
 Sept/Oct 2002 41

153 S Gretna Green Way
Los Angeles, CA 90049-4015
kd6ozh@arrl.net

Software-Defined Hardware for
Software-Defined Radios

By John B. Stephensen, KD6OZH

Using programmable logic in Amateur Radio applications.

Recently, I decided to upgrade my
homebrew HF transceiver.1 The
goals of the new design were to

replace most of the analog filtering
and analog-control circuitry with soft-
ware using digital signal processing
(DSP) and to provide separate trans-
mit and receive signal processing for
full-duplex operation with amateur
satellites. I also suspected that DSP
could be used to improve AGC action
and noise blanking.

My first impulse was to use a DSP
chip—either on an evaluation board or
by making a board with high-speed
ADCs, DACs, digital up-converters and
1Notes appear on page 50.

Fig 1—A SPLD macrocell (source: Lattice Semiconductor Corporation).

42 Sept/Oct 2002

Fig 2—A 16V8 SPLD programmable AND-array (source: Lattice Semiconductor
Corporation).

down-converters. The only inexpensive
board uses the Analog Devices ADSP-
2181 and that is going out of produc-
tion. I looked at newer DSP chips, but
evaluation board prices are in the $300
to $1000 range. The chips themselves
are inexpensive in quantity but most
are packaged only in ball-grid arrays.
I also evaluated ASICs (application-
specific integrated circuits) designed
for the wireless infrastructure market
such as digital up- and down-convert-
ers. Some are available in QFP pack-
ages with 0.65 or 0.8-mm-pitch leads,
but they are expensive, their dynamic
range is limited, and they are not opti-
mal for the narrow-band modes ama-
teurs tend to use.

After doing several paper designs
and estimating costs, I took a differ-
ent approach by using programmable
logic devices (PLDs). PLDs are better
suited to Amateur Radio applications
than ASICs because they are more
customizable. The facilities that are
needed for narrow-band modes like
AM, SSB, MFSK16, PSK31 and CW
can be programmed into these parts.
In addition, implementing only the
functions that are needed for amateur
applications minimizes the cost of a
software-defined radio.

Four types of PLDs are available:
simple programmable logic devices
(SPLDs), complex programmable logic
devices (CPLDs), field-programmable
gate arrays (FPGAs) and combinations
of MCUs and FPGAs called a system
on a chip (SoC). Since many outside of
the computer industry are unfamiliar
with these parts I’ll describe them here.

SPLDs
SPLDs have been available for 15

years. They consist of 8-10 D-type reg-
isters with programmable combinato-
rial logic ahead of the registers as
shown in Fig 1. The registers may be
bypassed to create pure combinatorial
logic. The logic for each register con-
sists of a number of AND gates that are
connected to an OR gate that drives
the register input. The multiplexers
are configuration devices and are con-
trolled by nonvolatile memory. The
AND-gate inputs are also program-
mable and may be connected to any
input pin, any register output bit or
left unused (see Fig 2).

The original SPLD products used
fusible links for programming, and
they could be configured only once.
Present devices contain EEPROM
memories to hold the configuration
data; they can be reconfigured 100-
1000 times. Typical parts include the
16V8 (which has 8 registers and 16
inputs) and the 22V10 (which has 22
inputs and 10 registers).

SPLDs are mature devices and are
being replaced by CPLDs in new de-
signs. Many CPLDs now cost less than
SPLDs and offer more functionality.

CPLDs
CPLDs build on the SPLD by put-

ting arrays of SPLDs on a single chip.
They provide more programmability in
the form of programmable-interconnec-
tion arrays and specialized I/O control
blocks. Fig 3 shows the general archi-
tecture of a CPLD. Notice that there are
several clock, enable and clear pins,
which have programmable polarity and
may be routed to any macrocell via the
programmable interconnect array
(PIA). The PIA also accepts inputs from
the macrocells. CPLDs may contain 32

to 512 macrocells in 2 to 32 logic-array
blocks (LABs).

The macrocells in the logic-array
blocks are the equivalent of SPLDs
plus additional logic as shown in
Fig 4. SPLDs typically have one dedi-
cated clock input, while CPLDs pro-
vide multiple clock inputs and allow
clocks to be derived from the program-
mable AND-array. Many manufactur-
ers also provide programmable
expansion of the AND-array where un-
used logic in one macrocell may be re-
routed to another macrocell.

The I/O facilities contained in
CPLDs are more flexible that SPLDs
(see Fig 5). In a SPLD, each macrocell
had a dedicated output pin. CPLDs
have dedicated drivers next to the I/O

 Sept/Oct 2002 43

pins that may be connected to
macrocells via a programmable switch
matrix. Driver slew rates and logic
levels are also programmable in many
devices. Input logic levels also may be
programmable and optionally regis-
tered.

CPLD Programming
CPLD manufacturers provide soft-

ware for programming CPLDs. This
consists of a compiler that takes a de-
scription of the desired logic and cre-
ates the configuration data and a
downloader that loads the configura-
tion into the CPLD (see Fig 6). The
logic description may be entered by
drawing schematic diagrams or by
entering Boolean equations in a lan-
guage such as ABEL. The download
software usually works with a cable
that attaches a few pins on the CPLD
to the PC parallel port. Most manu-
facturers provide a free version of the
compiler and download software that
is suitable for amateur purposes.

Schematic design entry is easy to
use and works well for small designs.
A typical application for a CPLD is a
phase-locked loop (PLL). For example,
the phase-locked crystal oscillator de-
sign that I published in QEX2 can be
simplified by using a CPLD to replace
both the microcontroller (MCU) and
PLL chips. The reference and VCO
counter modulus can be programmed
directly into the CPLD. Fig 7 shows
the design of the phase detector. Fig 8
shows the design of the VCO and ref-
erence frequency dividers. The design
software includes TTL MSI equiva-
lents to minimize the design effort.
Finally, Fig 9 shows the top-level sche-
matic with the preset counter modu-
lus. The modulus can be set to any
value and programmed into the CPLD
EEPROM configuration memory.

The PLL design fits into a 32-
macrocell CPLD that costs $1 in small
quantities from suppliers such as Lat-
tice Semiconductor (Mach 4 series) or
Altera (MAX 3032A series). The origi-
nal PLL plus MCU cost was almost $10.

FPGAs
The field-programmable gate array

(FPGA) provides even greater logic
densities. The original products had a
“fine-grained” architecture. They con-
sisted of a sea of gates that could be
interconnected via programmable
switches and busses. Anything could
be constructed from the gates, but gate
utilization of 50% or less was common
because of routing limitations.

Recently, FPGAs have begun to look
more like huge CPLDs as the basic
cells have become more complex. The
cells of modern FPGAs typically con-

Fig 3—A typical CPLD block diagram (source: Altera Corporation). See Note 4.

Fig 4—A typical CPLD macrocell logic block (source: Altera Corporation). See Note 4.

tain one or more look-up tables (LUTs)
to define arbitrary logic functions and
one, two or four output registers. These
can be interconnected to form adders,
multipliers or other functions that are
commonly used in digital signal pro-
cessing (DSP). The Atmel AT40K se-
ries is a good example as it is particu-
larly suitable for amateur use.

The FPGA consists of a square ar-
ray of 256 to 2304 core logic cells ar-
ranged as groups of 16 cells as shown

in Fig 10. Between the groups of core
cells are RAM cells that may be inter-
connected with the logic cells. I/O cells
are located near the bonding pads
around the periphery of the die. They
may be connected to logic and RAM cells
via direct connection or busses that are
dispersed throughout the FPGA.

The core cell consists of two three-
input LUTs and a D register as shown
in Fig 11. There are four inputs to the
cell: W, X, Y and Z. These inputs may

44 Sept/Oct 2002

Fig 10—AT40K FPGA architecture (source: Atmel Corporation).
See Note 4.

Fig 7—Phase-detector schematic input. See Note 4.

Fig 6—CPLD design software for a PC. See Note 4.

Fig 5—A typical CPLD I/O control block (source: Lattice
Semiconductor Corporation).

Fig 8—Reference and VCO divider schematic input. See Note 4.

Fig 9—A top-level schematic for a custom PLL. See Note 4.

 Sept/Oct 2002 45

Fig 12—Direct cell-to-cell connections (source: Atmel
Corporation). See Note 4.

Fig 11—AT40K core cell (source: Atmel Corporation). (Beware! Antel uses a circle with
cross to indicate switches . They are not mixers.) See Note 4.

Fig 13—AT40K busses (source: Atmel Corporation). See Note 4.

come from direct connections to adja-
cent cells as shown in Fig 12 or from
busses that run throughout the FPGA
as shown in Fig 13. The busses have
programmable lengths. Bus segments
may be isolated to a group of 16 core
cells or interconnected via program-
mable repeaters to run through the
entire array.

The core cell has three outputs that
may come from the LUTs, the regis-
ter or the tristate bus driver. The X
and Y outputs may use the orthogo-
nal or diagonal direct connections to
adjacent cells shown in Fig 12. This is
useful for fast-carry propagation and
the construction of efficient parallel
adders and multipliers. The tristate L
output connects to one of ten bus lines
adjacent to each cell as shown in Fig
13. The busses are useful for multi-
plexing data from multiple cells and
connecting to input ports on multiple
cells.

The core cells may be configured for
various applications. A full adder is
shown in Fig 14A. The adder may be
combined with the AND gate in the cell
to create parallel multipliers as shown
in Fig 14B. The counter cell in Fig 14C
shows how internal feedback may be
used without requiring any external
busses or connections. The cell may be
used as plain combinatorial with three
inputs and two outputs or four inputs
and one output as shown in Fig 14D.

The FPGA also contains 2,048 to
18,432 bits of distributed RAM in
16 to 144 RAM cells as shown in Fig
15. Each RAM cell contains 32 4-bit-

wide entries, and it may be configured
as a single or dual-port RAM with syn-
chronous or asynchronous I/O. In any
configuration, the RAM has a 12-ns
cycle time. Address and data ports are
available via the busses shown in
Fig 16.

RAM is desirable for many purposes
including storage of data constants or
microcode for FPGA processing ele-
ments. It can also be used to replace
registers where access to individual bits
is not required. Both applications allow
the placement of more logic into each
FPGA.

The I/O connection on the periph-
ery of the FPGA die may be reached
directly from adjacent cells or via the
bus network as shown in Fig 17. In-
put and output pins may have dedi-
cated registers or tie directly to cells
or busses. Inputs and outputs can be
programmed to operate at TTL or
CMOS levels. The inputs may option-
ally have Schmidtt-triggers for noise-
rejection and the outputs may option-
ally be tri-state to drive external bus-
ses. The drive current is program-
mable so slew rates may be limited in
order to reduce EMI.

46 Sept/Oct 2002

Fig 16—AT40K RAM cell bus usage (source: Atmel Corporation).
See Note 4.Fig 14—Core-cell configurations (source: Atmel Corporation).

Fig 15—AT40K RAM cell (source: Atmel Corporation).

FPGA Programming
The FPGA manufacturer provides

software packages for entering design
information and compiling it into con-
figuration bits for downloading to the
FPGA. Design entry can be done via
schematics or ABEL as with CPLDs
or by using higher-level languages
such as Verilog or VHDL.3 These lan-
guages provide a way to describe the
behavior of the logic and to create “test
benches” to simulate the input to the
logic and verify the correct output. A
simple Verilog language description of

combinatorial logic is shown in Fig 18.
The design software synthesizes a

gate-level design and then places and
routes the design for the FPGA being
used. The result is a configuration file
that can be loaded into the FPGA via
a PC parallel port. One major differ-
ence between FPGAs and CPLDs is
that the configuration is loaded into
RAM on the FPGA. This has the ad-
vantage that the configuration may be
changed as many times as desired.
Configurations can even be changed
in real time so only the logic needed
for the current operating mode need

be resident in the FPGA.
Atmel also provides a design

language called Macro Generation
Language (MGL) that allows the
specification of logic designs with very
tight control over the placement and
routing in the FPGA. These macros
can be optimized for minimal cell
usage and/or maximum speed. MGL
allows the creation of fast reusable
modules that can be referenced from
Verilog or VHDL files.

MGL is similar to many structured
programming languages. A macro defi-
nition consists of an interface block and

 Sept/Oct 2002 47

Fig 21—Routing in Atmel
MGL (source: Atmel
Corporation).

Fig 17—AT40K FPGA I/O (source: Atmel Corporation).
See Note 4.

Fig 18—Schematic diagram and equivalent Verilog description
(source: Doulos CBT).

Fig 19—Interface description in
Atmel MGL (source: Atmel
Corporation).

Fig 20—Component
“instantiation” in Atmel MGL
(source: Atmel Corporation).

a contents block. The interface block
defines the input and output ports for
the macro. These are the signals that
will be connected to external logic when
the macro is used. Fig 19 shows one
example, the interface to a four-bit
counter. The snippet of MGL code
defines RESET and CLOCK as the two in-
puts to the counter and Q0 through Q3

48 Sept/Oct 2002

Fig 22—FPGA design software showing four cells and
interconnection. See Note 4.

Fig 23—An Atmel FPSLIC (source: Atmel Corporation).
See Note 4.

Fig 24—The AVR RISC MCU and peripherals (source: Atmel Corporation). See Note 4.

as the outputs from the counter.
The MGL contents block describes

the underlying implementation of the
macro. It instantiates components, con-
nects the components together via nets
and specifies the physical routing of
these nets. Fig 20 shows the instan-
tiation of a flip-flop and its connection
to nets. First, the variable aMacro is
assigned a value of FGEN1RF, which
is part of the Atmel vendor library of
dynamic macros. It defines a configu-
ration of the AT40K core cell that has a
LUT producing one output, which is
stored in a register, and the stored value
is fed back to the LUT.

The location statement creates an
instance of the core cell and places it
at the bottom left corner of the macro.
This position is relative to the even-
tual placement of the macro. The
functiong statement defines the con-
tents of the LUT such that the output
is the complement of the value fed
back from the register. The connections
statement then connects the ports on
Cell0 to the ports of the macro.

Fig 21 shows how a direct connec-
tion between core cells is specified in
MGL. The route statement contains a
list of nodes that are to be intercon-
nected. In this case, the Y output of
Cell1 is connected to the Y input of
Cell2. A more complex route, using a
bus, would have a longer list of nodes
and a specification of the type and lo-
cation of the bus to use. The route can
be specified to any degree of complete-
ness as the routing can be completed
using automated tools.

After the macro has been defined,
debugged and executed, the generated
macro can be imported into Figaro—the
Atmel-provided tool for placement and
routing on the FPGA. The process is
similar to routing traces on PC boards.
If the macro has been defined correctly,

the cell placement will already be opti-
mal. The automatic-routing software
can be run to route any connections not
fully defined in MGL. Fig 22 shows a
close-up of four core cells after routing.

SoC—System on a Chip
A recent trend in the semiconduc-

tor industry has been the introduction
of various “systems on a chip.” These
products provide a CPU, memory and
programmable logic on one die to mini-
mize the size of portable program-

mable devices. The CPU may be either
“soft” (a gate-level design that can be
downloaded onto the gate array) or
“hard” (a custom-designed CPU shar-
ing the die with an FPGA). The cus-
tom CPU uses less die area, but there
are few companies with both gate ar-
ray and microprocessor products.

A software-defined radio requires
several processing functions that have
traditionally resided in multiple chips.
A microcontroller provided general
housekeeping functions. A specialized

 Sept/Oct 2002 49

Fig 25—FPSLIC design software main screen. See Note 4.

Fig 26—DSP filter design software. See Note 4. Fig 27—The upper right corner of CORDIC quad serial arithmetic
unit. See Note 4.

DSP chip provided filtering, modula-
tion and demodulation. Multiple PLL
and DDS chips provided frequency
control. Multiple chips required long
interconnections and tended to in-
crease the level of spurious emissions.

A SoC with a CPU and FPGA can
provide all major housekeeping, signal-
processing and frequency-control func-
tions. This simplifies the design and
reduces cost without sacrificing any
performance. The SoC that I have se-
lected is the Atmel AT94K10AL. Atmel
calls this a field-programmable system-
level integrated circuit or “FPSLIC.” It
contains a 20- or 32-MIPS 8-bit RISC
CPU, two serial ports, counter-timers,
36 kB of fast dual-port memory and a
576-cell FPGA that can be programmed
from the MCU. Fig 23 shows the major
components in the FPSLIC and Fig 24
is the MCU block diagram.

IC Packaging
One initial concern when selecting

the SoC was the package size. The de-
sire to produce small portable devices
has driven package sizes down towards
the size of the die. Technology has pro-
gressed from DIPs in the 1970s, to plas-
tic J-leaded chip carriers(PLCC) in the
1980s, small outline packages (SOP)
and quad flat packs (QFP) in the 1990s
and now the ball-grid array (BGA) pack-
ages. A BGA package has all connec-
tions on the bottom of the package us-
ing a rectangular grid of solder bumps
spaced as close as 0.8 mm. BGAs are
mounted on a PC board that has solder
paste silk-screened onto the mounting
pads. The assembly is then exposed to
a hot inert gas that melts the solder
bumps and the solder paste to attach
the component to the board. BGA pack-
ages are not suitable for home projects.

Luckily, manufacturers of compo-

nents for industrial control and profes-
sional video/audio equipment do not
have to produce tiny components for
tiny products and continue to use SOP,
QFP and LCC packages. Small CPLDs
with 32-64 macrocells are available in
a PLCC-44 package. Several FPGAs in
sizes up to the 1200-cell range and the
Atmel FPSLIC are available in PLCC-
84 packages. The PLCC was originally
designed to ease transition from
through-hole to surface-mount PC-
board technology. There are contacts on
all four sides of the package spaced
50 mils (0.05 inches) apart. This pack-
age can either be soldered directly to
the surface of a PC board or plugged
into a socket. The sockets have leads

on a 100-mil grid for compatibility with
through-hole designs. This is ideal for
construction of a prototype (or a one-
of-a-kind unit) with point-to-point wir-
ing as the sockets fit in pre-punched
copper-clad boards.

Design Software
This type of design moves much of

the traditional hardware prototyping
work onto the PC with software-based
simulation. I use the Atmel-provided
FPSLIC-design software that inte-
grates the FPGA and RISC CPU pro-
gramming and verification tools
(Fig 25) into one package.

The MCU programming is done in
assembly language. The AVR CPU is

50 Sept/Oct 2002

Fig 28—A serial-parallel multiplier-accumulator unit. See Note 4.

a two-address general register ma-
chine that makes assembly-language
programming easy compared to the
old single-accumulator, single-address
architecture used in 8051 MCUs.

The DSP filter-design software is
from Momentum Data Systems
(Fig 26). This software generates co-
efficients for either FIR or IIR filter
designs optimized for a minimal num-
ber of taps for a given frequency
response. There are several public-do-
main filter-design packages available
on the Web that could be used in its
place, and filter design could also be
done with products like MathCAD.

FPGA Performance Results
The DSP version of my transceiver

has the last IF at 13-19 kHz. This fre-
quency is low enough to allow use of
low-cost 24-bit audio converters with
high dynamic ranges, and it is high
enough to allow use of low-cost mono-
lithic crystal filters as roofing filters.
The frequency-conversion scheme is
similar to that used in the Drake R8
but with ferrite filters replaced by
DSP. The FPSLIC generates and pro-
cesses digitized baseband in-phase
and quadrature signals at a combined
16 ksps rate.

The approach used has been to de-
sign macros that implement high-
speed DSP functions efficiently in the
gate array hardware and do the rest
of the processing in software. The fol-
lowing functions have been imple-
mented as macros for the gate array:
• Dual 40-bit DDS phase accumula-

tor
• Dual 19-bit CORDIC (coordinate ro-

tation incremental computer)
phase-angle-to-amplitude conver-
sion unit

• 20-bit MAC filter coprocessor unit
• 24-bit serial ADC and DAC interface

These functions are tied together
and interfaced to the MCU in Verilog.
This allows hand-optimization where
needed for speed and quicker program-
ming for control circuitry that has less
stringent requirements. Low-speed
functions, such as AGC, are imple-
mented in AVR assembly language. The
two-cycle multiply instruction in the
AVR CPU is ideal for implementing
DSP functions.

Hardware implemented in a gate
array has a different set of constraints
than hardware in ASICs or TTL logic
ICs on a PC board. The designer must
always be aware of routing delays. In
the AT40/94K series FPGAs, a direct
orthogonal or diagonal connection
from cell to cell has a delay of only
0.1 ns. A connection via a bus can in-
cur delays of up to 11 ns depending
on bus length. Very often, serial imple-

mentations of arithmetic functions
will outperform parallel implementa-
tions. The MAC and CORDIC macros
were the most difficult to implement,
and they use a combination of serial
and parallel logic to minimize size
while retaining maximum speed.

The CORDIC serial arithmetic unit
requires only 98 FPGA core cells and
is capable of 800,000 sine and cosine
calculations per second. CORDIC is an
algorithm that calculates sines and co-
sines using only shift and add opera-
tions. It is used to generate the fre-
quency-reference signals for the trans-
ceiver and has spur levels below any
current DDS ASIC.

Fig 27 shows the upper end of two
serial arithmetic units that implement
simultaneous bit-serial dual cross-con-
nected shift and add operations to
implement the core of the algorithm.
The propagation delay in the most criti-
cal path has been reduced to 9.54 ns.

The MAC arithmetic unit requires
only 145 FPGA core cells and is capable
of 4.8 million 20-by-20-bit multiply-ac-
cumulate operations per second. Addi-
tion is done with 20 bits in parallel and
multiplication is done by serial add and
shift operations. The accumulator is
44 bits wide to accommodate all 40 bits
of the product and prevent rounding er-
rors. Four additional bits are provided
to the left of the decimal point to pre-
vent overflow when the transient value
of the sum of products exceeds ±1.

Fig 28 shows the entire serial-par-
allel multiplier-accumulator unit. Or-
ange cells (light squares) are used in
the macro and gray cells are unused.

The high packing density is achieved
with serpentine routing that minimizes
the length of several vertical and hori-
zontal delay paths simultaneously. The
maximum delay in any bit-serial data
path is 9.17 ns. The 10.16-ns delay
shown in the figure is for one multipli-
cand data bit, which changes state only
once every 20 clock cycles.

Conclusions
The FPSLIC has proven viable for

use in SDRs, and it provides a better
solution for narrow-bandwidth modes
than do ASICs designed for wireless
applications. A follow-on article will
describe the hardware that surrounds
the FPSLIC to convert between the digi-
tal and analog domains and translate
signals to and from the 16-kHz IF.

Notes
1J. Stephensen, KD6OZH, “The ATR-2000:

A Homemade, High-Performance HF
Transceiver,” QEX, Pt 1, Mar 2000, pp 3-
15; Pt 2, May 2000, pp 39-51; Pt 3, Mar
2001 pp 3-8; Letters to the Editor, May
2001, p 62.

2J. Stephensen, KD6OZH, “A Stable, Low-
Noise Crystal Oscillator for Microwave and
Millimeter-Wave Transverters,” QEX, Nov
1999, pp 11-17.

3J. Wiseman, KE3QG, “Modern Digital De-
sign for the Radio Amateur,” QEX, Dec
1997, pp 3-12.

4Several of the figures in this article are cap-
tured from complex computer-screen im-
ages that do not reproduce well in print or
in black and white. Interested readers can
view these images full size and in color on
their computers by downloading a pack-
age from the ARRL Web www.arrl.org/
qexfiles/ . Look for 9X02STEP.ZIP. !!

