Tutorial Version 1.6.0 ARMKE"—

Creating a Middleware Application using CMSIS Components Microcontroller Tools

AbstraCt The latest version of this document is here: www.keil.com/appnotes/docs/apnt 268.asp

This tutorial shows how to read the contents of a text file from a USB memory stick attached to a development board. After
pressing an update button on the touch screen, the content is shown on the LCD. The tutorial explains the required steps to
create the application on a STM32F4291-Discovery board but can be easily ported to other underlying hardware as it is using
MDK-Professional Middleware and CMSIS, the Cortex Microcontroller Software Interface Standard.

A set of videos is available that shows the steps to create this project. Please visit www.keil.com/mdk5/learn/usb_host

Contents
AADSTIACT ... E R R R R R R R AR R R R R R R R R R Rt Rt n et r s 1
oo 11 Tox Ao o RSSO T TR 2
SOTIWANE STACK ... ittt E e bR et E e bt e Rt b e e Rt e bt e R e e st e R e et r e n et 3
PrEIEQUISITESv ettt ettt h bbbt b s b b s bt bR e b H e £ e b £ A8 £ e b€ h e h £ b e e h £ R R R R e R Rt bbb bRt b et en s 4
Set up the WOrKSHOP ENVIFONMENT........cciiiiice ettt et e e be e e e e se e s ssesteesteesteestesneesneesreenreenseenreans 4
= oI I O =T L (=T T o] - o SR 5
Create a New Project for the EVAIUBLION BOAITccoiiiiiiiirieintee sttt 5
SELUD the DEDUG AGGPLET ...ttt bbb bbb st b e b e e bt eb et e bt eb et ekt sb et ekt eb et et e e b e e et e sbe et nnes 6
STEP 2: AUA CIMSIS-RTOS ..ottt bbb bbbt b R e b bt e b b e bbbt b bbb e bt e kb e b bt e b nenas 7
Add and configure CMSIS-RTOS RTX for a simple Blinky appliCation............ccccoveiiiiiiiiieiseecc e 7
I ST Lo I T =T TSP 9
Step 3: Add USB Host With Mass STOrage SUPPOITc.oouiiiiiiiiiieiere ettt bbb 10
Configure the CMSIS-Driver for USB COMPONENL..........c.oiiiiiiiiieiieie et ste e ste et e e a e te e be e e ssaesnaesraesreenreenaeans 10
Add the USB Host middleware component t0 the PrOJECE.........ciiiiiiiiiiie et sraesres 11
Configure the CMSIS-Driver fOr the USB HOSE.........coiiiiiii ettt et 11
Configure the stack and thread MEMOIY FESOUICESeuviuirieiiterteieate ettt sttt sttt sb et bt et bt et e s b e et e sbe e ebesaeneebe s 12
Add the user code that accesses the USB StOrage GEVICE.........cuiiiiieiieeie ettt sre e sae e sae e e snaesnaesraenreas 13
Step 4: Add the Graphical USEr INTEITACEc.oiiiiiiiiiei bbbttt bbb et e 17
UNerstanding the HANAWAIE ..ot bbbt b bbb bbbttt bbbttt 17
Add the Graphic Core and Graphics DiSplay INTEITACE.........ccoiiiiiiiii ettt 17
Add the code to output “Hello World” to the LCD diSplaycoiviiiiiiiiiiiiiiii e 19
Step 5: Design and Add the Graphics to be Displayed 0N the LCD ...t 20
Configure GUIBUilder and Use it to Create the GraphiCsccoeiiiiiiiiiiicieriese ettt 20
Add LogViewerDLG.c to the Project and RUN the GUIcooiiiiiiiiiie e e 21
Step 6: Add the TOUCH SCrEEN INTEITACEccuiiiiiieieeeee e ettt ettt bt sttt s e et et et sbesbeaneeneas 22
SEFIAL WITE VIBWET SUMIMATY ...ttt sttt ettt et eb st b bbb e b b e b e e b et s e e bt e e Rt e bt es bt ben e bt e st ab et neans 23
DOCUMENT RESOUICESeutiiiitiiitee ettt e tee sttt stee bt e be e e bt e e s bt e ettt e sk e e et e e e ket e ket e b e e e ke e e eb e e e eb bt e ebe e e b bt e abe e e ek b e e ab b e e st b e e abeeenbbeenaneennneens 24
BIOOKS ...ttt bt bRt R £ R £ E oAb eRe R e Re R £ oA £ oA £ oAb e AR e AR e eReeR £ e R £ oAb e Rt eRe AR e Re e R e e Rt et e b eheebe Rt ene e e enras 24
F N o] o] 1o 1A T] T [0 OO SOUS TP PPN 24
USETUI ARIM WWEDSITESottt e et R Rt R ettt r et r et n et r s 24

Keil Products and Contact INTOIMAtIONociiiiiiiie ettt e s st e e s abe s s b e s sbbe s sabessabessabessnbesanes 25

http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/mdk5/learn/usb_host

Creating a Middleware Application using CMSIS Components with MDK Version 5

Introduction

This workshop explains how to create a software framework for a sophisticated microcontroller application using CMSIS and
Middleware components. During this workshop a demo application is created that implements the following functions:

e Read the content of "Test.txt" file from a USB memory stick.
e Show this content on a graphical display.
e Provide an update button on a touch screen.

Application

User Code Templates

main.c GUI_SingleThread.c I| LogViewerDLG.c

CMSIS-RTOS RTX

USBH_MSC.c

Timer.c

Thread.c File System Graphics USB Host MSC

Touchscreen

CMSIS-Driver

Device
Startup STM32Cube HAL STM32Cube Framework

startup_stm32f429xx.s .
system_stm32f429sxox.c GPIO - stm32f4xx_hal_conf.h RTE_Device.h
CMSIS-CORE

stm32f429xx.h stm32f4xx.h core_cm*h

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 2 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Software Stack

The application is created by using user code templates. These templates are part of software components such as the
Middleware, CMSIS-RTOS or the STM32F4xx Device Family Pack (DFP). Some other source files are automatically
generated such as the code that is creating the graphical user interface (GUI) on the external display (LogViewerDLG.c).

CMSIS-RTOS RTX is a real-time operating system that is part of MDK and adheres to the CMSIS specification. It is used
to control the application.

The board support files enable the user to quickly develop code for the hardware that is used here. It provides a simple API
to control LEDs, the touch screen and the LCD interface. Other components provide support for push buttons, joysticks, A/D
converters or other external devices.

Middleware provides stacks for TCP/IP networking, USB communication, graphics, and file access. The Middleware used
in this application is part of MDK-Professional and uses several CMSIS-Driver components.

CMSIS-Driver is an API that defines generic peripheral driver interfaces for middleware making it reusable across
compliant devices. It connects microcontroller peripherals with middleware that implements for example communication
stacks, file systems, or graphic user interfaces. CMSIS-Driver are available for several microcontroller families and are part
of the DFPs. The DFP contains the support for the device in terms of startup and system code, a configuration file for the
CMSIS-Driver and a device family specific software framework with hardware abstraction layer (HAL).

The basis for the software framework is CMSIS-Core that implements the basic run-time system for a Cortex-M device and
gives the user access to the processor core and the device peripherals. The device header files adhere to the CMSIS-Core
standard and help the user to access the underlying hardware.

The STM32F32F4291Discovery Kit with the USB Stick connected to USB User OTG Connector.

The LCD displays the screen as created in the Graphical Display section in Step 4, 5 and 6. In the example given in this
tutorial, the display will be rotated 90 ° from that shown above.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 3 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Prerequisites
To run through the workshop you need to install the following software. Directions are given below:

MDK-ARM Version 5.14 or later (https://www.keil.com/demo/eval/arm.htm).

A valid MDK-Professional license.

Keil::MDK-Middleware 6.3.0 or higher, ARM::CMSIS 4.3.0 or higher, Keil::ARM_Compiler 1.0.0 or higher

Keil::STM32F4_DFP 2.4.0 or later which includes the STM32F4291-Discovery Board Support Package (BSP). We

will download this from the Internet using Pack Installer.

e STM32F429I1-Discovery Kit (www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090).
Note: Solder bridge SB9 must be bridged in order for the Serial Wire Viewer (SWV) to work. A soldering iron is
needed. If you do not solder SB9, the examples will work but the Event Viewer, Trace Records and Exception
windows will not display any information as these require SWV for their operation. See page 24.

e Text snippets for copy and paste and completed projects are here: www.keil.com/appnotes/docs/apnt_268.asp

This tutorial assumes you have some experience with the MDK development tool and a basic knowledge of C.

Set up the Workshop Environment
Install MDK:
1. Install MDK-ARM Version 5.14 or later. Use the default folder C:\Keil_v5 for the purposes of this tutorial.
2. After the initial MDK installation, the Pack Installer utility opens up. Read the Welcome message and close it.

Install the STM32F4xx Software Pack:

1. If Pack Installer is not open, first open pVision®: . Then open Pack Installer by clicking on its icon:
2. The bottom right corner should display ONLINE: oNme | |f jt displays OFFLINE, connect your PC to the Internet.

. . - Keil: STM32F 30 _DFP @ Install STMicroelectronics STM32F3 Series Device Support and Examples
3_ Locate Kell : :STM 32F4XX DFP CI |Ck Instal I' [-Keil:: STM32F4x0_DFP I & Install sTMicroglectronics STM32F4 Series Device Support, Drivers and Examples
" - Keili STM32L0xx_DFP @ Install STMicroelectronics STM32L0 Series Device Support and Examples

The installation will commence.
4. Once the Pack is installed this will be displayed indicating a successful installation: |

I?---Kai\::STMEZFsln_DFP ﬁ Up to date |
Pl220 3 Remove |

Install the other required Software Packs:
5. Locate Keil::MDK-Middleware. Click Update

2. Locate ARM::CMSIS. Click Update
3. Locate Keil::ARM_Compiler and click Install

Install your MDK-Professional license.

1. InpVision, click on File - License Management, select the 7 day license. This button is only displayed if you are
eligible for this offer. It can be used only Evaluate MDK Professional | ONCE.

You may contact our sales team to request a time-limited license for this workshop: www.keil.com/contact
For more information and license installation instructions see: www.keil.com/download/license/

Install the ST-Link V2 USB Drivers:

1. Using Windows Explorer, navigate to C:\Keil_v5\ARM\ST Link\USBDriver

2. Double click on stlink_winusb_install.bat to install the required USB drivers for the on-board ST-Link V2 debug
adapter. The drivers will install in the usual fashion.

3. Update the ST-Link firmware by executing C:\Keil_v5\ARM\STLIink\ST-LinkUpgrade.exe. The best ST-Link V2
firmware to use is V2.J23.S0 or later. You can identify the version installed in your board with this Upgrade utility.
You need the Discovery board connected to your PC as described below to change its firmware.

Connect the STM32F419I1-Discovery Board to your PC:

1. Use the USB-Mini cable to connect your computer and the STM32F4-Discovery board using the port labeled as
“USB ST-LINK”.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 4 www keil.com

https://www.keil.com/demo/eval/arm.htm
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/contact
https://www.keil.com/download/license/

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 1: Create a Project

Create a New Project for the Evaluation Board
Create a project with initialization files and the main module:

1. Inthe main puVision menu, select Project 2 New pVision Project. The Create New Project window opens up.

2. Create a suitable folder in the normal fashion and name your project. We will use C:\USB and the project name will
be USB. When you save the project the project file name will be USB.uvprojx. - &% sTM32F42921

3. The Select Device for Target window opens. Select STM32F429ZITx: ﬂ

4. Click on OK and the Manage Run-Time Environment window opens: & SThBaFazeTI

5. Expand the various options as shown and select CMSIS:Core, Device:Startup. Most
devices provide additional hardware 3 Manage Run-Time Emironment
abstraction layers that are listed under the ’

Device Component. The STM32Cube Software Component Sel. Variant Version Description

HAL is a list of available drivers for the % @ Board Support STM32F4291-Discof =] 100 | STMicroelectronics STM32F
STM32F429. It requires a framework. 5 & cusis Lortex Microcontroller Soft
Seect STM32Cube Framenork L i e T
(API):Classic. For more information, © € RTOS (APD 10 | CMSIS-RTOS APLfor Cortex
click on the link STM32Cube Framework +- & CMSIS Driver Unified Device Drivers comg
which opens the documentation (red = Device Startup, System Setup
Circle)_ ¥ Startup [+ 210 System Startup for STMicron

6. Inthe SEL. Column will be some orange - @ STMB2Cube Framework (APD M :
blOCkS. Clle on Resolve and these W|” ¥ Claszic [+ 110 Configuration via RTE_Devic
turn to green. Froject =]

7. Click OK to close this window 5% Project USB

8. In the Project window expand all the items and have a look at the files = _Tj’gsfulmmupl
pVision has added to your project: & cmsis

Add the main.c file: M %Tevft:nazfm_halx(swachbe HAL:Common)

1. Right click on Source Group 1 and select Add New Item to Group J e o ety
'Source Group 1'... T stmazfdochal_pwr.c (STM32Cube HALPWR)

2. In the window that opens, select User Code Template. Select ‘main’ % z:jj:ji-:::—f‘(":’;*(:;S;“Qii”::t‘;fg“’m
module for STM32Cube. It initializes the STM32Cube HAL and i stm32f4;q<iha|ir“;ex,((s‘rmgzcubeHlAL;Rcc)
configures the clock system. L) RTE_Device.h (STM32Cube FrameworkiClassic)

3. Click on Add.) anup s e

Set the CPU Clock Speed: o
The external crystal oscillator on the development kit has a frequency of 8 MHz. J i
&0 & project | @FBooks | ¥ Functions | (1, Templates

1. Select Target Options EA or ALT-F7 and select the Target tab. e
Enter 8 MHz in the Xtal (MHZ) boX. g 20

2. Select the C/C++ tab. . f—

3. Enter HSE_VALUE=8000000 in the Define box. The HSE_VALUE represents the = —
crystal frequency. This will set the CPU clock to 168 MHz in system_stmf4xx.c. Define: |HSE_VALUE-8000000

4. Click on OK to close this window.

5. Select File = Save All or press 'j

6. Compile the project source files: There will be no errors or warnings displayed in the Build Output window. If

you get any errors or warnings, please correct this before moving on to configure the ST-Link V2 Debug Adapter.

What we have at this point: We have created a new MDK 5 project called USB.uvprojx. We have set the CPU clock speed,
added the CMSIS environment, a main.c file and compiled the source files to test everything.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 5 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Setup the Debug Adapter
Select the ST-Link V2 debug adapter:

1. Select Target Options &% or ALT-F7. Select the Debug tab. Liier Db | s |

2. In the Use box select “ST-Link Debugger”. ¥ Use: |ST-Link Debugger =] _settngs |
3. Click on Settings. In the Port box, select SW (for Serial-Wire Debug SWD).

4. Inthe SWDIO box you must see a valid IDCODE and ARM CoreSight

SW Device

SW-DP. This indicates that pVision is connected to the STM32's debug

IDCODE | Device Name |

module.

If you see an error or nothing in the SWDIO box, you must fix this before you
can continue. Make sure the board is connected.

Configure the Serial Wire Viewer (SWV):

1. Select the Trace tab. In the Core Clock box, enter 168 MHz and Core Clock: | _165.000000 Mz
select Trace Enable. This sets the speed of the SWV UART signal
and debugger timing displays. Unselect EXCTRC (Exception Tracing). Leave all other settings at their defaults.

Note: Solder Bridge SB9 must be bridged for SWV to function.
Select the Flash programming algorithm:

SWDIO| mzBADI477 ARM CoreSight SW-DP

[¥ Trace Enable

2. Select the Flash Download tab. P ing Algortthm

3. Confirm STM32F4xx 2 MB Flash programming “_Lﬂesm fon | pevieSze | Devie Type | Address Range |

- - STM32Fec 2MB Flash pll} On-chip Flash 02000000H - 081FFFFFH
algorithm is selected as shown here:

If not, click on Add to choose it.

Click on OK twice to return to the main menu.

Compile the project source files: 2
Program the Flash and start Debugging by clicking on its icon to enter pVision's Debug mode: @

Click on the RUN icon =
8. The program is now running now. Note: you may stop the program with the STOP icon 0

N o o s

Insert a global variable in the Watch window:

1. Inthe Project tab under Device, double-click on system_stm32f4xx.c to open it up.

2. Find the variable SystemCoreClock. It is declared near line 138.

3. Right click on it and select Add SystemCoreClock to... and select Watch 1. Watch 1 will automatically open if it
is not already open and display this variable.

4. Inthe Watch 1 window, right click on SystemCoreClock in the Name column and unselect Hexadecimal Display.
SystemCoreClock will now be displayed with the correct

‘Watch 1 o x
frequency of 168 MHz. ™
Note: You can add v_arlable_s to the Watch and Memory windows @ SystemCoreClock | 163000000 =
while your program is running. < Enter expression>

5. Stop the program. @ The program counter (R15) will be at a B S S I To—
instruction in the SysTick_Handler. The B instruction isabranch ="~ [Watend | @ venor

to itself. Stopping in the SysTick Handler can be 3 Mamc L1 meRn]] sstem szt)] Saip o) o
avoided by adding the user code template 242 ENDP =
"Exception Handlers and Peripheral IRQ". As we Sae T e T SysTick Hamales —
are going to use CMSIS-RTOS RTX, this is not (22 22 S N i
required here. 237
{>_ 248 Default_ Handler PROC =
6. The yellow arrow Iis the program Counter (PC). g | L,—'
; @ Text Editor /i Configuration Wizard [
7. Exit Debug mode.

What we have at this point: We have selected the debug adapter, enabled the Serial Wire Viewer trace (SWV) and selected
the Flash programmer. We also demonstrated how to display the CPU clock in a Watch window.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 6 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 2: Add CMSIS-RTOS

Add and configure CMSIS-RTOS RTX for a simple Blinky application

Select al’ld COﬂfIgure RTX RTOS Software Component Sel.

l. | Varian
1. Open the Manage Run-Time Environment window: @ @ ii:;;suppm T2
2. Under CMSIS:RTOS (API) select Keil RTX as shown here: .9 comE =
3. Click OK to close this window. @ Dse r
4. In the Project Window, note two new files are added under -4y RTOS (AP]
CMSIS heading: RTX_CM4.lib and RTX_Conf_CM.c Lo Keil RTX [|
5. Double click on RTX_Conf_CM.c to open it. [+ 4% CMSIS Driver
6. Click on the Configuration Wizard tab at the bottom. B CMSIS
7. Expand RTX Kernel Timer Tick Configuration and change RTOS T RDLCMA.lib (RTOS:Keil RTY)
Kernel Timer input clock frequency [Hz] to 168000000 (168 MHz). | [RTX_Conf_CM.c (RTOS:Keil RT
Add the Timer.c source file and add Timer Initialization Function Call: 24 Device
1. Inthe Project window under Target 1, right click Source Group 1 and select Add New Item Group 'Source
Group 1'...
2. Inthe window that opens, select User Code Template. Select CMSIS-RTOS Timer.
3. Click on Add. Note Timer.c is added to the Source Group 1 in the Project window.
4. Click on the main.c tab to bring it in focus in order to edit it.
5. Inmain.c near line 76, add this line: extern void Init_Timers (void) ;
6. Inmain.c near line 103 just after SystemClock_Config();, add Init Timers () ;
Init_Timers creates two timers: Timerl (a one-shot) and Timer2 which is a 1 second periodic timer. Timer2 calls a
callback function.
7. Select File > Save All or 'j
8. Compile the project source files by clicking on the Rebuild icon . There will be no errors or warnings in the

Build Output window. If there are any errors or warnings, please correct them before continuing.

Demonstrating the Timer is Working:

1.

N

4,

5.
6.

Program the Flash and enter Debug mode: @ Click on the RUN icon.

LOAD

TIP: To program the Flash manually, select the Load icon: ##
The program is running.

In Timer.c, near line 32, set a breakpoint by 23 // Periodic Timer Example

clicking on the gray box. A red circle will appear. 2 TStffizdgofgpfir:;i_fiiback (void const *arg) {
The gray box indicates that assembly language ® 32 T

instructions are present and a hardware breakpoint

will be legal.

The program will soon stop here.

Click on RUN and in 1 second it will stop here again when the Timer2 is activated.
Remove the breakpoint for the next step.

What we have at this point: We added the RTX RTOS to your project. We enabled a periodic Timer and demonstrated that
the program is running.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 7 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Blink the LED:

1. Exit Debug mode. @

2. Open the Manage Run-Time Environment window: @
3. Expand the Board Support (ensure that STM32F4291-

A A Software Component Sel. Variant v
Discovery is selected — see the red arrow) 29 Board Support ————> | STM32R291-Discof] 1.

4. Under Board Support:LED (API) select LED & € Buttons (APD 1.

5. Click OK to close this window. =€ LED (AP 1,

In the Project window, a header called Board Support is created * I L
containing a file LED_F429Discovery.c. This configures the 1/0 + @ Touchscreen (APY L

pins used by the LEDs withan LED Initialize routine. The LED Onand LED Off functions are used to control the
LEDs.

Add C Code to Blink LED LD3:

In main.c, near line 45, add #include "Board LED.h"

Note: An error % might display on this line. Please ignore this for now. Make sure the source lines are typed in exactly as
shown to avoid errors. Use your best judgment as to where the source code should be added. Line numbers can change with
different versions of the software templates.

TIP: You can also select #includes from a list: Insert “#include file M ctm3ztech
e Selecta line in a source code file and right click on it. Goto Headertile I pen s

o Select Insert "#include file'. A menu opens up with provided #includes that you can select from.

1. Inmain.c, near line 104, add LED_Initialize();
Justafter Init Timers () ; isagood place
2. InTimer.c, near line 3, add these two lines:
#include "Board LED.h"
static int timer cnt = 0;
3. InTimer.c inside the Timer2_Callback function near line 32, add this code in the user code section (replace the line
//add user code here):
timer cnt++;
if (timer_cnt & 1) LED On (0);
else LED Off (0);

4. Select File/Save All or 'ﬂ .

5. Compile the project: There will be no errors or warnings in the Build Output window.
6. Program the Flash and enter Debug mode: @

7. Click on RUN.

8. LED PG13 (green) will now blink according to the Timer you have created.

9. Leave the program running for the next steps.

TIP: Inthe LED_ On function call: (0) is the green LED. Using (1) will blink the red LED.

What we have at this point: We have selected a LED driver from the CMSIS-Pack BSP to create a blinking a LED. We
have created a simple program that blinks this LED every 1 second using a timer.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 8 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

RTX Kernel Awareness
System and Thread Viewer:

1.

3.
4,
5

6.

Wlth the program System and Thread Viewer L W
running, open Debug > 4., Value

OS Support and select o syser I -
System and Thread Tick Timer: 1.000 mSec

Viewer_ Th|s WindOW Round Robin Timeout: 5.000 mSec

opens up: Default Thread Stack Size: 200

Note: os idle demon Thread Stack Overflow Check: Yes

and osTi_merT_hread Thread Usage: Available: 7, Used: 1

threads have been

already created. SRS © e i e oy et vt sk Sackoad B
Set a hardware 255 | os_idle_demon 1] Running 0%
breakpoint in the 1 osTimerThread High Wait_MBX 0% j
Timer.c function =

Timer2_Callback as you did previously near lines 31 through 35.

When you click on RUN, the status of these two threads will be updated in real-time until the program stops.

Note the various other fields that describe RTX.

This is a very simple RTX implementation. We will add more threads. These threads will be automatically added to
this window as you create them. This window needs no configuration or stubs in your source code.

Remove the breakpoint.

Event Viewer:

1.

N

B2 ©O©o~Nou

12.
13.

Open Debug = OS Support and select
Event Viewer. The following window
opens. Resize it for convenience. If this
window does not display any information, R A |
the most likely cause is that the SWV is i ‘d‘a{zg,s} ue(zfm ‘d‘aﬂgﬁ} .d‘a{zjm .d.eﬂfm ‘d‘a{z;m
not enabled or the CPU clock frequency is R R O I O | O

[oad..]| MnTme MaxTme Gnd | zoom | UpdateSeen | Jmpto | Transiton |~ Taskinfo | Cusor
||| 0.1285ms [38.00011s [0.55 |[In][out] Al][Stop |[Clear | [Code[Trace]| [Prev]iNext] [~ show cydes
v T ! T T v T ! T 1= v

incorrect. See Serial Wire Viewer N | I S D
Summary on the last page for useful ‘ ‘ ‘ ‘ ‘ ‘

SWV hints. osTimerThread (1)

Click on RUN.

Using In, Out and All in the Zoom field, e 259

set the grid for about 0.5 seconds. ———— — ————
. 3e4ls 3484411 s 38344118

It is easy to see when the threads are 4l |

running. Note most of the time the Idle BRI sricm s Tyead viws |

thread is running.

You can tell at a glance the timing of your RTX implementation and if it is behaving as you expect.

As you add new tasks, they will be automatically added. The Event Viewer uses the Serial Wire Viewer (SWV).

Click on Stop in Update Screen.

Enable Task Info and Cursor.

Click on one of the osTimerThread(1) events. A red line will appear.

Position your mouse over the next Timer Thread event. Keep your cursor in the osTimerThread row for correct

sampling.

. The following window will open. Note the time (Delta) between the threads is about 1.006 second. This is close to

the rate of the blinking LED.

There is a minor sampling osTimerThread (1): Min Max Average Called
error present. (0x08001ca8) 3.35119 us 3.916667 us 3.892857 us 113
Stop the processor . Time: Mouse Pos Reference Point Delta

. @ 109.0061 s 108.0001 s 1.006 s = 0.994036 Hz
Exit Debug mode.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 9 www.keil.com

Creating a Middleware Application using CMSIS Components with

MDK Version 5

Step 3: Add USB Host with Mass Storage Support

Configure the CMSIS-Driver for USB component

To correctly configure the USB Host middleware it is necessary to understand the USB User connector available on the

target hardware.

1 ‘ 3 ‘ 3 | s
usA
K TR T3] idiald] — A0 4+ [pap WEUPL pDo |14 PDO [l e — DB5 SDCRE] onemr
o o= age = = st
- = PA2 PD2 o = AT & WAL DNWE MCD ;
e 3 o E T — T SR w0 o
o IO T pmmbidbad! 30— vt ol v o PG6 R 11 SDNEAS $-porre a
KD TS Riladd) 245 311 53 Fos | 1220 I SR B emoscl RSg, 0 =1 £
, 3] PAR o | PAT BD7 57 o8 PG G3 T Wﬁ—% 7]
KCPEID S miiiadd] 25 AL L T B0 15 _SDNCAS oo =
e EEIL]5) TTATE | oA¢ Ll T] BT G5 — s Sz
K EEL.IT BAII 3] palo PDI0 |55 D11 CT G5 A4 VSYNC PHI . PHI.DSC_OUT RST,., 230 ’T =l
T 2| panl DI {7 TRC 520 (=l
Ko T ilal) AT T 5y i [— e g . B
P02 —ea— 102 | pats moi; [B2 El S 1t
¢ PHI0_3] > = —i g MM PO IE 1T RoX TE —
B E pals PDIS T an
@EDM_ B0 4 o |1 2 DX SCLpes) .
AL = =l Bl [] T FrAsE oL 4 ™
] PR = | 3 7 3 = PC14-05C31 IN Bs3, O |
B2 BT | T - Il'ﬂzal“"
RO Sl = o3 [y 3 1
2R Toee L s] a
oK m— P83 s [—he— C306-G-06Q-31.788
® oot 28 = - :
7 o < osca . |« -
o F T T [= PCISOSC32 OUT | RS4, 0 =
x 170 | EB10 PELD o 1 Nor Fined
R R PN 52 .)
(BT e 27— 212 o E—r J
Xm— — 3 F : —
o = 75 PEl4 PEI4 [=
Moo PBIS PEL
| co 2% 0 o -
5 pco R0
a3 x P (L L . |
= o P2 (5 = vIsa ‘II
Lo — filime 3 D14 Do o
& 45 %; g“ 5 5 DI5 DI tgz—j H
o ® | ocs pes |1 i Dot vsss [3
& | 55) 5) i} o=
<] 29 e [ity o VoD * s <
cil 1| el PEI0 11 PEW D7 T VSs0 T
T T3] Bl PRI oy b —PET D8 - VS50 oy
o xn BFL [= — - Ve 2
PC14-0TCTT I e el T TEIT DI CEEEPRPEERERSEER ooe ow |18 o
BCISOSCI OUT 9 | peyspec3aiour BFI5 [33 B4 IL - - . A I
- 15 Dl e | - - VDG veael |
58 50 o FRYE] : [z 08
oo |2 s 2 55515 I I8 DDz VCAR
7 1 me pis —~ @00 [EFEEEEEEETE
- B v TT TTT T il Y 1. L.,
PHI-0SC I B | ppose bes [2] w0 e [2aF | 2owF
= = PHI-OSC_OUT ped oo = e MGIFEE L
. PGS :
NRST 25 1 6 PR A
FEST NRST BGS - — 5
BOOTD EGUTT, 15 | pooto BGT = e ;g
oop R B 7 [0 = L
L s rG1p 12 1 1
—._RSL, 510 5 PG11 347 AT
D | - R, 10 | Gy (126 PGl . . D
i 2610 Moo —= = STMicroelectronics
e o
S T TH
ek - STM32F4291-DISCO - STM32F429ZIT6 MCU
STAGIFAI9ZITE
NumherMBT07E Rev: B.1[PCB.SCH] Daiz8/iao013 | Shests of 7
1 2 3 4
The STM32F4291 Discovery Kit provides a USB connector that interfaces with the USB OTG High-speed STM32F429
peripheral via the on-chip full-speed PHY (GP1OB.14 and GPIOB.15). The VBUS power on/off pin is active low on
GPIOC.4. The overcurrent detection pin is active low on GPIOC.5. Since -
Books a

we are only using the USB Host interface we can ignore the remaining OTG
pins.

This schematic is part of the Software Pack for the STM32F4. You access
these documents using the Books tab. Other documents found here are
datasheets, STMicroelectronics Getting Started Guides, ARM compiler and
pVision manuals and more. The Books tab is located with the Project and
Functions tabs:

E--m Tools User's Guide

@ Release Motes
e Complete User's Guide Selection
.. ARM Compiler v5.04u2

[-]m Device Data Books

&% STM32F40x/41:¢/42/43x Reference Manual
&% STM32F427/429 Data Sheet

@ STM32F42x/43x Errata Sheet

- Cortex-M4 Generic User Guide

- STM32Fdi0 HAL Drivers

I':'l--m Board Data Books

G Getting Started (STM32F4291-Discovery)

% User Manual (STM32F4291-Discovery)

& Bill of Materials (STM32F4291- Discovery)

& Gerber Files (STM32F4291-Discovery)

- Schematics (STM32F4291-Discovery)

G STM32F4291-Discovery Web Page (STM32F429]-Discovery)

EF‘l-:-je-:t @Books {3} Functions [].,Template:

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 10

www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Add the USB Host middleware component to the project

As we want to connect a USB memory stick to the development board, we need to add support for the USB Mass Storage
Class (MSC) to the project:

1. Open the Manage Run-Time Environment window: ‘ 54 Use
2. Under USB:Host, select MSC as shown here: i@ CORE [
Make sure you do not accidentally select MSC in the Device header. % Device 0
We are setting the STM32 up as a Host and not a Device. ¥ Host i -
3. Under CMSIS Driver:USB Host (API), select High-speed "’ Device
4. Click Resolve to add other mandatory middleware components. =4 Host
5. Click OK to close this window. : :;';t‘"" Class :
Connect USB Host 0 to the Hardware and increase stack size: " L@ MsC r
1. Inthe Project window under the USB heading, double click on
USBH_Config_0.c (Host) to open it. — | Value
2. Click on its Configuration Wizard tab and then on Expand All.
3. Set Connect to hardware via Driver_USBH# to 1. Note: The E"'USBCHMUM —
USB OTG High-speed interface is represented by Driver USBH1 I[;Cz::r;|E_.r0mtzrrf::aer§:t|;ng:w_ - I
4. This is the CMSIS-Driver that configured in the previous step. B0 Resources Settings
5. Change the Core Thread Stack Size at the bottom of the
configuration file to 540. Using the default value, the program
will stop with a stack overflow.
6. Select File/Save All or 'j

Configure the CMSIS-Driver for the USB Host
1.

Next we will configure the stack, heap and thread resources for the

In the Project window, under the Device header, double
click on RTE_Device.h to open it for editing.

Click on its Configuration Wizard tab.
Enable USB OTG High-speed as shown here:

Set the hardware parameters for the USB OTG High-
speed interface exactly as shown here:

= Both Ports must be GPIOC and first Bit is 4 and

the second is 5.

= Change the PHY Interface to On-chip Full-
speed PHY.

middleware components we have just added.

] RTE Devicen* || RO ConfcMc |] mainc |] startup_stm32f429m

Bpand Al | Collapse All | Hep | T ShowGid
Option | Value
[H-USE OTG Full-speed |

Ié_|---USB OTG High-speed
¥ (Physical Layer]
: On-chip full-speed PHY

~PHY Interface
[#]--External ULPI Pins (UTMI+ Low Pin Interface)
[E1-Host [Driver_USBH1] o]
5 VBUS Power On/Off Pin =

~Active State Low
GPIOC

I
-Active State Low
~-Port GPIOC

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 11

www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Configure the stack and thread memory resources

The resource requirements of the USB component can be found in the Middleware documentation that is accessible using the
link next to the USB component in the Manage Run-
Time Environment window:

Configure Heap and Thread Stack USB sizes:

o4 Us MDK-Pro 6.23 USE Communication with varicus device (Iassas]
¥ CORE [v 623 USE Core for Cortex-M

1. Inthe Project window under the Device heading, double click on startup_stm32f429xx.s to open it.
2. Select its Configuration Wizard tab. Confirm the Stack Size is set to 0x400 bytes and Heap Size is set to 0x200.
3. Under the CMSIS heading, double click on RTX_Conf_CM.c to open it.
4. Change Default Thread stack size [bytes] to 1000.
5. Set Number of threads with user-provided stack size to 1.
6. Set Total stack size [bytes] for threads : ,
with user-provided stack size to 1000] RIEDeviceh "] RTX Conf cM.ct ‘/—IAJ Trread< |1 PSiEN] L] startu
as shown here: Epand Al | Collapse All | Hlp | T ShowGid
Option | Value

[=1-Thread Configuration

“-Number of concurrent running user threads [

efault Thread stack size [bytes] 1000

: Aain Thread stack size [bytes] 200
----- MNumber of threads with user-provided stack size 1
----- Total stack size [bytes] for threads with user-provided stack size 1000

- Check for stack overflow =

L Processor mode for thread execution Privileged mode
[#-RTX Kernel Timer Tick Configuration

[#H-5System Configuration

Set the Default Drive Letter:
1. Inthe Project window under the File System heading, double click on FS_Config.c to open it.

2. Select the Configuration Wizard tab. rsica
. . _Config.c]

3. For a USB mass storage drive, the File System

component expects the drive letter to be U0. So Epand Al | _Colapse Al | _ Hep | T ShowGnd

change Initial Current Drive to UO: Option | value

. [#--FAT File Syst.
4. Select File/Save All or 'j _._Embeld;f:i,z System
i [Initial Current Dri -uo:

5. Compile the project: == e

No errors or warnings will be generated as shown in the Build Output window. Please correct any errors or warnings before
you continue.

Next we will add the user code to access a USB Device (the USB stick)

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 12 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Add the user code that accesses the USB storage device
We will use a CMSIS-RTOS Thread to implement access to a file on the USB stick.
Add Thread.c:

1. Rightclick on Source Group 1 in the Project window. Select Add New item to Group 'Source Groupl'...
2. Select User Code Template.

3. Under the CMSIS heading and in the Name column, select CMSIS-RTOS Thread.

4. Click on Add. This adds the file Thread.c to your project.

Add USBH_MSC.c and USBH_MSC.h:
Right click on Source Group 1 in the Project window again. Select Add New item to Group "Source Groupl'...
Select User Code Template.
Under the USB heading and in the Name column, select USB Host Mass Storage Access and click on Add.
The files USBH_MSC.c and USBH_MSC.h are now added to your project under the Source Group 1 heading.
These provide the relevant access functions for the USB storage device.
6. Select File/Save All or lj
Modify Thread.c:
To allow file access we add the following application code in the module Thread.c:
1. Double click on Thread.c to open it for editing.

2. Note near lines 17 and 18 there are two C lines: return (0) ; and }

arwbdE

3. Delete everything after these two lines but not including them. Start deleting with the void Thread (line 20).
Append this code to Thread.c:

#include "USBH _MSC.h"
char fbuf[1 = { };

void Thread (void const *argument) ({
static unsigned int result;
static FILE *f;

USBH_Initialize (0);

while (1) {
result = USBH_MSC_DriveMount ("UO0:");
if (result == USBH_MSC OK) ({
f = fopen ("Test.txt", "r'");
if (£f) {
fread (fbuf, sizeof (fbuf), 1, f);
fclose (f);
}
}
osDelay (),
}

}

4. Make sure you have at least one newline (CR) at the end of the text. Otherwise, this will generate an easily fixed
warning at compilation time.

To start this new RTX Thread:
1. Inmain.c near line 77, add after extern void Init Timers:extern void Init_Thread(void) ;
2. Inmain.c near line 112, add before osKernelStart ();:Init Thread() ;

3. Select File/Save All. 'j

What we have at this point: On this page we added the code to open, read and close the data in file Test.txt located in a
USB stick connected to USB User.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 13 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Prepare a USB memory stick:

1. Take a USB memory stick and create a file called Test.txt containing a short message using ASCII characters.
2. We will use the message Keil Middleware and CMSIS-Pack.
3. Plug this stick with an adapter cable to the STM32F4291-Dicovery board's USB connector labelled USB USER.

Build and RUN:

1. Compile the project: . You might get a warning from the USBH_MSC.c that can be safely ignored.
2. Enter Debug mode: @
3. Click on the Memory 1 tab. Enter fbuf in this window:
4. Right click anywhere in the data field area and select =
Asci Address: [fbuf
5. Setabreakpoint in Thread.con fclose (f) near —
line 35. 0x20000144: Eeil Middleware and CMS5I5-Fack...

OXZ000012T: v uuvevnnne s nnnnsnnraseneasnnenses

6. Click on RUN. In a few seconds the text will
appear in the Memory 1 window.

7. The program will stop on the hardware breakpoint.

8. To repeat this sequence, click on the RESET icon 7t and then RUN .

System and Thread Viewer:
1. Select the System and Thread P E—————

Viewer tab or select Debug > E— e
OS Support > System and = System m
H Hrara : Tick Timer: 1.000 mSec
Thread VleWer If It 1S nOt Open Round Robin Timeout: 5.000 mSec
Note the thread Thread is Default Thread Stack Size: 1000
runnlng and the 0S |d|e demon Thread Stack Overflow Check: \"es.
|s Ready to run ne)zt Th_e other Thread Usage: Available: 7, Used: 3
other two threads are in wait
[E]-Threads (s MName Priority State Delay Event Value Event Maszk Stack Load
states. 255 | os_idle_demaon [|
. . o 3 |Thread Normal
2' CIICk on the RESET icon RaT 2 USEHO_CoreThread AboveMormal | Wait_OR 0xFFFF 26%
. 1 TimerThread High Wait_MBX 40%
and then RUN =X, You will see e N [war veex_| | | |
the idle demon run as the =

program runs and Thread gO into Symbols | Event Viewer System and Thread Viewer
the running state when the breakpoint is hit.
3. Remove the breakpoint in Thread.c on the line fclose (f).

Click on RUN.
Leave the program running for the next steps.

o s

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 14 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Viewing RTX Activity with the Event Viewer:
Note: If this window is blank, the Serial Wire Viewer must be configured and SB9 bridged.
1. Select the Event Viewer tab or if not already open: Select Debug - OS Support > Event Viewer.
2. Adjust the column width so the entire Thread names are visible as shown below. Data will be visible if the Serial
Wire Viewer (SWV) is configured properly.
3. Setthe grid to 2 ms using Zoom In and Out. Scroll to the end of the Event Viewer as shown below.

Note the Threads visible: The Thread (3) data shows the activity of this thread before the breakpoint. Observer that most of
the procesor time was spent in the Idle daemon. You can adjust these times to sut your application.

Event Viewer a @
Load... Min Time Max Time Grid Zoom Update Screen Jump to Transition | [~ TaskInfo [Cursc
Save...| || 85.51786 us | 6.5298465 |2ms |[In |[out|[All | [Stop |[Clear | [Code|[Trace| [~ Show Cydles

!
\

All Tasks Idle (255)

osTimerThread (1)

USBHO_CoreThread (2)

et ATHHTEEE

Idle (255)

6507562 s 6531562 s
x| |]>]

Event Viewer | System and Thread Viewer

More Viewing RTX Activity with the Event Viewer:

1. Select Stop in the Update Screen box.

2. Setthe grid to 10 ms.

3. Scroll backwards in time and you can see when the other threads were active.

4. Recall you can enable the Cursor and Task Info boxes to measure timings of these events.

Modifying the Memory 1 Window:
1. Inthe Memory 1 window displaying the text, right-click on one of the characters and select Modify Memory
@address.
2. Enter a0 and press Enter.

The character you selected will be changed to 0 and then back to the original as Text.txt is read again by the thread
Thread.

4. The Memory 1 window updates in real-time and can be changed while the program is running.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 I5 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Exception Trace window:

1

2.
3.
4.

Open the Trace Exception window: click on the down arrow beside the Trace icon: v | Trace Exceptions
Select Trace Exceptions. Trace Exceptions window opens up with its own tab. Event Counters
Enable EXCTRC: Exception Tracing as shown in the window below:

Click on the Count column header until the down triangle appears. The active exceptions will
be displayed with various statistics as shown below. Note: this window is updated while the program is running.

Records

Trace Exceptions o x
H i§ (7] ¥ EXCTRC: Exception Tracing ¥ Timestamps Enable

Mame Count Y. | Total Time Min Time In Max Time In Min Time Out | Max Time Out | First Time [s] Last Time [s]

93 OTG_HS 993437 3373 s 0s 105796 ms 0s 630,823 ms 0.34153155 87870519816 ﬂ

15 SysTick 569474 15795 17.857 ns 66.371 ms 0s 186.730 ms 0.00111414 &78.70437005

11 SvCall 6683 1.302 ms Os 404,595 us 0s 12470 s 0.00029145 &78.01933561

14 PendsV 3853 10.388 ms 010011704 878.50537307

106 | DMAZD 1] 0s

105 |LCD_TFT_1 0 0s

104 |LCD_TFT 0 Os ﬂ

Trace Records window: = - - -

agrwbdE

8.
9

10.
11.
12.

Open the Trace Records window: click on the down arrow beside the Trace icon: v | Trace Exceptions
Double click inside it to clear the window. -
The exceptions will be listed as they occurred as shown below.

Right click in this window and you can filter out different types of events.
An "x" in the Ovf column means there was a frame lost. This is because there was too much data output on the 1 bit
Serial Wire Output (SWO) pin. You can alleviate this by unselecting the Timestamps and ITM bit 31. The overflows
might disappear but the Event Viewer will not function without these two attributes set.

An "x" in the DIy column means the Timestamp might not be accurate at this point. pVision recovers gracefully
from such SWV trace data overflows.

You can also alleviate overflows by using a Keil ULINKpro debug adapter. ULINKpro can use the 4-bit ETM trace
which provides more bandwidth. A board must be equipped with the CoreSight 20 pin ETM connector (not
available on the STM32F429i-Discovery board).

Close the Trace Records window.

Disable EXCTRC: Exception Tracing in the Trace Exceptions window.

v | Records

Stop the processor 0
Close the two Trace windows.

Exit Debug mode. @

x
Type |ovi [Num | Addess | Data | FC [Dy | Cydes | Timell ﬁ’
Exception Entry 33 13423106639 79.99944428
Exception Exit 33 13423107046 79.99944670
Exception Retum 0 12423107054 79.89944675
Exception Entry 15 13423112138 79.89947701
Exception Retum X 0 X 13423115000 79.89949405
Exception Entry 33 13423274639 79.90044428
Exception Exit 33 13423275045 79.90044670
Exception Retum 0 13423275054 79.90044675
Exception Entry 15 13423280138 79.90047701
Exception Retum X 0 X 13423293000 79.3004%405
Exception Entry 53 13423442699 79.90144428
Exception Exit 33 13423443046 79.90144670
Exception Retum 0 13423443054 79.90144675
Exception Entry 15 13423448138 79.90147701
Exception Retum X 0 X 13423451000 79.90149405
Exception Entry 33 12423610639 79.90244423
Exception Ext 33 12423611046 79.90244670
Exception Retum 0 13423611054 79.90244675
Exception Entry 15 13423616138 79.90247701
Exception Retum X 0 X 13423619000 7990248405 |

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 16 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 4: Add the Graphical User Interface

Understanding the Hardware

To correctly configure the Graphic Interface it is necessary to understand the schematics. Here’s another excerpt from the
schematics showing the LCD connections.

The STM32F429 has a high-speed RGB interface (red) that is connected to the LCD. To configure the display, SPI (blue) is
used which is connected to the device’s SPI5 interface. The Touch Screen connects via 12C (green) to the microcontroller’s
12C3 interface.

1.
2.

3.

VSYNC
% VSYNC
_HSYNC CSX
> HSYNC
TE TE
RDX RDX
WBX D?X WRX DCX 1I2C3 SCL 1293 Y
DCX SCL 12C3 SDA
DCX SCL 12C3 SDA
SDA TP INTI
SDA TP INTI1
Interfaces: ENABLE
DOTCLK ELTAELID NRST
RGB DOTCLK NRST
SPI
Add the Graphic Core and Graphics Display Interface
Select the emWin Graphics components:
Software Component Sel. Variant
Open the Manage Run-Time Environment window: @ =% Board Support STM32F4291-]]
Under Board Support:emWin LCD (API), select emWin LCD. This f; Buttons (APD
component is the interface to the board LCD display. ® #Zﬁc(ri?een oD
Select Graphics:Core. This will be used for the User interface. 5% emWin LCD (APD)
Graphics:Core needs a display interface configuration file where screen ¢ emWin LCD ~ |RGBIF
size and other parameters are defined. Pre-defined displays are available g MsIs
under Graphics Display. Select STM43F4291-Discovery. P4 EWS Driver
Click Resolve to add the missing CMSIS-Drivers, & FioSysem S
Click OK to close this window. =% Graphics i]K—Pro
¥ CORE [v
¥ VNC Server)
% Demo
& Display
& Input Device
% Tools

ER 4 Graphics Display

¥ STM32F4291-Disc
% Network
% uss

overy ¥ |RGBIF

MDK-Pro
MDK-Pro

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 17

www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Modify System Clock and set Defines:

The microcontroller connects the graphics display as an external SDRAM. This SDRAM is usually configured with the
CMSIS system file (system_stm32f4xx.c). The STM32Cube Framework provides #defines to enable the SDRAM.

Select Target Options EA or ALT-F7.

N

Click OK to close this window.

5. Select File/Save All or 'ﬂ
Configure the CMSIS-Driver SPI5 for Graphics:

Select the C/C++ tab. Add the defines DATA IN ExtSDRAMand STM32F4291 DISCOVERY
Add a space between the three defines as shown here: { Preprocessor Symbols

Define: IHSE_VALUE= 8000000 DATA_IN_ExtSDRAM STM32F4231_DISCOVERY

1. Inthe Project window under the Device heading, double click on RTE_Device.h to open it.

2. Select its Configuration Wizard tab.
3. Enable SPI5 and disable SPI_NSS pin. Set the
other options as shown here:

Configure Memory for Graphics Core

SPIS_MISO Pin PFE
SPI5_MOSIPin PF3
SPI5_SCK Pin PF7
SPI5_M55 Pin Mot Used

The Graphics Core uses a dedicated memory for its features that needs configuration.

1. Inthe Project window under the Graphics heading, double click on GUIConf.c to open it. GUIConf.c configures
the Graphics Core. The default configuration exceeds the memory of our system. We change the memory size to
0x4000 which is sufficient for many applications (refer to the emWin User Manual).

2. Change the GUI_NUMBYTES define near line 45 to 0x4000

3. Select File/Save All or 'ﬂ

What we have at this point: The graphics hardware configuration is complete.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268

| 8 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Add the code to output “Hello World” to the LCD display
Add The Graphics Thread and start the thread in main.c:

1. Inthe Project window under Target 1, right click Source Group 1 and select Add New Item to Group ‘Source
Group 1'...

2. Select User Code Template.

3. From the Graphics heading, select emWin GUI Thread for Single-Tasking Execution Model.
Note: Single-task execution is where one thread (task) calls the emWin functions. This reduces the memory
footprint and is sufficient for many applications. Only one thread can call the GUI functions (refer to the Execution
Model in the emWin User Manual).

4. Click on Add. This adds the file GUI_Single_Thread.c to your project.

Modify RTX for this new Thread:
The GUI Thread needs a user provided stack size of 2048 bytes:
1. Under the CMSIS heading, double click on

RTX_Conf_CM.c to open it. oo Vale
. . R R read Configuration
2. Select its Configuration Wizard tab and expand Number of concurrent running user threads 6
Thread Configuration. Default Thread stack size [bytes] 1000
3. Increase Number of threads with user-provided Main Thread stack size [bytes] 200

Mumber of threads with user-provided stack size 2

stack size to 2 as shown here:
4. Set T_otal stack size [bytes] for threads with user Check for stack overflow =
prOVIded stack size to 4096 as shown here: Processor mode for thread execution Privileged mode

Total stack size [bytes] for threads with user-provided stack size | 4096

Add the text that will display on the LCD:

1. Inthe Project window under the Source Group 1 heading, double click on GUI_SingleThread.c to open it.
2. Near line 24, just before the while (1) loop, add: GUI_DispString ("Hello World!");

3. Select File/Save All or 'j

Modify main.c:
You can now demonstrate the display of the string “Hello World!” on the LCD:

1. Inmain.c near line 79 add: extern int Init GUIThread (void);
2. Inmain.c near line 109 add: Init GUIThread() ;

3. Select File/Save All or 'j

Build and run your project:

Compile the project:
Program the Flash and enter Debug mode: @

Click on RUN.
The LCD will display Hello World!

o P Ddp PF

Stop the processor o Exit Debug mode. @

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 19 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 5: Design and Add the Graphics to be Displayed on the LCD
Configure GUIBuilder and Use it to Create the Graphics

emWin provides a tool called GUIBUilder to design the graphics that will display on the LCD screen. pVision allows you to

execute GUIBuilder from within.

1. Open the Manage Run-Time Environment window: @
2. Under Graphics:Tools select GUI Builder
3. Click OK

Create a shortcut on the pVision Tools menu:

1. Inthe main pVision menu, select Tools >
Customize Tools Menu. The window below opens
up.

2. This will allow you to add a shortcut to your tools
menu to launch GUIBuilder. This only needs to be
done once for every installation of MDK-ARM and

G UIBuilder

not every project that you may create. I™ Prompt for Arguments
3. Click on the Insert icon ..i (or press the Insert key). I™ Run Minimized
4. Enter the text GUIBuilder as shown and press ™ Run Independent
Enter.
5. Inthe Command and Initial Folder boxes enter
ARTE\Graphics\GUIBuilder.exe and .\ . Command: I."-.HTE"-.Glaphi-:s"-.GUIBuiIder.exe _|
6. Click on OK to close it. il Fokder: | _|
Arguments: I
ok | Cancel | Hep |
7. Click on Tools in pVision and the new GUIBuilder menu item will display like this: s Windowfiele
8. Click on GUIBuilder and it will start. 5_“1’“" petnt..
Lint All C-5curce Files
Customize Tools Menu...
GUIBuilder
Create the Frame:
1. Click on the Framewin icon: A box will be created labelled Framewin. :"’WW I ‘L"a'“:_ — |
2. With the FrameWin box selected, change the Property Name from FrameWin to o P
LogViewer. yPos 0
3. Inthe property column, enter xSize = 240 and ySize = 320. This specifies the size xSize 240
y5ize 320
of the LCD. Extra bytes 0
4. Press Enter.

Add the Multi Edit Widget

1. Click on the Multiedit icon:
2. Click and drag to fill the LogViewer area as shown below. Leave a space at the bottom for the button.

[Bt] Property I Value |
Add the BL-Jtton. - EPELI;E ;Ipdate
1. Click on the Button icon: yPos 245
2. Using your mouse to size and position as shown below: x5ize 210

3. With the Button selected, change the Property Name to Update. |12 50
. .. wtra bytes 0
4. Click Enter to finish.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 20 www keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Save and Export your GUI:

1.

3.

Select File = Save. A C source file with

. R . _|EI| x

your GUI design is created and saved into e A
your p_Visio_n project root folder. The file ron [Checkbos][Dropdoun B
name is derived from your parent GUI (Ttem 1 ||
element, and in this case the name is 4. EE o [Eait W\, Header PP
LogViewerDLG.c. thom 5
You will need to add this to your project. S v
This step is done on the next page. Multiedit Wttt
Close GUIBuilder. g Update

Property | Value |

Mame LogViewer

xPos 0

yPos 0

x5ize 260

ySize 396 Update

Extra bytes 0

|R.eady

Add LogViewerDLG.c to the Project and Run the GUI
Adding your GUI design file LogViewerDLG.c to Your Project:

1.
2.

oghs®

In the uVision Project window, right click on “Source Group 1”.

Select Add Existing Files to Group 'Source Group 1'...

Note: Choose Existing rather than New as previously.

In the window that opens up, select the file LogViewerDLG.c. Click on Add once and then Close.
LogViewerDLG.c is now added to your project.

In the Project window, under Source Group 1, double click on LogViewerDLG.c to open it for editing.
Near line 70, add this line to reference the file buffer fouf: extern char fbuf[200];

This should in between the //User Start nearline69and //User END near line 70.

Create the GUI Design:

1. Inthe pVision Project window under Source Group 1, double click on GUI_SingleThread.c to edit it.
2. In GUI_SingleThread.c, near line 4 add this line: #include "dialog.h"
3. In GUI_SingleThread.c, near line 5 add this line: extern WM _HWIN CreateLogViewer (void) ;
4. Commentout: //GUI_DispString("Hello World!");
5. Near line 26 add this line: CreateLogViewer () ;
Build and RUN:
1. Select File/Save All or ﬁ .
+;
2. Compile the project: ==
3. Enter Debug mode: @ and click on RUN.
4. The GUI we have just created, appears on the screen:

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 21 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 6: Add the Touch Screen Interface

An implementation for the touch screen interface is provided as a Software Component under Board Support. The touch
screen hardware connects via the 12C peripheral (12C3) and therefore we will use the standard CMSIS-Driver for 12C.

Add Software Components for Touchscreen

1. Open the Manage Run-Time Environment window: @

2. Under Graphics:Input Device, select Touchscreen

3. Click Resolve to select other required components. This adds from the Board Support the Touchscreen Interface and
from the CMSIS Driver the 12C driver.

4. Clock OK to close this window.

Configure the CMSIS-Driver for the 12C Interface

] RTE_Device.h

1. Inthe Project window, under the Device group, double = _
click on RTE_Device.h to open it for editing. SpmndAl | _Colapse N [= | e

2. Click on its Configuration Wizard tab. Deticn plalus

3. Enable 12C3 and configure the parameters for this driver Eg ;:E::::::g:::: E::E:::::::ZZ; {g:v::igi ::
instance as shown in the picture. Select PA8 and PC9 . - §
since these pins provide the interface to the touchscreen Eﬁjigﬂ; iﬁﬂ
hardware. DMA Rx r

4. Touchscreen is a low-bandwidth interface and therefore we DMA Tx r
can disable the DMA channels. This avoids DMA conflicts SPIL (Serial Peripheral Interface 1) [Driver_SPIL] r
Wlth Othel‘ driVerS. SPI12 (Serial Peripheral Interface 2) [Diriver_SPL2] -

Enable Touch support in GUI_SingleThread.c
1. Inthe Project window, under Source Group 1, double click on LogViewerDLG.c to open it for editing.

2. Near line 118 is case WM_NOTIFICATION CLICKED for the Update button, add this code:
hItem = WM GetDialogItem(pMsg->hWin, ID MULTIEDIT 0) ;
MULTIEDIT_ SetText (hItem, fbuf);

3. Inthe Project window, under Source Group 1, double click on GUI_SingleThread.c to open it for editing.
4. Uncomment line 33 to call the touch support of the Graphics component: GUI_TOUCH_Exec () ;

Build and RUN:

Select File/Save All or ﬂ
::.f.;:;-;:.;:

Compile the project:

Enter Debug mode: @ and click on RUN.
Press the Update button on the LCD. The content of the file Test.txt appears on the screen:

kel Middieware and CMSI5-Pack |
i it

co~N o O

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 22 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Serial Wire Viewer Summary

Serial Wire Viewer (SWV) is a 1 bit data trace. It is output on the SWO pin which is shared with the JTAG TDO pin. This
means you cannot use JTAG and SWYV together. Instead, use Serial Wire Debug (SWD or SW) which is a two pin alternative
to JTAG and has about the same capabilities. SWD is selected inside the pVision IDE amd is easy to use.

1.

2.

The STM329F4291 Disco board must have the Solder Bridge SB9 bridged. SB9 is located on the bottom of the
board close to jumper Idd. If SB9 is open, SWV will not work. The board is shipped with SB9 not bridged.

The Core Clock: is the CPU frequency and must be set accurately. In this tutorial, 168 MHz is used. If you see ITM
frames in the Trace Records window of number other than 0 or 31, or no frames at all, the clock frequency is
probably wrong.

SWV is configured in the Cortex-M Target Setup in the Trace tab. In Edit mode: Select Target Options AN or
ALT-F7 and select the Debug tab. Select Settings: Then select the Trace tab. In Debug mode: Select Debug/Debug
Settings.. and then select the Trace tab.

Many STM32 processors need a special initialization file to get SWV and/or ETM trace to function. This file is not
needed in this board as pVision accomplishes this during entry to Debug mode. If you are using a different STM32
processor and are unable to get SWV working, contact Keil tech support. SWOxx.ini files are provided in many
KVision example projects that you can use. Insert it just below where you choose the debug adapter.

If SWV stops working, you can get it working by exiting and re-entering Debug mode. In rare cases, you might also
have to cycle the board power. Constant improvements to the ST-Link V2 firmware are helping in this regard.
SWV outputs its data over a 1 bit SWO pin. Overloading can be common depending on how much information you
have selected to be displayed. Reduce the information to only that which you really need helps as does limiting the
activity of variables. Using a ULINKpro on boards equipped with a 20 CoreSight ETM connector enables the SWV
information to be output on the 4 bit ETM trace port.

For more information on STM32F4291-Discovery board see: www.keil.com/appnotes/docs/apnt_253.asp

Watch, Memory windows and Serial Wire Viewer can display:

Global and Static variables. Raw addresses: i.e. *((unsigned long *)0x20000004)
Structures.

Peripheral registers — just read or write to them.

Can'’t see local variables. (just make them global or static).

Cannot see DMA transfers — DMA bypasses CPU and CoreSight and CPU by definition.
You might have to fully qualify your variables or copy them from the Symbol window.

Serial Wire Viewer (SWV) displays in various ways:

PC Samples.

A printf facility that does not use a UART.

Data reads. Graphical format display in the Logic Analyzer: Up to 4 variables can be graphed.
Exception and interrupt events.

All these are Timestamped.

CPU counters.

Instruction Trace (ETM):

ETM Trace records where the program has been. Assembly instructions are all recorded.

Assembly is linked to C source when available (this is up to your program).

A recorded history of the program execution in the order it happened.

Provides Performance Analysis and Code Coverage. Higher SWV performance.

ETM needs a Keil ULINKpro to provide the connection to the 4 bit Trace Port found on many STM32 processors.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 23 www.keil.com

http://www.keil.com/appnotes/docs/apnt_253.asp

Creating a Middleware Application using CMSIS Components with MDK Version 5

Document Resources

Books

NEW! Getting Started MDK 5: www.keil.com/mdk5/.

A good list of books on ARM processors is found at; www.arm.com/support/resources/arm-books/index.php
pVision contains a window titled Books. Many documents including data sheets are located there.

A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php (Resources tab).
The Definitive Guide to the ARM Cortex-M0/MO0+ by Joseph Yiu. Search the web for retailers.

The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.
MOOC: Massive Open Online Class: University of Texas: http://users.ece.utexas.edu/~valvano/

Application Notes

1. Overview of application notes: www.Kkeil.com/appnotes

2. NEW! Keil MDK for Functional Safety Applications: www.keil.com/safety

3. Using DAVE with pVision: www.keil.com/appnotes/files/apnt_258.pdf

1. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

2. CAN Primer using NXP LPC1700: www.keil.com/appnotes/files/apnt_247.pdf

3. CAN Primer using the STM32F Discovery Kit www.keil.com/appnotes/docs/apnt_236.asp

4. Segger emWin GUIBuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf

5. Porting an mbed project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

6. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

7. Using pVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

8. RTXCMSIS-RTOS in MDK 5 http://www.keil.com/pack/doc/cmsis_rtx/index.html
9. Lazy Stacking on the Cortex-M4 www.arm.com and search for DAI0298A

10. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

11. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
12. Cortex Debug Connectors: http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm

Useful ARM Websites

ouprwdE

ARM Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content
ARM University Program: www.arm.com/university. Email: university@arm.com

ARM Accredited Engineer Program: www.arm.com/aae

mbed™: http://mbed.org

CMSIS standard: www.arm.com/cmsis

CMSIS documentation: www.keil.com/cmsis

For comments or corrections on this document please email bob.boys@arm.com.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 24 www keil.com

http://www2.keil.com/mdk5/
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/appnotes
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt_258.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
http://www.keil.com/pack/doc/cmsis_rtx/index.html
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://www.arm.com/aae
http://mbed.org/
http://www.arm.com/cmsis
http://www.keil.com/cmsis
mailto:bob.boys@arm.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Keil Products and Contact Information

Keil Microcontroller Development Kit (MDK-ARM™)

MDK-Lite (Evaluation version) - $0

MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)

MDK-Standard (unlimited compile and debug code and data size Cortex-M, ARM7 and ARM9)
MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries and Graphic User Interface (GUI)
NEW! ARM Compiler Qualification Kit: for Safety Certification Applications

USB-JTAG adapter (for Flash programming too)

ULINK2 - (ULINK2 and ME - SWV only —no ETM)

ULINK-ME - sold only with a board by Keil or OEM.

ULINKpro — Faster operation and Flash programming, Cortex-Mx SWV & ETM trace.

NEW! ULINKpro D — Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace.

For special promotional or quantity pricing and offers, please contact Keil Sales.
Contact sales.us@keil.com 800-348-8051 for USA prices.
Contact sales.intl@keil.com +49 89/456040-20 for pricing in other countries.

CMSIS-RTOS RTX is now provided under a BSD license. This makes it free.

All versions, including MDK-Lite, include CMSIS-RTOS RTX with source
code!

Keil includes free DSP libraries for the Cortex-M0, M0+, M3, M4 and M7. i ‘ -

Call Keil Sales for details on current pricing, specials and quantity discounts. ; s
Sales can also provide advice about the various tools options available to you. l i

ARMKE||

er

r ﬁe&e\opmem. \km‘

They will help you find various labs and appnotes that are useful.
All products are available from stock.
All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university
to view various programs and resources.

Keil supports many other Infineon processors including 8051 and C166 series
processors. See the Keil Device Database® on www.keil.com/dd for the complete list of Infineon support. This information is
also included in MDK.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.
For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, go to www.keil.com/appnotes/docs/apnt 268.asp

CMSIS documentation: www.arm.com/cmsis

ARMCORTEX QGMSIS ARMKEIL
Processor Technology COMPLIANT Microcontroller Tools

ARM® Cortex” Microcontroller
Software Interface Standard

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 268 25 www keil.com

mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.arm.com/
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
mailto:bob.boys@arm.com
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.arm.com/cmsis

	Abstract
	Introduction
	Software Stack

	Prerequisites
	Set up the Workshop Environment
	Step 1: Create a Project
	Create a New Project for the Evaluation Board
	Setup the Debug Adapter

	Step 2: Add CMSIS-RTOS
	Add and configure CMSIS-RTOS RTX for a simple Blinky application
	RTX Kernel Awareness

	Step 3: Add USB Host with Mass Storage Support
	Configure the CMSIS-Driver for USB component
	Add the USB Host middleware component to the project
	Configure the CMSIS-Driver for the USB Host
	Configure the stack and thread memory resources
	Add the user code that accesses the USB storage device

	Step 4: Add the Graphical User Interface
	Understanding the Hardware
	Add the Graphic Core and Graphics Display Interface
	Add the code to output “Hello World” to the LCD display

	Step 5: Design and Add the Graphics to be Displayed on the LCD
	Configure GUIBuilder and Use it to Create the Graphics
	Add LogViewerDLG.c to the Project and Run the GUI

	Step 6: Add the Touch Screen Interface
	Serial Wire Viewer Summary
	Document Resources
	Books
	Application Notes
	Useful ARM Websites

	Keil Products and Contact Information

