.5 Linker and Utilities Manual

menu, 4-13
invalid memory segments, 4-21
launching, 4-3
Legend dialog box, 4-16
mapping sections in, 4-15
memory map graphical view, 4-25
Memory Map pane, 4-19
memory segment properties, 4-64
multiprocessing tasks, 4-49
object properties, 4-54
output section properties, 4-65
overlay properties, 4-72
overlays, 4-37
overview, 2-9, 4-2
packing properties, 4-68
processor properties, 4-56
profiling object sections, 4-45
properties for overlays, 4-58
removing LDF macro, 4-14
resize cursor, 4-29
sorting objetcs, 4-17
specifying new memory segments, 4-23
stack properties, 4-74
symbols properties, 4-61
vewing icons and colors, 4-16
viewing section contents, 4-40
viewing symbols, 4-44
Expert Linker shared memory properties,
4-77
external execution packing, 3-47
external memory
access, 3-40
TigerSHARC processors, 2-31
extracting, data from ELF executable files,
B-1

F

file extension conventions, 2-45
@filename linker switch, 2-51

INDEX

files

ASM, A-3

assembler, A-5

build, A-5

C/C++, A-2

.DAT, A-3

debugger, A-9

.DLB, A-6

.DOJ, A-5

dumping contents of, B-1

.DXE, A-6

executable, A-6

format references, A-10

formats, A-1

input, A-2

.LDR (ASCII-format), A-8

.LDR (hex format), A-6

library

linker command-line (TXT), 2-45, A-5

object, 2-47

output, 1-7

.OVL, A-6

.SM, A-6

TXT, A-5

XML, A-6
FILL() LDF command, 3-35, 3-63
filter operation, 2-41, 3-59
FIRST_FIT LDF identifier, 3-65
-flags-meminit linker switch, 2-56
-flags-pp linker switch, 2-56
FORCE_CONTIGUITY LDF command,

3-65

fragmented memory, filling in, 2-57
frt input section, 2-14, 2-18, 2-25

G

gap, inserting into memory segment, 4-36
.gdt input section, 2-14, 2-18, 2-24

.gdd input section, 2-14, 2-18, 2-25
global LDF scope, 3-18

Visual DSP++ 4.5 Linker and Utilities Manual I-5

INDEX

Global Properties dialog box
General tab, 4-55

PLIT tab, 4-58
viewing, 4-24

H

heap
graphic representation, 4-74
input section, 2-23
managing in memory, 4-74
hex-format files
.LDR, A-6
-h (-help) switch, 2-56
-h switch, 7-15

I

icons
Expert Linker, 4-16
unmapped icon, 4-15
IDDE_ARGS option, 2-42
-i filename archiver switch, 6-15
-IgnoreSection SectionName switch, 7-15
-1 (include search directory) linker switch,
2-56
INCLUDE() LDF command, 3-35
initialization flag, 7-8
initialization qualifier, choosing in Expert
Linker, 4-66
initialization stream
generated from Memory Initializer, 7-2
inserting executable file into, 7-15
start address, 7-14
structure, 7-5
-Init Initcode.dxe switch, 7-15
___inits symbol name, 7-14
InputFile.dxe switch, 7-16
input files
callback input executable file, 7-3
primary input file, 7-3

input/output sections, contents of, 4-40
INPUT_SECTION_ALIGN() LDF
command, 3-35
input sections
adding, 4-13
contiguity, 4-67
directives, 1-4
names, 2-13
source code, 1-3
INPUT_SECTIONS() LDF command,
3-58
INPUT_SECTIONS() LDF identifier,
3-15
Input Sections pane
displayed, 4-13
menu selections, 4-13
INPUT_SECTIONS_PIN_EXCLUSIVE
LDF command, 3-60
INPUT_SECTIONS_PIN LDF
command, 3-60
internal memory
memory blocks M0, M1, M2, 2-30
TigerSHARC processors, 2-30
inter-overlay calls, 5-26
inter-processor calls, 5-27
-ip (individual placement) linker switch,
2-57

J

-jcs2l (convert out-of-range short calls)
linker switch, 2-57

jumps, converting, 2-57

K

-keep (keep unused symbols) linker switch,
2-58

KEEP() LDF command, 3-36

KEEP_SECTIONS() LDF command,
3-37

I-6 VisualDSP++ 4.5 Linker and Utilities Manual

L

L1_becz input section, 2-26
__11_code_cache guard symbol, 3-9
L1_code input section, 2-26
L1_DATA_A input section, 2-21
L1_data_a input section, 2-26
L1_DATA_B input section, 2-22
L1_data_b input section, 2-26
L1_data input section, 2-26
L2_bez input section, 2-26
12_shared input section, 2-27
L2_sram_a input section, 2-27
L2_sram_b input section, 2-27
L2_sram input section, 2-26
12_sram input section, 2-27
LDF commands
about, 2-3, 3-31, 5-29
ALIGN(), 3-32
ARCHITECTURE)Y(), 3-32
ELIMINATE(), 3-33
ELIMINATE_SECTIONS(), 3-34
ENTRY(), 3-34
EXPAND(), 3-53
FILL(), 3-63
INCLUDEY(), 3-35
INPUT_SECTION_ALIGN(), 3-35
INPUT_SECTIONS(), 3-58
KEEP(), 3-36
KEEP_SECTIONS(), 3-37
LINK_AGAINST(), 3-37
MAP(), 3-38
MEMORY{}, 3-38, 5-45
MPMEMORY{}, 3-42, 5-44
OVERLAY_GROUP{}, 3-42, 5-29
OVERLAY_INPUTY{}, 3-63

INDEX

LDF commands (continued)

PACKING(), 3-43

PLIT{}, 3-63, 5-33
PROCESSORY{}, 3-48
RESERVE(), 3-50
RESOLVE(), 3-53
SEARCH_DIR(), 3-54
SECTIONS{}, 3-55
SHARED_MEMORY/{}, 3-65

LDF expressions, 3-19
LDF file

commands, 3-31

default, 2-11

keywords, 3-20
miscellaneous keywords, 3-21
operators, 3-22

purpose, 2-5

scope, 3-18

structure, 3-17

.LDF files

commands in, 2-3, 3-31, 5-29
comments in, 3-17

creating in Expert Linker, 4-4
defined, A-4

extension conventions, 2-45
memory segments, 2-4
output sections, 2-4

LDF macros

about, 3-27

adding, 4-13

built-in, 3-29
command-line input, 3-30
expanding, 4-14
removing, 4-14
user-declared, 3-30

Visual DSP++ 4.5 Linker and Utilities Manual 1-7

INDEX

LDF operators
about, 3-27
ABSOLUTE)(), 3-22
ADDR(), 3-23
DEFINED(), 3-24
MEMORY_SIZEOEF(), 3-25, 3-26
SIZEOEF(), 3-26
Id linker, B-5
.LDR files
ASCII-format, A-8
hex-format, A-6
splitter output, A-8
legends, Expert Linker, 4-14
LENGTH() LDF identifier, 3-41
length_symbol symbol, 3-50
__lib_end_of heap_descriptions symbol,
3-36
librarian, VisualDSP++, 6-1
library, symbol name encryption, 6-11
library files ((DLB)
about
adding, 4-13
defined, A-6
searching, 6-2
library members
converting to source code, B-3
library routines, 6-1
library routines, accesssing, 6-5
LINK_AGAINST() LDF command, 3-37
linker
about, 2-1
command-line files ((TXT), A-5
command-line syntax, 2-43
defined, 1-2

linker (continued)
describing the target, 2-11
error messages, 2-10
executable files, A-6
file name conventions, 2-46
linking object files, 2-47
memory map files (XML), A-6
options, 2-3
output files, A-6
outputs, 1-7
overlay constants generated by, 5-9
running from command line, 2-43
running from Visual DSP++, 2-6
switches, 2-47
warning messages, 2-10
Linker Description File
overview, 2-5, 3-1
see also LDF file
linker.exe, 1-2
linker-generated constants, 5-16
linker macros, 3-27, 3-29
linker switches
-Darchitecture, 2-51
--Dprocessor, 2-51
-e, 2-58
-e, 2-55
-ek secName, 2-55
-entry, 2-56
-es secName, 2-55
-ev, 2-56
@filename, 2-51
-flags-meminit, 2-56

-flags-pp, 2-56

I-8 VisualDSP++ 4.5 Linker and Utilities Manual

linker switches (continued)

-h (help), 2-56

-i (include search directory), 2-56

-ip (individual placement), 2-57

-jes2l, 2-57

-keep symbolName, 2-58

-L path, 2-52

-M, 2-52

-Map filename, 2-53

-MDmacro, 2-53

-meminit, 2-58

-MM, 2-52

-MUDmacro, 2-53

-nonmemcheck, 2-58

-od directory, 2-59

-0 filename (output file), 2-59

-pp> 2-59

-proc processor, 2-59

-S, 2-54

-save-temps, 2-60

-si-revision version (silicon revision),
2-60

-sp, 2-61

-sp (skip preprocessing), 2-61

-s (strips all symbols), 2-60

-T filename, 2-54, 2-62

-t (trace), 2-61

-tx (full trace), 2-61

-version (display version), 2-62

-v (verbose), 2-61

-warnonce, 2-62

-Wnumber (warning suppression), 2-54

-Wwarn num (override error message),
2-54

-xref filename, 2-62

INDEX

linking
about, 2-2
controlling, 2-3
file with large uninitialized variables,
C-4,D-4,E-4
file with large zero-initialized variables,
C-4,D-4,E-4
multiprocessor systems, C-6, D-6
overlay memory system, E-17
process rules, 2-4
single-processor system, C-2, D-2, E-2
ttributes, 2-40
linking environment, 2-6
Link tab, setting linker options, 2-6
link target, 2-11
loader
creating bootloadable image, 1-10, 1-11
hex-format files, A-6
location counter, definition of, 3-27
-L path (libraries and objects) linker switch,
2-52

M

$macroname declaration
for user macros, 3-30
macros
LDF, 3-27
preprocessor, 3-28
user-declared, 3-30
map file, 2-47
-Map (filename) linker switch, 2-53
map file (XML), 2-53, 3-38
MAP() LDF command, 3-38
mapping
input sections to output sections, 4-15
input section to several output sections,
3-60
-M archiver switch, 6-15
mc_data input section, 2-25

Visual DSP++ 4.5 Linker and Utilities Manual 1-9

INDEX

-M (dependency check and output) linker

switch, 2-52

-MDmacro (macro value) linker switch,

2-53

mem_argv input section, 2-18, 2-20
MEM_ARGYV memory section, 2-42
Memlnit.exe utility, 7-1
-meminit linker switch, 2-58
.meminit memory section, 7-8
MEMINIT section name, 3-56
Memlnit switches, 7-13
memory

allocation, 2-12

architecture representation, 2-12

initialization, 7-6

initializer, 3-56

internal, 2-30

managing heap/stack, 4-74

map files, A-6

multiprocessor, 2-31

overlays, 5-4, 5-5

partitions, 4-19

segment declaration, 2-12

segment length, 3-41

segments, 4-19

TigerSHARC, 2-30

types, 2-12, 3-40
Memory Initializer

command line switches, 7-13

extracting data from section, 7-17

function of, 7-1

___inits default symbol name, 7-14

invoking, 7-10

invoking with -meminit switch, 2-58,

7-11
NO-BOOT mode, 7-2
output file, 7-17

passing comma-separated option to, 2-56

primary input file, 7-16
section initialization flag, 7-11

Memory Initializer switches
-BeginlInit InitSymbol, 7-14
-h, 7-15
-IgnoreSection SectionName, 7-15
-Init Initcode.dxe, 7-15
InputFile.dxe, 7-16
-NoAuto, 7-16
-NoErase, 7-16
-0 OutputFile.dxe, 7-17
-Section SectionName, 7-17
-v (-verbose), 7-17
memory interface, width (bits), 3-41
MEMORY{} LDF command
described, 5-45
.LDF file component, 3-14
segment_declaration, 3-39
syntax diagram, 3-38
writing, 2-12
memory map
adding memory segments to, 4-34
generating, 2-53
graphical view, 4-25
highlighted objects in, 4-29
post-link view, 4-31
pre-link view, 4-31
specifying, 2-12
tree view, 4-24
viewing, 4-20
Memory Map context menu, 4-22
Memory Map pane
described, 4-20
Main Menu displayed, 4-22
overlays, 4-37
zooming in/out, 4-32
memory sections
SHARC, 2-14
TigerSHARC, 2-17, 2-20

I-10

Visual DSP++ 4.5 Linker and Utilities Manual

memory segments
about, 1-3
adding, 4-34
changing size of, 4-28
insering a gap, 4-36
invalid, 4-21
MEMORY{} command, 4-19
rules, 2-4
size, 4-24
specifying properties, 4-64
start address, 4-24
MEMORY_SIZEOF() LDF operator,
3-25, 3-26
-MM archiver switch, 6-15
-MM (dependency check, output and
build) linker switch, 2-52
modify register, 5-17
MPMEMORY/{} LDF command, 3-42,
5-44
MP systems, semaphores, D-12
-MUDmacro (undefine macro) linker
switch, 2-53
multicore applications, 2-35
multiple overlays, 4-37
multiprocessor
applications, 2-35
memory, 2-31
systems, bus lock, D-12
systems, semaphores, D-12
multiprocessor/multicore applications,

3-50

N

new
memory segment, 4-23, 4-34
output section, 4-23
overlay, 4-23
shared memory, 4-23
-NoAuto switch, 7-16
-NoErase switch, 7-16

INDEX

NOFORCE_CONTIGUITY LDF
command, 3-65

NO_INIT qualifier, 3-57, C-4, D-4, E-4

noncache_code input section, 2-23

-nonmemcheck inker switch, 2-58

@)

object files

adding, 4-13

explained, 1-3

linking into executable, 2-2
object properties, managing with Expert

Linker, 4-54

objects

deleting, 4-14

sorting, 4-14, 4-18
$OBJECTS LDF macro, 3-13
-od (output directory) linker switch, 2-59
-o filename linker switch, 2-59
-0 OutputFile.dxe switch, 7-17
operators, LDF, 3-22
output directory, specifying, 2-59
OUTPUT() LDF command, 4-19, 3-14
output sections

about, 2-3

dumping, 2-13

mapped contiguously, 4-67

overflow, 4-66

rules, 2-4

specifying properties, 4-65

_ov_endaddress_#, 5-9, 5-25
_ov_end breakpoint, 5-7

overlay

ALL_FIT algorithm, 4-73

file, producing, 3-64

identifier, 5-10

live space, 4-37

run space, 4-37
OVERLAY_GROUP{} LDF command,

3-42,5-29

Visual DSP++ 4.5 Linker and Utilities Manual I-11

INDEX

overlay ID, 5-19
OVERLAY_ID LDF identifier, 3-64
OVERLAY_INPUT{} LDF command
DEFAULT_OVERLAY() portion, 3-64
described, 3-63
overlay library files, B-4
overlay manager
about, 5-4, 5-6
assembly code, 5-35
constants, 5-15
major functions, 5-7
performance summary, 5-19
placing constants, 5-17
PLIT table, 5-12
storing overlay ID, 5-19
overlay memory, linking for, E-17
OVERLAY_OUTPUT() LDF command,
3-64
overlays
address, 5-9, 5-16
ADSP-21xxx processors, D-14
ADSP-TSxxx processors, C-12
constants, 5-9, 5-15
debugging, 5-7
dumping library files, B-4
grouped, 5-30
grouping, 5-30
in Memory Map pane, 4-37
live address, 4-73
live space, 4-37
loading and executing, 5-20
loading instructions with PLIT, 5-36
managing properties, 4-72
memory, 5-4, 5-5
multiple, 4-37
numbering, 5-26
reducing overhead, 5-20
run address, 4-73
run space, 4-38
size, 4-73

overlays (continued)

special symbols, 5-25

ungrouped, 5-30

word size, 5-9, 5-16
ov_id_loaded buffer, 5-19
.OVL files

described, A-6

diagram, 1-7

dumping, B-4

extracting content from, B-4

file conventions, 2-45

linker, A-6

OVERLAY_INPUT{} command, 3-64
_ov_runtimestartaddress_#, 5-9, 5-25
_ov_size_#, 5-9, 5-25
_ov_startaddress_, 5-25
_ov_startaddress_#, 5-9
__ov_start breakpoint, 5-7
_ov_start breakpoint, 5-7
_ov_word_size_live_#, 5-9, 5-25
_ov_word_size_run_#, 5-9, 5-25

P
packing
data, 3-42
DMA, 3-44
external execution, 3-47
in SHARC processors, 3-44
overlay format, 3-46
PACKING() LDF command, 3-43
properties, specifying, 4-68
packing.h header file, 3-44
PACKING() LDF command, 3-42
-p archiver switch, 6-16
partial linker, B-5
partially-linked relocatable object file, B-5
pinning objects to output section, 4-23,
4-66
plinker switch, B-4

I-12 Visual DSP++ 4.5 Linker and Utilities Manual

PLIT
about, 5-10
allocating space for, 5-35
constants, 5-35
executing user-defined code, 5-10
overlay management, 5-6
specifying overlay properties, 4-58
summary, 5-36
syntax, 5-34
PLIT{} LDF command
about, 5-33
in SECTIONS{}, 3-63
instruction qualifier, 5-34
LDF input section, 3-63
PLIT_SYMBOL_ADDRESS, 5-34
PLIT_SYMBOL_OVERLAYID, 5-34
syntax described, 5-33
.plit output section, 5-35
PLIT{} (procedure linkage table) LDF
command, 3-48
PLIT_SYMBOL_ADDRESS, 5-34
PLIT _SYMBOL constants, 5-37
PLIT_SYMBOL_OVERLAYID, 5-34
-pp (end after preprocessing) linker switch,
2-59
pp- exe preprocessor, 1-8
preprocessor
compiler, 1-9
linker and assembler command, 1-8
running from linker, 2-59
primio_atomic_lock input section, 2-25
procedure linkage table (PLIT)
about, 5-10
about PLIT{} command, 5-33
PLIT{} command described, 3-48
using, 5-24
see also PLIT
processor
selection, 2-51
specifying properties, 4-57

INDEX

PROCESSOR{} LDF command
linking projects on
multiprocessor/multicore Blackfin
architectures, 3-50
syntax, 3-48
Processor Properties dialog box, 4-56
-proc (target processor) linker switch, 2-59
profile-guided optimization, 2-41
PROGBITS qualifier, 7-4
program, input section, 2-17, 2-20, 2-21
project builds, linker, 2-6
Project Options dialog box, 2-6
PROM, TYPE() command, 3-40
Properties dialog box, viewing, 4-24
-pva archiver switch, 6-9, 6-16
-pv archiver switch, 6-9, 6-16

R
RAM, TYPE() command, 3-40

-r archiver switch, 6-16
references, file formats, A-10
reflective semaphores, D-12
removing, LDF macro, 4-14
RESERVE() LDF command, 3-50
reserving space for, 5-10
resize cursor, 4-29
RESOLVE() LDF command, 3-37, 3-53
ROM, TYPE() command, 3-40
RTL routine, performing memory
initialization, 7-2, 7-6
.retl input section, 2-14, 2-15, 2-18, 2-25
run-time initialization
placement of initialization structures,
3-56
qualifiers, 3-56
RUNTIME_INIT qualifier, 3-57, 7-7,
7-8,7-15,7-16, 7-17

Visual DSP++ 4.5 Linker and Utilities Manual I-13

INDEX

S

-s archiver switch, 6-16

-save-temps linker switch, 2-60

sdram0_bank input section, 2-23

sdramO input section, 2-23

sdram0_shared input section, 2-23

sdram_bcz input section, 2-23

SEARCH_DIR() LDF command, 3-54

sec_rth input section, 2-14

section contents, 4-15

SECTION directive, 1-4

section formats, selecting, 4-41

section_name qualifier, 3-56

-Section SectionName switch, 7-17

SECTIONS{} LDF command, 2-36, 3-14,
3-55

seg_argv input section, 2-14, 2-16

seg_ctdm input section, 2-14, 2-16

seg_ctdml input section, 2-14

seg_ctdml memory section, 2-17, 2-20

seg_dmda input section, 2-14

seg_dmda memory section, 2-16

seg_heap input section, 2-14, 2-16

seg_init_code input section, 2-14

seg_init input section, 2-14, 2-15

seg_int_code input section, 2-15

segment declaration, 3-39

seg_pmco input section, 2-14, 2-15

seg_pmda input section, 2-14, 2-16

seg_rth input section, 2-15

seg_stak input section, 2-14, 2-16

seg_vtbl input section, 2-14, 2-17, 2-20,
2-24

semaphores, reflective, D-12

SEPARATE_MEM_SEGMENTS
assembler directive, 2-39

setting, alignment, 4-70

setting, fill values, 4-70

SHARC memory sections
.gdt .gdd frt frel .cht .chtl .edt .edtl,
2-17, 2-20
seg_argv, 2-16
seg_ctdm, 2-16
seg_ctdml, 2-17
seg_dmda, 2-16
seg_heap, 2-16
seg_init, 2-15
seg_init_code, 2-15
seg_pmco, 2-15
seg_pmda, 2-16
seg_rth, 2-15
seg_stak, 2-16
seg_vtbl, 2-17
SHARED_MEMORY{} LDF command,
3-65
shared memory system, C-6, D-6
short calls, converting, 2-57
SHT_NOBITS
keyword, 3-57, C-4, D-4, E-4
section qualifier, C-4, D-4, E-4
-si-revision (silicon revision) linker switch,
2-60
SIZE() LDF command, 3-65
SIZEOF() LDF operator, 3-26

.SM files
described, A-6
diagram, 1-7

file extension conventions, 2-45
linker, A-6
software development, 1-2
sort, objects, 4-14, 4-17, 4-18
source code, in input sections, 1-3
source files
assembly instructions, A-3
C/C++, A-2
compiling into object files, 1-3
fixed-point data, A-3
preparing, 7-8

I-14 Visual DSP++ 4.5 Linker and Utilities Manual

special section name
.MEMINIT, 3-56
.PLIT, 3-56
splitter
ASCII-format files (LDR), A-8
generating non-bootable PROM image
files, 1-11
SPORT data files, A-9
-sp (skip preprocessing) linker switch, 2-61
-s (strip all symbols) linker switch, 2-60
-S (strip debug symbols) linker switch, 2-54
stack
graphic representation, 4-74
managing in memory, 4-74
section, 2-22
start
address, memory segment, 3-40
global symbol, 2-34
label, 6-4
symbol, 3-5
start_symbol symbol, 3-50
symbol
declaration, 3-12
manager, 5-7
symbols
adding, 4-61, 4-63
deleting from resolve list, 4-63
encryption of names, 6-11
managing properties of, 4-61
removing, 2-60, 4-61
resolution, 4-62, 4-63
viewing, 4-24, 4-44, 4-61

T

-t archiver switch, 6-7, 6-16

target processor, specifying, 2-52

-T file (executable program placement)
linker switch, 2-54

INDEX

TigerfSHARC
memory sections, bsz, 2-19
memory sections, bsz_init, 2-19
memory sections, ctor, 2-19
memory sections, datal, 2-19
memory sections, data2, 2-19
memory sections, mem_argy, 2-20
memory sections, program, 2-20
memory sections, vtbl, 2-20
programming enhancement, 2-39

-tnv archiver switch, 6-16

tree view, memory map, 4-24

-t (trace) linker switch, 2-61

-twc ver archiver switch, 6-16

-tx filename archiver switch, 6-16

-tx (full trace) linker switch, 2-61

TXT files
linker, A-5
linker command-line files, A-5

TYPE() command, 3-40

U
uninitialized variables, C-4, D-4, E-4
UNIX linker, B-5
unmapped object icon, 4-15
unpacking, data, 3-44
USE_CACHE configuration, 3-9
user-declared macros, 3-30
utilities
archiver (elfar.exe), 6-1
file dumper (elfdump.exe), B-1
producing a partially-linked relocatable
object file, B-5

\%

-version archiver switch, 6-16
-version (display version) linker switch,
2-62

Visual DSP++ 4.5 Linker and Utilities Manual I-15

INDEX

version information
built in with archiver, 6-7
user-defined, 6-8
viewing
archive files, B-4
icons and colors, 4-16
input sections, 4-13
memory map, 4-20
.OVL files
content, B-4
section contents, 4-40
VisualDSP++
archiver, 6-1
Assemble tab, 2-7
Expert Linker, 4-2
librarian, 6-1
project builds, 2-6
Project Options dialog box, 2-6, 2-7
running linker from, 2-6
setting assembler options, 2-7
setting options, 2-7
voldata input section, 2-22
vtbl input section, 2-18
-v (verbose) archiver switch, 6-16
-v (verbose) linker switch, 2-61
-v (verbose) Memlnit switch, 7-14
-v (verbose) switch, 7-17

\\4

warnings, linker, 2-10

-warnonce (single symbol warning) linker
switch, 2-62
wildcard character
specifying archive files, 6-16
wildcard characters
in section names, 2-35, 3-31
using in archiver, 6-6
wizards, Create LDF, 4-4
-Wnnnn archiver switch, 6-16
-Wnumber (warning suppression) linker
switch, 2-54
word width (number of bits), 3-41
-w (remove warning) archiver switch, 6-16
-Wwarn num (override error message)

linker switch, 2-54

X

xmlmap2html.exe command-line utility,
2-53
XML map file
described, A-6
MAP filename command, 3-38
opening in Web browser, 2-53
-xref (external reference file) linker switch,

2-62

Z

ZERO_INIT qualifier, 3-57, 7-7, 7-8,
7-15,7-16, 7-17

I-16

Visual DSP++ 4.5 Linker and Utilities Manual

INDEX

Visual DSP++ 4.5 Linker and Utilities Manual I-17

I-18 Visual DSP++ 4.5 Linker and Utilities Manual

Visual DSP++ 4.5 Linker and Utilities Manual I-19

1-20 Visual DSP++ 4.5 Linker and Utilities Manual

Visual DSP++ 4.5 Linker and Utilities Manual I-21

1-22 Visual DSP++ 4.5 Linker and Utilities Manual

	Contents
	Preface
	Purpose of This Manual xix
	Intended Audience xix
	Manual Contents xx
	What’s New in This Manual xxi
	Technical or Customer Support xxii
	Supported Processors xxiii
	Product Information xxiv
	MyAnalog.com xxiv
	Processor Product Information xxv
	Related Documents xxvi
	Online Technical Documentation xxvii
	Accessing Documentation From VisualDSP++ xxvii
	Accessing Documentation From Windows xxviii
	Accessing Documentation From the Web xxviii

	Printed Manuals xxix
	VisualDSP++ Documentation Set xxix
	Hardware Tools Manuals xxix
	Processor Manuals xxix
	Data Sheets xxix

	Notation Conventions xxx

	Introduction
	Software Development Flow 1-2
	Compiling and Assembling 1-3
	Inputs - C/C++ and Assembly Sources 1-3
	Input Section Directives in Assembly Code 1-4
	Input Section Directives in C/C++ Source Files 1-5

	Linking 1-7
	Linker and Assembler Preprocessor 1-8

	Loading and Splitting 1-10

	Linker
	Linker Operation 2-2
	Directing Linker Operation 2-3
	Linking Process Rules 2-4
	Linker Description File Overview 2-5

	Linking Environment for Windows 2-6
	Project Builds 2-6
	Expert Linker 2-9

	Linker Warning and Error Messages 2-10
	Link Target Description 2-11
	Representing Memory Architecture 2-12
	Specifying the Memory Map 2-12
	Memory Usage and Default Memory Sections 2-13
	Default Memory Sections for SHARC Processors 2-14
	.bss 2-15
	.rtti 2-15
	seg_rth 2-15
	seg_init 2-15
	seg_int_code 2-15
	seg_pmco 2-15
	seg_pmda 2-16
	seg_argv 2-16
	seg_ctdm 2-16
	seg_dmda 2-16
	seg_heap 2-16
	seg_stak 2-16
	seg_vtbl 2-17
	Other Memory Sections 2-17

	Default Memory Sections for TigerSHARC Processors 2-17
	bsz 2-19
	bsz_init 2-19
	ctor 2-19
	data1 2-19
	data2 2-19
	mem_argv 2-20
	program 2-20
	vtbl 2-20
	Other Memory Sections 2-20

	Default Memory Sections for Blackfin Processors 2-20
	program 2-21
	data1 2-21
	cplb_code 2-21
	constdata 2-21
	cplb_data 2-21
	L1_DATA_A 2-21
	L1_DATA_B 2-22
	voldata 2-22
	ctor 2-22
	bsz 2-22
	bsz_init 2-22
	stack 2-22
	heap 2-23
	noncache_code 2-23
	sdram0 2-23
	sdram0_bank{1|2|3} 2-23
	sdram_bcz 2-23
	sdram_shared 2-23
	vtbl 2-24
	Other Memory Sections 2-24

	Special “Table” Memory Sections 2-24
	.gdt 2-24
	.gdtl 2-25
	.edt 2-25
	.cht 2-25
	.frt 2-25
	primio_atomic_lock 2-25
	mc_data 2-25
	.rtti 2-25
	cplb 2-25

	Input Sections Provided in Deflaut LDFs for User Code and Data 2-26
	L1_data 2-26
	L1_data_a 2-26
	L1_data_b 2-26
	L1_code 2-26
	L1_bcz 2-26
	L2_bcz 2-26
	L2_sram 2-26
	l2_sram 2-27
	L2_sram_a 2-27
	L2_sram_b 2-27
	l2_shared 2-27

	Memory Characteristics Overview 2-27
	SHARC Memory Characteristics 2-27
	TigerSHARC Memory Characteristics 2-30

	Linker MEMORY{} Command in .ldf File 2-32
	Entry Address 2-34
	Wildcard Characters 2-35

	Placing Code on the Target 2-35
	Specifying Two Buffers in Different Memory Segments 2-39
	Linking with Attributes - Overview 2-40

	Profile-Guided Optimization Support 2-41
	Passing Arguments for Simulation or Emulation 2-42

	Linker Command-Line Reference 2-43
	Linker Command-Line Syntax 2-43
	Command-Line Object Files 2-44
	Command-Line File Names 2-45
	Object File Types 2-47

	Linker Command-Line Switches 2-47
	Linker Switch Summary and Descriptions 2-49
	@filename 2-51
	-Dprocessor 2-51
	-L path 2-52
	-M 2-52
	-MM 2-52
	-Map filename 2-53
	-MDmacro[=def] 2-53
	-MUDmacro 2-53
	-S 2-54
	-T filename 2-54
	-Wwarn [number] 2-54
	-Wnumber[,number] 2-54
	-e 2-55
	-ek sectionName 2-55
	-es sectionName 2-55
	-entry 2-56
	-ev 2-56
	-flags-meminit -opt1[,-opt2... 2-56
	-flags-pp-opt1[,-opt2...] 2-56
	-h[elp] 2-56
	-i|I directory 2-56
	-ip 2-57
	-jcs2l 2-57
	-jcs2l+ 2-58
	-keep symbolName 2-58
	-meminit 2-58
	-nonmemcheck 2-58
	-o filename 2-59
	-od directory 2-59
	-pp 2-59
	-proc processor 2-59
	-s 2-60
	-save-temps 2-60
	-si-revision version 2-60
	-sp 2-61
	-t 2-61
	-tx 2-61
	-v[erbose] 2-61
	-version 2-62
	-warnonce 2-62
	-xref 2-62

	Linker Description File
	LDF File Overview 3-3
	Generated LDFs 3-4
	Default LDFs 3-4
	Example 1 - Basic .ldf File for Blackfin Processors 3-7
	Memory Usage in Blackfin Processors 3-9

	Example 2 - Basic .ldf File for TigerSHARC Processors 3-10
	Example 3 - Basic .ldf File for SHARC Processors 3-11
	Common Notes on Basic .ldf File Examples 3-12

	LDF Structure 3-17
	Command Scoping 3-18

	LDF Expressions 3-19
	LDF Keywords, Commands, and Operators 3-20
	Miscellaneous LDF Keywords 3-21

	LDF Operators 3-22
	ABSOLUTE() Operator 3-22
	ADDR() Operator 3-23
	DEFINED() Operator 3-24
	MEMORY_END() Operator 3-25
	MEMORY_SIZEOF() Operator 3-25
	MEMORY_START() Operator 3-26
	SIZEOF() Operator 3-26
	Location Counter (.) 3-27

	LDF Macros 3-27
	Built-In LDF Macros 3-29
	User-Declared Macros 3-30
	LDF Macros and Command-Line Interaction 3-30

	LDF Commands 3-31
	ALIGN() 3-32
	ARCHITECTURE() 3-32
	ELIMINATE() 3-33
	ELIMINATE_SECTIONS() 3-34
	ENTRY() 3-34
	INCLUDE() 3-35
	INPUT_SECTION_ALIGN() 3-35
	KEEP() 3-36
	KEEP_SECTIONS() 3-37
	LINK_AGAINST() 3-37
	MAP() 3-38
	MEMORY{} 3-38
	Segment Declarations 3-39
	segment_name 3-40
	START(address_number) 3-40
	TYPE() 3-40
	LENGTH(length_number)/END(address_number) 3-41
	WIDTH(width_number) 3-41

	MPMEMORY{} 3-42
	OVERLAY_GROUP{} 3-42
	PACKING() 3-42
	Packing in SHARC Processors 3-44
	Overlay Packing Formats in SHARC Processors 3-46
	External Execution Packing in SHARC Processors 3-47

	PLIT{} 3-48
	PROCESSOR{} 3-48
	RESERVE() 3-50
	Linker Error Resolutions 3-51
	Example 3-52

	RESERVE_EXPAND() 3-53
	RESOLVE() 3-53
	SEARCH_DIR() 3-54
	SECTIONS{} 3-55
	INPUT_SECTIONS() 3-58
	Using Optional Filter Expression 3-59

	INPUT_SECTIONS_PIN/INPUT_SECTIONS_PIN_EXCLUSIV E Commands 3-60
	expression 3-62
	FILL(hex number) 3-63
	PLIT{plit_commands} 3-63
	OVERLAY_INPUT{overlay_commands} 3-63

	SHARED_MEMORY{} 3-65

	Expert Linker
	Expert Linker Overview 4-2
	Launching the Create LDF Wizard 4-4
	Step 1: Specifying Project Information 4-5
	Step 2: Specifying System Information 4-6
	Step 3: Completing the LDF Wizard 4-10

	Expert Linker Window Overview 4-11
	Input Sections Pane 4-13
	Input Sections Menu 4-13
	Mapping an Input Section to an Output Section 4-15
	Viewing Icons and Colors 4-16
	Sorting Objects 4-17

	Memory Map Pane 4-19
	Context Menu 4-22
	Tree View Memory Map Representation 4-24
	Graphical View Memory Map Representation 4-25
	Specifying Pre- and Post-Link Memory Map View 4-31
	Zooming In and Out on the Memory Map 4-32
	Adding a Memory Segment 4-34
	Inserting a Gap Into a Memory Segment 4-36
	Working With Overlays 4-37
	Viewing Section Contents 4-40
	Viewing Symbols 4-44
	Profiling Object Sections 4-45
	Adding Shared Memory Segments and Linking Object Files 4-49

	Managing Object Properties 4-54
	Managing General Global Properties 4-55
	Managing Processor Properties 4-56
	Managing PLIT Properties for Overlays 4-58
	Managing Elimination Properties 4-59
	Managing Symbols Properties 4-61
	Managing Memory Segment Properties 4-64
	Managing Output Section Properties 4-65
	Managing Packing Properties 4-68
	Managing Alignment and Fill Properties 4-70
	Managing Overlay Properties 4-72
	Managing Stack and Heap in Processor Memory 4-74
	Managing Shared Memory Properties 4-77

	Memory Overlays and Advanced LDF Commands
	Overview 5-2
	Memory Management Using Overlays 5-4
	Introduction to Memory Overlays 5-5
	Overlay Managers 5-6
	Breakpoints on Overlays 5-7

	Memory Overlay Support 5-8
	Example - Managing Two Overlays 5-13
	Linker-Generated Constants 5-15
	Overlay Word Sizes 5-16
	Storing Overlay ID 5-19
	Overlay Manager Function Summary 5-19
	Reducing Overlay Manager Overhead 5-20
	Using PLIT{} and Overlay Manager 5-24
	Inter-Overlay Calls 5-26
	Inter-Processor Calls 5-27

	Advanced LDF Commands 5-29
	OVERLAY_GROUP{} 5-29
	Ungrouped Overlay Execution 5-31
	Grouped Overlay Execution 5-32

	PLIT{} 5-33
	PLIT Syntax 5-34
	Command Evaluation and Setup 5-35
	Overlay PLIT Requirements and PLIT Examples 5-35
	PLIT - Summary 5-36

	Linking Multiprocessor Systems 5-37
	Selecting Code and Data for Placement 5-38
	Using LDF Macros 5-39

	Mapping by Section Name 5-41
	Mapping Using Attributes 5-42
	Mapping Using Archives 5-42
	MPMEMORY{} 5-44
	SHARED_MEMORY{} 5-45
	COMMON_MEMORY{} 5-51

	Archiver
	Introduction 6-2
	Archiver Guide 6-3
	Creating a Library 6-3
	Making Archived Functions Usable 6-4
	Writing Archive Routines: Creating Entry Points 6-4
	Accessing Archived Functions From Your Code 6-5
	Specifying Object Files 6-6
	Tagging an Archive With Version Information 6-7
	Basic Version Information 6-7
	User-Defined Version Information 6-8
	Printing Version Information 6-9
	Removing Version Information From an Archive 6-10
	Checking Version Number 6-10

	Archiver Symbol Name Encryption 6-11

	Archiver Command-Line Reference 6-14
	elfar Command Syntax 6-14
	Archiver Parameters and Switches 6-15
	Command-Line Constraints 6-17

	Memory Initializer
	Memory Initializer Overview 7-2
	Basic Operation of Memory Initializer 7-3
	Input and Output Files 7-3

	Initialization Stream Structure 7-5
	Run-Time Library Routine Basic Operation 7-6
	Using the Memory Initializer 7-7
	Preparing the Linker Description File (.ldf) 7-7
	Preparing the Source Files 7-8
	Invoking the Memory Initializer 7-10
	Invoking Memory Initializer from the VisualDSP++ IDDE 7-10
	Invoking Memory Initializer from Command Line 7-11
	Invoking Memory Initializer from Linker’s Command Line 7-11
	Invoking Memory Initializer from Compiler’s Command Line 7-11
	Invoking Memory Initializer with Callback Executables 7-11

	Memory Initializer Command-Line Switches 7-13
	-BeginInit Initsymbol 7-14
	-h 7-15
	-IgnoreSection Sectionname 7-15
	-Init Initcode.dxe 7-15
	InputFile.dxe 7-16
	-NoAuto 7-16
	-NoErase 7-16
	-o Outputfile.dxe 7-17
	-Section Sectionname 7-17
	-v 7-17

	File Formats
	Source Files A-2
	C/C++ Source Files A-2
	Assembly Source Files (.asm) A-3
	Assembly Initialization Data Files (.DAT) A-3
	Header Files (.H) A-4
	Linker Description Files (.ldf) A-4
	Linker Command-Line Files (.TXT) A-5

	Build Files A-5
	Assembler Object Files (.doj) A-5
	Library Files (.dlb) A-6
	Linker Output Files (.dxe, .sm, and .ovl) A-6
	Memory Map Files (.xml) A-6
	Loader Output Files in Intel Hex-32 Format (.ldr) A-6
	Splitter Output Files in ASCII Format (.ldr) A-8

	Debugger Files A-9
	Format References A-10

	Utilities
	elfdump - ELF File Dumper B-1
	Disassembling a Library Member B-3
	Dumping Overlay Library Files B-4

	plinker B-4

	LDF Programming Examples for TigerSHARC Processors
	Linking a Single-Processor System C-2
	Linking Large Uninitialized or Zero-InitializedVariables C-4
	Linking an ADSP-TS101 MP Shared Memory System C-6
	Linking for Overlay Memory C-12

	LDF Programming Examples for SHARC Processors
	Linking a Single-Processor SHARC System D-2
	Linking Large Uninitialized Variables D-4
	Linking for MP and Shared Memory D-6
	Reflective Semaphores D-12

	Linking for Overlay Memory D-14

	LDF Programming Examples for Blackfin Processors
	Linking for a Single-Processor System E-2
	Linking Large Uninitialized or Zero-initialized Variables E-4
	Linking for Assembly Source File E-6
	Linking for C Source File - Example 1 E-8
	Linking for Complex C Source File - Example 2 E-11
	Linking for Overlay Memory E-17

	Index

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	Software Development Flow
	Compiling and Assembling
	Inputs - C/C++ and Assembly Sources
	Input Section Directives in Assembly Code
	Input Section Directives in C/C++ Source Files

	Linking
	Linker and Assembler Preprocessor

	Loading and Splitting

	2 Linker
	Linker Operation
	Directing Linker Operation
	Linking Process Rules
	Linker Description File Overview

	Linking Environment for Windows
	Project Builds
	Expert Linker

	Linker Warning and Error Messages
	Link Target Description
	Representing Memory Architecture
	Specifying the Memory Map
	Memory Usage and Default Memory Sections
	Default Memory Sections for SHARC Processors
	Default Memory Sections for TigerSHARC Processors
	Default Memory Sections for Blackfin Processors
	Special “Table” Memory Sections
	Input Sections Provided in Deflaut LDFs for User Code and Data
	Memory Characteristics Overview
	Linker MEMORY{} Command in .ldf File
	Entry Address
	Wildcard Characters

	Placing Code on the Target
	Specifying Two Buffers in Different Memory Segments
	Linking with Attributes - Overview

	Profile-Guided Optimization Support
	Passing Arguments for Simulation or Emulation

	Linker Command-Line Reference
	Linker Command-Line Syntax
	Command-Line Object Files
	Command-Line File Names
	Object File Types

	Linker Command-Line Switches
	Linker Switch Summary and Descriptions
	@filename
	-Dprocessor
	-L path
	-M
	-MM
	-Map filename
	-MDmacro[=def]
	-MUDmacro
	-S
	-T filename
	-Wwarn [number]
	-Wnumber[,number]
	-e
	-ek sectionName
	-es sectionName
	-entry
	-ev
	-flags-meminit -opt1[,-opt2...
	-flags-pp-opt1[,-opt2...]
	-h[elp]
	-i|I directory
	-ip
	-jcs2l
	-jcs2l+
	-keep symbolName
	-meminit
	-nonmemcheck
	-o filename
	-od directory
	-pp
	-proc processor
	-s
	-save-temps
	-si-revision version
	-sp
	-t
	-tx
	-v[erbose]
	-version
	-warnonce
	-xref

	3 Linker Description File
	LDF File Overview
	Generated LDFs
	Default LDFs
	Example 1 - Basic .ldf File for Blackfin Processors
	Memory Usage in Blackfin Processors

	Example 2 - Basic .ldf File for TigerSHARC Processors
	Example 3 - Basic .ldf File for SHARC Processors
	Common Notes on Basic .ldf File Examples

	LDF Structure
	Command Scoping

	LDF Expressions
	LDF Keywords, Commands, and Operators
	Miscellaneous LDF Keywords

	LDF Operators
	ABSOLUTE() Operator
	ADDR() Operator
	DEFINED() Operator
	MEMORY_END() Operator
	MEMORY_SIZEOF() Operator
	MEMORY_START() Operator
	SIZEOF() Operator
	Location Counter (.)

	LDF Macros
	Built-In LDF Macros
	User-Declared Macros
	LDF Macros and Command-Line Interaction

	LDF Commands
	ALIGN()
	ARCHITECTURE()
	ELIMINATE()
	ELIMINATE_SECTIONS()
	ENTRY()
	INCLUDE()
	INPUT_SECTION_ALIGN()
	KEEP()
	KEEP_SECTIONS()
	LINK_AGAINST()
	MAP()
	MEMORY{}
	Segment Declarations

	MPMEMORY{}
	OVERLAY_GROUP{}
	PACKING()
	Packing in SHARC Processors

	PLIT{}
	PROCESSOR{}
	RESERVE()
	Linker Error Resolutions
	Example

	RESERVE_EXPAND()
	RESOLVE()
	SEARCH_DIR()
	SECTIONS{}
	INPUT_SECTIONS()
	INPUT_SECTIONS_PIN/INPUT_SECTIONS_PIN_EXCLUSIVE Commands
	expression
	FILL(hex number)
	PLIT{plit_commands}
	OVERLAY_INPUT{overlay_commands}

	SHARED_MEMORY{}

	4 Expert Linker
	Expert Linker Overview
	Launching the Create LDF Wizard
	Step 1: Specifying Project Information
	Step 2: Specifying System Information
	Step 3: Completing the LDF Wizard

	Expert Linker Window Overview
	Input Sections Pane
	Input Sections Menu
	Mapping an Input Section to an Output Section
	Viewing Icons and Colors
	Sorting Objects

	Memory Map Pane
	Context Menu
	Tree View Memory Map Representation
	Graphical View Memory Map Representation
	Specifying Pre- and Post-Link Memory Map View
	Zooming In and Out on the Memory Map
	Adding a Memory Segment
	Inserting a Gap Into a Memory Segment
	Working With Overlays
	Viewing Section Contents
	Viewing Symbols
	Profiling Object Sections
	Adding Shared Memory Segments and Linking Object Files

	Managing Object Properties
	Managing General Global Properties
	Managing Processor Properties
	Managing PLIT Properties for Overlays
	Managing Elimination Properties
	Managing Symbols Properties
	Managing Memory Segment Properties
	Managing Output Section Properties
	Managing Packing Properties
	Managing Alignment and Fill Properties
	Managing Overlay Properties
	Managing Stack and Heap in Processor Memory
	Managing Shared Memory Properties

	5 Memory Overlays and Advanced LDF Commands
	Overview
	Memory Management Using Overlays
	Introduction to Memory Overlays
	Overlay Managers
	Breakpoints on Overlays

	Memory Overlay Support
	Example - Managing Two Overlays
	Linker-Generated Constants
	Overlay Word Sizes
	Storing Overlay ID
	Overlay Manager Function Summary
	Reducing Overlay Manager Overhead
	Using PLIT{} and Overlay Manager
	Inter-Overlay Calls
	Inter-Processor Calls

	Advanced LDF Commands
	OVERLAY_GROUP{}
	Ungrouped Overlay Execution
	Grouped Overlay Execution

	PLIT{}
	PLIT Syntax
	Command Evaluation and Setup
	Overlay PLIT Requirements and PLIT Examples
	PLIT - Summary

	Linking Multiprocessor Systems
	Selecting Code and Data for Placement
	Using LDF Macros

	Mapping by Section Name
	Mapping Using Attributes
	Mapping Using Archives
	MPMEMORY{}
	SHARED_MEMORY{}
	COMMON_MEMORY{}

	6 Archiver
	Introduction
	Archiver Guide
	Creating a Library
	Making Archived Functions Usable
	Writing Archive Routines: Creating Entry Points
	Accessing Archived Functions From Your Code
	Specifying Object Files
	Tagging an Archive With Version Information

	Archiver Symbol Name Encryption

	Archiver Command-Line Reference
	elfar Command Syntax
	Archiver Parameters and Switches
	Command-Line Constraints

	7 Memory Initializer
	Memory Initializer Overview
	Basic Operation of Memory Initializer
	Input and Output Files

	Initialization Stream Structure
	Run-Time Library Routine Basic Operation
	Using the Memory Initializer
	Preparing the Linker Description File (.ldf)
	Preparing the Source Files
	Invoking the Memory Initializer
	Invoking Memory Initializer from the VisualDSP++ IDDE
	Invoking Memory Initializer from Command Line
	Invoking Memory Initializer from Linker’s Command Line
	Invoking Memory Initializer from Compiler’s Command Line
	Invoking Memory Initializer with Callback Executables

	Memory Initializer Command-Line Switches
	-BeginInit Initsymbol
	-h
	-IgnoreSection Sectionname
	-Init Initcode.dxe
	InputFile.dxe
	-NoAuto
	-NoErase
	-o Outputfile.dxe
	-Section Sectionname
	-v

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files (.asm)
	Assembly Initialization Data Files (.DAT)
	Header Files (.H)
	Linker Description Files (.ldf)
	Linker Command-Line Files (.TXT)

	Build Files
	Assembler Object Files (.doj)
	Library Files (.dlb)
	Linker Output Files (.dxe, .sm, and .ovl)
	Memory Map Files (.xml)
	Loader Output Files in Intel Hex-32 Format (.ldr)
	Splitter Output Files in ASCII Format (.ldr)

	Debugger Files
	Format References

	B Utilities
	elfdump - ELF File Dumper
	Disassembling a Library Member
	Dumping Overlay Library Files

	plinker

	C LDF Programming Examples for TigerSHARC Processors
	Linking a Single-Processor System
	Linking Large Uninitialized or Zero-InitializedVariables
	Linking an ADSP-TS101 MP Shared Memory System
	Linking for Overlay Memory

	D LDF Programming Examples for SHARC Processors
	Linking a Single-Processor SHARC System
	Linking Large Uninitialized Variables
	Linking for MP and Shared Memory
	Reflective Semaphores

	Linking for Overlay Memory

	E LDF Programming Examples for Blackfin Processors
	Linking for a Single-Processor System
	Linking Large Uninitialized or Zero-initialized Variables
	Linking for Assembly Source File
	Linking for C Source File - Example 1
	Linking for Complex C Source File - Example 2
	Linking for Overlay Memory

	I Index

