
W4.5
Device Drivers and System Services Manual

for Blackfin® Processors

Revision 2.1, August 2006

Part Number
82-000430-01

Analog Devices, Inc. a

Copyright Information
©2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, the Blackfin logo, EZ-KIT Lite,
SHARC, TigerSHARC, and VisualDSP++ are registered trademarks of
Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 4.5 Device Drivers and System iii
Services Manual for Blackfin Processors

CONTENTS

PREFACE

Purpose of This Manual .. xxv

Intended Audience .. xxv

Manual Contents Description .. xxvi

Technical or Customer Support ... xxvii

Supported Processors .. xxviii

Product Information .. xxviii

MyAnalog.com ... xxviii

Processor Product Information .. xxix

Related Documents .. xxix

Online Technical Documentation .. xxx

Accessing Documentation From the Web xxx

Viewing Help Files ... xxxi

Printed Manuals ... xxxi

VisualDSP++ Documentation Set xxxi

Hardware Tools Manuals ... xxxii

Processor Manuals ... xxxii

Data Sheets ... xxxii

Notation Conventions ... xxxii

CONTENTS

iv VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

INTRODUCTION

System Services Overview ... 1-2

General ... 1-3

Application Interface ... 1-7

Dependencies .. 1-8

Initialization ... 1-10

Termination .. 1-10

System Services Directory and File Structure 1-11

Accessing the System Services API 1-11

Linking in the System Services Library 1-13

Rebuilding the System Services Library 1-15

Examples .. 1-16

Dual Core Considerations ... 1-16

RTOS Considerations ... 1-17

Interoperability of System Services with VDK 1-17

Deployment of Services within a multi-threaded application .. 1-19

Device Driver Overview .. 1-20

Application Interface ... 1-21

Device Driver Architecture .. 1-22

Interaction with System Services 1-24

Initialization ... 1-24

Termination .. 1-24

Device Driver Directory and File Structure 1-25

Accessing the Device Driver API 1-26

CONTENTS

VisualDSP++ 4.5 Device Drivers and System v
Services Manual for Blackfin Processors

Device Driver File Locations ... 1-27

Linking in the Device Driver Library 1-28

Rebuilding the Device Driver Library 1-29

Examples on Distribution .. 1-31

INTERRUPT MANAGER

Introduction ... 2-2

Interrupt Manager Initialization .. 2-4

Interrupt Manager Termination ... 2-5

Core Event Controller Functions ... 2-6

adi_int_CECHook() Function ... 2-6

adi_int_CECUnhook() Function ... 2-8

Interrupt Handlers .. 2-8

System Interrupt Controller Functions .. 2-9

adi_int_SICDisable() ... 2-10

adi_int_SICEnable() .. 2-10

adi_int_SICGetIVG() .. 2-10

adi_int_SICInterruptAsserted() ... 2-10

adi_int_SICSetIVG() ... 2-11

adi_int_SICWakeup() .. 2-11

Protecting Critical Code Regions ... 2-12

Modifying IMASK .. 2-14

Examples .. 2-15

File Structure .. 2-15

Interrupt Manager API Reference .. 2-17

CONTENTS

vi VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Notation Conventions ... 2-17

adi_int_Init .. 2-18

adi_int_Terminate .. 2-19

adi_int_CECHook .. 2-20

adi_int_CECUnhook .. 2-22

adi_int_ClearIMaskBits .. 2-24

adi_int_EnterCriticalRegion .. 2-26

adi_int_ExitCriticalRegion .. 2-28

adi_int_SICDisable ... 2-29

adi_int_SICEnable .. 2-30

adi_int_SICGetIVG .. 2-31

adi_int_SICInterruptAsserted .. 2-32

 adi_int_SICSetIVG .. 2-33

adi_int_SetIMaskBits .. 2-34

adi_int_SICWakeup .. 2-36

POWER MANAGEMENT MODULE

Introduction ... 3-2

PM Module Operation – Getting Started 3-3

Dual Core Considerations ... 3-7

Simple Method of Making it Work .. 3-7

Synchronization Requirement .. 3-8

Running Applications on One Core Only 3-9

Running Applications on Both Cores 3-10

Synchronization between Cores ... 3-11

CONTENTS

VisualDSP++ 4.5 Device Drivers and System vii
Services Manual for Blackfin Processors

The Built-in Lock variable and Linking Considerations 3-12

SDRAM Initialization Prior to Loading an Executable 3-15

Power Management API Reference .. 3-18

Notation Conventions ... 3-18

adi_pwr_AdjustFreq .. 3-19

adi_pwr_Control ... 3-21

adi_pwr_GetConfigSize ... 3-23

adi_pwr_GetFreq .. 3-24

adi_pwr_GetPowerMode ... 3-25

adi_pwr_GetPowerSaving .. 3-26

adi_pwr_Init ... 3-27

adi_pwr_LoadConfig ... 3-33

adi_pwr_Reset ... 3-35

adi_pwr_SaveConfig .. 3-36

adi_pwr_SetFreq ... 3-37

adi_pwr_SetMaxFreqForVolt ... 3-39

adi_pwr_SetPowerMode .. 3-40

adi_pwr_SetVoltageRegulator .. 3-42

Public Data Types and Enumerations ... 3-46

ADI_PWR_COMMAND ... 3-46

ADI_PWR_COMMAND_PAIR ... 3-52

ADI_PWR_CSEL ... 3-53

ADI_PWR_DF ... 3-54

ADI_PWR_EZKIT ... 3-55

CONTENTS

viii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_INPUT_DELAY .. 3-56

ADI_PWR_OUTPUT_DELAY .. 3-57

ADI_PWR_MODE .. 3-58

ADI_PWR_PACKAGE_KIND ... 3-59

ADI_PWR_PCC133_COMPLIANCE 3-60

ADI_PWR_PROC_KIND .. 3-61

ADI_PWR_RESULT .. 3-62

ADI_PWR_SSEL .. 3-64

ADI_PWR_VDDEXT .. 3-65

ADI_PWR_VLEV .. 3-66

ADI_PWR_VR_CANWE ... 3-67

ADI_PWR_VR_CKELOW ... 3-68

ADI_PWR_VR_CLKBUFOE ... 3-69

ADI_PWR_VR_FREQ ... 3-70

ADI_PWR_VR_GAIN ... 3-71

ADI_PWR_VR_PHYWE ... 3-72

ADI_PWR_VR_WAKE .. 3-73

PM Module Macros .. 3-74

EXTERNAL BUS INTERFACE UNIT MODULE

Introduction ... 4-2

Using the EBIU Module ... 4-3

EBIU API Reference ... 4-6

Notation Conventions ... 4-6

adi_ebiu_AdjustSDRAM ... 4-8

CONTENTS

VisualDSP++ 4.5 Device Drivers and System ix
Services Manual for Blackfin Processors

adi_ebiu_Control .. 4-9

adi_ebiu_GetConfigSize .. 4-12

adi_ebiu_Init .. 4-13

adi_ebiu_LoadConfig .. 4-17

adi_ebiu_SaveConfig ... 4-18

Public Data Types and Enumerations ... 4-19

ADI_EBIU_RESULT .. 4-20

ADI_EBIU_SDRAM_BANK_VALUE 4-22

ADI_EBIU_TIME .. 4-23

ADI_EBIU_TIMING_VALUE ... 4-24

Setting Control Values in the EBIU Module 4-25

ADI_EBIU_COMMAND ... 4-25

ADI_EBIU_COMMAND_PAIR ... 4-29

Command Value Enumerations ... 4-29

ADI_EBIU_SDRAM_EZKIT ... 4-29

ADI_EBIU_SDRAM_ENABLE .. 4-29

ADI_EBIU_SDRAM_BANK_SIZE 4-30

ADI_EBIU_SDRAM_BANK_COL_WIDTH 4-30

ADI_EBIU_SDRAM_MODULE_TYPE 4-31

ADI_EBIU_CMD_SET_SDRAM_SCTLE 4-32

ADI_EBIU_SDRAM_EMREN ... 4-33

ADI_EBIU_SDRAM_PASR ... 4-33

ADI_EBIU_SDRAM_TCSR ... 4-33

ADI_EBIU_SDRAM_SRFS .. 4-34

CONTENTS

x VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_EBUFE .. 4-34

ADI_EBIU_SDRAM_PUPSD .. 4-35

ADI_EBIU_SDRAM_PSM .. 4-35

ADI_EBIU_SDRAM_FBBRW ... 4-36

ADI_EBIU_SDRAM_CDDBG .. 4-36

DEFERRED CALLBACK MANAGER

Introduction ... 5-2

Using the Deferred Callback Manager ... 5-3

Interoperability With an RTOS ... 5-8

adi_dcb_Forward .. 5-8

adi_dcb_RegisterISR ... 5-10

Handling Critical Regions within Callbacks 5-10

DCB Manager API Reference .. 5-12

Notation Conventions ... 5-12

adi_dcb_Close .. 5-13

adi_dcb_Control ... 5-14

adi_dcb_Init ... 5-17

adi_dcb_Open .. 5-19

adi_dcb_Post .. 5-21

adi_dcb_Remove ... 5-24

adi_dcb_Terminate ... 5-25

Public Data Types and Macros .. 5-26

ADI_DCB_CALLBACK_FN .. 5-27

ADI_DCB_COMMAND_PAIR ... 5-28

VisualDSP++ 4.5 Device Drivers and System xi
Services Manual for Blackfin Processors

ADI_DCB_COMMAND .. 5-29

ADI_DCB_ENTRY_HDR .. 5-30

ADI_DCB_RESULT ... 5-31

DMA MANAGER

Introduction ... 6-2

Theory of Operation ... 6-4

Overview .. 6-4

 DMA Manager Initialization ... 6-5

 DMA Manager Termination ... 6-6

Memory DMA and Peripheral DMA .. 6-6

Controlling Memory Streams ... 6-7

Opening Memory Streams ... 6-8

Memory Transfers ... 6-8

One-Dimensional Transfers (Linear Transfers) 6-9

Two-Dimensional Transfers ... 6-10

Closing Memory Streams .. 6-11

Controlling DMA Channels .. 6-11

Opening DMA Channels .. 6-11

Single Transfers ... 6-13

Circular Transfers .. 6-15

Large Descriptor Chaining Model 6-17

Small Descriptor Chaining Model 6-21

Arrays of Descriptors ... 6-21

Configuring a DMA Channel .. 6-22

xii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Closing a DMA Channel .. 6-22

Transfer Completions .. 6-23

Polling ... 6-23

Callbacks .. 6-23

Memory Stream Callbacks .. 6-24

Circular Transfer Callbacks ... 6-24

Descriptor Callbacks ... 6-25

Descriptor-Based Sub-Modes ... 6-25

Loopback Sub-Mode ... 6-25

Streaming Sub-Mode .. 6-26

DMA Channel to Peripheral Mapping 6-27

Sensing a Mapping ... 6-28

Setting a Mapping .. 6-28

Interrupts ... 6-28

Hooking Interrupts ... 6-29

Unhooking Interrupts ... 6-29

Two-Dimensional DMA .. 6-30

DMA manager API Reference ... 6-33

Notation Conventions ... 6-33

adi_dma_Buffer .. 6-35

adi_dma_Close ... 6-37

adi_dma_Control .. 6-38

adi_dma_GetMapping .. 6-41

adi_dma_Init .. 6-42

VisualDSP++ 4.5 Device Drivers and System xiii
Services Manual for Blackfin Processors

adi_dma_MemoryClose ... 6-43

adi_dma_MemoryCopy ... 6-44

adi_dma_MemoryCopy2D .. 6-46

adi_dma_MemoryOpen ... 6-48

adi_dma_Open ... 6-50

adi_dma_Queue .. 6-53

adi_dma_SetMapping .. 6-54

adi_dma_Terminate ... 6-55

Public Data Structures, Enumerations and Macros 6-56

Data Types .. 6-57

ADI_DMA_CHANNEL_HANDLE 6-57

ADI_DMA_DESCRIPTOR_UNION/ADI_DMA_DESCRIPTOR_
HANDLE .. 6-57

ADI_DMA_STREAM_HANDLE 6-58

Data Structures ... 6-58

ADI_DMA_2D_TRANSFER ... 6-58

ADI_DMA_CONFIG_REG ... 6-59

ADI_DMA_DESCRIPTOR_ARRAY 6-59

ADI_DMA_DESCRIPTOR_LARGE 6-59

ADI_DMA_DESCRIPTOR_SMALL 6-60

General Enumerations ... 6-60

ADI_DMA_CHANNEL_ID .. 6-60

ADI_DMA_EVENT ... 6-60

ADI_DMA_MODE ... 6-61

ADI_DMA_PMAP ... 6-61

xiv VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_RESULT ... 6-62

ADI_DMA_STREAM_ID ... 6-62

ADI_DMA_CONFIG_REG Field Values 6-63

ADI_DMA_DMA2D ... 6-63

ADI_DMA_DI_EN ... 6-63

ADI_DMA_DI_SEL .. 6-63

ADI_DMA_EN ... 6-63

ADI_DMA_WDSIZE .. 6-63

ADI_DMA_WNR .. 6-64

DMA Commands ... 6-64

PROGRAMMABLE FLAG SERVICE

Introduction ... 7-2

Operation .. 7-3

Initialization ... 7-4

Termination .. 7-4

Flag IDs .. 7-5

Flag Control Functions ... 7-5

adi_flag_Open() ... 7-5

adi_flag_Close() ... 7-5

adi_flag_SetDirection() ... 7-6

adi_flag_Set() ... 7-6

adi_flag_Clear() .. 7-6

adi_flag_Toggle() .. 7-6

adi_flag_Sense() ... 7-6

VisualDSP++ 4.5 Device Drivers and System xv
Services Manual for Blackfin Processors

Callbacks .. 7-6

adi_flag_InstallCallback() .. 7-7

adi_flag_RemoveCallback() ... 7-9

adi_flag_SuspendCallbacks() ... 7-9

adi_flag_ResumeCallbacks() .. 7-9

adi_flag_SetTrigger() ... 7-9

Coding Example .. 7-9

Initialization ... 7-10

Opening a Flag ... 7-10

Setting the Direction ... 7-11

Controlling an Output Flag ... 7-11

Sensing the Value of a Flag .. 7-12

Installing a Callback Function ... 7-12

Suspending and Resuming Callbacks 7-13

Removing Callbacks .. 7-13

Termination .. 7-14

Flag Service API Reference .. 7-14

Notation Conventions ... 7-14

adi_flag_Clear ... 7-15

adi_flag_Close ... 7-16

adi_flag_Init ... 7-17

adi_flag_Open ... 7-19

adi_flag_SetDirection .. 7-20

adi_flag_Terminate .. 7-21

xvi VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Set .. 7-22

adi_flag_Toggle ... 7-23

adi_flag_Sense .. 7-24

adi_flag_InstallCallback .. 7-25

adi_flag_RemoveCallback .. 7-27

adi_flag_SuspendCallbacks .. 7-28

adi_flag_ResumeCallbacks .. 7-29

adi_flag_SetTrigger ... 7-30

Public Data Types, Enumerations and Macros 7-31

ADI_FLAG_ID .. 7-31

Associated Macros .. 7-32

ADI_FLAG_RESULT ... 7-32

ADI_FLAG_EVENT .. 7-33

ADI_FLAG_TRIGGER .. 7-33

ADI_FLAG_TRIGGER .. 7-34

ADI_FLAG_EVENT .. 7-34

TIMER SERVICE

Introduction ... 8-2

Operation .. 8-3

Initialization ... 8-3

Termination .. 8-4

Timer IDs ... 8-4

Basic Timer Functions ... 8-4

adi_tmr_Open() ... 8-4

VisualDSP++ 4.5 Device Drivers and System xvii
Services Manual for Blackfin Processors

adi_tmr_Close() .. 8-5

adi_tmr_Reset() .. 8-5

General-Purpose Timer Functions .. 8-5

adi_tmr_GPControl() ... 8-5

adi_tmr_GPGroupEnable() ... 8-6

Core Timer Functions ... 8-6

adi_tmr_CoreControl() ... 8-6

Watchdog Timer Functions .. 8-6

adi_tmr_WatchdogControl() ... 8-7

Peripheral Timer Functions .. 8-7

adi_tmr_GetPeripheralID() ... 8-7

Callbacks .. 8-7

adi_tmr_InstallCallback() .. 8-8

adi_tmr_RemoveCallback() ... 8-9

Coding Example .. 8-10

Initialization ... 8-10

Opening a Timer .. 8-10

Configuring a Timer ... 8-11

Enabling and Disabling Timers ... 8-12

Installing a Callback Function ... 8-13

Removing Callbacks .. 8-14

Termination .. 8-15

Timer Service API Reference ... 8-16

Notation Conventions ... 8-16

xviii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Init ... 8-17

adi_tmr_Open .. 8-18

adi_tmr_Terminate ... 8-19

adi_tmr_Close .. 8-20

adi_tmr_Reset ... 8-21

adi_tmr_CoreControl ... 8-22

adi_tmr_WatchdogControl ... 8-23

adi_tmr_GPControl .. 8-24

adi_tmr_GPGroupEnable ... 8-25

adi_tmr_InstallCallback .. 8-27

adi_tmr_RemoveCallback ... 8-29

adi_tmr_GetPeripheralID .. 8-30

Public Data Types, Enumerations and Macros 8-31

Timer IDs ... 8-31

Associated Macros .. 8-32

ADI_TMR_RESULT .. 8-32

ADI_TMR_EVENT ... 8-33

ADI_TMR_CORE_CMD .. 8-33

ADI_TMR_WDOG_CMD .. 8-34

ADI_TMR_GP_CMD .. 8-35

PORT CONTROL SERVICE

Introduction ... 9-2

Using the Port Control Manager ... 9-2

Port Control Manager API Reference .. 9-4

VisualDSP++ 4.5 Device Drivers and System xix
Services Manual for Blackfin Processors

Notation Conventions ... 9-5

adi_ports_Init ... 9-6

adi_ports_Terminate .. 9-7

adi_ports_EnablePPI ... 9-8

adi_ports_EnableSPI ... 9-9

adi_ports_EnableSPORT ... 9-10

adi_ports_EnableUART ... 9-11

adi_ports_EnableCAN ... 9-12

adi_ports_EnableTimer ... 9-13

adi_ports_EnableGPIO ... 9-15

Public Data Types, Enumerations and Macros 9-17

ADI_PORTS_RESULT ... 9-17

Directive Enumeration Values .. 9-17

DEVICE DRIVER MANAGER

Device Driver Model Overview ... 10-4

Using the Device Manager .. 10-7

Device Manager Overview ... 10-7

Theory of Operation ... 10-8

Data ... 10-9

Initializing the Device Manager 10-10

Device Manager Termination .. 10-11

Opening a Device ... 10-11

Configuring a Device .. 10-12

Dataflow Method .. 10-13

xx VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Enabling Dataflow .. 10-16

Providing Buffers to a Device .. 10-16

Closing a Device ... 10-18

Callbacks .. 10-18

Initialization Sequence .. 10-18

Stackable Drivers .. 10-19

Deciding on a Dataflow Method ... 10-20

Chained without Loopback ... 10-20

Chained with Loopback .. 10-20

Circular ... 10-20

Sequential With and Without Loopback 10-21

Creating One Dimensional Buffers ... 10-21

Creating Two Dimensional Buffers .. 10-25

Creating Circular Buffers .. 10-28

Creating One Dimensional Sequential Buffers 10-30

Device Manager Design .. 10-32

Device Manager API Description ... 10-33

Memory Usage Macros ... 10-34

Handles .. 10-34

Dataflow Enumerations .. 10-34

Command IDs ... 10-35

Callback Events .. 10-35

Return Codes ... 10-35

Circular Buffer Callback Options 10-36

VisualDSP++ 4.5 Device Drivers and System xxi
Services Manual for Blackfin Processors

Buffer Data Types ... 10-36

Physical Driver Entry Point ... 10-37

API Function Definitions .. 10-37

Device Manager Code ... 10-37

Data Structures ... 10-37

Static Data .. 10-38

Static Function Declarations .. 10-38

API Functional Description ... 10-38

adi_dev_Init Functional Description 10-39

adi_dev_Open Functional Description 10-39

adi_dev_Close Functional Description 10-40

adi_dev_Read Functional Description 10-40

adi_dev_Write Functional Description 10-41

adi_dev_Control Functional Description 10-42

Static Functions .. 10-45

PDDCallback ... 10-45

DMACallback ... 10-45

PrepareBufferList .. 10-46

SetDataflow .. 10-48

Physical Driver Design .. 10-49

Physical Driver Design Overview ... 10-49

Physical Device Driver API Description 10-51

Physical Driver Include File (“xxx.h”) 10-52

Extensible Definitions ... 10-52

xxii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_PDD_ENTRY_POINT 10-54

Physical Driver Source (“xxx.c”) .. 10-54

adi_pdd_Open Functional Description 10-55

adi_pdd_Control Functional Description 10-56

adi_pdd_Read Functional Description 10-58

adi_pdd_Write Functional Description 10-59

adi_pdd_Close Functional Description 10-60

Device Manager API Reference ... 10-62

Notation Conventions ... 10-62

adi_dev_Close ... 10-63

adi_dev_Control ... 10-64

adi_dev_Init ... 10-65

adi_dev_Open .. 10-67

adi_dev_Read ... 10-70

adi_dev_Terminate .. 10-71

adi_dev_Write .. 10-72

Physical Driver API Reference ... 10-73

Notation Conventions ... 10-73

adi_pdd_Close .. 10-74

adi_pdd_Control .. 10-75

adi_pdd_Open .. 10-76

adi_pdd_Read ... 10-78

adi_pdd_Write .. 10-79

Examples .. 10-80

VisualDSP++ 4.5 Device Drivers and System xxiii
Services Manual for Blackfin Processors

INDEX

xxiv VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System xxv
Services Manual for Blackfin Processors

PREFACE

Thank you for using Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The VisualDSP++ 4.5 Device Drivers and System contains information
about the Analog Devices Device Driver Model and System Services
library suite. Included are architectural descriptions of the device driver
design, and each of the System Service components. Also included is a
description of the APIs into each library.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the appropriate processor architec-
ture and instruction set. Programmers who are unfamiliar with Analog
Devices processors can use this manual, but should supplement it with
other texts (such as the appropriate hardware reference and programming
reference manuals) that describe your target architecture.

Manual Contents Description

xxvi VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Manual Contents Description
This manual contains:

• Chapter 1, “Introduction”
provides an overview of System Services and Device Drivers

• Chapter 2, “Interrupt Manager”
describes the system interrupt controller (SIC) Manager that sup-
ports the general-purpose interrupt events

• Chapter 3, “Power Management Module”
describes the power management module that supports Dynamic
power management of Blackfin processors

• Chapter 4, “External Bus Interface Unit Module”
describes the external bus interface unit (EBIU) module that is
used to enable the power management module to manage the
SDRAM Controller operation

• Chapter 5, “Deferred Callback Manager”
describes the deferred callback manager that is used by the applica-
tion developer to effectively execute function calls

• Chapter 6, “DMA Manager”
describes direct memory access (DMA) manager API

• Chapter 7, “Programmable Flag Service”
describes the programmable flag service that provides interface into
the programmable flag subsystem of the Blackfin processor.

• Chapter 8, “Timer Service”
describes the Timer Service that provides interface into the core,
watchdog and general-purpose timers of the Blackfin processor.

VisualDSP++ 4.5 Device Drivers and System xxvii
Services Manual for Blackfin Processors

Preface

• Chapter 9, “Port Control Service”
describes the port control manager service that is used to assign the
programmable flag pins to various functions (on ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors only).

• Chapter 10, “Device Driver Manager”
describes the device driver model used to control devices, both
internal and external, to ADI processors

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors

xxviii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Supported Processors
Currently, the following Blackfin processors are supported:

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
E-mail notification containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration:

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)

ADSP-BF534 ADSP-BF536

ADSP-BF537 ADSP-BF538

ADSP-BF539 ADSP-BF561

AD6903 AD6531

AD6901 AD6902

VisualDSP++ 4.5 Device Drivers and System xxix
Services Manual for Blackfin Processors

Preface

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
E-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Related Documents
For software/tools information, refer to VisualDSP++ user’s documenta-
tion available online and in printed forms.

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

Product Information

xxx VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary

Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. For easy printing, supplemen-
tary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

Accessing Documentation From the Web

Download manuals in PDF format at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/man-

uals

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software
documentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 5.01 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

VisualDSP++ 4.5 Device Drivers and System xxxi
Services Manual for Blackfin Processors

Preface

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Viewing Help Files

VisualDSP++ Help files (.CHM files) are installed in your <install_
path>/Help directory.

You may download the source files necessary to build the “xchm" .CHM
file viewer from http://xchm.sourceforge.net/. These files are free of
charge.

To view a .CHM file, open a command window and type:

> xchm filename.CHM &

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite™ and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Product Information

xxxii VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

VisualDSP++ 4.5 Device Drivers and System xxxiii
Services Manual for Blackfin Processors

Preface

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and
separated by vertical bars; read the example as an optional this or
that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Notation Conventions

xxxiv VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 1-1
Services Manual for Blackfin Processors

1 INTRODUCTION

This manual describes the System Services and Device Driver architecture
for Analog Devices embedded processors.

The System Services form a collection of functions that are commonly
found in embedded systems. Each system service focuses on a specific set
of functionality such as direct memory access (DMA), power management
(PM), interrupt control (IC), and so on. Collectively, the system services
provide a wealth of pre-built, optimized code that simplifies software
development for users, allowing them to get their Blackfin processor-based
designs to market more quickly.

The Device Driver model provides a simple, clean and familiar interface
into device drivers for Blackfin processors. The primary objective of the
device driver model is to create a concise, effective and easy to use inter-
face through which applications can communicate with device drivers.
Secondarily, the model and Device Manager software, significantly simpli-
fies the development of device drivers, making it very straightforward for
the development of new device drivers.

This chapter contains:

• “System Services Overview” on page 1-2

• “Device Driver Overview” on page 1-20

System Services Overview

1-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

System Services Overview
The System Services overview covers the following topics:

• “General”

• “Application Interface” on page 1-7

• “Dependencies” on page 1-8

• “Initialization” on page 1-10

• “Termination” on page 1-10

• “System Services Directory and File Structure” on page 1-11

VisualDSP++ 4.5 Device Drivers and System 1-3
Services Manual for Blackfin Processors

Introduction

General
The current revision of the System Services library consists of the follow-
ing services:

• Interrupt Control Service – The interrupt control service allows
the application to control and leverage the event and interrupt pro-
cessing of the processor more effectively. Specific functionality
allows the application to:

• Set and detect the mappings of the interrupt priority levels
to peripherals.

• Use standard C functions as interrupt handlers.

• Hook and unhook multiple interrupt handlers to the same
interrupt priority level using both nesting and non-nesting
capabilities.

• Detect if a system interrupt is being asserted.

• Protect and unprotect critical regions of code in a portable
manner.

• Power Management Service – The power management service
allows the application to control the dynamic power management
capabilities of a Blackfin processor. Specific functionality allows
the application to:

• Set core and system clock operating frequencies via a func-
tion call.

• Set and detect the internal voltage regulator settings.

• Transition the processor among the various operating
modes including, Full-On, Active, Sleep, and so on.

System Services Overview

1-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• External Bus Interface Unit Control Service (EBIU) – The EBIU
control service provides a collection of routines to set up the exter-
nal interfaces of the Blackfin processor, including the SDRAM
controller. This functionality enables users to:

• Adjust SDRAM refresh and timing rates to optimal values
for given system clock frequencies.

• Set individual bus interface settings.

• Complete single function setup for known configurations,
such as the Blackfin EZ-Lite kits.

• Deferred Callback Service – The deferred callback service allows
the application to be notified of asynchronous events outside of
high priority interrupt service routines. Using deferred callbacks
typically improves the overall I/O capacity of the system while at
the same time reducing interrupt latency. Specific functionality
allows the application to:

• Define how many callbacks can be pending at any point in
time.

• Define the interrupt priority level at which the callback ser-
vice executes.

• Create multiple callback services, each operating at a differ-
ent interrupt priority level.

• Post callbacks to a callback service with a relative priority
among all other callbacks posted to the same callback
service.

• DMA Management Service – The DMA Management service pro-
vides access into the DMA controller of a Blackfin processor. The
DMA Management service allows the application to schedule

VisualDSP++ 4.5 Device Drivers and System 1-5
Services Manual for Blackfin Processors

Introduction

DMA operations, both peripheral and memory DMA, supporting
both linear and two-dimensional transfer types. Specific function-
ality allows the application to:

• Set and detect the mapping of DMA channels to
peripherals.

• Configure individual DMA channels for inbound/outbound
traffic using circular (autobuffered) DMA or descriptor
based DMA.

• Command the DMA manager to issue live or deferred call-
backs upon DMA completions.

• Queue descriptors, intermixing both linear and two-dimen-
sional transfers, on DMA channels.

• Enable the DMA manager to loopback on descriptor chains
automatically.

• Continuously stream data into or out from a memory
stream or peripheral.

• Initiate linear and two-dimensional memory DMA transfers
with simple C-like, memcpy-type functions.

• Programmable Flag Service – The programmable flag service pro-
vides a simple interface into the programmable flags, sometimes
called General-Purpose I/O, of the Blackfin processor. The func-

System Services Overview

1-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

tionality provided in this service allows the application to access
and control the programmable flags through a clean and consistent
interface. The programmable flag service allows the application to:

• Configure the direction, either input or output, of any flag.

• Set, clear and toggle the value of all output flags.

• Sense the value of input flags.

• Install callbacks, including both “live” and deferred call-
backs, when specific trigger conditions occur on a flag.

• Timer Service – The timer service provides applications, drivers, a
simple mechanism to control the general purpose, core and watch-
dog timers of the Blackfin processor. The timer service provides the
application with the following functionality:

• Configure and control any timer within the processor,
including general purpose, core and watchdog timers.

• Install callbacks, including both “live” and deferred call-
backs, when timers expire or trigger.

• Port Control Service – Available only on the ADSP-BF534,
ADSP-BF536 and ADSP-BF537 (Braemar) processors, the port
control service configures the pin muxing hardware appropriately
to insure proper operation of the peripherals that share common
input and output pins. All System Services and Device Drivers
automatically make the appropriate calls into the port control ser-
vice to seamlessly configure the pin muxing hardware without any
end-user or application interaction, other than initialization of the
service.

VisualDSP++ 4.5 Device Drivers and System 1-7
Services Manual for Blackfin Processors

Introduction

• Device Manager – The device driver model is used to control
devices, both internal and external to Analog Devices processors.
Specific functionality allow the application to:

• Open and close devices used by the application.

• Configure and control devices.

• Receive and transmit data through the devices using a vari-
ety of dataflow methods.

Application Interface
Each system service exports an application programming interface (API)
that defines the interface into that service. Application software makes
calls into the API of the system service to access the functionality that is to
be controlled.

Each API is designed to be called using the standard calling interface of
the development toolset’s C run-time model. The API of each service can
be called by any C or assembly language program that adheres to the call-
ing conventions and register usage of the C run-time model.

In addition to the application software using the API to make calls into a
system service, some system services make calls into the API of other sys-
tem services. For the most part, each service operates independently of the
other services; however redundancies are eliminated by allowing one ser-
vice to access the functionality of another service.

For example, should the application need to be notified when a DMA
descriptor has completed processing, and the application has requested
deferred callbacks. In this case, the DMA Management service invokes the
deferred callback service to effect the callback into the application.

Another example of combined operation between services is in the case of
the power management and EBIU services. Assume that the system has
SDRAM and the application needs to conserve power by turning down

System Services Overview

1-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

the core and system clock frequencies. When the application calls the
power management service to lower the operating frequencies, the power
management service automatically invokes the EBIU service, which
adjusts the SDRAM refresh rate to compensate for the reduced system
clock frequency.

Figure 1-1 illustrates the current collection of system services and the API
interactions among them.

Dependencies
With few constraints, applications can choose to use any individual service
or combination of services within their application. Applications do not
have to use each and every service. Further, each service does not need all
the resources associated with the system the service is controlling. For

Figure 1-1. System Services and API Interactions

Port Control

Deferred CallbackDMA Manager

Interrupt Manager

Dynamic Power

EBIU (SDRAM)

Flag Control Timer Control

VisualDSP++ 4.5 Device Drivers and System 1-9
Services Manual for Blackfin Processors

Introduction

example, the DMA manager does not need control over each and every
DMA channel. The system can be configured for the DMA manager to
control some channels, leaving the application or some other software to
control other DMA channels. (See the individual service chapters for more
information on each individual service.) There are however, some depen-
dencies within the services of which the application developer should be
aware.

All the current services, except for the EBIU service, invoke the interrupt
control service for the management of interrupt processing. The DMA
manager, callback and power management services each depend on the IC
service to manage interrupt processing for them.

If directed by the application to adjust SDRAM timing automatically, the
power management service uses the EBIU Control Service to affect
SDRAM timing parameter changes when the power/operating speed pro-
file of the processor is changed.

When configured to use deferred callbacks (as opposed to live or inter-
rupt-time callbacks) the DMA manager leverages the capabilities of the
deferred callback service to provide deferred callbacks to the application.
However, when configured for live callbacks, the DMA manager does not
make use of the deferred callback service.

The development toolset automatically determines these dependencies
and links into the executable only those services that are required by the
application. As each service is built as its own object file within the System
Services Library file, it is possible to further reduce code size of the final
executable by commanding the linker to eliminate any unused objects.
Refer to the development toolset documentation for more information.

System Services Overview

1-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Initialization
Some System Services rely on other System Services and therefore there is
a preferred initialization sequence. It is usually preferable to initialize all
services together, typically when the whole system is being initialized,
rather than spreading out the initialization of various services at different
times.

Most applications will find the initialization sequence listed below opti-
mal. Any service in the sequence that is not used by the application can
simply be omitted from the sequence.

1. Interrupt control service

2. External bus interface unit

3. Power management service

4. Port control (ADSP-BF534/536/537 processors only)

5. Deferred callback service

6. DMA manager service

7. Programmable flag service

8. Timer service

Termination
Many embedded systems operate continuously in an endless loop so may
never need to call the termination function of a service. Applications that
do not have a need to terminate a service can save memory by never calling
the termination function.

For those applications that do need to terminate services, as with the ini-
tialization sequence, there is a preferred sequence of terminating the
services.

VisualDSP++ 4.5 Device Drivers and System 1-11
Services Manual for Blackfin Processors

Introduction

Most applications will find the termination sequence listed below optimal.
Any service in the sequence that is not used by the application can simply
be omitted from the sequence.

1. Timer service

2. Programmable flag service

3. DMA manager service

4. Deferred callback service

5. Port control (ADSP-BF534/536/537 processors only)

6. Power management service

7. External bus interface unit

8. Interrupt control service

System Services Directory and File Structure
All files for the System Services are contained within the blackfin direc-
tory tree. In VisualDSP++ installations this is the same directory as the
one used for core development tools. Other development toolsets may use
other directory names for their toolkits, but the System Services can
always be found within the blackfin directory tree.

To use the System Services, applications need only include a single include
file in their source code, and link with a single System Services Library
module that is appropriate for their configuration.

Accessing the System Services API

Applications using the System Services should include the
Blackfin/include/services directory in the [compiler and/or assembler]
pre-processor search path. User source files accessing any of the System

System Services Overview

1-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Services APIs should simply include the services.h file, located in the
Blackfin/include/services directory. User files do not need to include
any other files to use the System Services API.

The System Services API and functionality are uniform and consistent
across all Blackfin processors, including all single and multi-core devices.
Application software does not have to change regardless of which Blackfin
processor is being targeted. For example, application software running on
a single-core ADSP-BF533 processor can operate unchanged on a
multi-core ADSP-BF561 processor.

In order to provide this consistent API to the application, the System Ser-
vices API needs to be aware of the specific processor variant being
targeted. The user should ensure that the processor definition macro for
the processor variant being targeted is defined when including the
services.h include file.

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the Visu-
alDSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

Application developers using other toolsets, however, should ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These pro-
cessor variants include:

__ADSPBF531__ The ADSP-BF531 processor

__ADSPBF532__ The ADSP-BF532 processor

__ADSPBF533__ The ADSP-BF533 processor

__ADSPBF534__ The ADSP-BF534 processor

__ADSPBF535__ The ADSP-BF535 processor

__ADSPBF536__ The ADSP-BF536 processor

__ADSPBF537__ The ADSP-BF537 processor

VisualDSP++ 4.5 Device Drivers and System 1-13
Services Manual for Blackfin Processors

Introduction

The services.h file contains the full and complete list of processor vari-
ants that are supported.

Although the API of the System Services does not change between
processor variants, the internals of the System Services differ
depending on the specific processor variant and processor revision
number being targeted. For example, the number of DMA chan-
nels for the ADSP-BF533 processor differs from the number of
DMA channels for the ADSP-BF561 processor. Further, a
workaround within the services for revision x.y of a processor may
not be needed for revision x.y of that same processor. These differ-
ences are accounted for in the System Service Library module. See
“System Services Overview” for more information.

Linking in the System Services Library

All object code for the System Services is included in the System Services
library file. This file is found in the Blackfin/lib directory. This direc-
tory provides a System Services library file for each processor variant and
processor revision that is supported. The user should ensure that the
appropriate library is included in the list of object files for the linker. All
System Service Library files are of the form libsslxxx_yyyz.dlb where:

• xxx represents the processor variant – This is typically a 3-digit
number identifying the processor variant, such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and
so on.

__ADSPBF538__ The ADSP-BF538 processor

__ADSPBF539__ The ADSP-BF539 processor

__ADSPBF561__ The ADSP-BF561 processor

__ADSPBF566__ The ADSP-BF566 processor

...

System Services Overview

1-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• _yyy represents the operating environment – This suffix represents
the operating environment being targeted such as vdk for
VDK-based systems, linux for Linux-based systems, and so on.
Libraries built for standalone, specifically non-RTOS environ-
ments, do not include the _yyy suffix.

• z represents any special conditions for the library. The following
combinations are used:

• y – The library is built to avoid all known anomalies for all
revisions of silicon.

• blank – A library without any additional suffix does not
contain workarounds to any anomalies.

Located within the blackfin/lib directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are
built for specific silicon revisions of the Blackfin processors.

Only a single System Services Library file should be included for the linker
to process. Application developers should choose the correct library based
on the processor variant, operating environment, and processor revision
number for their system.

For example, an application developer targeting silicon revision 0.2 of the
ADSP-BF532 processor without any RTOS should link with the
libss1532.dlb file from the Blackfin/lib/bf532_rev_0.2 subdirectory.
As another example, the application developer who wants a version of the
System Services Library that will run on any revision of ADSP-BF532 sili-
con and is using the VDK, should link with the libss1532_vdky.dlb file
from the Blackfin/lib directory.

It is strongly recommended that developers use the debug versions
of the System Services Library during development as built-in
error-checking code within the library can save countless hours of
development time.

VisualDSP++ 4.5 Device Drivers and System 1-15
Services Manual for Blackfin Processors

Introduction

Debug versions of the libraries can be used by checking the Use Debug
System Libraries checkbox on the Link/Processor property page under
Project/Options.

Rebuilding the System Services Library

Under normal situations, there is no need to rebuild the System Services
Library. However, to accommodate unforeseen circumstances and provide
the user the ability to tailor the System Services to their particular needs,
all source code and include files necessary to rebuild the System Services
Library are provided. In addition, VisualDSP++ project files are included
for application developers using the VisualDSP++ development toolset.

All code for the System Services Library is located in the following
directories:

• Blackfin/lib – This directory contains the Analog Devices built
versions of the System Service library files (*.dlb).

• Blackfin/lib/src/services – This directory contains all the
source code files and non-API include files for the System Services.
Also in this directory are the VisualDSP++ project files that can be
used to rebuild the libraries.

• Blackfin/include/services – This directory contains all API
include files for the System Services.

VisualDSP++ users can simply rebuild the System Services Library by
using the build command after opening the appropriate VisualDSP++
project file.

To rebuild the libraries using other development toolsets, the following
process should be performed:

1. Set the pre-processor include path to include
Blackfin/include/services and blackfin/lib/src/services

System Services Overview

1-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

2. Define the processor variant according to the definitions in the file
services.h.

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. Refer to the description of the _si_revision switch
in the compiler manual for more information.

4. Compile/assemble all files in the Blackfin/lib/src/services
directory.

5. Link the appropriate compiled/assembled objects into a library.
Include all object files without any operating environment exten-
sion (such as VDK) and all object files with the appropriate operating
environment extension specific for the environment being targeted
(such as VDK).

Examples

The System Services distribution includes many examples that illustrate
how to use the System Services. Please refer to these examples for addi-
tional information on how to use the System Services effectively.

Dual Core Considerations

For information on how to use the System Services on dual-core
ADSP-BF561 processors, see “Dual Core Considerations” on page 3-6.

VisualDSP++ 4.5 Device Drivers and System 1-17
Services Manual for Blackfin Processors

Introduction

RTOS Considerations
Deployment of System Services and the Device Driver model within an
application based around an RTOS, for example VDK, is highly recom-
mended. However, observe these considerations to avoid conflict with the
RTOS and to successfully deploy the Services and Device Drivers within a
multi-threaded application.

The following discussion is limited to VDK, but is also relevant in
other RTOS environments.

Interoperability of System Services with VDK
There are three major considerations to be borne in mind when deploying
System Services and the Device Driver model within a VDK based
application.

• Interrupt Handling – A cornerstone of System Services and the
Device Driver Model is the interrupt manager. The interrupt man-
ager has been designed to manage only the IVG's that it is
requested to manage, as dictated by each call to
adi_int_CECHook(), leaving the other IVG levels to be handled as
per the users' requirements. Thus, VDK managed interrupts can
easily coexist alongside those managed by System Services, pro-
vided that neither method manages the same IVG levels as the

RTOS Considerations

1-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

other. It is not possible to have a VDK ISR and an interrupt man-
ager chain assigned to the same IVG level, as one will overwrite the
other in the Event Vector Table (EVT).

All DMA channels and Device Drivers use the default IVG levels as
defined in the SIC_IARx registers at the time of device initializa-
tion (that is, during the call to adi_dev_Open()).

• Prohibited Interrupt Levels – Appendix A of the VisualDSP++ 4.0
Kernel (VDK) User’s Guide details four interrupt levels reserved for
exclusive use by VDK and must not be managed by the interrupt
manager. These are EVT3 (EVX), EVT6 (IVTMR), IVG14 and
IVG15. The latter is also excluded from most VisualDSP++ 4.0
applications as it is used to run the applications in supervisor
mode.

• Deferred callbacks - The deferred callback manager offers a similar
service to the VDK process running at IVG14. It is highly recom-
mended that the VDK variant of the System Services Library is
used (and indeed the default VDK LDF files ensure its use). This
variant essentially passes callbacks posted to the DCB manager to
the VDK level 14 process. In this mode of operation, only one call-
back queue can be used. If the standalone library variant is used
then several queues can be managed but none of them must be
assigned to the IVG 14 level as this would conflict with the VDK
process running at that level.

VisualDSP++ 4.5 Device Drivers and System 1-19
Services Manual for Blackfin Processors

Introduction

Deployment of Services within a multi-threaded
application

Bear these two major considerations in mind when deploying System Ser-
vices and the Device Driver model within a multi-threaded application.

• Critical regions – System Services and Device Drivers make use of
critical regions where atomicity of a code segment is required.
These regions are managed via calls to the
adi_int_EnterCriticalRegion/adi_int_ExitCriticalRegion
functions, which are defined in the adi_int_xxx.c files within the
installation. (For more information, see “Interrupt Manager” in
Chapter 2, Interrupt Manager. It is advised that the above func-
tions are used within threads that make use of System Services
rather than the VDK Push/Pop critical region functions.

• Initialization – Initialization of System Services and the Device
Manager is only performed once per application. Since their use
may be required in several threads it is important that the initializa-
tion is performed prior to any subsequent use. In addition all
Device Drivers that need to adjust their timing values according to
the peripheral clock (SCLK) frequency employ a call to
adi_pwr_GetFreq() to determine the frequency (in Hz). The power

Device Driver Overview

1-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

management module must be initialized prior to the opening of
any device driver. There are basically three approaches that can be
adopted:

• Define a function to initialize the System Services and Device
Manager and call it from a user-modifiable section of the 'start'
routine in <Project>_basiccrt.s.

• Assign the initialization to the highest priority boot thread, or

• Use a separate boot thread to perform the initialization and set it at
the highest priority and let it either yield to other threads once
completed or be destroyed. Please take care to use global and not
thread memory to initialize the System Services and Device Man-
ager in this way.

Device Driver Overview
Device drivers provide a mechanism for applications to control a device
effectively. Devices may be on-chip or off-chip hardware devices, or even
software modules that are best managed as virtual devices. Device drivers
are typically constructed such that the application is insulated from the
nuances of the hardware (or software) being controlled. In this way, both
the device drivers and the devices that are being controlled can be updated
or replaced without affecting the application.

The Analog Devices’ Device Driver model has been created to provide a
simple, convenient method for applications to control devices commonly
found in and around Analog Devices processors. It has also been designed
to provide a simple and efficient mechanism for the creation of new device
drivers.

VisualDSP++ 4.5 Device Drivers and System 1-21
Services Manual for Blackfin Processors

Introduction

The System Services overview covers the following topics:

• “Application Interface” on page 1-21

• “Device Driver Architecture” on page 1-22

• “Initialization” on page 1-24

• “Termination” on page 1-24

• “Device Driver Directory and File Structure” on page 1-25

Application Interface
The Device Driver model provides a consistent, simple and familiar appli-
cation programming interface (API) for device drivers. All devices drivers
that conform to the model use the same simple interface into the driver.

Most devices either receive and/or transmit data, sometimes transforming
the data in the process. This data is encapsulated in a buffer. The buffer
may contain small bits of data, such as for a UART-type device that pro-
cesses one character at a time, or large pieces of data, such as a video
device that processes NTSC frames of approximately 1MB in size. Appli-
cations typically provide the buffers to the device, though it is possible for
devices to pass buffers from one device to another without any application
involvement.

The actual API is a model-compliant driver that consists of the following
basic functions:

• adi_dev_Open() – Opens a device for use

• adi_dev_Close() – Closes down a device

• adi_dev_Read() – Provides a device with buffers for inbound data

Device Driver Overview

1-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• adi_dev_Write() – Provides a device with buffers for outbound
data

• adi_dev_Control() – Sets/detects control and status parameters for
a device

Like the System Service APIs, the Device Driver API is designed to be
called using the standard calling interface of the development toolset’s C
run-time model. The Device Driver API can be called by any C or assem-
bly language program that adheres to the calling conventions and register
usage of the C run-time model.

Device Driver Architecture
The Device Driver model separates the functionality of device drivers into
two main components, the Device Manager and the physical drivers.

The Device Manager is a software component that provides much of the
functionality common to the vast majority of device drivers. For example,
depending on how the application wants the device driver to operate, the
application may command a device driver to operate in synchronous mode
or asynchronous mode.

In synchronous mode, when the application calls the adi_dev_Read() or
adi_dev_Write() API function to read data from or send data to the
device; the API function does not return to the application until the oper-
ation has completed. In asynchronous mode, the API function returns
immediately to the application, while the data is moved in the back-
ground. It would be wasteful to force each physical driver to provide logic
that operates both synchronously and asynchronously. The Device Man-
ager provides this functionality, relieving each physical driver from
re-implementing this capability.

VisualDSP++ 4.5 Device Drivers and System 1-23
Services Manual for Blackfin Processors

Introduction

This architecture is illustrated in Figure 1-2:

The Device Manager also provides the API to the application for each
device driver. This ensures that the application has the same consistent
interface regardless of the peculiarities of each device.

While there is one and only one Device Manager exists in a system, there
can be any number of physical drivers in a system. A physical driver is that
component of a device driver that accesses and controls the physical
device. The physical driver is responsible for all the “bit banging” and con-
trol and status register manipulations of the physical device. All device
specific information is contained and isolated in the physical driver.

Figure 1-2. Device Manager Architecture

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

DEVICE
DRIVER

COMPONENTS
PHYSICAL

DRIVER
PHYSICAL

DRIVER
PHYSICAL

DRIVER

SYSTEM SERVICES

Device Driver Overview

1-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Interaction with System Services

As shown in Figure 1-2, the Device Driver Model leverages the capabili-
ties of the System Services. Each software component in the system,
whether it is the application, RTOS (if present), the Device Manager, or
each physical driver can access and call into the System Services API.

The benefits of using this approach are enormous. In addition to the code
size and data memory savings, this approach allows each software compo-
nent access to the resources of the system and processor in a cooperative
manner. Further, the amount of development effort for physical drivers is
substantially reduced as each driver does not have to re-implement any of
the functionality provided by the Device Manager or System Services.

Initialization
Prior to accessing any individual driver, the Device Manager must first be
initialized. The initialization function, adi_dev_Init(), is called by the
application to setup and initialize the Device Manager.

Though the Device Driver Model is dependent upon System Services, the
initialization function of the Device Manager does not rely on any of the
System Services. As such the current revision of the Device Manager can
be initialized either before or after the System Services initialization.

However, future versions of the Device Manager initialization function
may require some of the System Services capabilities. As such, it is good
practice to initialize the required System Services prior to initializing the
Device Manager. Refer to the “Initialization” on page 1-10 for more
information on the initialization of the System Services.

Termination
The API of the Device Driver Model includes a termination function that
may be called by the application if the device drivers are no longer
required. The termination function, adi_dev_Terminate(), is called to

VisualDSP++ 4.5 Device Drivers and System 1-25
Services Manual for Blackfin Processors

Introduction

free up the resources used by the Device Manager and any open physical
drivers. Many embedded systems run in an endless operating loop and
never call the termination function of the Device Manager. Applications
that operate in endless loops can save program memory by not calling the
terminate function.

As part of the termination function processing, the Device Manager closes
all open physical drivers. The physical drivers are closed in an abrupt man-
ner. If a more graceful shutdown is needed, the application may prefer to
close any open physical drivers first, and then call the termination
function.

Note that because of the reliance on the System Services, the termination
function of the Device Manager should be called prior to any termination
functions of the System Services. This ensures that the System Services can
be called by the Device Manager and/or physical drivers as part of their
shutdown procedure.

After the Device Manager has been terminated, it must be re-initialized
before any of its functionality can be accessed again.

Device Driver Directory and File Structure
All files for the Device Driver Model are contained within the blackfin
directory tree. In VisualDSP++ installations this is the same directory as
the one used for storing the core development tools. Other development
toolsets may use other directory names for their toolkits, but the Device
Driver files can always be found within the blackfin directory tree.

To use the device drivers, applications need only use some include files in
their source code, and link with a Device Driver library and a System Ser-
vices Library module.

Device Driver Overview

1-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Accessing the Device Driver API

User source files accessing the Device Manager API should include the
files services.h and adi_dev.h, in order, located in the Black-
fin/include/services and Blackfin/include/drivers directories,
respectively. In addition, the user’s source file should use the include file
of the physical driver that will be accessed.

For example, user code that is accessing the Analog Devices parallel
peripheral interface (PPI) driver would include the following lines in their
source file (in order):

 #include <services/services.h> // system services

 #include <drivers/adi_dev.h> // Device Manager

 #include <drivers/ppi/adi_ppi.h> // ppi physical driver

The Device Driver API and functionality is uniform and consistent across
all Blackfin processors, including all single and multi-core devices. Appli-
cation software does not change regardless of which Blackfin processor is
being targeted. For example, application software running on a single-core
ADSP-BF533 processor can operate unchanged on a multi-core
ADSP-BF561 processor.

In order to provide this consistent API to the application, the System Ser-
vices, Device Manager and physical drivers need to be aware of the specific
processor variant being targeted. The user should ensure that the processor
definition macro for the processor variant being targeted is defined when
including the System Services (services.h), Device Manager (adi_dev.h),
and physical driver include files.

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the Visu-
alDSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

VisualDSP++ 4.5 Device Drivers and System 1-27
Services Manual for Blackfin Processors

Introduction

Application developers using other toolsets should, however, ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These pro-
cessor variants include:

The services.h file contains the full and complete list of processor vari-
ants that are supported by the System Services. The adi_dev.h file
contains the list of processor families that are supported by the Device
Driver Model.

Device Driver File Locations

Device drivers for on-chip peripherals are provided in the libdrvxxx.dlb
library for the various processor derivatives, silicon revisions, and so on.
Device drivers for off-chip peripherals are not provided within the library,
but rather must be included separately with the application. Include files
for off-chip peripheral drivers are included in following subdirectories:

 $ADI_DSP\Blackfin\include\drivers

where $ADI_DSP is the location of your VisualDSP 4.5 installation, which
is, by default, located at:

 C:\Program Files\Analog Devices\VisualDSP 4.5

Source files for off-chip peripheral drivers are included in subdirectories:

 $ADI_DSP\Blackfin\lib\src\drivers

__ADSPBF531__ The ADSP-BF531 processor

__ADSPBF532__ The ADSP-BF532 processor

__ADSPBF533__ The ADSP-BF533 processor

...

Device Driver Overview

1-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

When creating applications that include off-chip device drivers, the appli-
cation should include the .h file for the driver. This is typically done with
something like this:

 #include <drivers\codec\adi_ad1836.h>

The source code for an off-chip peripheral driver should be included in
the source file list of the VisualDSP++ project. For example, if using the
AD1836 device driver, the file

 $ADI_DSP\Blackfin\lib\src\drivers\codec\adi_ad1836.c

should be included in the source file list.

Linking in the Device Driver Library

All object code for the Device Manager and Analog Devices-supplied
physical drivers is included in the Device Driver library file. This file is
found in the Blackfin/lib directory. In this directory is a Device Driver
library file for each and every processor variant that are supported. The
user should ensure that the appropriate library is included in the list of
object files for the linker. The Device Driver library file is of the form
libdrvxxxz.dlb where:

• xxx represents the processor variant – This is typically a 3-digit
number identifying the processor variant such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and
so on.

• z represents any special conditions for the library. The following
combinations are used:

• y – The library is build to avoid all known anomalies for all
revisions of silicon.

• blank – A library without an additional suffix does not con-
tain workarounds to any anomalies.

VisualDSP++ 4.5 Device Drivers and System 1-29
Services Manual for Blackfin Processors

Introduction

Located within the Blackfin/library directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are built
for specific silicon revisions of the processors.

Only a single Device Driver library file should be included for the linker
to process. The application developer should choose the correct library
based on the processor variant for their system.

For example, an application developer targeting silicon revision 0.2 of the
ADSP-BF532 processor should link with the libdrv532.dlb file from the
Blackfin/lib/bf532_rev_0.2 subdirectory. As another example, the
application developer who wants a version of the Device Driver library
that will run on any revision of ADSP-BF532 silicon should link with the
libdrv532y.dlb file from the Blackfin/lib directory.

It is strongly recommended that developers use the debug versions
of the Device Driver library during development, because built-in
error-checking code within the library can save countless hours of
development time.

Debug versions of the libraries can be used by checking the Use Debug
System Libraries checkbox on the Link/Processor property page under
Project/Options.

Rebuilding the Device Driver Library

Under normal situations, there is no need to rebuild the Device Driver
library. However, to accommodate unforeseen circumstances and provide
the user with the ability to tailor the implementation to their particular
needs, all source code and include files necessary to rebuild the Device
Driver library are provided. In addition, VisualDSP++ project files are
included for application developers using the VisualDSP++ development
toolset.

All code for the Device Driver library is located in the following
directories:

Device Driver Overview

1-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• Blackfin/lib – This directory contains the Analog Devices built
versions of the Device Driver library files (*.dlb).

• Blackfin/lib/src/drivers – This directory contains all the source
code files and non-API include files for the Device Manager and
Analog Devices provided physical drivers. Also in this directory are
the VisualDSP++ project files that can be used to rebuild the
libraries.

• Blackfin/include/drivers – This directory contains the Device
Manager API include file and the include files for all Analog
Devices provided physical drivers.

VisualDSP++ users can rebuild the Device Driver library by using the
build command after opening the appropriate VisualDSP++ project file.

To rebuild the libraries using other development toolsets, the following
steps should be performed:

1. Set the pre-processor include path to include
Blackfin/include/drivers and Blackfin/lib/src/drivers

2. Define the processor variant according to the definitions in the
services.h file

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. See the -si-revision switch in the compiler for
more information.

4. Compile/assemble all files in the directory
Blackfin/lib/src/drivers

• Link the appropriate compiled/assembled objects including all
object files into a library

VisualDSP++ 4.5 Device Drivers and System 1-31
Services Manual for Blackfin Processors

Introduction

Examples on Distribution

The Device Driver distribution includes examples that illustrate how to
use the Device Drivers. Please refer to these examples for additional infor-
mation on how to use the Device Drivers effectively.

Device Driver Overview

1-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 2-1
Services Manual for Blackfin Processors

2 INTERRUPT MANAGER

This chapter describes the interrupt manager that controls and manages
the interrupt and event operations of the Blackfin processor.

This chapter contains:

• “Introduction” on page 2-2

• “Interrupt Manager Initialization” on page 2-4

• “Interrupt Manager Termination” on page 2-5

• “Core Event Controller Functions” on page 2-6

• “System Interrupt Controller Functions” on page 2-9

• “Protecting Critical Code Regions” on page 2-12

• “Modifying IMASK” on page 2-14

• “Examples” on page 2-15

• “File Structure” on page 2-15

• “Interrupt Manager API Reference” on page 2-17

Introduction

2-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The Blackfin processor employs a two-tiered mechanism for controlling
interrupts and events. System level interrupts are controlled by the system
interrupt controller (SIC). All peripheral interrupt signals are routed
through the system interrupt controller and then, depending on the set-
tings of the system interrupt controller, routed to the Core Event
Controller (CEC). The Core Event Controller processes these events and,
depending on the settings of the Core Event Controller, vectors the pro-
cessor to handle the events.

The interrupt manager provides functions that allow the application to
control every aspect of both the system interrupt controller and the Core
Event Controller. It does this so that events and interrupts are handled
and processed in an efficient, yet cooperative, manner.

The Blackfin processor provides 16 levels of interrupt and events. These
levels, called Interrupt Vector Groups (IVG), are numbered from 0 to 15,
with the lowest number having the highest the priority. Some IVG levels
are dedicated to certain events, such as emulation, reset, Non-Maskable
Interrupt (NMI) and so on. Other IVG levels, specifically levels 7 through
15, are considered general-purpose events and are typically used for system
level (peripheral) interrupts or software interrupts. All IVG processing is
performed in the CEC. When a specific IVG is triggered, assuming the
event is enabled, the CEC looks up the appropriate entry in the Event
Vector Table, and vectors execution to the address in the table where the
event is processed.

All system or peripheral interrupts are first routed through the SIC.
Assuming the SIC has been so programmed, peripheral interrupts are then
routed to the CEC for processing. The SIC provides a rich set of function-
ality for the processing and handling of peripheral interrupts. In addition
to allowing/disallowing peripheral interrupts to be routed to the CEC, the

VisualDSP++ 4.5 Device Drivers and System 2-3
Services Manual for Blackfin Processors

Interrupt Manager

SIC allows peripheral interrupts to be mapped to any of the CEC’s general
purpose IVG levels, and controls whether or not these interrupts wake the
processor from an idled operating mode.

In systems employing Blackfin processors, there are often more potential
interrupt sources than there are IVG levels. As stated above, some events,
such as NMI, map one to one to an IVG level. Others, typically infre-
quent interrupts such as peripheral error interrupts are often “ganged” in a
single IVG level.

The interrupt manager allows the application to execute complete control
over how interrupts are handled, whether they are masked or unmasked,
mapped one to one or ganged together, whether the processor should be
awakened to service an interrupt and so on. The interrupt manager also
allows the creation of interrupt handler chains. An interrupt handler is a
C-callable function that is provided by the application to process an inter-
rupt. Through the interrupt manager, the application can hook in any
number of interrupt handlers for any IVG level. In the case where multi-
ple events are ganged to a single IVG level, this allows each handler to be
designed independently from any other and allows the application to pro-
cess these interrupts in a straightforward manner.

Further, the interrupt manager only processes those IVG levels and system
interrupts that the application directs the interrupt manager to control.
This allows the application developer to have complete unfettered access
to any IVG level or system interrupt, if they want manual control of
interrupts.

Multi-core Blackfin processors extend on this by including one system
interrupt controller and one Core Event Controller for each core. This
provides maximum flexibility by allowing application developers to decide
how to map interrupts to individual cores, multiple cores and so on.
When using multi-core Blackfin processors, typically one interrupt man-
ager for each core is used. Because there is no reason to provide multiple

Interrupt Manager Initialization

2-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

interrupt managers on single core devices, this service is not supported.
Application developers should not attempt to instantiate more than one
interrupt manager per core.

Following the convention of all the System Services, the interrupt man-
ager uses a unique and unambiguous naming convention to guard against
conflicts. All enumeration values, typedefs and macros use the
ADI_INT_ prefix, while all functions within the interrupt manager use the
adi_int_ prefix.

All interrupt manager API functions return the ADI_INT_RESULT return
code. See the adi_int.h file for the list of return codes. Like all System
Services, the return code that signals successful completion,
ADI_INT_RESULT_SUCCESS for the interrupt manager, is defined to be 0,
allowing applications to quickly and easily determine if any errors
occurred in processing.

Interrupt Manager Initialization
In order to use the functionality of the interrupt manager, the interrupt
manager must first be initialized. The initialization function of the inter-
rupt manager is called adi_int_Init. The application passes to the
initialization function memory that the interrupt manager can use during
its lifetime.

The amount of memory that should be provided depends on the number
of secondary handlers that are to be used by the application. When using
interrupt handler chaining, the interrupt manager considers the first inter-
rupt handler that is hooked into an IVG level to be the primary interrupt
handler. Any additional interrupt handlers that hooked into that same
IVG level are considered secondary handlers. Without any additional
memory from the application, the interrupt manager can support one pri-
mary interrupt handler for each IVG level. If the application never has
more than one interrupt handler on each IVG level, in other words only
the primary interrupt handler and no secondary handlers are present, then

VisualDSP++ 4.5 Device Drivers and System 2-5
Services Manual for Blackfin Processors

Interrupt Manager

the application does not need to provide memory to the interrupt man-
ager’s initialization function. If however, the application will be hooking
in secondary interrupt handlers, the application needs to provide addi-
tional memory to support the secondary handlers.

The ADI_INT_SECONDARY_MEMORY macro is defined to be the amount of
memory, in bytes, that is required to support a single secondary handler.
Therefore, the application should provide to the initialization function
“n” times ADI_INT_SECONDARY_MEMORY, where “n” is the number of second-
ary handlers that are to be supported.

Another parameter passed to the initialization function is the parameter
that the interrupt manager passes to the adi_int_EnterCriticalRegion()
function. This value is dependent upon the operating environment of the
application. See the adi_int_EnterCriticalRegion function below for
more information.

When called, the initialization function initializes its internal data struc-
tures and returns. No changes are made to either the CEC or SIC during
initialization. After initialization, any of the other interrupt manager API
functions may be called.

Interrupt Manager Termination
When the functionality of the interrupt manager is no longer required, the
application can call the termination function of the interrupt manager,
adi_int_Terminate(). Many applications operate in an endless loop and
never call the termination function.

When called, the termination function unhooks all interrupt handlers,
masking off (disabling) all interrupts that the interrupt manager was con-
trolling. After calling the termination function, any memory provided to
the initialization function may be re-used by the application. No other
interrupt manager functions can be called after termination. If interrupt

Core Event Controller Functions

2-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

manager services are required after the termination function is called, the
application must re-initialize interrupt manager services by calling the
adi_pwr_Init function.

Core Event Controller Functions
Only two functions are necessary to provide complete control over the
Core Event Controller: adi_int_CECHook() Function and
adi_int_CECUnhook() Function functions.

adi_int_CECHook() Function
The adi_int_CECHook() function is used to hook an interrupt handler
into the handler chain for an IVG level. When called, the application
passes in the IVG number that is to be handled, the address of the handler
function, a parameter that the interrupt manager automatically passes
back to the interrupt handler when the interrupt handler is invoked, and a
flag indicating whether or not interrupt nesting should be enabled for this
IVG level.

The handler function itself is a simple C-callable function that conforms
to the ADI_INT_HANDLER_FN typedef. The interrupt handler is not an
Interrupt Service Routine (ISR) but a standard C-callable function. When
the IVG level triggers it, the interrupt manager calls the interrupt handler
to process the event. The interrupt manager passes the client argument
that was passed to the interrupt manager via the adi_int_CECHook() func-
tion to the interrupt handler. The interrupt handler takes whatever action
is necessary to process the interrupt, then returns with either the
ADI_INT_RESULT_PROCESSED or ADI_INT_RESULT_NOT_PROCESSED return
code.

Interrupt handlers should be written in such a way so as to interrogate the
system quickly to determine if the event that triggered the interrupt
should be processed by the interrupt handler. If the event that caused the

VisualDSP++ 4.5 Device Drivers and System 2-7
Services Manual for Blackfin Processors

Interrupt Manager

interrupt is not the event the interrupt handler was expecting, it should
immediately return with the ADI_INT_RESULT_NOT_PROCESSED return code.
The interrupt manager then automatically invokes the next interrupt han-
dler, if any, that is hooked into the same IVG level. If the event that
caused the interrupt is expected by the interrupt handler, the interrupt
handler performs whatever processing is necessary and should return the
ADI_INT_RESULT_PROCESSED return code.

The nesting flag parameter is of significance only when the first interrupt
handler is hooked into an IVG chain. The first interrupt handler that
hooks into an IVG chain is called the primary handler. Any additional
handlers that arlibdrvxxxz.dlbe hooked into that same IVG chain are
called secondary handlers. When the primary handler is hooked into the
chain, the interrupt manager loads an ISR into the appropriate entry of
the Event Vector Table. If the nesting flag is set, the ISR that the interrupt
manager loads is one that supports interrupt nesting. If the nesting flag is
clear, then the ISR that the interrupt manager loads is one that does not
support interrupt nesting. When secondary handlers are hooked into an
IVG chain, the nesting flag is ignored.

Lastly, the adi_int_CECHook() function unmasks the appropriate bit in
the CEC’s IMASK register, thereby enabling the interrupt to be processed.

In most applications, users take great care to optimize the processing that
occurs for the highest frequency and highest urgency interrupts. Typically,
the highest frequency or highest urgency interrupts are assigned their own
IVG level, while less frequent or lower urgency interrupts, such as error
processing, are ganged together on a single IVG level.

The interrupt manager continues that thinking and has been optimized to
allow extremely efficient processing for primary interrupt handlers.
Though still efficient, secondary handlers are called after the primary han-
dler. Secondary handlers are hooked into the IVG chain in a stacked or
Last In First Out (LIFO) fashion. This means that when an event is trig-
gered, after calling the primary handler (and assuming the primary

Core Event Controller Functions

2-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

handler did not return the ADI_INT_RESULT_PROCESSED return code), the
interrupt manager calls the last secondary handler that was hooked, fol-
lowed by the second to last installed handler, and so on.

To ensure optimal performance, the application developer should manage
which interrupt handlers are hooked as primaries and which are hooked as
secondary handlers.

adi_int_CECUnhook() Function
The adi_int_CECUnhook() function is used to unhook an interrupt han-
dler from the interrupt handler chain for a particular IVG level. When
called, the application passes in the IVG number and the address of the
interrupt handler function that is to be unhooked from the chain.

The function removes the interrupt handler from the chain of handlers for
the given IVG level. If the primary handler is being removed, the last sec-
ondary handler that was hooked becomes the new primary handler. If after
removing the given interrupt handler there are no interrupt handlers left
in the IVG chain, the adi_int_CECUnhook() function masks the appropri-
ate bit in the CEC’s IMASK register, thereby disabling the interrupt.

Interrupt Handlers
Since the interrupt handlers registered with the interrupt manager are
invoked from within the built-in IVG interrupt service routine, and since
there may be several interrupts pending for the same IVG level, individual
interrupt handlers must not invoke the RTI instruction on completion.
Instead, they should return using the RTS return function. Interrupt han-
dlers are in fact nothing more than typical C-callable subroutines.

Each peripheral interrupt handler must, therefore, conform to the follow-
ing template,

 ADI_INT_HANDLER(mjk_SPORT_RX_handler)

 {

VisualDSP++ 4.5 Device Drivers and System 2-9
Services Manual for Blackfin Processors

Interrupt Manager

 // user code

 }

where the ADI_INT_HANDLER macro is defined as

 #define ADI_INT_HANDLER(NAME) \

 void (*NAME)(void *ClientArg)

System Interrupt Controller Functions
The following functions are provided to give the application complete
control over the system interrupt controller:

• adi_int_SICEnable – Enables peripheral interrupts to be passed to
the CEC

• adi_int_SICDisable – Disables peripheral interrupts from being
passed to the CEC

• adi_int_SICSetIVG – Sets the IVG level to which a peripheral
interrupt is mapped

• adi_int_SICGetIVG – Detects the IVG level to which a peripheral
interrupt is mapped

• adi_int_SICWakeup – Establishes whether or not a peripheral inter-
rupt wakes up the processor from an idled state

• adi_int_SICInterruptAsserted() – Detects whether or not a
peripheral interrupt is asserted.

All SIC functions take as a parameter an enumeration value that uniquely
identifies a peripheral interrupt. The enumeration
ADI_INT_PERIPHERAL_ID identifies each possible peripheral interrupt

System Interrupt Controller Functions

2-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

source for the processor. This enumeration is defined in the adi_int.h
file. Refer to this header file for the complete list of values for each sup-
ported Blackfin processor.

adi_int_SICDisable()
The adi_int_SICDisable() function is used to disable a peripheral inter-
rupt from being passed to the Core Event Controller. When called, this
function programs the appropriate SIC IMASK register to disable the given
peripheral interrupt.

adi_int_SICEnable()
The adi_int_SICEnable() function is used to enable a peripheral inter-
rupt to be passed to the Core Event Controller. When called, this function
programs the appropriate SIC IMASK register to enable the given peripheral
interrupt.

adi_int_SICGetIVG()
The adi_int_SICGetIVG() function is used to detect the IVG level to
which a peripheral interrupt is mapped.

In addition to the ADI_INT_PERIPHERAL_ID parameter, this function is
passed pointer-to-memory location information. The function interro-
gates the proper field of the appropriate SIC Interrupt Assignment register
and stores the IVG level (0 to 15) to which the given peripheral interrupt
is mapped into the memory location.

adi_int_SICInterruptAsserted()
The adi_int_SICInterruptAsserted() function is used to detect whether
or not the given peripheral interrupt is asserted. Though it can be called at
any time, it is intended that this function is called immediately by the

VisualDSP++ 4.5 Device Drivers and System 2-11
Services Manual for Blackfin Processors

Interrupt Manager

application’s interrupt handlers to determine if a given peripheral inter-
rupt is being asserted, allowing the interrupt handler to determine if its
peripheral is asserting the interrupt.

Instead of using the usual ADI_INT_RESULT_SUCCESS return code, this func-
tion returns the ADI_INT_RESULT_ASSERTED or
ADI_INT_RESULT_NOT_ASSERTED return code upon a successful completion.
If errors are detected with the calling parameters, this function may return
a different error code.

adi_int_SICSetIVG()
The adi_int_SICSetIVG() function is used to set the IVG level to which a
peripheral interrupt is mapped. Upon power-up, the Blackfin processor
invokes a default mapping of peripheral interrupts to IVG level. This
function alters that mapping. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed the IVG level (0 to 15) to which the
peripheral interrupt should be mapped. The function modifies the proper
field within the appropriate SIC Interrupt Assignment register to the new
mapping.

adi_int_SICWakeup()
The adi_int_SICWakeup() function is used to enable or disable a periph-
eral interrupt from waking up the core when the interrupt trigger and the
core are in an idled state. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed a TRUE/FALSE flag. If the flag is TRUE, the
SIC interrupt wakeup register is programmed such that the given periph-
eral interrupt wakes up the core when the interrupt is triggered. If the flag
is FALSE, the SIC interrupt wakeup register is programmed such that the
given peripheral interrupt does not wake up the core when the interrupt is
triggered.

Protecting Critical Code Regions

2-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral inter-
rupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

Protecting Critical Code Regions
In embedded systems it is often necessary to protect a critical region of
code while it is being executed. This is often necessary while one logical
programming sequence is updating or modifying a piece of data. In these
cases, another logical programming sequence, such as interrupt processing
in one system, or different thread in an RTOS-based system, is prevented
from interfering while the critical data is being updated.

To that end, the interrupt manager provides two functions that can be
used to bracket a critical region of code. These functions are
 adi_int_EnterCriticalRegion() and adi_int_ExitCriticalRegion().
The application calls the adi_int_EnterCriticalRegion() function at the
beginning of the critical section of code, and then calls the
adi_int_ExitCriticalRegion() function at the end of the critical section.
These functions should always be used in pairs.

The actual implementation of these functions varies from operating envi-
ronment to operating environment. For example in a standalone system,
in systems without any RTOS, what actually happens in these functions
may be different than the version of these functions for an RTOS based
system. The principle and usage however, are always the same regardless of
implementation. In this way, application code always operates the same
way, and does not have to change regardless of the operating environment.

The adi_int_EnterCriticalRegion() function is passed an argument of
type void * and returns an argument of type void *. The value that is
returned from the adi_int_EnterCriticalRegion() function must always
be passed to the corresponding adi_int_ExitCriticalRegion() function.
For example, examine the following code sequence:

VisualDSP++ 4.5 Device Drivers and System 2-13
Services Manual for Blackfin Processors

Interrupt Manager

...
Value = adi_int_EnterCriticalRegion(pArg);
… // critical section of code
adi_int_ExitCriticalRegion(Value);
...

The value that is returned from the adi_int_EnterCriticalRegion()
function must be passed to the corresponding
adi_int_ExitCriticalRegion() function. While nesting of calls to these
functions is allowed, the application developer minimizes the use of these
functions to only those critical sections of code, and realize that in all like-
lihood the processor is being placed in some altered state. This could
affect the performance of the system, while in the critical regions.

For example, it could be that interrupts are disabled in the critical region.
The application developer typically does not want to have interrupts dis-
abled for long periods of time. These functions should be used sparingly
and judiciously.

Nesting of these calls is allowed. For example, consider the following code
sequence that makes a call to the function Foo() while in a critical section
of code. The function Foo() also has a critical region of code.

...
Value = adi_int_EnterCriticalRegion(pArg);
… // critical section of code
Foo(); // call to Foo()
adi_int_ExitCriticalRegion(Value);
...

void Foo(void) {
void *Value;
...
Value = adi_int_EnterCriticalRegion(pArg);
… // critical section of code
adi_int_ExitCriticalRegion(Value);
...
}

Modifying IMASK

2-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

This practice is allowed; however, the application developer is cautioned
that overuse of these functions can affect system performance.

The pArg value that is passed into the adi_int_EnterCriticalRegion()
function is dependent upon the actual implementation for the given oper-
ating environment. In some operating environments the value is not used
and can be NULL. The user should check the source file for the specific
operating environment, adi_int_xxx.c, in the Blackfin/lib/src/ser-
vices directory where xxx is the operating environment, for more
information on the pArg parameter.

All system services and device drivers use these functions exclu-
sively to protect critical regions of code. Application software
should also use these functions exclusively to protect critical
regions of code within the application.

Modifying IMASK
Though applications rarely need to have the processor’s IMASK register
value modified, the interrupt manager itself modifies the IMASK register
value to control the CEC properly. In some RTOS-based operating envi-
ronments, the RTOS tightly controls the IMASK register and provides
functions that allow the manipulation of IMASK.

In order to ensure compatibility across all operating environments, the
interrupt manager provides functions that allow bits within the IMASK reg-
ister to be set or cleared. Depending on the operating environment, these
function may modify the IMASK value directly, or use the RTOS provided
IMASK manipulation functions. Regardless of how the IMASK value is
changed, the interrupt manager API provides a uniform and consistent
mechanism for this.

Two operating environment implementation dependent functions are
provided to set and clear bits in the IMASK register. These functions are
adi_int_SetIMASKBits and adi_int_ClearIMASKBits. These functions

VisualDSP++ 4.5 Device Drivers and System 2-15
Services Manual for Blackfin Processors

Interrupt Manager

take as a parameter a value that corresponds to the IMASK register of the
processor being targeted. When the adi_int_SetIMASKBits() function is
called, the function sets to 1 those bits in the IMASK register that have a
one in the corresponding bit position of the value passed in. When the
adi_int_ClearIMASKBits() function is called, the function clears those
bits (to 0) in the IMASK register that have a 1 in the corresponding bit posi-
tion of the value passed in.

Consider the following example code. Assume that IMASK is a 32-bit value
and contains 0x00000000 upon entry into the code:

...
… // IMASK = 0x00000000
ReturnCode = adi_int_SetIMASKBits(0x00000003);
… // IMASK now equals 0x00000003
ReturnCode = adi_int_ClearIMASKBits(0x00000001);
… // IMASK now equals 0x00000002
ReturnCode = adi_int_ClearIMASKBits(0x00000002);
… // IMASK now equals 0x00000000

While it is very unlikely that the application ever needs to control individ-
ual IMASK bit values, the interrupt manager uses these functions to control
the CEC.

Examples
Examples demonstrating use of the interrupt manager can be found in the
Blackfin/EZ-Kits subdirectories.

File Structure
The API for the interrupt manager is defined in the adi_int.h header file.
This file is located in the Blackfin/include/services subdirectory and is
automatically included by the services.h file in that same directory. Only
the services.h file should be included in the application code.

File Structure

2-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Applications should link with one and only one of the System Services
library files. These files are located in the Blackfin/lib directory. See the
appropriate section in the “Introduction” on page 6-2 in Chapter 6, DMA
Manager, for more information on selecting the proper library file.

For convenience, all source code for the interrupt manager is located in
the Blackfin/lib/src/services directory. All operating environment
dependent code is located in the file adi_int_xxx.c where xxx is the oper-
ating environment being targeted. These files should never be linked into
an application, as the appropriate System Services Library file contains all
required object code.

VisualDSP++ 4.5 Device Drivers and System 2-17
Services Manual for Blackfin Processors

Interrupt Manager

Interrupt Manager API Reference
This section provides descriptions of the interrupt manager module’s
application programming interface (API) functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Interrupt Manager API Reference

2-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_Init

Description

This function sets aside and initializes memory for the interrupt manager.
It also initializes other tables and vectors within the interrupt manager.
This function should only be called once per core. Separate memory areas
should be assigned for each core.

Prototype

ADI_INT_RESULT adi_int_Init(

 void *pMemory,

 const size_t MemorySize,

 u32 *pMaxEntries,

 void *pEnterCriticalArg

);

Arguments

Return Value

Return values include:

*pMemory This is the pointer to an area of memory to be used by the
interrupt manager.

MemorySize This is the size, in bytes, of memory being supplied for the inter-
rupt manager.

*pMaxEntries On return, this argument contains the number of secondary han-
dler entries that the interrupt manager can support given the
memory supplied.

*pEnterCriticalArg Parameter passed to the adi_int_EnterCriticalRegion.

ADI_INT_RESULT_SUCCESS Successfully initialized

VisualDSP++ 4.5 Device Drivers and System 2-19
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_Terminate

Description

This function closes down the interrupt manager. All memory used by the
interrupt manager is freed up, all handlers are unhooked, and all Interrupt
Vector Groups that were enabled and controlled by the interrupt manager
are disabled.

Note that the adi_int_Terminate function does not alter the sys-
tem interrupt controller settings. Should changes to the SIC be
required, the application should make the appropriate calls into the
relevant SIC control functions before calling
adi_int_Terminate().

Prototype

ADI_INT_RESULT adi_int_Terminate(void);

Arguments

none

Return Value

The function returns ADI_INT_RESULT_SUCCESS if successful. Any other
value indicates an error.

Interrupt Manager API Reference

2-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_CECHook

Description

This function instructs the interrupt manager to hook (insert) the given
interrupt handler into the interrupt handler chain for the given IVG.

On a return from this call, the core event controller is programmed such
that the given IVG is unmasked (enabled) and the system is properly con-
figured to service the interrupt via the interrupt manager’s built-in ISRs.
The ISRs then invoke the interrupt handler supplied by the caller.
Depending on the state of the NestingFlag parameter, the interrupt man-
ager installs its built-in interrupt service routine with interrupt nesting,
either enabled or disabled.

On the first call for a given IVG level, the interrupt manager registers its
built-in IVG interrupt service routine against that level and establishes the
supplied interrupt handler as the primary interrupt handler for the given
IVG level. Subsequent calls to adi_int_CECHook for the same IVG level
create a chain of secondary interrupt handlers for the IVG level. When the
interrupt for the IVG level is triggered, the primary interrupt handler is
first called, and then if present, each secondary interrupt handler is subse-
quently called.

The ClientArg parameter provided in the adi_int_CECHook function is
passed to the interrupt handler as an argument when the interrupt handler
is called in response to interrupt generation.

Prototype

ADI_INT_RESULT adi_int_CECHook(

 u32 IVG,

 ADI_INT_HANDLER_FN Handler,

 void *ClientArg,

 u32 NestingFlag

);

VisualDSP++ 4.5 Device Drivers and System 2-21
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

Return Value

Return values include:

IVG This is the interrupt vector group number that is being
addressed.

Handler The client’s interrupt handler to be inserted into the
chain for the given IVG.

ClientArg A void * value that is passed to the interrupt handler.

NestingFlag This is the argument that selects whether nesting of inter-
rupts is allowed or disallowed for the IVG
(TRUE/FALSE).

ADI_INT_RESULT_SUCCESS The interrupt handler was successfully hooked into the
chain.

ADI_INT_RESULT_NO_MEMORY Insufficient memory is available to insert the handler
into the chain.

ADI_INT_RESULT_INVALID_IVG The IVG level is invalid.

Interrupt Manager API Reference

2-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_CECUnhook

Description

This function instructs the interrupt manager to unhook (remove) the
given interrupt handler from the interrupt handler chain for the given
IVG.

If the given interrupt handler is the only interrupt handler in the chain,
the CEC is programmed to disable (mask) the given IVG and the inter-
rupt manager built-in interrupt service routine is removed from the IVG
entry within Event Vector Table.

If the chain for the given IVG contains multiple interrupt handlers, the
given interrupt handler is simply purged from the chain. If the primary
interrupt handler is removed and there are secondary interrupt handlers in
the chain are present, one of the secondary interrupt handlers becomes the
primary interrupt handler.

Prototype

ADI_INT_RESULT adi_int_CECUnhook(

 u32 IVG,

 ADI_INT_HANDLER_FN Handler,

 void *ClientArg

);

VisualDSP++ 4.5 Device Drivers and System 2-23
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

Return Value

Return values include:

IVG The interrupt vector group number that is being
addressed.

Handler The client’s interrupt handler to be removed from the
chain for the given IVG.

ClientArg A void * value that is passed to the interrupt handler.
To remove the interrupt handler successfully, match this
value to the ClientArg parameter that was passed to
the adi_int_CECHook() function when the interrupt
handler was hooked into the chain.

ADI_INT_RESULT_SUCCESS The interrupt handler was successfully unhooked from
the chain.

ADI_INT_RESULT_INVALID_IVG The IVG level is invalid.

Interrupt Manager API Reference

2-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_ClearIMaskBits

Description

This function is used by the interrupt manager to clear bits in the IMASK
register. Though it can also be called by the application, the application
should not attempt to modify bits in the IMASK register that represent
interrupt vector groups that are under the control of the interrupt
manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects if the
processor is within a protected region of code (refer to the functions
adi_int_EnterCriticalRegion and adi_int_ExitCriticalRegion, respec-
tively). If it is, the saved value of IMASK is updated accordingly and the
current “live” IMASK value is left unchanged.

When the outermost adi_int_ExitCriticalRegion function is called, the
saved IMASK value with the new bit settings, is restored. If upon entering
this function, the processor is not within a protected region of code, the
“live” IMASK register is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
Blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment. Changes to application soft-
ware are not required when code is moved to a different operating
environment.

Prototype

void adi_int_ClearIMASKBits(

 ADI_INT_IMASK BitsToClear

);

VisualDSP++ 4.5 Device Drivers and System 2-25
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

Return Value

None

BitsToClear Replica of the IMASK register containing bits that are to
be cleared in the real IMASK register. A bit with a value of
‘1’ clears the corresponding bit in the IMASK register. A
bit with the value of ‘0’ leaves the corresponding bit in the
IMASK register unchanged.

Interrupt Manager API Reference

2-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_EnterCriticalRegion

Description

This function creates a condition that protects a critical region of code.
The companion function, adi_int_ExitCriticalRegion, removes the
condition. These functions should be used to bracket a section of code
that needs protection from other processing. These functions should be
used in pairs, sparingly and only when critical regions of code need
protecting.

The return value from this function should be passed to the corresponding
adi_int_ExitCriticalRegion function.

The actual condition that is created is dependent upon the operating envi-
ronment. In the standalone version of the service, this function effectively
disables interrupts, saving the current value of IMASK to a temporary loca-
tion. The adi_int_ExitCriticalRegion function restores the original
IMASK value. These functions employ a usage counter so that they can be
nested. When nested, the IMASK value is altered only at the outermost lev-
els. In the standalone version, the pArg parameter to the
adi_int_EnterCriticalRegion is meaningless.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
Blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment and from processor to pro-
cessor. Application software does not need to change when moving to a
different operating environment or moving from one Blackfin derivative
to another.

VisualDSP++ 4.5 Device Drivers and System 2-27
Services Manual for Blackfin Processors

Interrupt Manager

Prototype

void *adi_int_EnterCriticalRegion(

 void *pArg

);

Arguments

Return Value

The return value from this function should always be passed to the corre-
sponding adi_int_ExitCriticalRegion function.

pArg Implementation dependent. Refer to the adi_int_xxx.h
file for details on this parameter for the xxx environment.

Interrupt Manager API Reference

2-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_ExitCriticalRegion

Description

This function removes the condition that was established by the
adi_int_EnterCriticalRegion to protect a critical region of code. These
functions should be used to bracket a section of code that needs protection
from other processing. These functions should be used sparingly and only
when critical regions of code need protecting.

The pArg parameter that is passed to this function should always be the
return value from the corresponding adi_int_EnterCriticalRegion
function.

See the adi_int_EnterCriticalRegion function for more information.

Prototype

void adi_int_ExitCriticalRegion(

 void *pArg

);

Arguments

Return Value

None

pArg The return value from the corresponding
adi_int_EnterCriticalRegion() function call.

VisualDSP++ 4.5 Device Drivers and System 2-29
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SICDisable

Description

This function configures the system interrupt controller to disable the
given interrupt and prevent it from being passed to the Core Event
Controller.

The adi_int_SICDisable function simply programs the System Interrupt
Mask register to mask interrupts from the given peripheral, thereby pre-
venting them from being passed to the Core Event Controller.

Prototype

ADI_INT_RESULT adi_int_SICDisable(

 const ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

PeripheralID This is the ADI_INT_PERIPHERAL_ID enumeration value
that identifies an interrupt source.

ADI_INT_RESULT_SUCCESS The system interrupt controller has been successfully con-
figured.

ADI_INT_RESULT_INVALID_PERI
PHERALID

The peripheral ID specified is invalid.

Interrupt Manager API Reference

2-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICEnable

Description

This function configures the system interrupt controller to enable the
given interrupt and allow it to be passed to the Core Event Controller.

The adi_int_SICEnable function simply programs the System Interrupt
Mask register to allow interrupts from the given peripheral to be passed to
the Core Event Controller.

Prototype

ADI_INT_RESULT adi_int_SICEnable(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

);

Arguments

Return Value

Return values include:

PeripheralID This is the ADI_INT_PERIPHERAL_ED enumeration value
that identifies a peripheral interrupt source.

ADI_INT_RESULT_SUCCESS The system interrupt controller has been successfully con-
figured.

ADI_INT_RESULT_INVALID_PERI
PHERAL_ID

The peripheral ID specified is invalid.

VisualDSP++ 4.5 Device Drivers and System 2-31
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SICGetIVG

Description

This function detects the mapping of a peripheral interrupt source to an
IVG level. When called, this function reads the appropriate System Inter-
rupt Assignment register(s) of the given peripheral and stores the IVG
level to which the peripheral is mapped into the location provided by the
application. This function does not modify any parameters of the inter-
rupt controller.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

 u32 *pIVG

);

Arguments

Return Value

The function returns ADI_INT_RESULT_SUCCESS if successful. Other possi-
ble return values include:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source

*pIVG The pointer to an unsigned 32-bit memory location into
which the function writes the IVG level to which the given
peripheral is mapped.

ADI_INT_RESULT_INVALID_PERI
PHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG The interrupt vector group level is invalid.

Interrupt Manager API Reference

2-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICInterruptAsserted

Description

This function determines if a given peripheral interrupt source is asserting
an interrupt. This function is typically called in an application’s interrupt
handler to determine if the peripheral in question is asserting an interrupt.
This function does not modify any parameters of the interrupt controller
but simply interrogates the appropriate interrupt status register(s).

Prototype

ADI_INT_RESULT adi_int_SICInterruptAsserted(

 const ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

The function returns one of the following values:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source.

ADI_INT_RESULT_INVALID_PERI
PHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_ASSERTED The specified peripheral is asserting an interrupt.

ADI_INT_RESULT_NOT_ASSERTED The specified peripheral is not asserting an interrupt.

VisualDSP++ 4.5 Device Drivers and System 2-33
Services Manual for Blackfin Processors

Interrupt Manager

 adi_int_SICSetIVG

Description

This function sets the mapping of a peripheral interrupt source to an IVG
level. When called, this function modifies the appropriate System Inter-
rupt Assignment register(s) of the given peripheral to the specified IVG
level. This function does not enable or disable interrupts.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

 const u32 IVG

);

Arguments

Return Value

The function returns ADI_INT_RESULT_SUCCESS, if successful. Other possi-
ble return values include:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source

IVG The interrupt vector group that the peripheral to which
the peripheral is being assigned.

ADI_INT_RESULT_INVALID_PERI
PHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG The interrupt vector group level is invalid.

Interrupt Manager API Reference

2-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SetIMaskBits

Description

This function is used by the interrupt manager to set bits in the IMASK reg-
ister. Though it can also be called by the application, the application
should not attempt to modify bits in the IMASK register that represent
interrupt vector groups that are under the control of the interrupt
manager.

The implementation of this function is dependent upon the operating
environment. In the standalone version of the service, this function
detects if the processor is within a protected region of code (see the
adi_int_EnterCriticalRegion and adi_int_ExitCriticalRegion func-
tions). If it is, the saved value of IMASK is updated accordingly and the
current “live” IMASK value is left unchanged. When the outermost
adi_int_ExitCriticalRegion function is called, the saved IMASK value,
with the new bit settings, is restored. If upon entering this function the
processor is not within a protected region of code, the “live” IMASK register
is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
Blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment. Application software does
not have to change when moving to a different operating environment.

Prototype

void adi_int_SetIMASKBits(

 ADI_INT_IMASK BitsToSet

);

VisualDSP++ 4.5 Device Drivers and System 2-35
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

Return Value

None

BitsToSet Replica of the IMASK register containing bits that are to
be set in the real IMASK register. A bit with a value of ‘1’
sets the corresponding bit in the IMASK register. A bit
with the value of ‘0’ leaves the corresponding bit in the
IMASK register unchanged.

Interrupt Manager API Reference

2-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICWakeup

Description

This function configures the system interrupt controller wakeup register
to enable or disable the given peripheral interrupt from waking up the
core processor.

The adi_int_SICWakeup function simply programs the system interrupt
controller wakeup register accordingly. The actual servicing of interrupts
is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICWakeup(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

 u32 WakeupFlag

);

Arguments

Return Value

Return values include:

PeripheralID This is the ADI_INT_PERIPHERAL_ID enumeration value
that identifies a peripheral interrupt source.

WakeupFlag Enables/disables waking up the core(s) upon triggering of
the peripheral interrupt (TRUE/FALSE).

ADI_INT_RESULT_SUCCESS The system interrupt controller has been successfully con-
figured.

ADI_INT_RESULT_INVALID_PERI
PHERAL_ID

The peripheral ID specified is invalid.

VisualDSP++ 4.5 Device Drivers and System 3-1
Services Manual for Blackfin Processors

3 POWER MANAGEMENT
MODULE

This chapter describes the power management (PM) module that supports
dynamic power management of Blackfin processors.

This chapter contains:

• “Introduction” on page 3-2

• “PM Module Operation – Getting Started” on page 3-3

• “Power Management API Reference” on page 3-16

• “Public Data Types and Enumerations” on page 3-44

• “PM Module Macros” on page 3-71

Introduction

3-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The power management (PM) module provides access to all aspects of
dynamic power management:

• Dynamic switching from one operating mode to another: Full-On,
Active, Sleep, Deep Sleep and Hibernate.

• Dynamic setting of voltage levels and clock frequencies to ensure
that an application can be tuned to achieve the best performance
while minimizing power consumption.

• When coupled with the EBIU module, it enables the SDRAM set-
tings to be adjusted upon changes to the system clock to ensure
that the best performance is obtained for the complete system. For
more information about the EBIU module, see Chapter 4, “Exter-
nal Bus Interface Unit Module”.

The module supports two strategies for setting the core and system clock
frequencies:

• For a given voltage level, the core clock (CCLK) is set to the highest
available frequency. The system clock (SCLK) is set accordingly.

• For a given combination of core and system clock frequencies, the
valid values nearest to the chosen ones are used and the voltage
level of the processor adjusted accordingly.

In both cases validity checks are performed at all stages, making it impos-
sible to stall or harm the processor.

The “PM Module Operation – Getting Started” describes the basic oper-
ating stages required to use the power management module.

VisualDSP++ 4.5 Device Drivers and System 3-3
Services Manual for Blackfin Processors

Power Management Module

The power management module uses an unambiguous naming convention
to safeguard against conflicts with other software libraries provided by
Analog Devices, Inc. or other companies. To this end, all enumeration
values and typedefs use the ADI_PWR_ prefix, while functions and global
variables use the lower case, adi_pwr_ equivalent.

Two versions of the library exist for each processor. These correspond to
the debug and release configurations in the current VisualDSP++ release.
In addition to the usual defaults for the debug configuration, the API
functions perform checks on the arguments passed and report appropriate
error codes, as required. In the release version of the library, most func-
tions return one of two result codes: ADI_PWR_RESULT_SUCCESS on
successful completion, or ADI_PWR_RESULT_CALL_IGNORED if the PM mod-
ule has not been initialized prior to the function call.

Please note that in order to better facilitate the configuration of
timing parameters for device drivers, the default unit of frequency
for communicating with the power management functions is hertz
(Hz) rather than megahertz (MHz). Refer to the adi_pwr_Init
function (on page 3-26) for more information.

PM Module Operation – Getting Started
A following example illustrates how to use the PM module to configure a
600Mz ADSP-BF533 processor on an EZ-KIT Lite board to run at the
requested core and system clock frequencies or to minimize power con-
sumption by pegging the voltage level at 0.95 V.

PM Module Operation – Getting Started

3-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Step 1:
Initialize the module by setting the parameters for the hardware configura-
tion used. In the following example it is assumed that the ADSP-BF533
EZ-KIT Lite (Rev 1.3) is to be configured. The simplest way is to specify
the EZ-KIT Lite board as follows:

ADI_PWR_COMMAND_PAIR ezkit_pwr[] = {

 // ADSP-BF533 EZ-KIT LITE REV 1.3

 { ADI_PWR_CMD_SET_EZKIT, ADI_PWR_EZKIT_BF533_600MHz },

 { ADI_PWR_CMD_END, 0 }

};

adi_pwr_Init(ezkit_pwr);

To illustrate what is required for non EZ-KIT Lite boards, the above com-
mand table is included an abbreviated form of the following code:

ADI_PWR_COMMAND_PAIR ezkit_pwr[] = {

 /* 600Mhz ADSP-BF533 variant *

 {

ADI_PWR_CMD_SET_PROC_VARIANT,(void*)ADI_PWR_PROC_BF533SKBC600 },

 /* in MBGA packaging, as on all EZ-KITS */

 { ADI_PWR_CMD_SET_PACKAGE, (void*)ADI_PWR_PACKAGE_MBGA },

 /* External Voltage supplied to the */

 /*voltage regulator is 3.3V */

 { ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },

 /* The CLKIN frequency */

(ADI_PWR_CLKIN_EZKIT=27Mhz */

 {

ADI_PWR_CMD_SET_CLKIN, (void*)ADI_PWR_CLKIN_EZKIT_REV_1

_5 },

 /* command to terminate the table */

 { ADI_PWR_CMD_END, 0 }

};

adi_pwr_Init(ezkit_pwr);

VisualDSP++ 4.5 Device Drivers and System 3-5
Services Manual for Blackfin Processors

Power Management Module

Step 2:
If used in conjunction with the EBIU controller to adjust SDRAM set-
tings, the EBIU module is initialized (for EZ-KIT Lite board) with the
following call:

ADI_EBIU_COMMAND_PAIR ezkit_ebiu[] = {

 { ADI_EBIU_CMD_SET_EZKIT,(void*)ADI_EBIU_EZKIT_BF533 },

 { ADI_EBIU_CMD_END, 0 }

};

adi_ebiu_Init(

 ezkit_ebiu, // default is EZ-KIT

 FALSE // Do not adjust refresh settings

);

Step 3:
Decide on which power management strategy to implement. For example,
the following code segments demonstrate how to configure the PM mod-
ule for optimal speed or optimal power consumption.

Optimal Speed
The following statement requests that the PM module set the core and
system clock frequencies to the maximum values possible.

adi_pwr_SetFreq(

 0, // Core clock frequency (MHz)

 0, // System clock frequency (MHz)

 ADI_PWR_DF_ON // Do not adjust the PLL input divider

);

Optimal Power Consumption
The following statement requests that the PM module set the core and
system clock frequencies to the maximum that can be sustained at a volt-
age level of 0.85 V.

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_085);

Dual Core Considerations

3-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Dual Core Considerations
The following sections explain how to use System Services with a
dual-core configuration.

Simple Method of Making it Work
If you’re running an application on two cores, then here’s a simple way to
get something working quickly. Begin with the 5-project group normally
used with dual-core processors.

// Run this code on both cores.

#include <services/services.h>

#include <stdio.h>// This allows you to use printf

ADI_PWR_COMMAND_PAIR pwr_init[] = {

 { ADI_PWR_CMD_SET_EZKIT, ADI_PWR_EZKIT_BF561_600MHZ },

 { ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL },

 { ADI_PWR_CMD_END, NULL},

};

// Initialize the Interrupt Manager and optionally EBIU here

// adi_int_Init(…);

// adi_ebiu_Init(…);

if(adi_pwr_Init(pwr_init) != ADI_PWR_RESULT_SUCCESS) {

 printf(“Oops, adi_pwr_Init failed\n”);

}

// Init other services as required (on both cores if required)

// adi_port_Init();

// adi_dcb_Init();

// adi_dma_Init();

// adi_flag_Init();

// adi_tmr_Init();

if(adi_core_id() == 0) {

 // Core A code goes here.

VisualDSP++ 4.5 Device Drivers and System 3-7
Services Manual for Blackfin Processors

Power Management Module

 printf(“Core A is running\n”);

} else {

 // Core B code goes here.

 printf(“Core B is running\n”);

 // If you’re only running one core, the use the code below

 while(1) {

 asm(“IDLE;”);

 // Core A can wake up Core B, just go IDLE again.

}

Synchronization Requirement
The Blackfin dual-core processors are capable of running only one core.
But power management and EBIU Management need to put both cores
into the IDLE state when making power management and EBIU control-
ler changes. In addition, any SDRAM timing changes require both cores
to be executing outside of SDRAM at the time; this includes whenever
changing the system clock frequency. Core A will already satisfy the
requirement since it will be executing the system call at the time. Core B
needs to be synchronized when core A is making one of these changes.

There are two possible operating modes: running on one core and running
applications on both cores.

Dual Core Considerations

3-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Running Applications on One Core Only
In this case, only one core is used and the other core, core B, is disabled.
This is the natural state of core B upon reset, and remains so until it is
started up by clearing bit 5 of the SICA_SYSCR register, for example:

*pSICA_SYSCR &= 0xFFDF; // clears bit 5 so Core B will start

running

Note that this will not wake core B if it is in the IDLE state. It will only
allow core B to start executing instructions on startup. For waking core B
from IDLE, you need to use one of the two supplemental interrupts (sup-
plemental interrupt 0 is taken over by System Services, leaving
supplemental interrupt 1 for other uses).

Single core applications loaded from flash memory or via the SPI port sat-
isfy the synchronization requirement above with no further intervention.
However, an emulator session within VisualDSP++ unavoidably wakes up
core B. The application developer needs to return core B to the disabled
state to meet the PLL programming requirements. There are two ways to
do this. The simplest is to run the following C code on core B:

void main() {

 while(1) {

 asm(“IDLE;”);

 }

}

Whenever core B wakes up (due to the PLL programming sequence exe-
cuted by the power management service) it will be immediately returned
to the IDLE state.

VisualDSP++ 4.5 Device Drivers and System 3-9
Services Manual for Blackfin Processors

Power Management Module

The other method is to disable the PLL wakeup bit in the SICB_IWR0
register and go to IDLE. If this is done in assembler, then the following
code can take the place of the startup code:

#include <defBF561.h>

.section program;

start:

 P0.H = HI(SICB_IWR0); P0.L = LO(SICB_IWR0);

 R0 = 0;

[P0] = R0;

 IDLE;

.start.end:

.global start;

.type start,STT_FUNC;

Running Applications on Both Cores
In this case, both cores are executing code. But the two cores still need to
synchronize to ensure both cores are IDLE and, in some cases, not execut-
ing out of SDRAM as described in the requirement above. There are two
choices: 1) define your own synchronization strategy, or 2) use the built-in
synchronization provided by the power management module (which must
be enabled by a separate command).

To use the built-in synchronization, include the following command value
pair to adi_pwr_Init() on both cores:

{ ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL }

Once activated, the built-in synchronization will have exclusive control
over Supplemental Interrupt 0, and will chain an appropriate Interrupt
Handler to the appropriate IVG level using the interrupt manager. This

Dual Core Considerations

3-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

prevents application use of the interrupt for any other synchronization
between cores. However, the Supplemental Interrupt 1 is still available for
use outside of System Services for other core synchronization purposes.

Additional commands can be used to tailor the synchronization
requirements.

Synchronization between Cores
Either core can interrupt the other core using a supplemental interrupt.
There are two of these on the ADSP-BF561: 0 and 1. A shared lock vari-
able located in L2 memory can send information between the cores as a
method of synchronization.

Table 3-1. Additional Commands for Tailoring Synchronization

Command Description

Available on Core A and Core B

ADI_PWR_CMD_SET_SYNC_LOCK_VAR
IABLE

Provide the address of an alternative unsigned
int lock variable in L2 as an alternative to the
built-in lock variable. Not normally needed.

Available on Core B only

ADI_PWR_CMD_SET_COREB_SUPP_IN
T0_IVG

Specify the IVG level assigned to Supplemental
Interrupt 0 on core B. Not normally needed.

ADI_PWR_CMD_SET_FIRST_CLIENT_C
ALLBACK

Specify a callback function to be invoked prior
to power management changes, for example to
pause device drivers.

ADI_PWR_CMD_SET_SECOND_CLIENT
_CALLBACK

Specify a callback function to be invoked sub-
sequent to power management changes, for
example to restart device drivers.

ADI_PWR_CMD_SET_CLIENT_HANDLE Specify a void* value/address which will be
sent to both the callback functions as the sole
argument.

VisualDSP++ 4.5 Device Drivers and System 3-11
Services Manual for Blackfin Processors

Power Management Module

The built-in mechanism requires that core A initiates all power manage-
ment changes, with core B being configured to respond to a Supplemental
Interrupt 0 event, raised by core A. The configuration and handling of
this interrupt is managed within the power management module itself.
The synchronization sequence works like this:

The Built-in Lock variable and Linking
Considerations

The lock variable, adi_pwr_lockvar, is declared within the file Black-
fin\lib\src\ services\pwr\adi_pwr_lockvar.c as

section ("l2_shared") testset_t adi_pwr_lockvar = 0;

where the memory input section, l2_shared, is mapped to the
MEM_L2_SRAM output section in both the default and generated Linker
Description Files (LDF).

Table 3-2. Synchronization Sequence Between Cores

Core A Core B

Raises Supplemental Interrupt 0, and sets the
shared adi_pwr_lockvar lock variable, and awaits
acknowledgement.

Responds to Supplemental Interrupt 0 by
entering interrupt handler.

Runs first (optional) callback function

On receiving acknowledgement, performs PLL
Programming sequence and configures the SDC
accordingly.

Acknowledges interrupt and goes to IDLE

Wakes on PLL wakeup and awaits lock vari-
able being cleared.

Completes the process by clearing the lock vari-
able.

Runs second (optional) callback function
and returns from interrupt.

Dual Core Considerations

3-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

According to Appendix A of the VisualDSP++ 4.5 C/C++ Compiler and
Library Manual for Blackfin Processors, there are two possible approaches
for building applications that run across both cores.

• One application per core, where executables are built for a each
core using two passes of the linker, and

• One application across both cores, where a 5-project group is used
and a single linker pass is made that builds executables for both
processors.

The latter approach will map the lock variable to L2 memory shared by
both processors without any intervention from the user. However, the
One Application per Core approach requires user intervention to ensure
that the lock variable is mapped to the same address in L2 memory in each
of the executables. This is achieved with the use of the RESOLVE state-
ment in the LDF file which can be used to resolve a symbol to its memory
location assigned in the executable for the other core.

The default and generated LDFs for core B both contain the following in
the LDF:

 /*$VDSG<customise-shared-symbols> */

 /* This code is preserved if the LDF is re-generated. */

//

/

 // ldf_shared_symbols

 /* Issue resolve statement for shared symbols mapped in CoreA.

 ** Below is an example of how to do that.

 */

#if defined(OTHERCORE) /* OTHERCORE is a macro defined to name

 of the CoreA DXE */

VisualDSP++ 4.5 Device Drivers and System 3-13
Services Manual for Blackfin Processors

Power Management Module

include <shared_symbols.h> /* C runtime library shared

symbols,

 ** uses macro OTHERCORE.

 */

#if 0

 /* example resolve for user shared

data*/

 RESOLVE(_a_shared_datum, OTHERCORE)

#endif

#endif /* OTHERCORE */

 /*$VDSG<customise-shared-symbols> */

The header file shared_symbols.h contains the RESOLVE statements for
the C/C++ libraries’ shared symbols, and itself includes the additional
header file, services/services_shared_symbols.h containing the
RESOLVE statements for the System Services shared symbols. Currently
the adi_pwr_lockvar variable is the only shared symbol required by Sys-
tem Services.

All that is required is to define OTHERCORE, either within the User
Modifiable Block ahead of where it is tested, or by setting its value in the
LDF Preprocessing page of the Project Options dialog within Visu-
alDSP++ 4.5. For example if the executable, CoreA.dxe (say), for core A is
in the Release sub-directory of a directory, CoreA, adjacent to the CoreB
project directory, then you will need to define OTHERCORE as
..\CoreA\Release\CoreA.dxe, for example:

#define OTHERCORE ..\CoreA\Release\CoreA.dxe

#if defined(OTHERCORE)

:

Please refer to the previously mentioned Appendix and the VisualDSP++
4.5 Linker and Utilities Manual for more detailed information.

SDRAM Initialization Prior to Loading an Executable

3-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an
Executable

Applications that require code and or data to be located in SDRAM at
load time require the SDRAM controller to be initialized beforehand.
This is the case for all applications where Instruction and/or Data Caching
are enabled. However, the EBIU Service’s initialization routine,
adi_ebiu_Init(), is not executed until after the application has loaded.

There are two ways in which an application can be loaded into the Proces-
sor core:

• Via an emulator session connected to the VisualDSP++ 4.5 IDDE,
and

• From flash memory or a device attached to the SPI port when the
processor is reset.

In the first case it is imperative that the Use XML reset values option is
checked in the Target Options dialog under the Settings menu. This will
ensure that the SDRAM is correctly (if not optimally) configured prior to
the application loading. Once loaded, the application’s use of the power
management and EBIU services will ensure that the SDRAM is optimally
configured.

Where the application is not loaded from within an emulator session, it is
necessary for the boot loader to initialize SDRAM prior to loading the
application. This is achieved using an Initialization block as described in
the VisualDSP++ 4.5 Loader/Splitter for Blackfin Processors manual,
where the example given demonstrates the initialization of SDRAM.

This Initialization block code is compiled into an executable, and is passed
to the loader via the –init filename option or in the Initialization file field
of the Load – Options page of the Project Options dialog. A separate
project is thus required for the Initialization block. An example Initializa-
tion block project is provided in the relevant directory (for the processor)

VisualDSP++ 4.5 Device Drivers and System 3-15
Services Manual for Blackfin Processors

Power Management Module

under the Blackfin\ldr\init_code directory of the VisualDSP++ 4.5
installation. The values required for the SDRAM configuration registers
can be set to the ones used in the relevant XML file for the processor, for
example ADSP-BF533-proc.xml, located in the System\ArchDef directory
of the VisualDSP++ 4.5 installation.

Where a different memory configuration to that supplied with the
EZ-KITs is required, the user is required to work out the appropriate val-
ues. For loading from the IDDE the simplest approach is to change the
values at the bottom of the relevant XML file, after backing up the origi-
nal file. For example, a custom board based on an ADSP-BF531 processor
requires that you change the settings in
System\ArchDef\ADSP-BF531-proc.xml.

Supplied with the VisualDSP++ 4.5 installation is a web page calculator to
enable the generation of the appropriate values. This page, located at

Blackfin\lib\src\services\ebiu\ebiu_calc.html,

is a self-contained JavaScriptTM application. Double-click on its entry in
WindowsTM Explorer to load the calculator in your default browser and
follow the instructions.

If the custom board in use has a JTAG connection it may be possible to
generate the appropriate values by building a small sample project that
loads into L1 memory, containing the following code:

void main(void)

{

 /* set up EBIU command table */

 ADI_EBIU_COMMAND_PAIR sdram_config[] = {

 /* Add appropriate command-value pairs here */

 { ADI_EBIU_CMD_END, 0 }

 };

 /* and pass to the Initialization function */

 adi_ebiu_Init(sdram_config, 0);

Power Management API Reference

3-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 /* set up the Power Management command table */

 ADI_PWR_COMMAND_PAIR power_config[] = {

 /* Add appropriate command-value pairs here */

 { ADI_PWR_CMD_END, 0 }

 };

 /* and pass to the Initialization function */

 adi_pwr_Init(power_config);

 /* Print out the EBIU registers */

 u32 ebiu_sdgctl = *pEBIU_SDGCTL;

 printf(" EBIU_SDGCTL = %08x\n", ebiu_sdgctl);

 #if defined(__ADSP_TETON__)

 u32 ebiu_sdbctl = *pEBIU_SDBCTL;

 printf(" EBIU_SDBCTL = %08x\n", ebiu_sdbctl);

 #else

 u16 ebiu_sdbctl = *pEBIU_SDBCTL;

 printf(" EBIU_SDBCTL = %04x\n", ebiu_sdbctl);

 #endif

 u16 ebiu_sdrrc = *pEBIU_SDRRC;

 printf(" EBIU_SDRRC = %04x\n", ebiu_sdrrc);

}

 This program can then be loaded and run from the IDDE and will report
the register settings required for the Initialization Block.

Power Management API Reference
This section provides descriptions of the PM module’s application pro-
gramming interface (API) functions.

VisualDSP++ 4.5 Device Drivers and System 3-17
Services Manual for Blackfin Processors

Power Management Module

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Power Management API Reference

3-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_AdjustFreq

Description

This function allows the core and system clocks to be modified by specify-
ing the core and system clock divider ratios, CSEL and SSEL, in the PLL_DIV
register. The processor is not idled.

Prototype

ADI_PWR_RESULT adi_pwr_AdjustFreq(

 const ADI_PWR_CSEL csel,

 const ADI_PWR_SSEL ssel

);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_AdjustSpeed
returns one of the following result codes. Otherwise the function returns
ADI_PWR_RESULT_SUCCESS.

csel An ADI_PWR_CSEL value specifies how the Voltage Core
Oscillator (VCO) frequency is to be divided to obtain a new
Core Clock frequency (see “ADI_PWR_CSEL” on
page 3-50). The divider value cannot exceed the ssel value.

ssel An ADI_PWR_SSEL value specifies how the VCO frequency is
to be divided to obtain a new System Clock frequency
(see “ADI_PWR_CSEL” on page 3-50).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_CSEL An invalid value for CSEL has been specified.

VisualDSP++ 4.5 Device Drivers and System 3-19
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_RESULT_INVALID_SSEL An invalid value for SSEL has been specified.

ADI_PWR_INVALID_CSEL_SSEL_
COMBINATION

The core clock divider is greater that the System
clock divider value, or both ADI_PWR_CSEL_NONE
and ADI_PWR_SSEL_NONE are specified.

Power Management API Reference

3-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_Control

Description

This function enables the dynamic power management registers to be con-
figured or queried according to command-value pairs
(“ADI_PWR_COMMAND_PAIR” on page 3-49), specified in one of
three ways:

1. A single command-value pair is passed.

adi_pwr_Control(

 ADI_PWR_CMD_SET_INPUT_DELAY,

 (void*)ADI_PWR_INPUT_DELAY_ENABLE,

);

2. A single command-value pair structure is passed.

ADI_PWR_COMMAND_PAIR cmd = {

 ADI_PWR_CMD_SET_INPUT_DELAY,

 (void*)ADI_PWR_INPUT_DELAY_ENABLE,

};

adi_pwr_Control(ADI_PWR_CMD_PAIR,(void*)&cmd);

3. A table of ADI_PWR_COMMAND_PAIR structures is passed. The last entry in
the table must be ADI_PWR_CMD_END.

ADI_PWR_COMMAND_PAIR table[] = {

 { ADI_PWR_CMD_SET_INPUT_DELAY,

(void*)ADI_PWR_INPUT_DELAY_ENABLE

 { ADI_PWR_CMD_SET_OUTPUT_DELAY,

(void*)ADI_PWR_OUTPUT_DELAY_ENABLE

 { ADI_PWR_CMD_END, 0}

};

adi_pwr_Control(

 ADI_PWR_CMD_TABLE,

VisualDSP++ 4.5 Device Drivers and System 3-21
Services Manual for Blackfin Processors

Power Management Module

 (void*)table

);

Refer to “ADI_PWR_COMMAND” on page 3-44 and “Public Data
Types and Enumerations” on page 3-44 for the complete list of com-
mands and associated values.

Prototype

ADI_PWR_RESULT adi_pwr_Control(

 ADI_PWR_COMMAND command,

 void *Value

);

Arguments

Return Value

In debug mode the adi_pwr_Control function returns one of the following
values. Otherwise, ADI_PWR_RESULT_SUCCESS is returned.

Command An ADI_PWR_COMMAND enumeration value specifies the
meaning of the associated value argument.

Value This is the required value (see “ADI_PWR_COMMAND”
on page 3-44).

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_BAD_COMMAND An invalid command has been specified.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_INPUT_DELAY The input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY The output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT The PLL lock count value is invalid.

Power Management API Reference

3-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_GetConfigSize

Description

This function returns the number of bytes required to save the current
configuration data. This value is also available via the
ADI_PWR_SIZEOF_CONFIG macro.

The return value of adi_pwr_GetConfigSize as well the
ADI_PWR_SIZEOF_CONFIG macro incorporate the size of the EBIU module
configuration, whether the latter is initialized or not.

Prototype

size_t adi_pwr_GetConfigSize(void);

Return Value

The size of the configuration structure.

VisualDSP++ 4.5 Device Drivers and System 3-23
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetFreq

Description

This function returns the current values of the CCLK, SCLK and Voltage
Core Oscillator (VCO) frequencies

Prototype

ADI_PWR_RESULT adi_pwr_GetFreq(

 u32 *fcclk,

 u32 *fsclk,

 u32 *fvco);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_GetFreq returns
one of the following result codes. Otherwise the function returns
ADI_PWR_RESULT_SUCCESS.

fcclk This is an address of location to store the current CCLK value
(Hz).

fsclk This is an address of location to store the current SCLK value
(Hz).

fvco This is an address of location to store the VCO frequency
(Hz).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

Power Management API Reference

3-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_GetPowerMode

Description

This function returns the current power mode of the processor (only
applicable for full-on and active modes).

Prototype

ADI_PWR_MODE adi_pwr_GetPowerMode(void);

Return Value

The current power mode as an ADI_PWR_MODE value.

VisualDSP++ 4.5 Device Drivers and System 3-25
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetPowerSaving

Description

This function calculates the power saving value for the current PLL and
voltage regulator settings, as per the data sheet formulae with the time
ratio set to unity, and the nominal values as per the maximum possible
(that is, at VLEV=1.3V).

Prototype

u16 adi_pwr_GetPowerSaving(void);

Return Value

The percentage power saving value.

Power Management API Reference

3-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_Init

Description

This function initializes the power management module. The following
values are required to be set for successful initialization:

These are communicated to the adi_pwr_Init function by passing a
pointer to a table of command-value pairs, terminated with the
ADI_PWR_CMD_END command.

For example, the following ADI_PWR_COMMAND_PAIR table gives the EZ-KIT
Lite values:

ADI_PWR_COMMAND_PAIR ezkit_init[] = {

 { ADI_PWR_CMD_SET_PROC_VARIANT, ADI_PWR_PROC_BF533SKBC600 },

Processor variant An ADI_PWR_PROC_KIND value describes the processor variant
(see “ADI_PWR_PROC_KIND” on page 3-58).

Package kind An ADI_PWR_PACKAGE_KIND value describes the packaging type
of the processor
(see“ADI_PWR_PACKAGE_KIND” on page 3-56).

Core voltage (VDDINT) An ADI_PWR_VLEV value specifying the internal voltage, applied
to the core by an external voltage regulator.The internal voltage
regulator is bypassed. Its absence in the command table implies
that the internal regulator is to be used.
An external voltage regulator is required for the
ADSP-BF533SKBC750 processor, as the internal voltage
regulator cannot supply the 1.4V required for the processor to
run at 750 MHz.

External voltage (VDDEXT) An ADI_PWR_VDDEXT value specifies the external voltage
supplied to the voltage regulator. This value, when coupled with
the packaging, determines the maximum system clock (SCLK)
frequency available.

CLKIN Frequency of the external clock oscillator in MHz supplied to the
processor. Macros are available for a range of input clocks. For
example, the EZ-KIT Lite value is ADI_PWR_CLKIN_EZKIT
(see “ADI_PWR_VDDEXT” on page 3-62).

VisualDSP++ 4.5 Device Drivers and System 3-27
Services Manual for Blackfin Processors

Power Management Module

 { ADI_PWR_CMD_SET_PACKAGE, ADI_PWR_PACKAGE_MBGA },

 { ADI_PWR_CMD_SET_VDDEXT, ADI_PWR_VDDEXT_330 },

 { ADI_PWR_CMD_SET_CLKIN, ADI_PWR_CLKIN_EZKIT },

 { ADI_PWR_CMD_END, 0 }

};

Table 3-3 on page 3-27 lists valid command-value pairs.

Table 3-3. adi_pwr_Init Command Value Pairs

Command Description

ADI_PWR_CMD_SET_CCLK_TABLE The address of a table containing ADI_PWR_NUM_VLEVS
values of type u16 detailing the maximum CCLK fre-
quency for each ADI_PWR_VLEV value. These values will
be used instead of the data sheet values.

ADI_PWR_CMD_SET_EZKIT An ADI_PWR_EZKIT value to identify the EZ-KIT for
which the power management is to be configured. This
command establishes all the required values, as detailed
above (see “ADI_PWR_EZKIT” on page 3-52).

ADI_PWR_CMD_SET_PROC_VARIANT An ADI_PWR_PROC_KIND value specifies the processor
variant. (mandatory)
(see “ADI_PWR_PROC_KIND” on page 3-58.

ADI_PWR_CMD_SET_PACKAGE An ADI_PWR_PACKAGE_KIND value describes the
packaging type of the processor (mandatory).
See “ADI_PWR_PROC_KIND” on page 3-58.

ADI_PWR_CMD_SET_CLKIN A u16 value specifies the external clock frequency,
CLKIN, supplied to the processor. (Mandatory).

ADI_PWR_CMD_SET_VDDINT An ADI_PWR_VLEV value specifies the Core Voltage
Level. This should only be passed to adi_pwr_Init if
an external voltage regulator is to be used, as its
presence instructs the module to bypass the internal reg-
ulator (see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_CMD_SET_VDDEXT An ADI_PWR_VDDEXT value specifies the external
voltage level applied to the internal voltage regulator
(mandatory).
See “ADI_PWR_VDDEXT” on page 3-62.

Power Management API Reference

3-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The adi_pwr_Init function can only be called once. Subsequent calls to
adi_pwr_Init are ignored with the ADI_PWR_RESULT_CALL_IGNORED result
code returned.

Table 3-4 on page 3-28 lists valid command-value pairs for an
ADSP-BF561 dual core processor.

ADI_PWR_CMD_SET_IVG An interrupt_kind value (see exception.h)
specifies the IVG level for the PLL_WAKEUP event.

ADI_PWR_CMD_SET_INPUT_DELAY An ADI_PWR_INPUT_DELAY value specifies whether or
not to add approximately 200ps of delay to the time
when inputs are latched on the external memory inter-
face (see “ADI_PWR_INPUT_DELAY” on page 3-53).

ADI_PWR_CMD_SET_OUTPUT_DELAY An ADI_PWR_OUTPUT_DELAY value specifies whether or
not to add approximately 200ps of delay to external
memory output signals
See “ADI_PWR_OUTPUT_DELAY” on page 3-54.

Table 3-4. ADSP-BF561 Dual Core Command-Value Pairs

Command Description

Commands relevant for ADSP-BF561 dual core only.

ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED This command instructs the power
management module to use its
built-in mechanism for synchronizing
the cores across changes to the PLL.
Use NULL as the associated value.
This command is to be passed to
adi_pwr_Init() on both cores.

ADI_PWR_CMD_SET_COREB_SUPP_INT0_IVG The IVG level that is to be assigned
to supplemental Interrupt 0 on core
B. This command is to be passed to
adi_pwr_Init() on core B only.

Table 3-3. adi_pwr_Init Command Value Pairs (Cont’d)

Command Description

VisualDSP++ 4.5 Device Drivers and System 3-29
Services Manual for Blackfin Processors

Power Management Module

Prototype

ADI_EBIU_RESULT adi_pwr_Init(

 ADI_PWR_COMMAND_PAIR *table

);

ADI_PWR_CMD_SET_SYNC_LOCK_VARIABLE The address of a lock variable in L2
that is used for the built-in synchro-
nization. The default is to use the
built-in, adi_pwr_lockvar, variable.

ADI_PWR_CMD_SET_FIRST_CLIENT_CALLBACK The address of a function to be called
by core B before PLL changes are
made. This command is to be passed
to adi_pwr_Init() on core B only.

ADI_PWR_CMD_SET_SECOND_CLIENT_CALLB
ACK

The address of a function to be called
by core B after PLL changes are made.
This command is to be passed to
adi_pwr_Init() on core B only.

ADI_PWR_CMD_SET_CLIENT_HANDLE A void* value/address that is to be
send to the callback functions. This
command is to be passed to
adi_pwr_Init() on core B only.

Table 3-4. ADSP-BF561 Dual Core Command-Value Pairs (Cont’d)

Command Description

Power Management API Reference

3-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the results codes
listed below. Otherwise, either the value of ADI_PWR_RESULT_SUCCESS is
returned, or the value of ADI_PWR_RESULT_CALL_IGNORED is returned if the
PM module has already been initialized.

Please note that in order to better facilitate the configuration of
timing parameters for device drivers, the default unit of frequency
for communicating with the power management functions is hertz
(Hz) rather than megahertz (MHz).

Should the application require MHz rather than Hz, the power
management service can be commanded to use MHz by passing the
new command ADI_PWR_CMD_SET_FREQ_AS_MHZ to the
adi_pwr_Init() function. The companion value parameter is
ignored with this command. For example, if passing a table of com-
mands to the adi_pwr_Init() function, the following command
should be added to the table:

 { ADI_PWR_CMD_SET_FREQ_AS_MHZ, NULL },

Table 3-5 lists and explains the return codes.

ConfigData The address of a table of command-value pairs as defined by
“ADI_PWR_COMMAND_PAIR” on page 3-49 and
“Public Data Types and Enumerations” on page 3-44.
The last command in the table must be the
ADI_EBIU_CMD_END command.

VisualDSP++ 4.5 Device Drivers and System 3-31
Services Manual for Blackfin Processors

Power Management Module

Table 3-5. adi_pwr_Init Return Codes

Return Value Explanation

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_BAD_COMMAND An invalid command has been specified.

ADI_PWR_RESULT_CALL_IGNORED The module has already been initialized.

ADI_PWR_RESULT_INVALID_VLEV An Invalid core voltage level has been specified.

ADI_PWR_RESULT_INVALID_VDDEXT An Invalid external voltage level has been specified.

ADI_PWR_RESULT_INVALID_PROCESSOR The processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG The IVG level supplied is invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELA
Y

The input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DEL
AY

The output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT The PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_EZKIT Invalid EZ-KIT Lite type specified.

Power Management API Reference

3-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_LoadConfig

Description

This function restores the current configuration values from the memory
location pointed to by the hConfig argument. The PLL controller and
Voltage Regulator are reprogrammed. If the EBIU module is initialized,
its configuration is also loaded and the SDRAM Controller programmed.

Prototype

ADI_PWR_RESULT adi_pwr_LoadConfig(

 const ADI_PWR_CONFIG_HANDLE hConfig,

 const size_t szConfig

);

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the following
results codes. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is
returned.

hConfig This is the address of the memory area from which the
current configuration is to be restored.

szConfig This is the number of bytes available at the given
address. This value must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_NO_MEMORY The szConfig value is insufficient.

ADI_PWR_RESULT_FAILED The address of hConfig is zero.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

VisualDSP++ 4.5 Device Drivers and System 3-33
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Reset

Description

This function resets the PLL controller to its hardware reset values.

Prototype

void adi_pwr_Reset(void);

Arguments

None

Return Value

None

Power Management API Reference

3-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_SaveConfig

Description

This function stores the current configuration values into the memory
area pointed to by the hConfig argument. If the EBIU module is initial-
ized, its configuration is also saved; otherwise, the appropriate fields are
undefined.

Prototype

ADI_PWR_RESULT adi_pwr_SaveConfig(

 const ADI_PWR_CONFIG_HANDLE hConfig,

 const size_t szConfig

);

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the following
results codes. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is
returned.

hConfig The address of the memory location into which the
current configuration is to be stored.

szConfig Number of bytes available at the given address.
The value must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_NO_MEMORY The szConfig value is insufficient.

ADI_PWR_RESULT_FAILED The address of hConfig is zero.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

VisualDSP++ 4.5 Device Drivers and System 3-35
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetFreq

Description

This function sets the PLL controller to provide CCLK and SCLK values as
close as possible to the requested values, in Hz. If the voltage regulator is
not disabled, it is adjusted (where necessary) to provide the minimum
voltage that can sustain the requested frequencies.

The processor is idled to effect the changes.

This function always finds a solution where the CSEL divider in the
PLL_DIV register is unity. If the PLL Input Divider is requested,
then the difference between the requested and obtained values is
minimized.

To determine the values set by this function, use adi_pwr_GetFreq.

Prototype

ADI_PWR_RESULT adi_pwr_SetFreq(

 const u32 fcclk,

 const u32 fsclk,

 const ADI_PWR_DF df);

Power Management API Reference

3-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In the debug variant of the library, the adi_pwr_SetFreq function returns
one of the following result codes. Otherwise, it returns
ADI_PWR_RESULT_SUCCESS.

fcclk This is the requested CCLK value in Hz. If this is set to zero,
the adi_pwr_SetFreq function gives priority to matching
the given SCLK frequency and calculates and sets a CCLK
frequency as close as possible to the maximum possible for
the current voltage level.

fsclk This is the requested SCLK value in Hz.

df An ADI_PWR_DF enumeration value indicates whether or not
the PLL input divider is to be enabled (see “ADI_PWR_DF”
on page 3-51). If enabled, then it can lead to lower power
dissipation. Passing a value of ADI_PWR_DF_NONE indicates
that the routine should decide whether to enable or disable it.

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_IGNORED The PM module has not been initialized.

VisualDSP++ 4.5 Device Drivers and System 3-37
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetMaxFreqForVolt

Description

This function sets the Voltage Regulator control register, VR_CTL, with the
required voltage level and adjusts the processor’s CCLK and SCLK values to
the maximum sustainable level.

The processor is idled to effect the changes.

Prototype

ADI_PWR_RESULT adi_pwr_SetMaxFreqForVolt(

 const ADI_PWR_VLEV vlev

);

Arguments

Return Value

In debug variant of the library, the adi_pwr_SetMaxFreqForVolt function
returns the following result codes. Otherwise, ADI_PWR_RESULT_SUCCESS is
returned.

vlev The required voltage level is set as an ADI_PWR_VLEV
enumeration value (see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_RESULT_INVALID_VR_VLEV The vlev value is invalid.

ADI_PWR_RESULT_VR_BYPASSED The voltage regulator is bypassed. A call to
adi_dma_SetVoltageRegulator with a non-zero
switching frequency value is required prior to this call
(see “adi_pwr_SetVoltageRegulator” on page 3-40).

ADI_PWR_RESULT_CALL_IGNORED This process completed successfully.

Power Management API Reference

3-38 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_SetPowerMode

Description

This function sets the Power mode of the processor. There are five modes:

• Full-On – The processor core clock, CCLK, and system clock, SCLK,
run at the frequencies set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions and full DMA is enabled.

• Active – The PLL is bypassed so that the processor core clock and
system clock run at the CLKIN input clock frequency. DMA access
is available to configured L1 memories appropriately.

• Sleep – The core processor is idled. The system clock continues to
run at the speed set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions and DMA is restricted to
external memory.

• Deep Sleep – The processor core and all peripherals except the
Real-Time Clock (RTC) are disabled. DMA is not supported in
this mode.

SDRAM is set to Self-Refresh Mode. The voltage regulator is pow-
ered up on RTC interrupt or a hardware reset event. In both cases
the core reset sequence is initiated.

• Hibernate – The internal voltage regulator is powered down.
SDRAM is set to Self-Refresh Mode. The voltage regulator is pow-
ered up on hardware reset.

Please note that until SDRAM is properly configured and the
refresh rate appropriate, data held in SDRAM will decay! This only
applies to exiting Hibernate mode or Deep Sleep by a hardware
reset event. For ADSP-BF531, ADSP-BF532 and ADSP-BF533
cores, the SCKE pin on the processor is always asserted on reset,
causing the SDRAM to exit self-refresh mode. This behavior is a

VisualDSP++ 4.5 Device Drivers and System 3-39
Services Manual for Blackfin Processors

Power Management Module

constraint of PC-133 compliance. For the ADSP-BF534,
ADSP-BF536 and ADSP-BF537 cores, this restriction can be cir-
cumvented by enabling the CKELOW bit in the VR_CTL register (see
“adi_pwr_SetVoltageRegulator” on page 3-40). This can also be
achieved by inserting the following command value pair to the
table to be passed to the adi_pwr_Init function:

 { ADI_PWR_CMD_SET_PC133_COMPLIANCE, 0 }

Prototype

ADI_PWR_RESULT adi_pwr_SetPowerMode(

 const ADI_PWR_MODE mode);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_SetPowerMode
returns one of the following result codes. Otherwise the function returns
ADI_PWR_RESULT_SUCCESS.

mode The ADI_PWR_MODE value indicates the state to which the
processor is to be transitioned
(see “ADI_PWR_MODE” on page 3-55).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_IGNORED The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_MODE Either an incorrect mode has been requested or the
requested mode cannot be reached from the current mode.

Power Management API Reference

3-40 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_SetVoltageRegulator

Description

This function sets the Voltage Regulator Control Register, VR_CTL, with
one or more of the following fields.

The following fields are applicable to all Blackfin processors.

VLEV This is the required voltage level as an ADI_PWR_VLEV
enumeration value (see “ADI_PWR_VLEV” on page 3-63).

FREQ This is the required voltage regulator switching oscillator
frequency as an ADI_PWR_VR_FREQ enumeration value (see
“ADI_PWR_VR_FREQ” on page 3-67). Please note,
supply ADI_PWR_VR_FREQ_POWERDOWN to bypass the
onboard voltage regulator.

GAIN This is the required gain value as an ADI_PWR_VR_GAIN
enumeration value
(see “ADI_PWR_VR_GAIN” on page 3-68).

WAKE An ADI_PWR_VR_WAKE enumeration value indicating
whether the voltage regulator can be awakened from power
down upon an interrupt from the Real Time Clock or a low
going edge on the RESET# pin
(see “ADI_PWR_VR_WAKE” on page 3-70).

The following fields are applicable only to the ADSP-BF534, ADSP-BF536 and ADSP-BF537
processors:

PHYWE An ADI_PWR_VR_PHYWE enumeration value indicating
whether the voltage regulator can be awakened from power
down by activity on the Ethernet PHY
(see “ADI_PWR_VR_PHYWE” on page 3-69).

CANWE An ADI_PWR_VR_CANWE enumeration value indicating
whether the voltage regulator can be awakened from power
down by activity on the CAN bus
(see “ADI_PWR_VR_CANWE” on page 3-64).

VisualDSP++ 4.5 Device Drivers and System 3-41
Services Manual for Blackfin Processors

Power Management Module

These values are communicated to the adi_pwr_SetVoltageRegulator
function by passing either a single command-value pair or a sequence of
pairs in a table terminated with the ADI_PWR_CMD_END command, in the
same way as for the adi_pwr_Control function. For more detailed infor-
mation, refer to “adi_pwr_Control” on page 3-20.

For example, to bypass the built-in voltage regulator, the following code
could be used.

 adi_pwr_SetVoltageRegulator(ADI_PWR_SET_VR_FREQ,

 (void*) ADI_PWR_VR_FREQ_POWERDOWN);

The following table defines the command-value pairs that can be used
with the adi_pwr_SetVoltageRegulator function. Use of any other pairs is
invalid.

CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value to govern
whether or not other devices, most likely the Ethernet PHY,
are to be clocked by the input clock, CLKIN.This bit should
be set if the Ethernet PHY is to be used on the ADSP-BF537
EZ-KIT Lite board
(see “ADI_PWR_VR_CLKBUFOE” on page 3-66).

CKELOW An ADI_PWR_VR_CKELOW enumeration value to govern
whether to protect against the default reset state behavior of
setting the EBIU pins to their inactive state. This bit should
be set if the SDRAM is to be placed into self-refresh mode
while the processor is in Hibernate state
(see “ADI_PWR_VR_CKELOW” on page 3-65).

Command Associated data value

The following commands are applicable to all Blackfin processors.

ADI_PWR_CMD_END The data value is ignored as the command simply marks
the end of a table of command pairs.

ADI_PWR_CMD_PAIR Used to tell adi_pwr_SetVoltageRegulator that a sin-
gle command pair is being passed.

ADI_PWR_CMD_TABLE Used to tell adi_pwr_SetVoltageRegulator that a
table of command pairs is being passed.

Power Management API Reference

3-42 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The processor’s CCLK and SCLK frequencies are not adjusted. The processor
is idled to effect the changes, except in the case of the
ADI_PWR_CMD_SET_VR_WAKE/ADI_PWR_CMD_SET_VR_CANWE commands. If the
requested voltage level is insufficient to sustain the current frequency val-
ues, the function return an error without amending any settings.

ADI_PWR_CMD_SET_VR_VLEV An ADI_PWR_VLEV value specifying the Voltage Level
required of the voltage regulator
(see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_CMD_SET_VR_FREQ An ADI_PWR_VR_FREQ value specifying the required volt-
age regulator switching oscillator frequency
(see “ADI_PWR_VR_FREQ” on page 3-67).
Use the ADI_PWR_VR_FREQ_POWERDOWN value to bypass
the onboard voltage regulator.

ADI_PWR_CMD_SET_VR_GAIN An ADI_PWR_VR_GAIN value specifying the internal loop
gain of the switching regulator loop
(see “ADI_PWR_VR_GAIN” on page 3-68).

ADI_PWR_CMD_SET_VR_WAKE An ADI_PWR_VR_WAKE value indicating whether to
enable/disable the WAKE bit
(see “ADI_PWR_VR_WAKE” on page 3-70).

The following commands are applicable to ADSP-BF534, ADSP-BF536 and ADSP-BF537
processors:

ADI_PWR_CMD_SET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value indicating
whether to enable/disable the PHYWE bit
(see “ADI_PWR_VR_PHYWE” on page 3-69).

ADI_PWR_CMD_SET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value indicating
whether to enable/disable the CANWE bit
(see “ADI_PWR_VR_CANWE” on page 3-64).

ADI_PWR_CMD_SET_VR_CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value indicat-
ing to enable/disable the CLKBUFOE bit (
see “ADI_PWR_VR_CLKBUFOE” on page 3-66).

ADI_PWR_CMD_SET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value indicating
whether to enable/disable the CKELOW bit
(see “ADI_PWR_VR_CKELOW” on page 3-65).

VisualDSP++ 4.5 Device Drivers and System 3-43
Services Manual for Blackfin Processors

Power Management Module

Prototype

ADI_PWR_RESULT adi_pwr_SetVoltageRegulator(

 ADI_PWR_COMMAND command,

 void *Value

);

Arguments

Return Value

In debug variant of the library, the adi_pwr_SetVoltageRegulator func-
tion returns the following result codes. Otherwise,
ADI_PWR_RESULT_SUCCESS is returned.

Command An ADI_PWR_COMMAND enumeration value specifies the
meaning of the associated value argument.

Value This is the required value
(see “adi_pwr_SetVoltageRegulator” on page 3-40).

ADI_PWR_RESULT_INVALID_VR_VLEV The VLEV argument is invalid or insufficient to
sustain the current core and system clock fre-
quencies.

ADI_PWR_RESULT__INVALID_VR_FREQ The FREQ value is invalid.

ADI_PWR_RESULT__INVALID_VR_GAIN The GAIN value is invalid.

ADI_PWR_RESULT__INVALID_VR_WAKE The WAKE value is invalid.

ADI_PWR_RESULT_INVALID_VR_PHYWE The PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CANWE The CANWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE The CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW The CKELOW value is invalid.

ADI_PWR_RESULT__BAD_COMMAND The Command argument is unrecognized.

ADI_PWR_RESULT_IGNORED The PM module has not been initialized.

Public Data Types and Enumerations

3-44 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types and Enumerations
This section provides descriptions of the PM public data types and
enumerations.

ADI_PWR_COMMAND

The ADI_PWR_COMMAND enumeration type describes the command type in
an ADI_PWR_COMMAND_PAIR structure. Table 3-6 details the available com-
mands, the associated data values and the valid context for their use:

Table 3-6. ADI_PWR_COMMAND Available Commands

Command Associated Data Value

Commands that can be used with the adi_pwr_Init, adi_pwr_Control, and
adi_pwr_SetVoltageRegulator functions:

ADI_PWR_CMD_END The data value is ignored as the command simply
marks the end of a table of command pairs.

Commands that can be used with either the adi_pwr_Control or
adi_pwr_SetVoltageRegulator functions:

ADI_PWR__CMD_PAIR Indicates that a single command pair is being
passed.

ADI_PWR__CMD_TABLE Indicates that a table of command pairs is being
passed.

Commands that can be used with either the adi_pwr_Init or adi_pwr_Control functions:

ADI_PWR_CMD_SET_INPUT_DELAY An ADI_PWR_INPUT_DELAY value specifying
whether or not to add approximately 200ps of
delay to the time when inputs are latched on the
external memory interface
(see “ADI_PWR_INPUT_DELAY” on
page 3-53).

VisualDSP++ 4.5 Device Drivers and System 3-45
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_CMD_SET_OUTPUT_DELAY An ADI_PWR_OUTPUT_DELAY value specifying
whether or not to add approximately 200ps of
delay to external memory output signals
(see “ADI_PWR_OUTPUT_DELAY” on
page 3-54.

ADI_PWR_CMD_SET_PLL_LOCKCNT A u16 value specifying the number of SCLK cycles
to occur during the IDLE stage of the PLL
programming sequence before the processor sets
the PLL_LOCKED bit in the PLL_STAT register.
This value is held in the PLL_LOCKCNT register.

Commands valid only when passed to the adi_pwr_Init function:

ADI_PWR_CMD_SET_EZKIT An ADI_PWR_EZKIT value to identify the
EZ-KIT Lite board for which the power manage-
ment is to be configured
(see“ADI_PWR_EZKIT” on page 3-52).

ADI_PWR_CMD_SET_PROC_VARIANT An ADI_PWR_PROC_KIND value specifying the
processor variant
(see “ADI_PWR_PROC_KIND” on page 3-58).

ADI_PWR_CMD_SET_PACKAGE An ADI_PWR_PACKAGE_KIND value describing
the packaging type of the processor
(see “ADI_PWR_PACKAGE_KIND” on
page 3-56).

ADI_PWR_CMD_SET_CLKIN A u16 value specifying the external clock fre-
quency, CLKIN, in MHz supplied to the proces-
sor.

ADI_PWR_CMD_SET_VDDINT An ADI_PWR_VLEV value specifying the Core
Voltage Level provided by an external voltage reg-
ulator (see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_CMD_SET_VDDEXT An ADI_PWR_VDDEXT value specifying the exter-
nal voltage level applied to the internal voltage
regulator
(see “ADI_PWR_VDDEXT” on page 3-62).

Table 3-6. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

Public Data Types and Enumerations

3-46 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CMD_FORCE_DATASHEET_VALUES Enforces the Core Clock frequency limits for
each voltage level as defined in the relevant data
sheet (default).

ADI_PWR_CMD_SET_CCLK_TABLE The address of a table containing
ADI_PWR_NUM_VLEVS values of type u16 detail-
ing the max CCLK frequency for each
ADI_PWR_VLEV value. These values will be used
instead of the data sheet values.

ADI_PWR_CMD_SET_IVG An u16 value specifying the IVG level for the
PLL_WAKEUP event. This defaults to 7.

ADI_PWR_CMD_SET_PC133_COMPLIANCE An ADI_PWR_PC133_COMPLIANCE value specify-
ing whether or not the SDRAM is to comply
with the PC-133 standard. Non-compliance to
the standard is required to enable the processor to
return from Hibernate mode without losing the
contents of SDRAM. This value prevents
SDRAM decay during reset, enabling the con-
tents of SDRAM to be preserved through the
Hibernate-reset or Deep Sleep reset cycle. (This
command applies to ADSP-BF534,
ADSP-BF536, and ADSP-BF537 cores only).

Commands valid only when passed to the adi_pwr_SetVoltageRegulator function:

ADI_PWR_CMD_SET_VR_VLEV An ADI_PWR_VLEV value specifying the voltage
level required of the voltage regulator
(see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_CMD_SET_VR_FREQ An ADI_PWR_VR_FREQ value specifying the
required voltage regulator switching oscillator
frequency. Use the ADI_PWR_FREQ_POWERDOWN
value to bypass the onboard voltage regulator
(see “ADI_PWR_VR_FREQ” on page 3-67).

ADI_PWR_CMD_SET_VR_GAIN An ADI_PWR_VR_GAIN value specifying the inter-
nal loop gain of the switching regulator loop
(see “ADI_PWR_VR_GAIN” on page 3-68).

Table 3-6. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

VisualDSP++ 4.5 Device Drivers and System 3-47
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_CMD_SET_VR_WAKE An ADI_PWR_VR_WAKE value specifying if the
voltage regulator is to be awakened from power-
down upon an interrupt from the RTC or a low
going edge on the RESET# pin
(see “ADI_PWR_VR_WAKE” on page 3-70).

ADI_PWR_CMD_SET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value indi-
cating whether to enable/disable the PHYWE bit
(ADSP-BF534, ADSP-BF536 and ADSP-BF537
cores only).
(see “ADI_PWR_VR_PHYWE” on page 3-69).

ADI_PWR_CMD_SET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value indi-
cating whether to enable or disable the CANWE bit
(ADSP-BF534, ADSP-BF536, and ADSP-BF537
cores only).
(see “ADI_PWR_VR_CANWE” on page 3-64).

ADI_PWR_CMD_SET_VR_CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value
indicating whether to enable or disable the
CLKBUFOE bit (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only).
(see“ADI_PWR_VR_CLKBUFOE” on
page 3-66).

ADI_PWR_CMD_SET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value
indicating whether to enable or disable the
CKELOW bit (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only).
(see “ADI_PWR_VR_CKELOW” on
page 3-65).

Commands valid only when passed to the adi_pwr_Control function:

ADI_PWR_CMD_GET_VDDINT An ADI_PWR_VLEV value containing the maxi-
mum core voltage level
(see “ADI_PWR_VLEV” on page 3-63).

ADI_PWR_CMD_GET_VR_VLEV An ADI_PWR_VLEV value containing the current
voltage level of the internal voltage regulator. Not
applicable when the internal regulator is bypassed
(see “ADI_PWR_VLEV” on page 3-63).

Table 3-6. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

Public Data Types and Enumerations

3-48 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CMD_GET_VR_FREQ An ADI_PWR_FREQ value containing the current
voltage regulator switching oscillator frequency
(see “ADI_PWR_VR_FREQ” on page 3-67).

ADI_PWR_CMD_GET_VR_GAIN An ADI_PWR_GAIN value containing the internal
loop gain of the switching regulator loop
(see “ADI_PWR_VR_GAIN” on page 3-68).

ADI_PWR_CMD_GET_VR_WAKE An ADI_PWR_VR_WAKE value (specifying if the
voltage can be awakened from powerdown upon
an interrupt from the RTC or a low going edge
on the RESET# pin
(see “ADI_PWR_VR_WAKE” on page 3-70).

ADI_PWR_CMD_GET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value
indicating if the PHYWE bit has been enabled/
disabled (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only).
(see “ADI_PWR_VR_PHYWE” on page 3-69).

ADI_PWR_CMD_GET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value
indicating if the CANWE bit has been enabled or
disabled. (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only)
(see “ADI_PWR_VR_CANWE” on page 3-64).

ADI_PWR_CMD_GET_VR_CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value
indicating if the CLKBUFOE bit has been enabled
or disabled. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only)
(see “ADI_PWR_VR_CLKBUFOE” on
page 3-66).

ADI_PWR_CMD_GET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value
indicating if the CKELOW bit has been enabled or
disabled. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only)
(see“ADI_PWR_VR_CKELOW” on page 3-65).

ADI_PWR_CMD_GET_PLL_LOCKCNT A u16 value containing the value in the
PLL_LOCKCNT register.

Table 3-6. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

VisualDSP++ 4.5 Device Drivers and System 3-49
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_COMMAND_PAIR

This data type is used to enable the generation of a table of control com-
mands to be sent to the Power Management module via the adi_pwr_Init,
adi_pwr_SetVoltageRegulator, and adi_pwr_Control functions:

typedef struct _ADI_PWR_COMMAND_PAIR {

 ADI_PWR_COMMAND kind;

 void *value;

} ADI_PWR_COMMAND_PAIR;

Refer to “ADI_PWR_COMMAND” on page 3-44 for valid values of the
kind field.

Public Data Types and Enumerations

3-50 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CSEL

This data type defines the Core Clock divider bit field in the PLL_DIV reg-
ister. Valid values are:

ADI_PWR_PWR_CSEL_1 Divides Voltage Core Oscillator frequency by 1

ADI_PWR_PWR_CSEL_2 Divides Voltage Core Oscillator frequency by 2

ADI_PWR_PWR_CSEL_4 Divides Voltage Core Oscillator frequency by 4

ADI_PWR_PWR_CSEL_8 Divides Voltage Core Oscillator frequency by 4

VisualDSP++ 4.5 Device Drivers and System 3-51
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_DF

This data type defines the values for the DF bit in the PLL Control register.
A value of ADI_PWR_DF_ON causes the value of CLKIN/2 to be passed to the
PLL module. According to the hardware reference manual for the
ADSP-BF533 processor, this leads to lower power dissipation1,

ADI_PWR_DF_NONE Indicates that no PLL input divider value is to be set.

ADI_PWR_DF_OFF Pass CLKIN to the PLL.

ADI_PWR_DF_ON Pass CLKIN/2 to the PLL.

1 See ADSP-BF533 Blackfin Hardware Reference Manual, Revision 1.0, December 2003, page 8-4.

Public Data Types and Enumerations

3-52 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_EZKIT

This enumeration type describes the revision of the EZ-KIT Lite board for
which the power management module is to be configured. For Blackfin
processors, these are:

ADI_PWR_EZKIT_BF533_750MHZ The ADSP-BF533 EZ-KIT Lite board with the
SKBC750 processor. Please note, this option
disables the internal voltage regulator, since it is
assumed the external voltage regulator has been
enabled. To use the 750MHz kit with the internal
regulator, use the ADI_PWR_EZKIT_BF533_600MHZ
option instead.

ADI_PWR_EZKIT_BF533_600MHZ The ADSP-BF533 EZ-KIT Lite board with either
the SKBC600 or SKBC750 processor, with the
internal voltage regulator enabled, which caps the lat-
ter's core clock (CCLK) at 600MHz.

ADI_PWR_EZKIT_BF537_600MHZ The ADSP-BF537 EZ-KIT Lite board with the
SKBC600 processor.

VisualDSP++ 4.5 Device Drivers and System 3-53
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_INPUT_DELAY

This data type defines the values that the input delay bit can take in the
PLL Control register.

ADI_PWR_INPUT_DELAY_OFF Do not add input delay.

ADI_PWR_INPUT_DELAY_ON Add approximately 200ps of delay to the time when
inputs are latched on the external memory interface.

Public Data Types and Enumerations

3-54 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_OUTPUT_DELAY

This data type defines the values that the output delay bit can take in the
PLL Control register.

ADI_PWR_OUTPUT_DELAY_OFF Do not add output delay.

ADI_PWR_OUTPUT_DELAY_ON Add approximately 200ps of delay to external
memory output signals.

VisualDSP++ 4.5 Device Drivers and System 3-55
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_MODE

This data type defines the power mode of the processor. Valid power
mode values are:

ADI_PWR_MODE_FULL_ON Processor is in Full-On mode; clock speeds are as pro-
grammed.

ADI_PWR_MODE_ACTIVE Processor is in Active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed, providing medium power
saving.

ADI_PWR_MODE_ACTIVE_PLLDISABLED Processor is in Active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed and disabled, providing
medium power saving.

ADI_PWR_MODE_SLEEP Processor is in Sleep mode. It can be woken up with
any interrupt appropriately masked in the SIC_IWR
register, providing high power saving.

ADI_PWR_MODE_DEEP_SLEEP Processor is in Deep Sleep mode. It can only be woken
up with an appropriately masked RTC interrupt or
Reset, providing high power saving.

ADI_PWR_MODE_HIBERNATE The processor is in Hibernate mode. It can only be
awakened on system Reset, providing maximum
power saving.

Public Data Types and Enumerations

3-56 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_PACKAGE_KIND

This data type defines the package type of the processor. Along with the
external voltage (“ADI_PWR_VDDEXT” on page 3-62), this determines
the heat dissipation of the part.

ADI_PWR_PACKAGE_MBGA MBGA - identified by the hemispherical contacts on
the under surface of the processor.

ADI_PWR_PACKAGE_LQFP LQFP - identified by the leg contacts around the
edges of the processor.

VisualDSP++ 4.5 Device Drivers and System 3-57
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_PCC133_COMPLIANCE

This data type defines the valid values for setting PC-133 compliance or
otherwise. This value governs whether or not the SCKE pin on the proces-
sor is asserted on reset.

ADI_PWR_PC133_COMPLIANCE_DISABLED SCKE is asserted on reset—SDRAM contents are
invalidated.

ADI_PWR_PC133_COMPLIANCE_ENABLED SCKE is not asserted on reset—SDRAM contents
are maintained.

Public Data Types and Enumerations

3-58 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_PROC_KIND

This data type defines the processor variant, which governs the appropri-
ate limits for speed selection. For ADSP-BF533 processors, these are:

ADI_PWR_PROC_BF561SKBC750X The ADSP-BF561SKBC750X, 750 MHz processor.

ADI_PWR_PROC_BF561SKBCZ500X The ADSP-BF561SKBCZ500X, 500 MHz processor

ADI_PWR_PROC_BF561SKBCZ600X The ADSP-BF561SKBCZ600X, 600 MHz processor

ADI_PWR_PROC_BF561SBB600 The ADSP-BF561SBB600, 600 MHz processor

ADI_PWR_PROC_BF533SKBC750 The ADSP-BF533SKBC750 processor.

ADI_PWR_PROC_BF533SKBC600 The ADSP-BF533SKBC600 processor.

ADI_PWR_PROC_BF533SBBC500 The ADSP-BF533SBBC500 processor.

ADI_PWR_PROC_BF531_OR_BF532 All package types for ADSP-BF531 and
ADSP-BF532.

ADI_PWR_PROC_BF537SKBC1600 The ADSP-BF537SKBC1600 processor.

ADI_PWR_PROC_BF537SBBC1500 The ADSP-BF537SBBC1500 processor.

ADI_PWR_PROC_BF536SBBC1400 The ADSP-BF537SBBC1400 processor.

ADI_PWR_PROC_BF536SBBC1300 The ADSP-BF537SBBC1300 processor.

ADI_PWR_PROC_BF534SBBC1500 The ADSP-BF534SBBC1500 processor.

ADI_PWR_PROC_BF534SBBC1400 The ADSP-BF534SBBC1400 processor.

VisualDSP++ 4.5 Device Drivers and System 3-59
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_RESULT

The Power Management module functions return a result code of the enu-
meration type, ADI_PWR_RESULT. Table 3-7 lists and describes the PM
module return values.

Table 3-7. PM Module Return Values

Return Value Explanation

ADI_PWR_RESULT_SUCCESS This routine completed successfully.

ADI_PWR_RESULT_FAILED A generic failure was encountered.

ADI_PWR_RESULT_NO_MEMORY Insufficient memory for configuration val-
ues to be stored.

ADI_PWR_RESULT_BAD_COMMAND The command is not recognized.

ADI_PWR_RESULT_CALL_IGNORED A function call has been ignored with no
action taken, due to the PM module not
being initialized.

ADI_PWR_RESULT_INVALID_VDDEXT An invalid external voltage level has been
specified.

ADI_PWR_RESULT_INVALID_PROCESSOR The processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG The IVG level supplied for PLL wakeup is
invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELAY The input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY The output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT The PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_EZKIT This is an invalid EZ-KIT Lite type.

ADI_PWR_RESULT_INVALID_MODE An invalid operating mode has been speci-
fied.

ADI_PWR_RESULT_INVALID_CSEL An invalid value for CSEL has been specified.

ADI_PWR_RESULT_INVALID_SSEL An invalid value for SSEL has been specified.

Public Data Types and Enumerations

3-60 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_INVALID_CSEL_SSEL_COMBINATION The core clock divider is greater that the sys-
tem clock divider value, or both
ADI_PWR_CSEL_NONE and
ADI_PWR_SSEL_NONE are specified.

ADI_PWR_RESULT_VOLTAGE_REGULATOR_BYPAS
SED

Voltage regulator cannot be set since it is in
bypass mode.

ADI_PWR_RESULT_INVALID_VR_VLEV The VLEV argument is invalid or insufficient
to sustain the current core and system clock
frequencies.

ADI_PWR_RESULT_INVALID_VR_FREQ The FREQ value is invalid.

ADI_PWR_RESULT_INVALID_VR_GAIN The GAIN value is invalid.

ADI_PWR_RESULT_INVALID_VR_WAKE The WAKE value is invalid.

ADI_PWR_RESULT_INVALID_VR_PHYWE The PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CANWE The CANWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE The CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW The CKELOW value is invalid.

Table 3-7. PM Module Return Values (Cont’d)

Return Value Explanation

VisualDSP++ 4.5 Device Drivers and System 3-61
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_SSEL

This data type defines the System Clock divider bit field in the PLL_DIV
register. Valid values are:

ADI_PWR_PWR_SSEL_1 Divides Voltage Core Oscillator frequency by 1

ADI_PWR_PWR_SSEL_2 Divides Voltage Core Oscillator frequency by 2

ADI_PWR_PWR_SSEL_3 Divides Voltage Core Oscillator frequency by 3

ADI_PWR_PWR_SSEL_4 Divides Voltage Core Oscillator frequency by 4

ADI_PWR_PWR_SSEL_5 Divides Voltage Core Oscillator frequency by 5

ADI_PWR_PWR_SSEL_6 Divides Voltage Core Oscillator frequency by 6

ADI_PWR_PWR_SSEL_7 Divides Voltage Core Oscillator frequency by 7

ADI_PWR_PWR_SSEL_8 Divides Voltage Core Oscillator frequency by 8

ADI_PWR_PWR_SSEL_9 Divides Voltage Core Oscillator frequency by 9

ADI_PWR_PWR_SSEL_10 Divides Voltage Core Oscillator frequency by 10

ADI_PWR_PWR_SSEL_11 Divides Voltage Core Oscillator frequency by 11

ADI_PWR_PWR_SSEL_12 Divides Voltage Core Oscillator frequency by 12

ADI_PWR_PWR_SSEL_13 Divides Voltage Core Oscillator frequency by 13

ADI_PWR_PWR_SSEL_14 Divides Voltage Core Oscillator frequency by 14

ADI_PWR_PWR_SSEL_15 Divides Voltage Core Oscillator frequency by 15

Public Data Types and Enumerations

3-62 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VDDEXT

This data type defines the external voltage (VDDEXT) supplied to the voltage
regulator

ADI_PWR_VDDEXT_330 3.3 Volts

ADI_PWR_VDDEXT_250 2.5 Volts

VisualDSP++ 4.5 Device Drivers and System 3-63
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VLEV

This data type defines the acceptable voltage levels for the voltage regula-
tor. The following table lists the values for ADSP-BF533 and
ADSP-BF561 processors.

ADI_PWR_VLEV_085 0.85 V

ADI_PWR_VLEV_090 0.90 V

ADI_PWR_VLEV_095 0.95 V

ADI_PWR_VLEV_100 1.00 V

ADI_PWR_VLEV_105 1.05 V

ADI_PWR_VLEV_110 1.10 V

ADI_PWR_VLEV_115 1.15 V

ADI_PWR_VLEV_120 1.20 V (default)

ADI_PWR_VLEV_125 1.25 V

ADI_PWR_VLEV_130 1.30 V

ADI_PWR_VLEV_135 1.35 V

ADI_PWR_VLEV_140 1.40 V

Public Data Types and Enumerations

3-64 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_CANWE

This data type defines the valid values for the CANWE bit in the Voltage
Regulator Control register. If enabled, the Voltage Regulator can be awak-
ened from powerdown by activity on the Controller Area Network (CAN)
interface.

ADI_PWR_VR_CANWE_DISABLED Disable wake up by CAN activity.

ADI_PWR_VR_CANWE_ENABLED Enable wake up by CAN activity.

VisualDSP++ 4.5 Device Drivers and System 3-65
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_CKELOW

This data type defines the valid values for the CKELOW bit in the Voltage
Regulator Control register. If enabled, the SCKE pin is driven low on sys-
tem reset to enable the SDRAM to remain in self-refresh mode.

ADI_PWR_VR_PHYWE_DISABLED Drive SCKE high on reset—SDRAM contents are
invalidated.

ADI_PWR_VR_PHYWE_ENABLED Drive SCKE low on reset—SDRAM contents are
maintained.

Public Data Types and Enumerations

3-66 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_CLKBUFOE

This data type defines the valid values for the CLKBUFOE bit in the Voltage
Regulator Control register. If enabled, the CLKIN signal can be shared with
peripheral devices, especially the Ethernet PHY.

ADI_PWR_VR_CLKBUFOE_DISABLED Disable CLKIN sharing.

ADI_PWR_VR_CLKBUFOE_ENABLED Enable CLKIN sharing.

VisualDSP++ 4.5 Device Drivers and System 3-67
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_FREQ

This data type defines the acceptable switching frequency values for the
voltage regulator. Its value is linked to the switching capacitor and induc-
tor values. The higher the frequency setting, the smaller the capacitor and
inductor values. The following table lists the valid values for all Blackfin
processors.

ADI_PWR_VR_FREQ_POWERDOWN Powerdown/bypass onboard regulation

ADI_PWR_VR_FREQ_333KHZ 333 kHz

ADI_PWR_VR_FREQ_667KHZ 667 kHz

ADI_PWR_VR_FREQ_1MHZ 1 MHz (default)

Public Data Types and Enumerations

3-68 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_GAIN

This data type defines the acceptable values for the internal loop gain of
the switching regulator loop. The gain controls how quickly the voltage
output settles on its final value. The higher the gain, the quicker the set-
tling time. High gain settings cause greater overshoot in the process.

ADI_PWR_VR_GAIN_5 5

ADI_PWR_VR_GAIN_110 10

ADI_PWR_VR_GAIN_20 20 (default)

ADI_PWR_VR_GAIN_50 50

VisualDSP++ 4.5 Device Drivers and System 3-69
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_PHYWE

This data type defines the values for the PHYWE bit in the Voltage Regula-
tor Control register. If enabled, the Voltage Regulator can be awakened
from powerdown by activity on the PHY interface.

ADI_PWR_VR_PHYWE_DISABLED Disable wake up by PHY activity.

ADI_PWR_VR_PHYWE_ENABLED Enable wake up by PHY activity.

Public Data Types and Enumerations

3-70 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_WAKE

This data type defines the values for the WAKE bit in the Voltage Regulator
Control register. If enabled (ADI_PWR_VR_WAKE_ENABLED), the voltage regu-
lator can be awakened from powerdown (ADI_PWR_VR_FREQ_POWERDOWN)
upon an RTC interrupt or a low-going edge on the RESET pin.

ADI_PWR_VR_WAKE_DISABLED Disables wake up by RTC and RESET.

ADI_PWR_VR_WAKE_ENABLED Enables wake up by RTC and RESET.

VisualDSP++ 4.5 Device Drivers and System 3-71
Services Manual for Blackfin Processors

Power Management Module

PM Module Macros
Table 3-8 lists and describes PM module macros.

Table 3-8. PM Module Macros

Macro Explanation

ADI_PWR_VLEV_DEFAULT The default/reset voltage level ADI_PWR_VLEV_130.

ADI_PWR_VLEV_MIN The minimum voltage level ADI_PWR_VLEV_085.

ADI_PWR_VLEV_MAX The maximum voltage level ADI_PWR_VLEV_120.

ADI_PWR_VOLTS(V) Returns the voltage in volts as a float for the given
level.

ADI_PWR_MILLIVOLTS(V) Returns an integer value of the voltage in millivolts
for the given level.

ADI_PWR_VR_FREQ_DEFAULT The default/reset switching frequency value,
ADI_PWR_FREQ_1MHZ.

ADI_PWR_VR_FREQ_MIN The minimum switching frequency value,
ADI_PWR_FREQ_POWERDOWN.

ADI_PWR_VR_FREQ_MAX The maximum switching frequency value,
ADI_PWR_FREQ_1MHZ.

ADI_PWR_VR_GAIN_DEFAULT The default/reset voltage regulator gain value,
ADI_PWR_GAIN_20.

ADI_PWR_VR_GAIN_MIN The minimum voltage regulator gain value,
ADI_PWR_GAIN_5.

ADI_PWR_VR_GAIN_MAX The default/reset voltage regulator gain value,
ADI_PWR_GAIN_20.

ADI_PWR_CLKIN_EZKIT_BF533 External clock frequency of EZ-KIT for
ADSP-BF533.

ADI_PWR_CLKIN_EZKIT_BF537 External clock frequency of EZ-KIT for
ADSP-BF537.

PM Module Macros

3-72 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VDEXT_EZKIT_BF533 External voltage level of EZ-KIT for ADSP-BF533
(ADI_PWR_VDDEXT_330).

ADI_PWR_VDEXT_EZKIT_BF537 External voltage level of EZ-KIT for ADSP-BF537
(ADI_PWR_VDDEXT_330).

ADI_PWR_PROC_BF533SKBCZ600 Equivalent processor type to
ADI_PWR_PROC_BF533SKBC600.

ADI_PWR_PROC_BF533SBBZ500 Equivalent processor type to
ADI_PWR_PROC_BF533SBBC500.

ADI_PWR_PROC_BF532SBBC400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF532SBST400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF532SBBZ400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF531SBBC400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF531SBST400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF531SBSTZ400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PROC_BF531SBBZ400 Equivalent processor type to
ADI_PWR_PROC_BF531_OR_BF532.

ADI_PWR_PACKAGE_PBGA Equivalent package type to
ADI_PWR_PACKAGE_MBGA.

ADI_PWR_PROC_BF537SKBC600 Equivalent processor type to
ADI_PWR_PROC_BF537SKBC1600.

ADI_PWR_PROC_BF537SKBC1Z600 Equivalent processor type to
ADI_PWR_PROC_BF537SKBC1600.

ADI_PWR_PROC_BF537SKBC2Z600 Equivalent processor type to
ADI_PWR_PROC_BF537SKBC1600.

Table 3-8. PM Module Macros (Cont’d)

Macro Explanation

VisualDSP++ 4.5 Device Drivers and System 3-73
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_PROC_BF537SBBC1Z500 Equivalent processor type to
ADI_PWR_PROC_BF537SBBC1500.

ADI_PWR_PROC_BF537SBBC2Z500 Equivalent processor type to
ADI_PWR_PROC_BF537SBBC1500.

ADI_PWR_PROC_BF536SBBC1Z400 Equivalent processor type to
ADI_PWR_PROC_BF536SBBC1400.

ADI_PWR_PROC_BF536SBBC2Z400 Equivalent processor type to
ADI_PWR_PROC_BF536SBBC1400.

ADI_PWR_PROC_BF536SBBC1Z300 Equivalent processor type to
ADI_PWR_PROC_BF536SBBC1300.

ADI_PWR_PROC_BF536SBBC2Z300 Equivalent processor type to
ADI_PWR_PROC_BF536SBBC1300.

ADI_PWR_PROC_BF534SBBC1Z400 Equivalent processor type to
ADI_PWR_PROC_BF534SBBC1400.

ADI_PWR_PROC_BF534SBBC2Z400 Equivalent processor type to
ADI_PWR_PROC_BF534SBBC1400.

ADI_PWR_PROC_BF534SBBC1Z500 Equivalent processor type to
ADI_PWR_PROC_BF534SBBC1500.

ADI_PWR_PROC_BF534SBBC2Z500 Equivalent processor type to
ADI_PWR_PROC_BF534SBBC1500.

Table 3-8. PM Module Macros (Cont’d)

Macro Explanation

PM Module Macros

3-74 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 4-1
Services Manual for Blackfin Processors

4 EXTERNAL BUS INTERFACE
UNIT MODULE

This chapter describes the external bus interface unit (EBIU) module that
enables the dynamic configuration of the SDRAM Controller in response
to changes in the System Clock frequency.

This chapter contains:

• “Introduction” on page 4-2

• “Using the EBIU Module” on page 4-3

• “EBIU API Reference” on page 4-6

• “Public Data Types and Enumerations” on page 4-19

• “Setting Control Values in the EBIU Module” on page 4-25

Introduction

4-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The initial goal of the external bus interface unit (EBIU) Module is to
enable the Power Management module to adjust the SDRAM Controller
(SDC) in accordance with changes made to the System Clock (SCLK) fre-
quency. Calls to both adi_pwr_SetFreq and adi_pwr_SetMaxFreqForVolt
adjust the SDC settings to the SCLK frequency selected, provided the EBIU
module has been initialized. For more information on the PM module,
refer to “Power Management Module” in Chapter 3, Power Management
Module.

Using the module is straightforward. The adi_ebiu_Init function is
called to set up the relevant values listed in the appropriate SDRAM data
sheet. Thereafter, the refresh rate is adjusted automatically each time the
Power Management module changes SCLK. “Using the EBIU Module”
provides a step-by-step description of how to work with the EBIU mod-
ule. Sample code is also included. A complete set of abbreviations for
Micron SDRAM modules and EZ-KIT Lite boards is supported. These
simplify the initialization of the module. Refer to ADI_EBIU_SDRAM_EZKIT
and ADI_EBIU_SDRAM_MODULE_TYPE for more information.

The EBIU module uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by Analog Devices
or other companies. All enumeration values and typedefs use the
ADI_EBIU_ prefix, while functions and global variables use the lower case
equivalent, adi_ebiu_.

There are two versions of the library for each processor, corresponding to
the debug and release configurations in VisualDSP++. In addition to the
usual defaults for the debug configuration, the API functions perform
checks on the arguments passed and report appropriate error codes, as
required. In the release version of the library, most functions return one of

VisualDSP++ 4.5 Device Drivers and System 4-3
Services Manual for Blackfin Processors

External Bus Interface Unit Module

two result codes: ADI_EBIU_RESULT_SUCCESS on successful completion, or
ADI_EBIU_RESULT_CALL_IGNORED if the EBIU module has not been initial-
ized prior to the function call.

Using the EBIU Module
The first step to using the EBIU module involves setting up the module
for the SDRAM to be used. In this step a table of command-value pairs
passes to the adi_ebiu_Init function. The information required is
described in detail in adi_ebiu_Init in the Description section
(on page 4-13). The amount of information that must be passed depends
on the individual board configuration. For example, only one com-
mand-value pair must passed to describe an EZ-KIT Lite board. For a
production embedded board, all information may be required.

In the following example, assume that the ADSP-BF533 EZ-KIT Lite
(Rev 1.3) should be configured. Specify the EZ-KIT Lite board as follows:

ADI_EBIU_COMMAND_PAIR ezkit_sdram [] = {

 // ADSP-BF533 EZ-KIT LITE

 { ADI_EBIU_CMD_SET_EZKIT,(void*)ADI_EBIU_EZKIT_BF533 },

 { ADI_EBIU_CMD_END, 0 } // table end marker

};

adi_ebiu_Init(ezkit_sdram,TRUE);

Calls to adi_pwr_SetFreq or adi_pwr_SetMaxFreqForVolt in the Power
Management module prior to the call to adi_ebiu_Init have no effect on
the SDC settings. The second argument in the call to adi_ebiu_Init
instructs the module to either query the system clock frequency and adjust
the SDRAM refresh rate accordingly, or return without altering the
SDRAM refresh rate. Specify an argument value of TRUE if a call to
adi_pwr_SetFreq (and others) precedes the call to adi_ebiu_Init. Specify
a value of FALSE if the call order is reversed; for example,

Using the EBIU Module

4-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_Init(ezkit_sdram, FALSE);

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_090);

To illustrate what is required for non EZ-KIT Lite boards, the command
table is an abbreviated form of the following code:

ADI_EBIU_SDRAM_BANK_VALUE bank_size;

ADI_EBIU_SDRAM_BANK_VALUE bank_width;

// set bank size to 32MB

// For BF533 the size and width settings apply to all banks

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

// set column address width to 9-Bit

bank_width.value.width = ADI_EBIU_SDRAM_BANK_COL_9BIT;

// set min TWR to 1 SCLK cycle + 7.5ns

ADI_EBIU_TIMING_VALUE twrmin =

 {1,{7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

// set refresh period to 8192 cycles in 64ms

ADI_EBIU_TIMING_VALUE refresh =

 {8192,{64, ADI_EBIU_TIMING_UNIT_MILLISEC}};

// set min TRAS to 44ns

ADI_EBIU_TIME trasmin = {44, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set min TRP to 20ns

ADI_EBIU_TIME trpmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set min TRCD to 20ns

ADI_EBIU_TIME trcdmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set up command table

ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = {

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

VisualDSP++ 4.5 Device Drivers and System 4-5
Services Manual for Blackfin Processors

External Bus Interface Unit Module

 { ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH,

 (void*)&bank_width},

 { ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD, (void*)100 }, // MHz

 { ADI_EBIU_CMD_SET_SDRAM_TRASMIN, (void*)&trasmin },

 { ADI_EBIU_CMD_SET_SDRAM_TRPMIN, (void*)&trpmin},

 { ADI_EBIU_CMD_SET_SDRAM_TRCDMIN, (void*)&trcdmin },

 { ADI_EBIU_CMD_SET_SDRAM_TWRMIN, (void*)&twrmin },

 { ADI_EBIU_CMD_SET_SDRAM_REFRESH, (void*)&refresh },

 { ADI_EBIU_CMD_END, 0}

};

The sample code shows that the minimum TWR value comprises two parts.
This reflects the definition found in the appropriate Blackfin processor
data sheet where the value is expressed as one cycle of SCLK plus 7.5 ns.
Similarly, the SDRAM refresh period value is expressed as the time taken
for the given number of refresh cycles. The sample code shows this value
as 64ms for 8192 cycles.

For boards that use Micron memory modules, users can also specify the
type and size of the bank:

ADI_EBIU_SDRAM_BANK_VALUE bank_size;

// set bank size to 32MB

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = {

 // MT48LC16M16-75 module

 { ADI_EBIU_CMD_SET_SDRAM_MODULE,

 (void*)ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_75 },

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

EBIU API Reference

4-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 { ADI_EBIU_CMD_END, 0 }

};

adi_EBIU_Init(ezkit_sdram,FALSE);

Further changes can be made at any time by passing command-value pairs
or tables of pairs to adi_ebiu_Control. For example, to pass a single com-
mand-value pair to enable the SDRAM to self-refresh during inactivity,
the following code could be used:

adi_ebiu_Control(

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

Since the SDRAM settings are closely tied to the system clock (SCLK) fre-
quency, the direct use of the adi_ebiu_AdjustSDRAM function from within
a client application is not required since it is called automatically by the
appropriate functions in the power management module when SCLK
changes.

EBIU API Reference
This section provides descriptions of the EBIU module’s API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

VisualDSP++ 4.5 Device Drivers and System 4-7
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Arguments – Description of function arguments

Return Value – Description of function return values

EBIU API Reference

4-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_AdjustSDRAM

Description

For the passed System Clock (SCLK) Frequency, the
adi_ebiu_AdjustSDRAM function calculates and sets the TRAS, TRP, TRCD
and TWR values in the EBIU_SDGCTL register and the RDIV value in the
EBIU_SDRRC register.

This function is primarily used by the Power Management module to
ensure that SDRAM settings are optimal for the processor’s current SCLK
frequency.

The adi_ebiu_AdjustSDRAM function returns without making any changes
if the SDRAM has not been successfully initialized with a call to
adi_ebiu_Init.

Prototype

void adi_ebiu_AdjustSDRAM(

 const u32 fsclk

);

Arguments

Return Value

The function returns the following values in debug or release mode.

fsclk The System Clock, SCLK, Frequency in MHz.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_CALL_IGNORED The SDRAM has not been successfully initialized, or
SDRAM had not been enabled.

VisualDSP++ 4.5 Device Drivers and System 4-9
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Control

Description

This function enables the EBIU SDRAM registers to be configured
according to command-value pairs (see
“ADI_EBIU_COMMAND_PAIR” on page 4-29), using one of the fol-
lowing options:

• A single command-value pair is passed:

adi_ebiu_Control(

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

• A single command-value pair structure is passed:

ADI_EBIU_COMMAND_PAIR cmd = {

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

};

adi_ebiu_Control(ADI_EBIU_CMD_PAIR, (void*)&cmd);

• A table of ADI_EBIU_COMMAND_PAIR structures is passed. The last
command-value entry in the table must be {ADI_EBIU_CMD_END,
0}:

ADI_EBIU_COMMAND_PAIR table[] = {

 { ADI_EBIU_CMD_SET_SDRAM_FBBRW,

(void*)ADI_EBIU_SDRAM_FBBRW_ENABLE },

 { ADI_EBIU_CMD_SET_SDRAM_CDDBG,

(void*)ADI_EBIU_CDDBG_ENABLE },

 { ADI_EBIU_CMD_END, 0 }

};

EBIU API Reference

4-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_Control(

 ADI_EBIU_CMD_TABLE,

 (void*)table

);

Refer to “ADI_EBIU_COMMAND” on page 4-25 and “Command
Value Enumerations” on page 4-29 for the complete list of commands and
associated values.

Prototype

adi_EBIU_RESULT adi_ebiu_Control(

 ADI_EBIU_COMMAND command,

 void *value

);

Arguments

Return Value

In Debug mode one of the following values listed in Table 4-1 is returned.
Otherwise ADI_EBIU_RESULT_SUCCESS or ADI_EBIU_RESULT_CALL_IGNORED
is returned, depending on whether or not the EBIU module has been suc-
cessfully initialized.

Command An ADI_EBIU_COMMAND enumeration value specifying the
meaning of the associated value argument.

Value This is the required value, (see in Description above).

Table 4-1. Adi_ebiu_Control Return Values

Return Value Explanation

ADI_EBIU_RESULT_BAD_COMMAND The command is not recognized.

ADI_EBIU_RESULT_SUCCESS This function completed successfully.

VisualDSP++ 4.5 Device Drivers and System 4-11
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_CALL_IGNORED The EBIU module is not initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS An invalid Self-refresh value is specified
(see “ADI_EBIU_SDRAM_TCSR” on
page 4-33).

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD An invalid Power Up Start Delay bit value is
specified (see “ADI_EBIU_SDRAM_EBUFE”
on page 4-34).

ADI_EBIU_RESULT_INVALID_SDRAM_PSM An invalid SDRAM Power Up Sequence bit
value is specified (see
“ADI_EBIU_SDRAM_PUPSD” on page 4-35).

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE An invalid External Buffering bit value is speci-
fied (see “ADI_EBIU_SDRAM_SRFS” on
page 4-34).

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW An invalid Fast back-to-back read to write bit
value is specified (see
“ADI_EBIU_SDRAM_FBBRW” on page 4-36).

ADI_EBIU_RESULT_INVALID_SDRAM_CDDBG An invalid Control Disable during Bus Grant bit
value is specified (see
“ADI_EBIU_SDRAM_CDDBG” on
page 4-36).

Table 4-1. Adi_ebiu_Control Return Values (Cont’d)

Return Value Explanation

EBIU API Reference

4-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_GetConfigSize

Description

This function returns the number of bytes required to save the current
configuration data. This value is also available via the
ADI_EBIU_SIZEOF_CONFIG macro.

Prototype

size_t adi_ebiu_GetConfigSize(void);

Return Value

The size of the configuration structure.

VisualDSP++ 4.5 Device Drivers and System 4-13
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Init

Description

This function initializes the EBIU module. Currently, the module is con-
figured to handle only the SDRAM Controller. Thus, the adi_ebiu_Init
function sets up the EBIU_SDGCTL, EBIU_SDBCTL, and EBIU_SDRRC registers
to reflect the correct SDRAM configuration attached to the processor.

The following values are required to be set for successful initialization:

Description Command Value Type

Bank Size ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE ADI_EBIU_SDRAM_BANK_VALU
E

Bank column
address width

ADI_EBIU_CMD_SET_SDRAM_BANK_COLUMN_W
IDTH

ADI_EBIU_SDRAM_BANK_VALU
E

CAS1 latency
threshold
(MHz)

1 Column Address Strobe

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD u16

Minimum

TRAS2 (ns)

2 Required delay between issuing a Bank Activate command and a Precharge command, and
between the Self-Refresh command and the exit from Self-Refresh.

ADI_EBIU_CMD_SET_SDRAM_TRASMIN u16

Min. TRP3 (ns)

3 Required delay between issuing a Precharge command and the Bank Activate,
Auto-Refresh, or Self-Refresh commands.

ADI_EBIU_EBIU_CMD_SET_SDRAM_TRPMIN u16

Min. TRCD4
(ns)

4 Required delay between issuing a Bank Activate command and the start of the first read/write
command.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN u16

Min. TWR5
(cycles, ns)

5 Required delay between a Write command and a Precharge command.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN ADI_EBIU_TIMING_VALUE

Refresh period
(cycles, ms)

ADI_EBIU_CMD_SET_SDRAM_REFRESH ADI_EBIU_TIMING_VALUE

EBIU API Reference

4-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Upon successful initialization of the module, subsequent calls to
adi_ebiu_AdjustSDRAM adjust the SDRAM refresh rate in the EBIU_SDRRC
register to correspond with the given system clock frequency. If the power
management module has been initialized prior to calling adi_ebiu_Init,
then the AdjustRefreshRate flag can be set to TRUE to instruct the func-
tion to initialize the SDRAM refresh rate to correspond to the current
value of SCLK. If not then, the SDRAM Controller is returned to reset
values.

When multiple banks are used, the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE
and ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH command-value pairs
must be specified for each bank.

The criteria described above are also met if either the Micron memory
module and total size per bank or a particular EZ-KIT Lite board is speci-
fied. (See “ADI_EBIU_SDRAM_EZKIT” on page 4-29 for further
details.)

If the system configuration makes use of low power (2.5V) SDRAM, the
following values also need to be initialized:

Additional command-value pairs can be passed to the adi_ebiu_Init
function. Alternatively, they can be set with a call to the
adi_ebiu_Control.

Description Command Value Type

Extended Mode
Register Enable

ADI_EBIU_CMD_SET_SDRAM_EMREN ADI_EBIU_SDRAM_SDRAM_EMRE
N

Partial Array
Self-Refresh

ADI_EBIU_CMD_SET_SDRAM_PASR ADI_EBIU_SDRAM_PASR

Temperature
Compensated
Self-Refresh

ADI_EBIU_CMD_SET_SDRAM_TCSR ADI_EBIU_SDRAM_TCSR

VisualDSP++ 4.5 Device Drivers and System 4-15
Services Manual for Blackfin Processors

External Bus Interface Unit Module

The adi_ebiu_Init function should only be called once, prior to adjust-
ing the power management settings, so that the SDRAM is adjusted
according to changes in SCLK. Subsequent calls to the function are
ignored.

Prototype

ADI_EBIU_RESULT adi_ebiu_Init(

 const ADI_EBIU_COMMAND_PAIR *ConfigData,

 const u16 AdjustRefreshRate

);

Arguments

Return Value

In debug mode, the returned values are:

ConfigData The address of a table of command-value pairs as defined by
“ADI_EBIU_COMMAND” on page 4-25 and “Command
Value Enumerations” on page 4-29. The last command in
the table must be the ADI_EBIU_CMD_END command.

AdjustRefreshRate A u16 value to determine whether the SDRAM refresh rate is
to be updated according to the current value of the SCLK
frequency.

ADI_EBIU_RESULT_BAD_COMMAND A command-value pair is invalid.

ADI_EBIU_RESULT_FAILED Not all required items are initialized.

ADI_EBIU_RESULT_CALL_IGNORED This EBIU module is already initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_SCTLE An invalid SCTLE value specified.

ADI_EBIU_RESULT_INVALID_EZKIT An invalid EZ-KIT Lite type is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_MODULE An invalid memory module type is speci-
fied.

ADI_EBIU_RESULT_INVALID_SDRAM_BANK_SIZE An invalid bank size is specified.

EBIU API Reference

4-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH An invalid Column Address width is speci-
fied.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN An invalid TWRMIN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN An invalid EMREN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR An invalid PASR value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR An invalid TCSR value is specified.

VisualDSP++ 4.5 Device Drivers and System 4-17
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_LoadConfig

Description

This function restores the current configuration values from the memory
location pointed to by the hConfig argument. The SDRAM controller is
reset.

Prototype

ADI_EBIU_RESULT adi_ebiu_LoadConfig(

 ADI_EBIU_CONFIG_HANDLE hConfig,

 size_t szConfig

);

Argument

Return Value

In the debug variant of the library, one of the following values is returned.
Otherwise ADI_EBIU_RESULT_SUCCESS is returned.

hConfig The address of the memory area from which the current con-
figuration is to be stored.

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY The szConfig value is too small.

ADI_EBIU_RESULT_CALL_IGNORED The SDRAM has not been successfully initialized.

EBIU API Reference

4-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_SaveConfig

Description

This function stores the current settings into the memory area pointed to
by the hConfig argument. Currently, only the SDRAM configuration is
saved.

Prototype

ADI_EBIU_RESULT adi_ebiu_SaveConfig(

ADI_EBIU_CONFIG_HANDLE hConfig,

size_t szConfig

);

Argument

Return Value

In the debug variant of the library, one of the following values is returned.
Otherwise ADI_EBIU_RESULT_SUCCESS is returned.

hConfig The address of the memory location into which the current
configuration is to be stored.

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY The szConfig value is too small.

ADI_EBIU_RESULT_CALL_IGNORED The SDRAM has not been successfully initialized.

VisualDSP++ 4.5 Device Drivers and System 4-19
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Public Data Types and Enumerations
This section provides descriptions of the public data types and
enumerations.

Public Data Types and Enumerations

4-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_RESULT

All public EBIU module functions return a result code of the enumeration
type, ADI_EBIU_RESULT. Table 4-1 lists possible values.

Table 4-2. EBIU Module Function Result Codes

Result Code Explanation

ADI_EBIU_RESULT_SUCCESS Generic success.

ADI_EBIU_RESULT_FAILED Generic failure.

ADI_EBIU_RESULT_BAD_COMMAND Invalid control command is specified.

ADI_EBIU_RESULT_CALL_IGNORED A function call has been ignored with no
action taken, as the module has not been
initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_EBE Invalid value for the EBE field of the
EBIU_SDBCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_BANK_SIZE Invalid value for the EBSZ field of the
EBIU_SDBCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH Invalid value for the EBCAW field of the
EBIU_SDBCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_CDDBG Invalid value for the CDDBG field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE Invalid value for the EBUFE field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN Invalid value for the EMREN field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW Invalid value for the FBBRW field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR Invalid value for the PASR field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PSM Invalid value for the PSM field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD Invalid value for the PUPSD field of the
EBIU_SDGCTL register is specified.

VisualDSP++ 4.5 Device Drivers and System 4-21
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS Invalid value for the SRFS field of the
EBIU_SDGCTL register. is specified

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR Invalid value for the TCSR field of the
EBIU_SDGCTL register is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN An invalid value for TWRMIN is specified
and would cause TWR to be greater than 3.

ADI_EBIU_RESULT_NO_MEMORY Insufficient memory to load/save configu-
ration.

Table 4-2. EBIU Module Function Result Codes (Cont’d)

Result Code Explanation

Public Data Types and Enumerations

4-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_BANK_VALUE

The ADI_EBIU_SDRAM_BANK_VALUE structure specifies the settings to be
applied to a specific bank.

typedef struct ADI_EBIU_SDRAM_BANK_VALUE (

 u16 bank;

 Union {

 ADI_EBIU_SDRAM_BANK_SIZE size;

 ADI_EBIU_SDRAM_BANK_COL_WIDTH width;

 } u;

} ADI_EBIU_SDRAM_BANK_VALUE;

See “ADI_EBIU_SDRAM_BANK_SIZE” on page 4-30 and
“ADI_EBIU_SDRAM_BANK_COL_WIDTH” on page 4-30 for details
of the size and width fields.

The bank field is intended for future use and has no meaning for
the ADSP-BF531/ADSP-BF532/ADSP-BF533 and
ADSP-BF534/ADSP-BF536/ADSP-BF537 Blackfin processors.

VisualDSP++ 4.5 Device Drivers and System 4-23
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_TIME

The ADI_EBIU_TIME structure enables users to specify a timing value as an
integral number of a given unit. It is defined as:

typedef struct ADI_EBIU_TIME {

 u32 value;

 ADI_EBIU_TIMING_UNIT units;

} ADI_EBIU_TIME;

Where ADI_EBIU_TIMING_UNIT is an enumeration type defined in the fol-
lowing table:

The actual values of the enumeration fields are used as factors in the inte-
ger arithmetic within the module. The millisecond value, which is used as
a logic control value, is an exception, since it is not used as a factor.

Developers can use the complete range of units to enable timing values to
be expressed as an unsigned 32-bit integer. For example, the SDRAM on
the ADSP-BF533 EZ-KIT Lite (Rev 1.3) board has a minimum TWR value
of one SCLK cycle and 7.5ns. The time value must be passed as 7500ps.
Thus, the ADI_EBIU_TIME value must be specified as:

ADI_EBIU_TIME time = {7500, ADI_EBIU_TIMING_UNIT_PICOSEC};

ADI_EBIU_TIMING_UNIT_MILLISEC The time value specified by the associated value in the
ADI_EBIU_TIME structure is in milliseconds (ms).

ADI_EBIU_TIMING_UNIT_MICROSEC The time value specified by the associated value in the
ADI_EBIU_TIME structure is in microseconds (ms).

ADI_EBIU_TIMING_UNIT_NANOSEC The time value specified by the associated value in the
ADI_EBIU_TIME structure is in nanoseconds (ns).

ADI_EBIU_TIMING_UNIT_PICOSEC The time value specified by the associated value in the
ADI_EBIU_TIME structure is in picoseconds (ps).

ADI_EBIU_TIMING_UNIT_FEMTOSEC The time value specified by the associated value in the
ADI_EBIU_TIME structure is in femtoseconds (fs).

Public Data Types and Enumerations

4-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_TIMING_VALUE

Certain timing values required for the correct setting of the SDRAM con-
trol registers are specified on the appropriate data sheet as a number of
SCLK cycles combined with a value expressed in one of several units (for
example, nanoseconds or milliseconds).

To facilitate the passing of such values to the adi_ebiu_Init function, the
ADI_EBIU_TIMING_VALUE structure is defined as:

typedef struct ADI_EBIU_TIMING_VALUE {

 u32 cycles;

 ADI_EBIU_TIME time;

} ADI_EBIU_TIMING_VALUE;

Where ADI_EBIU_TIME is defined in “ADI_EBIU_TIME” on page 4-23.

For example, the SDRAM on the ADSP-BF533 EZ-KIT Lite (Rev 1.3)
board has a minimum TWR value of one SCLK cycle and 7.5ns. Using the
above structure, this value is expressed as:

ADI_EBIU_TIMING_VALUE twrmin

 = { 1, {7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

VisualDSP++ 4.5 Device Drivers and System 4-25
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Setting Control Values in the EBIU
Module

To set control values in the EBIU module, the user passes command-value
pairs (of the type ADI_EBIU_COMMAND_PAIR) to the adi_ebiu_Init and
adi_ebiu_Control functions (either individually or as a table). Note that
adi_ebiu_Init only allows a table to be supplied. This section describes
the command-value pair structure and valid commands.

ADI_EBIU_COMMAND
The ADI_EBIU_COMMAND is used to control/access the configuration of the
EBIU module. It is to be used in an ADI_EBIU_COMMAND_PAIR couplet to set
a configuration value in calls to adi_ebiu_Init and adi_ebiu_Control.

Table 4-3. ADI_EBIU_COMMAND Data Values

Command Associated data value

General commands used with both the adi_ebiu_Control and adi_ebiu_Init functions:

ADI_EBIU_CMD_END Defines the end of a table of command pairs.

ADI_EBIU_CMD_SET_SDRAM_EBUFE An ADI_EBIU_SDRAM_EBUFE value to specify
whether external buffers are to be used when sev-
eral SDRAM devices are used. See
“ADI_EBIU_SDRAM_SRFS” on page 4-34.

ADI_EBIU_CMD_SET_SDRAM_FBBRW An ADI_EBIU_SDRAM_FBBRW value to specify
whether to enable/disable fast back-to-back
read/write operations. See
“ADI_EBIU_SDRAM_FBBRW” on page 4-36.

ADI_EBIU_CMD_SET_SDRAM_CDDBG An ADI_EBIU_SDRAM_CDDBG value to specify
whether to enable/disable SDRAM control
signals when the external memory interface is
granted to an external controller. See
“ADI_EBIU_SDRAM_CDDBG” on page 4-36.

Setting Control Values in the EBIU Module

4-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDRAM_PUPSD An ADI_EBIU_SDRAM_PUPSD value specifying
whether or not the power up start sequence is
delayed by 15 SCLK cycles. See
“ADI_EBIU_SDRAM_PUPSD” on page 4-35.

ADI_EBIU_CMD_SET_SDRAM_PSM An ADI_EBIU_SDRAM_PSM value specifying the
order of events in the power up start sequence.
See “ADI_EBIU_SDRAM_PSM” on page 4-35.

Commands valid only when passed to the adi_ebiu_Init function:

ADI_EBIU_CMD_SET_EZKIT An ADI_EBIU_EZKIT value to identify the
EZ-KIT Lite for which the EBIU module is to be
configured. See “ADI_EBIU_SDRAM_EZKIT”
on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_MODULE An ADI_EBIU_SDRAM_MODULE_TYPE value con-
taining the Micron Memory module to be config-
ured. This value applies to all banks in use. See
“ADI_EBIU_SDRAM_MODULE_TYPE” on
page 4-31.

ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE The address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank size. Refer to
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-22 and
“ADI_EBIU_SDRAM_BANK_SIZE” on
page 4-30.

ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WID
TH

The address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank column address width. See
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-22 and
“ADI_EBIU_SDRAM_BANK_COL_WIDTH”
on page 4-30.

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD An u32 value to specify the SCLK frequency
threshold, which determines the CAS latency
value to be used.

Table 4-3. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

VisualDSP++ 4.5 Device Drivers and System 4-27
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_SDRAM_TRASMIN An ADI_EBIU_TIME value to set the minimum
TRAS value as given on the data sheet of the
appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-23.

ADI_EBIU_CMD_SET_SDRAM_TRPMIN An ADI_EBIU_TIME value to set the minimum
TRP value as described in the appropriate Blackfin
processor data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-23.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN An ADI_EBIU_TIME value to set the minimum
TRCD value as described in the appropriate Black-
fin processor data sheet of the appropriate
SDRAM.
See “ADI_EBIU_TIME” on page 4-23.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN The address of an ADI_EBIU_TIMING_VALUE
structure containing the minimum TWR value as
described in the appropriate Blackfin processor
data sheet of the appropriate SDRAM. See
“ADI_EBIU_TIMING_VALUE” on page 4-24.

ADI_EBIU_CMD_SET_SDRAM_REFRESH The address of an ADI_EBIU_TIMING_VALUE
structure containing the maximum tREF value as
given on the data sheet of the appropriate
SDRAM.
See “ADI_EBIU_TIME” on page 4-23.

ADI_EBIU_CMD_SET_SDGCTL_REG An u32 word containing the entire contents of the
EBIU_SDGCTL register.

ADI_EBIU_CMD_SET_SDBCTL_REG An u16 word containing the entire contents of the
EBIU_SDBCTL register.

ADI_EBIU_CMD_SET_SDRAM_EMREN An ADI_EBIU_SDRAM_EMREN value to specify
whether low-power (2.5V) SDRAM is being used.
See “ADI_EBIU_SDRAM_MODULE_TYPE”
on page 4-31.

Table 4-3. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

Setting Control Values in the EBIU Module

4-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDRAM_PASR An ADI_EBIU_SDRAM_PASR value to specify
which banks are to be refreshed. Applicable only
to low power SDRAM. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-32.

ADI_EBIU_CMD_SET_SDRAM_TCSR An ADI_EBIU_SDRAM_TCSR value to specify the
temperature compensated self-refresh value. This
command can only be used for low-power
SDRAM. See “ADI_EBIU_SDRAM_PASR” on
page 4-33.

ADI_EBIU_CMD_SET_SDRAM_SCTLE An ADI_EBIU_SDRAM_SCTLE value to specify
whether the SDC is enabled or not. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-32.

Commands valid only when passed to the adi_ebiu_Init function:

ADI_EBIU_CMD_PAIR Used to tell adi_ebiu_control that a single
command pair is being passed.

ADI_EBIU_CMD_TABLE Used to tell adi_ebiu_control that a table of
command pairs is being passed.

ADI_EBIU_CMD_SET_SDRAM_ENABLE An ADI_EBIU_SDRAM_ENABLE value to
enable/disable external SDRAM. Automatically
set upon initialization. See
“ADI_EBIU_SDRAM_EZKIT” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_SRFS An ADI_EBIU_SDRAM_SRFS value to enable/dis-
able self-refresh of SDRAM during inactivity.
See “ADI_EBIU_SDRAM_TCSR” on page 4-33.

Table 4-3. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

VisualDSP++ 4.5 Device Drivers and System 4-29
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_COMMAND_PAIR
The ADI_EBIU_COMMAND_PAIR data type enables developers to generate a
table of control commands to pass to the EBIU via the adi_ebiu_Init and
adi_ebiu_Control functions:

typedef struct ADI_EBIU_COMMAND_PAIR (

 ADI_EBIU_COMMAND kind;

 void *value;

} ADI_EBIU_COMMAND_PAIR;

Command Value Enumerations
The following enumerations are used to specify the required information
to set up the SDRAM controller. For further information on the values
required, refer to the Engineer-to-Engineer Note EE-2101.

ADI_EBIU_SDRAM_EZKIT

This enumeration defines the EZ-KIT Lite board for which the EBIU
module is to be configured. For Blackfin processors these are:

ADI_EBIU_SDRAM_ENABLE

This enumeration specifies if SDRAM is enabled or disabled. This enu-
meration corresponds to the EBE bit in the EBIU_SDBCTL register.

1 Refer to SDRAM Selection Guidelines and Configuration for ADI Processors, EE-210, October 27,
2003.

ADI_EBIU_EZKIT_BF533 An ADSP-BF533 EZ-KIT Lite board.

ADI_EBIU_EZKIT_BF537 An ADSP-BF537 EZ-KIT Lite board.

ADI_EBIU_SDRAM_EBE_DISABLE Disables SDRAM.

ADI_EBIU_SDRAM_EBE_ENABLE Enables SDRAM.

Setting Control Values in the EBIU Module

4-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_EBE_DEFAULT ADI_EBIU_SDRAM_EBE_DISABLE

ADI_EBIU_SDRAM_BANK_SIZE

This enumeration specifies the SDRAM external bank size. This enumera-
tion corresponds to the EBSZ bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_BANK_SIZE_DEFAULT

ADI_EBIU_SDRAM_BANK_32MB

ADI_EBIU_SDRAM_BANK_COL_WIDTH

This enumeration specifies the SDRAM external bank column address
width and corresponds to the EBCAW bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_BANK_COL_WIDTH_DEFAULT

 ADI_EBIU_SDRAM_BANK_COL_9BIT

ADI_EBIU_SDRAM_BANK_16MB 16MB external SDRAM

ADI_EBIU_SDRAM_BANK_32MB 32MB external SDRAM

ADI_EBIU_SDRAM_BANK_64MB 64MB external SDRAM

ADI_EBIU_SDRAM_BANK_128MB 128MB external SDRAM

ADI_EBIU_SDRAM_BANK_COL_8BIT 8-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_9BIT 9-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_10BIT 10-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_11BIT 11-bit external bank column address width

VisualDSP++ 4.5 Device Drivers and System 4-31
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_MODULE_TYPE

This enumeration specifies the SDRAM module type. The enumerator
values contain the relevant information, for example speed grade and con-
figuration settings required to initialize the SDRAM controller. Since
Analog Devices EZ-KIT Lite boards include SDRAM supplied by Micron,
this information applies only to Micron parts. Table 4-4 lists the valid
values.

Table 4-4. SDRAM Module Types

Module Description

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_6 64Mbit, 4Meg x 4 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_6 64Mbit, 2Meg x 8 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_6 64Mbit, 1Meg x 16 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_7E 64Mbit, 4Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_7E 64Mbit, 2Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_7E 64Mbit, 1Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_75 64Mbit, 4Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_75 64Mbit, 2Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_75 64Mbit, 1Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_8E 64Mbit, 4Meg x 4 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_8E 64Mbit, 2Meg x 8 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_8E 64Mbit, 1Meg x 16 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_6A 128Mbit, 8Meg x 4 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_6A 128Mbit, 4Meg x 8 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_6A 128Mbit, 2Meg x 16 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_7E 128Mbit, 8Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_7E 128Mbit, 4Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_7E 128Mbit, 2Meg x 16 x 4, speed grade: -7E

Setting Control Values in the EBIU Module

4-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDRAM_SCTLE

This enumeration specifies if the SDRAM controller is enabled or disabled
and corresponds to the SCTLE bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_75 128Mbit, 8Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_75 128Mbit, 4Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_75 128Mbit, 2Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_8E 128Mbit, 8Meg x 4 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_8E 128Mbit, 4Meg x 8 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_8E 128Mbit, 2Meg x 16 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC64M4A2_7E 256Mbit, 16Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC32M8A2_7E 256Mbit, 8Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_7E 256Mbit, 4Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC64M4A2_75 256Mbit, 16Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M8A2_75 256Mbit, 8Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_75 256Mbit, 4Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC64M8A2_7E 512Mbit, 16Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC32M16A2_7E 512Mbit, 8Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC64M8A2_75 512Mbit, 16Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M16A2_75 512Mbit, 8Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_SCTLE_DISABLE Disable SDRAM Controller.

ADI_EBIU_SDRAM_SCTLE_ENABLE Enable SDRAM Controller.

Table 4-4. SDRAM Module Types (Cont’d)

Module Description

VisualDSP++ 4.5 Device Drivers and System 4-33
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_EMREN

This enumeration specifies that low power (2.5V) SDRAM is to be used
and corresponds to the EMREN bit in the EBIU_SDGCTL register:

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_EMREN_DEFAULT

ADI_EBIU_SDRAM_EMREN_DISABLE

ADI_EBIU_SDRAM_PASR

When low power (2.5V) SDRAM is used, this enumeration specifies
which banks are to be refreshed. This enumeration corresponds to the
PASR bits in the EBIU_SDGCTL register:

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PASR_DEFAULT ADI_EBIU_SDRAM_PASR_ALL

ADI_EBIU_SDRAM_TCSR

When low power (2.5V) SDRAM is used, this enumeration specifies the
temperature compensated self-refresh value and corresponds to the TCSR
bits in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_TCSR_DEFAULT ADI_EBIU_SDRAM_TCSR_45DEG

ADI_EBIU_SDRAM_EMREN_DISABLE Mobile low power SDRAM is not present.

ADI_EBIU_SDRAM_EMREN_ENABLE Mobile low power SDRAM is present.

ADI_EBIU_SDRAM_PASR_ALL All four SDRAM banks are to be refreshed.

ADI_EBIU_SDRAM_PASR_INT01 Internal SDRAM banks 0 and 1 are to be refreshed.

ADI_EBIU_SDRAM_PASR_INT01_ONLY Internal SDRAM banks 0 and 1 only to be refreshed.

Setting Control Values in the EBIU Module

4-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_SRFS

This enumeration specifies if the EBIU is to enable/disable SDRAM
self-refresh during periods of inactivity. This enumeration corresponds to
the SRFS bit in the EBIU_SDGCTL register.

For example, SDRAM self-refresh is enabled when the Processor mode is
put into the “deep sleep” via the power management module.
For more information, see “Power Management Module” on page 3-1.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_SRFS_DEFAULT

ADI_EBIU_SDRAM_SRFS_DISABLE

ADI_EBIU_SDRAM_EBUFE

This enumeration specifies whether or not the EBIU uses external buffers
when several SDRAM devices are being used in parallel. This enumeration
corresponds to the EBUFE bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

ADI_EBIU_SDRAM_TCSR_45DEG The SDRAM banks are to be refreshed if the
temperature exceeds 45 degrees Celsius.

ADI_EBIU_SDRAM_TCSR_85DEG The SDRAM banks are to be refreshed if the
temperature exceeds 85 degrees Celsius.

ADI_EBIU_SDRAM_SRFS_DISABLE Disable SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_SRFS_ENABLE Enable SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_EBUFE_DISABLE Disable the use of external buffers when several
SDRAM devices are being used in parallel.

ADI_EBIU_SDRAM_EBUFE_ENABLE Enable the use of external buffers when several
SDRAM devices are being used in parallel.

VisualDSP++ 4.5 Device Drivers and System 4-35
Services Manual for Blackfin Processors

External Bus Interface Unit Module

 #define ADI_EBIU_SDRAM_EBUFE_DEFAULT

ADI_EBIU_SDRAM_EBUFE_DISABLE

ADI_EBIU_SDRAM_PUPSD

This enumeration specifies whether or not the power-up start sequence is
to be delayed by 15 SCLK cycles. This enumeration corresponds to the
PUPSD bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PUPSD_DEFAULT

ADI_EBIU_SDRAM_PUPSD_NODELAY

ADI_EBIU_SDRAM_PSM

This enumeration specifies the SDRAM power-up sequence. This enu-
meration corresponds to the PSM bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PSM_DEFAULT

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST

ADI_EBIU_SDRAM_PUPSD_NODELAY No delay to the power-up start sequence.

ADI_EBIU_SDRAM_PUPSD_15CYCLES The power-up start sequence is to be delayed by 15
SCLK cycles.

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST The SDC is to perform a Precharge All
command, followed by eight Auto-Refresh cycles,
and then a Load Mode Register command.

ADI_EBIU_SDRAM_PSM_REFRESH_LAST The SDC performs a Precharge All command,
followed by a Load Mode Register command,
and then completes eight Auto-Refresh cycles.

Setting Control Values in the EBIU Module

4-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_FBBRW

This enumeration specifies whether or not the EBIU uses fast
back-to-back read-write access to allow SDRAM read and write operations
on consecutive cycles. This enumeration corresponds to the FBBRW bit in
the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_FBBRW_DEFAULT

ADI_EBIU_SDRAM_FBBRW_DISABLE

ADI_EBIU_SDRAM_CDDBG

This enumeration enables or disables the SDRAM control signals when
the external memory interface is granted to an external controller. This
enumeration corresponds to the CDDBG bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_CDDBG_DEFAULT

ADI_EBIU_SDRAM_CDDBG_DISABLE

ADI_EBIU_SDRAM_FBBRW_DISABLE Fast back-to-back read-write access disabled.

ADI_EBIU_SDRAM_FBBRW_ENABLE SDRAM read and write operations to occur on
consecutive cycles.

ADI_EBIU_SDRAM_CDDBG_DISABLE Disable the SDRAM control signals when the
external memory interface is granted to an external
controller.

ADI_EBIU_SDRAM_CDDBG_ENABLE Enable the SDRAM control signals when the
external memory interface is granted to an external
controller.

VisualDSP++ 4.5 Device Drivers and System 5-1
Services Manual for Blackfin Processors

5 DEFERRED CALLBACK
MANAGER

This chapter describes the deferred callback manager that is used by the
application developer to manage the deferred execution of function calls.
Included is a detailed description of the application programming inter-
face (API) provided by the deferred callback manager.

This chapter contains:

• “Introduction” on page 5-2

• “Using the Deferred Callback Manager” on page 5-3

• “Interoperability With an RTOS” on page 5-8

• “DCB Manager API Reference” on page 5-12

• “Public Data Types and Macros” on page 5-26

Introduction

5-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Callback functions are commonly used in event driven applications where
the client application requests that a Service Manager, such as the System
Services Library’s (SSL) DMA manager, notifies it upon completion of a
requested task, for example the completion of DMA transfer, by means of
a client callback function specified by the client application upon initializa-
tion of the required service.

The need to execute a client callback function normally occurs while exe-
cuting an Interrupt Service Routine (ISR) at relatively high priority. The
general rule for such ISR’s is to keep the amount of time spent in them as
deterministic as possible and to a minimum. Callbacks on the other hand
may be both lengthy and non-deterministic. In most cases, users may pre-
fer to defer the execution of such callbacks to a scheduler running at a
lower priority, which can be preempted by higher priority interrupts. In
doing so, the requesting ISR can complete with minimal delay.

The System Services Library’s deferred callback manager provides such a
service by managing one or more queues of deferred callbacks such that
(typically) their invocation occurs within a dispatch function operating at
a lower interrupt priority than the rest of the application’s interrupt ser-
vices. Each callback entry posted to a queue comprises the address of the
required callback function along with three values (two pointers and one
32-bit unsigned integer), which are passed to the callback function upon
its (deferred) execution.

The DCB manager is designed to operate either as a standalone module or
in conjunction with a real-time operating system (RTOS). Implementa-
tions of the module exist for Express Logic’s ThreadX, Green Hills
Software’ Integrity, as well as Analog Devices VDK. The number of
queues available and their length is determined by the client application
upon module and queue initialization. Whether or not the DCB manager
is implemented in standalone mode or in conjunction with one of the

VisualDSP++ 4.5 Device Drivers and System 5-3
Services Manual for Blackfin Processors

Deferred Callback Manager

above RTOS also impacts the number and size of queues. For instance
when implemented in conjunction with VDK, the DCB manager can only
support one queue at a fixed priority level of IVG 14.

While only one queue is permitted per IVG level, engineers can set priori-
ties for individual callback entries by supplying a software priority level
upon posting. There is no limit to the number of software priority levels
that can be used (except for practical implications within the limits of an
unsigned short values) The dispatch function attempts to execute all
higher priority callbacks before those with lower priorities at the same
IVG level.

A detailed description of how the DCB manager operates is provided in
“Using the Deferred Callback Manager”, along with code segments illus-
trating its use in standalone mode, and the implications for its use in
conjunction with an RTOS are given in “Interoperability With an RTOS”
on page 5-8.

The DCB manager uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or other
companies. As a result, all enumeration values and typedefs use the
ADI_DCB_ prefix, while functions and global variables use the lower case,
adi_dcb_, equivalent.

Using the Deferred Callback Manager
The operation of the DCB manager comprises the following functions.

• Setting up the DCB manager

• Initializing the DCB manager

• Opening a queue

Using the Deferred Callback Manager

5-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• Managing the queue

• Posting callbacks to the required queue

• Dispatching callbacks according to the priority level deter-
mined upon posting.

• Performing housekeeping functions

• Closing the queue

• Terminating the DCB manager

Exactly how this is implemented depends on whether the DCB manager is
used in standalone mode or in conjunction with the deferred calling
mechanism supplied by an RTOS. In all cases the API calls to the DCB
manager are the same: A queue is initialized with a call to adi_dcb_Open,
and callbacks added to the queue via a call to the adi_dcb_Post function.

The deferred execution of the callbacks is scheduled according to software
priority by the adi_dcb_Dispatch_Callbacks function. In the standalone
environment, the DCB manager registers this function as an Interrupt
Handler routine against the desired IVG level, using the System Services
Library’s interrupt manager module, when the queue is initialized, and an
interrupt raised each time a callback is posted. Since the standalone ver-
sion uses the interrupt manager, the interrupt manager must be initialized
before the DCB manager is initialized.

The following code sample demonstrates the standalone use of one queue
initialized at IVG level 14, which is the lowest IVG level available at appli-
cation level.

VisualDSP++ 4.5 Device Drivers and System 5-5
Services Manual for Blackfin Processors

Deferred Callback Manager

As mentioned above, for standalone operation we need to initialize the
interrupt manager prior to initializing the DCB manager. On the assump-
tion that the sample application requires only one interrupt handler to be
defined per IVG level, initialize the interrupt manager using the following
code:

u32 ne;
adi_int_Init(NULL,0,&ne,NULL);

Initialize the DCB manager with sufficient memory for one queue as
follows:

static char mjk_dcb_Data[ADI_DCB_QUEUE_SIZE];

:

u32 ns;

:

adi_dcb_Init(

 (void*)mjk_dcb_Data, // Address of memory to be used

 ADI_DCB_QUEUE_SIZE, // Number of bytes required for the

 // required number of queue servers.

 &ns // on return this should be the same

 // as the required number of queues.

 NULL // No special data area for critical

 // region required

);

Next, open the queue server for use by passing sufficient memory for the
length of queue required (five entries in this case), and the desired IVG
level at which the queue operates. This level is ignored if it is used within
a VDK-based application. A handle, p_DCB_handle, to the queue server is
returned:

static char mjk_dcb_QueueData[5*ADI_DCB_ENTRY_SIZE];

ADI_DCB_HANDLE p_DCB_handle;

:

u32 nqe;

Using the Deferred Callback Manager

5-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

:

adi_dcb_Open(

 14, // required IVG level

 (void*) mjk_dcb_QueueData, // Address of memory to be used

 5*ADI_DCB_ENTRY_SIZE, // for a queue 5 deep.

 &nqe; // on return this should be the

 // same as the required number of

 // entries (5 in this case).

 &p_DCB_handle // returned handle to queue server

);

The DCB manager is now ready to accept callback postings to the queue
server. Note that this function is normally performed in an ISR of another
Service. The DCB manager passes the address of the client callback func-
tion and its associated argument values to the queue server identified by
the handle obtained:

adi_dcb_Post(

 p_DCB_handle, // handle to required queue server.

 0, // Priority level.

 ClientCallback, // Address of callback function.

 pService, // Address of the service instance

 // that is posting the callback.

 event, // Flag identifying the event that

 // has precipitated the interrupt.

 (void*)data // Address of data relevant to the

 // callback.

);

Where event typically defines some event, for example DMA completion,
and data typically points to an appropriate location in memory meaning-
ful within the context of the callback function. Within the DMA manager
context, this argument is either the address of an appropriate descriptor or
data buffer.

VisualDSP++ 4.5 Device Drivers and System 5-7
Services Manual for Blackfin Processors

Deferred Callback Manager

If, for any reason, users want to flush the queue of entries for the above
callback, this can be achieved in one of two ways. Either users can call the
adi_dcb_Remove function directly or call it indirectly using the
adi_dcb_Control function. See “adi_dcb_Terminate” for further details
and an example of its use), along with any other requests. The following
code describes the direct approach:

adi_dcb_Remove(

 p_DCB_handle, // handle to required queue server

 ClientCallback // Address of callback function to

 // flush

);

Finally, if required, the queue can be closed and the DCB manager
terminated:

adi_dcb_Close(

 p_DCB_handle, // handle to required queue server

);

adi_dcb_Terminate();

Interoperability With an RTOS

5-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Interoperability With an RTOS
The DCB manager employs two functions, adi_dcb_RegisterISR and
adi_dcb_Forward, to interface with the different RTOS environments,
including standalone mode.

These functions are supplied in a separate source file, adi_dcb_xxxx.c for
each implementation where xxxx describes either the required RTOS (for
example, threadx for Express Logic’s ThreadX, and integrity for Green
Hill Software’s Integrity), or standalone for standalone use. VDK support
is achieved with the functions described above supplied directly by VDK.
As a result, there is no equivalent adi_dcb_vdk.c file.

The relevant adi_dcb_xxxx.c file is incorporated (or not) into the main
adi_dcb.c source file via conditional compilation governed by a macro,
ADI_SSL_XXXX, where XXXX is STANDALONE, THREADX, INTEGRITY or VDK.

Currently implementations of the DCB manager are only provided for the
environments previously described. To implement these functions under
an alternative RTOS (for example, Linux), developers must provide
replacement definitions in equivalent files.

These functions are described in this section in more detail.

adi_dcb_Forward
The adi_dcb_Forward function takes two arguments. The first is a pointer
to the DCB entry header structure, ADI_DCB_ENTRY_HDR, and the second is
to the IVG level of the appropriate queue.

VisualDSP++ 4.5 Device Drivers and System 5-9
Services Manual for Blackfin Processors

Deferred Callback Manager

The adi_dcb_Forward function is invoked from within the adi_dcb_Post
function and has the following prototype:

 void adi_dcb_Forward(

 ADI_DCB_ENTRY_HDR *Entry,

 u16 IvgLevel

);

The arguments are as follows:

The ADI_DCB_ENTRY_HDR structure used to pass information to the under-
lying RTOS is defined as:

typedef struct ADI_DCB_ENTRY_HDR {

 struct ADI_DCB_ENTRY_HDR *pNext;

 ADI_DCB_DEFERRED_FNpDeferredFunction;

} ADI_DCB_ENTRY_HDR;

The first word in this structure, pNext, is NULL on entry to the
adi_dcb_Forward function. While this value is typically used to point to
the next item in the queue, its interpretation within the adi_dcb_Forward
function is wholly dependent on the specific RTOS implementation
required. The second word, pDeferredFunction, is set to point to the
adi_dcb_DispatchCallbacks function when the queue is initialized. The
Deferred Procedure Call server within the appropriate RTOS must pass
the pointer to this structure to the adi_dcb_DispatchCallbacks function
upon its deferred execution.

Entry Pointer to the ADI_DCB_ENTRY_HDR structure. This is
coincident with the address of the queue server structure to which
the callback is to be posted. Ignored in standalone mode.

IvgLevel The IVG level of the appropriate queue. This argument is ignored
by VDK.

Interoperability With an RTOS

5-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_RegisterISR
The adi_dcb_RegisterISR function is invoked from within the
adi_dcb_Open function and has the following prototype:

 void adi_dcb_RegisterISR(

 u16 IvgLevel,

 ADI_INT_HANDLER_FN Dispatcher,

 ADI_DCB_HANDLE *hServer

);

The data types are defined in the <services/services.h> header file and
the arguments are as follows:

In the standalone implementation, this function registers the
adi_dcb_DispatchCallbacks function with the interrupt manager at the
specified interrupt level. In the VDK implementation, it returns with no
effect.

Handling Critical Regions within Callbacks
If within a callback function critical regions are required, users should be
aware of any restrictions the underlying RTOS imposes. For example,
VDK-based applications are prohibited from calling
PushCriticalRegion/PopCriticalRegion functions from within inter-
rupt level.

If the VDK version of the DCB manager is used, these kinds of calls can
be used, as the callback is executed at kernel level. However, if the standa-
lone version of the library is used to run a DCB queue at a higher priority

IvgLevel The interrupt level at which callbacks are to be dispatched.

Dispatcher This must be the address of the adi_dcb_DispatchCallbacks
function.

hServer The address of the queue server structure.

VisualDSP++ 4.5 Device Drivers and System 5-11
Services Manual for Blackfin Processors

Deferred Callback Manager

than the VDK DPC queue, such calls are illegal since the callback executes
at the interrupt level. In these cases, effect critical regions directly, for
example, by using the cli(), sti() built-in functions.

DCB Manager API Reference

5-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

DCB Manager API Reference
This section provides descriptions of the DCB manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 4.5 Device Drivers and System 5-13
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Close

Description

This function closes the DCB queue server identified by the single handle
argument, freeing up the slot for subsequent use. In standalone mode, the
DCB manager’s adi_dcb_DispatchCallbacks function is unhooked from
the interrupt handler chain for the given IVG Level.

Prototype

ADI_DMA_RESULT

adi_dcb_Close(

 ADI_DCB_HANDLE hServer

);

Arguments

Return Value

In debug mode this routine returns ADI_DCB_RESULT_NO_SUCH_QUEUE if the
handle provided does not represent a valid queue server registered with the
DCB manager. Otherwise ADI_DCB_RESULT_SUCCESS is returned.

hServer The handle of the required queue server to be closed.

ADI_DCB_RESULT_SUCCESS Queue successfully closed.

ADI_DCB_RESULT_NO_SUCH_QUEUE The handle provided does not represent a valid queue
server.

ADI_DCB_RESULT_QUEUE_IN_USE Callbacks are on the queue awaiting dispatch. If this
does not matter, then flush the queue first before clos-
ing.

DCB Manager API Reference

5-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Control

Description

This function is used to configure/control a deferred callback queue server
according to command-value pairs (see
“ADI_DCB_COMMAND_PAIR” on page 5-28). Currently, only one
command is relevant, ADI_DCB_CMD_FLUSH_QUEUE, though others may be
added in the future. The command-value pairs can be specified in one of
three ways:

• A single command-value pair is passed:

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_FLUSH_QUEUE,

 (void*)ClientCallback

);

• A single command-value pair structure is passed, for example:

ADI_DCB_COMMAND_PAIR cmd=

 {ADI_DCB_CMD_FLUSH_QUEUE, (void *)ClientCallback};

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_PAIR,

 (void*)&cmd

);

• A table of ADI_DCB_COMMAND_PAIR structures is passed. The last
entry in the table must be ADI_DCB_CMD_END:

ADI_DCB_COMMAND_PAIR table[2] = {

 {ADI_DCB_CMD_FLUSH_QUEUE, (void*)ClientCallback,

 {ADI_DCB_CMD_END, O}

VisualDSP++ 4.5 Device Drivers and System 5-15
Services Manual for Blackfin Processors

Deferred Callback Manager

);

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_TABLE,

 (void*)table

);

Refer to “ADI_DCB_COMMAND” on page 5-29 for the complete list of
commands and associated values.

Prototype

ADI_DMA_RESULT

adi_dcb_Control(

 ADI_DCB_HANDLE hServer,

 ADI_DCB_COMMAND command,

 void *value

);

DCB Manager API Reference

5-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In debug mode, this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned:

hServer This is the handle of the required queue server to be closed.

command This is an ADI_DCB_COMMAND enumeration value specifying
the meaning of the associated value argument
See “ADI_DCB_COMMAND” on page 5-29.

value This is the required value. A single value or a com-
mand-value pair or a table of command-value pairs.

ADI_DCB_RESULT_NO_SUCH_QUEUE This is the handle of the required queue server is
invalid.

ADI_DCB_RESULT_BAD_COMMAND Either the command kind or the value specified is
invalid.

VisualDSP++ 4.5 Device Drivers and System 5-17
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Init

Description

The adi_dcb_Init function initializes the DCB manager with sufficient
memory for the required number of deferred callback queues (referred to
as Queue Servers).

This function can be called once per processor core.

Prototype

ADI_DCB_RESULT

adi_dcb_Init(
 void *ServerMemData,

 size_t szServer,

 unsigned int *NumServers

 void *hCriticalRegionData

);

DCB Manager API Reference

5-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In debug mode this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned:

ServerMemData This is the pointer to an area of memory, which is used to
hold the data associated with each registered queue server.

szServer This is the length in bytes of memory being supplied for the
queue server data

NumServers On return, this argument holds the maximum number of
simultaneously open queue servers that the supplied memory
can support.

hCriticalRegionData This is the handle to data area containing critical region data.
This will be passed to adi_int_EnterCriticalRegion
where used internally of the module.
See “Interrupt Manager” for further details.

ADI_DCB_RESULT_SUCCESS Successfully initialized the queue server

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_CALL_IGNORED The DBG Manager has already been initialized for this
processor core.

VisualDSP++ 4.5 Device Drivers and System 5-19
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Open

Description

The adi_dcb_Open function opens a queue server for use by assigning
memory for its callback queue. Additionally, in standalone mode, the
queue is assigned to the requested IVG priority level and the DCB man-
ager’s adi_dcb_DispatchCallbacks function is hooked to the interrupt
handler chain with the interrupt manager for the given IVG Level.

Users must initialize the interrupt manager prior to opening a
queue server.

Prototype

ADI_DCB_RESULT adi_dcb_Open (

 u32 IvgLevel,

 void *QueueMemData,

 size_t szQueue,

 u32 *NumEntries,

 ADI_DCB_HANDLE *hServer

);

DCB Manager API Reference

5-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In debug mode, this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned.

IvgLevel The IVG level at which the DCB manager’s dispatcher
function is to operate. This value is ignored in the VDK
version of the library.

QueueMemData This is the pointer to an area of memory, which is used to
hold the data associated with the server’s entry queue.

szQueue This is the length in bytes of memory being supplied for the
queue.

NumEntries On return, this argument holds the maximum number of
queue entries that the supplied memory can support.

hServer On return, this argument contains a handle to the queue
server opened. This should be used to uniquely identify the
queue server in calls to other API functions within the SSL.

ADI_DCB_RESULT_SUCCESS The queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_QUEUE_IN_USE A queue server has already been opened for use by the
specified IVG.

VisualDSP++ 4.5 Device Drivers and System 5-21
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Post

Description

This function posts a callback function and associated argument values to
the queue server, identified by the handle argument for further processing.

A callback is associated with a priority level, so that higher priority call-
backs run before lower priority ones. To run all callbacks at the same
priority level, assign the same priority to each callback posted.

Prototype

ADI_DCB_RESULT adi_dcb_Post(

 ADI_DCB_HANDLE *hServer,

 u16 Priority;

 ADI_DCB_CALLBACK_FN Callback,

 void *pHandle,

 u32 u32Arg,

 void *pArg

);

DCB Manager API Reference

5-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-

Table 5-1. Adi_dcb_Post Arguments

Argument Explanation

hServer This is the handle of the required queue server.

Priority This is the priority level at which the callback is to run, the
lower the number the higher the priority. There is no real
limit on the value supplied.

Callback This is the address of the client callback function to be
queued.

pHandle This is the a void* address which is to be passed as the first
argument to the callback function upon its deferred
execution.
Typically it will be a handle address that is meaningful within
the context of the callback function. For example, when used
within the interrupt handler of the DMA manger this argu-
ment is the ClientHandle value defined when the DMA
channel was opened.

u32Arg A u32 value which is to be passed as the second argument to
the callback function upon its deferred execution
See “ADI_DCB_CALLBACK_FN” on page 5-27.
Typically, it will be a value that is meaningful within the con-
text of the callback function. For example, when used within
the interrupt handler of the DMA manger this argument
describes the nature of the event that has occurred.

pArg The void* value which is to be passed as the third argument
to the callback function (see “ADI_DCB_CALLBACK_FN”
on page 5-27) upon its deferred execution. Typically, it will
be an address of a block of data. For example, when called
within the interrupt handler of the DMA manager this argu-
ment points to the start of the buffer for which the DMA
transfer has completed.

VisualDSP++ 4.5 Device Drivers and System 5-23
Services Manual for Blackfin Processors

Deferred Callback Manager

erwise, ADI_DCB_RESULT_SUCCESS is always returned.

ADI_DCB_RESULT_SUCCESS The entry was successfully queued.

ADI_DCB_RESULT_NO_MEMORY There is no vacant queue entry available.

ADI_DCB_RESULT_NO_SUCH_QUEUE The handle provided does not represent a valid queue
server.

DCB Manager API Reference

5-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Remove

Description

This function removes entries in the given queue that matches the address
of the given callback function. Alternatively, passing a NULL value for the
callback function address, instructs the callback manager to remove all
entries in the queue.

Prototype

ADI_DCB_RESULT adi_dcb_Remove(

 ADI_DCB_HANDLE hServer,

 ADI_DCB_CALLBACK_FN Callback

);

Arguments

Return Value

In debug mode this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_FLUSHED_OK is always returned:

hServer This is the handle of the required queue server.

Callback This is the address of the client callback function to be
removed. If NULL then all entries in the queue will be
removed, otherwise all entries matching the given callback
function address is removed.

ADI_DCB_RESULT_FLUSHED_OK Entries were successfully removed.

ADI_DCB_RESULT_NONE_FLUSHED The routine found no entries to be removed.

ADI_DCB_RESULT_NO_SUCH_QUEUE The handle provided does not represent a valid queue
server.

VisualDSP++ 4.5 Device Drivers and System 5-25
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Terminate

Description

This function terminates the DCB manager by dissociating the supplied
memory (see “adi_dcb_Init” on page 5-17) and critical region data.

Prototype

ADI_DCB_RESULT

adi_dcb_Terminate (void);

Return Value

ADI_DCB_RESULT_SUCCESS is always returned.

Public Data Types and Macros

5-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types and Macros
This section provides descriptions of the public data types and macros.

VisualDSP++ 4.5 Device Drivers and System 5-27
Services Manual for Blackfin Processors

Deferred Callback Manager

ADI_DCB_CALLBACK_FN

The ADI_DCB_CALLBACK_FN typedef defines the prototype for the callback
functions to be posted:

typedef void (*ADI_DCB_CALLBACK_FN)

 (void* pHandle, u32 u32Arg, void* pArg);

where the values of the arguments are those passed to the adi_dcb_Post
function when the callback is queued for deferred execution.

Public Data Types and Macros

5-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DCB_COMMAND_PAIR

This data type is used to enable the generation of a table of control com-
mands to be sent to the DCB manager via the adi_dcb_Control function.

typedef struct ADI_DCB_COMMAND_PAIR {

 ADI_DCB_COMMAND kind;

 void *value;

} ADI_DCB_COMMAND_PAIR;

For valid values for the kind field refer to ADI_DCB_COMMAND. For example,
the following command could be sent to the DCB manager to flush all
callbacks in the queue:

ADI_DCB_COMMAND_PAIR CMD = { ADI_DCB_CMD_FLUSH_QUEUE, NULL };

VisualDSP++ 4.5 Device Drivers and System 5-29
Services Manual for Blackfin Processors

Deferred Callback Manager

ADI_DCB_COMMAND

The ADI_DCB_COMMAND is used to control the DCB manager’s queue server.
This data type is used in an ADI_DCB_COMMAND_PAIR couplet to change a
configuration value in calls to adi_dcb_Control.

Command Associated Data Value

ADI_DCB_CMD_END This command defines the end of a table of command pairs.

ADI_DCB_CMD_PAIR This command is used to tell adi_dcb_Control that a
single command pair is being passed.

ADI_DCB_CMD_TABLE This command is used to tell adi_dcb_Control that a table
of command pairs is being passed.

ADI_DCB_CMD_FLUSH_QUEUE The address of the callback function for which all matching
queue entries are cleared from the queue regardless of
priority.

Public Data Types and Macros

5-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DCB_ENTRY_HDR

The ADI_DCB_ENTRY_HDR structure is provided to interface with the under-
lying RTOS through the adi_dcb_Forward function (refer to
“adi_dcb_Forward” on page 5-8):

typedef struct ADI_DCB_ENTRY_HDR (

 struct ADI_DCB_ENTRY *pNext; // Next item in queue

 ADI_DCB_DEFERRED_FN pDeferredFunction; // Deferred Callback

 // Function pointer,

} ADI_DCB_ENTRY_HDR;

where pNext points to the next item in the queue and pDeferredFunction
is the address of the deferred function, which is always the address of
adi_dcb_DispatchCallbacks.

The ADI_DCB_DEFERRED_FN typedef defines the prototype for this
function:

 typedef void (*ADI_DCB_DEFERRED_FN) (ADI_DCB_ENTRY *);

VisualDSP++ 4.5 Device Drivers and System 5-31
Services Manual for Blackfin Processors

Deferred Callback Manager

ADI_DCB_RESULT

All public DCB manager functions return a result code of the
ADI_DCB_RESULT data type. Possible values are:

ADI_DCB_RESULT_SUCCESS The queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was present.

ADI_DCB_RESULT_QUEUE_IN_USE A queue server has already been opened for use by the
specified IVG
See “ADI_DCB_COMMAND” on page 5-29.

ADI_DCB_RESULT_CALL_IGNORED The DBG Manager has already been initialized for this
processor core
See “ADI_DCB_COMMAND” on page 5-29.

ADI_DCB_RESULT_NO_SUCH_QUEUE The handle provided does not represent a valid queue
server registered with the DCB manager.

ADI_DCB_RESULT_BAD_COMMAND Either the command kind or the value specified is
invalid.

Public Data Types and Macros

5-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 6-1
Services Manual for Blackfin Processors

6 DMA MANAGER

This chapter describes features of direct memory access (DMA) manager
and its application programming interface (API).

This chapter contains:

• “Introduction” on page 6-2

• “Theory of Operation” on page 6-4

• “DMA manager API Reference” on page 6-33

• “Public Data Structures, Enumerations and Macros” on page 6-56

Introduction

6-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The DMA manager provides the application developer with the means to
manage DMA traffic on as many channels as required across the spec-
trum—from setting up the DMA channels for their intended purpose, to
providing callbacks, to the client application on transfer completion.

As part of the System Services, the DMA manager provides a complete
and easy-to-use interface to the DMA controller. To this end, the DMA
manager is designed to:

• Remove the need for direct client access to memory mapped regis-
ters (MMR) through the implementation of API function calls.

• Place no limitations on the type of data transfer—all descriptor
types are supported as well as both single and circular buffers. Both
one-dimensional (1D) or two-dimensional (2D) DMA can be used.

VisualDSP++ 4.5 Device Drivers and System 6-3
Services Manual for Blackfin Processors

DMA Manager

• Provide a simple interface to perform block copies of data between
different memory locations using both 1D and 2D Memory DMA,
such that blocks of data can be copied between internal and exter-
nal memory with one function call in an equivalent manner to the
C library memcpy function.

• Interpret interrupts raised on DMA transfer completion and pass
higher-level event information to the user-supplied callback func-
tions. For example, if an interrupt is raised on each inner loop of a
circular 2D DMA transfer, an event can be passed to the callback
function at the completion of each inner loop.

• Minimize the memory used by the module. No static memory
space is set aside within the API framework to hold the configura-
tion details for each channel. Instead, a mechanism is provided to
enable client applications to set-aside sufficient memory for as
many DMA channels as required by the application.

• Be as portable as possible by providing a consistent interface across
all processor families and variants. Additionally, the DMA manager
uses an unambiguous naming convention to safeguard against con-
flicts with other software libraries provided by Analog Devices, Inc.
or elsewhere.

To this end, all enumeration values and typedefs use the ADI_DMA_
prefix, while functions and global variables use the lower case,
adi_dma_, equivalent.

Theory of Operation

6-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Theory of Operation
This section describes the internal operation of the DMA manager.

Overview
The DMA manager is used to control the Blackfin DMA controller. The
DMA manager supports both peripheral DMA for moving data to and
from the various on-board peripherals, and memory DMA for moving
data between the various memory spaces of the Blackfin processor.

The DMA manager is capable of controlling any number of DMA chan-
nels. The user can specify which channels the DMA manager should
control. Remaining channels not under control of the DMA manager can
be used for any purpose and can be controlled independently of the DMA
manager by the application.

Various data transfer modes of the Blackfin DMA controller are supported
including descriptor chains, circular buffers (utilizing the autobuffer capa-
bility of the Blackfin processor), and one-shot transfers. Both
one-dimensional or linear transfers are supported as are two-dimensional
or matrix transfers.

The DMA manager can be directed to notify the client, via the client’s
callback function, when data transfers complete. Additionally the client’s
callback function is invoked when unexpected events, such as DMA
errors, occur. As with all system services, the DMA manager allows the cli-
ent to specify callbacks to be “live”, meaning the client’s callback function
is invoked at hardware interrupt time, or “deferred”, meaning the client’s
callback function is invoked outside the context of the hardware interrupt.

VisualDSP++ 4.5 Device Drivers and System 6-5
Services Manual for Blackfin Processors

DMA Manager

 DMA Manager Initialization
In order to use the DMA manager, the client must first initialize it. The
DMA manager does not use any static data, so the initialization step is
used to give the DMA manager memory that it can use to manage the
DMA controller.

The DMA manager requires a small fixed amount of base memory and
then a variable amount of memory, depending on how many simulta-
neously open DMA channels the system requires. Note that memory
DMA requires two DMA channels—one channel for the source and
another channel for the destination for each memory DMA stream. Mac-
ros are provided to define the amount of memory (in bytes) that are
required for the base and channel memory. These macros are
ADI_DMA_BASE_MEMORY and ADI_DMA_CHANNEL_MEMORY.

For instance, if the client wanted to initialize the DMA manager and
would have at most four DMA channels and one memory DMA stream
open simultaneously, the amount of memory that would be required is:

 (ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY * 6)).

When called, the initialization function, adi_dma_Init(), initializes the
memory that was passed in. Like all functions within the DMA manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All DMA API
functions return the ADI_DMA_RESULT_SUCCESS value to indicate success.
All error codes are of the form ADI_DMA_RESULT_XXXX.

In addition to the return code, the adi_dma_Init() function returns a
count of the number of channels it can manage simultaneously, and a han-
dle into the DMA manager. The channel count can be tested to ensure the
DMA manager can control the requested number of channels. The DMA
manager handle value that is returned is later passed into the
adi_dma_Open and adi_dma_MemoryOpen functions. These functions use the
manager handle to identify the DMA manager that is to control the chan-

Theory of Operation

6-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

nel. Passing in this handle allows these functions to quickly identify the
memory that will be used to manage the channel(s) being opened. After
the DMA manager has been initialized, DMA channels and memory
streams can be opened for use.

While it is possible to create multiple DMA managers in a unicore Black-
fin system, there is no practical advantage in doing so.

 DMA Manager Termination
When the DMA manager is no longer needed, the client can terminate the
DMA manager with the adi_dma_Terminate function. This function is
passed the DMA manager handle given to the client in the adi_dma_Init
function. The DMA manager closes any open channels and streams, and
then returns to the caller. After the return from the adi_dma_Terminate()
function, the memory that was supplied to the DMA manager via the
adi_dma_Init() function can be reused by the client.

Note that in many embedded systems, the DMA manager is never
terminated.

Memory DMA and Peripheral DMA
As described in the Blackfin Processor Hardware Reference, the Blackfin
DMA controller supports both peripheral DMA and memory DMA.
Regardless of if peripheral DMA or memory DMA is being used, the cli-
ent schedules DMA manager activity on a block by block basis rather than
on a sample by sample basis. While a block of data can be defined to be a
single sample of data, this is seldom the case. Most often, data is blocked
in quantities relevant to the processing that is to be performed. The term
“buffer” is used throughout this document to represent the block of data.

Peripheral DMA is used to move blocks of data between on-chip peripher-
als and one of the memory spaces of the Blackfin processor, most
commonly within the context of a device driver. For example, an on-chip

VisualDSP++ 4.5 Device Drivers and System 6-7
Services Manual for Blackfin Processors

DMA Manager

peripheral such as a PPI uses DMA to move blocks of data into or out
from the PPI device. As such, the device driver for the PPI typically uses
the DMA manager to control dataflow through the PPI.

Memory DMA describes the movement of data between any of the various
Blackfin memory spaces. For example, due to the huge amounts of data
used for video processing, video frames may be stored in external
SDRAM, and then “DMA-ed” piecemeal into internal L1 memory for
processing.

The DMA manager fully supports both peripheral DMA and memory
DMA. When using peripheral DMA, clients leverage the capabilities of
the DMA manager on a channel by channel basis. When using memory
DMA, clients can choose to control memory streams as individual source
and destination channels using the same techniques and functions pro-
vided for peripheral DMA, or alternatively can control memory DMA as a
single memory stream using the higher level adi_dma_MemoryXXXX()
functions.

Controlling Memory Streams
When memory DMA is needed, controlling and scheduling memory
DMA is most easily accomplished using higher level memory streams. The
adi_dma_MemoryXXXX() functions provide a simple, efficient method to
cause the Blackfin DMA controller to transfer data between the various
memory spaces.

The overall sequence for using memory streams is to first open the mem-
ory stream, schedule transfers as needed, then close the memory stream
when it is no longer needed. In many embedded systems, the memory
stream is never closed, but remains open at all times.

Theory of Operation

6-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Opening Memory Streams

To open the memory stream, the client calls the adi_dma_MemoryOpen
function. The client passes the following parameters into the function:

• A handle to the DMA manager that is to control the stream.

• The stream ID (of type ADI_DMA_STREAM_ID) that identifies which
memory DMA stream to use.

• A client handle that is passed back to the client’s callback function.
This is a client supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing
the callback.

• A pointer to a location into which the DMA manager stores the
stream handle. The stream handle is a DMA manager defined value
that uniquely identifies the stream to the DMA manager.

• A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager will make “live” callbacks to the application. “Live”
callbacks are made during hardware interrupt time. If a deferred
callback service handle is provided, all callbacks for the stream use
the deferred callback service to defer callback processing until after
hardware interrupt time.

Memory Transfers

Once a memory stream has been opened, the client can submit jobs to the
stream using the adi_dma_MemoryCopy and/or adi_dma_MemoryCopy2D
functions. Linear, one-dimensional, memory transfers use the former
function; two-dimensional transfers use the latter function. The same
stream can be used for both one-dimensional and two-dimensional trans-
fers, so a client can schedule a one-dimensional transfer on a given stream,
then schedule a two-dimensional transfer on that same stream.

VisualDSP++ 4.5 Device Drivers and System 6-9
Services Manual for Blackfin Processors

DMA Manager

Note that a memory stream can support only one transfer at a time. If a
transfer is in progress and another transfer is requested, these functions
return an error code indicating the stream is in use. If queuing of memory
transfers is required, this can be accomplished by using the channel-based
method of controlling DMA.

One-Dimensional Transfers (Linear Transfers)

One-dimensional linear transfers are handled by calling the
adi_dma_MemoryCopy() function. When calling the adi_dma_MemoryCopy()
function, the client provides the following parameters:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen() function.

• The destination starting address into which the data is copied.

• The source starting address from which data is copied.

• The width of each element, in bytes, that is to be copied. The
DMA manager uses this value to schedule 8-, 16- or 32-bit
transfers.

• A count of the number of elements to be copied.

• The address of the callback function that is called when the transfer
is complete. When the callback function is actually invoked
depends on the callback service handle value that was supplied to
the stream when it was opened, either deferred or “live”. If the
adi_dma_MemoryCopy() function is passed a NULL value for the
callback function address, the transfer occurs synchronously and
the adi_dma_MemoryCopy() function does not return to the client
until the transfer is complete. No callbacks are made in this case.

Theory of Operation

6-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Two-Dimensional Transfers

Two-dimensional memory transfers are handled by calling the
adi_dma_MemoryCopy2D() function. When calling this function, the client
provides the following parameters:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen() function.

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data will be stored into the destination memory.

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data will be read from the source memory.

• The width of each element, in bytes, that is to be copied. The
DMA manager uses this value to schedule 8-, 16- or 32-bit
transfers.

• The address of the callback function that is called when the transfer
is complete. When the callback function is actually invoked
depends on the callback service handle value that was supplied to
the stream when it was opened (either deferred or “live”. If the
adi_dma_MemoryCopy() function is passed a NULL value for the
callback function address, the transfer will occur synchronously
and the adi_dma_MemoryCopy() function does not return to the cli-
ent until the transfer is complete. No callbacks are made in this
case.

The ADI_DMA_2D_TRANSFER data type is a structure that defines the neces-
sary values to describe a two-dimensional transfer. This data type contains
the starting address in memory, an XCount value defining the number of
columns, a YCount value defining the number of rows, and XModify and
YModify values describing the stride for each.

VisualDSP++ 4.5 Device Drivers and System 6-11
Services Manual for Blackfin Processors

DMA Manager

Closing Memory Streams

When a memory stream is no longer needed, the adi_dma_MemoryClose
function is called to close the stream. Once closed, a stream must be
reopened before it can perform additional transfers. The client passes the
following parameters into the function:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen function.

• A flag indicating whether or not the DMA manager should wait for
any ongoing transfers on the stream to complete before closing the
channel.

Controlling DMA Channels
Controlling DMA on a channel by channel basis allows for the tightest
control of DMA scheduling. Before a channel can be used, it must first be
opened; then it has to be configured:

• “Opening DMA Channels”

• “Configuring a DMA Channel”

• “Closing a DMA Channel”

Opening DMA Channels

To open a DMA channel, the client calls the adi_dma_Open() function.
The client passes into the function the following parameters:

• A handle to the DMA manager that is to control the channel.

• The channel ID (of type ADI_DMA_CHANNEL_ID) that identifies the
DMA channel to be opened.

Theory of Operation

6-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• A client handle that is passed back to the client’s callback function.
This is a client supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing
the callback.

• A pointer to a location into which the DMA manager stores the
channel handle. The channel handle is a DMA manager defined
value that uniquely identifies the channel to the DMA manager.

• The operating mode that defines how the channel will move data.
See the sections starting with “Single Transfers” on page 6-13.

• A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager will make “live” callbacks to the application. “Live”
callbacks are made during hardware interrupt time. If a deferred
callback service handle is provided, all callbacks for the stream will
use the deferred callback service to make callbacks occur at
non-hardware interrupt time.

• The address of the callback function that is called to notify the cli-
ent of events. Events may be expected events, such as requests for
notification when a transfer is complete, to unexpected events such
as a DMA error. When the callback function is actually invoked,
deferred or “live”, depends on the callback service handle value that
is supplied.

After the channel has been successfully opened, the channel can be addi-
tionally configured, buffers supplied to the channel, and so on.
Note that the actual transferring of data does not begin with the
adi_dma_MemoryOpen function. Dataflow must be specifically enabled via
the adi_dma_Control function.

VisualDSP++ 4.5 Device Drivers and System 6-13
Services Manual for Blackfin Processors

DMA Manager

The DMA manager supports the following operational modes of the
Blackfin DMA controller:

• “Single Transfers”

• “Circular Transfers” on page 6-15

• “Large Descriptor Chaining Model” on page 6-17

• “Small Descriptor Chaining Model” on page 6-21

Single Transfers

The single transfer operating mode (ADI_DMA_MODE_SINGLE) is used to
transfer individual, single buffers of data. When using the single transfer
mode, the client calls the adi_dma_Buffer() function to schedule a trans-
fer. The client passes to the function the following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration Control register for the chan-
nel. The DMA manager include file provides macros that allow the
client to quickly and easily create a configuration word. The fol-
lowing fields within the configuration word are the only ones for
which values must be provided:

Theory of Operation

6-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

WNR
(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data

ADI_DMA_WNR_WRITE Transfer is for inbound data

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits)

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits)

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits)

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

DI_SEL
(Data Interrupt Timing
Select) applies only when
DMA2D = 1

ADI_DMA_DI_SEL_OUTER_LOOP A callback is generated when the
entire transfer has completed
(outer loop).

ADI_DMA_DI_SEL_INNER_LOOP A callback is generated on each
inner loop completion.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback is generated.

ADI_DMA_DI_EN_ENABLE The DMA manager generates a
callback to the client when the
transfer completes.

VisualDSP++ 4.5 Device Drivers and System 6-15
Services Manual for Blackfin Processors

DMA Manager

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Regardless of whether or not dataflow on the channel is enabled, the
adi_dma_Buffer() function returns immediately to the caller. If dataflow
is already enabled on the channel, the DMA manager begins executing the
transfer, otherwise the transfer does not begin until the dataflow is
enabled via the adi_dma_Control() function. When using the single trans-
fer mode, the adi_dma_Buffer() function can be called at any time, as
long as a transfer on the channel is not already in progress.

Circular Transfers

The circular transfer mode (ADI_DMA_MODE_CIRCULAR) leverages the auto-
buffer capability of the DMA controller. Using the circular transfer mode,
the client provides the DMA manager with a single contiguous buffer
comprising n sub buffers, as shown in Figure 6-1 on page 6-17.

When dataflow is enabled, the DMA manager begins transferring data at
the start of the buffer, continuing on throughout the entire buffer, and
then automatically looping back to the top of the buffer again, and repeat-
ing indefinitely. The client can optionally direct the DMA manager to
generate callbacks at the completion of each sub buffer, to generate call-
backs at the completion of the entire buffer, or not to generate callbacks.

Theory of Operation

6-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

When using the circular transfer mode, the client calls the
adi_dma_Buffer() function with the following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The only fields
within the configuration word the client need provide values for
are:

• The XCount value. This parameter should be set to the number of
elements in a single sub buffer.

• The XModify value. The width, in bytes, of an element. Allowed
values are 1, 2 and 4 only.

WNR
(Transfer Direction)

ADI_DMA_WNR_READ A transfer is for outbound data.

ADI_DMA_WNR_WRITE A transfer is for inbound data.

DI_SEL
(Data Interrupt Timing
Select)

ADI_DMA_DI_SEL_OUTER_LOOP A callback is generated on
completion of whole buffer only.

ADI_DMA_DI_SEL_INNER_LOOP A callback is generated on each
inner loop completion.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback will be generated.

ADI_DMA_DI_EN_ENABLE Callbacks are generated according
the setting of DI_SEL.

VisualDSP++ 4.5 Device Drivers and System 6-17
Services Manual for Blackfin Processors

DMA Manager

• The YCount value. This parameter should be set to the number of
sub buffers contained within the whole buffer.

• The YModify value. This parameter is ignored.

When using the circular mode, the adi_dma_Buffer() function must be
called prior to enabling dataflow on the channel. If after enabling data-
flow, the client wants to change to a different circular buffer, the client
must first disable dataflow on the channel, then call the adi_dma_Buffer()
function with the new buffer data, then re-enable dataflow on the appro-
priate channel.

Large Descriptor Chaining Model

The large descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_LARGE)
allows the client to create chains of descriptors, residing anywhere in
memory, where each descriptor describes a specific work unit.

Using the large descriptor chaining mode, the client provides the DMA
manager with one or more descriptor chains, as shown in Figure 6-2.

Figure 6-1. Circular Buffer

. . .

SUBBUFFER 0

SUBBUFFER 1

SUBBUFFER N

CALLBACK ON SUBBUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

Theory of Operation

6-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Descriptors can be submitted at any time, regardless of the dataflow state.
The DMA manager maintains independent queues of descriptors for each
channel, keeping the DMA controller busy with transfers until all queued
descriptors have been processed. Both one-dimensional transfers and
two-dimensional transfers can be intermixed on the same channel. Each
transfer can define a different transfer type, length, and so on. Addition-
ally, callbacks to the client’s callback function, can be made upon
completion of every descriptor, any individual descriptor or configured to
never callback.

When the large descriptor chaining mode is used, descriptor chains are
submitted to the channel using the adi_dma_Queue() function with the
following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• A handle, of the type ADI_DMA_DESCRIPTOR_HANDLE, to a descriptor.
As the same adi_dma_Queue() function is used for all descriptor
based operating modes, including large descriptors, small descrip-
tors and arrays of descriptors, the ADI_DMA_DESCRIPTOR_HANDLE data
type acts as a container that conveniently represents each of the
descriptor types.

For the large descriptor chaining mode, descriptors are of the type
ADI_DMA_DESCRIPTOR_LARGE, a data type that defines a large model descrip-
tor. When calling the adi_dma_Queue() function, the client can either pass

Figure 6-2. Descriptor Chain

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

VisualDSP++ 4.5 Device Drivers and System 6-19
Services Manual for Blackfin Processors

DMA Manager

in the address of the descriptor union (ADI_DMA_DESCRIPTOR_UNION) or
alternatively, the address of the descriptor itself
(ADI_DMA_DESCRIPTOR_LARGE) to the ADI_DMA_DESCRIPTOR_HANDLE data
type. This descriptor can be either a single descriptor or the first descrip-
tor in a chain of descriptors.

Large model descriptors contain all the information necessary for the
DMA manager to control the operation of the DMA controller. This
information includes:

• A pointer to the next large descriptor in the chain. If this field is
NULL, then the given descriptor is the only descriptor the client is
submitting to the channel.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The only fields
within the configuration word the client need provide values for
are:

WNR
(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data.

ADI_DMA_WNR_WRITE Transfer is for inbound data.

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits).

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits).

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

Theory of Operation

6-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Although the DMA manager does not constrain when descriptors can be
provided to a channel, for DMA channels that will be processing inbound
data it is best practice to provide descriptors to the channel via the
adi_dma_Queue() function before enabling dataflow. By doing this, the
DMA controller uses a space where data can be stored. If dataflow is
enabled on an inbound channel prior to providing descriptors, it is possi-
ble for data to be received by the DMA channel but not have anywhere to
store it.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback will be generated.

ADI_DMA_DI_EN_ENABLE The DMA manager generates a
callback to the client when the
transfer completes.

VisualDSP++ 4.5 Device Drivers and System 6-21
Services Manual for Blackfin Processors

DMA Manager

Small Descriptor Chaining Model

The small descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_SMALL)
is similar to the large descriptor chaining model. The only material differ-
ence between the two models is that in the small descriptor model, the
pointer to the next descriptor in a chain of descriptors consists of only the
lower 16 bits of address, rather than a full 32-bit address. This means that
all descriptors on a channel that is using the small descriptor model must
have the same upper 16 bits of address. In other words, all small model
descriptors for a channel must be located within the same 64KB segment.

This difference is encapsulated in the ADI_DMA_DESCRIPTOR_SMALL data
type. In order to avoid data alignment issues, a consequence of having the
next descriptor pointer exist as a 16-bit entry rather than a 32-bit entry,
the starting address of the data within the descriptor is declared as two
16-bit entries, rather than a single 32-bit entry. Performing two 16-bit
accesses, rather than a single 32-bit access avoids any alignment
exceptions.

Other than these differences, the small descriptor chaining model is func-
tionally identical to the large descriptor chaining model.

Arrays of Descriptors

The descriptor array mode (ADI_DMA_MODE_DESCRIPTOR_ARRAY) is not yet
supported in the Device Manager.

Theory of Operation

6-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Configuring a DMA Channel

Once a DMA channel has been opened, the client can detect and modify
the configuration of the channel via the adi_dma_Control function. The
complete list of configuration control commands are provided in
Table 6-3 on page 6-64. In most cases, the client passes the following
parameters to the adi_dma_Control() function:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open function.

• The command ID. This ADI_DMA_CMD data type identifies the con-
trollable item that is being configured.

• A command specific value. This semantics of this parameter are
defined by the command ID. For example, given a command ID of
ADI_DMA_CMD_SET_DATAFLOW, the command specific value is either
TRUE or FALSE, to enable or disable dataflow on the channel. The
command specific value is always cast to (void*).

Closing a DMA Channel

To close a DMA channel, the client calls the adi_dma_Close() function.
The client passes the following parameters into the function:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• A flag indicating whether or not the DMA manager should wait for
any DMA activity on the channel to complete before closing the
channel.

Once a channel has been closed, the channel must be reopened with the
adi_dma_Open() function before it can be used again.

VisualDSP++ 4.5 Device Drivers and System 6-23
Services Manual for Blackfin Processors

DMA Manager

Transfer Completions
Client applications can use two different mechanisms to determine when
transfers complete. One method is by polling the channel, the other
method is through callbacks.

In addition to polling and callbacks, the memory stream functions offer a
synchronous capability. When used synchronously, the
adi_dma_MemoryCopy() and adi_dma_MemoryCopy2D() functions return to
the client only when the transfer is complete.

Polling

Clients can use the adi_dma_Control() function to interrogate a specific
channel to determine if a transfer is in progress by using the command ID
ADI_DMA_CMD_GET_TRANSFER_STATUS. When given this command, the
DMA manager examines the status of the individual DMA channel. The
function provides a response of TRUE, if a transfer is in progress, and a
response of FALSE, if the no transfer is currently in progress.

Note that memory streams can also be interrogated for transfer status.
Instead of passing the channel handle (ADI_DMA_CHANNEL_HANDLE) parame-
ter to the adi_dma_Control() function, the client should pass the stream
handle (ADI_DMA_STREAM_HANDLE) parameter (casted to the
ADI_DMA_CHANNEL_HANDLE data type) to the adi_dma_Control() function.

Callbacks

Callbacks are the more commonly used mechanism for clients to deter-
mine when transfers have completed. Callbacks are either “live”, meaning
they are made at interrupt time, or deferred, meaning they are made after
the hardware interrupt has completed processing using a callback service.

Theory of Operation

6-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Memory Stream Callbacks

When using memory streams, if the client provided a callback function as
a parameter to the adi_dma_MemoryCopy() or adi_dma_MemoryCopy2D()
functions, the callback function is invoked by the DMA manager when
the transfer is complete.

When using memory streams, the following arguments are passed to client
callback functions:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_MemoryOpen() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting destination address of the transfer.

Circular Transfer Callbacks

When using the circular transfer method (ADI_DMA_MODE_CIRCULAR), the
client uses the configuration word to specify the frequency of callbacks.
When directed to callback the client on each sub-buffer completion, the
DMA manager invokes the client’s callback function after each sub buffer
completes. For example, this is useful in double-buffering schemes, where
two sub buffers (ping/pong) are used.

When using circular transfers, the following arguments are passed to client
callback functions:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_Open() function.

• Event ID. This value is either the
ADI_DMA_EVENT_INNER_LOOP_PROCESSED when a sub buffer has com-
pleted processing or the ADI_DMA_EVENT_OUTER_LOOP_PROCESSED
when the entire buffer has completed processing.

• Starting address of the data buffer.

VisualDSP++ 4.5 Device Drivers and System 6-25
Services Manual for Blackfin Processors

DMA Manager

Descriptor Callbacks

When using any of the descriptor-based transfer methods
(ADI_DMA_MODE_DESCRIPTOR_LARGE, ADI_DMA_MODE_DESCRIPTOR_SMALL or
ADI_DMA_DESCRIPTOR_ARRAY), the client uses the configuration word of the
descriptor to define whether or not a callback is to be generated following
processing of a descriptor. When directed to callback the client upon com-
pletion of the descriptor, the client callback function is passed the
following arguments:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_Open() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting address of the data.

Descriptor-Based Sub-Modes
When using the small or large model descriptor-based transfers, two
sub-modes allow the client application greater flexibility in processing
descriptors. Each of these sub-modes can be used independently or in
combination. Each sub-mode is enabled or disabled via the
adi_dma_Control() function. Clients who want to use these sub-modes
must enable them prior to enabling dataflow on the channel. Both
sub-modes are disabled by default.

Loopback Sub-Mode

The loopback sub-mode is controlled by the ADI_DMA_CMD_SET_LOOPBACK
command.

When the loopback sub-mode is enabled (after the DMA manager has
processed the last descriptor in the chain of descriptors provided to a
channel), it automatically loops back to the first descriptor that was pro-
vided to the channel. This effectively creates an infinite loop of

Theory of Operation

6-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

descriptors, as illustrated in Figure 6-3. For examsub-modeple, with the
loopback sub-mode, the client can provide the descriptors at initialization
time, let the DMA manager process the descriptors, and never have to
resupply the DMA manager with additional descriptors.

As in the non-loopback case, each descriptor, any one, none or all descrip-
tors can be tagged to generate a callback to the client after processing.

Streaming Sub-Mode

The streaming sub-mode is controlled by the ADI_DMA_CMD_SET_STREAMING
command.

When not using the streaming sub-mode, the DMA manager pauses the
DMA controller after a descriptor that has been tagged to generate a call-
back has been processed. The DMA manager does this because the
Blackfin DMA controller does not provide any status information indicat-
ing that a specific descriptor has been processed. If the DMA manager did
not pause the controller, it is possible that before the DMA manager can
recognize and process the callback interrupt for a given descriptor, the
DMA controller may have completed processing of yet another descriptor.
Unless the DMA controller pauses until the DMA manager processes the
interrupt, the DMA manager cannot definitively determine which call-
back interrupt is associated with which descriptor.

Figure 6-3. Descriptor Chain with Loopback

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

VisualDSP++ 4.5 Device Drivers and System 6-27
Services Manual for Blackfin Processors

DMA Manager

When not streaming, the DMA manager also pauses the DMA controller
when a channel has exhausted its supply of descriptors.

The streaming sub-mode allows the client to alter this behavior. When the
streaming sub-mode is enabled, the DMA manager never pauses the DMA
controller, allowing the DMA transfers to occur at the maximum through-
put rate. When streaming, the client is required to ensure the following
conditions:

• The channel always has descriptors to process and never runs out of
descriptors.

• The system timing is such that the DMA manager can service the
callback interrupt for any descriptor tagged for a callback, before
another descriptor on the same channel that is tagged for callback
is processed.

These conditions can be fairly easily met in most systems.

DMA Channel to Peripheral Mapping
The Blackfin processor allows the user to change the default mapping of
the various DMA supported peripherals to the various DMA channels.
Note however, that the mappings for the Memory DMA channels are typ-
ically fixed and cannot be changed.

The DMA manager provides two functions that allow the client to easily
detect and change the mapping of DMA channels to peripherals. These
functions can be called at any time after the DMA manager has been ini-
tialized, but they must be processed before the channel is opened.

Theory of Operation

6-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Sensing a Mapping

The client calls the adi_dma_GetMapping() function to detect the DMA
channel ID to which a peripheral is mapped. The adi_dma_GetMapping()
function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is being detected.

• Pointer to an ADI_DMA_CHANNEL_ID value. This value is the address
of a location in memory into which the function will store the
channel ID to which the given peripheral is mapped.

Setting a Mapping

The client calls the adi_dma_SetMapping() function to set the mapping of
a given channel ID to a given peripheral. The client should take care to
ensure that a one-to-one mapping exists between peripherals and channel
IDs. The adi_dma_SetMapping() function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is being set.

• The channel ID. This value, an ADI_DMA_CHANNEL_ID value, enu-
merates the DMA channel to which the given peripheral is to be
mapped.

Interrupts
The DMA manager uses the services of the interrupt manager to configure
all DMA related interrupts. All hooking of interrupts is isolated into the
adi_dma_Open() and adi_dma_MemoryOpen() functions while all unhook-
ing of interrupts occurs in the adi_dma_Close() and
adi_dma_MemoryClose() functions.

VisualDSP++ 4.5 Device Drivers and System 6-29
Services Manual for Blackfin Processors

DMA Manager

By default, the DMA manager uses the Interrupt Vector Group (IVG) set-
tings as set up by the interrupt manager. The mapping of DMA channels
to IVG levels can be altered by the client via calls into the interrupt man-
ager. See “Interrupt Manager” for more information on altering mapping
of DMA channels to IVGs.

Hooking Interrupts

When the client opens the first DMA channel, the adi_dma_Open() func-
tion hooks into the appropriate IVG chain for the DMA error interrupt.
The handler for DMA errors does nothing other than clear the appropriate
DMA error and notify the client’s callback function that a DMA error
occurred.

In addition to the DMA error interrupt, the adi_dma_Open() function
hooks the DMA data interrupt handler into the appropriate IVG level for
the given channel. The data interrupt handler is used to post callbacks
resulting from the completion of DMA transfers. In addition to posting
the notification callbacks, the data handler ensures the channel is
refreshed and restarted (if necessary) with any new pending transfers.

Unhooking Interrupts

When the last remaining open DMA channel is closed, the
adi_dma_Close() function unhooks the DMA error handler from the
appropriate IVG handler chain. In addition, if there are no other open
channels that are mapped to the same IVG as the channel being closed,
the adi_dma_Close() function unhooks the DMA data handler from the
chain of handlers for that IVG.

Theory of Operation

6-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Two-Dimensional DMA
When using linear DMA, data is moved in a one-dimensional, linear fash-
ion. This is the most common type of transfer, where n elements of “w”
width are moved from one location, or taken in through a device, to
another memory location, or out through a device.

Two-dimensional DMA is a convenient feature that allows data to be
transferred in a non-linear fashion, which is especially useful in video type
applications. Two-dimensional DMA supports arbitrary row (YCount) and
column (XCount) sizes up to 64K x 64K elements, as well as row modify
values (YModify) and column modify values up to +/- 32K bytes.

When using channel DMA, descriptors are used to define the parameters
for the transfer. When using memory streams, the ADI_DMA_2D_TRANSFER
data type is used to define the parameters for the transfer.

For example, suppose we want to retrieve a 16 x 8 block of bytes (data)
from a video frame buffer (frame) of size N x M pixels at location
frame[6][6] and store it in a separate memory area (data) to process. After
the data has been processed the values are then copied back to the original
location.

Figure 6-4 illustrates the area of the frame to be processed.

VisualDSP++ 4.5 Device Drivers and System 6-31
Services Manual for Blackfin Processors

DMA Manager

To select each row of the 16 x 8 block, the inner loop of the required 2D
DMA configuration has 16 values (XCOUNT=16) and a stride (XMODIFY) of 1.
The outer loop comprises 8 values (YCOUNT=8) and a stride (YMODIFY) of
N-15 (A + B in Figure 6-4) chosen to instruct the DMA controller to
jump from the end of one row to the start of the next.

It would also be possible to extract interleaved data (for example, RGB
values for a video frame) by modifying both the x and y modify values. For
example to receive a stream of R,G,B,R,G,B,… values from an N x M
frame, consider Figure 6-5.

Figure 6-4. Selecting a 16 x 8 Block of Data from a Video Frame of
Size N x M

N6

6

M

16

8

B

A

frame

data

Theory of Operation

6-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

In this case the inner loop of the required 2D DMA configuration has 3
values (XCOUNT=3) and a stride (XMODIFY) of N*M chosen so that successive
elements in each row (or RGB tuple) are 1 - 2 - 3, 4 - 5 - 6, and so on. in
Figure 6-5. The outer loop of the 2D DMA configuration has N*M values
(YCOUNT=N*M) and a negative stride (YMODIFY) of 1-2*N*M chosen to instruct
the DMA controller to jump from element 3 to 4, 6 to 7, and so on at the
end of each inner loop.

Figure 6-5. Capturing a Video Data Stream of (R,G,B Pixels) x
(N x M image Size)

3 6

2 5

N

M

1 4

VisualDSP++ 4.5 Device Drivers and System 6-33
Services Manual for Blackfin Processors

DMA Manager

DMA manager API Reference
This section provides descriptions of the DMA manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

The DMA manager API supports the functions listed in Table 6-1.

Table 6-1. DMA Manager API Functions

Function Description

Primary Functions

adi_dma_Buffer Provides a single or circular buffer.
See “adi_dma_Buffer” on page 6-35.

adi_dma_Close Closes a DMA channel.
See “adi_dma_Close” on page 6-37.

adi_dma_Control Controls/queries the operation of a DMA Channel.
See “adi_dma_Control” on page 6-38.

adi_dma_Init Initializes a DMA manager.
See “adi_dma_Init” on page 6-42.

adi_dma_Open Opens a DMA channel for use.
See “adi_dma_Open” on page 6-50.

DMA manager API Reference

6-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Queue Queues a descriptor chain.
See “adi_dma_Queue” on page 6-53.

adi_dma_Terminate Shuts down and terminates a DMA manager.
See “adi_dma_Terminate” on page 6-55.

Helper Functions

adi_dma_GetMapping Gets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_GetMapping” on page 6-41.

adi_dma_SetMapping Sets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_SetMapping” on page 6-54.

Memory DMA Functions

adi_dma_MemoryOpen Opens a memory DMA stream for use.
See “adi_dma_MemoryOpen” on page 6-48.

adi_dma_MemoryClose Closes a memory DMA stream.
See “adi_dma_MemoryClose” on page 6-43.

adi_dma_MemoryCopy Copies memory in a linear, one-dimensional fashion.
See “adi_dma_MemoryCopy” on page 6-44.

adi_dma_MemoryCopy2D Copies memory in a two-dimensional fashion.
See “adi_dma_MemoryCopy2D” on page 6-46.

Table 6-1. DMA Manager API Functions (Cont’d)

Function Description

VisualDSP++ 4.5 Device Drivers and System 6-35
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Buffer

Description

This function assigns a one-shot or a circular buffer to a DMA channel
and configures the DMA Channel according to the parameters supplied.

Prototype

ADI_DMA_RESULT adi_dma_Buffer(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 void *StartAddress,

 ADI_DMA_CONFIG_REG Config,

 u16 XCount,

 S16 XModify,

 u16 YCount,

 S16 YModify

);

DMA manager API Reference

6-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel that the
buffer is to be assigned to and is the value returned when the
DMA channel was opened.

StartAddress This is the location of the start of the buffer to be either filled
or transmitted.

Config This is the DMA configuration control register for the
transfer.

XCount This is the total number of words to be transferred in a
one-dimensional buffer or the number of data elements per
row in a two-dimensional buffer.

XModify The offset in bytes between each word to be transferred (1-D)
or the offset in bytes between each row element (2-D).

YCount This is the number of rows to be transferred.

YModify The offset in bytes between the last data element of one row
and the first element of the next.

ADI_DMA_RESULT_SUCCESS The buffer was assigned successfully.

ADI_DMA_RESULT_BAD_HANDLE The ChannelHandle does not contain a valid Chan-
nel handle.

ADI_DMA_RESULT_BAD_MODE The DMA channel has not been opened for either
single or circular buffer operation.

ADI_DMA_RESULT_ALREADY_RUNNING A DMA operation is in progress.

VisualDSP++ 4.5 Device Drivers and System 6-37
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Close

Description

This function closes a DMA channel and releases the configuration mem-
ory for further use. Depending on the value of the WaitFlag argument,
either the channel is closed immediately or after ongoing transfers have
completed.

Prototype

ADI_DMA_RESULT adi_dma_Close(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 u32 WaitFlag);

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel to be
closed and is the value returned when the DMA channel was
opened.

WaitFlag If set to TRUE(1), the argument instructs the DMA
Manager to wait for ongoing transfers to complete before
closing the channel; otherwise, if set to FALSE(0), the chan-
nel will be closed immediately terminating any
ongoing transfers.

ADI_DMA_RESULT_SUCCESS DMA Channel successfully closed.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not point to a valid channel.

ADI_DMA_RESULT_CANT_UNHOOK
_INTERRUPT

The data handler and/or error handler cannot be unhooked.

DMA manager API Reference

6-38 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Control

Description

The adi_dma_Control function controls/queries the operation of the spec-
ified DMA Channel.

The function can be used in several ways:

• A single command is passed.

adi_dma_Control(

 ChannelHandle, ADI_DMA_CMD_SET_LOOPBACK, (void*)

TRUE);

• A single command, value pair is passed; for example,

ADI_DMA_CMD_VALUE_PAIR cmd = {

 ADI_DMA_CMD_SET_WORD_SIZE, (void*)

ADI_DMA_WDSIZE_32BIT};

adi_dma_Control(ChannelHandle, cmd.CommandID ,cmd.Value);

• A single ADI_DMA_CMD_VALUE_PAIR structure is passed (by
reference):

adi_dma_Control(ChannelHan-

dle,ADI_DMA_CMD_VALUE_PAIR,&cmd);

• A table of ADI_COMMAND_PAIR structures is passed. The table must
have following terminator entry to signify the end of the table of
commands: { ADI_DMA_CMD_END, 0 }. For example,

ADI_DMA_CMD_VALUE_PAIR table = {

 {ADI_DMA_CMD_SET_LOOPBACK, (void*)LoopbackFlag},

 {ADI_DMA_CMD_SET_DATAFLOW, (void*)TRUE},

 { ADI_DMA_CMD_END, NULL };

adi_dma_Control(ChannelHandle,ADI_DMA_CMD_TABLE,&table);

VisualDSP++ 4.5 Device Drivers and System 6-39
Services Manual for Blackfin Processors

DMA Manager

The set of commands that can be issued using the adi_dma_Control func-
tion is defined in “DMA Commands” on page 6-64.

Prototype

ADI_DMA_RESULT adi_dma_Control(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 ADI_DMA_CM Command,

 void *Value

);

DMA manager API Reference

6-40 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel that the
buffer is to be assigned to and is the value returned when the
DMA channel was opened.

Command This is an ADI_DMA_CMD enumeration value.
See “DMA Commands” on page 6-64 for a full list of
commands.

Value Depending on the value for Command, this parameter is one of the
following:

• If Command has the value ADI_DMA_CM_VALUE_PAIR,
the system issues the address of a single
ADI_DMA_CMD_VALUE_PAIR element specifying the
command.

• If Command has the value ADI_DMA_CMD_TABLE, the sys-
tem issues the address of an array of
ADI_DMA_CMD_VALUE_PAIR elements specifying one or
more commands. The last entry in the table must be
{ADI_DMA_CMD_END,NULL}.

• For any other value, Command specifies the command to
be processed and Value is the associated value for the
command. In the case of a command that queries a
value, the value of the setting is stored at the location
pointed to by the pointer Value.

ADI_DMA_RESULT_SUCCESS This function completed successfully.

ADI_DMA_RESULT_BAD_COMMAND The command is invalid. Either a bad command or a
specific command is not allowed in this context.

ADI_DMA_RESULT_ALREADY_RUNNING The commands could not be performed as the channel
is currently transferring data.

VisualDSP++ 4.5 Device Drivers and System 6-41
Services Manual for Blackfin Processors

DMA Manager

adi_dma_GetMapping

Description

This function is used to identify the DMA Channel ID to which a DMA
compatible peripheral is mapped.

Prototype

ADI_DMA_RESULT adi_dma_GetMapping(

 ADI_DMA_PMAP Peripheral,

 ADI_DMA_CHANNEL_ID *pChannelID

);

Arguments

Return Value

Peripheral The peripheral ID is being queried.

*pChannelID This is the location where the DMA manager stores the chan-
nel ID to which the peripheral is a mapped.

ADI_DMA_RESULT_SUCCESS The device is identified and DMA information is
returned.

ADI_DMA_RESULT_BAD_PERIPHERAL A bad peripheral value was encountered.

ADI_DMA_RESULT_NOT_MAPPED No mapping was found for the device.

DMA manager API Reference

6-42 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Init

Description

This function initializes a DMA manager.

Prototype

ADI_DMA_RESULT adi_dma_Init(
 void *pMemory,
 sizet MemorySize,
 u32 *pMaxChannels
 ADI_DMA_MANAGER_HANDLE *pManagerHandle,
 void *pCriticalRegionArg

);

Arguments

Return Value

This function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

*pMemory This is the pointer to memory that the DMA can use.

MemorySize This is the size, in bytes, of the memory provided.

*pMaxChannels This is the location in memory where the DMA manager stores
the number of simultaneously open channels that can be sup-
ported given the memory provided.

*pManagerHandle This is the location in memory where the DMA manager stores
the handle to the DMA manager.

*pCriticalRegionArg This is the parameter that the DMA manager passes to the
adi_int_EnterCriticalRegion() function.

ADI_DMA_RESULT_NOMEMORY Insufficient memory is available to initialize the DMA
Manager.

VisualDSP++ 4.5 Device Drivers and System 6-43
Services Manual for Blackfin Processors

DMA Manager

adi_dma_MemoryClose

Description

This function closes down a memory DMA stream, freeing up all
resources used by the memory stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryClose(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 u32 WaitFlag

) ;

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

StreamHandle This is the handle to the DMA memory stream

WaitFlag If set to TRUE(1), this argument instructs the DMA man-
ager to wait for ongoing transfers to complete before closing
down the memory stream; otherwise, if set to FALSE(0),
the channel is closed immediately, terminating any transfers
in progress.

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

DMA manager API Reference

6-44 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryCopy

Description

This function performs a one-dimensional, linear memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 void *pDest,

 void *pSrc,

 u16 ElementWidth,

 u16 ElementCount,

 ADI_DCB_CALLBACK_FN ClientCallback

) ;

Arguments

StreamHandle This is the handle to the DMA memory stream.

*pDest This is the starting address into which the memory will be copied.

*pDest This is the starting address from which the memory will be copied.

ElementCount This is the number of elements to transfer.

ElementWidth This is the width, in bytes, of an element.
Allowed values are 1, 2 and 4.

ClientCallback Callback function that is called when the transfer completes.
If NULL, the call to the adi_dma_MemoryCopy() function is con-
sidered synchronous and does not return to the client until the
transfer has completed.

VisualDSP++ 4.5 Device Drivers and System 6-45
Services Manual for Blackfin Processors

DMA Manager

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

ADI_DMA_RESULT_IN_USE The memory stream already has a transfer in progress.

DMA manager API Reference

6-46 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryCopy2D

Description

This function performs a two-dimensional memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy2D(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 ADI_DMA_2D_TRANSFER *pDest,

 ADI_DMA_2D_TRANSFER *pSrc,

 u32 ElementWidth,

 ADI_DCB_CALLBACK_FN ClientCallback

);

VisualDSP++ 4.5 Device Drivers and System 6-47
Services Manual for Blackfin Processors

DMA Manager

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

StreamHandle This is the handle to the DMA memory stream.

*pDest This is the pointer to the structure that describes how and where
the data will be copied into memory.

*pDest This is the pointer to the structure that describes how and where
the data will be copied from memory.

ElementWidth This is the width, in bytes, of an element.
Allowed values are 1, 2 and 4.

ClientCallback This is the callback function that is called when the transfer com-
pletes. If NULL, the call to the adi_dma_MemoryCopy() function
is considered synchronous and does not return to the client until
the transfer has completed.

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

ADI_DMA_RESULT_IN_USE The memory stream already has a transfer in progress.

DMA manager API Reference

6-48 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryOpen

Description

This function opens a memory DMA stream for use. Once it is opened,
memory DMA transfers can be scheduled on the stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryOpen(

 ADI_DMA_MANAGER_HANDLE ManagerHandle,

 ADI_DMA_STREAM_ID StreamID,

 void *ClientHandle,

 ADI_DMA_STREAM_HANDLE *pStreamHandle,

 ADI_DCB_HANDLE DCBServiceHandle

) ;

VisualDSP++ 4.5 Device Drivers and System 6-49
Services Manual for Blackfin Processors

DMA Manager

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

ManagerHandle This is the handle to the DMA manager.

StreamID This is the memory stream ID that is being opened.

*ClientHandle This is an identifier defined by the client. The DMA man-
ager includes this identifier in all DMA manager initiated
communication with the client, specifically in calls to the
callback function.

*pStreamHandle This is the pointer to a client provided location wither the
DMA manager stores an identifier defined by the DMA
manager. All subsequent communication initiated by the
client to the DMA manager for this memory stream
includes this handle.

DCBServiceHandle This is the handle to the deferred callback service to be used
for any memory stream events. A value of NULL means that
deferred callbacks are not used and all callbacks occur at
DMA interrupt time.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT The system cannot hook a DMA data or error
interrupt.

DMA manager API Reference

6-50 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Open

Description

The adi_dma_Open function opens a DMA channel for use. The DMA
manager ensures the channel is not already opened and then initializes any
appropriate data structures.

Prototype

ADI_DMA_RESULT adi_dma_Open(

 ADI_DMA_CHANNEL_ID ChannelID

 ADI_DMA_MANAGER_HANDLE ManagerHandle

 void *ClientHandle,

 ADI_DMA_CHANNEL_HANDLE *pChannelHandle,

 ADI_DMA_MODE Mode,

 ADI_DCB_HANDLE DCBServiceHandle,

 ADI_DCB_CALLBACK_FN ClientCallback

);

VisualDSP++ 4.5 Device Drivers and System 6-51
Services Manual for Blackfin Processors

DMA Manager

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if the channel was success-

Table 6-2. Adi_dma_Open Arguments

Argument Explanation

ManagerHandle This is the handle to the DMA manager.

ChannelID This is the ADI_DMA_CHANNEL_ID enumeration value>
See “ADI_DMA_CHANNEL_ID” on page 6-60.

*ClientHandle This is an identifier defined by the client. The DMA
manager includes this identifier in all DMA manager-
initiated communication with the client, specifically in calls
to the callback function.

*pChannelHandle This is the pointer to a client provided location where the
DMA manager stores an identifier defined by the DMA man-
ager. All subsequent communication initiated by the client to
the DMA manager for this channel includes the handle to
specify the channel to which it is referring.

Mode This is the an ADI_DMA_MODE enumeration value specifying
the data transfer mode to be used by the opened DMA chan-
nel. See “ADI_DMA_MODE” on page 6-61.

DCBServiceHandle This is the handle to the deferred callback service to be used
for the given channel. A value of NULL means that deferred
callbacks are not used and all callbacks occur at DMA
interrupt time.

ClientCallback This is the address of a call-back function defined by the
application. The value passed for the ClientHandle parame-
ter is the value supplied by the application when the channel
was opened.

DMA manager API Reference

6-52 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

fully opened. Any other value indicates an error. Possible errors include:

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_
INTERRUPT

The system cannot hook a DMA data or error interrupt.

VisualDSP++ 4.5 Device Drivers and System 6-53
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Queue

Description

This function queues a descriptor, or chain of descriptors, to the specified
DMA channel.

When using descriptor chains, the descriptor is added to the end of the list
of descriptors already queued to the channel, if any. The last descriptor in
the chain must have its pNext pointer set to NULL.

Prototype

ADI_DMA_RESULT adi_dma_Queue(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

);

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel
that the descriptor is to be queued on and is the value
returned when the DMA channel was opened.

DescriptorHandle This is a pointer to the first descriptor in the chain.

ADI_DMA_RESULT_SUCCESS The descriptor was queued successfully.

ADI_DMA_RESULT_BAD_HANDLE The ChannelHandle does not contain a valid channel
handle.

ADI_DMA_RESULT_BAD_DESCRIPTOR The descriptor handle is NULL.

ADI_DMA_RESULT_ALREADY_RUNNING This argument cannot submit additional descriptors to
a channel configured for a loopback with dataflow
enabled.

DMA manager API Reference

6-54 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_SetMapping

Description

This function maps the DMA Channel ID to the given peripheral.

Prototype

ADI_DMA_RESULT adi_dma_SetMapping(

 ADI_DMA_PMAP Peripheral,

 ADI_DMA_CHANNEL_ID ChannelID

);

Arguments

Return Value

Peripheral This is the peripheral ID to which the DMA channel
is to be mapped.

ChannelID This is the channel ID that is to be mapped to the
peripheral.

ADI_DMA_RESULT_SUCCESS The channel was successfully mapped.

ADI_DMA_RESULT_BAD_PERIPHERAL A bad peripheral value was encountered.

ADI_DMA_RESULT_ALREADY_RUNNING The mapping could not be performed as the channel
is currently transferring data.

VisualDSP++ 4.5 Device Drivers and System 6-55
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Terminate

Description

This function closes down all DMA activity and terminates the DMA
manager.

Prototype

ADI_DMA_RESULT adi_dma_Terminate(

 ADI_DMA_MANAGER_HANDLE ManagerHandle,

);

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error.

ManagerHandle This is the handle to the DMA manager.

Public Data Structures, Enumerations and Macros

6-56 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Structures, Enumerations
and Macros

This section defines both the public data structures and enumerations
used by the DMA manager. These data structures are made available to
client applications or device driver libraries via the header file, adi_dma.h.
All types have the ADI_DMA_ prefix to avoid ambiguity with client develop-
ers’ own data types.

This section contains:

• “Data Types”

• “Data Structures” on page 6-58

• “General Enumerations” on page 6-60

• “ADI_DMA_CONFIG_REG Field Values” on page 6-63

• “DMA Commands” on page 6-64

VisualDSP++ 4.5 Device Drivers and System 6-57
Services Manual for Blackfin Processors

DMA Manager

Data Types
Several data types that shield the client developer from the internal imple-
mentation of the library and the details of DMA programming are used.
These data types also provide an interface that is partially decoupled from
the functionality offered by individual processors.

ADI_DMA_CHANNEL_HANDLE

The ADI_DMA_CHANNEL_HANDLE data type identifies each separate DMA
channel to the DMA manager. When passed to the DMA manager func-
tion, it uniquely identifies the channel function to which it needs to refer
or upon which it must operate. The DMA manager returns this handle to
the application when a DMA channel is opened. All other DMA manager
functions that need to identify a channel require this parameter to be
passed.

ADI_DMA_DESCRIPTOR_UNION/ADI_DMA_DESCRIPTOR_HAND
LE

The ADI_DMA_DESCRIPTOR_UNION data structure represents a union of the
small descriptor, large descriptor, and descriptor array data types. The
ADI_DMA_DESCRIPTOR_HANDLE is then a typedef that describes a pointer to
the union. The ADI_DMA_DESCRIPTOR_HANDLE is passed into the
adi_dma_Queue() function as a means to provide the function with either
a) a small descriptor chain, b) a large descriptor chain, or c) an array of
descriptors. By using the handle/union, only a single adi_dma_Queue()
function is needed, rather than separate functions for each of the descrip-
tor data types.

typedef union ADI_DMA_DESCRIPTOR_UNION {
 ADI_DMA_DESCRIPTOR_SMALL Small;
 ADI_DMA_DESCRIPTOR_LARGE Large;

Public Data Structures, Enumerations and Macros

6-58 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 ADI_DMA_DESCRIPTOR_ARRAY Array;
} ADI_DMA_DESCRIPTOR_UNION;

typedef ADI_DMA_DESCRIPTOR_UNION *ADI_DMA_DESCRIPTOR_HANDLE;

ADI_DMA_STREAM_HANDLE

The ADI_DMA_STREAM_HANDLE data type identifies a memory stream to the
DMA manager. When passed to the adi_dma_MemoryXXX functions, the
handle uniquely identifies the memory stream onto which the DMA man-
ager is to operate. The DMA manager returns this handle to the
application when a DMA memory stream is opened. All other memory
stream functions require this parameter to be passed.

Data Structures
The structures that define each type of descriptor and the DMA Configu-
ration Control register are available in the public header file, adi_dma.h.
The field names follow the convention used in the hardware reference
manual for the appropriate processor.

ADI_DMA_2D_TRANSFER

The ADI_DMA_2D_TRANSFER data structure defines the characteristics of
either the source or destination component of a two-dimensional memory
copy.

typedef struct ADI_DMA_2D_TRANSFER {

 void *StartAddress;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_2D_TRANSFER;

VisualDSP++ 4.5 Device Drivers and System 6-59
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_CONFIG_REG

The ADI_DMA_CONFIG_REG type defines the structure for the DMA Config-
uration Control word. In addition, macros are provided to allow the client
to set individual fields within the word.

ADI_DMA_DESCRIPTOR_ARRAY

The ADI_DMA_DESCRIPTOR_ARRAY structure defines the contents of a
descriptor array element:

typedef struct ADI_DMA_DESCRIPTOR_ARRAY {

 void *StartAddress;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_ARRAY;

ADI_DMA_DESCRIPTOR_LARGE

The ADI_DMA_DESCRIPTOR_LARGE structure defines the contents of a large
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_LARGE {

 struct ADI_DMA_DESCRIPTOR_LARGE *pNext;

 void *StartAddress;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_LARGE;

Public Data Structures, Enumerations and Macros

6-60 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_DESCRIPTOR_SMALL

The ADI_DMA_DESCRIPTOR_SMALL structure defines the contents of a small
descriptor:

typedef struct ADI_DMA_DESCRIPTOR_SMALL {

 u16 *pNext;

 u16 StartAddressLow;

 u16 StartAddressHigh;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_SMALL;

General Enumerations
The enumerations control and provide feedback for the operation of the
DMA manager.

ADI_DMA_CHANNEL_ID

The ADI_DMA_CHANNEL_ID enumeration contains values for each and every
DMA channel of the processor. This value is used in the adi_dma_Open()
function to identify which channel is to be opened. The specific enumera-
tion values are dependent on the specific processor being targeted.

ADI_DMA_EVENT

The ADI_DMA_EVENT enumeration describes the types of events that can be
reported to the client’s callback function. Associated with the
ADI_DMA_EVENT parameter is another parameter that points to the compan-
ion argument, pArg, for the event.

VisualDSP++ 4.5 Device Drivers and System 6-61
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_MODE

The ADI_DMA_MODE enumeration defines how a channel is to process the
data to be transferred. It takes the following values:

ADI_DMA_PMAP

The ADI_DMA_PMAP enumeration defines each of the DMA supported
on-chip peripherals of the processor. This value is used to detect and set
the mappings of on-chip peripherals to DMA channels using the
adi_dma_GetMapping() and adi_dma_SetMapping() functions. The specific
enumeration values are dependent on the specific processor being
targeted.

Value Event Companion Argument

ADI_DMA_EVENT_DESCRIPTOR
_PROCESSED

A descriptor has completed
processing or a memory stream
has completed a memory copy
operation.

The address of the descriptor
just processed, or NULL if the
event is a memory stream
completion event.

ADI_DMA_EVENT_INNER_LOOP
_PROCESSED

A sub buffer has completed
processing. The start address of the

circular buffer.
ADI_DMA_EVENT_OUTER_LOOP
_PROCESSED

The entire circular buffer has
completed processing.

ADI_DMA_EVENT_ERROR_INTE
RRUPT

DMA error interrupt has been
generated.

NULL

ADI_DMA_DATA_MODE_UNDEFINED Undefined

ADI_DMA_DATA_MODE_SINGLE This is a single one-shot buffer.

ADI_DMA_DATA_MODE_CIRCULAR This is a single circular buffer.

ADI_DMA_DATA_MODE_DESCRIPTOR_ARRAY This is an array of descriptors.

ADI_DMA_DATA_MODE_DESCRIPTOR_SMALL This is a chain of small descriptors.

ADI_DMA_DATA_MODE_DESCRIPTOR_LARGE This is a chain of large descriptors.

Public Data Structures, Enumerations and Macros

6-62 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_RESULT

All public DMA manager functions return a result code of the enumera-
tion type, ADI_DMA_RESULT. Possible values are:

ADI_DMA_STREAM_ID

The ADI_DMA_STREAM_ID enumeration contains values for every DMA
channel of the processor. This value is used in the adi_dma_Open() func-
tion to identify which channel is to be opened. The specific enumeration
values are dependent on the specific processor being targeted.

ADI_DMA_RESULT_SUCCESS Generic success is reported.

ADI_DMA_RESULT_FAIL Generic failure is reported.

ADI_DMA_RESULT_BAD_DEVICE A bad device information was received.

ADI_DMA_RESULT_BAD_HANDLE A bad device handle was encountered.

ADI_DMA_RESULT_BAD_DESCRIPTOR A bad descriptor was encountered.

ADI_DMA_RESULT_BAD_MODE A bad channel mode was encountered.

ADI_DMA_RESULT_IN_USE Channel is already in use.

ADI_DMA_RESULT_ALREADY_RUNNING DMA is already running.

ADI_DMA_RESULT_NO_BUFFER Channel has no buffer.

ADI_DMA_RESULT_BAD_COMMAND Invalid Config item was received.

ADI_DMA_RESULT_NO_MEMORY A memory to channel object cannot be assign.

VisualDSP++ 4.5 Device Drivers and System 6-63
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_CONFIG_REG Field Values
These values are to be used to set the relevant bits in the DMA Configura-
tion word.

ADI_DMA_DMA2D

ADI_DMA_DI_EN

ADI_DMA_DI_SEL

ADI_DMA_EN

ADI_DMA_WDSIZE

ADI_DMA_LINEAR Linear buffer

ADI_DMA_2D 2D DMA operation

ADI_DMA_DI_EN_DISABLE Disable callbacks on completion.

ADI_DMA_DI_EN_ENABLE Enable callbacks on completion.

ADI_DMA_DI_SEL_OUTER_LOOP Callback after completing whole buffer (default).

ADI_DMA_DI_SEL_INNER_LOOP Callback after completing each inner loop.

ADI_DMA_DISABLE Disable DMA transfer on the channel.

ADI_DMA_ENABLE Enable DMA transfer on the channel.

ADI_DMA_8BIT 8-bit words

ADI_DMA_16BIT 16-bit words

ADI_DMA_32BIT 32-bit words

Public Data Structures, Enumerations and Macros

6-64 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_WNR

DMA Commands
DMA channels and memory streams can be controlled via calls to the
adi_dma_Command() function. Table 6-3 describes the commands and val-
ues that can be issued via this function:

ADI_DMA_READ Transfer from memory to peripheral.

ADI_DMA_WRITE Transfer from peripheral to memory.

Table 6-3. DMA Commands

Command ID Value Description

ADI_DMA_CMD_TABLE ADI_DMA_CMD_VALUE_PAIR * Pointer to a table of
commands

ADI_DMA_CMD_PAIR ADI_DMA_CMD_VALUE_PAIR * Pointer to a single
command pair

ADI_DMA_CMD_END NULL Signifies end of table

ADI_DMA_CMD_SET_LOOPBACK TRUE/FALSE Enables/disables loopback

ADI_DMA_CMD_SET_STREAMING TRUE/FALSE Enables/disables streaming

ADI_DMA_CMD_SET_DATAFLOW TRUE/FALSE Enables/disables dataflow

ADI_DMA_CMD_FLUSH n/a Flushes all buffers and
descriptors on a channel

ADI_DMA_CMD_GET_TRANSFER_S
TATUS

u32 * Provides the transfer status,
TRUE - in progress,
FALSE - not in progress

ADI_DMA_CMD_TC_SET_DCB u16 Sets the traffic control
DCB value

ADI_DMA_CMD_TC_SET_DEB u16 Sets the traffic control
DEB value

ADI_DMA_CMD_TC_SET_DAB u16 Sets the traffic control
DAB value

VisualDSP++ 4.5 Device Drivers and System 6-65
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_CMD_TC_SET_MDMA u16 Sets the traffic control
MDMA value

ADI_DMA_CMD_TC_GET_DCB_COU
NTER

u16* Gets the traffic control
DCB counter value

ADI_DMA_CMD_TC_GET_DEB_COU
NTER

u16* Gets the traffic control
DEB counter value

ADI_DMA_CMD_TC_GET_DAB_COU
NTER

u16* Gets the traffic control
DAB counter value

ADI_DMA_CMD_TC_GET_MDMA_CO
UNTER

u16* Gets the traffic control
MDMA counter value

Table 6-3. DMA Commands (Cont’d)

Command ID Value Description

Public Data Structures, Enumerations and Macros

6-66 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 7-1
Services Manual for Blackfin Processors

7 PROGRAMMABLE FLAG
SERVICE

This chapter describes the programmable flag service.

The programmable flag service, within the System Services Library, pro-
vides the application with an easy-to-use interface into the programmable
flag (sometimes called General-Purpose I/O (GPIO)) subsystem of the
Blackfin processor.

This chapter contains the following sections:

• “Introduction” on page 7-2

• “Operation” on page 7-3

• “Flag Service API Reference” on page 7-14

• “Public Data Types, Enumerations and Macros” on page 7-31

Introduction

7-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Leveraging the capabilities of other System Services, the Flag Service
allows the client fine control over the direction of flags, values placed on
or sensed from a flag pin, and notification of the client upon flag pin
changes, via either “live” or deferred callbacks.

Use of the Flag Service is dependent on the use of both the interrupt man-
ager and the deferred callback (DCB) manager for its full operation. If
callbacks are not to be deferred, but rather are “live”, then the DCB man-
ager is not required. If callbacks are not required at all, neither the
interrupt manager nor DCB manager is required.

Currently, the Flag Service is available for use with the Blackfin
ADSP-BF531/532/533 processors, ADSP-BF534/536/537 processors,
and ADSP-BF561 processors.

In order to reduce the pin count of devices, flag pins are sometimes muxed
onto the same pins as other peripherals. The Flag Service does not provide
arbitration functionality to control pin muxing. It is the responsibility of
the client program to insure that peripherals and the Flag Service do not
use the same pin simultaneously. For the ADSP-BF531/532/533 and
ADSP-BF561 processors, this entails ensuring that the relevant peripheral
control registers are correctly set. For the ADSP-BF534/536/537 proces-
sors, the Flag Service automatically invokes the port control service to
effect any pin mux changes. No user intervention is required.

In order to reduce the pin count of devices, often flags are muxed onto the
same pins as peripherals. The Flag Service does not arbitrate, nor provide
any functionality to control pin muxing. It is the responsibility of the cli-
ent program to insure that peripherals and the Flag Service do not use the
same pin simultaneously.

VisualDSP++ 4.5 Device Drivers and System 7-3
Services Manual for Blackfin Processors

Programmable Flag Service

For ADSP-BF531/532/533 and ADSP-BF561 cores, this entails ensuring
that the relevant peripheral control registers are correctly set. For
ADSP-BF534/536/537 cores, the port control registers are required to be
set accordingly. The latter can be managed via the port control service
within the System Services Library. (Note that device drivers for
ADSP-BF534/536/537 class devices automatically make the appropriate
calls into the port control service without any user intervention.)

The Flag Service uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or else-
where. To this end all enumeration values and typedefs use the ADI_FLAG_
prefix, while functions and global variables use the lower case, adi_flag_,
equivalent.

Each function within the Flag Service API returns an error code of the
type ADI_FLAG_RESULT. Like all system services, a return value of 0
(ADI_FLAG_RESULT_SUCCESS) indicates no errors. A non-zero value indi-
cates an error of some sort. Like all system services, Flag Service error
codes are unique from all other system services. The include file
adi_flag.h lists all error codes that the Flag Service returns.

Parameter checking in the debug versions of the system services library
provides a more complete test of API function parameters and for condi-
tions that may cause errors. ADI strongly recommends that development
work be done using the debug versions of the system service library, while
final test and deployment be done with the release version of the library.

Operation
This section describes the overall operation of the Flag Service. Details on
the Application Program Interface (API) can be found in the Flag Service
API Reference.

Operation

7-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Initialization
Prior to using the Flag Service, the client must first initialize the service.
In order to initialize the service, the client passes to the initialization func-
tion, adi_flag_Init, a parameter that will be passed to the critical region
function should the Flag Service need to protect a critical region of code,
and optionally a contiguous piece of memory that the service can use for
flag callbacks.

The Flag Service provides a facility where, if so directed by the client, a
callback function supplied by the client can be invoked should conditions
on a flag cause an interrupt event. See “Callbacks” on page 7-6 for more
information on how callbacks operate. In order to control and manage
callbacks, the Flag Service needs a small amount of memory to store the
necessary information about each callback. The exact amount of memory
is defined by a macro, ADI_FLAG_CALLBACK_MEMORY. The client should pro-
vide an amount of memory equal to ADI_FLAG_CALLBACK_MEMORY times the
number of callbacks that will be simultaneously installed at any point in
time.

For example, if the client will have simultaneously installed callbacks for
two flags, the client should provide ADI_FLAG_CALLBACK_MEMORY * 2 bytes
of memory. If flag callbacks will not be used, no memory need be pro-
vided by the client.

Termination
When the client no longer requires the functionality of the Flag Service,
the termination function, adi_flag_Terminate, should be called. This
function uninstalls any flag callbacks and returns any memory provided to
the flag initialization function back to the client.

VisualDSP++ 4.5 Device Drivers and System 7-5
Services Manual for Blackfin Processors

Programmable Flag Service

Flag IDs
All API functions within the Flag Service, other than the initialize and ter-
minate functions, are passed a parameter that identifies which flag is being
controlled. This parameter is of the type ADI_FLAG_ID. The include file for
the Flag Service, adi_flag.h, defines flag IDs for each flag that is sup-
ported by the processor. Flag IDs are of the form ADI_FLAG_x, where x
uniquely identifies the specific flag.

Flag Control Functions
The functions described in this section control operation of each flag.

adi_flag_Open()

The adi_flag_Open() function should be called prior to any of the indi-
vidual flag control functions. Depending on the specific Blackfin device,
this function initializes any hardware necessary for the operation of the
flag. For example, on ADSP-BF534/536/537 class devices, this function
configures the port control logic, via the port control system service, for
the flag to be used as a general purpose I/O pin. On ADSP-BF561 and
ADSP-BF531/532/533 class devices, this function does nothing and sim-
ply returns to the caller.

adi_flag_Close()

When a flag is no longer needed, this adi_flag_Close() function should
be called to close and shut down the flag. At present, for all Blackfin
device classes, this function does nothing but returns immediately to the
caller. Future Blackfin devices may require that this function manipulates
the hardware in some way when closing a flag.

Operation

7-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SetDirection()

The adi_flag_SetDirection() flags can be configured as either inputs or
outputs. This function is used to set the direction of a flag as either an
input or an output. This function does not change the value of a flag.

adi_flag_Set()

When configured as an output, the adi_flag_Set() function sets the
value of the flag to a logical 1, driving high.

adi_flag_Clear()

When configured as an output, the adi_flag_Clear() function sets the
value of the flag to a logical 0, driving low.

adi_flag_Toggle()

When configured as an output, the adi_flag_Toggle() function inverts
the current value of the flag. If the flag was clear/low, this function
changes the flag to set/high. If the flag was set/high, this function changes
the flag to clear/low.

adi_flag_Sense()

When configured as an input, the adi_flag_Sense() function senses the
value of the flag and stores that value in the location provided by the cli-
ent. If the flag is clear/low, then a value of FALSE is stored in the location.
If the flag is set/high, then a value of TRUE is stored in the location.

Callbacks
Like other system services, the Flag Service uses a callback mechanism in
order to notify the client of, typically, asynchronous events.

VisualDSP++ 4.5 Device Drivers and System 7-7
Services Manual for Blackfin Processors

Programmable Flag Service

Blackfin’s programmable flags can be configured to generate interrupts.
The Flag Service provides an internal interrupt handler that is used to pro-
cess interrupts from the flag hardware. This interrupt handler makes the
appropriate callbacks into the client’s application. When a client installs a
flag callback, a parameter to the function dictates if the callback should be
made “live” or deferred. “Live” callbacks mean that the client’s callback
function is called at interrupt time. Deferred callbacks mean that callbacks
are not made at interrupt time but rather deferred to a lower priority using
a specified deferred callback service.

When using the callback capability of the Flag Service, the client does not
need to take any other action outside the Flag Service API. No calls to the
interrupt manager or deferred callback service, other than initialization of
those services, are required.

Note that it is possible for clients to use all capabilities of the Flag Service
and not use any of the callback capabilities. Again, if callbacks are not
used by the client, no memory need be provided to the Flag Service’s ini-
tialization function.

adi_flag_InstallCallback()

The adi_flag_InstallCallback() function is used to install a callback to
a specified flag. In addition to the Flag ID, the client provides the inter-
rupt ID that the flag should generate, a wakeup flag, the type of trigger
that generates the callback, the callback function address, a client handle
and deferred callback service handle.

Depending on the specific Blackfin processor, programmable flags can
generate any one of several interrupts. (Sometimes the processor has con-
straints about which flag can generate which interrupt. See the appropriate
Blackfin processor manual for details.) The peripheral ID enumerates
which interrupt the flag should generate.

The wakeup flag indicates whether or not the processor should be woken
up from a low power state should the flag event occur.

Operation

7-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The trigger type describes the event that causes the callback to occur. The
following trigger types (all enumerated in the adi_flag.h include file) are
supported:

• Level high – callback generated when the level is high

• Level low – callback generated when the level is low

• Rising edge – callback generated on the rising edge

• Falling edge – callback generated on the falling edge

• Both edges – callback generated on both the rising and falling edge

The callback function address specifies a callback function of the type
ADI_DCB_CALLBACK_FN (see the deferred callback service for more informa-
tion on this datatype). When invoked, the callback function is passed
three parameters. The parameters are:

• ClientHandle – a value provided by the client when the callback
was installed

• ADI_FLAG_EVENT_CALLBACK – indicates a flag callback event

• FlagID – the flag ID of the flag that generated the callback

When the deferred callback service handle parameter passed to the
adi_flag_InstallCallback function is NULL, the callback is executed
“live”, meaning it is invoked at interrupt time. If the deferred callback ser-
vice handle parameter is non-NULL, the Flag Service uses the specified
deferred callback service to invoke the callback.

A single callback function can be used and installed for any number of
flags; the callback function can use the FlagID parameter to determine
which flag generated the callback. Note however, that only one callback
should be installed for a given flag.

This function does not alter flag control, such as direction, at all.

VisualDSP++ 4.5 Device Drivers and System 7-9
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_RemoveCallback()

The adi_flag_RemoveCallback() function is used to remove a callback
from a specified flag. This function disables interrupt generation for the
flag and removes the callback from its internal tables. Unless reinstalled,
no further callbacks will occur for the specified flag. After calling this
function, the memory freed by removing the callback is available for the
Flag Service to use for the next callback that is installed. This function
does not alter flag control, such as direction, at all.

adi_flag_SuspendCallbacks()

The adi_flag_SuspendCallbacks() function is used to temporarily sus-
pend callbacks for a given flag but does not uninstall the callback. This
function is typically used in conjunction with the
adi_flag_ResumeCallbacks function.

adi_flag_ResumeCallbacks()

The adi_flag_ResumeCallbacks() function is used to re-enable callbacks
that had been suspended by the adi_flag_SuspendCallbacks function.

adi_flag_SetTrigger()

The adi_flag_SetTrigger() function sets the condition on a flag that
triggers a callback. This function is not typically called by clients as setting
the trigger condition is taken care of automatically by the
adi_flag_InstallCallback function. This function is provided as a con-
venience for users that want an extra measure of control on callbacks.

Coding Example
This section describes the code that is required to implement a simple
example using the Flag Service. This example initializes the Flag Service,
configures one flag for input and another for output. The example then

Operation

7-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

illustrates how the output flag can be controlled. The example then illus-
trates how a callback function can be used to sense changes on a flag. All
Flag Service functions return an error code. In practice, this error code
should be checked to insure the function completed successfully. For the
purposes of this example only, the return value is not checked.

Initialization

Prior to using the Flag Service, it must be initialized. The fragment below
initializes the service and provides the service with memory for 1 callback
function.

static u8 FlagServiceData[ADI_FLAG_CALLBACK_MEMORY * 1];

 // memory for service

ADI_FLAG_RESULT Result; // return value

u32 ResponseCount; // number of callbacks supported

Result = adi_flag_Init(FlagServiceData, sizeof(FlagServiceData),

 &ResponseCount, NULL);

Upon completion of this function, the Flag Service is initialized and ready
for use.

Opening a Flag

After the service has been initialized, any flags that are to be used can be
opened. In this example, two flags are used.

Result = adi_flag_Open(ADI_FLAG_PF0);

Result = adi_flag_Open(ADI_FLAG_PF1);

The Open function takes any action necessary to configure the processor
hardware for use as a programmable flag.

VisualDSP++ 4.5 Device Drivers and System 7-11
Services Manual for Blackfin Processors

Programmable Flag Service

Setting the Direction

After the flags have been opened, they need to be set to the proper direc-
tion. In this example, one flag is configured for input and one for output.

Result = adi_flag_SetDirection(ADI_FLAG_PF0,

 ADI_FLAG_DIRECTION_INPUT);

Result = adi_flag_SetDirection(ADI_FLAG_PF1,

 ADI_FLAG_DIRECTION_OUTPUT);

Once the direction for a flag has been established, the flag can be
controlled.

Controlling an Output Flag

After a flag has been configured for the output direction, its value can be
set with any of the functions below.

Result = adi_flag_Set(ADI_FLAG_PF0);

 // sets output value to logical high (1)

Result = adi_flag_Clear(ADI_FLAG_PF0);

 // sets output value to logical low (0)

Result = adi_flag_Toggle(ADI_FLAG_PF0);

 // toggles from current value

The first call sets the value of the flag to a logical high, the second to a log-
ical low. The third call toggles the current value of the flag – if logical low,
it changes to a logical high value; if logical high, it changes to a logical low
value.

Operation

7-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Sensing the Value of a Flag

The application can sense the value of a flag, regardless of whether or not
the flag has been configured as an input or an output. The fragment below
illustrates how a flag value is sensed.

u32 Value; // location where flag value is stored

Result = adi_flag_Sense(ADI_FLAG_PF0, &Value);

 // senses the flag value

if (Value == TRUE) {

 // flag is set to logical high

} else {

 // flag is set to logical low }

The above fragment illustrates how a flag value can be sensed in a polled
type method. Alternatively, a callback function can be used to alert the
application when an event, such as a flag changing value, has occurred.

Installing a Callback Function

To avoid polling and instead invoke a callback function when the state of
a pin changes, the application should install a callback function. The frag-
ment below illustrates how to install a callback function and the actual
callback function.

...

Result = adi_flag_InstallCallback(ADI_FLAG_PF1, ADI_INT_PFA,

 ADI_FLAG_TRIGGER_LEVEL_HIGH,

 TRUE, (void *)0x12345678, NULL, Callback);

...

void Callback(void *ClientHandle, u32 Event, void *pArg) {

 // ClientHandle = 0x12345678

 // Event = ADI_FLAG_EVENT_CALLBACK

 switch ((ADI_FLAG_ID)pArg) {

VisualDSP++ 4.5 Device Drivers and System 7-13
Services Manual for Blackfin Processors

Programmable Flag Service

 case ADI_FLAG_PF1:

 // do processing when PF1 changes state break;

 }

}

When the callback function is invoked, the ClientHandle parameter is the
value that was given when the callback was installed (in this case,
0x12345678), the Event is the ADI_FLAG_EVENT_CALLBACK value, and the
pArg parameter contains the flag ID that triggered the callback.

Suspending and Resuming Callbacks

Should the application need to temporarily suspend callback processing,
the following fragment illustrates how to do it.

Result = adi_flag_SuspendCallbacks(ADI_FLAG_PF1);

The callback function for that flag will no longer be called when the trig-
ger condition occurs. The following fragment illustrates how to resume
callback processing.

Result = adi_flag_ResumeCallbacks(ADI_FLAG_PF1);

Now the callback function will again be invoked when the trigger condi-
tion occurs.

Removing Callbacks

Should the application no longer need the callback at all, it can remove
the callback with the following call.

Result = adi_flag_RemoveCallback(ADI_FLAG_PF1);

The callback function will no longer be invoked and the callback function
itself is removed from the Flag Service. The memory used to manage that
callback is now available to the Flag Service to use for another callback
function should another callback be installed.

Flag Service API Reference

7-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Termination

When the functionality provided by the Flag Service is no longer required,
the application should terminate the service. The fragment below termi-
nates the Flag Service.

ADI_FLAG_RESULT Result; // return value

Result = adi_flag_Terminate();

After termination, any memory provided to the Flag Service during instal-
lation is freed up for re-use by the application.

Flag Service API Reference
This section provides the Flag Service API. The information below was
accurate at the time this document was created. However, the include file
for the Flag Service, adi_flag.h, should always be checked for the most
up-to-date information.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 4.5 Device Drivers and System 7-15
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Clear

Description

The adi_flag_Clear function sets the value of the flag a logical 0, driving
low.

Prototype

void adi_flag_Clear(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag being
closed.

ADI_FLAG_RESULT_SUCCESS Operation success.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a list of
return codes.

Flag Service API Reference

7-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Close

Description

The adi_flag_Close function is called when a particular flag is no longer
needed by the application. At present, this function does nothing but
returns immediately to the caller. Future Blackfin devices may require that
this function manipulate the hardware in some way when closing a flag.

Prototype

void adi_flag_Close(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag being
closed.

ADI_FLAG_RESULT_SUCCESS Operation success.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a list of
return codes.

VisualDSP++ 4.5 Device Drivers and System 7-17
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Init

Description

The adi_flag_Init function provides and initializes memory for the Flag
Service. This function should only be called not more than once per core.
If called by more than one core, separate memory areas should be
provided.

Prototype

ADI_FLAG_RESULT adi_flag_Init(

 void *pMemory,

 const size_t MemorySize,

 u32 *pMaxEntries,

 void *pEnterCriticalParam

);

Flag Service API Reference

7-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

pMemory Pointer to an area of memory, which will be used to hold the
data required by the Flag Service.

MemorySize Size in bytes of memory being supplied for the Flag Service
data.

*pMaxEntries On return, holds the maximum number of simultaneously
active callback functions that can be supported using the sup-
plied memory.

*pEnterCriticalParam Handle to data area containing critical region data. This will
be passed to adi_int_EnterCriticalRegion where used
internally of the module. See Chapter “Interrupt Manager”
for further details.

ADI_FLAG_RESULT_SUCCESS Flag Service was successfully initialized.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a list of return
codes.

VisualDSP++ 4.5 Device Drivers and System 7-19
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Open

Description

The adi_flag_Open function configures any hardware necessary for the
specified flag to operate as a general-purpose I/O pin. Depending on the
specific Blackfin device, this function initializes any hardware necessary
for the operation of the flag. For example, on ADSP-BF534/536/537 pro-
cessor class devices, this function configures the port control logic, via the
port control system service, for the flag to be used as a general purpose I/O
pin. On ADSP-BF531/532/533 and ADSP-BF561 class devices, this func-
tion does nothing and simply returns to the caller.

Prototype

void adi_flag_Open(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag being
opened.

ADI_FLAG_RESULT_SUCCESS Operation success.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a list of
return codes.

Flag Service API Reference

7-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SetDirection

Description

The adi_flag_SetDirection function sets the direction, either as an input
or an output, for a flag. If set for an input, any on-chip input buffer for
the flag is also enabled. If set for an output, any on-chip input buffer for
the flag is disabled.

Prototype

void adi_flag_SetDirection(

 ADI_FLAG_ID FlagID,

 ADI_FLAG_DIRECTION Direction

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
being controlled.

Direction The direction to which the flag is to be configured.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

VisualDSP++ 4.5 Device Drivers and System 7-21
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Terminate

Description

The adi_flag_Terminate function closes the Flag Service. Any installed
callbacks are removed and all memory provided at initialization is
returned. Once terminated, the initialization function must be called
again before using any of the Flag Service functions.

Prototype

ADI_FLAG_RESULT adi_flag_Terminate(

 void

);

Arguments

None.

Return Value

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

Flag Service API Reference

7-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Set

Description

The adi_flag_Set function sets the value of the flag a logical 1, driving
high.

Prototype

void adi_flag_Set(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
being controlled.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

VisualDSP++ 4.5 Device Drivers and System 7-23
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Toggle

Description

The adi_flag_Toggle function inverts the current value of the flag. If the
flag is a logical 1, driving high, this function makes the flag a logical 0,
driving low. If the flag is a logical 0, driving low, this function makes the
flag a logical 1, driving high.

Prototype

void adi_flag_Toggle(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
being controlled.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

Flag Service API Reference

7-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Sense

Description

The adi_flag_Sense function senses the value of a flag. The function
stores the value TRUE in the provided location if the flag is a logical 1, oth-
erwise the function stores the value FALSE in the provided location.

Prototype

void adi_flag_Sense(

 ADI_FLAG_ID FlagID,

 u32 pValue

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
being controlled

pValue Pointer to location where the value of the flag is to
be stored

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

VisualDSP++ 4.5 Device Drivers and System 7-25
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_InstallCallback

Description

The adi_flag_InstallCallback function installs a callback function that
is invoked should the specified trigger condition for the given flag occur.
Note that the function provided by the caller is a callback function, not an
interrupt handler. This function does not alter the flag values, direction,
and so on.

Prototype

ADI_FLAG_RESULT adi_flag_InstallCallback(

 ADI_FLAG_ID FlagID,

 ADI_INT_PERIPHERAL_ID PeripheralID,

 ADI_FLAG_TRIGGER Trigger,

 u32 WakeupFlag,

 void *ClientHandle,

 ADI_DCB_HANDLE DCBHandle,

 ADI_DCB_CALLBACK_FN ClientCallback

);

Flag Service API Reference

7-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag to which
the callback is to be assigned.

PeripheralID Peripheral ID that specifies the system interrupt for the flag
to use (see interrupt manager and adi_int.h.)

Trigger Trigger condition that generates the callback.

WakeupFlag Flag indicating if the processor should be woken up from a
low power state if the trigger occurs.

ClientHandle Identifier defined and supplied by the client. This value is
passed to the callback function.

DCBHandle Either NULL if using “live” callbacks or the handle to the
deferred callback service that is to be used for callbacks

ClientCallback Address of the client’s callback function

ADI_FLAG_RESULT_SUCCESS Flag Service was successfully initialized.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a list of return
codes.

VisualDSP++ 4.5 Device Drivers and System 7-27
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_RemoveCallback

Description

The adi_flag_RemoveCallback function removes the callback from the
specified flag and disables the generation of the interrupt that would trig-
ger the callback. This function does not alter the flag values, direction, etc.

Prototype

void adi_flag_RemoveCallback(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callback is being removed.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

Flag Service API Reference

7-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SuspendCallbacks

Description

The adi_flag_SuspendCallbacks function temporarily suspends callbacks
for a given flag but does not uninstall the callback. This function is typi-
cally used in conjunction with the adi_flag_ResumeCallbacks function.
This function simply disables the interrupt that causes the callback to
occur.

Prototype

void adi_flag_SuspendCallback(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are being suspended.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

VisualDSP++ 4.5 Device Drivers and System 7-29
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_ResumeCallbacks

Description

The adi_flag_ResumeCallbacks function resumes callback generation
that was temporarily suspended by the adi_flag_SuspendCallbacks func-
tion. This function simply re-enables the interrupt that causes the callback
to occur.

Prototype

void adi_flag_ResumeCallback(

 ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are being resumed.

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

Flag Service API Reference

7-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SetTrigger

Description

The adi_flag_SetTrigger function sets the trigger condition that gener-
ates a callback. This function is not typically called by clients as setting the
trigger condition is taken care of automatically by the
adi_flag_InstallCallback function. The function is provided as a conve-
nience for users that want an extra measure of control on callbacks. The
function can also be used to change the trigger conditions for a callback
without removing and then re-installing the callback.

Prototype

void adi_flag_SetTrigger(

 ADI_FLAG_ID FlagID,

 ADI_FLAG_TRIGGER Trigger

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are being resumed.

Trigger Trigger condition that generates the callback

ADI_FLAG_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_FLAG_RESULT” on page 7-32 for a
list of return codes.

VisualDSP++ 4.5 Device Drivers and System 7-31
Services Manual for Blackfin Processors

Programmable Flag Service

Public Data Types, Enumerations and
Macros

This section defines both the public data structures and enumerations
used by the Flag Service. Always check the include file for the Flag Service,
adi_flag.h, for the most up-to-date information.

ADI_FLAG_ID
The ADI_FLAG_ID enumeration type uniquely defines each flag in the pro-
cessor being targeted. To the client application, flag IDs are simply values
that identify a specific flag; however each flag ID actually consists of two
pieces of information.

The upper 16 bits of the enumeration is the bit position within the port
that corresponds to that flag. The lower 16 bits is the offset to the flags
system registers that control the flag. A macro is provided that creates a
flag ID, given a bit position and register offset. Macros are also provided
to extract the bit position and register offset when given a flag ID.

Applications rarely, if ever, need access to these macros however they are
provided in the adi_flag.h file for reference. Applications typically use
only the completed flag ID value. The preset enumeration values are too
numerous to list here, but take the form ADI_FLAG_Pxy, where “x” is the
port ID and “y” is the index into the port for the flag. Please refer to
adi_flag.h for further details.

Public Data Types, Enumerations and Macros

7-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Associated Macros

These macros are defined for internal use by the Flag Service.

ADI_FLAG_RESULT
Each API function of the Flag Service returns an ADI_FLAG_RESULT enu-
meration as a return code. As with all system services, generic success is
defined as 0 while generic failure is defined as 1. This allows the calling
function to quickly evaluate the return code for a zero or non-zero value.
All detailed result codes for the Flag Service begin with the value
ADI_FLAG_ENUMERATION_START, for easy identification.

ADI_FLAG_CREATE_FLAG_ID Creates a flag ID given a bit position and register
offset

ADI_FLAG_GET_BIT Gets the bit position given a flag ID

ADI_FLAG_GET_OFFSET Gets the register offset given a flag ID

ADI_FLAG_GET_MASK Creates a mask for a given flag ID that can be used
to manipulate hardware control registers for the
given flag.

Result code Description

ADI_FLAG_RESULT_SUCCESS Function executed correctly.

ADI_FLAG_RESULT_FAILED Function execution not completed.

ADI_FLAG_RESULT_BAD_FLAG_ID Invalid flag ID.

ADI_FLAG_RESULT_INTERRUPT_MANAGER
_ERROR

A call to the interrupt manager failed for some rea-
son.

ADI_FLAG_ERROR_REMOVING_CALLBACK An error occurred removing a flag callback func-
tion

ADI_FLAG_RESULT_ALL_IN_USE All callback memory supplied at initialization is in
use.

ADI_FLAG_RESULT_BAD_GROUP The port control service returned an error

VisualDSP++ 4.5 Device Drivers and System 7-33
Services Manual for Blackfin Processors

Programmable Flag Service

ADI_FLAG_EVENT
The ADI_FLAG_EVENT enumeration defines the type of callback event that
occurred. The table below enumerates all possible event codes from the
Flag Service. This enumeration type is different from all other event types
for system services. As such a single callback function can be used for any
service, regardless of the event’s it is to process. Event codes for the Flag
Service begin with the value ADI_FLAG_ENUMERATION_START, for easy
identification.

ADI_FLAG_TRIGGER
The ADI_FLAG_TRIGGER enumeration type is used to specify the condition
that, when triggered, causes the application’s callback function to be
invoked.

Event code Description

ADI_FLAG_EVENT_CALLBACK The trigger condition for the specified flag
occurred.

ADI_FLAG_TRIGGER_LEVEL_HIGH Flag set when voltage on pin is at recognized ‘digi-
tal’ high level.

ADI_FLAG_TRIGGER_LEVEL_LOW Flag set when voltage on pin is at recognized ‘digi-
tal’ low level.

ADI_FLAG_TRIGGER_RISING_EDGE Flag set when voltage on pin rises from low to high
level (rising edge).

ADI_FLAG_TRIGGER_FALLING_EDGE Flag set when voltage on pin falls from high to low
level (falling edge)

ADI_FLAG_TRIGGER_BOTH_EDGE Flag set on both rising and falling edges.

Public Data Types, Enumerations and Macros

7-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_FLAG_TRIGGER
The ADI_FLAG_DIRECTION enumeration defines the direction, either input
or output, for a flag pin.

ADI_FLAG_EVENT
The ADI_FLAG_EVENT enumeration defines the type of callback event that
occurred. There is only one value, ADI_FLAG_EVENT_CALLBACK. This enu-
meration type is different from all other event types for system services. As
such a single callback function can be used for any service, regardless of
the event’s it is to process. Event codes for the Flag Service begin with the
value ADI_FLAG_ENUMERATION_START, for easy identification.

ADI_FLAG_DIRECTION_INPUT Flag is configured as an input

ADI_FLAG_DIRECTION_OUTPUT Flag is configured as an output

VisualDSP++ 4.5 Device Drivers and System 8-1
Services Manual for Blackfin Processors

8 TIMER SERVICE

This chapter describes the timer service.

The timer service, within the System Services library, provides the applica-
tion with an easy-to-use interface into the core, watchdog and general
purpose timers of the Blackfin processor.

This chapter contains the following sections:

• “Introduction” on page 8-2

• “Operation” on page 8-3

• “Timer Service API Reference” on page 8-16

• “Public Data Types, Enumerations and Macros” on page 8-31

Introduction

8-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Leveraging the capabilities of other System Services, the timer service
allows the client to control and coordinate the all timers in a consistent
fashion, regardless of processor derivative. The service also provides the
means for clients to install callback functions that get notified upon timer
expirations.

Use of the timer service is dependent on the use of both the interrupt
manager and the deferred callback (DCB) manager for its full operation. If
callbacks are not to be deferred, but rather are “live”, then the DCB man-
ager is not required. If callbacks are not required at all, neither the
interrupt manager nor DCB manager is required.

Currently, the timer service is available for use with the Blackfin
ADSP-BF531/532/533 processors, ADSP-BF534/536/537 processors,
and ADSP-BF561 processors.

In order to reduce the pin count of devices, timer pins are sometimes
muxed onto the same pins as other peripherals. The timer service does not
provide arbitration functionality to control pin muxing. It is the responsi-
bility of the client program to insure that peripherals and the timer service
do not use the same pin simultaneously. For the ADSP-BF531/532/533
and ADSP-BF561 processors, this entails ensuring that the relevant
peripheral control registers are correctly set. For the
ADSP-BF534/536/537 processors, the timer service automatically invokes
the port control service to effect any pin mux changes. No user interven-
tion is required.

The timer service uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or else-
where. To this end, all enumeration values and typedefs use the ADI_TMR_
prefix, while functions and global variables use the lower case, adi_tmr_,
equivalent.

VisualDSP++ 4.5 Device Drivers and System 8-3
Services Manual for Blackfin Processors

Timer Service

Each function within the timer service API returns an error code of the
type ADI_TMR_RESULT. Like all system services, a return value of 0
(ADI_TMR_RESULT_SUCCESS) indicates no errors. A non-zero value indicates
an error of some sort. Like all system services, timer service error codes are
unique from all other system services. The adi_tmr.h include file lists all
error codes that the timer service returns.

Parameter checking in the debug versions of the system services library
provides a more complete test of API function parameters and for condi-
tions that may cause errors. ADI strongly recommends that development
work be done using the debug versions of the system service library, while
final test and deployment be done with the release version of the library.

Operation
This section describes the overall operation of the timer service. Details on
the Application Program Interface (API) can be found in the timer service
API Reference (starting xxxxxx).

Initialization
Prior to using the timer service, the client must first initialize the service.
In order to initialize the service, the client passes to the initialization func-
tion, adi_tmr_Init(), a parameter that will be passed to the critical region
function should the timer service need to protect a critical region of code,
and optionally a contiguous piece of memory that the service can use for
flag callbacks.

The timer service provides a facility where, if so directed by the client, a
callback function supplied by the client can be invoked should a timer
expire. See the “Callbacks” on page 8-7 for more information on how call-
backs operate. Unlike other some other services where the client provides
memory to the service for use by the service, the timer service requires no
additional memory.

Operation

8-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Termination
When the client no longer requires the functionality of the timer service,
the termination function, adi_tmr_Terminate(), should be called. This
function uninstalls any timer callbacks that had been installed and closes
any open timers.

Timer IDs
All API functions within the timer service, other than the initialize and
terminate functions, are passed a parameter that identifies which timer(s)
is/are being controlled. The include file for the timer service, adi_tmr.h,
defines the timer IDs for each timer that is supported by the processor.
The timer ID parameter is defined as a u32 type, but it is not a simple enu-
meration value. The timer ID is actually a complex value that contains
information specific to the timer and also allows them to be OR’ed
together so that multiple timers can be enabled and disabled
simultaneously.

Basic Timer Functions
The functions described in this section are common to all types of timers;
general-purpose, core and watchdog timers. Any individual timer ID, be it
a general purpose timer ID, core timer ID or watchdog timer ID, can be
passed to these functions.

adi_tmr_Open()

The adi_tmr_Open() function is called to open the timer for use. Depend-
ing on the specific Blackfin device, this function initializes any hardware
necessary for the operation of the timer. This function also resets the timer
to its default settings.

VisualDSP++ 4.5 Device Drivers and System 8-5
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Close()

When a timer is no longer needed, this adi_tmr_Close() function should
be called to close and shut down the timer. At present, for all Blackfin
device classes, this function does nothing but returns immediately to the
caller. Future Blackfin devices may require that this function manipulates
the hardware in some way when closing a timer.

adi_tmr_Reset()

Should the application wish to reset the timer to the default settings at
some time other than when it is opened, the adi_tmr_Reset() function
does that. The configuration register for the timer is reset to its power-up
value, error status is cleared, and so on.

General-Purpose Timer Functions
The functions described in this section are used for general-purpose timers
only. These functions return an error if passed other types of timer IDs,
such as core or watchdog timer IDs.

adi_tmr_GPControl()

The adi_tmr_GPControl() function is used to configure a general-purpose
timer. This function is passed the timer ID of the timer that is being con-
trolled, a command ID specifying the parameter of the function that is
being addressed, and a command specific parameter. The list of command
IDs applicable to general purpose timers and the corresponding command
specific parameters are described in “ADI_TMR_GP_CMD” on
page 8-35.

Operation

8-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_GPGroupEnable()

The adi_tmr_GPGroupEnable() function is used to enable or disable a sin-
gle general-purpose timer or a group of general-purpose timers. This
function is passed a parameter that is either a single general-purpose timer
ID, or an OR-ing of any number of general-purpose timer IDs, and a flag
indicating if the group of timers is to be enabled (a value of TRUE) or dis-
abled (a value of FALSE).

The function uses best efforts to simultaneously enable or disable the
group of timers. If the underlying hardware of the specific Blackfin device,
allows the timers to be controlled simultaneously, then the function takes
the necessary action to simultaneously enable or disable the timers. If the
underlying hardware does not allow the specified timers to be controlled
simultaneously, the function uses best efforts to enable or disable the tim-
ers as quickly as possible.

Core Timer Functions
The functions described in this section are used for the core timer only.

adi_tmr_CoreControl()

The adi_tmr_CoreControl() function is used to configure the core timer.
Analogous to the general-purpose timer control function, this function is
passed a command ID specifying the parameter of the function that is
being addressed, and a command specific parameter. The list of command
IDs applicable to the core timer and the corresponding command specific
parameters are described in “ADI_TMR_CORE_CMD” on page 8-33.

Watchdog Timer Functions
The functions described in this section are used for the watchdog timer
only.

VisualDSP++ 4.5 Device Drivers and System 8-7
Services Manual for Blackfin Processors

Timer Service

adi_tmr_WatchdogControl()

The adi_tmr_WatchdogControl() function is used to configure the watch-
dog timer. Analogous to the general-purpose and core timer control
functions, this function is passed a command ID specifying the parameter
of the function that is being addressed, and a command specific parame-
ter. The list of command IDs applicable to the watchdog timer and the
corresponding command specific parameters are described in section 6.5.5
xxxxx.

Peripheral Timer Functions
The functions described in this section are used for the general-purpose
and watchdog timers only; passing a core timer ID to these functions
results in an error being returned to the caller.

adi_tmr_GetPeripheralID()

The adi_tmr_GetPeripheralID() function can be called to identify the
peripheral ID for the specified timer. While not normally required, this
function may be useful if finer granularity of interrupt control logic than
what is provided by the timer service is required. The peripheral ID value
can be passed to functions in the Interrupt Service. Note that the core
timer does not have a peripheral ID associated with it as the core timer
mapping to an IVG level is fixed. Regardless, the core timer ID may still
be passed to this function and the function will not return an error.

Callbacks
Like other system services, the timer service uses a callback mechanism in
order to notify the client of asynchronous events, such as a timer expiring.
Callbacks can be used on all types of timers; general-purpose, core and
watchdog timers.

Operation

8-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Blackfin’s timers can be configured to generate interrupts. The timer ser-
vice provides an internal interrupt handler that is used to process
interrupts from the timer hardware. This interrupt handler makes the
appropriate callbacks into the client’s application. When a client installs a
timer callback, a parameter to the function dictates if the callback should
be made “live” or deferred. “Live” callbacks mean that the client’s callback
function is called at interrupt time. Deferred callbacks mean that callbacks
are not made at interrupt time but rather deferred to a lower priority using
a specified deferred callback service.

When using the callback capability of the timer service, the client does not
need to take any other action outside the timer service API. No calls to the
interrupt manager or deferred callback service, other than initialization of
those services, are required.

Note that it is possible for clients to use all capabilities of the timer service
and not use any of the callback capabilities.

adi_tmr_InstallCallback()

The adi_tmr_InstallCallback() function is used to install a callback to a
specified timer. In addition to the timer ID, the client provides a wakeup
flag, the callback function address, a client handle and deferred callback
service handle.

The wakeup flag indicates whether or not the processor should be woken
up from a low power state should the timer event occur.

VisualDSP++ 4.5 Device Drivers and System 8-9
Services Manual for Blackfin Processors

Timer Service

The callback function address specifies a callback function of the type
ADI_DCB_CALLBACK_FN (see “Deferred Callback Manager” for more infor-
mation on this datatype). When invoked, the callback function is passed
three parameters. The parameters are:

• ClientHandle – a value provided by the client when the callback
was installed

• ADI_TMR_EVENT_TIMER_EXPIRED – indicates a timer callback event

• TimerID – the timer ID of the timer that generated the callback

When the deferred callback service handle parameter passed to the
adi_tmr_InstallCallback function is NULL, the callback is executed
“live”, meaning it is invoked at interrupt time. If the deferred callback ser-
vice handle parameter is non-NULL, the timer service uses the specified
deferred callback service to invoke the callback.

A single callback function can be used and installed for any number of
timers; the callback function can use the TimerID parameter to determine
which timer generated the callback. Note, however, that only one callback
should be installed for a given timer.

This function does not alter timer control, such as direction, at all.

adi_tmr_RemoveCallback()

The adi_tmr_RemoveCallback() function is used to remove a callback
from a specified timer. This function disables interrupt generation for the
timer and removes the callback from its internal tables. Unless reinstalled,
no further callbacks will occur for the specified timer. This function does
not alter timer control in any way.

Operation

8-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Coding Example
This section provides code samples illustrating how to access and use the
functionality provided by the timer service. This example initializes the
timer service, configures a couple of general-purpose timers, the core timer
and the watchdog timer. The use of callbacks is also illustrated. All timer
service functions return an error code. In practice, this error code should
be checked to insure the function completed successfully. For the pur-
poses of this example only, the return value is not checked.

Initialization

Prior to using the timer service, it must be initialized. The fragment below
initializes the service.

ADI_TMR_RESULT Result; // return value

Result = adi_tmr_Init(NULL);

Upon completion of this function, the timer service is initialized and
ready for use. This function does not alter the timers in any way but sim-
ply initialized internal data structures.

Opening a Timer

After the service has been initialized, any timers that are to be used can be
opened. In this example, two general-purpose timers, the core timer and
watchdog timer are opened

Result = adi_tmr_Open(ADI_TMR_GP_TIMER_0);

Result = adi_tmr_Open(ADI_TMR_GP_TIMER_1);

Result = adi_tmr_Open(ADI_TMR_CORE_TIMER);

Result = adi_tmr_Open(ADI_TMR_WDOG_TIMER);

The open function opens the timer for use and resets the timer to its
power up values, clearing any pending status, and so on.

VisualDSP++ 4.5 Device Drivers and System 8-11
Services Manual for Blackfin Processors

Timer Service

Configuring a Timer

After the timer has been opened, the timer can be configured. The
adi_tmr_GPControl(), adi_tmr_CoreControl() and
adi_tmr_WatchdogControl() functions are used to configure general-
purpose, core and the watchdog timers, respectively.

Each of these functions are provided with a command ID, typically speci-
fying the parameter to be controlled, and a value for the parameter. (Note
that the general-purpose control function also is passed a timer ID specify-
ing the timer being controlled.) Commands to timers can be given
individually or collectively as a table.

The fragment below illustrates both methods.

ADI_TMR_CORE_CMD_VALUE_PAIR CoreTable [] = {

 {ADI_TMR_CORE_CMD_SET_COUNT, (void *)0x12345678 },

 { ADI_TMR_CORE_CMD_SET_PERIOD, (void *)0xabcdef },

 { ADI_TMR_CORE_CMD_SET_SCALE, (void *)0x10 },

 { ADI_TMR_CORE_CMD_SET_ACTIVE_MODE, (void *)TRUE },

 { ADI_TMR_CORE_CMD_END, NULL },

};

Result = adi_tmr_CoreControl(ADI_TMR_CORE_CMD_TABLE, CoreTable);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

 ADI_TMR_GP_CMD_SET_PERIOD, (void *)0x800000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

 ADI_TMR_GP_CMD_SET_WIDTH, (void *)0x400000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

 ADI_TMR_GP_CMD_SET_TIMER_MODE, (void *)0x1);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

 ADI_TMR_GP_CMD_SET_PERIOD, (void *)0x800000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

 ADI_TMR_GP_CMD_SET_WIDTH, (void *)0x400000);

Operation

8-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

 ADI_TMR_GP_CMD_SET_TIMER_MODE, (void *)0x1);

Result = adi_tmr_WatchdogControl

 (ADI_TMR_WDOG_CMD_EVENT_SELECT, (void *)0x0);

Result = adi_tmr_WatchdogControl

 (ADI_TMR_WDOG_CMD_SET_COUNT, (void

*)0x12345678);

Note that in the above fragment, the core timer was enabled immediately
after being configured, while the watchdog and general-purpose timers
were not enabled. Any timer can be enabled via a command table, typi-
cally the last entry in the table. For illustrative purposes, enabling the
watchdog and general-purpose timers is shown separately in “Enabling
and Disabling Timers”.

Enabling and Disabling Timers

After the timer has been configured, it can be enabled. When using a com-
mand table, the timer can be enabled as a command in the table as shown
in “Configuring a Timer”. Typically, the command to enable the timer is
the last entry in the table. Alternatively, timers can be enabled by a sepa-
rate call to the appropriate control function. Further, general-purpose
timers can be simultaneously enabled and disabled as a group.

The fragment below illustrates enabling the watchdog timer and then
simultaneously enabling general-purpose timers 0 and 1.

Result = adi_tmr_WatchdogControl

 (ADI_TMR_WDOG_CMD_ENABLE_TIMER, (void *)TRUE);

Result = adi_tmr_GPGroupEnable

 (ADI_TMR_GP_TIMER_0 | ADI_TMR_GP_TIMER_1, TRUE);

VisualDSP++ 4.5 Device Drivers and System 8-13
Services Manual for Blackfin Processors

Timer Service

When a timer is to be disabled, it can be disabled as part of a command
table (though this is unlikely). More often, timers are disabled via a single
control function call. As with the enabling of general-purpose timers, they
can be simultaneously disabled. The code fragment below illustrates the
disabling of the watchdog timer and simultaneously disabling
general-purpose timers 0 and 1.

Result = adi_tmr_WatchdogControl

 (ADI_TMR_WDOG_CMD_ENABLE_TIMER, (void *)FALSE);

Result = adi_tmr_GPGroupEnable

 (ADI_TMR_GP_TIMER_0 | ADI_TMR_GP_TIMER_1, FALSE);

Installing a Callback Function

While applications can install hardware Interrupt Service Routines
directly to process interrupts from timers (see “Interrupt Manager”), the
timer service provides a simple, easy-to-use callback mechanism that pro-
vides equivalent functionality.

The code fragment below illustrates how to install a callback function.
Different callback functions can be used for each timer or a single callback
function can be used for any number of timers. The fragment below shows
installation of a single callback function for two general purpose timers,
the core and watchdog timers. The switch statement within the callback
function is used to identify which timer generated the callback.

...

Result = adi_tmr_InstallCallback

 (ADI_TMR_GP_TIMER_0, TRUE, (void *)0x00000000, NULL, Callback);

Result = adi_tmr_InstallCallback

 (ADI_TMR_GP_TIMER_1, TRUE, (void *)0x11111111, NULL, Callback);

Result = adi_tmr_InstallCallback

 (ADI_TMR_CORE_TIMER, TRUE, (void *)0x22222222, NULL, Callback);

Result = adi_tmr_InstallCallback

 (ADI_TMR_WDOG_TIMER, TRUE, (void *)0x33333333, NULL, Callback);

Operation

8-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

...

void Callback(void *ClientHandle, u32 Event, void *pArg) {

 // Event = ADI_TMR_EVENT_TIMER_EXPIRED

 switch ((u32)pArg) {

 case ADI_TMR_GP_TIMER_0:

 // do processing when gp timer 0 expires

 // ClientHandle = 0x00000000

 break;

 case ADI_TMR_GP_TIMER_1:

 // do processing when gp timer 1 expires

 // ClientHandle = 0x11111111

 break;

 case ADI_TMR_CORE_TIMER:

 // do processing when core timer expires

 // ClientHandle = 0x22222222

 break;

 case ADI_TMR_WDOG_TIMER:

 // do processing when watchdog timer expires

 // ClientHandle = 0x33333333

 break;
 }

}

When the callback function is invoked, the ClientHandle parameter is the
value that was given when the callback was installed, the Event is the
ADI_TMR_EVENT_TIMER_EXPIRED value and the pArg parameter contains the
timer ID that triggered the callback. This example passes in a NULL for
the deferred callback service handle so callbacks are “live”.

Removing Callbacks

Should the application no longer need the callback, it can remove the call-
back without affecting any of the other timer settings. The fragment
below illustrates how to remove the callbacks.

VisualDSP++ 4.5 Device Drivers and System 8-15
Services Manual for Blackfin Processors

Timer Service

Result = adi_tmr_RemoveCallback(ADI_TMR_GP_TIMER_0);

Result = adi_tmr_RemoveCallback(ADI_TMR_GP_TIMER_1);

Result = adi_tmr_RemoveCallback(ADI_TMR_CORE_TIMER);

Result = adi_tmr_RemoveCallback(ADI_TMR_WDOG_TIMER);

The callback functions will no longer be invoked and the callback func-
tions themselves are removed from the timer service.

Termination

When the functionality provided by the timer service is no longer
required, the application should terminate the service. The fragment
below terminates the timer service.

Result = adi_tmr_Terminate();

After termination, the timer service must be re-initialized before using any
of the timer service function.

Timer Service API Reference

8-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Timer Service API Reference
This section provides the timer service API. The information below was
accurate at the time this document was created. However, the include file
for the timer service, adi_tmr.h, should always be checked for the most up
to date information.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 4.5 Device Drivers and System 8-17
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Init

Description

The adi_tmr_Init function initializes internal data structures of the timer
service. This function should be called only once per core.

Prototype

ADI_TMR_RESULT adi_tmr_Init (

 void *pEnterCriticalArg

);

Arguments

Return Value

pEnterCriticalArg Handle to data area containing critical region data. This will
be passed to adi_int_EnterCriticalRegion where used
internally of the module. See “Interrupt Manager” for further
details.

ADI_TMR_RESULT_SUCCESS timer service was successfully initialized.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of return
codes.

Timer Service API Reference

8-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Open

Description

The adi_tmr_Open function opens a timer for use. The timer’s registers are
reset to the power-up values, status conditions cleared, etc. Future Black-
fin devices may require this function take additional action to manipulate
the hardware in some way when opening a timer.

Note that on multi-core Blackfin devices, each core has its own
core timer; however, the watchdog and general-purpose timers are
shared between the cores. When running the timer service on
multi-core devices, the user should insure that multiple cores do
not attempt to simultaneously use the same watchdog and general
purpose timers.

Prototype

void adi_tmr_Open (

 u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
being opened.

ADI_TMR_RESULT_SUCCESS Operation success.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of
return codes.

VisualDSP++ 4.5 Device Drivers and System 8-19
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Terminate

Description

The adi_tmr_Terminate function closes the timer service. Any installed
callbacks are removed. Once terminated, the initialization function must
be called again before using any of the timer service functions.

Prototype

ADI_TMR_RESULT adi_tmr_Terminate (

 void

);

Arguments

None.

Return Value

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a
list of return codes.

Timer Service API Reference

8-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Close

Description

The adi_tmr_Close function is called when the application no longer
requires the service of a timer. At present, this function does nothing but
returns immediately to the caller. Future Blackfin devices may require that
this function manipulate the hardware in some way when closing a timer.

Prototype

void adi_tmr_Close (

 u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
being closed.

ADI_TMR_RESULT_SUCCESS Operation success.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of
return codes.

VisualDSP++ 4.5 Device Drivers and System 8-21
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Reset

Description

The adi_tmr_Reset function resets the timer’s registers to the power-up
values. Any pending status indications, interrupts etc. are cleared. As this
function is called from within the adi_tmr_Open function, there is rarely a
need for an application to call this function.

Prototype

void adi_tmr_Reset (

 u32 TimerID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the timer
being reset.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a
list of return codes.

Timer Service API Reference

8-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_CoreControl

Description

The adi_tmr_CoreControl function inverts the current value of the flag. If
the flag is a logical 1, driving high, this function makes the flag a logical 0,
driving low. If the flag is a logical 0, driving low, this function makes the
flag a logical 1, driving high.

Prototype

void adi_tmr_CoreControl (

 ADI_TMR_GP_CMD Command,

 void *Value

);

Arguments

Return Value

Command Identifier specifying the timer parameter that is
being addressed. See “ADI_TMR_CORE_CMD”
on page 8-33 for a list of all core timer command
identifiers.

Value A command-specific value that is typically the
value of the parameter being set or a location into
which a value read from the timer is stored.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 4.5 Device Drivers and System 8-23
Services Manual for Blackfin Processors

Timer Service

adi_tmr_WatchdogControl

Description

The adi_tmr_WatchdogControl function configures and controls the set-
tings of the watchdog timer.

Prototype

void tmr_WatchdogControl (

 ADI_TMR_GP_CMD Command,

 void *Value

);

Arguments

Return Value

Command Identifier specifying the timer parameter that is
being addressed. See “ADI_TMR_WDOG_CMD”
on page 8-34 for a list of all watchdog timer com-
mand identifiers.

Value A command specific value that is typically the value
of the parameter being set or a location into which
a value read from the timer is stored.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Timer Service API Reference

8-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_GPControl

Description

The adi_tmr_GPControl function configures and controls the settings of
general-purpose timer.

Prototype

void tmr_GPControl (

 u32 TimerID,

 ADI_TMR_GP_CMD Command,

 void *Value

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
being controlled.

Command Identifier specifying the timer parameter that is
being addressed. See “ADI_TMR_GP_CMD” on
page 8-35 for a list of all general-purpose timer
command identifiers.

Value A command specific value that is typically the value
of the parameter being set or a location into which
a value read from the timer is stored.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 4.5 Device Drivers and System 8-25
Services Manual for Blackfin Processors

Timer Service

adi_tmr_GPGroupEnable

Description

The adi_tmr_GPGroupEnable function simultaneously enables or disables a
group of general-purpose timers. The function uses best efforts to simulta-
neously enable or disable the group of timers. If the underlying hardware
of the specific Blackfin device, allows the specified timers to be controlled
simultaneously, then the function takes the necessary action to simulta-
neously enable or disable the timers. If the underlying hardware does not
allow the specified timers to be controlled simultaneously, the function
uses best efforts to enable or disable the timers as quickly as possible.

Note that depending on the specific Blackfin device, when enabling a
timer(s), this function may additionally configure the port muxing for
timer based on the configuration settings for the timer.

For example, on ADSP-BF534/536/537 class devices, if a general-purpose
timer has been configured as a PWM timer with the output pin active,
when the timer is enabled, this function configures the port control logic,
via the port control system service, to enable the TMRx pin. On
ADSP-BF531/532/533 and ADSP-BF561 class devices, no port control
logic is necessary. No further user action with the port control service is
required.

Prototype

void tmr_GPGroupEnable (

 u32 TimerID,

 u32 EnableFlag

);

Timer Service API Reference

8-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

TimerIDs OR-ing of all general purpose timer IDs that are to
be simultaneously controlled.

EnableFlag A value of TRUE indicates the timers are to be
enabled, a value of FALSE indicates the timers are
to be disabled.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 4.5 Device Drivers and System 8-27
Services Manual for Blackfin Processors

Timer Service

adi_tmr_InstallCallback

Description

The adi_tmr_InstallCallback function installs a callback function that is
invoked when a timer expires. Note that the function provided by the
caller is a callback function, not an interrupt handler. This function does
not alter timer configurations, values or other settings in any way.

Prototype

void adi_tmr_InstallCallback (

 u32 TimerID,

 u32 WakeupFlag,

 void *ClientHandle,

 ADI_DCB_HANDLE DCBHandle,

 ADI_DCB_CALLBACK_FN ClientCallback

);

Timer Service API Reference

8-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer to which
the callback is to be assigned.

WakeupFlag Flag indicating if the processor should be woken up from a
low power state if the trigger occurs.

ClientHandle Identifier defined and supplied by the client. This value is
passed to the callback function.

DCBHandle Either NULL if using “live” callbacks or the handle to the
deferred callback service that is to be used for callbacks

ClientCallback Address of the client’s callback function

ADI_TMR_RESULT_SUCCESS Flag Service was successfully initialized.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of return
codes.

VisualDSP++ 4.5 Device Drivers and System 8-29
Services Manual for Blackfin Processors

Timer Service

adi_tmr_RemoveCallback

Description

The adi_tmr_RemoveCallback function removes the callback from the
specified timer. This function does not alter timer configurations, values
or other settings in any way.

Prototype

void adi_tmr_RemoveCallback (

 u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
whose callback is being removed.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Timer Service API Reference

8-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_GetPeripheralID

Description

The adi_tmr_GetPeripheralID function can be called to identify the
peripheral ID for the specified timer. While not normally required, this
function may be useful if finer granularity of interrupt control logic than
what is provided by the timer service is required. The peripheral ID value
can be passed to functions in the Interrupt Service. Note that the core
timer does not have a peripheral ID associated with it as the core timer
mapping to an IVG level is fixed. Regardless, the core timer ID may still
be passed to this function and the function will not return an error.

Prototype

void adi_tmr_GetPeripheralID (

 u32 TimerID,

 ADI_INT_PERIPHERAL_ID *pPeripheralID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
being controlled.

pPeripheralID Pointer to location where the peripheral ID for the
specified timer will be stored.

ADI_TMR_RESULT_SUCCESS The function completed successfully.

Any other value An error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 4.5 Device Drivers and System 8-31
Services Manual for Blackfin Processors

Timer Service

Public Data Types, Enumerations and
Macros

This section defines both the public data structures and enumerations
used by the timer service. Always check the include file for the timer ser-
vice, adi_tmr.h, for the most up-to-date information.

Timer IDs
The timer service provides a unique identifier for each timer. These Timer
IDs are 32-bit values that are not a simple index but rather a combination
of two pieces of information. Bits 27 through 31 of the Timer ID are an
index that enumerates each timer in the system including general purpose,
core and watchdog timers. Bits 0 through 26 are used for general purpose
timers only and form a mask that the timer service uses to enable and dis-
able multiple general purpose timers simultaneously.

Macros are provided in the adi_tmr.h file to create timer IDs and to
access the values held in bits 0 through 26 and to access the values in bits
27 through 31. These macros are used internally by the timer service and
are not typically used by applications. However, should the application
need to iterate through all general-purpose timers, the Timer IDs can be
created by the macro ADI_TMR_CREATE_GP_TIMER_ID(x) where “x” is in the
range of 0 up to but not including the value ADI_TMR_GP_TIMER_COUNT.

For example, the code fragment below illustrates how to open all
general-purpose timers.

u32 i, TimerID;

ADI_TMR_RESULT Result;

for (i = 0; i < ADI_TMR_GP_TIMER_COUNT; i++) {

Public Data Types, Enumerations and Macros

8-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 TimerID = ADI_TMR_CREATE_GP_TIMER_ID(i);

 Result = adi_tmr_Open(TimerID); }

For most functions in the timer service API, a single Timer ID value is
passed to the function identifying the timer being addressed. The function
adi_tmr_GPGroupEnable() however, can take as a parameter either a single
Timer ID value, or a logical OR-ing of multiple Timer ID values. The
structure of the Timer ID value allows the single passed in parameter to
identify multiple GP timers to the function.

Associated Macros

These macros are defined for internal use by the timer service.

ADI_TMR_RESULT
Each API function of the timer service returns an ADI_TMR_RESULT enu-
meration as a return code. As with all system services, generic success is
defined as 0 while generic failure is defined as 1. This allows the calling
function to quickly evaluate the return code for a zero or non-zero value.
All detailed result codes for the timer service begin with the value
ADI_TMR_ENUMERATION_START, for easy identification..

ADI_TMR_CREATE_GP_TIMER_ID Creates a timer ID given a GP timer index

ADI__TMR_CREATE_CORE_TIMER_ID Creates a timer ID given a core timer index

ADI_TMR_CREATE_WDOG_TIMER_ID Creates a timer ID given a watchdog timer index

ADI_TMR_GET_TIMER_INDEX Gets the timer index given a timer ID

ADI_TMR_GET_GP_TIMER_MASK Gets the mask for a GP timer(s) given a single
timer ID or logical OR-ing of multiple timer IDs.

Result code Description

ADI_TMR_RESULT_SUCCESS Function executed correctly.

ADI_TMR_RESULT_FAILED Function execution not completed.

VisualDSP++ 4.5 Device Drivers and System 8-33
Services Manual for Blackfin Processors

Timer Service

ADI_TMR_EVENT
The ADI_TMR_EVENT enumeration defines the type of callback event that
occurred. The table below enumerates all possible event codes from the
timer service. This enumeration type is different from all other event types
for system services. As such a single callback function can be used for any
service, regardless of the event’s it is to process. Event codes for the timer
service begin with the value ADI_TMR_ENUMERATION_START, for easy
identification.

ADI_TMR_CORE_CMD
Table 8-1 on page 8-34 lists the commands that can be executed for the
core timer. These command IDs are passed as a parameter to the
adi_tmr_CoreCommand() function. In addition to the command ID, the
Value parameter (a void * type) is also passed to the function. The mean-

ADI_TMR_RESULT_NOT_SUPPORTED Operation is not supported

ADI_TMR_RESULT_BAD_FLAG_ID The TimerID value is invalid

Result code Description

ADI_TMR_RESULT_BAD_FLAG_IDS IThe TimerIDs (either single Timer ID or logical
OR-ing of multiple Timer IDs) is invalid.

ADI_TMR_RESULT_BAD_TIMER_TYPE The operation is not appropriate to the Timer ID
supplied.

ADI_TMR_RESULT_BAD_COMMAND Invalid Command

ADI_FLAG_RESULT_INTERRUPT_MANAGER
_ERROR

The interrupt manager Service returned an error.

ADI_TMR_RESULT_CALLBACK_ALREADY_I
NSTALLED

A callback is already installed on the given timer.

Event code Description

ADI_TMR_EVENT_TIMER_EXPIRED The given timer expired.

Public Data Types, Enumerations and Macros

8-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ing of the Value parameter is dependent upon the command ID being
passed. The table also describes the Value parameter for each command
ID.

ADI_TMR_WDOG_CMD
Table 8-2 on page 8-35 lists the commands that can be executed for the
watchdog timer. These command IDs are passed as a parameter to the
adi_tmr_WatchdogCommand() function. In addition to the command ID,

Table 8-1. Commands Executed for Core Timer

Command ID Value Description

ADI_TMR_CORE_CMD_TABLE ADI_TMR_CORE_CMD_
VALUE_PAIR *

Start of command table

ADI_TMR_CORE_CMD_END Ignored End of command table

ADI_TMR_CORE_CMD_PAIR ADI_TMR_CORE_CMD_
VALUE_PAIR *

Command pair

ADI_TMR_CORE_CMD_SET_ACTIVE_M
ODE

TRUE – active mode
FALSE – low power

Sets active or low power mode of
timer

ADI_TMR_CORE_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables the timer

ADI_TMR_CORE_CMD_SET_AUTO_REL
OAD

TRUE – auto reload
FALSE – no reload

Enables or disables automatic
reloading of timer

ADI_TMR_CORE_CMD_HAS_INTERRUP
T_OCCURRED

u32 *
TRUE – enabled
FALSE – disabled

Indicates if the timer interrupt
has occurred

ADI_TMR_CORE_CMD_RESET_INTERR
UPT_OCCURRED

Ignored Clears the indication that the
timer interrupt has occurred

ADI_TMR_CORE_CMD_SET_COUNT u32 Sets the count value for the timer

ADI_TMR_CORE_CMD_SET_PERIOD u32 Sets the period value for the
timer

ADI_TMR_CORE_CMD_SET_PERIOD u32 Sets the scale value for the timer

VisualDSP++ 4.5 Device Drivers and System 8-35
Services Manual for Blackfin Processors

Timer Service

the Value parameter (a void * type) is also passed to the function. The
meaning of the Value parameter is dependent upon the command ID
being passed. The table also describes the Value parameter for each com-
mand ID.

ADI_TMR_GP_CMD
Table 8-3 on page 8-36 lists the commands that can be executed for the
general- purpose timers. These command IDs are passed as a parameter to
the adi_tmr_GPCommand() function. In addition to the command ID, the
Value parameter (a void * type) is also passed to the function. The mean-

Table 8-2. Commands Executed for Watchdog Timer

Command ID Value Description

ADI_TMR_WDOG_CMD_TABLE ADI_TMR_WDOG_CMD_
VALUE_PAIR *

Start of command table

ADI_TMR_WDOG_CMD_END Ignored End of command table

ADI_TMR_WDOG_CMD_PAIR ADI_TMR_WDOG_CMD_
VALUE_PAIR *

Command pair

ADI_TMR_WDOG_CMD_EVENT_SELECT 0 – reset
1 – NMI
2 – GP interrupt
3 – no event

Sets the event type that occurs
upon expiration of the watchdog
timer

ADI_TMR_WDOG_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables the timer

ADI_TMR_WDOG_CMD_HAS_EXPIRED u32 *
TRUE – enabled
FALSE – disabled

Indicates if the timer has expired

ADI_TMR_WDOG_CMD_RESET_EXPIRE
D

Ignored Clears the indication that the
timer has expired

ADI_TMR_WDOG_CMD_GET_STATUS u32 * Stores the current count value
into the specified location

ADI_TMR_WDOG_CMD_SET_COUNT u32 Sets the current count value

Public Data Types, Enumerations and Macros

8-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ing of the Value parameter is dependent upon the command ID being
passed. The table also describes the Value parameter for each command
ID.

Table 8-3. Commands Executed for General Purpose Timers

Command ID Value Description

ADI_TMR_GP_CMD_TABLE ADI_TMR_GP_CMD_VA
LUE_PAIR *

Start of command table

ADI_TMR_GP_CMD_END Ignored End of command table

ADI_TMR_GP_CMD_PAIR ADI_TMR_GP_CMD_VA
LUE_PAIR *

Command pair

ADI_TMR_GP_CMD_SET_PERIOD u32 Sets the period value for the
timer

ADI_TMR_GP_CMD_SET_WIDTH u32 Sets the width value for the timer

ADI_TMR_GP_CMD_GET_WIDTH u32 * Stores the current width value for
the timer in the specified loca-
tion

ADI_TMR_GP_CMD_GET_COUNTER u32 * Stores the counter value for the
timer in the specified location

ADI_TMR_GP_CMD_SET_TIMER_MODE 0 – reserved
1 – PWM
2 – WDTH_CAP
3 – EXT_CLK

Sets the operating mode of the
timer

ADI_TMR_GP_CMD_SET_PULSE_HI TRUE – positive action
pulse
FALSE – negative
action pulse

Sets the pulse action of the timer

ADI_TMR_GP_CMD_SET_COUNT_METH
OD

TRUE – count to end
of period
FALSE – count to end
of width

Sets the count method

VisualDSP++ 4.5 Device Drivers and System 8-37
Services Manual for Blackfin Processors

Timer Service

ADI_TMR_GP_CMD_SET_INTERRUPT_
ENABLE

TRUE – enables inter-
rupt generation
FALSE – disables
interrupt generation

Enables or disables interrupt gen-
eration for the timer

ADI_TMR_GP_CMD_SET_INPUT_SELE
CT

TRUE – UART_RX or
PPI_CLK
FALSE – TMRx or
PF1

Selects the timer input

ADI_TMR_GP_CMD_SET_OUTPUT_PAD
_DISABLE

TRUE – output pad
disabled
FALSE – output pad
enabled

Enables or disables the TMRx
pin

ADI_TMR_GP_CMD_SET_CLOCK_SELE
CT

TRUE – PWM_CLK
FALSE – SCLK

Selects the input clock for the
timer

ADI_TMR_GP_CMD_SET_TOGGLE_HI TRUE – PULSE_HI
alternated each period
FALSE – use pro-
grammed state

Sets the toggle mode

ADI_TMR_GP_CMD_RUN_DURING_EMU
LATION

TRUE – run during
emulation
FALSE – do not run
during emulation

Enables or disables the timer
when the device is servicing emu-
lator interrupts

ADI_TMR_GP_CMD_GET_ERROR_TYPE u32 *
0 – no error
1 – counter overflow
2 – period register
error
3 – width register
error

Stores the error type in the speci-
fied location

ADI_TMR_GP_CMD_IS_INTERRUPT_A
SSERTED

u32 *
TRUE – asserted
FALSE – not asserted

Stores the interrupt assertion sta-
tus in the specified location

ADI_TMR_GP_CMD_CLEAR_INTERRUP
T

Ignored Clears the timer’s interrupt

Table 8-3. Commands Executed for General Purpose Timers (Cont’d)

Command ID Value Description

Public Data Types, Enumerations and Macros

8-38 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_TMR_GP_CMD_IS_ERROR u32 *
TRUE – error
FALSE – no error

Stores the error status in the
specified location

ADI_TMR_GP_CMD_CLEAR_ERROR Ignored Clears the error status of the
timer

ADI_TMR_GP_CMD_IS_SLAVE_ENABL
ED

u32 *
TRUE – enabled
FALSE – disabled

Stores the slave enable status in
the specified location

ADI_TMR_GP_CMD_IMMEDIATE_HALT Ignored Immediately stops timer in
PWM mode

ADI_TMR_GP_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables the timer

Table 8-3. Commands Executed for General Purpose Timers (Cont’d)

Command ID Value Description

VisualDSP++ 4.5 Device Drivers and System 9-1
Services Manual for Blackfin Processors

9 PORT CONTROL SERVICE

This chapter describes the port control manager service.

This service is available for ADSP-BF534, ADSP-BF536, and
ADSP-BF537 class of processors only.

This chapter contains the following sections:

• “Introduction” on page 9-2

• “Using the Port Control Manager” on page 9-2

• “Port Control Manager API Reference” on page 9-4

• “Public Data Types, Enumerations and Macros” on page 9-17

Introduction

9-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The port control manager service, within the System Services Library, pro-
vides the client applications’ developer with a means of assigning the
programmable flag pins to various functions. For instance, the flag pins
required for SPORT0 usage can be set up with a single call to the
adi_ports_EnableSPORT function.

Where necessary, the memory mapped registers for the appropriate
peripherals are queried to determine behavior. For example, the port con-
trol manager can determine whether two internal frame syncs are required
by interrogating the PPI_CONTROL register. However, it is the responsibility
of the client program to configure the PPI control registers prior to
enabling the required flag pins. This is the usual practice within the
Device Driver Model, where port control and the setting of flag values are
done at the point of enabling dataflow.

The port control manager is applicable only to processors that support
port control, which is currently available only on the ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors.

The port control manager uses an unambiguous naming convention to
safeguard against conflicts with other software libraries provided by ADI
or elsewhere. To this end, all enumeration values and typedefs use the
ADI_PORTS_ prefix, while functions and global variables use the lower case,
adi_ports_, equivalent.

Using the Port Control Manager
To demonstrate the use of the port control manager, an example is pre-
sented that configures the PPI for use with two internal frame syncs.

The port control manager is initialized as follows

VisualDSP++ 4.5 Device Drivers and System 9-3
Services Manual for Blackfin Processors

Port Control Service

adi_ports_Init(// Initialize Port Control Manager

 NULL // No special data area for critical

 // regions required

);

To enable the flag pins for the required PPI use, the adi_ports_EnablePPI
function is called with an array of directives that determine how it is to be
configured:

// Configure the PPI_CONTROL register

ADI_PPI_CONTROL_REG ppi_control;

ppi_control.port_en = 0; // Disable until ready

ppi_control.port_dir = 0; // Receive mode

ppi_control.xfr_type = 3; // Non ITU-R 656 mode

ppi_control.port_cfg = 1; // two or three internal frame syncs

ppi_control.dlen = 7; // 16 Bits data length

ppi_control.polc = 0; // Do not invert PPI_CLK

ppi_control.pols = 0; // Do not invert PPI_FS1 & PPI_FS2

// set PPI_COUNT to 1 to sample 2 16bit words.

u16 ppi_count = 1;

u16 ppi_frame = 1;

ADI_DEV_CMD_VALUE_PAIR PPI_config[] = {

{ ADI_PPI_CMD_SET_CONTROL_REG, (void*)(*(u16*)&ppi_control) },

{ ADI_PPI_CMD_SET_TRANSFER_COUNT_REG, (void*)(*(u16*)&ppi_count)

},

{ ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,

(void*)(*(u16*)&ppi_frame)},

{ ADI_DEV_CMD_END, 0 }

};

// Program PPI peripheral

adi_dev_Control(

Port Control Manager API Reference

9-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 ppiHandle,

 ADI_DEV_CMD_TABLE,

 (void*)PPI_config);

// other configuration code for PPI, eg Timers, etc :

// The following would be elsewhere in the client code

// Configure pins for PPI use

u32 ppi_config[] = { ADI_PORTS_DIR_PPI_BASE };

adi_ports_EnablePPI(

 ppi_config, // Array of directives

 sizeof(ppi_config)/sizeof(u32), // Number of directives

 1 // Enable

);

// Enable Data Flow

adi_dev_Control(ppiHandle, ADI_DEV_CMD_SET_DATAFLOW, 1);

Finally, when the port control manager is no longer required, the service is
terminated with a call to adi_ports_Terminate3:

 adi_ports_Terminate();

Port Control Manager API Reference
This section provides the port control manager service API.

VisualDSP++ 4.5 Device Drivers and System 9-5
Services Manual for Blackfin Processors

Port Control Service

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Port Control Manager API Reference

9-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_Init

Description

The adi_ports_Init function initializes the port control manager.

Prototype

ADI_PORTS_RESULT adi_ports_Init (

 void *pEnterCriticalArg

);

Arguments

Return Value

pEnterCriticalArg Handle to data area containing critical region data. This will
be passed to adi_int_EnterCriticalRegion where used
internally of the module. See “Interrupt Manager” for further
details.

ADI_PORTS_RESULT_SUCCESS Port control manager was successfully initialized.

VisualDSP++ 4.5 Device Drivers and System 9-7
Services Manual for Blackfin Processors

Port Control Service

adi_ports_Terminate

Description

The adi_ports_Terminate function terminates the port control manager.

Prototype

ADI_PORTS_RESULT adi_ports_Terminate (

 void

);

Arguments

None.

Return Value

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

Port Control Manager API Reference

9-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnablePPI

Description

The adi_ports_EnablePPI function configures the port control registers
to enable the use of the required PPI channel.

Prototype

adi_ports_EnablePPI (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing how
the PPI flags are to be configured (see “Directive
Enumeration Values” on page 9-17)

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

VisualDSP++ 4.5 Device Drivers and System 9-9
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableSPI

Description

The adi_ports_EnableSPI function configures the port control registers
to enable the use of the required SPI channel.

Prototype

adi_ports_EnableSPI (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing how
the SPI flags are to be configured (see “Directive
Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

Port Control Manager API Reference

9-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnableSPORT

Description

The adi_ports_EnableSPORT function configures the port control registers
to enable the use of the required SPORT channel.

Prototype

adi_ports_EnableSPORT (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing how
the SPORT flags are to be configured (see “Direc-
tive Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

VisualDSP++ 4.5 Device Drivers and System 9-11
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableUART

Description

The adi_ports_EnableUART function configures the port control registers
to enable the use of the required UART channel.

Prototype

adi_ports_EnableUART (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing how
the UART flags are to be configured (see “Directive
Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

Port Control Manager API Reference

9-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnableCAN

Description

The adi_ports_EnableCAN function configures the port control registers
to enable the use of the required CAN channel.

Prototype

adi_ports_EnableCAN (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing how
the CAN flags are to be configured (see “Directive
Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

VisualDSP++ 4.5 Device Drivers and System 9-13
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableTimer

Description

The adi_ports_EnableTimer function configures the port control registers
to enable the appropriate flag pins for the output of GP Timer clock sig-
nals, the Timer clock input (used mainly for PPI clock), alternate Timer
clock inputs1 and for bit rate detection on CAN and UART inputs.2

As few or as many pins as required can be assigned in the one call to
adi_ports_EnableTimer.

Prototype

adi_ports_EnableTimer (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

1 The TACLKx flag pins can alternatively provide the clock signal to the GP Timers in PWM_OUT
mode. See “Timer Service” for further details.

2 Timers must be configured for WDTH_CAP mode. See “Timer Service” for further details.

Port Control Manager API Reference

9-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing the
Timers for which the flags are to be configured (see
“Directive Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

ADI_PORTS_RESULT_PIN_ALREADY_IN_USE One of the required pins has already been
assigned a different functionality.

VisualDSP++ 4.5 Device Drivers and System 9-15
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableGPIO

Description

The adi_ports_EnableGPIO function configures the port control registers
to enable any number of flag pins for GPIO use.

GPIO use is enabled by default upon system reset.

Prototype

adi_ports_EnableGPIO (

 u32 *Directives,

 u32 nDirectives,

 u32 Enable

);

Arguments

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_PORTS_RESULT_SUCCESS is always returned.

Directives The address of an array of directives describing
which pins are to configured for GPIO use (see
“Directive Enumeration Values” on page 9-17).

nDirectives Number of entries in Directives array.

Enable Flag determining whether the functionality is to be
enabled (1) or disabled (0).

ADI_PORTS_RESULT_SUCCESS The function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY The address of the Directives array is NULL.

Port Control Manager API Reference

9-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PORTS_RESULT_BAD_DIRECTIVE An invalid directive value has been passed.

ADI_PORTS_RESULT_PIN_ALREADY_IN_USE One of the required pins has already been
assigned a different functionality.

VisualDSP++ 4.5 Device Drivers and System 9-17
Services Manual for Blackfin Processors

Port Control Service

Public Data Types, Enumerations and
Macros

This section defines both the public data structures and enumerations
used by the port control manager service. Always check the include file for
the port control manager, adi_ports.h, for the most up-to-date
information.

ADI_PORTS_RESULT
These values have been defined in the context of the relevant function call.
The complete list is:

Directive Enumeration Values
The Directives are describe by an anonymous enumeration type.

Table 9-1. ADI_PORTS_RESULT Values

Result Code Numerical Value Description

ADI_TMR_RESULT_SUCCESS 0 Function executed correctly.

ADI_TMR_RESULT_FAILED 1 Function execution not completed.

ADI_TMR_RESULT_BAD_ DIRECTIVE 0x90001 An invalid directive value has been
passed.

ADI_PORTS_RESULT_NULL_ARRAY 0x90002 The address of the Directives
array is NULL.

Public Data Types, Enumerations and Macros

9-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Table 9-2. Port Control Manager Enumeration Types

Enumeration Type Description

PPI Operation

ADI_PORTS_DIR_PPI_BASE Enable flag pins for basic PPI operation

ADI_PORTS_DIR_PPI_FS3 Enable flag pin for 3rd PPI framesync

SPI Operation

ADI_PORTS_DIR_SPI_BASE Enable flag pins for basic PPI operation

ADI_PORTS_DIR_SPI_SLAVE_SELECT_1 Enable flag pins for SPI SlaveSelect 1

ADI_PORTS_DIR_SPI_SLAVE_SELECT_2 Enable flag pins for SPI SlaveSelect 2

ADI_PORTS_DIR_SPI_SLAVE_SELECT_3 Enable flag pins for SPI SlaveSelect 3

ADI_PORTS_DIR_SPI_SLAVE_SELECT_4 Enable flag pins for SPI SlaveSelect 4

ADI_PORTS_DIR_SPI_SLAVE_SELECT_5 Enable flag pins for SPI SlaveSelect 5

ADI_PORTS_DIR_SPI_SLAVE_SELECT_6 Enable flag pins for SPI SlaveSelect 6

ADI_PORTS_DIR_SPI_SLAVE_SELECT_7 Enable flag pins for SPI SlaveSelect 7

SPORT Operation

ADI_PORTS_DIR_SPORT0_BASE_RX Enable flag pins for basic SPORT receive opera-
tion.

ADI_PORTS_DIR_SPORT0_BASE_TX Enable flag pins for basic SPORT transmit opera-
tion.

ADI_PORTS_DIR_SPORT0_RXSE Enable flag pin for SPORT secondary data receive.

ADI_PORTS_DIR_SPORT0_TXSE Enable flag pin for SPORT secondary data trans-
mit.

ADI_PORTS_DIR_SPORT1_BASE_RX Enable flag pins for basic SPORT receive opera-
tion.

ADI_PORTS_DIR_SPORT1_BASE_TX Enable flag pins for basic SPORT transmit opera-
tion.

ADI_PORTS_DIR_SPORT1_RXSE Enable flag pin for SPORT secondary data receive.

ADI_PORTS_DIR_SPORT1_TXSE Enable flag pin for SPORT secondary data trans-
mit.

VisualDSP++ 4.5 Device Drivers and System 9-19
Services Manual for Blackfin Processors

Port Control Service

UART Operation

ADI_PORTS_DIR_UART0_RX Enable flag pins for basic UART receive operation.

ADI_PORTS_DIR_UART0_TX Enable flag pins for basic UART transmit opera-
tion.

ADI_PORTS_DIR_UART1_RX Enable flag pins for basic UART receive operation.

ADI_PORTS_DIR_UART1_TX Enable flag pins for basic UART transmit opera-
tion.

CAN Operation

ADI_PORTS_DIR_CAN_RX Enable flag pins for basic CAN receive operation.

ADI_PORTS_DIR_CAN_TX Enable flag pins for basic CAN transmit operation.

Timer Operation

ADI_PORTS_DIR_TMR_CLK Enable flag pin for Timer Input Clock use.

ADI_PORTS_DIR_TMR_0 Enable flag pin for GP Timer 0 use.

ADI_PORTS_DIR_TMR_1 Enable flag pin for GP Timer 1 use.

ADI_PORTS_DIR_TMR_2 Enable flag pin for GP Timer 2 use.

ADI_PORTS_DIR_TMR_3 Enable flag pin for GP Timer 3 use.

ADI_PORTS_DIR_TMR_4 Enable flag pin for GP Timer 4 use.

ADI_PORTS_DIR_TMR_5 Enable flag pin for GP Timer 5 use.

ADI_PORTS_DIR_TMR_6 Enable flag pin for GP Timer 6 use.

ADI_PORTS_DIR_TMR_7 Enable flag pin for GP Timer 7 use.

GPIO Operation

ADI_PORTS_DIR_GPIO_PF0 Enable PF0 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF1 Enable PF1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF2 Enable PF2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF3 Enable PF3 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

Public Data Types, Enumerations and Macros

9-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PORTS_DIR_GPIO_PF4 Enable PF4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF5 Enable PF5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF6 Enable PF6 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF7 Enable PF7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF8 Enable PF8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF9 Enable PF9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF10 Enable PF10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF11 Enable PF11 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF12 Enable PF12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF13 Enable PF13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF14 Enable PF14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF15 Enable PF15 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG0 Enable PG0 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG1 Enable PG1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG2 Enable PG2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG3 Enable PG3 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG4 Enable PG4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG5 Enable PG5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG6 Enable PG6 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG7 Enable PG7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG8 Enable PG8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG9 Enable PG9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG10 Enable PG10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG11 Enable PG11 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

VisualDSP++ 4.5 Device Drivers and System 9-21
Services Manual for Blackfin Processors

Port Control Service

ADI_PORTS_DIR_GPIO_PG12 Enable PG12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG13 Enable PG13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG14 Enable PG14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG15 Enable PG15 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH0 Enable PH0 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH1 Enable PH1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH2 Enable PH2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH3 Enable PH3 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH4 Enable PH4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH5 Enable PH5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH6 Enable PH6 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH7 Enable PH7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH8 Enable PH8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH9 Enable PH9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH10 Enable PH10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH11 Enable PH11 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH12 Enable PH12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH13 Enable PH13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH14 Enable PH14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH15 Enable PH15 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

Public Data Types, Enumerations and Macros

9-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 4.5 Device Drivers and System 10-1
Services Manual for Blackfin Processors

10 DEVICE DRIVER MANAGER

This chapter describes the Analog Devices’ Device Driver Model.

The device driver model is used to control devices, both internal and
external, to ADI processors. This includes on-board peripherals, such as
SPORTs and Parallel Peripheral Interface (PPI), and off-chip connected
devices such as codecs and converters.

This chapter contains the following sections:

• “Device Driver Model Overview” on page 10-4
Provides a general overview of the functionality provided by the
device driver model and a brief description of the overall device
driver architecture.

• “Using the Device Manager” on page 10-7
Describes how applications should invoke and interact with the
device driver model including an explanation of the different data-
flow methods that are supported in the model.

• “Device Manager Design” on page 10-32
Describes the Device Driver Manager API and inner workings of
the Device Driver Manager. Specifically, this section describes how
the Device Driver Manager operates and what it does in response
to API calls and interaction with physical drivers.

• “Physical Driver Design” on page 10-49
Explains how physical drivers can be written to comply with the
model and describes how physical device drivers interact with the
Device Driver Manager.

10-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• “Device Manager API Reference” on page 10-62
Describes the API functions of the Device Driver Manager.

• “Physical Driver API Reference” on page 10-73
Describes the API used between the Device Driver Manager and
each physical driver.

• “Examples” on page 10-80
Provides PPI Driver and UART Driver code examples.

For detailed information regarding the use of specific device
drivers, including command IDs, event codes, return codes,
example code, and so on, refer to the individual device driver
documents located in the Blackfin/docs/drivers directory of
your VisualDSP installation.

The interface from the application to the device driver provides a consis-
tent, simple and familiar API to most programmers. While there is always
some level of overhead involved in any standardization type effort, the
benefits of a unified model far outweigh any minor inefficiencies. The
model makes it relatively simple to create a new device driver, allows
applications to largely insulate themselves from any device driver specifics
and allows the device drivers to maximize use of any hardware features.

It is not expected that this model will be universally acceptable. There will
always be devices that do not fit into the model, or applications that want
to work with a device in some unique manner, and so on. The objective of
this model is to provide a simple, efficient framework that will work for
the majority of applications.

All sources to the device driver model are included in the various distribu-
tions of the model. While it is not expected that the sources will need to
be modified or tailored to any specific application, they are provided in
order for the user to fully understand how the code works.

VisualDSP++ 4.5 Device Drivers and System 10-3
Services Manual for Blackfin Processors

Device Driver Manager

While the terms “Device Manager” and “physical driver” refer to the
respective software components, the term “device driver” is also used in
this document. The term “device driver” refers to the combination of the
Device Driver Manager (called “Device Manager” in this book) and phys-
ical driver.

Device Driver Model Overview

10-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Device Driver Model Overview
The device driver model is built using a hierarchical approach.
Figure 10-1 illustrates the various components of the system design.

The components shown above are:

• Application – Though typically the user’s application, this block
can be any software component that can be thought of as a client of
the Device Manager. Note that the client does not have to be a sin-

Figure 10-1. System Design and Hierarchy

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

PHYSICAL
DRIVER

. . . PHYSICAL
DRIVER

SYSTEM SERVICES

VisualDSP++ 4.5 Device Drivers and System 10-5
Services Manual for Blackfin Processors

Device Driver Manager

gle functional block. The Device Manager can support any number
of clients. For example, a client may be a single user application or
the client may be any number of tasks in RTOS-controlled
systems.

• RTOS – Some systems use the services of a Real-Time Operating
System (RTOS). The device driver model is not tailored to a par-
ticular RTOS nor does it require the presence of an RTOS. The
device driver model does not require any functionality or services
from an RTOS. Some RTOSs require that applications go through
the RTOS in order to access device drivers. In these systems, the
RTOS is simply viewed as a client to the Device Manager.

• Device Manager – The Device Manager provides the single point
of access into the device driver model. The Device Manager pro-
vides the API into the model. All interaction between the client
and device drivers occurs through the Device Manager. In addition
to providing the API, the Device Manager ensures that the client
makes call into the API in the proper sequence, performs synchro-
nization services as needed, and controls all peripheral DMA, via
the System Services DMA manager, for devices that are supported
by peripheral DMA.

• Physical Drivers – Physical device drivers provide the functionality
necessary to control a physical device, for example any configura-
tions register setting, device parameter setting, and so on. Physical
drivers are responsible for hooking into the error interrupts for
their device and processing them accordingly. If a device is not sup-
ported by peripheral DMA, the physical driver must provide the
mechanism, a programmed I/O or the like, to move data through
the device.

• System Services – The device driver components rely heavily on
the functionality provided by the System Services. For example, the
Device Manager relies on the interrupt manager and if required,
the DMA manager and deferred callback services. The functional-

Device Driver Model Overview

10-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ity provided by the System Services is also available to physical
drivers to use. For example, a UART driver may need to know the
SCLK frequency in order to configure the UART to operate at a spe-
cific baud rate. Through the power management service, the
UART physical driver can ascertain the current SCLK frequency.

Both the device driver model and System Services are designed as portable
software components. They are mainly written in “C”, with some assem-
bly code in critical sections. As such, software that interacts with the
device driver model and system services must adhere to the C run-time
model, calling conventions, passing parameters, and so on. Applications
and physical drivers can be written in either C or assembly. Wherever pos-
sible, there are no dependencies on the code generation toolchain. System
include files are not required nor are the services of the toolchain’s
run-time libraries. The device driver model and System Services can be
built and run under any of the known code generation toolchains.

No dynamic memory allocation is used in the device driver model or Sys-
tem Services. Static memory allocation has been kept to a minimum and
the vast majority of all data memory required is passed into the device
driver model and System Services by the client or application. This allows
the user to determine the amount of memory allocated and from which
memory space, and the device driver model and System Services to use.

VisualDSP++ 4.5 Device Drivers and System 10-7
Services Manual for Blackfin Processors

Device Driver Manager

Using the Device Manager
The Device Manager provides the access point into the device driver
model. The Device Manager presents the Device Manager API to the
application or client.

This section contains:

• “Device Manager Overview”

• “Theory of Operation” on page 10-8

Device Manager Overview
The Device Manager API consists of six functions:

• adi_dev_Init – Provides data and initializes the Device Manager.

• adi_dev_Terminate - Frees data and closes the Device Manager.

• adi_dev_Open – Opens the device for use.

• adi_dev_Control – Sets and detects device specific parameters.

• adi_dev_Read – Reads data from a device or queues reception buff-
ers to a device.

• adi_dev_Write – Writes data to a device or queues transmission
buffers to a device.

• adi_pdd_Close – Closes the device.

In addition to the API functions into the Device Manager, the application
provides the Device Manager with a callback function. Often, the Device
Manager or physical driver encounters an event that needs to be passed to
the user application. The event may be an expected event, such as an indi-

Using the Device Manager

10-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

cation that the device driver has completed processing a buffer, or it may
be an unexpected event, such as an error condition that has been generated
by the device. All events are reported back to the application via a callback
function. A callback function is simply a function within the user applica-
tion that the Device Manager calls to pass along event information.

Theory of Operation
The device driver model is built around the concept that a device is used
to move data into and/or out of the system. In most systems, a device is
used to move data into the system, where the data will be processed in
some fashion, and then another device will take the processed data and
move it out of the system. Often, there are multiple devices running
simultaneously in the system. The Device Manager provides a simple and
straightforward interface regardless of how many devices are active at any
one point in time and what the underlying implementation details are for
each device.

This section contains:

• “Data”

• “Initializing the Device Manager”

• “Device Manager Termination”

• “Opening a Device”

• “Configuring a Device”

• “Providing Buffers to a Device”

• “Closing a Device”

• “Callbacks”

• “Initialization Sequence”

• “Stackable Drivers”

VisualDSP++ 4.5 Device Drivers and System 10-9
Services Manual for Blackfin Processors

Device Driver Manager

Data

Data that is moved into or out of the device is encapsulated in a buffer.
The Device Manager API defines three different types of buffers:

• One-dimensional buffer called ADI_DEV_1D_BUFFER

• Two-dimensional buffer called ADI_DEV_2D_BUFFER

• Circular (autobuffer type) buffer called ADI_DEV_CIRCULAR_BUFFER.

Because physically moving data around uses valuable computing resources
and has very little benefit, typically only pointers to buffers are passed
between components. The Device Manager API defines the
ADI_DEV_BUFFER data type as a pointer to a union of a one-dimensional
buffer, a two-dimensional buffer and circular buffer. Though each of these
types of buffers is processed differently, where there is no significant dif-
ference in processing, they are collectively referred to as simply a buffer
within this text.

In general, applications provide buffers through the Device Manager API,
where the buffers are processed, then made available again to the applica-
tion. The adi_dev_Read function provides buffers to the device which are
to be filled with data that is inbound from the device. The adi_dev_Write
function provides buffers to the device that contain data to be sent out
through the device.

Buffers are always processed in the order they are received. Buffers pro-
vided to a given device do not need to be a uniform size; each individual
buffer can be any arbitrary size. Further, both one-dimensional and
two-dimensional buffers can be provided to a single device. Circular buff-
ers are a little more complex (see “Providing Buffers to a Device” on
page 10-16).

Using the Device Manager

10-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Initializing the Device Manager

Before using a device, the application or client must first initialize the
Device Manager. The client initializes the Device Manager by calling the
adi_dev_Init function, passing a portion of memory to it that the Device
Manager can use for processing. The client decides how much memory,
and from which memory space, to provide to the Device Manager; the
more memory that is provided, the more physical devices that can be
simultaneously opened.

The Device Manager requires a contiguous block of memory that can be
thought of two parts—one part is base memory required for the Device
Manager to instantiate itself, and the other is memory that is required to
support n number of simultaneously-opened device drivers. Macros are
provided that define the amount of memory (in bytes) that are required
for the base memory and incremental device driver memory. These macros
are ADI_DEV_BASE_MEMORY and ADI_DEV_DEVICE_MEMORY. For instance, if
the client wanted to initialize the Device Manager and would have at most
four device drivers open simultaneously at any point in time, the amount
of memory required is:

 ADI_DEV_BASE_MEMORY+(ADI_DEV_DEVICE_MEMORY*4)).

When called, the initialization function, adi_dev_Init(), initializes the
memory that was passed in. Like all functions within the Device Manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All Device Man-
ager API functions return the ADI_DEV_RESULT_SUCCESS value to indicate
success. All error codes are in the following form: ADI_DEV_RESULT_XXXX.

In addition to the return code, the adi_dev_Init() function returns a
count of the number of device drivers it can manage simultaneously, and a
handle into the Device Manager. The device count can be tested to ensure
the Device Manager can control the requested number of device drivers.

VisualDSP++ 4.5 Device Drivers and System 10-11
Services Manual for Blackfin Processors

Device Driver Manager

Another parameter passed to the adi_dev_Init() function is a critical
region parameter. When it is necessary to protect a critical region of code,
the Device Manager and all physical drivers leverage the interrupt man-
ager system service to protect the critical code. The critical region
parameter passed into the adi_dev_Init() function is, in turn, passed to
the adi_int_ProtectCriticalRegion() function. See “adi_int_Init” on
page 2-18 in Chapter 2, “Interrupt Manager”.

Device Manager Termination

When the Device Manager is no longer needed, the client can terminate
the Device Manager using the adi_dev_Terminate() function. This func-
tion is passed the Device Manager handle, given to the client in the
adi_dev_Init() function. The Device Manager closes any open physical
devices and then returns to the caller. After the return from the
adi_dev_Terminate() function, the memory that was supplied to the
Device Manager via the adi_dev_Init() function can be reused by the cli-
ent. Once terminated, the Device Manager must be re-initialized in order
to be used again.

Note that in many embedded systems, the Device Manager is never
terminated.

Opening a Device

After the Device Manager has been initialized, in order to use a device, the
client must first open the device with the adi_dev_Open API function.

The client passes in parameters indicating which device driver it wants to
open (the pEntryPoint parameter), which instance of the device it wants
to open (the DevNumber parameter), and the direction it wants data to flow
(inbound, outbound or both), and so on. The client also passed in the
handle to the DMA service the Device Manager and physical drivers
should use. This parameter can be NULL if the client knows DMA is not
used.

Using the Device Manager

10-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The pDeviceHandle parameter points to a location where the Device Man-
ager stores the handle to the device driver that is being opened. All
subsequent API calls for this device that is being opened must include this
handle. The ClientHandle is a parameter that the Device Manager passes
back to the client with each call to the client’s callback function.

Two other parameters are passed into the adi_dev_Open function are also
callback related. The DCBHandle parameter is a handle to the deferred call-
back service that the device driver uses to call the client’s callback
function. If DCBHandle is non-NULL, the device driver uses the specified
deferred callback service for all callbacks. If the DCBHandle is NULL, all
callbacks are live; meaning that they are not deferred and are executed
immediately, typically at interrupt time. The ClientCallback parameter
points to the client’s callback function.

The callback function is called in response to asynchronous events experi-
enced by the device driver. Some events may be expected, such as the
completion of processing of a buffer, and some events may be unexpected,
such as the device generating an error condition. Regardless of the type of
event, the Device Manager calls the callback function to notify the client
of the event.

Note that dataflow through a device does not start with the adi_dev_Open
function. This function simply opens the device for use as the device may
need to be configured in some way before dataflow is enabled.

Configuring a Device

The adi_dev_Control function is used to configure and enable/disable
dataflow through a device. When opened, most device drivers initialize
with some default settings. If these default settings are sufficient for the
application, then little or no application configuration is required. Other
times, the default settings may not be appropriate for an application and
so the device needs some amount of configuring. The adi_dev_Control
function is used to set and detect device-specific configurations.

VisualDSP++ 4.5 Device Drivers and System 10-13
Services Manual for Blackfin Processors

Device Driver Manager

When configuration settings need to be set or detected, the client calls the
adi_dev_Control function to set or detect the parameter. This function
takes as parameters the DeviceHandle described in “Opening a Device”, a
command ID that identifies the parameter to be set or detected, and a
pointer to the memory location that contains the value of the parameter to
be set or where the value of the parameter being detected is stored. The
Device Manager defines some standard parameters; however, physical
drivers are free to add their own command IDs beyond those defined by
the Device Manager. For example, the physical device driver for a DAC
may create a command ID to set the volume level of the output. The
application developer should check with the physical driver documenta-
tion to determine what parameters are configurable and what the
configuration choices are.

Regardless of whether or not the client needs to make configuration
changes, the client is required to make two calls into the adi_dev_Control
function. These calls set the dataflow method of the device and enable
dataflow for the device. These are described in the following sections.

Dataflow Method

The Device Manager supports three dataflow methods: circular, chained,
and chained with loopback. Prior to providing the Device Manager with
any buffers or enabling dataflow, the application must tell the Device
Manager which dataflow method to use by calling the adi_dev_Control
function with the ADI_DEV_CMD_SET_DATAFLOW_METHOD command. Only
after the dataflow method has been defined can the client provide
inbound buffers (via the adi_dev_Read function) or outbound buffers (via
the adi_devWrite function) to the device.

As shown in Figure 10-2, the circular dataflow method defines the
method whereby a single circular buffer is provided to the Device Man-
ager, assuming the device was opened for unidirectional traffic.

Using the Device Manager

10-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

When providing the Device Manager with the circular buffer, the applica-
tion tells the Device Manager how many sub buffers are within the
circular buffer; two sub buffers are used for a traditional “ping-pong”
scheme, though Blackfin processors support any number of sub buffers.
The application also tells the Device Manager when it wants to be called
back during processing of the circular buffer.

Three options are provided: no callback ever, a callback after each sub
buffer is processed, or a callback after the entire buffer has been processed.
The Device Manager begins processing at the start of the buffer. If so
directed, the Device Manager notifies the application via the callback
function when each sub buffer completes or when the entire buffer has
completed processing. After reaching the end of the buffer, the Device
Manager automatically restarts processing at the top of the buffer and so
on.

As shown in Figure 10-3, with the chained dataflow method, one or more
one-dimensional and/or two-dimensional buffers are provided to the
Device Manager. Any number of buffers can be provided; buffers can be

Figure 10-2. Circular Buffer Operation

. . .

SUBBUFFER 0

SUBBUFFER 1

SUBBUFFER N

CALLBACK ON SUBBUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

VisualDSP++ 4.5 Device Drivers and System 10-15
Services Manual for Blackfin Processors

Device Driver Manager

of different sizes and both one-dimensional and two-dimensional buffers
can be provided to the same device. Each buffer, any one, none or all buff-
ers can be tagged to generate a callback to the application when they are
processed. Additional buffers can be provided at any time before or after
dataflow has been enabled. The Device Manager guarantees to process the
buffers in the order they are provided to the Device Manager.

When using the chained dataflow method, the application can command
the Device Manager to operate in synchronous mode. Normally, the
Device Manager operates in asynchronous mode. In asynchronous mode,
the adi_dev_Read and adi_dev_Write function calls return immediately to
the application before all the buffers passed to the adi_dev_Read or
adi_dev_Write function have been processed. In synchronous mode, the
adi_dev_Read and adi_dev_Write functions do not return back to the
application until all buffers provided to the adi_dev_Read or
adi_dev_Write function have been processed. Though seldom used in
real-time systems, the Device Manager supports the synchronous operat-
ing mode.

As shown in Figure 10-4, the chained with loopback method is similar to
the chained dataflow method except that after the Device Manager has
processed the last buffer, it automatically loops back to first buffer that
was provided to the device. This operation effectively creates an infinite
loop of buffers. With the chained with loopback method, the application
can provide the buffers at initialization time, let the Device Manager pro-

Figure 10-3. Chained Buffers

. . .BUFFER 0 BUFFER 1 BUFFER N
START

Using the Device Manager

10-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

cess the buffers, and never have to re-supply the Device Manager with
additional buffers. As with the chained dataflow method, each buffer, any
one, none or all buffers can be tagged to generate a callback to the applica-
tion when they are processed.

Enabling Dataflow

Once the dataflow method has been defined, and buffers provided to the
device as appropriate (see “Providing Buffers to a Device”), the applica-
tion should enable dataflow by calling the adi_dev_Control function with
the ADI_DEV_CMD_SET_DATAFLOW command. Dataflow starts immediately so
the application should ensure that, if not using synchronous mode,
devices that have been opened for inbound or bidirectional data have been
provided with buffers, or else data may be lost.

Providing Buffers to a Device

Buffers are provided to a device via the adi_dev_Read and adi_dev_Write
API function calls. The adi_dev_Read function provides buffers for
inbound data, adi_dev_Write for outbound data. How the client provides
buffers to the device via these API calls is slightly different depending on
the dataflow method that has been chosen.

Figure 10-4. Chained Buffers with Loopback

. . .BUFFER 0 BUFFER 1 BUFFER N
START

VisualDSP++ 4.5 Device Drivers and System 10-17
Services Manual for Blackfin Processors

Device Driver Manager

When a device has been configured to use the circular dataflow method,
the application provides the device driver with one and only one buffer for
inbound data and/or one and only one buffer for outbound data. The data
buffer that is provided points to a contiguous piece of memory corre-
sponding to however many sub buffers the application wants to use.

For example, assume that the application wants to process data in
512-byte increments and wants to work in a traditional “ping/pong” type
(two sub buffer) fashion. The application provides the device driver with a
single data buffer 1024 bytes in length, consisting of two 512-byte sub
buffers. By doing this, the device driver can be using 512 bytes of the
buffer while the application can be using the other 512 bytes simulta-
neously. Another example would be an application that wants to process a
standard NTSC video frame (525 lines with 1716 bytes per line). The
data buffer that is provided to the Device Manager could be a contiguous
piece of memory 900900 bytes in size (525 * 1716). The sub buffer count
in this case is 525. Regardless of how many sub buffers are provided, with
the circular dataflow method, once the buffer has been provided to the
device driver, the application never needs to give the device another buffer
as the same one is used indefinitely.

When a device has been configured to use the chained dataflow method,
any number of one-dimensional and two-dimensional buffers can be pro-
vided to the device. Buffers can be given to the device one at a time or
multiple buffers can be provided with a single call to adi_dev_Read and/or
adi_dev_Write. The application can provide the device driver with addi-
tional buffers at any time, before or even after dataflow has been enabled.
Assuming the device driver is running in asynchronous mode, any individ-
ual buffer, no buffers or all buffers can be flagged to generate a callback
when the device driver has completed processing it. Each buffer can be of
a different size and both one-dimensional and two-dimensional buffers
can be provided to the same device.

Using the Device Manager

10-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Providing buffers to devices that have been configured with the chained
with loopback dataflow method is identical to providing buffers to devices
using the chained dataflow method, except that buffers can only by pro-
vided while dataflow is disabled.

Closing a Device

When the device is no longer needed by the client, the device should be
closed via the adi_dev_Close API function call. The adi_dev_Close func-
tion terminates dataflow if it is enabled and frees up all resources,
including DMA and others that were used by the device driver. Should the
application need to re-use the device after it is closed, it can be re-opened
via the adi_dev_Open function.

Callbacks

The Device Manager calls the application’s callback function to notify the
client of events that occur. Events may be expected events (such as com-
pletion of the processing of a buffer) or unexpected events (such as an
error occurring on a device). Typically, the client’s callback function is
organized as the equivalent of a “C” switch statement, invoking the appro-
priate processing as required by the given event type. The Device Manager
defines several events and physical drivers can add additional events as
required by the device they are controlling.

Initialization Sequence

Because the Device Manager and physical drivers rely on the System Ser-
vices, the System Services should be initialized prior to opening a device
driver. For example, when opening a device driver, the Device Manager
requires handles to the deferred callback and DMA services (assuming
both are being used). As such, it is good practice to initialize and open the
System Services before opening any device drivers. See “Initialization” on
page 1-10 and “Termination” on page 1-24 for more information on ini-
tializing and terminating the device drivers and system services.

VisualDSP++ 4.5 Device Drivers and System 10-19
Services Manual for Blackfin Processors

Device Driver Manager

Stackable Drivers

It is possible to create drivers that call other drivers. For example, the
Blackfin EZ-Kit board contains an AD1836 audio codec. The AD1836
codec has a control and status interface that is suitable for connection to
an SPI port, while the AD1836 audio data is provided to/from the device
by using a high speed serial line, in this case the SPORT peripheral. If a
system was being developed where the AD1836 codec was the only device
that would ever be connected to the processor, then a single physical
device driver could be written that controls and manages both the SPI and
SPORT.

Alternatively, the SPI port could hierarchically sit above the SPI and
SPORT drivers, making calls into those physical drivers as necessary. It is
especially true if other peripherals are to share the SPI port (for example,
separate SPI and SPORT drivers could be controlled by an AD1836
driver). In this stackable fashion, it is possible to create mode complex
drivers such as the AD1836 driver or a TCP/IP stack driver that sits atop
an Ethernet controller.

Deciding on a Dataflow Method

10-20 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Deciding on a Dataflow Method
When using device drivers, the user should give thoughtful consideration
when deciding on the dataflow method to use for each device driver. Some
types of data are better suited to one type of dataflow method, whereas
other types of data may be more suitable for another dataflow method. As
a rough guideline, the user may want to take into consideration the fol-
lowing when deciding which dataflow method to use for a device driver.

Chained without Loopback
The chained without loopback dataflow method is suitable for data that is
packet based and may be sent and/or received in a non-continuous or
“bursty” manner. For example, UART data from a terminal, Ethernet
data, and USB traffic frequently use the chained without loopback data-
flow method.

Chained with Loopback
The chained with loopback dataflow method is suitable for steady, contin-
uous dataflow. For example, streaming audio and video applications
frequently use the chained with loopback dataflow method. With this
method, buffers are provided at initialization time, and because loopback
is used, the application never need resupply the driver with additional
buffers, since the driver continually loops through the same set of buffers.

Circular
When using streaming audio or video, the streaming sub-mode is highly
recommended to avoid clicks and pops with audio data and glitches on
video data.

VisualDSP++ 4.5 Device Drivers and System 10-21
Services Manual for Blackfin Processors

Device Driver Manager

The circular dataflow method is suitable for steady, continuous dataflow
where the entire data fits in a 64-Kbyte maximum contiguous block of
memory. For example, streaming audio data, assuming it fits within the
64-Kbyte block of memory, is sometimes appropriate for the circular data-
flow method. This saves the overhead of creating multiple buffers as is
done with the chained with loopback method. Video data is in general not
appropriate for the circular dataflow method, as video data is frequently
larger than the 64-Kbyte maximum for circular dataflow.

Sequential With and Without Loopback
The sequential dataflow method, with and without loopback, is only suit-
able for devices that employ half-duplex, serial type communication
protocols. For example the two wire interface (TWI) device driver uses the
sequential dataflow methods to precisely schedule reads and writes in a
specific order.

Creating One Dimensional Buffers
The data structure ADI_DEV_1D_BUFFER is used to describe a linear array of
data that a device driver is to process. Applications populate the various
fields of the buffer to completely describe the data to the device driver.
For one dimensional buffers, applications should populate the following
fields of the ADI_DEV_1D_BUFFER structure:

• Data – If the buffer is being provided to the adi_dev_Write() func-
tion, this field should contain the starting address of the data to be
sent out through the device. If the buffer is being provided to the
adi_dev_Read() function, this field should contain the starting
address of where the device driver will store data received in from
the device.

• ElementCount – This field indicates the number of elements
pointed to by the data pointer.

Creating One Dimensional Buffers

10-22 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• ElementWidth – This field indicates the width, in bytes, of each ele-
ment to be sent out or read in.

• CallbackParameter – If this field is NULL, then the device driver
will not call back the application after the buffer has been pro-
cessed by the device driver. If non-NULL, the device driver will
invoke the application’s callback function after the buffer has been
processed by the device driver, passing to the callback function this
value as the third parameter to the callback function.

• pNext – This field points to the next one-dimensional buffer in the
chain, if any. If NULL, then the given buffer is the only buffer
being provided to the adi_dev_Read() or adi_dev_Write() func-
tion. If non-NULL, then this field contains the address of the next
one dimensional buffer in the chain of buffer being passed to the
adi_dev_Read() or adi_dev_Write() function.

• pAdditionalInfo – This field is a device-driver dependent value.
This field is not used for most device drivers. See the documenta-
tion specific to the device driver, located in the …/Blackfin/doc
subdirectory for information describing if this field is used by the
particular device driver.

• ProcessedFlag – Some device drivers set this value to TRUE after
the device driver has processed the buffer. See the documentation
specific to the device driver, located in the …/Blackfin/doc subdi-
rectory for information describing if this field is used by the
particular device driver.

VisualDSP++ 4.5 Device Drivers and System 10-23
Services Manual for Blackfin Processors

Device Driver Manager

When buffers are submitted to the device driver, via the adi_dev_Read()
or adi_dev_Write() functions, some device drivers the following fields do
not require the following fields to be populated:

• ProcessedFlag – Some device drivers set this value to TRUE after
the device driver has processed the buffer. See the documentation
specific to the device driver, located in the …/Blackfin/doc subdi-
rectory for information describing if this field is used by the
particular device driver.

• ProcessedElementCount – Some device drivers set this value to the
number of elements processed by the driver for the given buffer.
For example, if a networking driver submitted a buffer describing
100 bytes of data to the adi_dev_Read() function for an incoming
data packet containing only 75 bytes of data, the driver may set this
value to 75. This would indicate that although 100 bytes was
requested, only 75 bytes were available. See the documentation
specific to the device driver, located in the …/Blackfin/doc subdi-
rectory for information describing if this field is used by the
particular device driver.

For example, the code fragment listed below prepares and submits a single
buffer of 128 16-bit elements to the adi_dev_Read() function. The driver
will call back the application when the buffer has been processed, passing
the value 0x12345678 as a parameter to the callback function.

#define SAMPLES_PER_BUFFER (128) // number of samples in a data

buffer

static u16 Data[SAMPLES_PER_BUFFER]; // storage for data

static ADI_DEV_1D_BUFFER Buffer; // the actual buffer

 // create buffer for the driver to process

Buffer.Data = Data;

Buffer.ElementCount = SAMPLES_PER_BUFFER;

Buffer.ElementWidth = 2;

Creating One Dimensional Buffers

10-24 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Buffer.CallbackParameter = (void *)0x12345678; // callback, pArg

= 0x12345678

Buffer.pNext = NULL; // only buffer in the chain

 // give the buffer to the driver to fill with data

 Result = adi_dev_Read(Handle, ADI_DEV_1D, (ADI_DEV_BUFFER

*)&Buffer);

The code fragment below prepares and submits a chain of four buffers,
each describing 128 elements of 32-bit data, to the adi_dev_Read() func-
tion. The driver will call back the application after each buffer has been
processed, passing the address of the buffer that just completed as a
parameter to the callback function.

#define NUM_BUFFERS (4) // number of buffers to use

#define SAMPLES_PER_BUFFER (128) // number of samples in a data

buffer

static u32 Data[NUM_BUFFERS*SAMPLES_PER_BUFFER]; // storage for

data

static ADI_DEV_1D_BUFFER Buffer[NUM_BUFFERS]; // the actual

buffers

u32 i; // counter

 // create buffers for the driver to process
 for (i = 0; i < NUM_BUFFERS; i++) {
 Buffer[i].Data = &Data[i * SAMPLES_PER_BUFFER;]
 Buffer[i].ElementCount = SAMPLES_PER_BUFFER;
 Buffer[i].ElementWidth = 4;

 Buffer[i].CallbackParameter = &Buffer[i]; // gen call-

back, pArg = buffer address

 Buffer[i].pNext = &Buffer[i+1]; // point to

the next in chain

 }
 Buffer[NUM_BUFFERS - 1].pNext = NULL; // terminate the

chain of buffers

VisualDSP++ 4.5 Device Drivers and System 10-25
Services Manual for Blackfin Processors

Device Driver Manager

 // give the buffers to the driver to fill with data

 Result = adi_dev_Read(Handle, ADI_DEV_1D, (ADI_DEV_BUFFER

*)Buffer);

Creating Two Dimensional Buffers
The data structure ADI_DEV_2D_BUFFER is used to describe a two dimen-
sional array of data that a device driver is to process. Applications populate
the various fields of the buffer to completely describe the data to the
device driver. For two dimensional buffers, applications should populate
the following fields of the ADI_DEV_2D_BUFFER structure:

• Data – If the buffer is being provided to the adi_dev_Write() func-
tion, this field should contain the starting address of the data to be
sent out through the device. If the buffer is being provided to the
adi_dev_Read() function, this field should contain the starting
address of where the device driver will store data received from the
device.

• ElementWidth – This field indicates the width, in bytes, of each ele-
ment to be sent out or read in.

• XCount – This field specified the number of column elements.

• XModify – This field specifies the byte address increment (stride)
after each column transfer.

• YCount – This field specified the number of row elements.

• YModify – This field specifies the byte address increment (stride)
after each row transfer.

• CallbackParameter – If this field is NULL, then the device driver
will not call back the application after the buffer has been pro-
cessed by the device driver. If non-NULL, the device driver will

Creating Two Dimensional Buffers

10-26 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

invoke the application’s callback function after the buffer has been
processed by the device driver, passing to the callback function this
value as the third parameter to the callback function.

• pNext – This field points to the next two dimensional buffer in the
chain, if any. If NULL, then the given buffer is the only buffer
being provided to the adi_dev_Read() or adi_dev_Write() func-
tion. If non-NULL, then this field contains the address of the next
two dimensional buffer in the chain of buffer being passed to the
adi_dev_Read() or adi_dev_Write() function.

• pAdditionalInfo – This field is a device driver dependent value.
This field is not used for most device drivers. See the documenta-
tion specific to the device driver, located in the …/Blackfin/doc
subdirectory for information describing if this field is used by the
particular device driver.

When buffers are submitted to the device driver, via the adi_dev_Read()
or adi_dev_Write() functions, some device drivers the following fields do
not require the following fields to be populated:

• ProcessedFlag – Some device drivers set this value to TRUE after
the device driver has processed the buffer. See the documentation
specific to the device driver, located in the …/Blackfin/doc subdi-
rectory for information describing if this field is used by the
particular device driver.

• ProcessedElementCount – Some device drivers set this value to the
number of elements processed by the driver for the given buffer.
For example, if a networking driver submitted a buffer describing
100 bytes of data to the adi_dev_Read() function for an incoming
data packet containing only 75 bytes of data, the driver may set this
value to 75. This would indicate that although 100 bytes was
requested, only 75 bytes were available. See the documentation

VisualDSP++ 4.5 Device Drivers and System 10-27
Services Manual for Blackfin Processors

Device Driver Manager

specific to the device driver, located in the …/Blackfin/doc subdi-
rectory for information describing if this field is used by the
particular device driver.

For example, the code fragment listed below prepares and submits a pair
of two dimensional buffers to the adi_dev_Write() function for transmis-
sion out through the driver. Each buffer describes an NTSC ITU-656
frame of data. Each frame consists of 525 rows, each row containing 1716
bytes of data. The driver will call back the application when each buffer
has been processed, passing the address of the buffer that just completed as
a parameter to the callback function.

#define NUM_BUFFERS (2)

#define NUM_FRAMES (2)

#define COLUMNS (1716)

#define ROWS (525)

static u8 Frames[NUM_FRAMES][COLUMNS * ROWS]; // storage for

data
static ADI_DEV_2D_BUFFER Buffer[NUM_BUFFERS]; // the actual

buffer

u32 i; // counter

// create buffers for the driver to process

 for (i = 0; i < NUM_BUFFERS; i++) {

 Buffer[i].Data = &Frames[i][0];

 Buffer[i].ElementWidth = 2;

 Buffer[i].XCount = (COLUMNS >> 1);

 Buffer[i].XModify = 2;

 Buffer[i].YCount = ROWS;

 Buffer[i].YModify = 2;

 Buffer[i].CallbackParameter = &Buffer[i]; // gen call-

back, pArg = buffer address

Creating Circular Buffers

10-28 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 Buffer[i].pNext = &Buffer[i+1];

 }

 Buffer[NUM_BUFFERS - 1].pNext = NULL; // terminate

the chain of buffers

 // give the buffers to the driver to send out

 Result = adi_dev_Write(Handle, ADI_DEV_2D, (ADI_DEV_BUFFER
*)Buffer);

Creating Circular Buffers
The data structure ADI_DEV_CIRCULAR_BUFFER is used to describe data that
the driver is to process in a circular manner. Applications populate the
various fields of the buffer to completely describe the data to the device
driver. For circular buffers, applications should populate the following
fields of the ADI_DEV_CIRCULAR_BUFFER structure:

• Data – If the buffer is being provided to the adi_dev_Write() func-
tion, this field should contain the starting address of the data to be
sent out through the device. If the buffer is being provided to the
adi_dev_Read() function, this field should contain the starting
address of where the device driver will store data received in from
the device.

• ElementWidth – This field indicates the width, in bytes, of each ele-
ment to be sent out or read in.

• SubBufferCount – This field specified the number of sub-buffers
into which the data is to be divided.

• SubBufferElementCount – This field specified the number of ele-
ments in each sub-buffer.

VisualDSP++ 4.5 Device Drivers and System 10-29
Services Manual for Blackfin Processors

Device Driver Manager

• CallbackType – This field specifies the frequency of callbacks that
the application desires. This field should be filled with one of the
following choices:

• ADI_DEV_CIRC_NO_CALLBACK – no callbacks

• ADI_DEV_CIRC_SUB_BUFFER – Callback after completion of
each sub-buffer.

• ADI_DEV_CIRC_FULL_BUFFER – Callback only after comple-
tion of the entire buffer.

• pAdditionalInfo – This field is a device driver dependent value.
This field is not used for most device drivers. See the documenta-
tion specific to the device driver, located in the …/Blackfin/doc
subdirectory for information describing if this field is used by the
particular device driver.

For example, the code fragment below prepares and submits a circular
buffer for transmission out through the device driver via the
adi_dev_Write() function. The buffer describes a contiguous block of
1024 bytes of memory, divided into 8 sub-buffers of 128 bytes each. The
driver calls the application back after each sub-buffer has been processed.
Once dataflow has been enabled, the driver repeatedly processes the circu-
lar buffer until dataflow is terminated.

#define SUB_BUFFERS (8)

#define SUB_BUFFER_ELEMENTS (128)

static u8 Data[SUB_BUFFERS * SUB_BUFFER_ELEMENTS]; // storage for

data
static ADI_DEV_CIRCULAR_BUFFER Buffer; // the actual buffer

 // create buffer for the driver to process

 Buffer.Data = Data;

 Buffer.ElementWidth = 1;

 Buffer.SubBufferCount = SUB_BUFFERS;

Creating One Dimensional Sequential Buffers

10-30 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 Buffer.SubBufferElementCount = SUB_BUFFER_ELEMENTS;

 Buffer.CallbackType = ADI_DEV_CIRC_SUB_BUFFER;

 // give the buffer to the driver to send out

 Result = adi_dev_Write(Handle, ADI_DEV_CIRC, (ADI_DEV_BUFFER

*)&Buffer);

Creating One Dimensional Sequential
Buffers

The data structure ADI_DEV_SEQ_1D_BUFFER is used to describe a sequen-
tial, one dimensional, linear array of data that a device driver is to process.
Similar to the standard one dimensional buffers, applications populate the
various fields of the buffer to completely describe the data to the device
driver. In fact, a sequential, one dimensional buffer is a concatenation of a
standard one dimensional buffer with a direction field appended to the
end of the standard buffer. For sequential, one dimensional buffers, appli-
cations should populate the following fields of the
ADI_DEV_SEQ_1D_BUFFER structure:

• Buffer – The buffer entry, identical to the standard one dimen-
sional buffer, should be populated exactly as the standard one
dimensional buffer. See the section above for more information on
how to populate a standard one dimensional buffer.

• Direction – This field should be populated with one of the follow-
ing choices:

• ADI_DEV_DIRECTION_INBOUND – Populate the field with this
value if the buffer is for data received in from the device.

• ADI_DEV_DIRECTION_OUTBOUND – Populate the field with this
value if the buffer is for data that is to be transmitted out
through the device.

VisualDSP++ 4.5 Device Drivers and System 10-31
Services Manual for Blackfin Processors

Device Driver Manager

The code fragment below prepares and submits a chain of two
buffers. The first and third buffers describe data to be sent out
through the device, while the second and fourth buffers describe
data that is to be read in from the device. The driver will call back
the application after the last buffer in the chain has been processed,
passing the address of the buffer that just completed as a parameter
to the callback function.

#define ELEMENT_WIDTH (1) // width of a data element

#define NUM_BUFFERS (2) // number of buffers

#define INBOUND_ELEMENTS (64) // number of elements to

read in

#define OUTBOUND_ELEMENTS (2) // number of elements to

write out

static u32 InboundData[INBOUND_ELEMENTS]; // inbound

data

static u32 OutboundData[OUTBOUND_ELEMENTS]; // outbound

data

// the actual buffers

static ADI_DEV_SEQ_1D_BUFFER SeqBuffer[NUM_BUFFERS];

 // create outbound buffer for the driver to process

 SeqBuffer[0].Buffer.Data = OutboundData;

 SeqBuffer[0].Buffer.ElementCount =

OUTBOUND_ELEMENTS;

 SeqBuffer[0].Buffer.ElementWidth = ELEMENT_WIDTH;

 SeqBuffer[0].Buffer.CallbackParameter = NULL;

// no callback

 SeqBuffer[0].Buffer.pNext =

(ADI_DEV_1D_BUFFER *)&SeqBuffer[1];

Device Manager Design

10-32 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

 SeqBuffer[0].Direction =

ADI_DEV_DIRECTION_OUTBOUND;

 // create inbound buffer for the driver to process

 SeqBuffer[1].Buffer.Data = InboundData;

 SeqBuffer[1].Buffer.ElementCount =

INBOUND_ELEMENTS;

 SeqBuffer[1].Buffer.ElementWidth = ELEMENT_WIDTH;

 SeqBuffer[1].Buffer.CallbackParameter = &SeqBuffer[1];

// callback

 SeqBuffer[1].Buffer.pNext = NULL; //

end of chain

 SeqBuffer[1].Direction =

ADI_DEV_DIRECTION_INBOUND;

 // give the buffers to the driver

 Result = adi_dev_SequentialIO(Handle, ADI_DEV_SEQ_1D,

(ADI_DEV_BUFFER *)SeqBuffer);

Device Manager Design
The Device Manager provides the single point of access into the device
driver model. The Device Manager provides the application with the API
into the device drivers. All interaction between the client and device driv-
ers occurs through the Device Manager—applications never
communicate directly with a physical driver. The Device Manager also
provides all DMA control, sequencing, queuing, and so on, for devices
that are supported by peripheral DMA.

This section contains:

• “Device Manager API Description”

• “Device Manager Code” on page 10-37

VisualDSP++ 4.5 Device Drivers and System 10-33
Services Manual for Blackfin Processors

Device Driver Manager

Users typically do not need to understand the design and implementation
details of the Device Manager. This section is included for those users who
want to have a deeper understanding of the design. This section is particu-
larly useful, however, for writers of physical drivers who can use this
information to aid in the development of physical drivers.

Device Manager API Description
The macros, definitions and data structures defined by the Device Man-
ager API are key to understanding the design of the Device Manager. The
Device Manager API is described in the file adi_dev.h. This file is located
in the Blackfin/Include/Drivers directory.

This section contains:

• “Memory Usage Macros” on page 10-34

• “Handles” on page 10-34

• “Dataflow Enumerations” on page 10-34

• “Command IDs” on page 10-35

• “Callback Events” on page 10-35

• “Return Codes” on page 10-35

• “Circular Buffer Callback Options” on page 10-36

• “Buffer Data Types” on page 10-36

• “Physical Driver Entry Point” on page 10-37

• “API Function Definitions” on page 10-37

Device Manager Design

10-34 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Memory Usage Macros

The first section in the adi_dev.h file contains macros that define the
amount of memory usage by the Device Manager. These macros can be
used by the client to determine how much memory should be allocated to
the Device Manager via the adi_dev_Init function.

The ADI_DEV_BASE_MEMORY defines the number of bytes that the Device
Manager needs. The ADI_DEV_DEVICE_MEMORY defines the number of bytes
the Device Manager needs to control each physical driver. When provid-
ing memory to the Device Manager, the client should provide the
following amount of memory:

 ADI_DEV_BASE_MEMORY + (n * ADI_DEV_DEVICE_MEMORY)

where “n” is the maximum number of physical drivers that are to be simul-
taneously opened in the system.

Handles

Next in the adi_dev.h file are typedefs for the various handle types that
are used by the Device Manager. Handles are typically pointers to data
structures that are used within the Device Manager. They are used as a
means to identify the data pertaining to the device being managed
quickly.

Dataflow Enumerations

Next in the adi_dev.h file are enumerations for the various dataflow
methods supported by the Device Manager and enumerations indicating
the dataflow direction. These enumerations are not extensible by physical
drivers.

VisualDSP++ 4.5 Device Drivers and System 10-35
Services Manual for Blackfin Processors

Device Driver Manager

Command IDs

The next section enumerates the command IDs that are defined by the
Device Manager. These command IDs are passed to the Device Manager
via the adi_dev_Control function.

Physical drivers can add any number of additional command IDs that are
relevant to their particular device. Physical drivers begin adding their own
command IDs starting with the enumeration start value for the driver.

Also included in this section is a data structure defining a configuration
command pair. This is provided as a convenience that allows clients to
pass a table of commands into the adi_dev_Control function, rather than
being forced to call the adi_dev_Control function for each command (see
on page 10-64).

Callback Events

The next section in the adi_dev.h file contains enumerations for callback
events. When an event occurs, the client’s callback function is invoked
and passed the enumeration of the event that occurred.

The Device Manager defines some common events. As with command
IDs, physical drivers can add their own callback events beginning with the
enumeration start value for the driver.

Return Codes

The next section in the adi_dev.h file contains enumerations for return
codes. All API functions within the Device Manager return a code indicat-
ing the results of the function call.

The Device Manager defines some typical return codes. As with command
IDs and callback events, physical drivers can add their own return codes
beginning with the enumeration start value for the driver.

Device Manager Design

10-36 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Circular Buffer Callback Options

The next section in the adi_dev.h file contains enumerations for the type
of callback the client requests when the Device Manager is using the circu-
lar buffer dataflow method.

Enumerations are provided indicating the Device Manager should make
no callbacks, make a callback on sub-buffer completion, or make a call-
back on whole buffer completion.

Buffer Data Types

The ADI_DEV_1D_BUFFER, ADI_DEV_2D_BUFFER and
ADI_DEV_CIRCULAR_BUFFER data structures are used to provide data buffers
to the driver. At the top of these data structures is a reserved area. This
reserved area allows the device drivers access to a small amount of memory
that is attached to each buffer. How, or even if, the device driver uses this
reserved area is a matter that depends on the implementation.

Note that if the physical device driver is supported by peripheral DMA,
the Device Manager uses this reserved area to create a DMA descriptor
describing the buffer. This descriptor is in turn passed to the DMA man-
ager System Service in order to use DMA to move the data, as described in
the buffer structure.

If the physical driver is not supported by peripheral DMA, the physical
driver can use this reserved area for any purpose; for example, queue man-
agement, or whatever mechanism the physical driver uses to move the
data.

Also included in this section is a data structure ADI_DEV_BUFFER, which
represents a union of one-dimensional, two-dimensional and circular buff-
ers. This datatype is used as a convenient method to refer to a buffer in a
generic fashion, without knowing the specific type of buffer. The API
functions adi_dev_Read and adi_dev_Write use the ADI_DEV_BUFFER type
when passing buffers to these functions.

VisualDSP++ 4.5 Device Drivers and System 10-37
Services Manual for Blackfin Processors

Device Driver Manager

Physical Driver Entry Point

The next section in the adi_dev.h file contains a data structure that
describes the entry point into a physical driver. The structure
ADI_DEV_PDD_ENTRY_POINT is simply a data type that points to the func-
tions within the physical driver that are called by the Device Manager.

API Function Definitions

The last section in the adi_dev.h file describes the API calls into the
Device Manager. Each function is declared here with the appropriate
parameters for each call. Each function is described in detail in “Device
Manager API Reference” on page 10-62.

Device Manager Code
All code for the Device Manager is kept in the adi_dev.c file. This section
describes the code of the Device Manager. This file is located in the
Blackfin/Lib/Src/Drivers directory.

This section contains:

• “Data Structures”

• “Static Data”

• “Static Function Declarations”

• “API Functional Description”

Data Structures

The only additional data structures that are defined are the
ADI_DEV_MANAGER and ADI_DEV_DEVICE structures. These structures con-
tain all the data necessary for operation of the Device Manager itself and
for management and control of the physical driver.

Device Manager Design

10-38 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Static Data

The Device Manager uses a single piece of static data.
The InitialDeviceSettings item is copied into an ADI_DEV_DEVICE struc-
ture when a device is opened. This provides a quick and efficient means to
initialize an ADI_DEV_DEVICE structure without having to populate each
item individually.

Static Function Declarations

This section declares static functions that are used within the Device Man-
ager. Each of these functions is described in detail below. Only the API
functions are declared to be global, all other functions are static to the
Device Manager.

API Functional Description

This section describes the functionality that is performed for each of the
API functions in the Device Manager. The API functions include:

• adi_dev_Init – see on page 10-39

• adi_dev_Open – see on page 10-39

• adi_dev_Close – see on page 10-40

• adi_dev_Read – see on page 10-40

• adi_dev_Write – see on page 10-41

• adi_dev_Control – see on page 10-42

Refer to “Device Manager API Reference” on page 10-62 for more API
information.

VisualDSP++ 4.5 Device Drivers and System 10-39
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Init Functional Description

The adi_dev_Init function is used to initialize the Device Manager.

For detailed reference information, see “adi_dev_Init” on
page 10-65.

Processing begins by checking to ensure enough memory was provided to
operate the Device Manager. The function then determines how many
physical devices can be controlled with the remaining memory provided.

The critical region pointers are then stored and the data structure for each
device that can be supported is marked as available for use. The function
then returns to the caller.

adi_dev_Open Functional Description

The adi_dev_Open function is used to open a device for use.

For detailed reference information, see “adi_dev_Open” on
page 10-67.

Processing begins by finding a free ADI_DEV_DEVICE data structure to be
used to control the device. The address of that data structure is stored in
the client-provided location as the handle to the device.

The ADI_DEV_DEVICE structure is initialized and populated with the infor-
mation describing the device.

Once the ADI_DEV_DEVICE structure has been initialized, the Device Man-
ager calls the adi_pdd_Open function of the physical driver. The physical
driver then executes, doing whatever it needs to do to open the device it
controls. If for some reason the physical driver fails to open the device, the
Device Manager frees up the ADI_DEV_DEVICE structure and returns the
return code from the physical device back to the application. Note that
because the return code values can be extended by the physical device, the
return code can be as specific as possible as to why the device failed to
open.

Device Manager Design

10-40 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

If the physical device opens correctly, the Device Manager interrogates the
physical device to see if it is supported by peripheral DMA. The Device
Manager saves this information in the ADI_DEV_DEVICE structure.

adi_dev_Close Functional Description

The adi_dev_Close function is called by the application when the device
is no longer needed.

For detailed reference information, see “adi_dev_Close” on
page 10-63.

After the device handle has been validated, assuming error checking is
enabled, the function calls the adi_pdd_Control function of the physical
driver to terminate dataflow. Once dataflow has been terminated, any
DMA channels that were opened for the device are closed. The
adi_pdd_Close function of the physical driver is then called to shut down
the device and free up any resources used by the physical device. Lastly,
the ADI_DEV_DEVICE structure is flagged as closed so that it may be reused
at some later point in time.

adi_dev_Read Functional Description

The adi_dev_Read function is called by the application to provide the
device with buffers into which inbound data is to be stored. Assuming
error checking is enabled, processing begins in this function by validating
the device handle, and insuring that the device has been opened for
inbound, or bidirectional, traffic and that the dataflow method has already
been defined. If the dataflow method has not yet been defined, the Device
Manager does not have enough information to know what to do with the
buffer.

For detailed reference information, see “adi_dev_Read” on
page 10-70.

VisualDSP++ 4.5 Device Drivers and System 10-41
Services Manual for Blackfin Processors

Device Driver Manager

The pBuffer parameter passed into the function can point to a single
buffer or a chain of buffers. Furthermore, if the device is supported by
peripheral DMA, the reserved area within the buffer data structure needs
to be configured appropriately. All these details are taken care of in the
PrepareBufferList static function (see more information on
on page 10-46).

Once the buffer list has been prepared, a check is made to see if the device
is supported by peripheral DMA. If so, the DMA manager is called to
queue the buffers on the proper DMA channel using the appropriate data-
flow method; chained descriptors are passed to the DMA manager via the
adi_dma_Queue function, and circular buffers passed via the
adi_dma_Circular function. If peripheral DMA is not supported, the
buffers are passed directly to the physical driver using the adi_pdd_Read
function. Note that when a device is supported by peripheral DMA, the
physical driver is extremely simple as the Device Manager handles all data
buffers for the physical device.

Lastly, a check is made to see if the device is operating in synchronous or
asynchronous mode. If it is operating in asynchronous mode, the
adi_dev_Read function returns to the application immediately. If it is
operating in synchronous mode, the adi_dev_Read function waits in a
loop until the buffer or the last buffer within the list of buffers (if multiple
buffers were provided as a parameter) has been processed before returning
to the application. Again, the physical driver has no knowledge of, nor the
need for the synchronous/asynchronous mode information.

adi_dev_Write Functional Description

The adi_dev_Write function operates virtually identically to the
adi_dev_Read function, except the data is destined for the outbound
rather than inbound direction.

For detailed reference information, see “adi_dev_Write” on
page 10-72.

Device Manager Design

10-42 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Control Functional Description

The adi_dev_Control function is used to process configuration-type com-
mands from the application. Like all the API functions, if error checking
is enabled, the device handle is validated upon entry into the function.

For detailed reference information, see “adi_dev_Control” on
page 10-64.

Processing within the adi_dev_Control function is based upon the com-
mand ID that is passed in as a parameter. Some commands can be
processed entirely by the Device Manager, some commands are processed
by the physical driver only, while others need to be processed by both the
Device Manager and the physical driver. In order to accomplish this, the
bulk of this function is designed as a “C” switch statement. Each com-
mand that the Device Manager cares about has an entry in the statement.

When a command is passed that the Device Manager needs to process, the
Device Manager processes the command and then sets a flag stating
whether or not the command needs to passed down to the physical driver.
When processing gets to the bottom of the function, if the command
needs to be passed to the physical driver, the adi_pdd_Control function of
the physical driver is called and the return code from the physical driver is
passed back to the application. This arrangement allows each physical
driver to extend the command IDs and allow them to create their own
unique command IDs that the application can control.

The Device Manager processes the following commands:

• ADI_DEV_CMD_GET_2D_SUPPORT – This command is used to deter-
mine whether or not the device supports two-dimensional data
movement. On Blackfin processors, if a device is supported by
peripheral DMA, then two-dimensional data movement is pro-

VisualDSP++ 4.5 Device Drivers and System 10-43
Services Manual for Blackfin Processors

Device Driver Manager

vided. If the device is not supported by peripheral DMA, the
command is passed to the physical driver for determining if the
physical driver can support 2D data.

• ADI_DEV_CMD_SET_SYNCHRONOUS – This command is used to put the
Device Manager in synchronous mode for the given device. The
only processing here is to set the flag in the ADI_DEV_DEVICE struc-
ture. This command is never passed to the physical driver as all
synchronous activity is controlled by the Device Manager. Hiding
this from the physical driver has the added benefit of physical driv-
ers not caring, nor having to take special processing, to
accommodate synchronous or asynchronous modes. The physical
driver can operate in whatever manner is best suited to the device.

• ADI_DEV_CMD_SET_DATAFLOW_METHOD – This command is used to set
the dataflow method for the given device. If the device is not sup-
ported by peripheral DMA, then the Device Manager takes no
action other than making note of the dataflow method and passing
the command along to the physical driver via the adi_pdd_Control
function. If the device is supported by peripheral DMA, then the
default value used for the DMA configuration control register is
updated with settings appropriate for the dataflow method. Fur-
ther, once the dataflow method has been defined by the
application, the Device Manager then has enough information to
open whatever DMA channels are necessary in support of the
device. The physical driver is interrogated via the adi_pdd_Control
function as to which DMA controller and channel number the
device has been assigned for inbound and/or outbound data. The
DMA manager is then accessed to open the appropriate channels
with the appropriate modes, such as circular or chained descriptors.
If the device is opened with the ADI_DEV_MODE_CHAINED_LOOPBACK
dataflow method, the DMA manager is so configured. Note that
the ADI_DEV_DEVICE structure is kept updated with the appropriate
information as to which controllers and channels are opened or
closed, what the operating modes are, and so on.

Device Manager Design

10-44 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

• ADI_DEV_CMD_SET_DATAFLOW – This command is issued to enable or
disable dataflow on a device. The logic involved to enable or dis-
able dataflow is fairly complex and isolated in a static function
called SetDataflow (see on page 10-48 for more information on
this function).

• ADI_DEV_CMD_SET_STREAMING - This command is issued to enable or
disable the streaming mode of the device driver. (To fully under-
stand what the streaming mode operation entails, users should be
familiar with the streaming capability of the DMA manager System
Service, as described in Chapter 6, “DMA Manager”. Though
peripheral DMA support is not required of a device that supports
streaming, devices that are supported by peripheral DMA automat-
ically leverage the streaming capabilities of the DMA manager.)

When streaming mode is enabled, the device is configured to treat
data coming into and/or out of the device as a continuous stream
of data. This typically allows the device driver to transmit and
receive data through the device at maximum speed.

In order to use the streaming mode of the Device Manager, the
application must ensure that the following conditions are met:

• The device always has buffers to process and never runs out
of buffers. This means that the application guarantees that
devices that are opened for inbound or bidirectional data-
flow always have a buffer in which to store data that is
received and that devices that are opened for outbound or
bidirectional dataflow always have a buffer to transmit out
through the device.

• The system timing is such that the Device Manager can
acknowledge and service callbacks for a buffer before a call-
back for another buffer on that same device and going in
that same direction (inbound or outbound) is generated.

These conditions can be fairly easily met in most systems.

VisualDSP++ 4.5 Device Drivers and System 10-45
Services Manual for Blackfin Processors

Device Driver Manager

Static Functions

This section describes the static functions within the Device Manager that
are used in support of the API functions.

PDDCallback

The PDDCallback function is called in response to events from the physical
driver. After error checking the device handle, if error checking is enabled,
the Device Manager simply passes these events back to the application.

Note that in this routine (and the DMACallback function) the Device Man-
ager calls the client callback function directly, without concern for
whether or not live callbacks are in effect. It can do this as the physical
driver is passed the handle to the deferred callback service as part of the
adi_pdd_Open function.

As such, if the deferred callback service is being used, the invocation of the
PDDCallback function in the Device Manager has already been deferred by
the physical driver. In this way, the PDDCallback function can directly call
the client’s callback function.

DMACallback

The DMACallback function is called in response to DMA events from the
DMA manager for devices that are supported by peripheral DMA. Assum-
ing error checking is enabled, the device handle is first validated. The
function then determines what event has occurred and performs its pro-
cessing based on the event type.

If the event indicates that a descriptor has been processed, the processed
flag and processed count fields of the buffer are updated. The application’s
callback function is then invoked in order to notify the application of the
event.

Device Manager Design

10-46 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

If the event indicates that DMA processing has generated the
ADI_DEV_EVENT_SUBBUFFER_PROCESSED event, the function makes the
appropriate callback into the application stating that a sub buffer has com-
pleted processing. If the event indicates that DMA processing has
generated the ADI_DEV_EVENT_BUFFER_PROCESSED event, the function
makes the appropriate callback into the application stating that the whole
buffer has completed processing.

The DMA manager reports asynchronous DMA errors via the callback
mechanism. There errors are in turn passed back to the client via its call-
back function.

Note that in this routine (and the PDDCallback function), the Device
Manager calls the client callback function directly, without concern for
whether or not live callbacks are in effect. It can do this as the DMA man-
ager is passed the handle to the deferred callback service as part of the
adi_dma_Open function. As such, if the deferred callback service is being
used, the invocation of the DMACallback function in the Device Manager
has already been deferred by the DMA manager. In this way, the dmaCall-
back function can directly call the client’s callback function.

PrepareBufferList

The PrepareBufferList function prepares a single buffer or list of buffers
for submission to the DMA manager, if the device is supported by periph-
eral DMA, or the physical driver, if the device is not supported by
peripheral DMA.

The function begins by determining the value of the direction field in the
DMA Configuration Control register. Because the data structures for cir-
cular buffers, one-dimensional buffers and two-dimensional buffers are
different, each must be treated separately.

If passed as a circular buffer, the function assumes there is only one buffer
in the buffer list. For devices opened with the ADI_DEV_MODE_CIRCULAR
dataflow method, only a single buffer should be provided so this is a valid

VisualDSP++ 4.5 Device Drivers and System 10-47
Services Manual for Blackfin Processors

Device Driver Manager

assumption to make. The function configures the DMA Configuration
Control register according to the parameters within the circular buffer
data structure. The DMA Configuration Control register is set to generate
inner loop interrupts if the application wants to be called back when each
sub buffer has completed processing, or is set to generate outer loop inter-
rupts if the application wants to be called back when the entire buffer has
completed processing, or neither if the application does not want any call-
backs. The word size is set to the width of a data element in the buffer and
the direction field is set appropriately. The function then returns to the
caller.

If the buffer type passed into the function specifies one-dimensional or
two-dimensional buffers, the processing is largely the same except where
noted.

For each buffer passed in, the processed flag and processed count fields
within the buffer structure are cleared. If the physical device is supported
by peripheral DMA, the reserved area at the beginning of each buffer
structure is converted into a large model descriptor. The descriptor is then
configured according to the parameters within the buffer structure,
including such things as buffer size, width of an element, data direction,
whether or not it is one-dimensional or two-dimensional, and so on. The
descriptor for each buffer in the chain is updated to point to the next
descriptor, for the corresponding buffer, within the chain. The last
descriptor in the chain, corresponding to the last buffer within the chain,
is updated to point to NULL for the next descriptor. After processing is
completed, a chain of buffers is established. All the buffers are appropri-
ately initialized and the reserved area in each buffer contains a DMA
descriptor for that buffer that in turn points to the DMA descriptor for
the next buffer in the chain.

Lastly, if the device is opened for synchronous mode and peripheral DMA
is supported, the last descriptor in the chain is forced to generate a call-
back from the DMA manager to the Device Manager. This allows the
Device Manager to acknowledge when the last buffer has been processed

Device Manager Design

10-48 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

so that it can update the processed fields appropriately. The last descriptor
also acts as the trigger that responds each time the adi_dev_Read or
adi_dev_Write function returns back to the application.

SetDataflow

The SetDataflow function is called in response to the
ADI_DEV_CMD_SET_DATAFLOW command being received by the
adi_dev_Control API function. This function enables or disables dataflow
according to the flag.

The SetDataflow function begins processing by ensuring the system is not
trying to enable dataflow when it is already enabled or disable dataflow
when it is already disabled. If this check is not performed, DMA and or
the physical drivers would likely generate errors.

When dataflow is being disabled, the function first calls the
adi_pdd_Control function of the physical driver to disable dataflow. If the
device is using peripheral DMA, it is important to disable dataflow at the
device first, before shutting down DMA. Once the physical driver has dis-
abled dataflow, any and all DMA channels that were opened for the device
are closed. This is affected by calls to the DMA manager.

When dataflow is being enabled, if the device is supported by peripheral
DMA, the function first enables dataflow on the DMA channels by mak-
ing calls into the DMA manager to enable dataflow on the channel or
channels that have been opened for the device. After the dataflow on the
DMA channels has been enabled, the function calls the adi_pdd_Control
function of the physical driver to enable dataflow.

VisualDSP++ 4.5 Device Drivers and System 10-49
Services Manual for Blackfin Processors

Device Driver Manager

Physical Driver Design
The physical driver is that part of the driver that controls the hardware for
the device. Only the physical driver has knowledge of the device’s control
and status registers, and the fields within those registers. Unlike the
Device Manager, where there is only a single Device Manager in the sys-
tem, there can be any number of physical drivers present in a system.

This section contains:

• “Physical Driver Design Overview”

• “Physical Device Driver API Description” on page 10-51

• “Physical Driver Include File (“xxx.h”)” on page 10-52

• “Physical Driver Source (“xxx.c”)” on page 10-54

Physical Driver Design Overview
Under application control, only the Device Manager communicates with
each of the physical device drivers. Applications never interact directly
with a physical driver or vice versa. However, similar to the execution
sequence that applications have with the Device Manager, the Device
Manager controls the physical device drivers in much the same manner.
The Device Manager opens, controls, and closes physical device drivers
analogous to how the application opens, controls, and closes the Device
Manager.

Each physical driver in the system is controlled independently from the
other physical drivers in the system. While multiple physical drivers can
exist simultaneously in a system, multiple physical drivers should never be
controlling the same device.

Physical Driver Design

10-50 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

In general, a physical driver should control all instances of a device within
a system. For example, if there are four serial ports (SPORTS) in the sys-
tem, a single physical driver for the SPORT peripheral should be capable
of controlling all four serial ports individually and simultaneously.

The physical driver is responsible for hooking any and all interrupts as
needed for the physical device. Many physical devices generate interrupts
on error conditions. These interrupts should be caught by the physical
driver and passed back up as an event via the callback mechanism. The
interrupt manager provides a very simple, straightforward mechanism that
should be used for all interrupt processing. This makes the task of porting
device drivers to different operating environments, toolchains and operat-
ing systems very straightforward.

If a device is supported by peripheral DMA, the physical driver is greatly
simplified as the Device Manager typically controls all DMA interaction,
without any involvement from the physical driver. When a device is
opened, the Device Manager interrogates the physical driver as to whether
or not the device is supported by peripheral DMA. If the physical driver
responds in the affirmative, the Device Manager controls all DMA activity
via the DMA manager API, including initialization, providing data buff-
ers, callback mechanisms and so on. As such, the Device Manager never
calls the adi_pdd_Read and adi_pdd_Write routines of a physical driver
that is supported by peripheral DMA. Physical drivers for devices that are
supported by peripheral DMA are quite simple to implement.

For devices that are not supported by peripheral DMA, physical drivers
can still take advantage of the DMA manager as memory DMA can be an
effective strategy for reading/writing to devices that use programmed I/O.
If directed to use deferred callbacks, physical drivers should use the ser-
vices of the deferred callback manager exclusively in order to post
callbacks into the Device Manager. See Chapter 5, “Deferred Callback
Manager”, for more information.

VisualDSP++ 4.5 Device Drivers and System 10-51
Services Manual for Blackfin Processors

Device Driver Manager

Physical drivers have their own API, which is accessed by the Device Man-
ager. The sections below describe the API and functionality that should be
provided by the physical driver.

Physical Device Driver API Description
The API into a physical device driver is similar to the API between the
Device Manager and the application in that there is a function in the
physical driver API that maps to each function in the Device Manager
API, except for adi_dev_Init. These functions are all prefixed with
adi_pdd and are defined in the adi_dev.h Device Manager’s include file.

The physical device driver functions are encapsulated in a structure called
ADI_DEV_PDD_ENTRY_POINT. Each physical driver exports an entry point
structure. The application passes the address of this structure to the
Device Manager as part of the adi_dev_Open function call. The Device
Manager, in turn, uses this data structure to call the individual routines in
the physical driver. This mechanism allows multiple physical drivers to
exist in the same system without causing name space conflicts.

There are five functions in the physical driver API. These functions are
described in the sections below. The API functions include:

• adi_pdd_Open – Opens a device for use

• adi_pdd_Close – Closes a device

• adi_pdd_Read – Provides buffers for reception of data from a device

• adi_pdd_Write – Provides buffers containing data for transmission
out the device

• adi_pdd_Control – Configures the device

Physical Driver Design

10-52 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Physical Driver Include File (“xxx.h”)
The API for physical drivers is defined in the adi_dev.h include file of the
Device Manager. However, physical drivers can extend some of the defini-
tions and enumerations defined by the Device Manager. Additional
command IDs, event IDs and return codes can be created by each physical
driver. These extensible definitions are described below. These definitions
are normally defined in an include file provided with the physical driver.
For example, the PPI driver, whose code is contained in the file adi_ppi.c
has a companion adi_ppi.h include file. The only contents of the include
file are the extensible definitions that the physical driver is making avail-
able to the application.

Client applications should include the Device Manager adi_dev.h file,
and the include file for each of the physical drivers they will be using. For
example, a client application using the PPI physical driver should include
the adi_dev.h and adi_ppi.h include files. The adi_dev.h include file and
physical driver include files for all Analog Devices provided drivers are
found in the Blackfin/Include/Drivers directory.

Extensible Definitions

The physical driver can define its own extensions to the command IDs,
event IDs and return codes, beyond those already defined by the Device
Manager in the adi_dev.h file.

Physical drivers can create any number of additional command IDs.
Applications can issue these command ID via the adi_dev_Control API
function. When the adi_dev_Control function of the Device Manager
sees an extended command ID, the Device Manager passes the call onto
the physical driver’s adi_pdd_Control function, passing along the parame-
ters provided by the application. This gives the physical driver the option
of creating additional command IDs that are relevant to the device being
controlled.

VisualDSP++ 4.5 Device Drivers and System 10-53
Services Manual for Blackfin Processors

Device Driver Manager

For example, a physical driver for a DAC may define a command ID that
allows the application to set or detect the output volume level for the
DAC.

In a similar fashion, physical drivers can create additional event IDs that
they can pass back to the application. Physical drivers can create any num-
ber of additional event IDs. Physical drivers can send these events to the
application via a callback to the Device Manager. When the Device Man-
ager’s PDDCallback function is passed an extended event ID, it passes the
event and parameters passed to the Device Manager’s callback function
along to the application. This gives the physical driver the option of creat-
ing additional event IDs that are relevant to the device being controlled.
For example, a physical driver that controls a device that is detecting the
level of a signal can create an event that notifies the application when the
signal has reached some predetermined value.

Physical drivers can also return custom-defined error codes. Physical driv-
ers can create any number of additional return codes. These drivers can
return these error codes in response to any physical driver API function
call from the Device Manager. The Device Manager routinely looks for
the ADI_DEV_RESULT_SUCCESS error code. Anything other than
ADI_DEV_RESULT_SUCCESS is interpreted to be an error of some kind.

When a physical driver API function returns an error code not equal to
ADI_DEV_RESULT_SUCCESS, the Device Manager passes the error code back
to the application as the return value for the Device Manager API func-
tion that triggered the error. This gives the physical driver the option of
creating additional return codes that are relevant to the device being
controlled.

For example, a physical driver may return a unique error code in response
to a command to affect a parameter on the device. The physical driver
could return an error code that provides some high level of detail as to
what caused the error.

Physical Driver Design

10-54 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

The adi_dev.h file contains the starting enumeration values for each phys-
ical driver. Use this value as the starting value for all command IDs, event
IDs, and return codes.

ADI_DEV_PDD_ENTRY_POINT

The physical driver’s include function needs to include a declaration of
the entry point into the driver. This declaration should declare, as a global
variable, the address of the entry point for the physical driver. The appli-
cation passes the address of the entry point to the Device Manager when
the device is opened. For example, the line

 extern ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint;

 // entry point to the PPI driver

in the PPI driver’s include file tells the application to pass the variable
PPIEntryPoint as the entry point parameter in the adi_dev_Open function
call to open the PPI device driver.

Physical Driver Source (“xxx.c”)
All functions within the physical driver source code, including the actual
physical driver API functions, should be declared static so that they are
not exposed to any other software component. The only global piece of
code or data should be the entry point address. The entry point is a simple
structure that contains the addresses of the physical driver API functions
in the order shown below.

 ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint = {

 adi_pdd_Open,

 adi_pdd_Close,

 adi_pdd_Read,

 adi_pdd_Write,

 adi_pdd_Control

 };

VisualDSP++ 4.5 Device Drivers and System 10-55
Services Manual for Blackfin Processors

Device Driver Manager

Source code for all Analog Devices supplied physical drivers is located in
the Blackfin/Lib/Src/Drivers directory.

All code within the driver source should be in support of the five physical
driver API functions. These functions and the logic that they need to pro-
vide are described below. All physical driver API functions must return an
error code. The Device Manager checks the return code for every physical
driver API call. If the physical driver returns anything other than
ADI_DEV_RESULT_SUCCESS, it assumed to be some type of failure.

Similar to what is implemented in the Device Manager, it is highly
recommended that physical drivers implement some type of
switchable error checking, ideally using the ADI_DEV_DEBUG macro.
As a minimum, physical driver handles (ADI_DEV_PDD_HANDLE)
should be validated in each API function.

adi_pdd_Open Functional Description

The adi_pdd_Open function is called by the Device Manager in response to
the application calling the adi_dev_Open function. Its purpose is to open
the device for use.

For detailed reference information, see “adi_pdd_Open Functional
Description” on page 10-55.

The adi_pdd_Open function should first verify that the device being
requested is available for use and supports the data direction requested.
Appropriate error codes should be returned should the device be unavail-
able or not support the requested direction.

The device being controlled should be initialized and flushed of any stray
data or pending interrupts. Any interrupts that are required to be handled
in support of the device should be hooked. For devices that are supported
with peripheral DMA, typically only the error interrupt needs to be
hooked. The interrupt manager of the System Services should be used for

Physical Driver Design

10-56 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

all hooking of interrupts. Enabling/disabling of interrupts through the
System system interrupt controller (SIC) should also be accomplished
using the interrupt manager service calls.

The physical driver should save the handle to the callback service. If
non-NULL, meaning that deferred callbacks are in use, the physical driver
should invoke all callbacks through the service identified by the callback
service handle. If NULL, meaning all callbacks should be live and not
deferred, the physical driver should call the Device Manager’s callback
function directly when sending events.

The physical driver should also save the ADI_DEV_PDD_HANDLE value in the
location provided by the Device Manager. The Device Manager passes this
handle back to the physical driver in all other API function calls.

The adi_pdd_Open function should return ADI_DEV_RESULT_SUCCESS if
successful.

adi_pdd_Control Functional Description

The adi_pdd_Control function is called by the Device Manager in
response to the application calling the adi_dev_Control function. Its pur-
pose is to process configuration-type commands from the Device Manager
and client application. Like all the API functions, if error checking is
enabled, the routine should validate the physical driver handle upon entry
into the function.

For detailed reference information, see “adi_pdd_Control Func-
tional Description” on page 10-56.

VisualDSP++ 4.5 Device Drivers and System 10-57
Services Manual for Blackfin Processors

Device Driver Manager

Processing within the adi_pdd_Control function should be based upon
the command ID that is passed in as a parameter. Of the command IDs
enumerated by the Device Manager in the adi_dev.h file, as a minimum,
physical drivers must process the following commands:

• ADI_DEV_CMD_SET_DATAFLOW – Turns on and off the flow of data
through the device.

• ADI_DEV_CMD_GET_PERIPHERAL_DMA_SUPPORT – Responds with TRUE
or FALSE if the device is supported by peripheral DMA. If the
device is supported by peripheral DMA, the adi_pdd_Control
function should also be prepared to respond to the following com-
mand IDs:

• ADI_DEV_CMD_GET_INBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device.

• ADI_DEV_CMD_GET_OUTBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device.

In most cases, the adi_pdd_Control function of the physical driver should
be constructed similarly to a “C” style switch statement. Each command
that the physical driver cares about, including the required command IDs
listed above and any additional command IDs created by the physical
driver itself, should have an entry in the statement. If the physical driver
receives a command ID it does not understand, it should typically return
the ADI_DEV_RESULT_NOT_SUPPORTED return code.

Physical Driver Design

10-58 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Read Functional Description

The adi_pdd_Read function is called by the Device Manager in response to
the application calling the adi_dev_Read function. Its purpose is to fill
buffers with inbound data that is received from the device. With all API
functions, if error checking is enabled the routine should validate the
physical driver handle is upon entry into the function.

For detailed reference information, see “adi_pdd_Read Functional
Description” on page 10-58.

For devices that are supported by peripheral DMA, the Device Manager
manages all buffer queueing and reception. As a result, if the device is sup-
ported by peripheral DMA, the adi_pdd_Read function is never called by
the Device Manager and no functionality need be provided by this rou-
tine. This greatly simplifies device drivers for devices that are supported by
processor DMA. Physical drivers that are supported by peripheral DMA
still need to provide this function but should simply return
ADI_DEV_RESULT_NOT_SUPPORTED as this routine should never get called.

For devices that are not supported by peripheral DMA, the adi_pdd_Read
function is passed one or more buffers that the application has provided
for inbound data reception. The physical driver can choose to process the
buffers immediately, or provide the logic and functionality to queue or
somehow stage these buffers for use at some later point in time. However,
the physical driver is required to process the buffers in the order in which
they were received.

For some devices, it may not be possible or practical to completely fill a
buffer with data. For example, consider an Ethernet driver. The Ethernet
driver typically receives packets that vary in length. The application may
know what the maximum size Ethernet packet is and provide the driver
with buffers sized to the maximum packet size. The driver may then
receive a packet from the network that is smaller than the maximum
packet size. It would be impractical for the physical driver to wait until
additional packets were received and completely fill the buffer before pro-

VisualDSP++ 4.5 Device Drivers and System 10-59
Services Manual for Blackfin Processors

Device Driver Manager

cessing. So, it is the physical driver’s option to decide when to consider a
buffer fully processed. Each buffer has a processed flag and processed size
flag that the physical driver should set, based on when it considers a buffer
processed and how much valid data the buffer contains.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver should not notify the Device Manager when the
buffer has been processed. If, however, the buffer is flagged for a callback
(once the buffer has been processed), the physical driver is obligated to set
the processed flag and processed size field in the buffer, and notify the
Device Manager via the Device Manager’s callback function that was
passed to the physical driver as a parameter in the adi_pdd_Open function
call, that the buffer has completed processing.

adi_pdd_Write Functional Description

The adi_pdd_Write function is called by the Device Manager in response
to the application calling the adi_dev_Write function. Its purpose is to
transmit the data within the buffers out through the device. For all API
functions, if error checking is enabled, the routine validates the physical
driver handle upon entry into the function.

For detailed reference information, see “adi_pdd_Write Functional
Description” on page 10-59.

As in the case for adi_pdd_Read, for devices that are supported by periph-
eral DMA, the Device Manager manages all buffer queueing and
transmission. As a result, if the device is supported by peripheral DMA,
the adi_pdd_Write function is never called by the Device Manager and no
functionality need be provided by this routine. This greatly simplifies
device drivers for devices that are supported by processor DMA. Physical
drivers that are supported by peripheral DMA still need to provide this
function but should simply return ADI_DEV_NOT_SUPPORTED as this routine
should never get called.

Physical Driver Design

10-60 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

For devices that are not supported by peripheral DMA, the adi_pdd_Write
function is passed one or more buffers that the application has provided
for transmission out through the device. The physical driver can choose to
immediately process the buffers, or provide the logic and functionality to
queue or somehow stage these buffers for transmission at some later point
in time. The physical driver is required, however, to process the buffers in
the order in which they were received.

Each buffer has a processed flag and processed size flag that the physical
driver should set based on when it considers a buffer processed and how
much data was transmitted out through the device. Unlike in the
adi_pdd_Read case, it is expected that the entire contents of the buffer will
be transmitted.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver should not notify the Device Manager when the
buffer has been processed. However, if the buffer is flagged for a callback,
once the buffer has been processed the physical driver is obligated to set
the processed flag and processed size field in the buffer and notify the
Device Manager via the Device Manager’s callback function that was
passed to the physical driver as a parameter in the adi_pdd_Open function
call, that the buffer has completed processing.

adi_pdd_Close Functional Description

The adi_pdd_Close function is called by the Device Manager in response
to the application calling the adi_dev_Close function. Its purpose is to
gracefully shutdown and idle the device. For all API functions, if error
checking is enabled, the routine should validate the physical driver handle
is upon entry into the function.

For detailed reference information, see “adi_pdd_Close Functional
Description” on page 10-60.

VisualDSP++ 4.5 Device Drivers and System 10-61
Services Manual for Blackfin Processors

Device Driver Manager

After validating the driver handle, the adi_pdd_Close function should ter-
minate all data transmission and reception if is not already stopped, as it is
possible for the application to call the adi_dev_Close function while data-
flow is enabled.

The function should idle the device and leave the device in a state such
that it can be opened again should the application re-open the device at
some later point in time. All resources that were allocated in support of
the device should be released. For example if an error interrupt was
hooked during the adi_pdd_Open function, it should be released as part of
the adi_pdd_Close function.

Device Manager API Reference

10-62 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Device Manager API Reference
This section provides the Device Manager API. The Device Manager API
is defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 4.5 Device Drivers and System 10-63
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Close

Description

This function closes a device. Dataflow is stopped if it has not already
been stopped and the device is put back into an idled state. After calling
adi_dev_Close, the only way to access the device again is to first open it
with the adi_dev_Open function call.

Prototype

u32 adi_dev_Close(

 ADI_DEV_DEVICE_HANDLE DeviceHandle);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

ADI_DEV_RESULT_SUCCESS The device closed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HAN
DLE

The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error occurred while closing down DMA for the
device.

xxx This is a device-specific return code.

Device Manager API Reference

10-64 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Control

Description

This function sets or detects a configuration parameter for a device.

Prototype

u32 adi_dev_Control(

 ADI_DEV_DEVICE_HANDLE DeviceHandle,

 u32 Command,

 void *pArg

);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

Command This is the command identifier.

pArg This is the address of command specific parameter.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HAN
DLE

The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA man-
ager.

ADI_DEV_RESULT_NOT_SUPPORTED The command is not supported.

xxx This is a device-specific return code.

VisualDSP++ 4.5 Device Drivers and System 10-65
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Init

Description

This function creates a Device Manager and initializes memory for the
Device Manager. This function is typically called at initialization time.

Prototype

u32 adi_dev_Init(

 void *pMemory,

 size_t MemorySize,

 u32 *pMaxDevices,

 ADI_DEV_MANAGER_HANDLE *pManagerHandle,

 void *pEnterCriticalParam

);

Device Manager API Reference

10-66 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

pMemory This is the pointer to an area of static memory to be used by
the Device Manager.

MemorySize This is the size in bytes of memory being supplied for the
Device Manager.

*pMaxDevices On return, this argument contains the number of simulta-
neously open devices that the Device Manager can support
given the memory supplied.

*pManagerHandle This is the pointer to memory location where the handle to
the Device Manager will be stored.

*pEnterCriticalParam This is the parameter that is to be passed to the function that
protects critical areas of code.

ADI_DEV_RESULT_SUCCESS Device Manager was successfully initialized.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory has been supplied to Device Manager.

VisualDSP++ 4.5 Device Drivers and System 10-67
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Open

Description

This function opens a device for use. Internal data structures are initial-
ized, preliminary device control is established, and the device is reset and
prepared for use.

Prototype

u32 adi_dev_Open(

 ADI_DEV_MANAGER_HANDLE ManagerHandle,

 ADI_DEV_PDD_ENTRY_POINT *pEntryPoint,

 u32 DeviceNumber,

 void *ClientHandle,

 ADI_DEV_DEVICE_HANDLE *pDeviceHandle,

 ADI_DEV_DIRECTION Direction,

 ADI_DMA_MANAGER_HANDLE DMAHandle,

 ADI_DCB_HANDLE DCBHandle,

 ADI_DCB_CALLBACK_FN ClientCallback

);

Device Manager API Reference

10-68 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

Table 10-1. Adi_dev_Open Arguments

Argument Explanation

ManagerHandle This is the handle to the Device Manager that controls
the device.

*pEntryPoint This is the address of the physical driver’s entry point

DeviceNumber This is the number identifying which device is to be
opened. Device numbers begin with zero. For example, if
there are four serial ports, they are numbered 0 through
3.

*ClientHandle This is an identifier defined by the application. The
Device Manager passes this value back to the client as an
argument in the callback function.

*pDeviceHandle This is the pointer to an application provided location
where the Device Manager stores an identifier defined by
the Device Manager. All subsequent communication
initiated by the client to the Device Manager for this
device includes this handle.

Direction This is the data direction for the device, inbound, out-
bound or bidirectional.

DMAHandle This is the handle to the DMA manager service that is
used for this device (can be NULL if DMA is not used.)

DCBHandle This is the handle to the deferred callback service that is
used for this device. If NULL, all callbacks will be live
and not-deferred.

ClientCallback This is the address of the client’s callback function.

ADI_DEV_RESULT_SUCCESS Device was opened successfully.

ADI_DEV_RESULT_BAD_MANAGER_HA
NDLE

The Device Manager handle does not point to a Device
Manager.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory is available to open the device.

VisualDSP++ 4.5 Device Drivers and System 10-69
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_RESULT_DEVICE_IN_USE The device is already in use.

xxx This is a device-specific return code.

Device Manager API Reference

10-70 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Read

Description

This function reads data from a device or queues reception buffers to a
device.

Prototype

u32 adi_dev_Read(

 ADI_DEV_DEVICE_HANDLE DeviceHandle,

 ADI_DEV_BUFFER_TYPE BufferType,

 ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

BufferType This argument indicates the type of buffer: one-
dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a
chain of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA
manager.

ADI_DEV_RESULT_DATAFLOW_UNDEFINED The dataflow method has not yet been set.

xxx This is a device-specific return code.

VisualDSP++ 4.5 Device Drivers and System 10-71
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Terminate

Description

This function frees up all memory used by the Device Manager, stops data
flow, closes all open device drivers, and terminates the Device Manager.

Prototype

u32 adi_dev_Terminate(

 ADI_DEV_MANAGER_HANDLE ManagerHandle

);

Arguments

Return Value

This function returns ADI_DEV_RESULT_SUCCESS if successful. Any other
value indicates an error.

ManagerHandle This is the handle to the Device Manager.

Device Manager API Reference

10-72 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Write

Description

This function writes data to a device or queues transmission buffers to a
device.

Prototype

u32 adi_dev_Write(

 ADI_DEV_DEVICE_HANDLE DeviceHandle,

 ADI_DEV_BUFFER_TYPE BufferType,

 ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

BufferType This arguments identifies the type of buffer:
one-dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a
chain of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA
manager.

ADI_DEV_RESULT_DATAFLOW_UNDEFINED The dataflow method has not yet been set.

xxx This is a device-specific return code.

VisualDSP++ 4.5 Device Drivers and System 10-73
Services Manual for Blackfin Processors

Device Driver Manager

Physical Driver API Reference
This section describes the API used between the Device Manager and each
physical driver. The physical driver API is defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Physical Driver API Reference

10-74 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Close

Description

This function closes a device. Dataflow is stopped if it has not already
been stopped and the device is put back into an idle state.

Prototype

u32 adi_pdd_Close(

 ADI_PDD_DEVICE_HANDLE PDDHandle);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

ADI_DEV_RESULT_SUCCESS The device closed successfully.

xxx This is device-specific code.

VisualDSP++ 4.5 Device Drivers and System 10-75
Services Manual for Blackfin Processors

Device Driver Manager

adi_pdd_Control

Description

This function sets or detects a configuration parameter for a device.

Prototype

u32 adi_pdd_Control(

 ADI_DEV_PDD_HANDLE PDDHandle,

 u32 Command,

 void *pArg

);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

Command This is the command identifier.

pArg This is the address of command-specific parameter.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_NOT_SUPPORTED This command is not supported.

xxx This is device-specific return code.

Physical Driver API Reference

10-76 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Open

Description

This function opens a physical device for use. Internal data structures are
initialized, preliminary device control is established and the device is reset
and prepared for use.

Prototype

u32 adi_ppd_Open(

 ADI_DEV_MANAGER_HANDLE ManagerHandle,

 u32 DeviceNumber,

 ADI_DEV_DEVICE_HANDLE DeviceHandle,

 ADI_DEV_PDD_HANDLE *pPDDHandle,

 ADI_DEV_DIRECTION Direction,

 void *pEnterCriticalParam,

 ADI_DMA_MANAGER_HANDLE DMAHandle,

 ADI_DCB_HANDLE DCBHandle,

 ADI_DCB_CALLBACK_FN DMCallback

);

VisualDSP++ 4.5 Device Drivers and System 10-77
Services Manual for Blackfin Processors

Device Driver Manager

Arguments

Return Value

Table 10-2. Adi_pdd_Open Arguments

Argument Explanation

ManagerHandle This is the handle to the Device Manager that is control-
ling the physical driver.

DeviceNumber This is the number identifying which device is to be
opened. Device numbers begin with zero. For example, if
there are four serial ports, they are numbered 0 through
3.

DeviceHandle This is the Device Manager-supplied parameter that
uniquely identifies the device to the Device Manager.

*pPDDHandle This is the pointer to a location where the physical driver
stores a handle that uniquely identifies the device to the
physical driver.

Direction This is the data direction for the device, inbound,
outbound or bidirectional

*pEnterCriticalParam This is the parameter that is to be passed to the
function that protects critical areas of code.

DMAHandle This is the handle to the DMA manager service that is
used for this device (can be NULL if DMA is not used).

DCBHandle This is the handle to the deferred callback service that
will be used for this device. If NULL, all callbacks will be
live and not-deferred.

DMCallback This is the address of the Device Manager’s callback
function.

ADI_DEV_RESULT_SUCCESS The device opened successfully.

ADI_DEV_RESULT_DEVICE_IN_USE The Device Manager handle does not point to a Device
Manager.

xxx This is the device-specific return code.

Physical Driver API Reference

10-78 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Read

Description

This function provides buffers to a device for reception of inbound data.
This function is never called for devices that are supported by peripheral
DMA.

Prototype

u32 adi_pdd_Read(

 ADI_DEV_PDD_HANDLE PDDHandle,

 ADI_DEV_BUFFER_TYPE BufferType,

 ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

BufferType This identifies the type of buffer: one-dimensional,
two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE The PDD handle does not identify a valid device.

xxx This is the device-specific return code.

VisualDSP++ 4.5 Device Drivers and System 10-79
Services Manual for Blackfin Processors

Device Driver Manager

adi_pdd_Write

Description

This function provides buffers to a device for transmission of outbound
data. This function is never called for devices that are supported by
peripheral DMA.

Prototype

u32 adi_pdd_Write(

 ADI_DEV_PDD_HANDLE PDDHandle,

 ADI_DEV_BUFFER_TYPE BufferType,

 ADI_DEV_BUFFER *pBuffer

);

Examples

10-80 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

Examples
Examples showing how to use the Device Driver Model as well as Analog
Devices device drivers are provided with the Device Driver and System
Services distribution media.

For examples of applications using the device drivers, see the
Blackfin/EZ-Kits directory. Source code for all Analog Devices provided
device drivers is located in the Blackfin/Lib/Src/Driver directory.

PDDHandle This is the handle used to identify the device.

BufferType This argument identifies the type of buffer: one-
dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE The PDD handle does not identify a valid device.

xxx This is device-specific return code.

VisualDSP++ 4.5 Device Drivers and System I-1
Services Manual for Blackfin Processors

I INDEX

A
ADI_DCB_CALLBACK_FN data type, 5-27
adi_dcb_Close function, 5-13
ADI_DCB_CMD_END command, 5-29
ADI_DCB_CMD_FLUSH_QUEUE

command, 5-29
ADI_DCB_CMD_PAIR command, 5-29
ADI_DCB_CMD_TABLE command, 5-29
ADI_DCB_COMMAND function, 5-29
ADI_DCB_COMMAND_PAIR data type,

5-28, 5-29
adi_dcb_Control function, 5-14, 5-29
adi_dcb_DispatchCallbacks function, 5-10
adi_dcb_Forward function, 5-8, 5-9, 5-30
adi_dcb_Init function, 5-17
adi_dcb_Open function, 5-19
adi_dcb_Post function, 5-21
adi_dcb_RegisterISR function, 5-10
adi_dcb_Remove function, 5-24
ADI_DCB_RESULT data type, 5-31
adi_dcb_Terminate function, 5-25
adi_dcb_xxxx.c source file, 5-8
adi_dcv_Init function, 10-65
ADI_DEV_1D_BUFFER data type, 10-36
ADI_DEV_1D_BUFFER one-dimensional

buffer, 10-9
ADI_DEV_2D_BUFFER data type, 10-36
ADI_DEV_2D_BUFFER two- dimensional

buffer, 10-9
ADI_DEV_BASE_MEMORY macro, 10-10,

10-34
ADI_DEV_BUFFER data type, 10-9, 10-36

adi_dev.c file
Device Manager code, 10-37

ADI_DEV_CIRCULAR_BUFFER data type,
10-9, 10-36

adi_dev_Close function, 1-21, 10-18, 10-40,
10-63

ADI_DEV_CMD_GET_2D_SUPPORT
command, 10-42

ADI_DEV_CMD_GET_INBOUND_DMA_
PMAP_ID command, 10-57

ADI_DEV_CMD_GET_OUTBOUND_
DMA_PMAP_ID command, 10-57

ADI_DEV_CMD_GET_PERIPHERAL_
DMA_SUPPORT command, 10-57

ADI_DEV_CMD_PDD_START
enumeration value, 10-35

ADI_DEV_CMD_SET_DATAFLOW
command, 10-16, 10-44, 10-48, 10-57

ADI_DEV_CMD_SET_DATAFLOW_
METHOD command, 10-13, 10-43

ADI_DEV_CMD_SET_STREAMING
command, 10-44

ADI_DEV_CMD_SET_SYNCHRONOUS
command, 10-43

adi_dev_Control function, 1-22, 10-12, 10-13,
10-35, 10-42, 10-64

ADI_DEV_DEBUG macro, 10-55
ADI_DEV_DEVICE data structure, 10-39
ADI_DEV_DEVICE macro, 10-37, 10-39
ADI_DEV_DEVICE_MEMORY macro,

10-10, 10-34

INDEX

I-2 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_EVENT_BUFFER_
PROCESSED event, 10-46

ADI_DEV_EVENT_SUBBUFFER_
PROCESSED event, 10-46

adi_dev.h file, 1-26
Device Manager API, 10-62
memory usage by Device Manager,

10-34
physical driver API, 10-73
PPI driver user code, 1-26

adi_dev_Init function, 1-24, 10-10, 10-39
ADI_DEV_MANAGER macro, 10-37
ADI_DEV_MODE_CHAINED_

LOOPBACK dataflow method,
10-43

ADI_DEV_MODE_CIRCULAR
dataflow method, 10-46

ADI_DEV_NOT_SUPPORTED return
code, 10-59

adi_dev_Open function, 1-21, 10-11,
10-18, 10-39, 10-67

ADI_DEV_PDD_ENTRY_POINT data
type, 10-37

entry point declaration, 10-54
ADI_DEV_PDD_ENTRY_POINT

structure, 10-51
ADI_DEV_PDD_HANDLE value, 10-56
adi_dev_Read function

defined, 1-21
functional description, 10-40
providing buffers to a device, 10-16
reference page, 10-70

ADI_DEV_RESULT_NOT_
SUPPORTED return code, 10-57,
10-58

ADI_DEV_RESULT_SUCCESS return
code, 10-53

adi_dev_Terminate function, 1-24, 10-11,
10-71

adi_dev_Write function
defined, 1-22, 10-9
functional description, 10-41
providing buffers to a device, 10-16
reference page, 10-72

ADI_DMA_2D_TRANSFER data
structure, 6-58

ADI_DMA_2D_TRANSFER data type,
6-10, 6-30

ADI_DMA_BASE_MEMORY macro, 6-5
adi_dma_Buffer function, 6-17, 6-35
ADI_DMA_CHANNEL_HANDLE data

type, 6-57
ADI_DMA_CHANNEL_ID

enumeration, 6-60
ADI_DMA_CHANNEL_MEMORY

macro, 6-5
adi_dma_Circular function, 10-41
adi_dma_Close function, 6-37
ADI_DMA_CMD_GET_TRANSFER_

STATUS command ID, 6-23
ADI_DMA_CMD_SET_STREAMING

command, 6-26
adi_dma_Command() function, 6-64
ADI_DMA_CONFIG_REG field values,

6-63
ADI_DMA_CONFIG_REG_WORD

data structure, 6-59
adi_dma_Control function, 6-22, 6-38
ADI_DMA_CREATEDESCRIPTOR_

ARRAY data structure, 6-59
ADI_DMA_CREATEDESCRIPTOR_

LARGE data structure, 6-59
ADI_DMA_CREATEDESCRIPTOR_

SMALL data structure, 6-60
ADI_DMA_DATA_MODE

enumeration, 6-61
ADI_DMA_DESCRIPTOR_HANDLE

data type, 6-18, 6-57

VisualDSP++ 4.5 Device Drivers and System I-3
Services Manual for Blackfin Processors

INDEX

ADI_DMA_DESCRIPTOR_UNION
data structure, 6-57

ADI_DMA_DI_EN value, 6-63
ADI_DMA_DI_SEL value, 6-63
ADI_DMA_DMA2D value, 6-63
ADI_DMA_EN value, 6-63
ADI_DMA_EVENT enumeration, 6-60
adi_dma_GetMapping function, 6-41
adi_dma.h header file, 6-56, 6-58
adi_dma_Init function, 6-5, 6-42
adi_dma_MemoryClose, 6-43
adi_dma_MemoryCopy2D function, 6-46
adi_dma_MemoryCopy function, 6-44
adi_dma_MemoryOpen function, 6-48
ADI_DMA_MODE_DESCRIPTOR_

LARGE macro, 6-17
ADI_DMA_MODE_DESCRIPTOR_

SMALL macro, 6-21
adi_dma_Open function, 6-18, 6-50
ADI_DMA_PMAP enumeration, 6-61
adi_dma_Queue function, 6-53, 10-41
ADI_DMA_RESULT enumeration result

code, 6-62
adi_dma_SetMapping function, 6-54
ADI_DMA_STREAM_HANDLE data

type, 6-58
ADI_DMA_STREAM_ID enumeration,

6-62
adi_dma_Terminate function, 6-55
ADI_DMA_WDSIZE value, 6-63
ADI_DMA_WNR value, 6-64
adi_ebiu_AdjustSDRAM function, 4-8
ADI_EBIU_CMD_END command, 4-25
ADI_EBIU_CMD_SET_SDRAM_

CDDBG command, 4-25
ADI_EBIU_CMD_SET_SDRAM_

EBUFE command, 4-25
ADI_EBIU_CMD_SET_SDRAM_

FBBRW command, 4-25

ADI_EBIU_CMD_SET_SDRAM_
SCTLE enumeration, 4-32

ADI_EBIU_COMMAND function, 4-25
ADI_EBIU_COMMAND_PAIR data

type, 4-29
adi_ebiu_Control function, 4-9
adi_ebiu_GetConfigSize function, 4-12
adi_ebiu_Init function, 4-2, 4-13
adi_ebiu_LoadConfig function, 4-17
ADI_EBIU_RESULT enumeration, 4-20
adi_ebiu_SaveConfig function, 4-18
ADI_EBIU_SDRAM_BANK_COL_

WIDTH enumeration, 4-30
ADI_EBIU_SDRAM_BANK_SIZE

enumeration, 4-30
ADI_EBIU_SDRAM_BANK_VALUE

function, 4-22
ADI_EBIU_SDRAM_CDDBG

enumeration, 4-36
ADI_EBIU_SDRAM_EBUFE

enumeration, 4-34
ADI_EBIU_SDRAM_EMREN

enumeration, 4-33
ADI_EBIU_SDRAM_ENABLE

enumeration, 4-29
ADI_EBIU_SDRAM_EZKIT

enumeration, 4-29
ADI_EBIU_SDRAM_FBBRW

enumeration, 4-36
ADI_EBIU_SDRAM_MODULE_TYPE

enumeration, 4-31
ADI_EBIU_SDRAM_PASR enumeration,

4-33
ADI_EBIU_SDRAM_PSM enumeration,

4-35
ADI_EBIU_SDRAM_PUPSD

enumeration, 4-35
ADI_EBIU_SDRAM_SRFS enumeration,

4-34

INDEX

I-4 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_TCSR
enumeration, 4-33

ADI_EBIU_SIZEOF_CONFIG macro,
4-12

ADI_EBIU_TIME function, 4-23
ADI_EBIU_TIMING_UNIT

enumeration type, 4-23
ADI_EBIU_TIMING_VALUE function,

4-24
adi_flag_Clear function, 7-15
adi_flag_Clear() function, 7-6
adi_flag_Close function, 7-16
adi_flag_Close() function, 7-5
ADI_FLAG_DIRECTION enumeration,

7-34
ADI_FLAG_EVENT enumeration, 7-33,

7-34
adi_flag.h include file, 7-3, 7-5, 7-31
ADI_FLAG_ID enumeration, 7-31
adi_flag_Init function, 7-17
adi_flag_InstallCallback function, 7-25
adi_flag_InstallCallback() function, 7-7
adi_flag_Open function, 7-19
adi_flag_Open() function, 7-5, 8-4
adi_flag_RemoveCallback function, 7-27
adi_flag_RemoveCallback() function, 7-9
ADI_FLAG_RESULT enumeration, 7-32
adi_flag_ResumeCallbacks function, 7-29
adi_flag_ResumeCallbacks() function, 7-9
adi_flag_Sense function, 7-24
adi_flag_Sense() function, 7-6
adi_flag_SetDirection function, 7-20
adi_flag_SetDirection() function, 7-6
adi_flag_Set function, 7-22
adi_flag_Set() function, 7-6
adi_flag_SetTrigger function, 7-30
adi_flag_SetTrigger() function, 7-9
adi_flag_SuspendCallbacks function, 7-28
adi_flag_SuspendCallbacks() function, 7-9
adi_flag_Terminate function, 7-21

adi_flag_Toggle function, 7-23
adi_flag_Toggle() function, 7-6
ADI_FLAG_TRIGGER enumeration,

7-33
adi_int_CECHook function, 2-6, 2-20
adi_int_CECInit function, 2-18
adi_int_CECUnhook function, 2-8, 2-22
adi_int_ClearIMASKBits function, 2-14,

2-24
adi_int_EnterCriticalRegion function,

2-12, 2-26
adi_int_ExitCriticalRegion function, 2-12,

2-26, 2-28
ADI_INT_HANDLER macro, 2-9
adi_int.h file, 2-10, 2-15
adi_int_Init function, 2-4
ADI_INT_PERIPHERAL_ID

enumeration, 2-9, 2-10
adi_int_ProtectCriticalRegion function,

10-11
ADI_INT_RESULT_NOT_

PROCESSED return code, 2-6
ADI_INT_RESULT_PROCESSED

return code, 2-6
ADI_INT_SECONDARY_MEMORY

macro, 2-5
adi_int_SetIMASKBits function, 2-14,

2-34
adi_int_SICDisable function, 2-10, 2-29
adi_int_SICEnable function, 2-10, 2-30
adi_int_SICGetIVG function, 2-10
adi_int_SICInterruptAsserted function,

2-10, 2-32
adi_int_SICSetIVG function, 2-11, 2-31,

2-33
adi_int_SICWakeup function, 2-11, 2-36
adi_int_Terminate function, 2-5, 2-19
adi_pdd_Close function, 10-60, 10-74
adi_pdd_Control function, 10-40, 10-42,

10-43, 10-56, 10-75

VisualDSP++ 4.5 Device Drivers and System I-5
Services Manual for Blackfin Processors

INDEX

adi_pdd_Open function, 10-45, 10-55,
10-76

adi_pdd_Read function, 10-41, 10-58,
10-78

adi_pdd_Write function, 10-59, 10-79
adi_ports_EnableCAN function, 9-12
adi_ports_EnableGPIO function, 9-15
adi_ports_EnablePPI function, 9-8
adi_ports_EnableSPI function, 9-9
adi_ports_EnableSPORT function, 9-10
adi_ports_EnableTimer function, 9-13
adi_ports_EnableUART function, 9-11
adi_ports.h include file, 9-17
adi_ports_Init function, 9-6
ADI_PORTS_RESULT return codes,

9-17
adi_ports_Terminate function, 9-7
adi_ppi.c file, 10-52
adi_ppi.h file, 1-26, 10-52
adi_pwr_AdjustFreq function, 3-19
adi_pwr_AdjustSpeed, 3-19
ADI_PWR_CLKIN_EZKIT_BF533

macro, 3-74
ADI_PWR_CLKIN_EZKIT_BF537

macro, 3-74
ADI_PWR_CMD_END command, 3-46
ADI_PWR_CMD_FORCE_

DATASHEET_VALUES command,
3-48

ADI_PWR_CMD_GET_PLL_
LOCKCNT command, 3-51

ADI_PWR_CMD_GET_VDDINT
command, 3-49

ADI_PWR_CMD_GET_VR_CANWE
command, 3-50

ADI_PWR_CMD_GET_VR_CKELOW
command, 3-51

ADI_PWR_CMD_GET_VR_
CLKBUFOE command, 3-50

ADI_PWR_CMD_GET_VR_FREQ
command, 3-50

ADI_PWR_CMD_GET_VR_GAIN
command, 3-50

ADI_PWR_CMD_GET_VR_PHYWE
command, 3-50

ADI_PWR_CMD_GET_VR_VLEV,
3-50

ADI_PWR_CMD_GET_VR_WAKE
command, 3-50

ADI_PWR__CMD_PAIR command,
3-46

ADI_PWR_CMD_SET_CCLK_TABLE
command, 3-48

ADI_PWR_CMD_SET_CLKIN
command, 3-47

ADI_PWR_CMD_SET_EZKIT
command, 3-47

ADI_PWR_CMD_SET_INPUT_
DELAY command, 3-46

ADI_PWR_CMD_SET_IVG, 3-48
ADI_PWR_CMD_SET_OUTPUT_

DELAY command, 3-47
ADI_PWR_CMD_SET_PACKAGE

command, 3-47
ADI_PWR_CMD_SET_PC133_

COMPLIANCE, 3-48
ADI_PWR_CMD_SET_PLL_

LOCKCNT command, 3-47
ADI_PWR_CMD_SET_PROC_

VARIANT, 3-47
ADI_PWR_CMD_SET_VDDEXT

command, 3-47
ADI_PWR_CMD_SET_VDDINT

command, 3-47
ADI_PWR_CMD_SET_VR_CANWE

command, 3-49
ADI_PWR_CMD_SET_VR_CKELOW

command, 3-49

INDEX

I-6 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CMD_SET_VR_
CLKBUFOE command, 3-49

ADI_PWR_CMD_SET_VR_FREQ
command, 3-48

ADI_PWR_CMD_SET_VR_GAIN
command, 3-48

ADI_PWR_CMD_SET_VR_PHYWE
command, 3-49

ADI_PWR_CMD_SET_VR_VLEV
command, 3-48

ADI_PWR_CMD_SET_VR_WAKE
command, 3-49

ADI_PWR__CMD_TABLE command,
3-46

ADI_PWR_COMMAND enumeration
type, 3-46

ADI_PWR_COMMAND_PAIR data
type, 3-52

ADI_PWR_COMMAND_PAIR
structure, 3-46

adi_pwr_Control function, 3-21
ADI_PWR_CSEL data type, 3-53
ADI_PWR_DF data type, 3-54
ADI_PWR_EZKIT_BF533_600MHZ

command, 3-55
ADI_PWR_EZKIT_BF533_750MHZ

command, 3-55
ADI_PWR_EZKIT_BF537_600MHZ

command, 3-55
ADI_PWR_EZKIT function, 3-55
adi_pwr_GetConfigSize function, 3-23
adi_pwr_GetFreq function, 3-24
adi_pwr_GetPowerMode function, 3-25
adi_pwr_GetPowerSaving function, 3-26
adi_pwr_Init function, 3-27
ADI_PWR_INPUT_DELAY function,

3-56
adi_pwr_LoadConfig function, 3-33
ADI_PWR_MILLIVOLTS macro, 3-74
ADI_PWR_MODE function, 3-58

ADI_PWR_OUTPUT_DELAY function,
3-57

ADI_PWR_PACKAGE_KIND function,
3-59

ADI_PWR_PACKAGE_PBGA macro,
3-75

ADI_PWR_PCC133_COMPLIANCE
function, 3-60

ADI_PWR_PROC_BF531SBBC400
macro, 3-75

ADI_PWR_PROC_BF531SBBZ400
macro, 3-75

ADI_PWR_PROC_BF531SBST400
macro, 3-75

ADI_PWR_PROC_BF531SBSTZ400
macro, 3-75

ADI_PWR_PROC_BF532SBBC400
macro, 3-75

ADI_PWR_PROC_BF532SBBZ400
macro, 3-75

ADI_PWR_PROC_BF532SBST400
macro, 3-75

ADI_PWR_PROC_BF533SBBZ500
macro, 3-75

ADI_PWR_PROC_BF533SKBCZ600
macro, 3-75

ADI_PWR_PROC_BF534SBBC1Z400
macro, 3-76

ADI_PWR_PROC_BF534SBBC1Z500
macro, 3-76

ADI_PWR_PROC_BF534SBBC2Z400
macro, 3-76

ADI_PWR_PROC_BF534SBBC2Z500
macro, 3-76

ADI_PWR_PROC_BF536SBBC1Z300
macro, 3-76

ADI_PWR_PROC_BF536SBBC1Z400
macro, 3-76

ADI_PWR_PROC_BF536SBBC2Z300
macro, 3-76

VisualDSP++ 4.5 Device Drivers and System I-7
Services Manual for Blackfin Processors

INDEX

ADI_PWR_PROC_BF536SBBC2Z400
macro, 3-76

ADI_PWR_PROC_BF537SBBC1Z500
macro, 3-76

ADI_PWR_PROC_BF537SBBC2Z500
macro, 3-76

ADI_PWR_PROC_BF537SKBC1Z600
macro, 3-75

ADI_PWR_PROC_BF537SKBC2Z600
macro, 3-75

ADI_PWR_PROC_BF537SKBC600
macro, 3-75

ADI_PWR_PROC_KIND function, 3-61
adi_pwr_Reset function, 3-35
ADI_PWR_RESULT function

(enumeration type), 3-62
adi_pwr_SaveConfig function, 3-36
adi_pwr_SetFreq function, 3-37
adi_pwr_SetMaxFreqForVolt function,

3-39
adi_pwr_SetPowerMode function, 3-40
adi_pwr_SetVoltageRegulator function,

3-42
ADI_PWR_SIZEOF_CONFIG macro,

3-23
ADI_PWR_SSEL function, 3-64
ADI_PWR_SUCCESS return code, 3-3
ADI_PWR_VDDEXT function, 3-65
ADI_PWR_VDEXT_EZKIT_BF533

macro, 3-75
ADI_PWR_VDEXT_EZKIT_BF537

macro, 3-75
ADI_PWR_VLEV_DEFAULT macro,

3-74
ADI_PWR_VLEV function, 3-66
ADI_PWR_VLEV_MAX macro, 3-74
ADI_PWR_VLEV_MIN macro, 3-74
ADI_PWR_VOLTS macro, 3-74
ADI_PWR_VR_CANWE function, 3-67

ADI_PWR_VR_CKELOW function,
3-68

ADI_PWR_VR_CLKBUFOE function,
3-69

ADI_PWR_VR_FREQ_DEFAULT
macro, 3-74

ADI_PWR_VR_FREQ function, 3-70
ADI_PWR_VR_FREQ_MAX macro,

3-74
ADI_PWR_VR_FREQ_MIN macro,

3-74
ADI_PWR_VR_GAIN_DEFAULT

macro, 3-74
ADI_PWR_VR_GAIN function, 3-71
ADI_PWR_VR_GAIN_MAX macro,

3-74
ADI_PWR_VR_GAIN_MIN macro, 3-74
ADI_PWR_VR_PHYWE function, 3-72
ADI_PWR_VR_WAKE function, 3-73
adi_tmr_Close function, 8-20
adi_tmr_Close() function, 8-5
adi_tmr_CoreCommand() function, 8-33
adi_tmr_CoreControl function, 8-22
adi_tmr_CoreControl() function, 8-6
ADI_TMR_CREATE_GP_TIMER_

ID(x) macro, 8-31
ADI_TMR_EVENT enumeration, 8-33
adi_tmr_GetPeripheralID function, 8-30
adi_tmr_GetPeripheralID() function, 8-7
adi_tmr_GPCommand() function, 8-35
adi_tmr_GPControl function, 8-24
adi_tmr_GPControl() function, 8-5
adi_tmr_GPGroupEnable function, 8-25
adi_tmr_GPGroupEnable() function, 8-6,

8-32
adi_tmr.h include file, 8-3, 8-4, 8-16
adi_tmr_Init function, 8-17
adi_tmr_Init() function, 8-3
adi_tmr_InstallCallback function, 8-27
adi_tmr_InstallCallback() function, 8-8

INDEX

I-8 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Open function, 8-18
adi_tmr_RemoveCallback function, 8-29
adi_tmr_RemoveCallback() function, 8-9
adi_tmr_Reset function, 8-21
adi_tmr_Reset() function, 8-5
ADI_TMR_RESULT enumeration, 8-32
adi_tmr_Terminate function, 8-19
adi_tmr_Terminate() function, 8-4
adi_tmr_WatchdogCommand() function,

8-34
adi_tmr_WatchdogControl function, 8-23
adi_tmr_WatchdogControl() function, 8-7
AdjustRefreshRate flag, 4-14
API

DCB manager, 5-12
DMA manager, 6-33
EBIU module, 4-6
flag service, 7-14
for device drivers, 1-7, 1-21
interrupt manager, 2-17
power management module, 3-18
timer service, 8-16

application programming interface (API),
see API

asserting an interrupt, 2-32
assigning one-shot buffers, 6-35
auto-refresh command, 4-13

B
bank activate command, 4-13
base memory, 6-5

buffer
assigning to DMA channel, 6-35
filling with inbound data, 10-58
processed flag, 10-59
processed size flag, 10-59
queueing and reception, 10-58
receiving inbound data, 10-78
storing inbound data, 10-40
transmit the data out of, 10-59
transmitting outbound data., 10-79

buffer list, preparing, 10-46
buffers

for inbound data, 10-16
for outbound data, 10-16

C
callback

events, 10-35
executing, 5-2
installing to a specified flag, 7-7
installing to a timer, 8-8
removing, 7-13, 7-27
resuming generation, 7-29
temporarily suspending, 7-28

callback function
adi_dev.h file, 10-35
circular transfer, 6-24
described briefly, 10-18
descriptor transfer, 6-25
Device Manager, 10-7
DMA, 10-45
flag service, 7-6, 7-7
installing, 7-12, 7-25, 8-13, 8-27
introduced, 5-2
memory stream, 6-24
prototype, 5-27
removing, 8-14, 8-29
timer service, 8-8
trigger condition, 7-30

VisualDSP++ 4.5 Device Drivers and System I-9
Services Manual for Blackfin Processors

INDEX

callback functions
deferred, 5-2
deferred execution, 5-4

CAN channel, enabling, 9-12
chained

buffers, 10-14
buffers with loopback, 10-15
dataflow method, 10-14

channel
interrogation, 6-23
memory, 6-5
testing count, 6-5

channel handle, 6-12
circular

dataflow method, 10-13
transfer, 6-24
transfer operating mode, 6-15

circular buffer
adi_dma_Buffer function, 6-35
callback options, 10-36
Device Manager API buffer, 10-9
diagrammed, 10-14

cli() built-in function, 5-11
ClientCallback parameter, 6-51, 10-12
client handle, 6-12
ClientHandle parameter, 10-12
CLKIN input clock frequency, 3-40
codecs, 10-1
code generation toolchain, 10-6
command, configuration, 10-42
command IDs

defined by Device Manager, 10-35
configuration word, specifying frequency of

callbacks, 6-24
Controller Area Network (CAN) interface,

3-67

core clock
divider ratio, 3-19
power management (PM) module, 3-2

core event controller, 2-2, 2-6
core processor, waking up, 2-36
core timer

adi_tmr_CoreControl() function, 8-6
commands, 8-33
configuring, 8-6

core voltage, 3-27
critical code region

interrupt manager, 2-12
protecting, 2-12
removing protect condition, 2-28
setting protective condition, 2-26

critical region
handling with callback functions, 5-10
parameter, 10-11

C run-time model, 1-7
C switch statement, 10-18, 10-42

D
data buffer

types of, 10-9
used with device drivers, 10-36

dataflow
disabling, 10-48
enabling, 10-16, 10-48
enumerations, 10-34
inbound, 10-40
methods, 10-13
outbound, 10-41
starting, 10-16
stopping, 10-71
terminating, 10-18, 10-40

DCBHandle parameter, 10-12

INDEX

I-10 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

DCB manager
API functions, 5-12
executing function calls, 5-2
initializing, 5-17
interfacing with different RTOS, 5-8
macros, 5-26
operation, 5-3
public data types, 5-26
return codes, 5-31
terminating, 5-25

DCB queue server
closing, 5-13
opening, 5-19

deferred callback
deferred callback manager (DCB)

defined, 5-2
how scheduled, 5-4
queue server

configuring, 5-14
service handle, 6-12

deferred callback manager, 5-1
descriptor

array mode, 6-21
chain (large), 6-17
chain (small), 6-21
contents of array element, 6-59
queueing to DMA channel, 6-53

descriptor-based transfers, 6-25
descriptor chain, queueing to DMA

channel, 6-53
device

closing, 10-18, 10-74
configuring, 10-12
enabling/disabling dataflow through,

10-12
opening, 10-11, 10-39
opening for use, 10-55, 10-67
setting configuration parameter, 10-75
shutdown, 10-60

device driver
architecture, 1-22
data buffers for, 10-36
directory and file structure, 1-25
in asynchronous mode, 1-22
in synchronous mode, 1-22
library, linking, 1-28
library, rebuilding, 1-29
model, 10-1, 10-4
on-chip peripherals, 1-27
overview, 1-20
stackable, 10-19
streaming mode, 10-44

device driver API, accessing, 1-26
Device Manager

API, 10-7, 10-33
API calls, 10-37
API functional description, 10-38
asynchronous operating mode, 10-15
buffers, 10-9
code, 10-37
configuation, 10-42
controlling physical device drivers, 10-49
initializing, 1-24, 10-10, 10-39
shutdown procedure, 1-25
static functions, 10-45
summarized, 10-5
supporting clients, 10-5
synchronous mode, 10-43
terminating, 10-11, 10-71
termination function, 1-25

DevNumber parameter, 10-11
DMA

commands, 6-64
memory transfer, 6-48
one-dimensional memory copy, 6-44
one-dimensional transfers, 6-9
two-dimensional memory copy, 6-46
two-dimensional transfers, 6-10, 6-30

DMACallback function, 10-45, 10-46

VisualDSP++ 4.5 Device Drivers and System I-11
Services Manual for Blackfin Processors

INDEX

DMA channel
closing, 6-22, 6-37
configuration, 6-22
controlling, 6-4, 6-38
identifying, 6-41
ID values, 6-60
opening, 6-11, 6-50
specifying, 6-53

DMA channel ID
detecting, 6-28

DMA configuration control register, 6-13,
6-58, 10-46

DMA configuration Control word, 6-59
DMA controller

circular transfer operating mode, 6-16
DMA manager, 6-4
identifying, 6-41
inteface to, 6-2
large descriptor chain mode, 6-17
operating modes, 6-13
single transfer operating mode, 6-13
small descriptor mode, 6-21

DMA manager
API, 6-33
defined, 6-2
initializing, 6-5, 6-42
loopback submode, 6-25
return codes, 6-62
streaming submode, 6-26
terminating, 6-6, 6-55

DMA peripheral map (PMAP) ID, 10-57
DMAx_CONFIG register, field values,

6-63
dynamic power management

power management (PM) module, 3-2
dynamic power management registers,

configuring, 3-21

E
EBIU module

API functions, 4-6
controling the configuration of, 4-25
defined, 4-1
enumerations, 4-19
initialization values, 4-13
initializing, 4-13
public data types, 4-19
return codes, 4-20
setting control values, 4-25

EBIU_SDBCTL register
EBCAW bits, 4-30
EBSZ bits, 4-30
setting, 4-13

EBIU_SDGCTL register
adi_ebiu_AdjustSDRAM function, 4-8
CDDBG bit, 4-36
EBUFE bit, 4-34
EMREN bit, 4-33
FBBRW bit, 4-36
PASR bits, 4-33
PSM bit, 4-35
PUPSD bit, 4-35
SCTLE bit, 4-32
setting, 4-13
SRFS bit, 4-34
TCSR bits, 4-33

EBIU SDRAM registers, configuring, 4-9
EBIU_SDRRC register

adi_ebiu_AdjustSDRAM function, 4-8
adjusting SDRAM refresh rate, 4-14
setting, 4-13

entry point
address, 10-54
into physical device driver, 10-37

enumeration start value, 10-35

INDEX

I-12 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

event
IDs, 10-53
levels of, 2-2
types, 6-60

external
clock oscillator frequency, 3-27
voltage, 3-27, 3-65

external bus interface unit module, see
EBIU module

F
Flag, 7-14
flag

initializing, 7-10
opening, 7-10
operating as a general-purpose I/O pin,

7-19
sensing the value of, 7-12
setting for input, 7-20
setting for output, 7-20
setting input/output direction, 7-11
setting output value, 7-11

flag ID, 7-31
flag IDs, 7-5
flag pins, 7-2
flag service

API, 7-14
callback function, 7-6
callbacks, 7-6
control flag operations, 7-5
controlling flags, 7-2
initializing, 7-4
macros, 7-32
return codes, 7-32
terminating, 7-14
termination, 7-4

flag value, 7-6

G
general-purpose I/O (GPIO)) subsystem,

7-1
general-purpose timer

commands, 8-35
configuring, 8-5, 8-24
defined, 8-5
disable, 8-6
enable, 8-6
enabling or disabling, 8-25

GPIO, enabling, 9-15

H
handle types, used by Device Manager,

10-34
hardware reset, PLL controller, 3-35
hConfig argument, 3-33, 3-36
heat dissipation, 3-59

I
IMASK register

clearing bits in, 2-24
modifying, 2-14
modifying value, 2-14

include files, off-chip peripheral drivers,
1-27

InitialDeviceSettings data item, 10-38
initialization, function, 1-24
initializing

DCB manager, 5-17
Device Manager, 1-24
DMA manager, 6-5
EBIU module, 4-13
interrupt manager, 2-4
power management module, 3-27
using adi_int_Init function, 2-4

integrity implementation, 5-2

VisualDSP++ 4.5 Device Drivers and System I-13
Services Manual for Blackfin Processors

INDEX

interrupt
asserting, 2-11
levels of, 2-2
raised on DMA transfer, 6-3

interrupt handler
C-callable subroutines, 2-8
chain, 2-20
chains, 2-3
defined, 2-3
described, 2-8
primary, 2-20
secondary, 2-20
unhooking for given IVG, 2-22

interrupt manager
API functions, 2-17
defined, 2-2
hooking up particular interrupt handler,

2-20
initialization, 2-4
initializing memory for, 2-18
initializing tables and vectors, 2-18
setting bits in IMASK register, 2-34
termination function, 2-5

interrupt nesting
disabled, 2-20
enabled, 2-20

interrupts
DMA, 6-28
hooking into IVG chain, 6-29
unhooking, 6-29

interrupt vector groups (IVG), 2-2
IVG levels, 2-2

L
lag service, terminating, 7-21
large descriptor

chain, 6-17
contents of, 6-59

libraries, rebuiding, 1-15
linking to the System Services library, 1-13

load mode register command, 4-35
loopback submode, 6-25
low-power dissipation, 3-54

M
macros

creating timer IDs, 8-31
DCB manager, 5-26
Device Manager, 10-34

mapping
a peripheral interrupt source to an IVG

level, 2-31
DMA channels to IVG level, 6-29
DMA channels to peripherals, 6-27
peripheral interrupt source to an IVG

level, 2-33
mapping of channel ID to peripheral, 6-28
memcpy function, 6-3
memory

allocating to Device Manager, 10-34
free, 10-71
initialization, 6-5
provided to Device Manager, 10-10

memory block, initializing, 6-42
memory DMA, 6-5, 6-6, 6-7
memory DMA stream

closing, 6-43
opening for use, 6-48

memory stream
closing, 6-11
controlling, 6-7
identifying, 6-58
opening, 6-8

memory transfers
defined, 6-8
linear, 6-9
two-dimensional, 6-10

memory usage macros
Device Manager, 10-34

INDEX

I-14 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

N
nesting flag, 2-7
NestingFlag parameter, 2-7, 2-20

O
on-board peripherals, 10-1
on-chip peripherals, 6-61
one-dimensional

linear memory copy, 6-44
memory transfers, 6-9

one-shot buffers, 6-35
operating environment, 1-14

P
parallel peripheral interface (PPI), 1-26,

10-1
pBuffer parameter, 10-41
PDDCallback function, 10-45
pDeviceHandle parameter, 10-12
pEntryPoint parameter, 10-11
peripheral DMA

adi_dev_Read function, 10-41
adi_pdd_Read function, 10-58
described, 6-6

peripheral ID
defined, 8-7
identifying, 8-30

peripheral interrupts, 2-2
peripheral timer, 8-7

physical device driver
API, 10-73
API description, 10-51
custom-defined error codes, 10-53
defined, 10-5
design overview, 10-49
entry point, 10-37, 10-54
extensions, 10-52
handles, 10-55
shutdown procedure, 1-25
source code, 10-54

PLL controller
resetting, 3-33
reset to hardware reset values, 3-35

PLL Control register
DF bit, 3-54
input delay bit, 3-56
output delay bit, 3-57

PLL_DIV register
adi_pwr_AdjustFreq function, 3-19
adi_pwr_SetFreq function, 3-37
setting core clock divider bit field, 3-53
setting system clock divider bit field,

3-64
PLL input divider, 3-37
PLL_LOCKCNT register, 3-47
PLL_STAT register, 3-47
port control manager

assigning programmable flag pins to
functions, 9-2

defined, 9-2
enumeration types, 9-17
initializing, 9-6
return codes, 9-17
terminating, 9-7

port control registers, 7-3

VisualDSP++ 4.5 Device Drivers and System I-15
Services Manual for Blackfin Processors

INDEX

power management module
API functions, 3-18
defined, 3-1
enabling, 4-2
enumerations, 3-46
initialization values, 3-27
initializing, 3-27
macros, 3-74
public data types, 3-46
return codes, 3-62

power mode
current, 3-25
defining, 3-58

power modes
active, 3-40
deep sleep, 3-40
full-on, 3-40
hibernate, 3-40
processor, 3-40
sleep, 3-40

power saving value
for the current PLL and voltage regulator

settings, 3-26
PPDCallback function, 10-53
PPI channel, enabling, 9-8
PPIEntryPoint variable, 10-54
precharge all command, 4-35
precharge command, 4-13
PrepareBufferList static function, 10-41,

10-46
configuring DMA configuration control

register, 10-47
processor power mode, setting, 3-40, 3-58
processor variants, 1-12, 1-27
programmable flag, 7-1
programmable flag service

defined, 7-1
initialization, 7-4
initializing memory for, 7-17

Q
queue, removing entries in, 5-24

R
real-time clock (RTC), 3-40
real-time operating system (RTOS), 5-2,

10-5
rebuilding libraries, using other

development toolsets, 1-15
refresh rate, 4-2
requested frequency, 3-37
result codes, timer service, 8-32
return codes

DCB manager, 5-31
Device Manager, 10-35
DMA manager, 6-62
EBIU module, 4-20
flag service, 7-32
port control manager, 9-17
power management module, 3-62

revision number references, 1-14
RTI instruction, 2-8
RTOS, 10-5
RTS return function, 2-8

S
SDRAM

configuration, 4-13
enabling self-refresh, 4-34
low-powe, 4-27
low-power (2.5V), 4-33
settings, 3-2
using low power (2.5V), 4-14

SDRAM controller
adjusting, 4-2
EBIU module, 4-1

SDRAM control registers, timing values of
registers, 4-24

SDRAM refresh rate, 4-14

INDEX

I-16 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

self-refresh command, 4-13
services.h file, 1-12, 1-26
SetDataflow static function, 10-44, 10-48
SIC functions, 2-9
SIC IMASK register, 2-10
SIC interrupt assignment register, 2-10,

2-11
SIC interrupt wakeup register, 2-11
SIC Wakeup register, 2-36
__SILICON_REVISION__ macro, 1-16,

1-30
silicon revision macro

rebuilding libraries, 1-30
see also __SILICON_REVISION__

macro
silicon revisions, 1-29
single transfer operating mode, 6-13
-si-revision compiler switch, 1-16, 1-30
small descriptor

chain, 6-21
contents of, 6-60

source files, driver, 1-27
SPI channel, enabling, 9-9
SPORT channel, enabling, 9-10
SPORTs, 10-1
stackable drivers, 10-19
static data, 10-38
static functions

declaring, 10-38
within Device Manager, 10-45

sti() built-in function, 5-11
stream ID, 6-8

streaming, mode of device driver, 10-44
streaming submode, 6-26
system clock

divider ratio, 3-19
setting, 3-2

system interrupt assignment register, 2-31
system interrupt controller (SIC)

defined, 2-2
disabling an interrupt, 2-29
enabling an interrupt, 2-30
functions, 2-9

system interrupt controller Wakeup
register, 2-36

system interrupts, 2-2
System Services

device driver components, 10-5
directory and file structure, 1-11
initializing, 10-18

System Services library
linking to, 1-13
list of services, 1-3
rebuilding, 1-15
special conditions, 1-14

T
ter, 3-42
termination function

adi_dev_Terminate, 1-24
interrupt manager, 2-5

the adi_dma_Queue() function, 6-18
ThreadX implementation, 5-2

VisualDSP++ 4.5 Device Drivers and System I-17
Services Manual for Blackfin Processors

INDEX

timer
close and shut down, 8-5
configuring, 8-11
disabling, 8-12
enabling, 8-12
identifying peripheral ID for, 8-30
initializing, 8-10
opening, 8-10
opening for use, 8-18
removing a callback, 8-9
removing callbacks, 8-14
resetting, 8-5
resetting to default settings, 8-4
return codes, 8-32
timerID, 8-31
wakeup flag, 8-8

Timer clock inputs, 9-13
timer ID, 8-4
timerID, 8-31
timerpins, 8-2
timer registers, resetting to power-up

values, 8-21
timers

controlling, 8-2
general-purpose, 8-5

timer service
API, 8-16
callback functions, 8-7
defined, 8-1
initialization, 8-3
initializing, 8-17
macros, 8-31, 8-32
terminating, 8-15, 8-19
termination, 8-4

transfer, completing, 6-23
trigger type, 7-8
two-dimensional

DMA, 6-30
memory copy, 6-46
memory transfers, 6-10

U
UART channel, enabling, 9-11

V
VDDEXT external voltage, 3-65
VDK implementation, 5-2
void * value, 2-21, 2-23
voltage core oscillator frequencies, 3-24
voltage regulator

acceptable switching frequency values,
3-70

acceptable voltage levels for, 3-66
resetting, 3-33

voltage regulator control register
adi_pwr_SetVoltageRegulator function,

3-42
CANWE bit, 3-67
CKELOW bit, 3-68
CLKBUFOE bit, 3-69
PHYWE bit, 3-72
powerdown, 3-73
setting, 3-39
WAKE bit, 3-73

VR_CTL register, 3-39, 3-42

W
WaitFlag argument, 6-37
wakeup flag, 7-7
watchdog timer

commands, 8-34
configuring, 8-7, 8-23
functions, 8-6

write command, 4-13

I-18 VisualDSP++ 4.5 Device Drivers and System
Services Manual for Blackfin Processors

	Contents
	Purpose of This Manual xxv
	Intended Audience xxv
	Manual Contents Description xxvi
	Technical or Customer Support xxvii
	Supported Processors xxviii
	Product Information xxviii
	MyAnalog.com xxviii
	Processor Product Information xxix
	Related Documents xxix
	Online Technical Documentation xxx
	Accessing Documentation From the Web xxx
	Viewing Help Files xxxi

	Printed Manuals xxxi
	VisualDSP++ Documentation Set xxxi
	Hardware Tools Manuals xxxii
	Processor Manuals xxxii
	Data Sheets xxxii

	Notation Conventions xxxii
	Introduction
	System Services Overview 1-2
	General 1-3
	Application Interface 1-7
	Dependencies 1-8
	Initialization 1-10
	Termination 1-10
	System Services Directory and File Structure 1-11
	Accessing the System Services API 1-11
	Linking in the System Services Library 1-13
	Rebuilding the System Services Library 1-15
	Examples 1-16
	Dual Core Considerations 1-16

	RTOS Considerations 1-17
	Interoperability of System Services with VDK 1-17
	Deployment of Services within a multi-threaded application 1-19

	Device Driver Overview 1-20
	Application Interface 1-21
	Device Driver Architecture 1-22
	Interaction with System Services 1-24

	Initialization 1-24
	Termination 1-24
	Device Driver Directory and File Structure 1-25
	Accessing the Device Driver API 1-26
	Device Driver File Locations 1-27
	Linking in the Device Driver Library 1-28
	Rebuilding the Device Driver Library 1-29
	Examples on Distribution 1-31

	Interrupt Manager
	Introduction 2-2
	Interrupt Manager Initialization 2-4
	Interrupt Manager Termination 2-5
	Core Event Controller Functions 2-6
	adi_int_CECHook() Function 2-6
	adi_int_CECUnhook() Function 2-8
	Interrupt Handlers 2-8

	System Interrupt Controller Functions 2-9
	adi_int_SICDisable() 2-10
	adi_int_SICEnable() 2-10
	adi_int_SICGetIVG() 2-10
	adi_int_SICInterruptAsserted() 2-10
	adi_int_SICSetIVG() 2-11
	adi_int_SICWakeup() 2-11

	Protecting Critical Code Regions 2-12
	Modifying IMASK 2-14
	Examples 2-15
	File Structure 2-15
	Notation Conventions 2-17
	adi_int_Init 2-18
	adi_int_Terminate 2-19
	adi_int_CECHook 2-20
	adi_int_CECUnhook 2-22
	adi_int_ClearIMaskBits 2-24
	adi_int_EnterCriticalRegion 2-26
	adi_int_ExitCriticalRegion 2-28
	adi_int_SICDisable 2-29
	adi_int_SICEnable 2-30
	adi_int_SICGetIVG 2-31
	adi_int_SICInterruptAsserted 2-32
	adi_int_SICSetIVG 2-33
	adi_int_SetIMaskBits 2-34
	adi_int_SICWakeup 2-36

	Power Management Module
	Introduction 3-2
	PM Module Operation - Getting Started 3-3
	Dual Core Considerations 3-7
	Simple Method of Making it Work 3-7
	Synchronization Requirement 3-8
	Running Applications on One Core Only 3-9
	Running Applications on Both Cores 3-10
	Synchronization between Cores 3-11
	The Built-in Lock variable and Linking Considerations 3-12

	SDRAM Initialization Prior to Loading an Executable 3-15
	Notation Conventions 3-18
	adi_pwr_AdjustFreq 3-19
	adi_pwr_Control 3-21
	adi_pwr_GetConfigSize 3-23
	adi_pwr_GetFreq 3-24
	adi_pwr_GetPowerMode 3-25
	adi_pwr_GetPowerSaving 3-26
	adi_pwr_Init 3-27
	adi_pwr_LoadConfig 3-33
	adi_pwr_Reset 3-35
	adi_pwr_SaveConfig 3-36
	adi_pwr_SetFreq 3-37
	adi_pwr_SetMaxFreqForVolt 3-39
	adi_pwr_SetPowerMode 3-40
	adi_pwr_SetVoltageRegulator 3-42
	ADI_PWR_COMMAND 3-46
	ADI_PWR_COMMAND_PAIR 3-52
	ADI_PWR_CSEL 3-53
	ADI_PWR_DF 3-54
	ADI_PWR_EZKIT 3-55
	ADI_PWR_INPUT_DELAY 3-56
	ADI_PWR_OUTPUT_DELAY 3-57
	ADI_PWR_MODE 3-58
	ADI_PWR_PACKAGE_KIND 3-59
	ADI_PWR_PCC133_COMPLIANCE 3-60
	ADI_PWR_PROC_KIND 3-61
	ADI_PWR_RESULT 3-62
	ADI_PWR_SSEL 3-64
	ADI_PWR_VDDEXT 3-65
	ADI_PWR_VLEV 3-66
	ADI_PWR_VR_CANWE 3-67
	ADI_PWR_VR_CKELOW 3-68
	ADI_PWR_VR_CLKBUFOE 3-69
	ADI_PWR_VR_FREQ 3-70
	ADI_PWR_VR_GAIN 3-71
	ADI_PWR_VR_PHYWE 3-72
	ADI_PWR_VR_WAKE 3-73

	PM Module Macros 3-74

	External Bus Interface Unit Module
	Introduction 4-2
	Using the EBIU Module 4-3
	Notation Conventions 4-6
	adi_ebiu_AdjustSDRAM 4-8
	adi_ebiu_Control 4-9
	adi_ebiu_GetConfigSize 4-12
	adi_ebiu_Init 4-13
	adi_ebiu_LoadConfig 4-17
	adi_ebiu_SaveConfig 4-18
	ADI_EBIU_RESULT 4-20
	ADI_EBIU_SDRAM_BANK_VALUE 4-22
	ADI_EBIU_TIME 4-23
	ADI_EBIU_TIMING_VALUE 4-24

	Setting Control Values in the EBIU Module 4-25
	ADI_EBIU_COMMAND 4-25
	ADI_EBIU_COMMAND_PAIR 4-29
	Command Value Enumerations 4-29
	ADI_EBIU_SDRAM_EZKIT 4-29
	ADI_EBIU_SDRAM_ENABLE 4-29
	ADI_EBIU_SDRAM_BANK_SIZE 4-30
	ADI_EBIU_SDRAM_BANK_COL_WIDTH 4-30
	ADI_EBIU_SDRAM_MODULE_TYPE 4-31
	ADI_EBIU_CMD_SET_SDRAM_SCTLE 4-32
	ADI_EBIU_SDRAM_EMREN 4-33
	ADI_EBIU_SDRAM_PASR 4-33
	ADI_EBIU_SDRAM_TCSR 4-33
	ADI_EBIU_SDRAM_SRFS 4-34
	ADI_EBIU_SDRAM_EBUFE 4-34
	ADI_EBIU_SDRAM_PUPSD 4-35
	ADI_EBIU_SDRAM_PSM 4-35
	ADI_EBIU_SDRAM_FBBRW 4-36
	ADI_EBIU_SDRAM_CDDBG 4-36

	Deferred Callback Manager
	Introduction 5-2
	Using the Deferred Callback Manager 5-3
	Interoperability With an RTOS 5-8
	adi_dcb_Forward 5-8
	adi_dcb_RegisterISR 5-10
	Handling Critical Regions within Callbacks 5-10
	Notation Conventions 5-12
	adi_dcb_Close 5-13
	adi_dcb_Control 5-14
	adi_dcb_Init 5-17
	adi_dcb_Open 5-19
	adi_dcb_Post 5-21
	adi_dcb_Remove 5-24
	adi_dcb_Terminate 5-25
	ADI_DCB_CALLBACK_FN 5-27
	ADI_DCB_COMMAND_PAIR 5-28
	ADI_DCB_COMMAND 5-29
	ADI_DCB_ENTRY_HDR 5-30
	ADI_DCB_RESULT 5-31

	DMA Manager
	Introduction 6-2
	Theory of Operation 6-4
	Overview 6-4
	DMA Manager Initialization 6-5
	DMA Manager Termination 6-6
	Memory DMA and Peripheral DMA 6-6
	Controlling Memory Streams 6-7
	Opening Memory Streams 6-8
	Memory Transfers 6-8
	One-Dimensional Transfers (Linear Transfers) 6-9
	Two-Dimensional Transfers 6-10

	Closing Memory Streams 6-11

	Controlling DMA Channels 6-11
	Opening DMA Channels 6-11
	Single Transfers 6-13
	Circular Transfers 6-15
	Large Descriptor Chaining Model 6-17
	Small Descriptor Chaining Model 6-21
	Arrays of Descriptors 6-21

	Configuring a DMA Channel 6-22
	Closing a DMA Channel 6-22

	Transfer Completions 6-23
	Polling 6-23
	Callbacks 6-23
	Memory Stream Callbacks 6-24
	Circular Transfer Callbacks 6-24
	Descriptor Callbacks 6-25

	Descriptor-Based Sub-Modes 6-25
	Loopback Sub-Mode 6-25
	Streaming Sub-Mode 6-26

	DMA Channel to Peripheral Mapping 6-27
	Sensing a Mapping 6-28
	Setting a Mapping 6-28

	Interrupts 6-28
	Hooking Interrupts 6-29
	Unhooking Interrupts 6-29

	Two-Dimensional DMA 6-30
	Notation Conventions 6-33
	adi_dma_Buffer 6-35
	adi_dma_Close 6-37
	adi_dma_Control 6-38
	adi_dma_GetMapping 6-41
	adi_dma_Init 6-42
	adi_dma_MemoryClose 6-43
	adi_dma_MemoryCopy 6-44
	adi_dma_MemoryCopy2D 6-46
	adi_dma_MemoryOpen 6-48
	adi_dma_Open 6-50
	adi_dma_Queue 6-53
	adi_dma_SetMapping 6-54
	adi_dma_Terminate 6-55

	Public Data Structures, Enumerations and Macros 6-56
	Data Types 6-57
	ADI_DMA_CHANNEL_HANDLE 6-57
	ADI_DMA_DESCRIPTOR_UNION/ADI_DMA_DESCRIPTOR_ HANDLE 6-57
	ADI_DMA_STREAM_HANDLE 6-58

	Data Structures 6-58
	ADI_DMA_2D_TRANSFER 6-58
	ADI_DMA_CONFIG_REG 6-59
	ADI_DMA_DESCRIPTOR_ARRAY 6-59
	ADI_DMA_DESCRIPTOR_LARGE 6-59
	ADI_DMA_DESCRIPTOR_SMALL 6-60

	General Enumerations 6-60
	ADI_DMA_CHANNEL_ID 6-60
	ADI_DMA_EVENT 6-60
	ADI_DMA_MODE 6-61
	ADI_DMA_PMAP 6-61
	ADI_DMA_RESULT 6-62
	ADI_DMA_STREAM_ID 6-62

	ADI_DMA_CONFIG_REG Field Values 6-63
	ADI_DMA_DMA2D 6-63
	ADI_DMA_DI_EN 6-63
	ADI_DMA_DI_SEL 6-63
	ADI_DMA_EN 6-63
	ADI_DMA_WDSIZE 6-63
	ADI_DMA_WNR 6-64

	DMA Commands 6-64

	Programmable Flag Service
	Introduction 7-2
	Operation 7-3
	Initialization 7-4
	Termination 7-4
	Flag IDs 7-5
	Flag Control Functions 7-5
	adi_flag_Open() 7-5
	adi_flag_Close() 7-5
	adi_flag_SetDirection() 7-6
	adi_flag_Set() 7-6
	adi_flag_Clear() 7-6
	adi_flag_Toggle() 7-6
	adi_flag_Sense() 7-6

	Callbacks 7-6
	adi_flag_InstallCallback() 7-7
	adi_flag_RemoveCallback() 7-9
	adi_flag_SuspendCallbacks() 7-9
	adi_flag_ResumeCallbacks() 7-9
	adi_flag_SetTrigger() 7-9

	Coding Example 7-9
	Initialization 7-10
	Opening a Flag 7-10
	Setting the Direction 7-11
	Controlling an Output Flag 7-11
	Sensing the Value of a Flag 7-12
	Installing a Callback Function 7-12
	Suspending and Resuming Callbacks 7-13
	Removing Callbacks 7-13
	Termination 7-14

	Notation Conventions 7-14
	adi_flag_Clear 7-15
	adi_flag_Close 7-16
	adi_flag_Init 7-17
	adi_flag_Open 7-19
	adi_flag_SetDirection 7-20
	adi_flag_Terminate 7-21
	adi_flag_Set 7-22
	adi_flag_Toggle 7-23
	adi_flag_Sense 7-24
	adi_flag_InstallCallback 7-25
	adi_flag_RemoveCallback 7-27
	adi_flag_SuspendCallbacks 7-28
	adi_flag_ResumeCallbacks 7-29
	adi_flag_SetTrigger 7-30

	Public Data Types, Enumerations and Macros 7-31
	ADI_FLAG_ID 7-31
	Associated Macros 7-32

	ADI_FLAG_RESULT 7-32
	ADI_FLAG_EVENT 7-33
	ADI_FLAG_TRIGGER 7-33
	ADI_FLAG_TRIGGER 7-34
	ADI_FLAG_EVENT 7-34

	Timer Service
	Introduction 8-2
	Operation 8-3
	Initialization 8-3
	Termination 8-4
	Timer IDs 8-4
	Basic Timer Functions 8-4
	adi_tmr_Open() 8-4
	adi_tmr_Close() 8-5
	adi_tmr_Reset() 8-5

	General-Purpose Timer Functions 8-5
	adi_tmr_GPControl() 8-5
	adi_tmr_GPGroupEnable() 8-6

	Core Timer Functions 8-6
	adi_tmr_CoreControl() 8-6

	Watchdog Timer Functions 8-6
	adi_tmr_WatchdogControl() 8-7

	Peripheral Timer Functions 8-7
	adi_tmr_GetPeripheralID() 8-7

	Callbacks 8-7
	adi_tmr_InstallCallback() 8-8
	adi_tmr_RemoveCallback() 8-9

	Coding Example 8-10
	Initialization 8-10
	Opening a Timer 8-10
	Configuring a Timer 8-11
	Enabling and Disabling Timers 8-12
	Installing a Callback Function 8-13
	Removing Callbacks 8-14
	Termination 8-15

	Notation Conventions 8-16
	adi_tmr_Init 8-17
	adi_tmr_Open 8-18
	adi_tmr_Terminate 8-19
	adi_tmr_Close 8-20
	adi_tmr_Reset 8-21
	adi_tmr_CoreControl 8-22
	adi_tmr_WatchdogControl 8-23
	adi_tmr_GPControl 8-24
	adi_tmr_GPGroupEnable 8-25
	adi_tmr_InstallCallback 8-27
	adi_tmr_RemoveCallback 8-29
	adi_tmr_GetPeripheralID 8-30

	Public Data Types, Enumerations and Macros 8-31
	Timer IDs 8-31
	Associated Macros 8-32

	ADI_TMR_RESULT 8-32
	ADI_TMR_EVENT 8-33
	ADI_TMR_CORE_CMD 8-33
	ADI_TMR_WDOG_CMD 8-34
	ADI_TMR_GP_CMD 8-35

	Port Control Service
	Introduction 9-2
	Using the Port Control Manager 9-2
	Notation Conventions 9-5
	adi_ports_Init 9-6
	adi_ports_Terminate 9-7
	adi_ports_EnablePPI 9-8
	adi_ports_EnableSPI 9-9
	adi_ports_EnableSPORT 9-10
	adi_ports_EnableUART 9-11
	adi_ports_EnableCAN 9-12
	adi_ports_EnableTimer 9-13
	adi_ports_EnableGPIO 9-15

	Public Data Types, Enumerations and Macros 9-17
	ADI_PORTS_RESULT 9-17
	Directive Enumeration Values 9-17

	Device Driver Manager
	Device Driver Model Overview 10-4
	Using the Device Manager 10-7
	Device Manager Overview 10-7
	Theory of Operation 10-8
	Data 10-9
	Initializing the Device Manager 10-10
	Device Manager Termination 10-11
	Opening a Device 10-11
	Configuring a Device 10-12
	Dataflow Method 10-13
	Enabling Dataflow 10-16

	Providing Buffers to a Device 10-16
	Closing a Device 10-18
	Callbacks 10-18
	Initialization Sequence 10-18
	Stackable Drivers 10-19

	Deciding on a Dataflow Method 10-20
	Chained without Loopback 10-20
	Chained with Loopback 10-20
	Circular 10-20
	Sequential With and Without Loopback 10-21

	Creating One Dimensional Buffers 10-21
	Creating Two Dimensional Buffers 10-25
	Creating Circular Buffers 10-28
	Creating One Dimensional Sequential Buffers 10-30
	Device Manager Design 10-32
	Device Manager API Description 10-33
	Memory Usage Macros 10-34
	Handles 10-34
	Dataflow Enumerations 10-34
	Command IDs 10-35
	Callback Events 10-35
	Return Codes 10-35
	Circular Buffer Callback Options 10-36
	Buffer Data Types 10-36
	Physical Driver Entry Point 10-37
	API Function Definitions 10-37

	Device Manager Code 10-37
	Data Structures 10-37
	Static Data 10-38
	Static Function Declarations 10-38
	API Functional Description 10-38
	adi_dev_Init Functional Description 10-39
	adi_dev_Open Functional Description 10-39
	adi_dev_Close Functional Description 10-40
	adi_dev_Read Functional Description 10-40
	adi_dev_Write Functional Description 10-41
	adi_dev_Control Functional Description 10-42

	Static Functions 10-45
	PDDCallback 10-45
	DMACallback 10-45
	PrepareBufferList 10-46
	SetDataflow 10-48

	Physical Driver Design 10-49
	Physical Driver Design Overview 10-49
	Physical Device Driver API Description 10-51
	Physical Driver Include File (“xxx.h”) 10-52
	Extensible Definitions 10-52
	ADI_DEV_PDD_ENTRY_POINT 10-54

	Physical Driver Source (“xxx.c”) 10-54
	adi_pdd_Open Functional Description 10-55
	adi_pdd_Control Functional Description 10-56
	adi_pdd_Read Functional Description 10-58
	adi_pdd_Write Functional Description 10-59
	adi_pdd_Close Functional Description 10-60

	Notation Conventions 10-62
	adi_dev_Close 10-63
	adi_dev_Control 10-64
	adi_dev_Init 10-65
	adi_dev_Open 10-67
	adi_dev_Read 10-70
	adi_dev_Terminate 10-71
	adi_dev_Write 10-72

	Notation Conventions 10-73
	adi_pdd_Close 10-74
	adi_pdd_Control 10-75
	adi_pdd_Open 10-76
	adi_pdd_Read 10-78
	adi_pdd_Write 10-79

	Examples 10-80

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents Description
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From the Web
	Viewing Help Files

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	System Services Overview
	General
	Application Interface
	Dependencies
	Initialization
	Termination
	System Services Directory and File Structure
	Accessing the System Services API
	Linking in the System Services Library
	Rebuilding the System Services Library
	Examples
	Dual Core Considerations

	RTOS Considerations
	Interoperability of System Services with VDK
	Deployment of Services within a multi-threaded application

	Device Driver Overview
	Application Interface
	Device Driver Architecture
	Interaction with System Services

	Initialization
	Termination
	Device Driver Directory and File Structure
	Accessing the Device Driver API
	Device Driver File Locations
	Linking in the Device Driver Library
	Rebuilding the Device Driver Library
	Examples on Distribution

	2 Interrupt Manager
	Introduction
	Interrupt Manager Initialization
	Interrupt Manager Termination
	Core Event Controller Functions
	adi_int_CECHook() Function
	adi_int_CECUnhook() Function
	Interrupt Handlers

	System Interrupt Controller Functions
	adi_int_SICDisable()
	adi_int_SICEnable()
	adi_int_SICGetIVG()
	adi_int_SICInterruptAsserted()
	adi_int_SICSetIVG()
	adi_int_SICWakeup()

	Protecting Critical Code Regions
	Modifying IMASK
	Examples
	File Structure
	Interrupt Manager API Reference
	Notation Conventions

	adi_int_Init
	adi_int_Terminate
	adi_int_CECHook
	adi_int_CECUnhook
	adi_int_ClearIMaskBits
	adi_int_EnterCriticalRegion
	adi_int_ExitCriticalRegion
	adi_int_SICDisable
	adi_int_SICEnable
	adi_int_SICGetIVG
	adi_int_SICInterruptAsserted
	adi_int_SICSetIVG
	adi_int_SetIMaskBits
	adi_int_SICWakeup

	3 Power Management Module
	Introduction
	PM Module Operation - Getting Started
	Dual Core Considerations
	Simple Method of Making it Work
	Synchronization Requirement
	Running Applications on One Core Only
	Running Applications on Both Cores
	Synchronization between Cores
	The Built-in Lock variable and Linking Considerations

	SDRAM Initialization Prior to Loading an Executable
	Power Management API Reference
	Notation Conventions

	adi_pwr_AdjustFreq
	adi_pwr_Control
	adi_pwr_GetConfigSize
	adi_pwr_GetFreq
	adi_pwr_GetPowerMode
	adi_pwr_GetPowerSaving
	adi_pwr_Init
	adi_pwr_LoadConfig
	adi_pwr_Reset
	adi_pwr_SaveConfig
	adi_pwr_SetFreq
	adi_pwr_SetMaxFreqForVolt
	adi_pwr_SetPowerMode
	adi_pwr_SetVoltageRegulator
	Public Data Types and Enumerations
	ADI_PWR_COMMAND
	ADI_PWR_COMMAND_PAIR
	ADI_PWR_CSEL
	ADI_PWR_DF
	ADI_PWR_EZKIT
	ADI_PWR_INPUT_DELAY
	ADI_PWR_OUTPUT_DELAY
	ADI_PWR_MODE
	ADI_PWR_PACKAGE_KIND
	ADI_PWR_PCC133_COMPLIANCE
	ADI_PWR_PROC_KIND
	ADI_PWR_RESULT
	ADI_PWR_SSEL
	ADI_PWR_VDDEXT
	ADI_PWR_VLEV
	ADI_PWR_VR_CANWE
	ADI_PWR_VR_CKELOW
	ADI_PWR_VR_CLKBUFOE
	ADI_PWR_VR_FREQ
	ADI_PWR_VR_GAIN
	ADI_PWR_VR_PHYWE
	ADI_PWR_VR_WAKE
	PM Module Macros

	4 External Bus Interface Unit Module
	Introduction
	Using the EBIU Module
	EBIU API Reference
	Notation Conventions

	adi_ebiu_AdjustSDRAM
	adi_ebiu_Control
	adi_ebiu_GetConfigSize
	adi_ebiu_Init
	adi_ebiu_LoadConfig
	adi_ebiu_SaveConfig
	Public Data Types and Enumerations
	ADI_EBIU_RESULT
	ADI_EBIU_SDRAM_BANK_VALUE
	ADI_EBIU_TIME
	ADI_EBIU_TIMING_VALUE
	Setting Control Values in the EBIU Module
	ADI_EBIU_COMMAND
	ADI_EBIU_COMMAND_PAIR
	Command Value Enumerations
	ADI_EBIU_SDRAM_EZKIT
	ADI_EBIU_SDRAM_ENABLE
	ADI_EBIU_SDRAM_BANK_SIZE
	ADI_EBIU_SDRAM_BANK_COL_WIDTH
	ADI_EBIU_SDRAM_MODULE_TYPE
	ADI_EBIU_CMD_SET_SDRAM_SCTLE
	ADI_EBIU_SDRAM_EMREN
	ADI_EBIU_SDRAM_PASR
	ADI_EBIU_SDRAM_TCSR
	ADI_EBIU_SDRAM_SRFS
	ADI_EBIU_SDRAM_EBUFE
	ADI_EBIU_SDRAM_PUPSD
	ADI_EBIU_SDRAM_PSM
	ADI_EBIU_SDRAM_FBBRW
	ADI_EBIU_SDRAM_CDDBG

	5 Deferred Callback Manager
	Introduction
	Using the Deferred Callback Manager
	Interoperability With an RTOS
	adi_dcb_Forward
	adi_dcb_RegisterISR
	Handling Critical Regions within Callbacks

	DCB Manager API Reference
	Notation Conventions

	adi_dcb_Close
	adi_dcb_Control
	adi_dcb_Init
	adi_dcb_Open
	adi_dcb_Post
	adi_dcb_Remove
	adi_dcb_Terminate
	Public Data Types and Macros
	ADI_DCB_CALLBACK_FN
	ADI_DCB_COMMAND_PAIR
	ADI_DCB_COMMAND
	ADI_DCB_ENTRY_HDR
	ADI_DCB_RESULT

	6 DMA Manager
	Introduction
	Theory of Operation
	Overview
	DMA Manager Initialization
	DMA Manager Termination
	Memory DMA and Peripheral DMA
	Controlling Memory Streams
	Opening Memory Streams
	Memory Transfers
	Closing Memory Streams

	Controlling DMA Channels
	Opening DMA Channels
	Configuring a DMA Channel
	Closing a DMA Channel

	Transfer Completions
	Polling
	Callbacks

	Descriptor-Based Sub-Modes
	Loopback Sub-Mode
	Streaming Sub-Mode

	DMA Channel to Peripheral Mapping
	Sensing a Mapping
	Setting a Mapping

	Interrupts
	Hooking Interrupts
	Unhooking Interrupts

	Two-Dimensional DMA

	DMA manager API Reference
	Notation Conventions

	adi_dma_Buffer
	adi_dma_Close
	adi_dma_Control
	adi_dma_GetMapping
	adi_dma_Init
	adi_dma_MemoryClose
	adi_dma_MemoryCopy
	adi_dma_MemoryCopy2D
	adi_dma_MemoryOpen
	adi_dma_Open
	adi_dma_Queue
	adi_dma_SetMapping
	adi_dma_Terminate
	Public Data Structures, Enumerations and Macros
	Data Types
	ADI_DMA_CHANNEL_HANDLE
	ADI_DMA_DESCRIPTOR_UNION/ADI_DMA_DESCRIPTOR_HAND LE
	ADI_DMA_STREAM_HANDLE

	Data Structures
	ADI_DMA_2D_TRANSFER
	ADI_DMA_CONFIG_REG
	ADI_DMA_DESCRIPTOR_ARRAY
	ADI_DMA_DESCRIPTOR_LARGE
	ADI_DMA_DESCRIPTOR_SMALL

	General Enumerations
	ADI_DMA_CHANNEL_ID
	ADI_DMA_EVENT
	ADI_DMA_MODE
	ADI_DMA_PMAP
	ADI_DMA_RESULT
	ADI_DMA_STREAM_ID

	ADI_DMA_CONFIG_REG Field Values
	ADI_DMA_DMA2D
	ADI_DMA_DI_EN
	ADI_DMA_DI_SEL
	ADI_DMA_EN
	ADI_DMA_WDSIZE
	ADI_DMA_WNR

	DMA Commands

	7 Programmable Flag Service
	Introduction
	Operation
	Initialization
	Termination
	Flag IDs
	Flag Control Functions
	adi_flag_Open()
	adi_flag_Close()
	adi_flag_SetDirection()
	adi_flag_Set()
	adi_flag_Clear()
	adi_flag_Toggle()
	adi_flag_Sense()

	Callbacks
	adi_flag_InstallCallback()
	adi_flag_RemoveCallback()
	adi_flag_SuspendCallbacks()
	adi_flag_ResumeCallbacks()
	adi_flag_SetTrigger()

	Coding Example
	Initialization
	Opening a Flag
	Setting the Direction
	Controlling an Output Flag
	Sensing the Value of a Flag
	Installing a Callback Function
	Suspending and Resuming Callbacks
	Removing Callbacks
	Termination

	Flag Service API Reference
	Notation Conventions

	adi_flag_Clear
	adi_flag_Close
	adi_flag_Init
	adi_flag_Open
	adi_flag_SetDirection
	adi_flag_Terminate
	adi_flag_Set
	adi_flag_Toggle
	adi_flag_Sense
	adi_flag_InstallCallback
	adi_flag_RemoveCallback
	adi_flag_SuspendCallbacks
	adi_flag_ResumeCallbacks
	adi_flag_SetTrigger
	Public Data Types, Enumerations and Macros
	ADI_FLAG_ID
	Associated Macros

	ADI_FLAG_RESULT
	ADI_FLAG_EVENT
	ADI_FLAG_TRIGGER
	ADI_FLAG_TRIGGER
	ADI_FLAG_EVENT

	8 Timer Service
	Introduction
	Operation
	Initialization
	Termination
	Timer IDs
	Basic Timer Functions
	adi_tmr_Open()
	adi_tmr_Close()
	adi_tmr_Reset()

	General-Purpose Timer Functions
	adi_tmr_GPControl()
	adi_tmr_GPGroupEnable()

	Core Timer Functions
	adi_tmr_CoreControl()

	Watchdog Timer Functions
	adi_tmr_WatchdogControl()

	Peripheral Timer Functions
	adi_tmr_GetPeripheralID()

	Callbacks
	adi_tmr_InstallCallback()
	adi_tmr_RemoveCallback()

	Coding Example
	Initialization
	Opening a Timer
	Configuring a Timer
	Enabling and Disabling Timers
	Installing a Callback Function
	Removing Callbacks
	Termination

	Timer Service API Reference
	Notation Conventions

	adi_tmr_Init
	adi_tmr_Open
	adi_tmr_Terminate
	adi_tmr_Close
	adi_tmr_Reset
	adi_tmr_CoreControl
	adi_tmr_WatchdogControl
	adi_tmr_GPControl
	adi_tmr_GPGroupEnable
	adi_tmr_InstallCallback
	adi_tmr_RemoveCallback
	adi_tmr_GetPeripheralID
	Public Data Types, Enumerations and Macros
	Timer IDs
	Associated Macros

	ADI_TMR_RESULT
	ADI_TMR_EVENT
	ADI_TMR_CORE_CMD
	ADI_TMR_WDOG_CMD
	ADI_TMR_GP_CMD

	9 Port Control Service
	Introduction
	Using the Port Control Manager
	Port Control Manager API Reference
	Notation Conventions

	adi_ports_Init
	adi_ports_Terminate
	adi_ports_EnablePPI
	adi_ports_EnableSPI
	adi_ports_EnableSPORT
	adi_ports_EnableUART
	adi_ports_EnableCAN
	adi_ports_EnableTimer
	adi_ports_EnableGPIO
	Public Data Types, Enumerations and Macros
	ADI_PORTS_RESULT
	Directive Enumeration Values

	10 Device Driver Manager
	Device Driver Model Overview
	Using the Device Manager
	Device Manager Overview
	Theory of Operation
	Data
	Initializing the Device Manager
	Device Manager Termination
	Opening a Device
	Configuring a Device
	Providing Buffers to a Device
	Closing a Device
	Callbacks
	Initialization Sequence
	Stackable Drivers

	Deciding on a Dataflow Method
	Chained without Loopback
	Chained with Loopback
	Circular
	Sequential With and Without Loopback

	Creating One Dimensional Buffers
	Creating Two Dimensional Buffers
	Creating Circular Buffers
	Creating One Dimensional Sequential Buffers
	Device Manager Design
	Device Manager API Description
	Memory Usage Macros
	Handles
	Dataflow Enumerations
	Command IDs
	Callback Events
	Return Codes
	Circular Buffer Callback Options
	Buffer Data Types
	Physical Driver Entry Point
	API Function Definitions

	Device Manager Code
	Data Structures
	Static Data
	Static Function Declarations
	API Functional Description
	Static Functions

	Physical Driver Design
	Physical Driver Design Overview
	Physical Device Driver API Description
	Physical Driver Include File (“xxx.h”)
	Extensible Definitions
	ADI_DEV_PDD_ENTRY_POINT

	Physical Driver Source (“xxx.c”)
	adi_pdd_Open Functional Description
	adi_pdd_Control Functional Description
	adi_pdd_Read Functional Description
	adi_pdd_Write Functional Description
	adi_pdd_Close Functional Description

	Device Manager API Reference
	Notation Conventions

	adi_dev_Close
	adi_dev_Control
	adi_dev_Init
	adi_dev_Open
	adi_dev_Read
	adi_dev_Terminate
	adi_dev_Write
	Physical Driver API Reference
	Notation Conventions

	adi_pdd_Close
	adi_pdd_Control
	adi_pdd_Open
	adi_pdd_Read
	adi_pdd_Write
	Examples

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

