
W4.5
Product Release Bulletin

 Revision 2.0, April 2006

Part Number
82-000420-06

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, SHARC, TigerSHARC, and
VisualDSP++, EZ-KIT Lite, and EZ-Extender are registered trademarks of
Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 4.5 Product Release Bulletin iii

CONTENTS

PREFACE

Purpose of This Document .. ix

Intended Audience .. ix

Manual Contents ... x

Technical or Customer Support .. x

Supported Processors ... xi

Product Information ... xi

MyAnalog.com ... xii

Processor Product Information .. xii

Related Documents ... xiii

Online Technical Documentation ... xiv

Accessing Documentation From VisualDSP++ xiv

Accessing Documentation From Windows xv

Accessing Documentation From the Web xv

Printed Manuals ... xvi

VisualDSP++ Documentation Set ... xvi

Hardware Tools Manuals .. xvi

Processor Manuals .. xvi

Data Sheets .. xvi

CONTENTS

iv VisualDSP++ 4.5 Product Release Bulletin

Notation Conventions .. xvii

INTRODUCTION

Product Release Description .. 1-2

VisualDSP++ 4.5 System Requirements ... 1-3

Platform and Processor Support .. 1-3

VISUALDSP++ 4.5 NEW FEATURES AND
ENHANCEMENTS

VisualDSP++ IDDE ... 2-2

New Processor Support ... 2-3

Support Enhancements ... 2-3

Connectionless IDDE ... 2-4

Starting VisualDSP++ While Holding Down the Shift Key .. 2-4

Starting VisualDSP++ While Holding Down the Ctrl Key ... 2-4

Session Wizard .. 2-5

Project Wizard Enhancements ... 2-6

Modified Property Pages in Project Options Dialog Box 2-6

Load : Compression Page of Project Options Dialog Box 2-7

Editor Window Enhancements .. 2-7

Breakpoint Enhancements ... 2-8

Profiling Results in XML Format ... 2-9

Expressions Window and Locals Window Enhancements 2-9

Flash Programmer Window Redesign 2-9

Power Estimation Analysis ... 2-10

VisualDSP++ 4.5 Product Release Bulletin v

CONTENTS

Assembler ... 2-11

Processor Support .. 2-11

Assembler Feature Macros .. 2-12

.FILE_ATTR Directive .. 2-12

.ASCII Directive .. 2-13

.MESSAGE Directive .. 2-13

User Control of Assembler Message Severity 2-14

Features Common to All Compilers and Libraries 2-15

New Switches .. 2-15

New Pragmas .. 2-15

File Attributes ... 2-19

Inlining Control .. 2-19

Unnamed Struct and Union Fields Within Struct and
Union Definitions .. 2-20

Additional Library Routines ... 2-20

Compiler and Library for Blackfin Processors 2-21

LDF Generator .. 2-21

Long-Long Types in asm Statements 2-22

Compiler Builtins for Accessing Memory-Mapped Registers ... 2-22

Speculative Memory Access Pragma .. 2-23

New Processor Support .. 2-24

Core-B Enabling Function ... 2-24

Compiler and Library for SHARC Processors 2-24

External Memory Access Support ... 2-25

New Interrupt Pragmas .. 2-25

CONTENTS

vi VisualDSP++ 4.5 Product Release Bulletin

Bank Type Qualifiers ... 2-25

New Processor Support ... 2-26

Additional DSP Library Functions ... 2-27

Compiler and Library for TigerSHARC Processors 2-28

Linker and Utilities ... 2-29

Updated List of LDF Keywords ... 2-29

Linking with Attributes ... 2-30

RESERVE LDF Command ... 2-30

DMAONLY Qualifier ... 2-31

Loader and Utilities for Blackfin and SHARC Processors 2-31

Loader for Blackfin Processors ... 2-31

Loader for SHARC Processors ... 2-33

File Conversion Programs .. 2-36

VDK .. 2-36

Example Programs Re-Organized .. 2-37

VISUALDSP++ 4.5 MAJOR CHANGES

New Processor Support ... 3-2

TigerSHARC Simulator Platform Names 3-2

License Server Tools Upgrade .. 3-3

Assembler Changes ... 3-3

Blackfin .GLOBAL Directive Syntax / Error ea5004 3-3

Compiler Changes .. 3-4

Std Namespace is Now Default in C++ Mode 3-5

Revised .LDF Files .. 3-5

VisualDSP++ 4.5 Product Release Bulletin vii

CONTENTS

Multiprocessor and Multi-Core Support 3-6

Multi-Core Linking ... 3-7

Integrated Section-Placement Mechanisms 3-7

Non-Optimizing Inter-Procedural Analysis 3-7

weak_entry Pagma Restriction ... 3-8

Optimization Control Pragmas and Inter-Procedural Analysis ... 3-8

Extended Optimizer Annotations ... 3-8

Updated C++ Support Libraries and Header Files 3-8

Compiler and Library for Blackfin Processors 3-9

“M3-Free” Libraries No Longer Required 3-9

CRT Header File Name Appended with <project_name> ... 3-10

Compiler and Library for SHARC Processors 3-10

Compiler and Library for TigerSHARC Processors 3-10

Linker Changes ... 3-11

Migration of .LDF Files from Previous Versions of VisualDSP++ 3-12

Blackfin-Specific LDF Features .. 3-12

Loader Changes .. 3-13

VDK Changes ... 3-13

Changes to Existing Projects .. 3-15

SPI_MS Macro .. 3-15

SSL Libaries in New Location .. 3-15

MMR Definitions Include File Uses of “volatile void” is Replaced 3-15

VISUALDSP++ 4.5 OBSOLETE OR REMOVED FEATURES

Discontinued Processor Support .. 4-2

CONTENTS

viii VisualDSP++ 4.5 Product Release Bulletin

VisualDSP++ IDDE ... 4-2

Compilers and Libraries .. 4-2

Removed Command-Line Switches .. 4-2

Deprecated Pragmas .. 4-3

VDK .. 4-3

VisualDSP++ 4.5 Product Release Bulletin ix

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
digital signal processing (DSP) applications.

Purpose of This Document
This document briefly describes the new features and enhancements pro-
vided by VisualDSP++® 4.5 release that supports the following Analog
Devices, Inc. processor families—SHARC® (ADSP-21xxx) processors,
TigerSHARC® (ADSP-TSxxx) processors, and Blackfin® (ADSP-BFxxx)
processors.

It also describes the differences (obsolete features and functions) between
VisualDSP++ 4.5 and previous VisualDSP++ releases.

For details, refer to the VisualDSP++ 4.5 manuals listed in “Related Doc-
uments” and online Help.

Intended Audience
This publication is primarily intended for programmers who are upgrad-
ing from the previous releases of VisualDSP++ development software and
who want an overview of the changes to VisualDSP++ 4.5.

Manual Contents

x VisualDSP++ 4.5 Product Release Bulletin

Manual Contents
This manual consists of:

• Chapter 1, “Introduction”
Describes VisualDSP++ 4.5 and its benefits, provides the minimal
system requirements for running the product, and lists supported
processors.

• Chapter 2, “VisualDSP++ 4.5 New Features and Enhancements”
Describes what is new in the VisualDSP++ 4.5 IDDE, assembler,
compiler, linker, loader, and documentation. Also describes the
new features in the Expert Linker (EL) and the VisualDSP++
Kernel (VDK).

• Chapter 3, “VisualDSP++ 4.5 Major Changes”
Describes major changes in VisualDSP++ 4.5 projects compared to
VisualDSP++ 4.0 projects.

• Chapter 4, “VisualDSP++ 4.5 Obsolete or Removed Features”
Describes the removed/obsolete features in VisualDSP++ 4.5 (com-
pared to the previous VisualDSP++ software release) as they pertain
to code generation tool chain: commands, switches, operators,
directives, pragmas, keywords, macros, and library functions.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com

VisualDSP++ 4.5 Product Release Bulletin xi

Preface

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
VisualDSP++ 4.5 is for Blackfin (ADSP-BFxxx), SHARC (ADSP-21xxx),
and TigerSHARC (ADSP-TSxxx) processors. For the complete list of sup-
ported processors, see “Platform and Processor Support” on page 1-3.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products: analog integrated circuits,
amplifiers, converters, and digital signal processors.

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
http://www.analog.com

Product Information

xii VisualDSP++ 4.5 Product Release Bulletin

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
E-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
E-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
http://www.myanalog.com
http://www.analog.com/processors

VisualDSP++ 4.5 Product Release Bulletin xiii

Preface

Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ 4.5 Getting Started Guide

• VisualDSP++ 4.5 User’s Guide

• VisualDSP++ 4.5 Assembler and Preprocessor Manual

• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for
TigerSHARC Processors

• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for SHARC
Processors

• VisualDSP++ 4.5 Linker and Utilities Manual

• VisualDSP++ 4.5 Loader and Utilities Manual

• VisualDSP++ 4.5 Kernel (VDK) User’s Guide

• VisualDSP++ 4.5 Quick Installation Reference Card

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:
http://www.analog.com/processors/resources/technicalLibrary.

http://www.analog.com/processors/resources/technicalLibrary

Product Information

xiv VisualDSP++ 4.5 Product Release Bulletin

Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest using the
Search function of VisualDSP++ Help system. For easy printing, supple-
mentary .pdf files of most manuals are also provided.

Each documentation file type is described as follows.

Access the online documentation from the VisualDSP++ environment,
Windows® Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

File Description

.chm Help system files and manuals in Help format

.htm
or

.html

Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 5.01 (or higher).

.pdf VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .pdf files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

VisualDSP++ 4.5 Product Release Bulletin xv

Preface

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.chm) are located in the Help folder of VisualDSP++
environment. The .pdf files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .chm files.

• Open your VisualDSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/man-

uals.

Select a processor family and book title. Download archive (.zip) files,
one for each manual. Use any archive management software, such as
WinZip, to decompress downloaded files.

http://www.analog.com/processors/resources/technicalLibrary/manuals
http://www.analog.com/processors/resources/technicalLibrary/manuals

Product Information

xvi VisualDSP++ 4.5 Product Release Bulletin

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and in-circuit emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

http://www.analog.com/salesdir/continent.asp

VisualDSP++ 4.5 Product Release Bulletin xvii

Preface

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Notation Conventions

xviii VisualDSP++ 4.5 Product Release Bulletin

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the
devices users. In the online version of this book, the word Warning
appears instead of this symbol.

Example Description

VisualDSP++ 4.5 Product Release Bulletin 1-1

1 INTRODUCTION

This chapter describes the product, VisualDSP++, and the requirements
for running its latest revision, 4.5. It also lists the supported processors
and some of the benefits provided by this release.

The information is organized as follows.

• “Product Release Description” on page 1-2

• “VisualDSP++ 4.5 System Requirements” on page 1-3

• “Platform and Processor Support” on page 1-3

Product Release Description

1-2 VisualDSP++ 4.5 Product Release Bulletin

Product Release Description
VisualDSP++ is the Analog Devices project management and development
environment for signal processing (DSP) applications. VisualDSP++ 4.5
integrates a graphical user interface and code generation and debugging
tools, enabling programmers to move easily between editing, building,
debugging, and deployment of final products.

The VisualDSP++ 4.5 CD-ROM supplies the code generation tool chain
comprised of the processor-specific software necessary for completing a
DSP-based project: simulator, assembler, C/C++ compiler and libraries,
linker, loader, splitter, and utilities. Analog Devices also provides
VisualDSP++ Kernel (VDK).

The product CD-ROM also includes an evaluation suite of the EZ-KIT
Lite software, which provides an easy method for initial evaluation of a
target processor system and allows application prototyping.

The successor to VisualDSP++ 4.0, VisualDSP++ 4.5 incorporates a
number of new features and enhancements, as described in Chapter 2,
“VisualDSP++ 4.5 New Features and Enhancements”.

VisualDSP++ 4.5 Product Release Bulletin 1-3

Introduction

VisualDSP++ 4.5 System Requirements
To install and run VisualDSP++ 4.5, your computer must provide the
following software, configuration, and system resources.

• Intel Pentium processor (or compatible), 500 MHz or better

• Windows® XP or 2000 only

Windows NT, 98, and ME are not supported.

• At least 1 GB of available hard drive space

• At least 512 MB of RAM

• CD-ROM drive

• Internet Explorer 5.01 or later

Platform and Processor Support
The following list of Analog Devices, Inc. processors is supported in
VisualDSP++ 4.5.

Blackfin Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors.

ADSP-BF531 ADSP-BF532

ADSP-BF533 ADSP-BF534

ADSP-BF535 ADSP-BF536

ADSP-BF537 ADSP-BF538

ADSP-BF539 ADSP-BF561

Platform and Processor Support

1-4 VisualDSP++ 4.5 Product Release Bulletin

SHARC (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors.

TigerSHARC (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
(8-bit, 16-bit, and 32-bit) processors. VisualDSP++ currently supports the
following TigerSHARC processors.

ADSP-BF566 AD6531 and AD6532

AD6900 AD6901

AD6902 AD6903

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21362

ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366

ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371

ADSP-21375

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203

VisualDSP++ 4.5 Product Release Bulletin 2-1

2 VISUALDSP++ 4.5 NEW
FEATURES AND
ENHANCEMENTS

VisualDSP++ 4.5 has new features and enhancements designed to increase
productivity and shorten application development cycles. This chapter
describes the features and enhancements introduced in VisualDSP++ 4.5.

The information is presented as follows.

• “VisualDSP++ IDDE” on page 2-2

• “Assembler” on page 2-11

• “Features Common to All Compilers and Libraries” on page 2-15

• “Compiler and Library for Blackfin Processors” on page 2-21

• “Compiler and Library for SHARC Processors” on page 2-24

• “Compiler and Library for TigerSHARC Processors” on page 2-28

• “Linker and Utilities” on page 2-29

• “Loader and Utilities for Blackfin and SHARC Processors” on
page 2-31

• “VDK” on page 2-36

VisualDSP++ IDDE

2-2 VisualDSP++ 4.5 Product Release Bulletin

VisualDSP++ IDDE
VisualDSP++ 4.5 Integrated Development and Debugging Environment
(IDDE) introduces:

• “New Processor Support” on page 2-3

• “Support Enhancements” on page 2-3

• “Connectionless IDDE” on page 2-4

• “Session Wizard” on page 2-5

• “Project Wizard Enhancements” on page 2-6

• “Modified Property Pages in Project Options Dialog Box” on
page 2-6

• “Load : Compression Page of Project Options Dialog Box” on
page 2-7

• “Editor Window Enhancements” on page 2-7

• “Breakpoint Enhancements” on page 2-8

• “Profiling Results in XML Format” on page 2-9

• “Expressions Window and Locals Window Enhancements” on
page 2-9

• “Flash Programmer Window Redesign” on page 2-9

• “Power Estimation Analysis” on page 2-10

• “Flash Programmer Window Redesign” on page 2-9

For more information about the VisualDSP++ IDDE, refer to the
VisualDSP++ 4.5 User’s Guide and online Help.

VisualDSP++ 4.5 Product Release Bulletin 2-3

VisualDSP++ 4.5 New Features and Enhancements

New Processor Support
The following new processors are supported in VisualDSP++ 4.5.

• Blackfin processors: AD6531, AD6900, AD6901, AD6902, and
AD6903

• SHARC processors: ADSP-21371 and ADSP-21375

Refer to the processors’ data sheets and hardware reference manuals for
information on system configuration, peripherals, registers, and operating
modes.

Support Enhancements
The Help menu offers two new facilities, Product Info and E-mail
Support.

Product Info generates a complete list of component information and
saves it as an XHTML file at
…\My Documents\VisualDSP Projects\ProductInfo.html. The file then
displays automatically in the user’s default browser.

E-mail Support composes an e-mail that includes the component infor-
mation. For more information, see “Technical or Customer Support” on
page ii-x.

The About VisualDSP++ dialog box has been redesigned and now
includes a Versions tab. You can view a list of your system’s binary files
(.exe, .dll, and .ocx files) located in the …\VisualDSP 4.5,
…\VisualDSP 4.5\System, and …\etc subdirectories. The binary file
versions are displayed together with the version number and creation date
of each file. If the version or timestamp information is not available, the
corresponding field under the Version heading is left blank.

VisualDSP++ IDDE

2-4 VisualDSP++ 4.5 Product Release Bulletin

Connectionless IDDE
In previous versions of VisualDSP++, the IDDE requires you to connect
to a debug target by creating a debug session before you could use the
IDDE. This connection is required even for tasks where it is not
necessary, such as editing a source file. In VisualDSP++ 4.5, this
requirement has been eliminated, allowing you to edit your source files
and build projects without connecting to a debug target.

You can disconnect from a debug target and connect to another debug
target without exiting VisualDSP++. This is useful when you want to
change the debug target (an EZ-KIT Lite board or custom board) to a
similar model board or to an entirely different board.

Starting VisualDSP++ While Holding Down the Shift Key

Invoking VisualDSP++ while holding down the keyboard’s Shift key takes
you to connectionless IDDE instead of the last session.

Starting VisualDSP++ While Holding Down the Ctrl Key

Another invocation method, available in this version and older software
versions, forces you to select a new debug session instead of connecting to
the last session. This method involves holding down the keyboard’s Ctrl
key while invoking VisualDSP++ and waiting until the Session List dialog
box appears. Then select/activate a new debug session. You might do this to
overcome a problem such as a corrupted workspace.

VisualDSP++ 4.5 Product Release Bulletin 2-5

VisualDSP++ 4.5 New Features and Enhancements

Session Wizard
The new Session Wizard provides a step-by-step guide for creating a new
debug session. Start the wizard by selecting one of the following.

• From the Session menu, New Session.

• From the Session menu, Session List. Then click New Session
from the Session List dialog box.

• From the Session menu, Connect to Target. Then click New Ses-
sion from the Session List dialog box.

The first page of the wizard, Select Processor, prompts you to specify a
target processor. Once you have selected a processor, move to the next
page, Select Connection Type, and choose a connection from a list of
available connection types. The available connections include an EZ-KIT
Lite, a simulator, an emulator, or a legacy target. Legacy targets are new to
VisualDSP++ 4.5 and denote targets created in VisualDSP++ 4.0 or
earlier.

On the next page, Select Platform, specify a licensed platform. Both
multiprocessor and single platforms are listed. Optionally, select Show all
platforms to display an unlicensed platform list in grayed-out font. If you
select an unlicensed platform, click Licenses to open the Licenses page of
the About VisualDSP++ dialog box, from which to add a new license.

The Configurator button is available when the selected connection type is
an EZ-KIT Lite or emulator. If the platform you want is not listed, click-
ing Configurator allows you to define the new platform. After configuring
a new platform, the new platform appears in the Select your platform list.

Finally, specify a name for the debug session and move to the next page,
Final, of the wizard. Click Finish to close the wizard.

VisualDSP++ IDDE

2-6 VisualDSP++ 4.5 Product Release Bulletin

Project Wizard Enhancements
The Project Wizard for a Blackfin-based project has been enhanced,
allowing you to generate a Linker Description File in addition to startup
code. The wizard displays options related to the user heap, system stack,
system heap, external memory, and so on.

A step-by-step procedure, Generating an .LDF File, can be found in
VisualDSP++ online help.

Modified Property Pages in Project Options Dialog
Box

The Compile, Link, and Load property pages (see Figure 2-1 through
Figure 2-3) of the Project Options dialog box have been modified to
extend flexibility of the tool settings for project builds. For more
information, refer to the online Help.

Figure 2-1. Example - Compile : General Page

VisualDSP++ 4.5 Product Release Bulletin 2-7

VisualDSP++ 4.5 New Features and Enhancements

Load : Compression Page of Project Options
Dialog Box

For ADSP-BF531/BF532/BF533/BF534, ADSP-BF536, or ADSP-BF537
based application and ADSP-2126x and ADSP-2136x based applications,
you can specify zLib compression settings on the Load : Compression
page of the Project Options dialog box (see Figure 2-4).

Editor Window Enhancements
The compiler can perform a large number of optimizations when generat-
ing assembly code. The feedback from the compiler optimizer is provided
as annotations made to the assembly file generated by the compiler. Now
the IDDE’s editor window allows you to view assembly code annotations
in C/C++ source files.

Figure 2-2. Example - Link : General Page

VisualDSP++ IDDE

2-8 VisualDSP++ 4.5 Product Release Bulletin

To enable assembly code annotations, choose Preferences from the
Settings menu. In the Preferences dialog box, click General in the tree
control. On the General page, select Enable compiler annotations, and
click OK.

To view assembly code annotations, follow the Viewing Assembly Code
Annotations procedure in the online help. For more information, see
“Extended Optimizer Annotations” on page 3-8.

Breakpoint Enhancements
In VisualDSP++ 4.5, the IDDE can be configured so that automatic
breakpoints can be set or not set after a program is loaded. In addition,
you can specify the breakpoints to be set after the load and can specify
whether the automatic breakpoints are software breakpoints or hardware
breakpoints.

Figure 2-3. Example - Load : General Page

VisualDSP++ 4.5 Product Release Bulletin 2-9

VisualDSP++ 4.5 New Features and Enhancements

Profiling Results in XML Format
You can save the contents of the Statistical Profiling window or the
Linear Profiling window as an .xml file.

Expressions Window and Locals Window
Enhancements

The Expressions window and Locals window now allow you to set the
display format on a per-expression basis. You can display additional col-
umns showing each expression’s type, address, size, and display format.

Flash Programmer Window Redesign
The Flash Programmer window has been redesigned to include tabbed
pages. This not only reduces its size but also improves usability.

Figure 2-4. Example - Load : Compression Page

VisualDSP++ IDDE

2-10 VisualDSP++ 4.5 Product Release Bulletin

VisualDSP++ 4.5 includes additional Help topics to better describe Flash
Programmer functionality, its interface, and how to debug your flash
driver.

Power Estimation Analysis
For Blackfin processor applications, you can profile code to estimate the
power consumption. Power estimation analysis (also called energy-aware
programming) is the ability to use simulation to view the relative impact
of instructions, source lines, functions, programs, frequency, and voltage
on the application’s estimated energy profile. This allows you to make
trade-offs that minimize power usage. The technique used to estimate the
energy of the application is a partial implementation of a process known as
Instruction Level Energy Estimation (ILEE).

The new event logged in the Linear Profiling window (Tools–>Linear
Profiling–>New Profile) is called energy units. The units are an accumu-
lation of energy for every instruction that has been executed and is
profiled to a PC (program counter). The numbers accumulated in the
Energy Units column represent the “ranking” of each instruction executed
with regard to a power change of the processor’s core voltage. The “rank-
ing” numbers were generated by measuring the core voltage while running
test code for each instruction. The energy units are instruction-based only
and give the energy savings at the core voltage, not the system voltage.
Access to different memory sections or bus activity is not considered in
any of these numbers. Utilizing these readings as absolute measurements
would not be accurate enough considering factors (such as leakage current,
temperature, and fabrication process of the chip) that play a part in the
application’s power. That is why these measurements are referred to as
instruction “ranking”.

The gathered information enables you to profile functions to determine
where the most energy is being taken up. For the most part, this follows
the cycle count profiling. But it is possible to see where some functions
require more energy even though the cycle counts can be close. This infor-

VisualDSP++ 4.5 Product Release Bulletin 2-11

VisualDSP++ 4.5 New Features and Enhancements

mation can help you to strategically place the low power sections of code,
utilizing the Dynamic Power capabilities of the Blackfin processor. Then
you can find the total power savings of your application at the core by
using the numbers listed with some added calculations. The procedure
to get this information can be found in the online Help.

Assembler
This section summarizes new macros, directives, switches, and other
features common to Blackfin, SHARC and TigerSHARC assemblers.

New features include:

• “Assembler Feature Macros” on page 2-12

• “.FILE_ATTR Directive” on page 2-12

• “.ASCII Directive” on page 2-13

• “.MESSAGE Directive” on page 2-13

• “User Control of Assembler Message Severity” on page 2-14

For detailed information on the assembler and preprocessor features, refer
to the VisualDSP++ 4.5 Assembler and Preprocessor Manual and online
Help.

Processor Support
The assembler and preprocessor add support for the AD6531, AD6900,
AD6901, AD6902, AD6903, ADSP-21371, and ADSP-21375 processors
via the property page (Project Options–>Assemble) and via new
arguments to the -proc command-line switch. These arguments are:

-proc AD6531

-proc AD6900

-proc AD6901

Assembler

2-12 VisualDSP++ 4.5 Product Release Bulletin

-proc AD6902

-proc AD6903

-proc ADSP-21371

-proc ADSP-21375

Assembler Feature Macros
VisualDSP++ 4.5 new assembler feature macros are:

.FILE_ATTR Directive
The .FILE_ATTR directive instructs the assembler to place an attribute in
the object file, which can be referenced in the .LDF file when linking.
The directive also sets the attribute to a value. If the value is omitted, “1”
is assumed. The directive’s parameters must follow the rules for naming
symbols.

Some examples of the .FILE_ATTR directive are:

Blackfin Processors

-D__AD6531__=1 Present when running easmblkfn -proc AD6531.

-D__AD6900__=1 Present when running easmblkfn -proc AD6900.

-D__AD6901__=1 Present when running easmblkfn -proc AD6901.

-D__AD6902__=1 Present when running easmblkfn -proc AD6902.

-D__AD6903__=1 Present when running easmblkfn -proc AD6903.

SHARC Processors

-D__ADSP21371__=1
-D__2137x__=1

Present when running easm21k -proc ADSP-21371.

-D__ADSP21375__=1
-D__2137x__=1

Present when running easm21k -proc ADSP-21375.

VisualDSP++ 4.5 Product Release Bulletin 2-13

VisualDSP++ 4.5 New Features and Enhancements

.FILE_ATTR at1;

.FILE_ATTR at10=a123;

.FILE_ATTR at101=a123, at102,at103="999";

.ASCII Directive
Blackfin processors only.

The .ASCII directive initializes a data location with one or more
characters from a double-quoted ASCII string and is equivalent to the
.BYTE directive. Note that the syntax differs from the .BYTE directive:

• There is no = (equal) character

• The string is enclosed in double quotes, not single quotes.

.MESSAGE Directive
The .MESSAGE directive alters the severity of an error, warning, or informa-
tional message generated by the assembler for all or part of an assembly
source file.

The directive can have the following forms.

.MESSAGE/qualifier warnid1[,warnid2,…];

.MESSAGE/qualifier warnid1[,warnid2],…]; UNTIL sym;

.MESSAGE/qualifier warnid1[,warnid2,…]; FOR n LINES;

.MESSAGE/DEFAULT/qualifier warnid1[,warnid2,…];

where warnid1[,warnid2,…] is a list of one or more message identification
numbers.

A message qualifier can be:

• ERROR – change messages to errors

• WARN – change messages to warnings

Assembler

2-14 VisualDSP++ 4.5 Product Release Bulletin

• INFO – change messages to informational

• SUPPRESS – do not output any messages

• RESTORE – change the severity of the messages back to the values
they had at the beginning of the source file.

• POP – change the severity of the messages back to what they were
prior to the previous .MESSAGE directive.

The simple form of the .MESSAGE directive changes the severity of
messages until another .MESSAGE directive is seen. The directive can be
placed anywhere in a source file. Messages not associated with a source
line can be reported with line number 0. These messages cannot be altered
in severity by a .MESSAGE directive but can be altered by the -Werror,
-Wwarn, -Winfo, or -Wsuppress assembler switches.

User Control of Assembler Message Severity
The severity of many assembler error messages can be altered. To allow
more flexible control over the error message reporting, the assemblers offer
a set of command-line switches as listed in Table 2-1.

Table 2-1. New Assembler Command-line Switches

-Winfo number[,number …] Selectively turns assembler messages into informational
messages.

-Wno-info Does not display informational assembler messages.

-Wsuppress number[,number …] Selectively turns off assembler messages.

-Wwarn number[,number …] Selectively turns assembler messages into warnings.

-Wwarn-error Display all assembler warning messages as errors.

VisualDSP++ 4.5 Product Release Bulletin 2-15

VisualDSP++ 4.5 New Features and Enhancements

Features Common to All Compilers and
Libraries

This section summarizes new switches, pragmas, and other features com-
mon to Blackfin, SHARC, and TigerSHARC compilers and libraries.

New features common to all compilers are:

• “New Switches” on page 2-15

• “New Pragmas” on page 2-15

• “File Attributes” on page 2-19

• “Inlining Control” on page 2-19

• “Unnamed Struct and Union Fields Within Struct and Union Def-
initions” on page 2-20

New features common to all run-time libraries are:

• “Additional Library Routines” on page 2-20

New Switches
Table 2-2 lists the new command-line switches that are common to all
compilers.

New Pragmas
• #pragma loop_unroll(N)

This pragma instructs the compiler to explicitly unroll the
following loop N times before optimizing. This can improve opti-

Features Common to All Compilers and Libraries

2-16 VisualDSP++ 4.5 Product Release Bulletin

Table 2-2. New C/C++ Command-Line Switches Common to All
Compilers

Switch Name Description

-add-debug-libpaths Some of the libraries included in VisualDSP++ now are supplied
with additional variants that include diagnostic or debugging infor-
mation. These variants can be found in the “debug” subdirectory of
the installation directory. The -add-debug-libpaths switch
instructs the compiler to link against those debug variants in pref-
erence to the usual versions

-enum-is-int Changes the compiler’s behavior when an enum type is defined,
such that one or more of the enumeration’s values exceeds the lim-
its of the int type. Normal behavior is to promote the type of the
enumeration to a larger integral type, such that the value can be
expressed by the type. This switch prevents such promotion, so
that the type is forced to be int.

-implicit-pointers Forces the compiler to allow assignments between pointer types
that are incompatible, according to the ANSI C Standard. Techni-
cally, such assignments are illegal and typically cause the compiler
to issue an error. The switch causes the compiler to raise a discre-
tionary warning instead.

-check-init-order C++ mode switch. The switch is used only during application
development—not for product releases. It is possible to build
applications where the initialization order of objects is undefined
due to inter-module dependencies. This switch causes the compiler
to plant diagnostic code to detect such cases and issue warnings.

-file-attr name=value Inserts a file attribute into the generated output file. For more
information, see “File Attributes” on page 2-19.

-always-inline Causes the compiler always to inline any calls to functions declared
with the inline qualifier in the same module. For more infor-
mation, see “Inlining Control” on page 2-19.

-never-inline Causes the compiler to ignore the inline qualifier, so that no calls
to functions defined in the same module get inlined. For more
information, see “Inlining Control” on page 2-19.

-overlay Prevents the compiler from propagating register-clobber informa-
tion between functions in the same module when a function is
called under the auspices of an overlay manager.

VisualDSP++ 4.5 Product Release Bulletin 2-17

VisualDSP++ 4.5 New Features and Enhancements

mization because the compiler recognizes more opportunities for
parallelization across the different iterations within the unrolled
loop.

• #pragma regs_clobbered_call “string”

This pragma is the counterpart to #pragma regs_clobbered.
The pragma is applied to a function call rather than a function
definition or declaration and directs the compiler to use a specific
clobber set for the call. This allows the use of reduced (or
expanded) register sets when calling functions through pointers or
when using class methods.

• #pragma overlay

The compiler normally propagates register-usage information
between caller and callee, within the same module, and automati-
cally takes advantage of the information sharing to reduce or
expand the clobber set for the functions where such benefit can be
obtained. When a called function is mapped into an overlay, the
calls can be redirected through an overlay manager, a mechanism

-ignore-std Allows backwards compatibility to earlier versions of VisualDSP
C++, which did not use namespace std to guard and encode C++
Standard Library names. By default, the header files and Libraries
now use namespace std.

-glite Generates lightweight DWARF-2 debug information

-pgo-session Supports PGO in a multi-core or multiprocessor environment.
It allows the same source file or the same global symbols to be
profiled and optimized independently, without their profiles being
merged into a single average behavior.

Table 2-2. New C/C++ Command-Line Switches Common to All
Compilers (Cont’d)

Switch Name Description

Features Common to All Compilers and Libraries

2-18 VisualDSP++ 4.5 Product Release Bulletin

opaque to the compiler. Therefore, this pragma prevents the
compiler from propagating such information, in case an overlay
manager is using a normal clobber set invisibly to the compiler.

There is a corresponding -overlay switch, which is equivalent to
applying the #pragma overlay pragma to all functions defined in
the module.

• #pragma param_never_null
#pragma suppress_null_check

These pragmas are for use with derived classes, when assigning
between pointers to base classes and pointers to derived classes, and
when passing such pointers as parameters. Typically, the compiler
must verify that the pointer is not a null pointer during the conver-
sion. These pragmas assert that the pointers never are null, which
allows the compiler to generate more efficient code.

• #pragma always_inline
#pragma never_inline

These pragmas provide additional control over the compiler inline
function calls.

The always_inline pragma can be applied to functions defined
with the inline qualifier; the pragma instructs the compiler to
inline function calls regardless that the inlining increases the call-
ing function beyond normally-acceptable limits.

The never_inline pragma can be applied to functions that are
defined without the inline qualifier; the pragma instructs the
compiler that calls to this function always must be generated

VisualDSP++ 4.5 Product Release Bulletin 2-19

VisualDSP++ 4.5 New Features and Enhancements

out-of-line, even if auto-inlining is enabled (the -Oa switch) or if
the compiler believes that inlining the function call is beneficial.
For more information, see “Inlining Control” on page 2-19.

• #pragma file_attr(“name=value”)

This pragma instructs the compiler to place the given file attribute
name/value pair into the generated output file. For more informa-
tion, see “File Attributes”.

File Attributes
The compiler now can place attributes into generated output files. The
attributes can be used by the linker to provide additional filtering capabil-
ities for mapping input sections to memory areas. The default .LDF files
are enhanced to support this facility. File attributes can be added
explicitly, using the file_attr pragma or the -file-attr switch. The
compiler also generates some attributes automatically, for each file
compiled. The run-time library is enhanced to exploit attributes as well.

Inlining Control
The compiler supports additional pragmas and switches to provide further
control over function inlining:

• #pragma always_inline

The pragma indicates that calls to the following function always is
inlined.

• #pragma never_inline

The pragma indicates that calls to the following function are never

Features Common to All Compilers and Libraries

2-20 VisualDSP++ 4.5 Product Release Bulletin

inlined. This pragma is relevant when the -Oa switch is in use, since
the -Oa switch normally allows the compiler to inline calls to func-
tions without the inline qualifier if there is likely to be a benefit.

• -always-inline

The switch is equivalent to specifying #pragma always_inline on
all functions declared in the module that have the inline qualifier.

• -never-inline

The switch causes the compiler to ignore the inline qualifier and
to disable inlining.

Unnamed Struct and Union Fields Within Struct and
Union Definitions

The compiler supports a GNU C extension, where a struct or union
definition can contain another struct or union as a member, and the
member has no name. In such cases, the compiler promotes the names of
the inner struct or union, making them appear as if they are members of
the outer struct or union.

Additional Library Routines
The run-time libraries support the ISO C99 standard functions snprintf
and vsnprintf.

VisualDSP++ 4.5 Product Release Bulletin 2-21

VisualDSP++ 4.5 New Features and Enhancements

Compiler and Library for Blackfin
Processors

The most notable new features and enhancements of the C/C++ compiler
and library for Blackfin processors are:

• “LDF Generator” on page 2-21

• “Long-Long Types in asm Statements” on page 2-22

• “Compiler Builtins for Accessing Memory-Mapped Registers” on
page 2-22

• “Speculative Memory Access Pragma” on page 2-23

• “New Processor Support” on page 2-24

• “Core-B Enabling Function” on page 2-24

For detailed information on these features, refer to the VisualDSP++ 4.5
C/C++ Compiler and Library Manual for Blackfin Processors and online
Help.

LDF Generator
This applies to Blackfin projects. SHARC and TigerSHARC
projects should use Expert Linker.

VisualDSP++ contains support for auto-generating a customized .LDF file
for your Blackfin project, in addition to a customized CRT (C run-time)
startup routine. This considerably reduces the complexity of both the
.LDF file and the CRT startup routine because only requested
functionality is included. Furthermore, regions of the generated .LDF file
are reserved as user-modifiable areas; modifications made in these regions

Compiler and Library for Blackfin Processors

2-22 VisualDSP++ 4.5 Product Release Bulletin

will be preserved by VisualDSP++ during future upgrades, which prevents
the .LDF file from becoming obsolete as new features are added to
VisualDSP++.

Long-Long Types in asm Statements
The compiler now supports operand specifiers for asm statements, which
allow you to pass 64-bit types to an asm. The “I” constraint and a pair of
allocated registers support the feature; the template string can reference a
high or low register, using “%nH” or “%nL” as required.

long long int res;

int main(void) {

long long result_ll, x_ll = 123;

asm(

“%0H = %1H; %0L = %1L;” :

“=I” (result_ll) :

“I” (x_ll)

);

res = result_ll;

}

Compiler Builtins for Accessing Memory-Mapped
Registers

Memory-mapped registers (MMRs) now can be accessed through the
following compiler builtins:

• unsigned short mmr_read16(volatile void *);

• unsigned int mmr_read32(volatile void *);

• void mmr_write16(volatile void *, unsigned short);

• void mmr_write32(volatile void *, unsigned int);

VisualDSP++ 4.5 Product Release Bulletin 2-23

VisualDSP++ 4.5 New Features and Enhancements

These builtins ensure that the compiler can distinguish between accesses
to MMRs and accesses to arbitrary memory locations. This allows the
compiler to generate more efficient code for the former because there are
silicon anomalies that must be avoided for arbitrary memory that are not a
concern when accessing MMRs. An examle follows.

#include <cdef_LPblackfin.h>

#include <ccblkfn.h>

unsigned long inline get_base_addr(void) {

return (unsigned long)mmr_read32(pSRAM_BASE_ADDRESS);

}

Speculative Memory Access Pragma
The #pragma extra_loop_loads extends the compiler’s support for
speculative memory accesses within loops. The pragma allows you to be
specific about the loops to which this characteristic applies. In addition,
VisualDSP++ 4.5 compilers continue to support the -extra-loop-loads
switch, which applies to all functions in the module.

Typically, the compiler must be careful of not issuing accesses to locations
that are not dictated by the source code because the locations may not cor-
respond to valid memory. When speculative accesses are enabled by the
pragma or switch, the compiler is permitted to speculatively access
memory if this can help the compiler to gain higher-performing code,
as if a further extra iteration of the loop is occur.

void foo(const int *src, int *dst, int val, int num) {

#pragma extra_loop_loads

while (num--)

*dst++ = *src++ + val;

}

Compiler and Library for SHARC Processors

2-24 VisualDSP++ 4.5 Product Release Bulletin

New Processor Support
The Blackfin compiler adds support for the AD6531, AD6900, AD6901,
AD6902, and AD6903 processors via the Project : General property page
of the Project Options dialog box (Project–>Project Options) and via
new arguments to the -proc command-line switch. These arguments are:

-proc AD6531

-proc AD6900

-proc AD6901

-proc AD6902

-proc AD6903

Core-B Enabling Function
The run-time library now supports the adi_core_b_enable() function for
enabling the second core on dual-core Blackfin processors, such as
ADSP-BF561 and ADSP-BF566.

#include <ccblkfn.h>

void main(void) { /* Core A’s main() */

/* Core B is disabled — do general set-up */

adi_core_b_enable();

/* Core B now running */

}

Compiler and Library for SHARC
Processors

For SHARC processors, the most notable new compiler features and
enhancements are in the following areas:

• “External Memory Access Support” on page 2-25

• “New Interrupt Pragmas” on page 2-25

VisualDSP++ 4.5 Product Release Bulletin 2-25

VisualDSP++ 4.5 New Features and Enhancements

• “Bank Type Qualifiers” on page 2-25

• “New Processor Support” on page 2-26

• “Additional DSP Library Functions” on page 2-27

For more information about these features, refer to the VisualDSP++ 4.5
C/C++ Compiler and Library Manual for SHARC Processors and online
Help.

External Memory Access Support
On the ADSP-2126x and some ADSP-2136x processors, external memory
is not directly accessible. The compiler now supports a DMAONLY section
qualifier, allowing the linker to verify that data intended for exter-
nal-memory placement is not mapped to an internal memory region,
or vice versa. The compiler provides two functions, read_extmem() and
write_extmem(), for accessing external memory data.

New Interrupt Pragmas
Two new interrupt pragmas, #pragma interrupt_complete_nesting and
#pragma interrupt_complete, have been added to the SHARC compiler.
The new pragmas create an interrupt handler function, which can be
called directly from the interrupt vector table.

Bank Type Qualifiers
The SHARC compiler now supports bank type qualifiers, which can be
used to inform the compiler that data items reside in different memory
areas. The bank qualifiers are identifiers associated with pointer data

Compiler and Library for SHARC Processors

2-26 VisualDSP++ 4.5 Product Release Bulletin

types. The compiler compares the identifiers and considers two pointers to
refer to different memory (cannot be aliases) if they have different
identifers. For example:

void foo(bank(“blue”) int *src,

bank(“green”) int *dst, int val, int num)

{

while (num--)

*dst++ = *src++ + val;

}

The blue and green identifiers have no semantic significance; they are
merely strings. The key point is that the compiler can see that src and dst
have different identifiers for their respective pointer types, and it is safe to
consider the identifiers are pointing to different memory regions.

New Processor Support
The SHARC compiler adds support for the ADSP-21371 and
ADSP-21375 processors via the property page (Project Options –>
Compile) and via new arguments to the -proc command-line switch.
These arguments are -proc ADSP-21371 and -proc ADSP-21375.

VisualDSP++ 4.5 Product Release Bulletin 2-27

VisualDSP++ 4.5 New Features and Enhancements

Additional DSP Library Functions
The SHARC DSP library has been extended with the following functions.

• New multi-rate filter functions:

• Additional fast Fourier transform (FFT) functions, which support
a size argument for the FFT and a user-provided twiddle table:

• New FFT magnitude function fft_magnitude

For ADSP-2106x processors, there are new vector-based functions
complementing the existing scalar functions:

Function Description

fir_decima FIR-based decimation filter

fir_interp FIR-based interpolation filter

Function Description

cfft Complex radix-2 FFT

ifft Inverse radix-2 FFT

rfft Real radix-2 FFT

twidfft Generate FFT twiddle factors

Function Description

a_compress_vec Vector A-law compression

a_expand_vec Vector A-law expansion

biquad_vec Biquad filter

fir_vec Vector finite impulse response (FIR) filter

iir_vec Vector infinite impulse response (IIR) filter

mu_compress_vec Vector µ-law compression

mu_expand_vec Vector µ-law expansion

Compiler and Library for TigerSHARC Processors

2-28 VisualDSP++ 4.5 Product Release Bulletin

For ADSP-21xxx SIMD architectures, the following new functions are
included in the DSP library:

• SIMD variants of the above FFT functions and FFT magnitude
function.

• Additional optimized FFT functions that complement the fast
complex FFT function cfftf:

• A new magnitude function fftf_magnitude for the fast FFT
functions.

Compiler and Library for TigerSHARC
Processors

Table 2-3 describes new TigerSHARC compiler switches.

Function Description

rfftf_2 Fast real radix-2 fast Fourier transform, which
computes two FFTs in parallel

ifftf Fast inverse radix-2 fast Fourier transform

Table 2-3. New TigerSHARC Command-Line Switches

Switch Name Description

-no-fp-minmax The MAX and MIN instructions on TigerSHARC
processors will return 0xFFFFFFFF if either input
value is a NaN. This can result in behavior not
anticipated or intended by the original user code.
This switch prevents the compiler from using
these instructions in floating-point comparisons.

-allow-macs-to-extend-saturation Instructs the compiler to try to generate
multiply-accumulate instructions using saturat-
ing add and subtract operations.

VisualDSP++ 4.5 Product Release Bulletin 2-29

VisualDSP++ 4.5 New Features and Enhancements

Linker and Utilities
The VisualDSP++ 4.5 linker, Linker Description Files, and utility pro-
grams are upgraded to operate more efficiently on Blackfin, TigerSHARC,
and SHARC processors.

For the linker, LDF, and utilities, the most notable new features and
enhancements are:

• “Updated List of LDF Keywords” on page 2-29

• “Linking with Attributes” on page 2-30

• “RESERVE LDF Command” on page 2-30

• “DMAONLY Qualifier” on page 2-31

For more information, refer to the VisualDSP++ 4.5 Linker and Utilities
Manual.

Updated List of LDF Keywords
Table 2-4 lists .ldf file keywords that apply to all supported processors.

Table 2-4. LDF File Keywords Summary

ABSOLUTE ADDR ALGORITHM

ALIGN ALL_FIT ARCHITECTURE

BEST_FIT BOOT DEFINED

DYNAMIC ELIMINATE ELIMINATE_SECTIONS

ENTRY END

FALSE FILL FIRST_FIT

INCLUDE INPUT_SECTION_ALIGN INPUT_SECTIONS

INPUT_SECTIONS_PIN INPUT_SECTIONS_PIN_
EXCLUSIVE

KEEP

Linker and Utilities

2-30 VisualDSP++ 4.5 Product Release Bulletin

Linking with Attributes
An object file can be marked with one or more attributes. The LDF syntax
has been extended to support filter expressions to allow selective mapping
based on object file attributes.

Refer to Chapter 2, “Linker” of the VisualDSP++ 4.5 Linker and Utilities
Manual and online Help for more information.

RESERVE LDF Command
This new command can be used to reserve memory regions at specified
address and/or of specified size.

Refer to Chapter 2, “Linker” of the VisualDSP++ 4.5 Linker and Utilities
Manual and online Help for more information.

KEEP_SECTIONS LENGTH LINK_AGAINST

MAP MEMORY MEMORY_SIZEOF

MPMEMORY NUMBER_OF_OVERLAYS OUTPUT

OVERLAY_GROUP OVERLAY_ID OVERLAY_INPUT

OVERLAY_OUTPUT PACKING PLIT

PLIT_SYMBOL_ADDRESS PLIT_SYMBOL_OVERLAYID PROCESSOR

RAM RESERVE RESOLVE

RESERVE_EXPAND ROM

SEARCH_DIR SECTIONS SHARED_MEMORY

SHT_NOBITS SIZE SIZEOF

START TYPE

VERBOSE WIDTH XREF

Table 2-4. LDF File Keywords Summary (Cont’d)

VisualDSP++ 4.5 Product Release Bulletin 2-31

VisualDSP++ 4.5 New Features and Enhancements

DMAONLY Qualifier
(ADSP-2126x and ADSP-2136x only) This qualifier is used with the TYPE
command to specify a memory segment. The linker will validate that
external memory on parts without direct memory access.

Refer to Chapter 3, “Linker Description File” of the VisualDSP++ 4.5
Linker and Utilities Manual and online Help for more information.

Loader and Utilities for Blackfin and
SHARC Processors

The loader utility (elfloader.exe) has been enhanced and modified to
support new features and new Blackfin and SHARC processors. For
details, see the VisualDSP++ 4.5 Loader and Utilities Manual.

The loader utility’s modifications and enhancements are described in the
following sections.

• “Loader for Blackfin Processors” on page 2-31

• “Loader for SHARC Processors” on page 2-33

• “File Conversion Programs” on page 2-36

Loader for Blackfin Processors
The new features for Blackfin processors include:

• Support for new processors

The loader utility supports the AD6531, AD6900, AD6901,
AD6902, and AD6903 processors via the Project page of the
Project Options dialog box (Project –> Project Options) and via
new arguments to the -proc command-line switch. These

Loader and Utilities for Blackfin and SHARC Processors

2-32 VisualDSP++ 4.5 Product Release Bulletin

arguments are:
-proc AD6531

-proc AD6900

-proc AD6901

-proc AD6902

-proc AD6903

• Support for loader file compression

The loader utility for the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536, and ADSP-BF537 processors supports a loader file
(boot stream) compression mechanism known as zLib.
VisualDSP++ 4.5 includes a copy of the zLib dynamic link library
zlib1.dll.

The loader -compression switch directs the loader utility to per-
form the compression from the command line. VisualDSP++ 4.5
also offers a new property page (Load : Compression) on the
Project Options dialog box (Project –> Project Options)
to manage compression via the IDDE (Figure 2-4 on page 2-9).

• Specification of the compression window width

The compression window width specifies the maximum
compression window size to the compression engine. The value
range is 8 to 15 bits, and the default is 9 bits. The compression
engine uses the maximum byte count of the compression window
size of 2 raised to the power of the specified bit value to perform
the compression operation. For example, when the window width
is specified as 9 bits, the compression window size is 512 bytes
(two raised to the ninth power).

The compression window size can be changed via the

VisualDSP++ 4.5 Product Release Bulletin 2-33

VisualDSP++ 4.5 New Features and Enhancements

Load : Compression page of the Project Options dialog box
(see Figure 2-4 on page 2-9) or via the -compressWS #
command-line switch.

• Specification of the F, G, and H ports

The -pflag PF#, -pflag PG#, and -pflag PH# command-line
switches specify a 4-bit hex value for ports PF, PG, and PH
(respectively). The switches are applicable to the
ADSP-BF531/BF532/BF533 (silicon revision 0.2 and newer) and
BF534/BF536/BF537 (silicon revision 0.1 and newer) processors.

• Specification of the block size for zero blocks

The new -MaxZeroFillBlockSize # command-line switch specifies
the maximum block byte count for zero-filled blocks. The valid
values are from 0x0 to 0xFFFFFFF0; the default value matches
-MaxBlockSize #.

• Prefix of 0x for data in ASCII output format

The loader utility distinguishes between output files in ASCII and
other formats by prefixing data in ASCII-formatted files with 0x.

Loader for SHARC Processors
The new loader features for SHARC processors include:

• Support for new processors

The loader utility supports the ADSP-21371 and ADSP-21375

Loader and Utilities for Blackfin and SHARC Processors

2-34 VisualDSP++ 4.5 Product Release Bulletin

processors via the property page (Project Options–>Load) and via
two new arguments to the -proc command-line switch. These
switches are -proc ADSP-21371 and -proc ADP-21375.

• Support for loader file compression

The loader utility for the ADSP-21261/21266/21267,
ADSP-21363/21364/21365/21366/21367/21368/21369, and
ADSP-21371/21375 processors supports a loader file (boot stream)
compression mechanism known as zLib. VisualDSP++ 4.5 includes
a copy of the zLib dynamic link library, zlib1.dll.

The loader -compression switch directs the loader utility to per-
form the compression from the command line. VisualDSP++ 4.5
also offers a new dedicated loader property page (Project Options
–> Load–>Compression) to manage the compression from the
IDDE.

• Support for overlay file compression

The loader utility compresses the data and code from executable
(.dxe) and associated shared memory (.sm) files when the
-compression switch (or Enable Compression option on the loader
property page) is specified. The -compressionOverlay switch must
be used (or selected from the loader property page) as the data and
code from the associated overlay files are also intended to be
compressed. The -compressionOverlay switch takes effect when
used with the -compression switch.

• Specification of the compression window width

The compression window width specifies the maximum
compression window size to the compression engine. The value
range is 8 to 15 bits, and the default is 9 bits. The compression
engine uses the maximum byte count of the compression window

VisualDSP++ 4.5 Product Release Bulletin 2-35

VisualDSP++ 4.5 New Features and Enhancements

size of 2 raised to the power of the specified bit value to perform
the compression operation. For example, a window width of 9 bits
specifies a compression window of 512 bytes (two raised to the
ninth power) .

The compression window size can be changed through the loader
property page (Project Options–>Load–>Compression) or
through the -compressWS # command-line switch.

• Retaining the kernel with the decompression engine

The -retainSecondStageKernel command-line switch
(ADSP-2126x and ADSP-2136x processors only) directs the loader
utility to retain the kernel’s code and data with the decompression
engine. The switch takes effect when used with the -compression
switch.

• Support for multiple inputs

Up to eight ADSP-21367/21368/21369 and ADSP-21371/21375
processors can be clustered together and supported by the
VisualDSP++ loader utility. Each input executable (.dxe) can be
specified with a processor ID through the -id#exe=filename
command-line switch, where # is a processor ID for the particular
input file, filename. Another command line switch, -id#ref=N, can
be used to direct the loader to share the same executable with two
or more processor IDs in the loader file, where the N is the proces-
sor ID which has already had an input executable assigned and # is
the other processor ID to share the same executable with the
processor ID of N. Using the -id#ref switch effectively reduces the
size of the loader file. Valid processor IDs are 0 to 7.

VDK

2-36 VisualDSP++ 4.5 Product Release Bulletin

File Conversion Programs
VisualDSP++ 4.5 offers two new utility programs for SHARC and Black-
fin processors to support a uClinux binary flat format (BFLT). For details,
see Appendix B, “Utilities” of the VisualDSP++ 4.5 Loader and Utilities
Manual. The utilities run from the command line only:

• elf2flt.exe

The ELF-to-BFLT file converter program converts a (.dxe) file
in Executable and Linkable Format (ELF) to Binary Flat Format
(BFLT).

• fltdump.exe

The BFLT file dumper program extracts data from a BFLT execut-
able (.bflt) file and yields text showing the BFLT file’s contents.

VDK
The following new features and enhancements have been added to VDK
for VisualDSP++ 4.5.

• The new VDK API GetBlockSize()

• A new History Logging mechanism

• 40-bit floating-point arithmetic support for SHARC processors

• VDK has been built using the new file attribute ADI_OS. This
provides greater flexibility in the mapping of VDK code. For more
information, see “File Attributes” on page 2-19.

• Rationalization of the levels which APIs can be called from thread,
kernel, or interrupt. The level at which each VDK API can be
called is explicitly documented.

VisualDSP++ 4.5 Product Release Bulletin 2-37

VisualDSP++ 4.5 New Features and Enhancements

See the VisualDSP++ 4.5 Kernel (VDK) User’s Guide for details.

Example Programs Re-Organized
The example programs that are bundled with VisualDSP++ have been
reorganized to make it easier to find examples relevant to your target
processor and/or EZ-KIT Lite target board. The basic organization is:

…\<processor family>\Examples\<target board>\...

For example, if you are a Blackfin user with an ADSP-BF537 EZ-KIT
Lite, “…\Blackfin\Examples\ADSP-BF537 EZ-KIT Lite” is a good starting
place when looking for examples. A SHARC user of an ADSP-21369
EZ-KIT Lite would want to start at “…\213xx\Examples\ADSP-21369

EZ-KIT Lite”. EZ-Extender cards like the A-V EZ-Extender have their
own “target board” subdirectories as well.

There is also a special “target board” called “No Hardware Required”.
Here one can find more generic examples that can be demonstrated with
simulator targets and do not rely on the capability of any particular target
board.

Example Programs Re-Organized

2-38 VisualDSP++ 4.5 Product Release Bulletin

VisualDSP++ 4.5 Product Release Bulletin 3-1

3 VISUALDSP++ 4.5 MAJOR
CHANGES

This chapter summarizes major changes in VisualDSP++ 4.5 compared
with the VisualDSP++ 4.0 release.

The chapter details:

• “New Processor Support” on page 3-2

• “License Server Tools Upgrade” on page 3-3

• “Assembler Changes” on page 3-3

• “Compiler Changes” on page 3-4

“Compiler and Library for Blackfin Processors” on page 3-9

“Compiler and Library for SHARC Processors” on
page 3-10

“Compiler and Library for TigerSHARC Processors” on
page 3-10

• “Linker Changes” on page 3-11

• “Loader Changes” on page 3-13

• “VDK Changes” on page 3-13

• “Changes to Existing Projects” on page 3-15

Please note that new features and enhancements are listed in Chapter 2,
and all obsolete and removed features are listed in Chapter 4.

New Processor Support

3-2 VisualDSP++ 4.5 Product Release Bulletin

New Processor Support
New Blackfin processors include the AD6531, AD6900, AD6901,
AD6902, and AD6903.

New SHARC processors include the ADSP-21371 and ADSP-21375.

TigerSHARC Simulator Platform Names
The platform names for ADSP-TS201, ADSP-TS202, ADSP-TS203
simulator targets are changed as follows:

For Silicon Rev. 0.x

“ADSP-TS201 Rev. 0.0 Single Processor Simulator” becomes
“ADSP-TS201 Rev. 0.x Single Processor Simulator”.

“ADSP-TS202 Rev. 0.0 Single Processor Simulator” becomes
“ADSP-TS202 Rev. 0.x Single Processor Simulator”.

“ADSP-TS203 Rev. 0.0 Single Processor Simulator” becomes
“ADSP-TS203 Rev. 0.x Single Processor Simulator”.

For Silicon Revisions 1.x and 2.x

“ADSP-TS201 Rev. 1.0 Single Processor Simulator” becomes
“ADSP-TS201 Rev. 1.x/2.x Single Processor Simulator”.

“ADSP-TS202 Rev. 1.0 Single Processor Simulator” becomes
“ADSP-TS202 Rev. 1.x/2.x Single Processor Simulator”.

“ADSP-TS203 Rev. 1.0 Single Processor Simulator” becomes
“ADSP-TS203 Rev. 1.x/2.x Single Processor Simulator”.

VisualDSP++ 4.5 Product Release Bulletin 3-3

VisualDSP++ 4.5 Major Changes

License Server Tools Upgrade
The license server tools for VisualDSP++ 4.5 have been upgraded to
FlexLM v10.8. It is highly recommended that you upgrade the server tools
when installing the VisualDSP++ 4.5 release.

The latest license server tools can be found at:

http://www.analog.com/processors/resources/crosscore/toolsUp-

grades.html

Assembler Changes

Blackfin .GLOBAL Directive Syntax / Error ea5004
(Blackfin processors only) As described in the VisualDSP++ 4.5 Assembler
and Preprocessor Manual, the .GLOBAL directive expects the GLOBAL key-
word followed by a list of one or more comma-separated symbols.

.GLOBAL symbolName1[, symbolName2, …];

The VisualDSP++ 4.5 Blackfin assembler no longer accepts the following
undocumented syntax for the .GLOBAL directive.

.GLOBAL symbolName[length] …;

This code fragment does assemble in VisualDSP++ 4.0, where the length
declarator is ignored by the Blackfin assembler:

.BYTE2 _LeftOne[12000];

.GLOBAL _LeftOne[12000];

.VAR _RightOne[12];

.GLOBAL _RightOne[12];

Compiler Changes

3-4 VisualDSP++ 4.5 Product Release Bulletin

.BYTE _WrongOne[5];

.GLOBAL _WrongOne[50000];

In VisualDSP++ 4.5, a length declarator of the .GLOBAL directive causes an
error. The new error (ea5004) raised by the assembler is a generic “syntax
error”.

To revise, do not include the length in .GLOBAL symbols:

.BYTE2 _LeftOne[12000];

.GLOBAL _LeftOne;

.VAR _RightOne[12];

.GLOBAL _RightOne;

.BYTE _WrongOne[5];

.GLOBAL _WrongOne;

Compiler Changes
The following sections summarize changes common to Blackfin, SHARC,
and TigerSHARC compilers.

• “Std Namespace is Now Default in C++ Mode” on page 3-5

• “Revised .LDF Files” on page 3-5

• “Multiprocessor and Multi-Core Support” on page 3-6

• “Integrated Section-Placement Mechanisms” on page 3-7

• “Non-Optimizing Inter-Procedural Analysis” on page 3-7

• “Optimization Control Pragmas and Inter-Procedural Analysis” on
page 3-8

VisualDSP++ 4.5 Product Release Bulletin 3-5

VisualDSP++ 4.5 Major Changes

• “Extended Optimizer Annotations” on page 3-8

• “Updated C++ Support Libraries and Header Files” on page 3-8

Std Namespace is Now Default in C++ Mode
When compiling C++ code, the compiler now uses the std namespace.
This means that C++ programs using std must have:

using namespace std;

in scope, otherwise the compiler raises build-time errors.

The old behavior, where the std namespace is not used, can be obtained
through the new -ignore-std switch.

The compiler also issues discretionary warning cc1756 if a preprocessor
macro is defined with the name "std" when compiling C++ sources, as this
can cause unexpected warnings when used with C++ Standard Library
header files. For example:

"file.c", line 1: cc1756: {D} warning: this macro should be

renamed as it can cause spurious errors conflicting

with the C++ Standard Library namespace std

#define std

^

Revised .LDF Files
The Linker Description Files have received a number of modifications to
address certain enhancements. These modification include:

• File attributes

The .LDF files now use the prefersMem attribute if the attribute is

Compiler Changes

3-6 VisualDSP++ 4.5 Product Release Bulletin

set within any of the objects or libraries involved in the link. The
attribute allows you to influence the relative priority of different
functions when there is contention for internal memory.

• C++ exception support

The implementation of the compiler’s C++ exception support has
been revised to address some issues, resulting in an additional input
section being generated. The section is called .rtti; the section
must be mapped to data memory.

• More flexible stack/heap memory arrangement

The heap and stack layouts have changed to be more flexible but,
in some cases, leading to less overall memory available for com-
bined heap and stack.

Multiprocessor and Multi-Core Support
The compiler and run-time libraries include additional support for
multiprocessor and multi-core environments. The following features now
are available in such environments.

• Inter-procedural analysis (IPA)

• Profile-guided optimization (PGO)

• C++ exceptions

The -pgo-session switch has been added to support PGO in a multi-core
or multiprocessor environment. It allows the same source file or the same
global symbols to be profiled and optimized independently, without their
profiles being merged into a single average behavior.

VisualDSP++ 4.5 Product Release Bulletin 3-7

VisualDSP++ 4.5 Major Changes

Multi-Core Linking

For dual-core Blackfin processors, you can develop a single application
using one build process. This approach uses advanced linker facilities
to resolve cross-references between the cores and shared memories.
For details, refer to Appendix A of the VisualDSP++ 4.5 C/C++ Compiler
and Library Manual for Blackfin Processors.

Integrated Section-Placement Mechanisms
The following interfaces to the compiler’s section-placement mechanisms
now are integrated to provide a common set of facilities:

• #pragma section and #pragma default_section

• The -section switch

• Platform-specific jump table switches (where available)

For example, the section kinds previously only available using
#pragma default_section are now available to be used as section
identifiers for the compiler switch -section.

Target sections for compiler-generated constructs, such as jump tables for
C switch statements, now can be specified using the pragmas or the
-section switch. Existing functionality remains unchanged.

Non-Optimizing Inter-Procedural Analysis
The inter-procedural analysis (IPA) framework now can be invoked with-
out optimizing. The compiler still can analyze and gather information
about a module, and the information can be used by other modules in the
application. This combination can be obtained by using the switch
combination:

Compiler Changes

3-8 VisualDSP++ 4.5 Product Release Bulletin

-ipa -O0

The switch order is significant: -ipa turns optimization on implic-
itly; -O0 (capital O, zero) explicitly disables optimization.

weak_entry Pagma Restriction
Objects that define weak symbols with the weak_entry pragma will con-
tain a special symbol that disables interprocedural analysis (IPA) when it is
seen by the prelinker. This prevents IPA from being confused, as it does
not know which symbol will be used to satisfy the reference at link time.
It is anticipated that this restriction will be removed in a future release.

Optimization Control Pragmas and
Inter-Procedural Analysis

The IPA framework no longer forces optimization, so
#pragma optimize_off is honored when using IPA.

Extended Optimizer Annotations
The compiler now generates additional annotations in assembly files to
deepen your understanding of the generated code. These annotations can
be viewed by looking at the assembly file directly (see the -S and
-save-temps descriptions in the VisualDSP++ 4.5 C/C++ Compiler and
Library Manual for your target processor) or by viewing the file in the
IDDE’s editor window. The compiler also emits the annotations in binary
form in the ELF file to make the annotations visible in the debugger.

Updated C++ Support Libraries and Header Files
The implementation of the C++ support libraries and associated header
files has been updated. One consequence of these changes is that some of
the header files do not include the same files as previous releases. These

VisualDSP++ 4.5 Product Release Bulletin 3-9

VisualDSP++ 4.5 Major Changes

changes could possibly lead to a difference in existing code behavior if all
of the correct header files were not specified for inclusion within the exist-
ing code. One example of this is that the memory header file no longer
includes iterator where it did in the previous releases.

Compiler and Library for Blackfin Processors
This section summarizes changes to the Blackfin compiler and library.

“M3-Free” Libraries No Longer Required

VisualDSP++ 4.0 and earlier versions support additional variants of
some libraries that ensure the M3 register is reserved for emulator use.
These libraries usually are used to link against an application that is
built with the -reserve M3 switch. The VisualDSP++ 4.5 libraries no
longer use the M3 register; therefore, these additional variants are no longer
required.

The libraries in question are:

• libdspm3resXXX.dlb (replaced by libdspXXX.dlb)

• libm3resXXX.dlb (merged into libcXXX.dlb)

• libm3freeXXX.dlb (merged into libcXXX.dlb)

VisualDSP++ 4.5 includes a set of libm3freeXXX.dlb libraries for
compatibility with current .LDF files, but the library files are empty files
and have no effect on linking. However, any tailored .LDF file that links
against either of the libraries libdspm3resXXX.dlb or libm3resXXX.dlb
must be modified.

Although the run-time libraries no longer use the M3 register, they
continue to preserve and restore the register when switching
contexts, such as in interrupt dispatchers and in the library
functions setjmp and longjmp.

Compiler Changes

3-10 VisualDSP++ 4.5 Product Release Bulletin

CRT Header File Name Appended with <project_name>

The names of CRT header files produced by the Project wizard have
changed from basiccrt.s (prior to VisualDSP++ 4.5) to
<project_name>_basiccrt.s. If you use a souce code control (SCC)
system to maintain source files, adjust your file lists accordingly.

Compiler and Library for SHARC Processors
There are no changes that are specific to the SHARC compiler and library.

Compiler and Library for TigerSHARC Processors
This section summarizes changes to the TigerSHARC compiler and
library.

The behavior of the optimizer for TigerSHARC processors with respect to
transforming sequences of multiplies and adds or subtracts into multi-
ply-and-accumulate instructions has changed since the previous release.

The optimizer no longer tries to transform code that uses a saturating add
or subtract into a multiply-accumulate; thus, the precision to which the
intermediate values saturate is no longer affected. For example, when
using a builtin to saturate to 32 bits, it may be undesirable for the
compiler to use a multiply-accumulate, which on a TigerSHARC proces-
sor saturates to 40 bits for intermediate results and then saturates to 32
bits on extraction from the accumulator.

When enabling remarks with -Wremarks, the optimizer produces messages
similar to the following for operations that previously have used a
multiply-accumulate.

VisualDSP++ 4.5 Product Release Bulletin 3-11

VisualDSP++ 4.5 Major Changes

"test.c", line 16 (col. 5): cc1754: {D} remark: the compiler is

no longer attempting to use a multiply-accumulate here

because doing so would cause the saturation behavior

to be transformed: use -allow-macs-to-extend-saturation

to give the old behavior.

To change the behavior of the optimizer to that of the previous product,
use the -allow-macs-to-extend-saturation compiler switch.

Linker Changes
This section summarizes changes to the linker, Linker Description Files,
and utility programs.

• “Migration of .LDF Files from Previous Versions of VisualDSP++”
on page 3-12

• “Blackfin-Specific LDF Features” on page 3-12

Refer also to “Revised .LDF Files” on page 3-5.

Linker Changes

3-12 VisualDSP++ 4.5 Product Release Bulletin

Migration of .LDF Files from Previous Versions of
VisualDSP++

The default Linker Description Files provided with VisualDSP++ 4.5
contain several changes to support new features and enhancements and
to provide better default templates for customized .LDF files.
VisualDSP++ 4.0 projects containing non-default .LDF files can be safely
used within VisualDSP++ 4.5 without the need to update. However,
many new features provided with VisualDSP++ 4.5 will not be supported
as they require changes to existing .ldf files. These features are listed in
the following sections.

Update projects containing customized .ldf files from VisualDSP++ 4.0
and earlier versions. The modifications applied to the previous .ldf file
should be migrated into a copy of the default .ldf file provided with
VisualDSP++ 4.5.

Blackfin-Specific LDF Features
The following new features apply to Blackfin processors.

Project Wizard, CRT Generation

The modified Project Wizard provides support for the generation of a
Linker Description File for Blackfin-based projects, in addition to startup
code. The wizard displays options related to the user heap, system stack,
system heap, external memory, and so on. This feature is not supported
for projects with customized .ldf files derived from VisualDSP++ 4.0 and
earlier.

VisualDSP++ 4.5 Product Release Bulletin 3-13

VisualDSP++ 4.5 Major Changes

Loader Changes
These VisualDSP++ 4.5 loader changes apply to Blackfin and SHARC
processors:

• No zero padding for 16-bit output for silicon revision 0.3 for the
ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

• Support for multiple initialization blocks.

VDK Changes
When porting existing VDK projects from VisualDSP++ 4.0 to
VisualDSP++ 4.5, the following changes need to be taken into account:

• Message queues are no longer included in thread structures if the
total number of messages in the system is specified to be zero, even
in cases where “messaging allowed” has been specified for particular
thread types.

• Support for VDK C/C++ ISRs was introduced in
VisualDSP++ 4.0. However, on SHARC processors the compiler
pragmas did not provide all of the functionality required to declare
the functions as ISRs. An update to VisualDSP++ 4.0 introduced
new pragmas to address this issue, and these pragmas should also be
used in VisualDSP++ 4.5. Creating a new ISR in VisualDSP++ 4.5
produces a skeleton ISR that contains the correct pragmas.

• The run-time libraries now use the standard namespace.
Commensurate changes are required in source code for VDK
projects. For more information, see “Std Namespace is Now
Default in C++ Mode” on page 3-5.

VDK Changes

3-14 VisualDSP++ 4.5 Product Release Bulletin

• The Blackfin VDK exception handler no longer uses JUMP.X to
switch execution to the UserExceptionHandler. This is because if
expansion to a long jump is required, there is no way of preventing
the trashing of the P1 register. Both the VDK exception handler
and the UserExceptionHandler must now be placed in the same
memory area, otherwise a linker error will be produced.

• The project’s .LDF file must be updated to be compatible with
VisualDSP++ 4.5. The most reliable way to upgrade the .LDF file
is to start with the default VisualDSP++ 4.5 .LDF file for the target
processor, then customize the .LDF file as required. Some notable
changes to the .LDF files are:

The new microkernel libraries must be linked in, named
TMK-<processor_name>.dlb.

Variables that must be placed into internal memory on
SHARC processors are now mapped to a new section,
internal_memory_data, which must be mapped to a suitable
output section in the .LDF file.

RESERVE now is used to allocate space for heaps in default
.LDF files for Blackfin processors. This is not a required
change but is a more efficient way to allocate memory for
heaps.

The run-time libraries no longer include M3 free/reserved
libraries, and any usage has been removed from the default
VDK .LDF files. For more information, see ““M3-Free”
Libraries No Longer Required” on page 3-9.

An additional input section called .rtti is generated for the
compiler’s C++ exception support, which must be mapped
to data memory in the .LDF file.

VisualDSP++ 4.5 Product Release Bulletin 3-15

VisualDSP++ 4.5 Major Changes

Changes to Existing Projects
This section lists changes to projects started prior to VisualDSP++ 4.5.

SPI_MS Macro
For ADSP-21161 processors, reference the “Master/Slave Mode Bit” on
the SPI control register using the macro SPI_MS instead of MS. The macro
definitions for the SPI control registers are contained in def21161.h. This
macro was changed because MS is also recognized as a keyword by the
assembler (for the multiplier signed bit).

SSL Libaries in New Location
The location of the debug SSL libraries has moved from the base lib
directory to the debug subdirectory. Adjust the existing .LDF files or add
the debug directory to the search path.

The compiler’s -add-debug-libpaths command-line switch is added in
order to do this.

MMR Definitions Include File Uses of “volatile void”
is Replaced

In prior versions of VisualDSP++, various macros for MMRs that hold
addresses were declared using “(volatile void **)” casts in cdefBF5*.h and
associated standard include files (for example, the pointers to CPLB
addresses pDCPLB_ADDR0 through pDCPLB_ADDR15 and Event Vector Table
addresses pEVT0 through pEVT16).

Changes to Existing Projects

3-16 VisualDSP++ 4.5 Product Release Bulletin

In VisualDSP++ 4.5, these have been modified to use casts to
“(void *volatile *)”. That is, they use a pointer to a volatile pointer,
rather than a volatile pointer to pointer which was incorrect.

Some code that compiled previously without error may trigger
compiler error cc0513 when built with VisualDSP++ 4.5.

For example, the following would compile without error in
VisualDSP++ 4.0.

#include <cdefBF532.h>

void foo (volatile void ** fielder) {

*pEVT0 = *fielder;

}

However, when built with VisualDSP++ 4.5 it will result in an error of the
following type:

"t.c", line 5: cc0513: error: a value of type "volatile void *"

assigned to an entity of type "void *" cannot be

*pEVT0 = *fielder;

^

To resolve these problems, modify the source to make it compatible with
the changed macro type or enable the legacy definitions. The preferred
resolution is to modify the source because the incorrect use of the volatile
qualifier in the prior definitions (still available for legacy purposes) may
give rise to run-time problems, especially when an application is built as a
Release version.

To modify the source, change affected code from using “volatile void **”
types to “void *volatile *” types. In our small example, this means chang-
ing the type of parameter fielder, as follows:

#include <cdefBF532.h>

void foo (void *volatile * fielder) {

VisualDSP++ 4.5 Product Release Bulletin 3-17

VisualDSP++ 4.5 Major Changes

*pEVT0 = *fielder;

}

If required, to enable the legacy behavior, define the macro
“_USE_LEGACY_CDEF_BEHAVIOUR” before including the cdef*.h files.
This can be done, for example, using the compiler’s -D switch by adding
-D_USE_LEGACY_CDEF_BEHAVIOUR to the project compiler additional
options. Alternatively, the legacy behavior macro can be defined in the
source by adding “#define _USE_LEGACY_CDEF_BEHAVIOUR” before
#include statements.

Changes to Existing Projects

3-18 VisualDSP++ 4.5 Product Release Bulletin

VisualDSP++ 4.5 Product Release Bulletin 4-1

4 VISUALDSP++ 4.5 OBSOLETE
OR REMOVED FEATURES

This chapter describes the features that have been deprecated or removed
in VisualDSP++ 4.5. Read this chapter if you are upgrading from the
previous software release.

Existing project files (.dpj) can be imported into the new release.
However, once the project file is imported, you are not able to bring the
project back into VisualDSP++ 4.0. Similarly, new projects created with
VisualDSP++ 4.5 cannot be used by earlier versions of the tools.

This chapter contains lists of obsolete or removed features:

• “Discontinued Processor Support” on page 4-2

• “VisualDSP++ IDDE” on page 4-2

• “Compilers and Libraries” on page 4-2

• “VDK” on page 4-3

You may want to consult the cover letter that accompanies the product
installation CD for last-minute information concerning this release.

You may also want to visit the Software Tools Upgrades Web site
(http://www.analog.com/processors/resources/crosscore/toolsUp-
grades.html) to check if an update is available for your VisualDSP++ 4.5
installation. Installing an update ensures that your software contains the
latest processor support, example code, and bug fixes.

http://www.analog.com/processors/resources/crosscore/toolsUpgrades.html
http://www.analog.com/processors/resources/crosscore/toolsUpgrades.html

Discontinued Processor Support

4-2 VisualDSP++ 4.5 Product Release Bulletin

Discontinued Processor Support
VisualDSP++ 4.5 does not provide support for ADSP-218x and
ADSP-219x processors. Therefore, refer to VisualDSP++ 3.5 user docu-
mentation and the online Help if you need information on how to
develop and run DSP projects on ADSP-21xx processors. VisualDSP++ 3.5
continues to be available for ADSP-218x and ADSP-219x developers.

VisualDSP++ IDDE
VisualDSP++ 4.5 does not support the Apex-ICE emulator.

Compilers and Libraries
This section contains information about all removed or deprecated
features within the compilers and libraries:

• “Removed Command-Line Switches” on page 4-2

• “Deprecated Pragmas” on page 4-3

Refer to Chapter 3, “VisualDSP++ 4.5 Major Changes” for more
information about the changes to the C/C++ compilers and run-time
libraries.

Removed Command-Line Switches
The following compiler command-line switches have been removed from
VisualDSP++ 4.5.

VisualDSP++ 4.5 Product Release Bulletin 4-3

VisualDSP++ 4.5 Obsolete or Removed Features

Deprecated Pragmas
The #pragma retain_name has been deprecated. The compiler now
obtains the required information from the linker at link time, making the
pragma redundant.

VDK
VDK no longer supports 0.x silicon for TS20x processors. In order to use
VDK on these processors, you must use silicon revision 1.0 or higher.

See “VDK Changes” on page 3-13 for information on the kernel changes.

Switch Description

-default-linkage Removed. In VisualDSP++ 4.5, C linkage is always the default.

-write-files Removed

-write-opts Removed

VDK

4-4 VisualDSP++ 4.5 Product Release Bulletin

	Preface
	Purpose of This Document
	Intended Audience
	Manual Contents
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	Product Release Description
	VisualDSP++ 4.5 System Requirements
	Platform and Processor Support

	2 VisualDSP++ 4.5 New Features and Enhancements
	VisualDSP++ IDDE
	New Processor Support
	Support Enhancements
	Connectionless IDDE
	Starting VisualDSP++ While Holding Down the Shift Key
	Starting VisualDSP++ While Holding Down the Ctrl Key

	Session Wizard
	Project Wizard Enhancements
	Modified Property Pages in Project Options Dialog Box
	Load : Compression Page of Project Options Dialog Box
	Editor Window Enhancements
	Breakpoint Enhancements
	Profiling Results in XML Format
	Expressions Window and Locals Window Enhancements
	Flash Programmer Window Redesign
	Power Estimation Analysis

	Assembler
	Processor Support
	Assembler Feature Macros
	.FILE_ATTR Directive
	.ASCII Directive
	.MESSAGE Directive
	User Control of Assembler Message Severity

	Features Common to All Compilers and Libraries
	New Switches
	New Pragmas
	File Attributes
	Inlining Control
	Unnamed Struct and Union Fields Within Struct and Union Definitions
	Additional Library Routines

	Compiler and Library for Blackfin Processors
	LDF Generator
	Long-Long Types in asm Statements
	Compiler Builtins for Accessing Memory-Mapped Registers
	Speculative Memory Access Pragma
	New Processor Support
	Core-B Enabling Function

	Compiler and Library for SHARC Processors
	External Memory Access Support
	New Interrupt Pragmas
	Bank Type Qualifiers
	New Processor Support
	Additional DSP Library Functions

	Compiler and Library for TigerSHARC Processors
	Linker and Utilities
	Updated List of LDF Keywords
	Linking with Attributes
	RESERVE LDF Command
	DMAONLY Qualifier

	Loader and Utilities for Blackfin and SHARC Processors
	Loader for Blackfin Processors
	Loader for SHARC Processors
	File Conversion Programs

	VDK
	Example Programs Re-Organized

	3 VisualDSP++ 4.5 Major Changes
	New Processor Support
	TigerSHARC Simulator Platform Names

	License Server Tools Upgrade
	Assembler Changes
	Blackfin .GLOBAL Directive Syntax / Error ea5004

	Compiler Changes
	Std Namespace is Now Default in C++ Mode
	Revised .LDF Files
	Multiprocessor and Multi-Core Support
	Multi-Core Linking

	Integrated Section-Placement Mechanisms
	Non-Optimizing Inter-Procedural Analysis
	weak_entry Pagma Restriction
	Optimization Control Pragmas and Inter-Procedural Analysis
	Extended Optimizer Annotations
	Updated C++ Support Libraries and Header Files
	Compiler and Library for Blackfin Processors
	“M3-Free” Libraries No Longer Required
	CRT Header File Name Appended with <project_name>

	Compiler and Library for SHARC Processors
	Compiler and Library for TigerSHARC Processors

	Linker Changes
	Migration of .LDF Files from Previous Versions of VisualDSP++
	Blackfin-Specific LDF Features

	Loader Changes
	VDK Changes
	Changes to Existing Projects
	SPI_MS Macro
	SSL Libaries in New Location
	MMR Definitions Include File Uses of “volatile void” is Replaced

	4 VisualDSP++ 4.5 Obsolete or Removed Features
	Discontinued Processor Support
	VisualDSP++ IDDE
	Compilers and Libraries
	Removed Command-Line Switches
	Deprecated Pragmas

	VDK

