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79.1 IC Logic Family Operation and Characteristics

 

Gregory L. Moss

 

Digital logic circuits can be classified as belonging to one of two categories, either combinational (also called
combinatorial) or sequential logic circuits. The output logic level of a combinatorial circuit depends only on
the current logic levels present at the circuit’s inputs. Sequential logic circuits, on the other hand, have a memory
characteristic so the sequential circuit’s output is dependent not only on the current input conditions but also
on the current output state of the circuit. The primary building block in combinational circuits is the logic
gate. The three simplest logic gate functions are the inverter (or NOT), AND, and OR. Other common basic
logic functions are derived from these three. Table 79.1 gives 

 

truth table 

 

definitions of the various types of
logic gates. The memory elements used to construct sequential logic circuits are called latches and flip-flops.

The integrated circuit switching logic used in modern digital systems will generally be from one of three
families: transistor-transistor logic (TTL), complementary metal-oxide semiconductor logic (CMOS), or emit-
ter-coupled logic (ECL). Each of the logic families has its advantages and disadvantages. The three major families
are also divided into various subfamilies derived from performance improvements in integrated circuit (IC)
design technology. Bipolar transistors provide the switching action in both TTL and ECL families, while
enhancement-mode MOS transistors are the basis for the CMOS family. Recent improvements in switching
circuit performance are also attained using BiCMOS technology, the merging of bipolar and CMOS technologies
on a single chip. A particular logic family is usually selected by digital designers based on such criteria as

1. Switching speed
2. Power dissipation
3. PC board area requirements (levels of integration)
4. Output drive capability (

 

fan-out

 

)
5. Noise immunity characteristics
6. Product breadth
7. Sourcing of components
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IC Logic Families and Subfamilies

 

The integrated circuit logic families actually consist of several subfamilies of ICs that differ in various perfor-
mance characteristics. The TTL logic family has been the most widely used family type for applications that
employ small-scale integration (SSI) or medium-scale integration (MSI) integrated circuits. Lower power
consumption and higher levels of integration are the principal advantages of the CMOS family. The ECL family
is generally used in applications that require high-speed switching logic. Today, the most common device
numbering system used in the TTL and CMOS families has a prefix of 54 (generally used in military applications
and having an operating temperature range of –55 to 125

 

°

 

C) and 74 (generally used in industrial/commercial
applications and having an operating temperature range of 0 to 70

 

°

 

C). Table 79.2 identifies various logic families
and subfamilies.

 

TTL Logic Family

 

The TTL family has been the most widely used logic family for many years in applications that use SSI and
MSI. It is relatively fast and offers a great variety of standard chips.

The active switching element used in all TTL family circuits is the 

 

npn 

 

bipolar junction transistor (BJT).
The transistor is turned on when the base is approximately 0.7 V more positive than the emitter and there is
a sufficient amount of base current flowing. The turned on transistor (in non-Schottky subfamilies) is said to

 

TABLE 79.1

 

Defining Truth Tables for Logic Gates

 

1-Input Function

 

2-Input Functions

 

Input

 

Output

 

Inputs

 

Output Functions

A NOT A B AND OR NAND NOR XOR XNOR

 

0 1 0 0 0 0 1 1 0 1
1 0 0 1 0 1 1 0 1 0

1 0 0  1  1  0  1  0
1 1 1  1  0  0  0  1

 

TABLE 79.2

 

Logic Families and Subfamilies

 

Family and Subfamily Description

 

TTL Transistor-transistor logic
74xx Standard TTL
74Lxx Low-power TTL
74Hxx High-speed TTL
74Sxx Schottky TTL
74LSxx Low-power Schottky TTL
74ASxx Advanced Schottky TTL
74ALSxx Advanced low-power Schottky TTL
74Fxx Fast TTL

CMOS Complementary metal-oxide semiconductor
4xxx Standard CMOS
74Cxx Standard CMOS using TTL numbering system
74HCxx High-speed CMOS
74HCTxx High-speed CMOS—TTL compatible
74FCTxx Fast CMOS—TTL compatible
74ACxx Advanced CMOS
74ACTxx Advanced CMOS—TTL compatible
74AHCxx Advanced high-speed CMOS
74AHCTxx Advanced high-speed CMOS-TTL compatible

ECL (or CML) Emitter-coupled (current-mode) logic
10xxx Standard ECL
10Hxxx High-speed ECL
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be in saturation and, ideally, acts like a closed switch between the collector and emitter terminals. The transistor
is turned off when the base is not biased with a high enough voltage (with respect to the emitter). Under this
condition, the transistor acts like an open switch between the collector and emitter terminals.

Figure 79.1 illustrates the transistor circuit blocks used in a standard TTL inverter. Four transistors are used
to achieve the inverter function. The input to the gate connects to the emitter of transistor Q1, the input
coupling transistor. A clamping diode on the input prevents negative input voltage spikes from damaging Q1.
The collector voltage (and current) of Q1 controls Q2, the phase splitter transistor. Q2, in turn, controls the
Q3 and Q4 transistors forming the output circuit, which is called a totem-pole arrangement. Q4 serves as a
pull-up transistor to pull the output high when it is turned on. Q3 does just the opposite to the output and
serves as a pull-down transistor. Q3 pulls the output low when it is turned on. Only one of the two transistors
in the totem pole may be turned on at a time, which is the function of the phase splitter transistor Q2.

When a high 

 

logic level 

 

is applied to the inverter’s input, Q1’s base-emitter junction will be reverse biased
and the base-collector junction will be forward biased. This circuit condition will allow Q1 collector current
to flow into the base of Q2, saturating Q2 and thereby providing base current into Q3, turning it on also. The
collector voltage of Q2 is too low to turn on Q4 so that it appears as an open in the top part of the totem pole.
A diode between the two totem-pole transistors provides an extra voltage drop in series with the base-emitter
junction of Q4 to ensure that Q4 will be turned off when Q2 is turned on. The saturated Q3 transistor brings
the output near ground potential, producing a low output result for a high input into the inverter.

When a low logic level is applied to the inverter’s input, Q1’s base-emitter junction will be forward biased
and the base-collector junction will be reverse biased. This circuit condition will turn on Q1 so that the collector
terminal is shorted to the emitter and, therefore, to ground (low level). This low voltage is also on the base of
Q2 and turns Q2 off. With Q2 off, there will be insufficient base current into Q3, turning it off also. Q2 leakage
current is shunted to ground with a resistor to prevent the partial turning on of Q3. The collector voltage of

 

FIGURE 79.1

 

 TTL inverter circuit block diagram and operation.
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Q2 is pulled to a high potential with another resistor and, as a result, turns on Q4 so that it appears as a short
in the top part of the totem pole. The saturated Q4 transistor provides a low resistance path from 

 

V

 

CC

 

 to the
output, producing a high output result for a low input into the inverter.

A TTL NAND gate is very similar to the inverter circuit, with the exception that the input coupling transistor
Q1 is constructed with multiple emitter-base junctions and each input to the NAND is connected to a separate
emitter terminal. Any of the transistor’s multiple emitters can be used to turn on Q1. The TTL NAND gate
thus functions in the same manner as the inverter in that if any of the NAND gate inputs are low, the same
circuit action will take place as with a low input to the inverter. Therefore, any time a low input is applied to
the NAND gate it will produce a high ouput. Only if all of the NAND gate inputs are simultaneously high will
it then produce the same circuit action as the inverter with its single input high, and the resultant output will
be low. Input coupling transistors with up to eight emitter-base junctions, and therefore, eight input NAND
gates, are constructed.

Storage time (the time it takes for the transistor to come out of saturation) is a major factor of propagation
delay for saturated BJT transistors. A long storage time limits the switching speed of a standard TTL circuit.
The propagation delay can be decreased and, therefore, the switching speed can be increased, by placing a
Schottky diode between the base and collector of each transistor that might saturate. The resulting Schottky-
clamped transistors do not go into saturation (effectively eliminating storage time) since the diode shunts
current from the base into the collector before the transistor can achieve saturation. Today, digital circuit designs
implemented with TTL logic almost exclusively use one of the Schottky subfamilies to take advantage of the
significant improvement in switching speed.

 

CMOS Logic Family

 

The active switching element used in all CMOS family circuits is the metal-oxide semiconductor field-effect
transistor (MOSFET). CMOS stands for complementary MOS transistors and refers to the use of both types
of MOSFET transistors, 

 

n

 

-channel and 

 

p

 

-channel, in the design of this type of switching circuit. While the
physical construction and the internal physics of a MOSFET are quite different from that of the BJT, the circuit
switching action of the two transistor types is quite similar. The MOSFET switch is essentially turned off and
has a very high channel resistance by applying the same potential to the gate terminal as the source. An 

 

n

 

-
channel MOSFET is turned on and has a very low channel resistance when a high voltage with respect to the
source is applied to the gate. A 

 

p

 

-channel MOSFET operates in the same fashion but with opposite polarities;
the gate must be more negative than the source to turn on the transistor.

A block diagram and schematic for a CMOS inverter circuit is shown in Fig. 79.2. Note that it is a simpler
and much more compact circuit design than that for the TTL inverter. That fact is a major reason why MOSFET
integrated circuits have a much higher circuit density than BJT integrated circuits and is one advantage that
MOSFET ICs have over BJT ICs. As a result, CMOS is used in all levels of integration, from SSI through VLSI
(very large scale integration).

When a high logic level is applied to the inverter’s input, the 

 

p

 

-channel MOSFET Q1 will be turned off and
the 

 

n

 

-channel MOSFET Q2 will be turned on. This will cause the output to be shorted to ground through the
low resistance path of Q2’s channel. The turned off Q1 has a very high channel resistance and acts nearly like
an open.

When a low logic level is applied to the inverter’s input, the 

 

p

 

-channel MOSFET Q1 will be turned on and
the 

 

n

 

-channel MOSFET Q2 will be turned off. This will cause the output to be shorted to 

 

V

 

DD

 

 through the low
resistance path of Q1’s channel. The turned off Q2 has a very high channel resistance and acts nearly like an open.

CMOS NAND gates are constructed by paralleling 

 

p

 

-channel MOSFETs, one for each input, and putting in
series an 

 

n

 

-channel MOSFET for each input, as shown in the block diagram and schematic of Fig. 79.3. The
NAND gate will produce a low output only when both Q3 and Q4 are turned on, creating a low resistance
path from the output to ground through the two series channels. This can be accomplished by having a high
on both input A and input B. This input condition will also turn off Q1 and Q2 . If either input A or input B
or both is low, the respective parallel MOSFET will be turned on, providing a low resistance path for the output
to 

 

V

 

DD

 

. This will also turn off at least one of the series MOSFETs, resulting in a high resistance path for the
output to ground.
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ECL Logic Family

 

ECL is a higher-speed logic family. While it does not offer as large a variety of IC chips as are available in the
TTL family, it is quite popular for logic applications requiring high-speed switching.

The active switching element used in the ECL family circuits is also the 

 

npn

 

 BJT. Unlike the TTL family,
however, which switches the transistors into saturation when turning them on, ECL switching is designed to
prevent driving the transistors into saturation. Whenever bipolar transistors are driven into saturation, their
switching speed will be limited by the charge carrier storage delay, a transistor operational characteristic. Thus,
the switching speed of ECL circuits will be significantly higher than for TTL circuits. ECL operation is based

 

FIGURE 79.2

 

CMOS inverter circuit block diagram and operation.

 

FIGURE 79.3

 

CMOS two-input NAND circuit block diagram and operation.
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on switching a fixed amount of bias current that is less than the saturation amount between two different
transistors. The basic circuit found in the ECL family is the differential amplifier. One side of the differential
amplifier is controlled by a bias circuit and the other is controlled by the logic inputs to the gate. This logic
family is also referred to as current-mode logic (CML) because of its current switching operation.

 

Logic Family Circuit Parameters

 

Digital circuits and systems operate with only two states, logic 1 and 0, usually represented by two different
voltage levels, a 

 

high

 

 and a 

 

low

 

. The two logic levels actually consist of a range of values with the numerical
quantities dependent upon the specific family that is used. Minimum high logic levels and maximum low logic
levels are established by specifications for each family. Minimum device output levels for a logic high are called

 

V

 

OH(min) 

 

and minimum input levels are called 

 

V

 

IH(min)

 

. The abbreviations for maximum output and input low
logic levels are 

 

V

 

OL(max)

 

 and 

 

V

 

IL(max)

 

, respectively. Figure 79.4 shows the relationships between these parameters.
Logic voltage level parameters are illustrated for selected prominent logic subfamilies in Table 79.3. As seen in
this illustration, there are many operational incompatibilities between major logic family types.

Noise margin is a quantitative measure of a device’s 

 

noise immunity. 

 

High-level noise margin (

 

V

 

NH

 

) and
low-level noise margin (

 

V

 

NL

 

) are defined in Eqs. (79.1) and (79.2).

 

FIGURE 79.4

 

Switching device logic levels.

 

TABLE 79.3

 

Logic Signal Voltage Parameters for Selected Logic 

 

Subfamilies (in Volts)

 

Subfamily

 

V

 

OH(min)

 

V

 

OL(max)

 

V

 

IH(min)

 

V

 

IL(max)

 

74xx 2.4 0.4 2.0 0.8
74LSxx 2.7 0.5 2.0 0.8
74ASxx 2.5 0.5 2.0 0.8
74ALSxx 2.5 0.4 2.0 0.8
74Fxx 2.5 0.5 2.0 0.8
74HCxx 4.9 0.1 3.15 0.9
74HCTxx 4.9 0.1 2.0 0.8
74ACxx 3.8 0.4 3.15 1.35
74ACTxx 3.8 0.4 2.0 0.8
74AHCxx 4.5 0.1 3.85 1.65
74AHCTxx 3.65 0.1 2.0 0.8
10xxx –0.96 –1.65 –1.105 –1.475
10Hxxx –0.98 –1.63 –1.13 –1.48
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V

 

NH

 

 = 

 

V

 

OH(min)

 

 – 

 

V

 

IH(min)

 

(79.1)

 

V

 

NL

 

 = 

 

V

 

IL(max)

 

 – 

 

V

 

OL(max)

 

(79.2)

 

Using the logic voltage values given in Table 79.3 for the selected subfamilies reveals that highest noise
immunity is obtained with logic devices in the CMOS family, while lowest noise immunity is endemic to the
ECL family.

Switching circuit outputs are loaded by the inputs of the devices that they are driving, as illustrated in
Fig. 79.5. Worst case input loading current levels and output driving current capabilities are listed in Table 79.4
for various logic subfamilies. The 

 

fan-out

 

 of a driving device is the ratio between its output current capabilities
at each logic level and the corresponding gate input current loading value. Switching circuits based on bipolar
transistors have fan-out limited primarily by the current-sinking and current-sourcing capabilities of the driving
device.

 

FIGURE 79.5

 

Current loading of driving gates.

 

TABLE 79.4

 

Worst Case Current Parameters for Selected Logic Subfamilies

 

Subfamily

 

I

 

OH(max)

 

I

 

OL(max)

 

I

 

IH(max)

 

I

 

IL(max)

 

74xx

 

–400 

 

m

 

A 16 mA 40 

 

m

 

A –1.6 

 

m

 

A
74LSxx –400 

 

m

 

A 8 mA 20 

 

m

 

A –400 

 

m

 

A
74ASxx –2 mA 20 mA 200 

 

m

 

A –2 mA
74ALSxx –400 

 

m

 

A 8 mA 20 

 

m

 

A –100 

 

m

 

A
74Fxx –1 mA 20 mA 20 

 

m

 

A –0.6 mA
74HCxx –4 mA 4 mA 1 

 

m

 

A –1 

 

m

 

A
74HCTxx –4 mA 4 mA 1 

 

m

 

A –1 

 

m

 

A
74ACxx –24 mA 24 mA 1 

 

m

 

A –1 

 

m

 

A
74ACTxx –24 mA 24 mA 1 

 

m

 

A –1 

 

m

 

A
74AHCxx –8 mA 8 mA 1 

 

m

 

A –1 

 

m

 

A
74AHCTxx –8 mA 8 mA 1 

 

m

 

A –1 

 

m

 

A
10xxx 50 mA –50 mA –265 

 

m

 

A 500 nA
10Hxxx 50 mA –50 mA –265 

 

m

 

A 500 nA
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CMOS switching circuits are limited by the charging and discharging times associated with the output
resistance of the driving gate and the input capacitance of the load gates. Thus, CMOS fan-out depends on the
frequency of switching. With fewer (capacitive) loading inputs to drive, the maximum switching frequency of
CMOS devices will increase.

The switching speed of logic devices is dependent on the device’s 

 

propagation delay time. 

 

The propagation
delay of a logic device limits the frequency at which it can be operated. There are two propagation delay times
specified for logic gates: 

 

t

 

PHL

 

, delay time for the output to change from high to low, and 

 

t

 

PLH

 

, delay time for the
output to change from low to high. Average typical propagation delay times for a single gate are listed for
several logic subfamilies in Table 79.5. The ECL family has the fastest switching speed.

The amount of power required by an IC is normally specified in terms of the amount of current 

 

I

 

CC

 

 (TTL
family), 

 

I

 

DD

 

 (CMOS family), or 

 

I

 

EE

 

 (ECL family) drawn from the power supply. For complex IC devices, the
required supply current is given under specified test conditions. For TTL chips containing simple gates, the
average power dissipation 

 

P

 

D(ave)

 

 is normally calculated from two measurements, 

 

I

 

CCH

 

 (when all gate outputs
are high) and 

 

I

 

CCL

 

 (when all gate outputs are low). Table 79.5 compares the static power dissipation of several
logic subfamilies. The ECL family has the highest power dissipation, while the lowest is attained with the CMOS
family. It should be noted that power dissipation for the CMOS family is directly proportional to the gate input
signal frequency. For example, one would typically find that the power dissipation for a CMOS logic circuit
would increase by a factor of 100 if the input signal frequency is increased from 1 kHz to 100 kHz.

The 

 

speed-power product 

 

is a relative figure of merit that is calculated by the formula given in Eq. (79.3).
This performance measurement is normally expressed in picojoules (pJ).

 

Speed-power product = (

 

t

 

PHL

 

 + 

 

t

 

PLH

 

)/2 

 

´

 

 

 

P

 

D(ave)

 

(79.3)

 

A low value of speed-power product is desirable to implement high-speed (and, therefore, low propagation
delay time) switching devices that consume low amounts of power. Because of the nature of transistor switching
circuits, it is difficult to attain high-speed switching with low power dissipation. The continued development
of new IC logic families and subfamilies is largely due to the trade-offs between these two device switching
parameters. The speed-power product for various subfamilies is also compared in Table 79.5.

 

Interfacing Between Logic Families

 

The interconnection of logic chips requires that input and output specifications be satisfied. Figure 79.6 illus-
trates voltage and current requirements. The driving chip’s VOH(min) must be greater than the driven circuit’s
VIH(min), and the driver’s VOL(max) must be less than VIL(max) for the loading circuit. Voltage level shifters must be

TABLE 79.5 Speed-Power Comparison for Selected Logic Subfamilies

Propagation Static Power 
Delay Time, Dissipation, Speed-Power

Subfamily ns (ave.) mW (per gate) Product, pJ

74xx 10 10 100
74LSxx 9.5 2 19
74ASxx 1.5 2 13
74ALSxx 4 1.2 5
74Fxx 3 6 18
74HCxx 8 0.003 24 ´ 10–3

74HCTxx 14 0.003 42 ´ 10–3

74ACxx 5 0.010 50 ´ 10–3

74ACTxx 5 0.010 50 ´ 10–3

74AHCxx 5.5 0.003 16 ´ 10–3

74AHCTxx 5 0.003 14 ´ 10–3

10xxx 2 25 50
10Hxxx 1 25 25
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used to interface the circuits together if these voltage requirements are not met. Of course, a driving circuit’s
output must not exceed the maximum and minimum allowable input voltages for the driven circuit. Also, the
current sinking and sourcing ability of the driver circuit’s output must be greater than the total current
requirements for the loading circuit. Buffer gates or stages must be used if current requirements are not satisfied.
All chips within a single logic family are designed to be compatible with other chips in the same family. Mixing
chips from multiple subfamilies together within a single digital circuit can have adverse effects on the overall
circuit’s switching speed and noise immunity.

Defining Terms

Fan-out: The specification used to identify the limit to the number of loading inputs that can be reliably
driven by a driving device’s output.

Logic level: The high or low value of a voltage variable that is assigned to be a 1 or a 0 state.
Noise immunity: A logic device’s ability to tolerate input voltage fluctuation caused by noise without changing

its output state.
Propagation delay time: The time delay from when the input logic level to a device is changed until the

resultant output change is produced by that device.
Speed-power product: An overall performance measurement that is used to compare the various logic families

and subfamilies.
Truth table: A listing of the relationship of a circuit’s output that is produced for various combinations of

logic levels at the inputs.

Related Topic
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79.2 Logic Gates (IC)1

Peter Graham

This section introduces and analyzes the electronic circuit realizations of the basic gates of the three technologies:
transistor-transistor logic (TTL), emitter-coupled logic (ECL), and complementary metal-oxide semiconductor
(CMOS) logic. These circuits are commercially available on small-scale integration chips and are also the
building blocks for more elaborate logic systems. The three technologies are compared with regard to speed,
power consumption, and noise immunity, and parameters are defined which facilitate these comparisons. Also
included are recommendations which are useful in choosing and using these technologies.

Gate Specification Parameters

Theoretically almost any logic device or system could be constructed by wiring together the appropriate
configuration of the basic gates of the selected technology. In practice, however, the gates are interconnected
during the fabrication process to produce a desired system on a single chip. The circuit complexity of a given
chip is described by one of the following four rather broad classifications:

• Small-Scale Integration (SSI). The inputs and outputs of every gate are available for external connection
at the chip pins (with the exception that exclusive OR and AND-OR gates are considered SSI).

• Medium-Scale Integration (MSI). Several gates are interconnected to perform somewhat more elaborate
logic functions such as flip-flops, counters, multiplexers, etc.

1Based on P. Graham, “Gates,” in Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York:
Wiley-Interscience, 1986, pp. 864–876. With permission.
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• Large-Scale Integration (LSI). Several of the more elaborate circuits associated with MSI are intercon-
nected within the integrated circuit to form a logic system on a single chip. Chips such as calculators,
digital clocks, and small microprocessors are examples of LSI.

• Very-Large-Scale Integration (VLSI). This designation is usually reserved for chips having a very high
density, 1000 or more gates per chip. These include the large single-chip memories, gate arrays, and
microcomputers.

Specifications of logic speed require definitions of switching times. These definitions can be found in the
introductory pages of most data manuals. Four of them pertain directly to gate circuits. These are (see also
Fig. 79.7):

• LOW-to-HIGH Propagation Delay Time (tPLH). The time between specified reference points on the
input and output voltage waveforms when the output is changing from low to high.

• HIGH-to-LOW Propagation Delay Tune (tPHL). The time between specified reference points on the
input and output voltage waveforms when the output is changing from high to low.

• Propagation Delay Time (tPD). The average of the two propagation delay times: tPD = (tPD + tPHL) /2.

• LOW-to-HIGH Transition Time (tTLH). The rise time between specified reference points on the LOW-to-
HIGH shift of the output waveform.

• HIGH-to-LOW Transition Time (tTHL). The fall time between specified reference points on the HIGH-to-
LOW shift of the output waveform. The reference points usually are 10 and 90% of the voltage level difference
in each case.

Power consumption, driving capability, and effective loading of gates are defined in terms of currents.

• Supply Current, Outputs High (IxxH). The current delivered to the chip by the power supply when all
outputs are open and at the logical 1 level. The xx subscript depends on the technology.

• Supply Current, Outputs Low (IxxL). The current delivered to the chip by the supply when all outputs
are open and at the logical 0 level.

• Supply Current, Worst Case (Ixx). When the output level is unspecified, the input conditions are assumed
to correspond to maximum supply current.

FIGURE 79.7 Definitions of switching times. 
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• Input HIGH Current (IIH). The current flowing into an input when the specified HIGH voltage is applied.

• Input LOW Current (IIL). The current flowing into an input when the specified LOW voltage is applied.

• Output HIGH Current (IOH). The current flowing into the output when it is in the HIGH state. IOHmax

is the largest IOH for which VOH ³ VOHmin is guaranteed.

• Output LOW Current (IOL). The current flowing into the output when it is in the LOW state. IOLmax is
the largest IOL for which VOL ³ VOLmax is guaranteed.

The most important voltage definitions are concerned with establishing ranges on the logical 1 (HIGH) and
logical 0 (LOW) voltage levels.

• Minimum High-Level Input Voltage (VIHmin). The least positive value of input voltage guaranteed to
result in the output voltage level specified for a logical 1 input.

• Maximum Low-Level Input Voltage (VILmax). The most positive value of input voltage guaranteed to
result in the output voltage level specified for a logical 0 input.

• Minimum High-Level Output Voltage (VOHmin). The guaranteed least positive output voltage when the
input is properly driven to produce a logical 1 at the output.

• Maximum Low-Level Output Voltage (VOLmax). The guaranteed most positive output voltage when the
input is properly driven to produce a logical 0 at the output.

• Noise Margins. NMH = VOHmin – VIHmin is how much larger the guaranteed least positive output logical
1 level is than the least positive input level that will be interpreted as a logical 1. It represents how large
a negative-going glitch on an input 1 can be before it affects the output of the driven device. Similarly,
NML = VILmax – VOLmax is the amplitude of the largest positive- going glitch on an input 0 that will not
affect the output of the driven device.

Finally, three important definitions are associated with specifying the load that can be driven by a gate. Since
in most cases the load on a gate output will be the sum of inputs of other gates, the first definition characterizes
the relative current requirements of gate inputs.

• Load Factor (LF). Each logic family has a reference gate, each of whose inputs is defined to be a unit
load in both the HIGH and the LOW conditions. The respective ratios of the input currents IIH and IIL

of a given input to the corresponding IIH and IIL of the reference gate define the HIGH and LOW load
factors of that input.

• Drive Factor (DF). A device output has drive factors for both the HIGH and the LOW output conditions.
These factors are defined as the respective ratios of IOHmax and IOLmax of the gate to IOHmax and IOLmax of
the reference gate.

• Fan-Out. For a given gate the fan-out is defined as the maximum number of inputs of the same type
of gate that can be properly driven by that gate output. When gates of different load and drive factors
are interconnected, fan-out must be adjusted accordingly.

Bipolar Transistor Gates

A logic circuit using bipolar junction transistors (BJTs) can be classified either as saturated or as nonsaturated
logic. A saturated logic circuit contains at least one BJT that is saturated in one of the stable modes of the
circuit. In nonsaturated logic circuits none of the transistors is allowed to saturate. Since bringing a BJT out
of saturation requires a few additional nanoseconds (called the storage time), nonsaturated logic is faster. The
fastest circuits available at this time are emitter-coupled logic (ECL), with transistor-transistor logic (TTL)
having Schottky diodes connected to prevent the transistors from saturating (Schottky TTL) being a fairly close
second. Both of these families are nonsaturated logic. All TTL families other than Schottky are saturated logic.

Transistor-Transistor Logic

TTL evolved from resistor-transistor logic (RTL) through the intermediate step of diode-transistor logic (DTL).
All three families are catalogued in data books published in 1968, but of the three only TTL is still available.
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The basic circuit of the standard TTL family is typified by the two-input NAND gate shown in Fig. 79.8(a).
To estimate the operating levels of voltage and current in this circuit, assume that any transistor in saturation
has VCE = 0.2 and VBE = 0.75 V. Let drops across conducting diodes also be 0.75 V and transistor current gains
(when nonsaturated) be about 50. As a starting point, let the voltage levels at both inputs A and B be high
enough that T1 operates in the reversed mode. In this case the emitter currents of T1 are negligible, and the
current into the base of T1 goes out the collector to become the base current of T2. This current is readily
calculated by observing that the base of T1 is at 3 ´ 0.75 = 2.25 V so there is a 2.75-V drop across the 4-kW
resistor. Thus IBI = IB2 = 0.7 mA, and it follows that T2 is saturated. With T2 saturated, the base of T3 is at VC

+ VBE4 = 0.95 V. If T4 is also saturated, the emitter of T3 will be at VD3 + VCE4 = 0.95 V, and T3 will be cut off.
The voltage across the 1.6-kW resistor is 5 – 0.95 = 4.05 V, so the collector current of T2 is about 2.5 mA. This
means the emitter current of T2 is 3.2 mA. Of this, 0.75 mA goes through the 1-kW resistor, leaving 2.45 mA
as the base current of T4. Since the current gain of T4 is about 50, it will be well into saturation for any collector
current less than 100 mA, and the output at C is a logic 0. The corresponding minimum voltage levels required
at the inputs are estimated from VBE4 + VECI, or about 1.7 V.

FlGURE 79.8 Two-input transistor-transistor logic (TTL) NAND gate type 7400: (a) circuit, (b) symbol, (c) voltage transfer
characteristic (Vi to both inputs), (d) truth table. 
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Now let either or both of the inputs be dropped to 0.2 V. T1 is then biased to saturation in the normal mode,
so the collector current of T1 extracts the charge from the base region of T2. With T2 cut off, the base of T4 is
at 0 V and T4 is cut off. T3 will be biased by the current through the 1.6-kW resistor (R3) to a degree regulated
by the current demand at the output C. The drop across R3 is quite small for light loads, so the output level at
C will be VCC – VBE3 – VD3, which will be about 3.5 V corresponding to the logical 1.

The operation is summarized in the truth table in Fig. 79.8(d), identifying the circuit as a two-input NAND
gate. The derivation of the input-output voltage transfer characteristic [Fig. 79.8(c)], where Vi is applied to
inputs A and B simultaneously, can be found in most digital circuit textbooks. The sloping portion of the
characteristic between Vi = 0.55 and 1.2 V corresponds to T2 passing through the active region in going from
cutoff to saturation.

Diodes D1 and D2 are present to damp out “ringing” that can occur, for example, when fast voltage level
shifts are propagated down an appreciable length (20 cm or more) of microstripline formed by printed circuit
board interconnections. Negative overshoots are clamped to the 0.7 V across the diode.

The series combination of the 130-W resistor, T3, D3, and T4 in the circuit of Fig. 79.8(a), forming what is
called the totem-pole output circuit, provides a low impedance drive in both the source (output C = 1) and
sink (output C = 0) modes and contributes significantly to the relatively high speed of TTL. The available
source and sink currents, which are well above the normal requirements for steady state, come into play during
the charging and discharging of capacitive loads. Ideally T3 should have a very large current gain and the 130-
W resistor should be reduced to 0. The latter, however, would cause a short-circuit load current which would
overheat T3, since T3 would be unable to saturate. All TTL families other than the standard shown in Fig. 79.8(a)
use some form of Darlington connection for T3, providing increased current gain and eliminating the need for
diode D3. The drop across D3 is replaced by the base emitter voltage of the added transistor T5. This connection
appears in Fig. 79.9(a), an example of the 74Hxx series of TTL gates that increases speed at the expense of
increased power consumption, and in Fig. 79.9(b), a gate from the 74Lxx series that sacrifices speed to lower
power dissipation.

A number of TTL logic function implementations are available with open collector outputs. For example,
the 7403 two-input NAND gate shown in Fig. 79.10 is the open collector version of Fig. 79.8(a). The open
collector output has some useful applications. The current in an external load connected between the open
collector and VCC can be switched on and off in response to the input combinations. This load, for example,

FIGURE 79.9 Modified transistor-transistor logic (TTL) two-input NAND states: (a) type 74Hxx, (b) type 74L00. 
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might be a relay, an indicator light, or an LED display. Also, two or more open collector gates can share a
common load, resulting in the anding together of the individual gate functions. This is called a “wired-AND
connection.” In any application, there must be some form of load or the device will not function. There is a
lower limit to the resistance of this load which is determined by the current rating of the open collector transistor.
For wired-AND applications the resistance range depends on how many outputs are being wired and on the
load being driven by the wired outputs. Formulas are given in the data books. Since the open collector
configuration does not have the speed enhancement associated with an active pull-up, the low to high propa-
gation delay (tPLH) is about double that of the totem-pole output. It should be observed that totem-pole outputs
should not be wired, since excessive currents in the active pull-up circuit could result.

Nonsaturated TTL. Two TTL families, the Schottky (74Sxx) and the low-power Schottky (74LSxx), can be
classified as nonsaturating logic. The transistors in these circuits are kept out of saturation by the connection
of Schottky diodes, with the anode to the base and the cathode to the collector.

Schottky diodes are formed from junctions of metal and an n-type semiconductor, the metal fulfilling the
role of the p-region. Since there are thus no minority carriers in the region of the forward-biased junction, the
storage time required to bring a pn junction out of saturation is eliminated. The forward-biased drop across a
Schottky diode is around 0.3 V. This clamps the collector at 0.3 V less than the base, thus maintaining VCE

above the 0.3-V saturation threshold. Circuits for the two-input NAND gates 74LS00 and 74S00 are given in
Fig. 79.11(a) and (b). The special transistor symbol is a short-form notation indicating the presence of the
Schottky diode, as illustrated in Fig. 79.11(c).

Note that both of these circuits have an active pull-down transistor T6 replacing the pull-down resistance
connected to the emitter of T2 in Fig. 79.9. The addition of T6 decreases the turn-on and turn-off times of T4.
In addition, the transfer characteristic for these devices is improved by the squaring off of the sloping region
between Vi = 0.55 and 1.2 V [see Fig. 79.8(c)]. This happens because T2 cannot become active until T6 turns
on, which requires at least 1.2 V at the input.

The diode AND circuit of the 74LS00 in place of the multi-emitter transistor will permit maximum input
levels substantially higher than the 5.5-V limit set for all other TTL families. Input leakage currents for 74LSxx
are specified at Vi = 10 V, and input voltage levels up to 15 V are allowed. The 74LSxx has the additional feature
of the Schottky diode D1 in series with the 100-W output resistor. This allows the output to be pulled up to 10
V without causing a reverse breakdown of T5. The relative characteristics of the several versions of the TTL
two-input NAND gate are compared in Table 79.6. The 74F00 represents one of the new technologies that have
introduced improved Schottky TTL in recent years.

FIGURE 79.10 Open collector two-input NAND gate. 
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TTL Design Considerations. Before undertaking construction of a logic system, the wise designer consults
the information and recommendations provided in the data books of most manufacturers. Some of the more
significant tips are provided here for easy reference.

1. Power supply, decoupling, and grounding. The power supply voltage should be 5 V with less than 5%
ripple factor and better than 5% regulation. When packages on the same printed circuit board are

FIGURE 79.11 Transistor-transistor logic (TTL) nonsaturated logic. (a) Type 74LS00 two-input NAND gate, (b) type
74S00 two-input NAND gate, (c) significance of the Schottky transistor symbol. 
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supplied by a bus there should be a 0.05-mF decoupling capacitor between the bus and the ground for
every five to ten packages. If a ground bus is used, it should be as wide as possible, and should surround
all the packages on the board. Whenever possible, use a ground plane. If a long ground bus is used, both
ends must be tied to the common system ground point.

2. Unused gates and inputs. If a gate on a package is not used, its inputs should be tied either high or low,
whichever results in the least supply current. For example, the 7400 draws three times the current with
the output low as with the output high, so the inputs of an unused 7400 gate should be grounded. An
unused input of a gate, however, must be connected so as not to affect the function of the active inputs.
For a 7400 NAND gate, such an input must either be tied high or paralleled with a used input. It must
be recognized that paralleled inputs count as two when determining the fan-out. Inputs that are tied
high can be connected either to VCC through a 1-kW or more resistance (for protection from supply
voltage surges) or to the output of an unused gate whose input will establish a permanent output high.
Several inputs can share a common protective resistance. Unused inputs of low-power Schottky TTL
can be tied directly to VCC, since 74LSxx inputs tolerate up to 15 V without breakdown. If inputs of low-
power Schottky are connected in parallel and driven as a single input, the switching speed is decreased,
in contrast to the situation with other TTL families.

3. Interconnection. Use of line lengths of up to 10 in. (5 in. for 74S) requires no particular precautions,
except that in some critical situations lines cannot run side by side for an appreciable distance without
causing cross talk due to capacitive coupling between them. For transmission line connections, a gate
should drive only one line, and a line should be terminated in only one gate input. If overshoots are a
problem, a 25- to 50-W resistor should be used in series with the driving gate input and the receiving
gate input should be pulled up to 5 V through a 1-kW resistor. Driving and receiving gates should have
their own decoupling capacitors between the VCC and ground pins. Parallel lines should have a grounded
line separating them to avoid cross talk.

4. Mixing TTL subfamilies. Even synchronous sequential systems often have asynchronous features such
as reset, preset, load, and so on. Mixing high-speed 74S TTL with lower speed TTL (74LS for example)
in some applications can cause timing problems resulting in anomalous behavior. Such mixing is to be
avoided, with rare exceptions which must be carefully analyzed.

Emitter-Coupled Logic

ECL is a nonsaturated logic family where saturation is avoided by operating the transistors in the common
collector configuration. This feature, in combination with a smaller difference between the HIGH and LOW
voltage levels (less than 1 V) than other logic families, makes ECL the fastest logic available at this time. The
circuit diagram of a widely used version of the basic two-input ECL gate is given in Fig. 79.12. The power
supply terminals VCC1, VCC2, VEE, and VTT are available for flexibility in biasing. In normal operation, VCC1 and
VCC2 are connected to a common ground, VEE is biased to –5.2 V, and VTT is biased to –2 V. With these values
the nominal voltage for the logical 0 and 1 are, respectively, –1.75 and –0.9 V. Operation with the VCC terminals
grounded maximizes the immunity from noise interference.

TABLE 79.6 Comparison of TTL Two-Input NANDGates

Propagation Noise
Supply Current Delay Time Margins Load Drive

TTL ICCH
a ICCL tPLH tPHL NMH NML Factor, Factor, Fan-

Type (mA) (mA) (ns) (ns) (V) (V) H/L H/L out

74F00 2.8 10.2 2.9 2.6 0.7 0.3 0.5/0.375 25/12.5 33
74S00 10 20 3 3 0.7 0.3 1.25/1.25 25/12.5 10
74H00 10 26 5.9 6.2 0.4 0.4 1.25/1.25 12.5/12.5 10
74LS00 0.8 2.4 9 10 0.7 0.3 0.5/0.25 10/5 20
7400 4 12 11 7 0.4 0.4 1/1 20/10 10
74L00 0.44 1.16 31 31 0.4 0.5 0.24/0.1125 5/2.25 20

aSee text for explanation of abbreviations.
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A brief description of the operation of the circuit will verify that none of the transistors saturates. For the
following discussion, VCC1 and VCC2 are grounded, VEE is –5.2 V, and VTT is –2 V. Diode drops and base-emitter
voltages of active transistors are 0.8 V.

First, observe that the resistor-diode (D1 and D2) voltage divider establishes a reference voltage of –0.55 V
at the base of T3, which translates to –1.35 V at the base of T2. When either or both of the inputs A and B are
at the logical 1 level of –0.9 V, the emitters of T1A, T1B, and T2 will be 0.8 V lower, at –1.7 V. This establishes
the base-emitter voltage of T2 at –1.35 – (–1.7 ) = 0.35 V, so T2 is cut off. With T2 off, T4 is biased into the
active region, and its emitter will be at about –0.9 V, corresponding to a logical 1 at the (A + B) output. Most
of the current through the 365-W emitter resistor, which is [–1.7 – (–5.2)]/0.365 = 9.6 mA, flows through the
100-W collector resistor, dropping the base voltage of T5 to –0.96 V. Thus the voltage level at the output terminal
designated (A + B) is –1.76 V, corresponding to a logical 0.

When both A and B inputs are at the LOW level of –1.75 V, T2 will be active, with its emitter voltage at –1.35
– 0.8 = –2.15 V. The current through the 365-W resistor becomes [–2.15 – (–5.2)]/0.365 = 8.2 mA. This current
flows through the 112-W resistor pulling the base of T4 down to –0.94 V, so that the (A + B) output will be at
the LOW level of –1.75 V. With T1A and T1B cut off, the base of T5 is close to 0.0 V, and the (A + B) output will
therefore be at the nominal HIGH level of –0.9 V.

Observe that the output transistors T4 and T5 are always active and function as emitter followers, providing
the low-output impedances required for driving capacitive loads. As T1A and/or T1B turn on, and T2 turns off
as a consequence, the transition is accomplished with very little current change in the 365-W emitter resistor.
It follows that the supply current from VEE does not undergo the sudden increases and decreases prevalent in
TTL, thus eliminating the need for decoupling capacitors. This is a major reason why ECL can be operated
successfully with the low noise margins which are inherent in logic having a relatively small voltage difference
between the HIGH and LOW voltage levels (see Table 79.7). The small level shifts between LOW and HIGH
also permit low propagation times without excessively fast rise and fall times. This reduces the effects of residual
capacitive coupling between gates, thereby lessening the required noise margin. For this reason the faster ECL
(100xxx) should not be used where the speed of the 10xxx series is sufficient. A comparison of three ECL series
is given in Table 79.7. The propagation times tPLH and tPHL and transition times tTLH and tTHL are defined in
Fig. 79.7. Transitions are between the 20 and 80% levels.

FIGURE 79.12 Emitter-coupled logic basic gate (ECL 10102): (a) circuit, (b) symbol. 
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The 50-W pull-down resistors shown in Fig. 79.12 are connected externally. The outputs of several gates can
therefore share a common pull-down resistor to form a wired-OR connection. The open emitter outputs also
provide flexibility for driving transmission lines, the use of which in most cases is mandatory for interconnecting
this high-speed logic. A twisted pair interconnection can be driven using the complementary outputs (A + B)
and (A + B) as a differential output. Such a line should be terminated in an ECL line receiver (10114).

Since ECL is used in high-speed applications, special techniques must be applied in the layout and intercon-
nection of chips on circuit boards. Users should consult design handbooks published by the suppliers before
undertaking the construction of an ECL logic system.

While ECL is not compatible with any other logic family, interfacing buffers, called translators, are available.
In particular, the 10124 converts TTL output levels to ECL complementary levels, and the 10125 converts either
single-ended or differential ECL outputs to TTL levels. Among other applications of these translators, they
allow the use of ECL for the highest speed requirements of a system while the rest of the system uses the more
rugged TTL. Another translator is the 10177, which converts the ECL output levels to n-channel metal-oxide
semiconductor (NMOS) levels. This is designed for interfacing ECL with n-channel memory systems.

Complementary Metal-Oxide Semiconductor (CMOS) Logic

Metal-oxide semiconductor (MOS) technology is prevalent in LSI systems due to the high circuit densities
possible with these devices. p-Channel MOS was used in the first LSI systems, and it still is the cheapest to
produce because of the higher yields achieved due to the longer experience with PMOS technology. PMOS,
however, is largely being replaced by NMOS (n-channel MOS), which has the advantages of being faster (since
electrons have greater mobility than holes) and having TTL compatibility. In addition, NMOS has a higher
function/chip area density than PMOS, the highest density in fact of any of the current technologies. Use of
NMOS and PMOS, however, is limited to LSI and VLSI fabrications. The only MOS logic available as SSI and
MSI is CMOS (complementary MOS).

CMOS is faster than NMOS and PMOS, and it uses less power per function than any other logic. While it
is suitable for LSI, it is more expensive and requires somewhat more chip area than NMOS or PMOS. In many
respects it is unsurpassed for SSI and MSI applications. Standard CMOS (the 4000 series) is as fast as low-
power TTL (74Lxx) and has the largest noise margin of any logic type.

A unique advantage of CMOS is that for all input combinations the steady-state current from VDD to VSS is
almost zero because at least one of the series FETs is open. Since CMOS circuits of any complexity are
interconnections of the basic gates, the quiescent currents for these circuits are extremely small, an obvious
advantage which becomes a necessity for the practicality of digital watches, for example, and one which alleviates

TABLE 79.7 Comparison of ECL Quad Two-Input NOR Gates (VTT = VEE = 5.2 V, VCC1 = 0 V)

Power Power
Supply Supply Propagation Transition Noise

Terminal Current Delay Time Time Margins

ECL VEE IE t PLH
a t PHL tTLH

b tTHL
b NMH NML Test

Type (V) (mA) (ns) (ns) (ns) (ns) (V) (V) Load

ECL II
1012 –5.2 18c 5 4.5 4 6 0.175 0.175 Fan-out of 3
95102 –5.2 11 2 2 2 2 0.14 0.145 50 W
10102 –5.2 20 2 2 2.2 2.2 0.135 0.175 50 W

ECLIII
1662 –5.2 56c 1 1.1 1.4 1.2 0.125 0.125 50 W
100102d –4.5 55 0.75 0.75 0.7 0.7 0.14 0.145 50 W
11001e –5.2 24 0.7 0.7 0.7 0.7 0.145 0.175 50 W

a See text for explanation of abbreviations. d Quint 2-input NOR/OR gate.
b 20 to 80% levels. e Dual 5/4-input NOR/OR gate.
c Maximum value (all other typical).
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heat dissipation problems in high-density chips. Also a noteworthy feature of CMOS digital circuits is the
absence of components other than FETs. This attribute, which is shared by PMOS and NMOS, accounts for
the much higher function/chip area density than is possible with TTL or ECL. During the time the output of
a CMOS gate is switching there will be current flow from VDD to VSS, partly due to the charging of junction
capacitances and partly because the path between VDD and VSS closes momentarily as the FETs turn on and off.
This causes the dc supply current to increase in proportion to the switching frequency in a CMOS circuit.
Manufacturers specify that the supply voltage for standard CMOS can range over 3 V £ VDD – VSS £ 18 V, but
switching speeds are slower at the lower voltages, mainly due to the increased resistances of the “on” transistors.
The output switches between low and high when the input is midway between VDD and VSS, and the output
logical 1 level will be VDD and the logical 0 level VSS [Fig. 79.13(c)]. If CMOS is operated with VDD = 5 V and
VSS = 0 V, the VDD and VSS levels will be almost compatible with TTL except that the TTL totem-pole output
high of 3.4 V is marginal as a logical 1 for CMOS. To alleviate this, when CMOS is driven with TTL a 3.3-kW
pull-up resistor between the TTL output and the common VCC, VDD supply terminal should be used. This raises
VOH of the TTL output to 5 V.

All CMOS inputs are diode protected to prevent static charge
from accumulating on the FET gates and causing punch-through of
the oxide insulating layer. A typical configuration is illustrated in
Fig. 79.14. Diodes D1 and D2 clamp the transistor gates between VDD

and VSS. Care must be taken to avoid input voltages that would cause
excessive diode currents. For this reason manufacturers specify an
input voltage constraint from VSS – 0.5 V to VDD + 0.5 V. The
resistance Rs helps protect the diodes from excessive currents but is
introduced at the expense of switching speed, which is deteriorated
by the time constant of this resistance and the junction capacitances.

Advanced versions of CMOS have been developed which are
faster than standard CMOS. The first of these to appear were des-
ignated 74HCxx and 74HCTxx. The supply voltage range for this
series is limited to 2 V £ VDD – VSS £ 6 V. The pin numbering of a
given chip is the same as its correspondingly numbered TTL device.
Furthermore, gates with the HCT code have skewed transfer char-
acteristics which match those of its TTL cousin, so that these chips
can be directly interchanged with low-power Schottky TTL.

FIGURE 79.13 (a) Complementary metal-oxide semiconductor (CMOS) NAND gate, (b) NOR gate, and (C) inverter
transfer characteristic. 

FIGURE 79.14 Diode protection of input
transistor gates. 200 W < Rs < 1.5 kW. 
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More recently, a much faster CMOS has appeared and carries the designations 74ACxx and 74ACTxx. These
operate in the same supply voltage range and bear the same relationship with TTL as the HCMOS. The driving
capabilities (characterized by IOH and IOL) of this series are much greater, such that they can be fanned out to
10 low-power Schottky inputs.

The three types of CMOS are compared in Table 79.8. The relative speeds of these technologies are best
illustrated by including in the table the maximum clock frequencies for D flip-flops. In each case, the frequency
given is the maximum for which the device is guaranteed to work. It is worth noting that a typical maximum
clocking of 160 MHz is claimed for the 74ACT374 D flip-flop.

CMOS Design Considerations

Design and handling recommendations for CMOS, which are included in several of the data books, should be
consulted by the designer using this technology. A few selected recommendations are included here to illustrate
the importance of such information.

1. All unused CMOS inputs should be tied either to VDD or VSS, whichever is appropriate for proper
operation of the gate. This rule applies even to inputs of unused gates, not only to protect the inputs
from possible static charge buildup, but to avoid unnecessary supply current drain. Floating gate inputs
will cause all the FETs to be conducting, wasting power and heating the chip unnecessarily.

2. CMOS inputs should never be driven when the supply voltage VDD is off, since damage to the input-
protecting diodes could result. Inputs wired to edge connectors should be shunted by resistors to VDD

or VSS to guard against this possibility.
3. Slowly changing inputs should be conditioned using Schmitt trigger buffers to avoid oscillations that

can arise when a gate input voltage is in the transition region.
4. Wired-AND configurations cannot be used with CMOS gates, since wiring an output HIGH to an output

LOW would place two series FETs in the “on” condition directly across the chip supply.
5. Capacitive loads greater than 5000 pF across CMOS gate outputs act as short circuits and can overheat

the output FETs at higher frequencies.
6. Designs should be used that avoid the possibility of having low impedances (such as generator outputs)

connected to CMOS inputs prior to power-up of the CMOS chip. The resulting current surge when VDD

is turned on can damage the input diodes.

TABLE 79.8 Comparison of Standard, High-Speed, and Advanced High-Speed CMOS

Standard CMOS High-Speed CMOS Advanced CMOS
NORGates Inverter Inverter

Parameter Symbol Unit 4001B 4011UB 74HC04 74HCT04 74AC04 74ACT04

Supply voltage VDD-VSS V 15 15 6 5.5 5.5 5.5
Input voltage VIHmin V 11 12.5 4.2 2 3.85 2

thresholds VILmax V 4 2.5 1.8 0.8 1.65 0.8
Guaranteed output VOHmin V 13.5 13.5 5.9 4.5 4.86 4.76

levels at VOLmax V 1.5 1.5 0.1 0.26 0.32 0.37
maximum IO

Maximum IOH mA –8.8 –3.5 –4 –4 –24 –24
output currents IOL mA 8.8 8.8 4 4 24 24

Noise NML V 2.5 2.5 1.7 0.54 1.33 .43
margins NMH V 2.5 2.5 1.7 2.5 1.01 1.24

Propagation tPLH ns 40 40 16 15 4 4.3
times tPHL ns 40 40 16 17 3.5 3.9

Max input IINmax mA 0.1 0.1 0.1 0.1 0.1 0.1
current leakage

D-flip-flop 4013B 74HC374 74HCT374A 74AC374 74ACT374
max frequency fmax MHz 7.0 N.A. 35 30 100 100
(guaranteed
 minimum)
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While this list of recommendations is incomplete, it should alert the CMOS designer to the value of the
information supplied by the manufacturers.

Choosing a Logic Family

A logic designer planning a system using SSI and MSI chips will find that an extensive variety of circuits is
available in all three technologies: TTL, ECL, and CMOS. The choice of which technology will dominate the
system is governed by what are often conflicting needs, namely, speed, power consumption, noise immunity,
cost, availability, and the ease of interfacing. Sometimes the decision is easy. If the need for a low static power
drain is paramount, CMOS is the only choice. It used to be the case that speed would dictate the selection;
ECL was high speed, TTL was moderate, and CMOS low. With the advent of advanced TTL and, especially,
advanced CMOS the choice is no longer clear-cut. All three will work at 100 MHz or more. ECL might be used
since it generates the least noise because the transitions are small, yet for that same reason it is more susceptible
to externally generated noise. Perhaps TTL might be the best compromise between noise generation and
susceptibility. Advanced CMOS is the noisiest because of its rapid rise and fall times, but the designer might
opt to cope with the noise problems to take advantage of the low standby power requirements.

A good rule is to use devices which are no faster than the application requires and which consume the least
power consistent with the needed driving capability. The information published in the manufacturers’ data
books and designer handbooks is very helpful when choice is in doubt.

Defining Term

Logic gate: Basic building block for logic systems that controls the flow of pulses.

Related Topics

25.3 Application-Specific Integrated Circuits • 81.2 Logic Circuits
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Further Information

An excellent presentation of the practical design of logic systems using SSI and MSI devices is developed in the
referenced book An Engineering Approach to Digital Design by William I. Fletcher. The author pays particular
attention to the importance of device speed and timing.

The Art of Electronics by Horowitz and Hill is particularly helpful for its practical approach to interfacing
digital with analog.

Everything one needs to know about digital devices and their interconnection can be found somewhere
in the data manuals, design handbooks, and application notes published by the device manufacturers.
Unfortunately, no single publication has it all, so the serious user should acquire as large a collection of
these sources as possible.
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C H A P T E R

13

Digital Logic Circuits

igital computers have taken a prominent place in engineering and science
over the last two decades, performing a number of essential functions such
as numerical computations and data acquisition. It is not necessary to
further stress the importance of these electronic systems in this book, since

you are already familiar with personal computers and programming languages.
The objective of the chapter is to discuss the essential features of digital logic
circuits, which are at the heart of digital computers, by presenting an introduction
to combinational logic circuits.

The chapter starts with a discussion of the binary number system, and con-
tinues with an introduction to Boolean algebra. The self-contained treatment of
Boolean algebra will enable you to design simple logic functions using the tech-
niques of combinational logic, and several practical examples are provided to
demonstrate that even simple combinations of logic gates can serve to implement
useful circuits in engineering practice. In a later section, we introduce a num-
ber of logic modules which can be described using simple logic gates but which
provide more advanced functions. Among these, we discuss read-only memo-
ries, multiplexers, and decoders. Throughout the chapter, simple examples are
given to demonstrate the usefulness of digital logic circuits in various engineering
applications.
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Chapter 13 provides the background needed to address the study of digital
systems, which will be undertaken in Chapter 14. Upon completion of the chapter,
you should be able to:

• Perform operations using the binary number system.
• Design simple combinational logic circuits using logic gates.
• Use Karnaugh maps to realize logical expressions.
• Interpret data sheets for multiplexers, decoders, and memory ICs.

13.1 ANALOG AND DIGITAL SIGNALS

One of the fundamental distinctions in the study of electronic circuits (and in
the analysis of any signals derived from physical measurements) is that between
analog and digital signals. As discussed in the preceding chapter, ananalog signal
is an electrical signal whose value varies in analogy with a physical quantity (e.g.,
temperature, force, or acceleration). For example, a voltage proportional to a
measured variable pressure or to a vibration naturally varies in an analog fashion.
Figure 13.1 depicts an analog function of time,f (t). We note immediately that for
each value of time,t , f (t) can take one value among any of the values in a given
range. For example, in the case of the output voltage of an op-amp, we expect the
signal to take any value between+Vsatand−Vsat, whereVsat is the supply-imposed
saturation voltage.
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Figure 13.1 Voltage analog of internal
combustion engine in-cylinder pressure

A digital signal, on the other hand, can take only afinite number of values.
This is an extremely important distinction, as will be shown shortly. An example
of a digital signal is a signal that allows display of a temperature measurement on
a digital readout. Let us hypothesize that the digital readout is three digits long
and can display numbers from 0 to 100, and let us assume that the temperature
sensor is correctly calibrated to measure temperatures from 0 to 100◦F. Further,
the output of the sensor ranges from 0 to 5 volts, where 0 V corresponds to 0◦F
and 5 V to 100◦F. Therefore, the calibration constant of the sensor is

kT = 100◦ − 0◦

5− 0
= 20◦ V
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Clearly, the output of the sensor is an analog signal; however, the display can show
only a finite number of readouts (101, to be precise). Because the display itself can
only take a value out of a discrete set of states—the integers from 0 to 100—we
call it a digital display, indicating that the variable displayed is expressed in digi-
tal form.

Now, each temperature on the display corresponds to arange of voltages:
each digit on the display represents one hundredth of the 5-volt range of the sensor,
or 0.05 V= 50 mV. Thus, the display will read 0 if the sensor voltage is between
0 and 49 mV, 1 if it is between 50 and 99 mV, and so on. Figure 13.2 depicts the
staircase function relationship between the analog voltage and the digital readout.
This quantization of the sensor output voltage is in effect an approximation. If
one wished to know the temperature with greater precision, a greater number of
display digits could be employed.
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Figure 13.2 Digital representation of an analog signal
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Figure 13.3 A binary signal

The most common digital signals are binary signals. A binary signal is a
signal that can take only one of two discrete values and is therefore characterized
by transitions between two states. Figure 13.3 displays a typical binary signal. In
binary arithmetic (which we discuss in the next section), the two discrete values f1

and f0 are represented by the numbers 1 and 0. In binary voltage waveforms, these
values are represented by two voltage levels. For example, in the TTL convention
(see Chapter 10), these values are (nominally) 5 V and 0 V, respectively; in CMOS
circuits, these values can vary substantially. Other conventions are also used,
including reversing the assignment—for example, by letting a 0-V level represent
a logic 1 and a 5-V level represent a logic 0. Note that in a binary waveform,
knowledge of the transition between one state and another (e.g., from f0 to f1 at
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t = t2) is equivalent to knowledge of the state. Thus, digital logic circuits can
operate by detecting transitions between voltage levels. The transitions are often
called edges and can be positive (f0 to f1) or negative (f1 to f0). Virtually all of
the signals handled by a computer are binary. From here on, whenever we speak
of digital signals, you may assume that the text is referring to signals of the binary
type, unless otherwise indicated.

13.2 THE BINARY NUMBER SYSTEM

The binary number system is a natural choice for representing the behavior of
circuits that operate in one of two states (on or off, 1 or 0, or the like). The diode
and transistor gates and switches studied in Chapter 10 fall in this category. Table
13.1 shows the correspondence between decimal and binary number systems for
decimal numbers up to 16.

Table 13.1 Conversion from
decimal to binary

Decimal Binary
number, number,
n10 n2

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

Binary numbers are based on powers of 2, whereas the decimal system is
based on powers of 10. For example, the number 372 in the decimal system can
be expressed as

372 = (3× 102)+ (7× 101)+ (2× 100)

while the binary number 10110 corresponds to the following combination of pow-
ers of 2:

10110 = (1× 24)+ (0× 23)+ (1× 22)+ (1× 21)+ (0× 20)

It is relatively simple to see the correspondence between the two number systems
if we add the terms on the right-hand side of the previous expression. Let n2

represent the number n base 2 (i.e., in the binary system) and n10 the same number
base 10. Then, our notation will be as follows:

101102 = 16+ 0+ 4+ 2+ 0 = 2210

Note that a fractional number can also be similarly represented. For example, the
number 3.25 in the decimal system may be represented as

3.2510 = 3× 100 + 2× 10−1 + 5× 10−2

while in the binary system the number 10.011 corresponds to

10.0112 = 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3

= 2+ 0+ 0+ 1
4 + 1

8 = 2.37510

Table 13.1 shows that it takes four binary digits, also called bits, to represent the
decimal numbers up to 15. Usually, the rightmost bit is called the least significant
bit, or LSB, and the leftmost bit is called the most significant bit, or MSB. Since
binary numbers clearly require a larger number of digits than decimal numbers,
the digits are usually grouped in sets of four, eight, or sixteen. Four bits are usually
termed a nibble, eight bits are called a byte, and sixteen bits (or two bytes) form
a word.

Table 13.2 Rules for
addition

0+ 0 = 0

0+ 1 = 1

1+ 0 = 1

1+ 1 = 0 (with a carry of 1)

Addition and Subtraction

The operations of addition and subtraction are based on the simple rules shown in
Table 13.2. Note that, just as is done in the decimal system, a carry is generated
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whenever the sum of two digits exceeds the largest single-digit number in the given
number system, which is 1 in the binary system. The carry is treated exactly as in
the decimal system. A few examples of binary addition are shown in Figure 13.4,
with their decimal counterparts.

Decimal

(Note that in this example, 3.25 = 31_
4 and 5.75 = 53_

4.)

5
+6
11

Binary

101
+110
1011

Decimal

15
+20

35

Binary

1111
+10100
100011

Decimal

3.25
+5.75

9.00

Binary

11.01
+101.11
1001.00

Figure 13.4 Examples of binary addition

Table 13.3 Rules for
subtraction

0− 0 = 0

1− 0 = 1

1− 1 = 0

0− 1 = 1 (with a borrow of 1)

The procedure for subtracting binary numbers is based on the rules of Table
13.3. A few examples of binary subtraction are given in Figure 13.5, with their
decimal counterparts.

Decimal

9
–5
4

Binary

1001
–101
0100

Decimal

16
–3
13

Binary

10000
–11

01101

Decimal

6.25
–4.50

1.75

Binary

110.01
–100.10
001.11

Figure 13.5 Examples of binary subtraction Table 13.4 Rules for
multiplication

0× 0 = 0

0× 1 = 0

1× 0 = 0

1× 1 = 1

Table 13.5 Rules for
division

0÷ 1 = 0

1÷ 1 = 1

Multiplication and Division

Whereas in the decimal system the multiplication table consists of 102 = 100
entries, in the binary system we only have 22 = 4 entries. Table 13.4 represents
the complete multiplication table for the binary number system.

Division in the binary system is also based on rules analogous to those of
the decimal system, with the two basic laws given in Table 13.5. Once again, we
need be concerned with only two cases, and just as in the decimal system, division
by zero is not contemplated.

Remainder

49 � 2 = 24 + 1
24 � 2 = 12 + 0
12 � 2 = 6 + 0
6 � 2 = 3 + 0
3 � 2 = 1 + 1
1 � 2 = 0 + 1

492 = 1100012

Figure 13.6 Example of
conversion from decimal to binary

Conversion from Decimal to Binary

The conversion of a decimal number to its binary equivalent is performed by
successive division of the decimal number by 2, checking for the remainder each
time. Figure 13.6 illustrates this idea with an example. The result obtained in
Figure 13.6 may be easily verified by performing the opposite conversion, from
binary to decimal:

110001 = 25 + 24 + 20 = 32+ 16+ 1 = 49

The same technique can be used for converting decimal fractional numbers to their
binary form, provided that the whole number is separated from the fractional part
and each is converted to binary form (separately), with the results added at the
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end. Figure 13.7 outlines this procedure by converting the number 37.53 to binary
form. The procedure is outlined in two steps. First, the integer part is converted;
then, to convert the fractional part, one simple technique consists of multiplying
the decimal fraction by 2 in successive stages. If the result exceeds 1, a 1 is needed
to the right of the binary fraction being formed (100101 . . . , in our example).
Otherwise, a 0 is added. This procedure is continued until no fractional terms
are left. In this case, the decimal part is 0.5310, and Figure 13.7 illustrates the
succession of calculations. Stopping the procedure outlined in Figure 13.7 after
11 digits results in the following approximation:

37.5310 = 100101.10000111101

Greater precision could be attained by continuing to add binary digits, at the
expense of added complexity. Note that an infinite number of binary digits may
be required to represent a decimal number exactly.

Remainder
37 � 2 = 18 + 1
18 � 2 = 9 + 0
9 � 2 = 4 + 1
4 � 2 = 2 + 0
2 � 2 = 1 + 0
1 � 2 = 0 + 1

3710 = 1001012

2 × 0.53 = 1.06 → 1
2 × 0.06 = 0.12 → 0
2 × 0.12 = 0.24 → 0
2 × 0.24 = 0.48 → 0
2 × 0.48 = 0.96 → 0
2 × 0.96 = 1.92 → 1
2 × 0.92 = 1.84 → 1
2 × 0.84 = 1.68 → 1
2 × 0.68 = 1.36 → 1
2 × 0.36 = 0.72 → 0
2 × 0.72 = 1.44 → 1

0.5310 = 0.10000111101

Figure 13.7 Conver-
sion from decimal to
binary

Complements and Negative Numbers

To simplify the operation of subtraction in digital computers, complements are
used almost exclusively. In practice, this corresponds to replacing the operation
X − Y with the operation X + (−Y ). This procedure results in considerable
simplification, since the computer hardware need include only adding circuitry.
Two types of complements are used with binary numbers: the one’s complement
and the two’s complement.

The one’s complement of an n-bit binary number is obtained by subtracting
the number itself from (2n − 1). Two examples are as follows:

a = 0101

One’s complement of a = (24 − 1)− a
= (1111)− (0101)

= 1010

b = 101101

One’s complement of b = (26 − 1)− b
= (111111)− (101101)

= 010010

The two’s complement of an n-bit binary number is obtained by subtracting
the number itself from 2n. Two’s complements of the same numbers a and b used
in the preceding illustration are computed as follows:

a = 0101

Two’s complement of a = 24 − a
= (10000)− (0101)

= 1011

b = 101101

Two’s complement of b = 26 − b
= (1000000)− (101101)

= 010011

A simple rule that may be used to obtain the two’s complement directly from a
binary number is the following: Starting at the least significant (rightmost) bit,
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copy each bit until the first 1 has been copied, and then replace each successive
1 by a 0 and each 0 by a 1. You may wish to try this rule on the two previous
examples to verify that it is much easier to use than the subtraction from 2n.

Different conventions exist in the binary system to represent whether a num-
ber is negative or positive. One convention, called the sign-magnitude conven-
tion, makes use of a sign bit, usually positioned at the beginning of the number, for
which a value of 1 represents a minus sign and a value of 0, a plus sign. Thus, an
eight-bit binary number would consist of a sign bit followed by seven magnitude
bits, as shown in Figure 13.8(a). In a digital system that uses eight-bit signed
integer words, we could represent integer numbers (decimal) in the range

−(27 − 1) ≤ N ≤ +(27 − 1)

or

−127 ≤ N ≤ +127

Sign bit b7 b6 b5 b4 b3 b2 b1 b0

← Actual magnitude of binary number →
Sign bit b7 b6 b5 b4 b3 b2 b1 b0

(a)

(b)

(c)

Sign bit b7 b6 b5 b4 b3 b2 b1 b0

← Actual magnitude of binary number (if b7 = 0) →
← One’s complement of binary number (if b7 = 1) →

Sign bit b7 b6 b5 b4 b3 b2 b1 b0

Sign bit b7 b6 b5 b4 b3 b2 b1 b0

← Actual magnitude of binary number (if b7 = 0) →
← Two’s complement of binary number (if b7 = 1) →

Figure 13.8 (a) Eight-bit sign-magnitude binary number; (b)
Eight-bit one’s complement binary number; (c) Eight-bit two’s
complement binary number

A second convention uses the one’s complement notation. In this convention,
a sign bit is also used to indicate whether the number is positive (sign bit = 0)
or negative (sign bit = 1). However, the magnitude of the binary number is
represented by the true magnitude if the number is positive, and by its one’s
complement if the number is negative. Figure 13.8(b) illustrates the convention.
For example, the number (91)10 would be represented by the seven-bit binary
number (1011011)2 with a leading 0 (the sign bit): (01011011)2. On the other
hand, the number (−91)10 would be represented by the seven-bit one’s complement
binary number (0100100)2 with a leading 1 (the sign bit): (10100100)2.

Most digital computers use the two’s complement convention in performing
integer arithmetic operations. The two’s complement convention represents pos-
itive numbers by a sign bit of 0, followed by the true binary magnitude; negative
numbers are represented by a sign bit of 1, followed by the two’s complement of the
binary number, as shown in Figure 13.8(c). The advantage of the two’s comple-
ment convention is that the algebraic sum of two’s complement binary numbers is
carried out very simply by adding the two numbers including the sign bit. Example
13.1 illustrates two’s complement addition.
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EXAMPLE 13.1 Two’s Complement Operations

Problem

Perform the following subtractions using two’s complement arithmetic:

1. X − Y = 1011100− 1110010

2. X − Y = 10101111− 01110011

Solution

Analysis: The two’s complement subtractions are performed by replacing the operation
X − Y with the operation X + (−Y ). Thus, we first find the two’s complement of Y and
add the result to X in each of the two cases:

X − Y = 1011100− 1110010 = 1011100+ (27 − 1110010)

= 1011100+ 0001110 = 1101010

Next, we add the sign bit (in boldface type) in front of each number (1 in first case since
the difference X − Y is a negative number):

X − Y = 11101010

Repeating for the second subtraction gives:

X − Y = 10101111− 01110011 = 10101111+ (28 − 01110011) = 10101111

+10001101 = 00111100

= 000111100

where the first digit is a 0 because X − Y is a positive number.

The Hexadecimal System

It should be apparent by now that representing numbers in base 2 and base 10
systems is purely a matter of convenience, given a specific application. Another
base frequently used is the hexadecimal system, a direct derivation of the binary
number system. In the hexadecimal (or hex) code, the bits in a binary number are
subdivided into groups of four. Since there are 16 possible combinations for a four-
bit number, the natural digits in the decimal system (0 through 9) are insufficient
to represent a hex digit. To solve this problem, the first six letters of the alphabet
are used, as shown in Table 13.6. Thus, in hex code, an eight-bit word corresponds
to just two digits; for example:

1010 01112 = A716

0010 10012 = 2916

Table 13.6 Hexa-
decimal code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

Binary Codes

In this subsection, we describe two common binary codes that are often used for
practical reasons. The first is a method of representing decimal numbers in digital
logic circuits that is referred to as binary-coded decimal, or BCD, represen-
tation. In effect, the simplest BCD representation is just a sequence of four-bit
binary numbers that stops after the first 10 entries, as shown in Table 13.7. There are
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Table 13.7 BCD
code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 13.8 Three-bit
Gray code

Binary Gray

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

also other BCD codes, all reflecting the same principle: that each decimal digit
is represented by a fixed-length binary word. One should realize that although
this method is attractive because of its direct correspondence with the decimal
system, it is not efficient. Consider, for example, the decimal number 68. Its
binary representation by direct conversion is the seven-bit number 1000100. On
the other hand, the corresponding BCD representation would require eight bits:

6810 = 01101000BCD

Another code that finds many applications is the Gray code. This is simply a
reshuffling of the binary code with the property that any two consecutive numbers
differ only by one bit. Table 13.8 illustrates the three-bit Gray code. The Gray
code can be very useful in practical applications, because in counting up or down
according to this code, the binary representation of a number changes only one
bit at a time. The next example illustrates an application of the Gray code to a
practical engineering problem.

FOCUS ON
MEASUREMENTS

Digital Position Encoders
Position encoders are devices that output a digital signal propor-
tional to their (linear or angular) position. These devices are very
useful in measuring instantaneous position in motion control
applications. Motion control is a technique that is used when it is necessary
to accurately control the motion of a moving object; examples are found in
robotics, machine tools, and servomechanisms. For example, in positioning
the arm of a robot to pick up an object, it is very important to know its exact
position at all times. Since one is usually interested in both rotational and
translational motion, two types of encoders are discussed in this example:
linear and angular position encoders.

An optical position encoder consists of an encoder pad, which is either
a strip (for translational motion) or a disk (for rotational motion) with
alternating black and white areas. These areas are arranged to reproduce
some binary code, as shown in Figure 13.9, where both the conventional
binary and Gray codes are depicted for a four-bit linear encoder pad. A fixed
array of photodiodes (see Chapter 8) senses the reflected light from each of
the cells across a row of the encoder path; depending on the amount of light

http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw13.htm
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BinaryDecimal

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

Gray code

1000
1001
1011
1010
1110
1111
1101
1100
0100
0101
0111
0110
0010
0011
0001
0000

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Decimal

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 13.9 Binary and Gray code patterns for
linear position encoders

reflected, each photodiode circuit will output a voltage corresponding to a
binary 1 or 0. Thus, a different four-bit word is generated for each row of the
encoder.

Suppose the encoder pad is 100 mm in length. Then its resolution can
be computed as follows. The pad will be divided into 24 = 16 segments, and
each segment corresponds to an increment of 100/16 mm = 6.25 mm. If
greater resolution were necessary, more bits could be employed: an eight-bit
pad of the same length would attain a resolution of 100/256 mm = 0.39 mm.

A similar construction can be employed for the five-bit angular encoder
of Figure 13.10. In this case, the angular resolution can be expressed in
degrees of rotation, where 25 = 32 sections correspond to 360◦. Thus, the
resolution would be 360◦/32 = 11.25◦. Once again, greater angular
resolution could be obtained by employing a larger number of bits.

01111

10000 11111

Binary sequence Gray code

00000 01000

11000 10000

00000

Figure 13.10 Binary and Gray code patterns for angular position encoders

EXAMPLE 13.2 Conversion from Binary to Hexadecimal

Problem

Convert the following binary numbers to hexadecimal form.
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1. 100111

2. 1011101

3. 11001101

4. 101101111001

5. 100110110

6. 1101011011

Solution

Analysis: A simple method for binary to hexadecimal conversion consists of grouping
each binary number into four-bit groups, and then performing the conversion for each
four-bit word following Table 13.6:

1. 1001112 = 0010201112 = 2716

2. 10111012 = 0101211012 = 5D16

3. 110011012 = 1100211012 = CD16

4. 1011011110012 = 101120111210012 = B7916

5. 1001101102 = 000120011201002 = 13616

6. 11010110112 = 001120101210112 = 35B16

Comments: Note that we start grouping always from the right-hand side. The reverse
process is equally easy: To convert from hexadecimal to binary, replace each hexadecimal
number with the equivalent four-bit binary word.

Check Your Understanding
13.1 Convert the following decimal numbers to binary form:

a. 39 b. 59

c. 512 d. 0.4475

e. 25
32 f. 0.796875

g. 256.75 h. 129.5625

i. 4,096.90625

13.2 Convert the following binary numbers to decimal:

a. 1101 b. 11011

c. 10111 d. 0.1011

e. 0.001101 f. 0.001101101

g. 111011.1011 h. 1011011.001101

i. 10110.0101011101

13.3 Perform the following additions and subtractions. Express the answer in decimal
form for problems (a)–(d) and in binary form for problems (e)–(h).

a. 1001.12 + 1011.012 b. 1001012 + 1001012

c. 0.10112 + 0.11012 d. 1011.012 + 1001.112

e. 6410 − 3210 f. 12710 − 6310

g. 93.510 − 42.7510 h. (84 9
32 )10 − (48 5

16 )10

13.4 How many possible numbers can be represented in a 12-bit word?
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13.5 If we use an eight-bit word with a sign bit (seven magnitude bits plus one sign bit)
to represent voltages−5 V and+5 V, what is the smallest increment of voltage that can be
represented?

13.6 Convert the following numbers from hex to binary or from binary to hex:

a. F83 b. 3C9

c. A6 d. 1101011102

e. 101110012 f. 110111011012

13.7 Find the two’s complement of the following binary numbers:

a. 11101001 b. 10010111 c. 1011110

13.8 Convert the following numbers from hex to binary, and find their two’s comple-
ments:

a. F43 b. 2B9 c. A6

13.3 BOOLEAN ALGEBRA

The mathematics associated with the binary number system (and with the more
general field of logic) is called Boolean, in honor of the English mathematician
George Boole, who published a treatise in 1854 entitled An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities. The development of a logical algebra, as Boole called it, is one of
the results of his investigations. The variables in a Boolean, or logic, expression
can take only one of two values, usually represented by the numbers 0 and 1. These
variables are sometimes referred to as true (1) and false (0). This convention is
normally referred to as positive logic. There is also a negative logic convention
in which the roles of logic 1 and logic 0 are reversed. In this book we shall employ
only positive logic.

Analysis of logic functions, that is, functions of logical (Boolean) variables,
can be carried out in terms of truth tables. A truth table is a listing of all the possible
values each of the Boolean variables can take, and of the corresponding value of
the desired function. In the following paragraphs we shall define the basic logic
functions upon which Boolean algebra is founded, and we shall describe each
in terms of a set of rules and a truth table; in addition, we shall also introduce
logic gates. Logic gates are physical devices (see Chapter 10) that can be used to
implement logic functions.

Table 13.9 Rules
for logical addition (OR)

0+ 0 = 0

0+ 1 = 1

1+ 0 = 1

1+ 1 = 1

X Y Z

OR gate

0

0

1

1

0

1

0

1

0

1

1

1

Truth table

X

Y
Z

Figure 13.11 Log-
ical addition and the
OR gate

AND and OR Gates

The basis of Boolean algebra lies in the operations of logical addition, or the OR
operation; and logical multiplication, or the AND operation. Both of these find
a correspondence in simple logic gates, as we shall presently illustrate. Logical
addition, although represented by the symbol +, differs from conventional alge-
braic addition, as shown in the last rule listed in Table 13.9. Note that this rule
also differs from the last rule of binary addition studied in the previous section.
Logical addition can be represented by the logic gate called an OR gate, whose
symbol and whose inputs and outputs are shown in Figure 13.11. The OR gate
represents the following logical statement:

If either X or Y is true (1), then Z is true(1). (13.1)
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This rule is embodied in the electronic gates discussed in Chapter 9, in which a
logic 1 corresponds, say, to a 5-V signal and a logic 0 to a 0-V signal.

Logical multiplication is denoted by the center dot (·) and is defined by the
rules of Table 13.10. Figure 13.12 depicts the AND gate, which corresponds to
this operation. The AND gate corresponds to the following logical statement:

If both X and Y are true (1), then Z is true (1). (13.2)

One can easily envision logic gates (AND and OR) with an arbitrary number of
inputs; three- and four-input gates are not uncommon.

X Y Z

AND gate

0

0

1

1

0

1

0

1

0

0

0

1

Truth table

X

Y
ZAND

Figure 13.12 Log-
ical multiplication and
the AND gate

Table 13.10 Rules
for logical
multiplication (AND)

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

The rules that define a logic function are often represented in tabular form
by means of a truth table. Truth tables for the AND and OR gates are shown in
Figures 13.11 and 13.12. A truth table is nothing more than a tabular summary
of all of the possible outputs of a logic gate, given all the possible input values.
If the number of inputs is 3, the number of possible combinations grows from
4 to 8, but the basic idea is unchanged. Truth tables are very useful in defining
logic functions. A typical logic design problem might specify requirements such
as “ the output Z shall be logic 1 only when the condition (X = 1 AND Y =
1) OR (W = 1) occurs, and shall be logic 0 otherwise.” The truth table for
this particular logic function is shown in Figure 13.13 as an illustration. The
design consists, then, of determining the combination of logic gates that exactly
implements the required logic function. Truth tables can greatly simplify this
procedure.

Truth table

W
Z

X

Y
AND

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

X Y W Z

0

1

0

1

0

1

1

1

OR

Solution using logic gates

 Logic gate realization of the 
statement “ the output Z shall be 
logic 1 only when the condition
(X = 1 AND Y = 1) OR (W = 1) 
occurs, and shall be logic 0 
otherwise.”

Figure 13.13 Example of
logic function implementation
with logic gates

The AND and OR gates form the basis of all logic design in conjunction with
the NOT gate. The NOT gate is essentially an inverter (which can be constructed
using bipolar or field-effect transistors, as discussed in Chapter 10), and it provides
the complement of the logic variable connected to its input. The complement of a
logic variable X is denoted by X. The NOT gate has only one input, as shown in
Figure 13.14.

To illustrate the use of the NOT gate, or inverter, we return to the design
example of Figure 13.13, where we required that the output of a logic circuit be
Z = 1 only if X = 0 AND Y = 1 OR if W = 1. We recognize that except for
the requirement X = 0, this problem would be identical if we stated it as follows:
“The output Z shall be logic 1 only when the condition (X = 1 AND Y = 1) OR
(W = 1) occurs, and shall be logic 0 otherwise.” If we use an inverter to convert
X to X, we see that the required condition becomes (X = 1 AND Y = 1) OR
(W = 1). The formal solution to this elementary design exercise is illustrated in
Figure 13.15.

In the course of the discussion of logic gates, extensive use will be made of
truth tables to evaluate logic expressions. A set of basic rules will facilitate this
task. Table 13.11 lists some of the rules of Boolean algebra; each of these can
be proven by using a truth table, as will be shown in examples and exercises. An
example proof for rule 16 is given in Figure 13.16 in the form of a truth table.
This technique can be employed to prove any of the laws of Table 13.11. From the
simple truth table in Figure 13.16, which was obtained step by step, we can clearly
see that indeed X · (X + Y ) = X. This methodology for proving the validity
of logical equations is called proof by perfect induction. The 19 rules of Table
13.11 can be used to simplify logic expressions.

To complete the introductory material on Boolean algebra, a few paragraphs
need to be devoted to two very important theorems, called De Morgan’s theorems.
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X

NOT gate

1

0

0

1

Truth table for NOT gate

X X

X

NOT

Figure 13.14 Com-
plements and the NOT
gate

W
ZY

AND

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

X X Y Z

0

1

1

1

0

1

0

1

OR

X
X

Solution using logic gates

0

1

0

1

0

1

0

1

W
(Required
logic
function)

Truth table

NOT

Figure 13.15 Solution of a
logic problem using logic gates

Table 13.11 Rules of Boolean algebra

1. 0+X = X
2. 1+X = 1

3. X +X = X
4. X +X = 1

5. 0 ·X = 0

6. 1 ·X = X
7. X ·X = X
8. X ·X = 0

9. X = X
10. X + Y = Y +X

}
Commutative law

11. X · Y = Y ·X
12. X + (Y + Z) = (X + Y )+ Z

}
Associative law

13. X · (Y · Z) = (X · Y ) · Z
14. X · (Y + Z) = X · Y +X · Z Distributive law

15. X +X · Z = X Absorption law

16. X · (X + Y ) = X
17. (X + Y ) · (X + Z) = X + Y · Z
18. X +X · Y = X + Y
19. X · Y + Y · Z +X · Z = X · Y +X · Z

X Y

0

0

1

1

(X + Y )

0

1

0

1

0

1

1

1

0

0

1

1

X.(X + Y )

Figure 13.16 Proof of rule
16 by perfect induction

These are stated here in the form of logic functions:

(X + Y ) = X · Y (13.3)

(X · Y ) = X + Y (13.4)

These two laws state a very important property of logic functions:
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Any logic function can be implemented using only OR and NOT gates,
or using only AND and NOT gates.

De Morgan’s laws can easily be visualized in terms of logic gates, as shown in
Figure 13.17. The associated truth tables are proof of these theorems.

X

Y
Z

X +Y

X . Y

OR

AND 

=NOT

(X + Y )

(X.Y )

=

=

=X

Y

X

Y

X

Y

Z

Z

Z

AND 

NOT

NOT

NOT

NOT

ORNOT

X . YX

Truth table

Y

0
0
1
1

Z = =

0
1
0
1

1
0
0
0

(X + Y )

X + Y(X + Y )X

Truth table

Y

0
0
1
1

Z = =

0
1
0
1

1
1
1
0

Figure 13.17 De Morgan’s laws

The importance of De Morgan’s laws is in the statement of the duality that
exists between AND and OR operations: any function can be realized by just one
of the two basic operations, plus the complement operation. This gives rise to two
families of logic functions: sums of products and product of sums, as shown in
Figure 13.18. Any logical expression can be reduced to either one of these two
forms. Although the two forms are equivalent, it may well be true that one of
the two has a simpler implementation (fewer gates). Example 13.3 illustrates this
point.

OR

AND 
X

Y

AND 
W

Z

Sum of products
expression

(X.Y) + (W.Z)

(X.Y) + (W.Z)

A

B

C

D

Product of sums
expression

(A + B).(C + D)

(A + B).(C + D)

OR

OR

AND

Figure 13.18 Sum-of-products and product-of-sums logic functions
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EXAMPLE 13.3 Simplification of Logical Expression

Problem

Using the rules of Table 13.11, simplify the following function using the rules of Boolean
algebra.

f (A,B,C,D) = A · B ·D + A · B ·D + B · C ·D + A · C ·D

Solution

Find: Simplified expression for logical function of four variables.

Analysis:

f = A · B ·D + A · B ·D + B · C ·D + A · C ·D
= A ·D · (B + B)+ B · C ·D + A · C ·D Rule 14

= A ·D + B · C ·D + A · C ·D Rule 4

= (
A+ A · C) ·D + B · C ·D Rule 14

= (
A+ C) ·D + B · C ·D Rule 18

= A ·D + C ·D + B · C ·D Rule 14

= A ·D + C ·D · (1+ B) Rule 14

= A ·D + C ·D = (
A+ C) ·D Rules 2 and 6

FOCUS ON
MEASUREMENTS

Fail-Safe Autopilot Logic
This example aims to illustrate the significance of De Morgan’s laws and of
the duality of the sum-of-products and product-of-sums forms. Suppose that
a fail-safe autopilot system in a commercial aircraft requires that, prior to
initiating a takeoff or landing maneuver, the following check must be
passed: two of three possible pilots must be available. The three possibilities
are the pilot, the co-pilot, and the autopilot. Imagine further that there exist
switches in the pilot and co-pilot seats that are turned on by the weight of the
crew, and that a self-check circuit exists to verify the proper operation of the
autopilot system. Let the variable X denote the pilot state (1 if the pilot is
sitting at the controls), Y denote the same condition for the co-pilot, and Z
denote the state of the autopilot, where Z = 1 indicates that the autopilot is
functioning. Then, since we wish two of these conditions to be active before
the maneuver can be initiated, the logic function corresponding to “system
ready” is:

f = X · Y +X · Z + Y · Z
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This can also be verified by the truth table shown below.

Pilot Co-pilot Autopilot System ready

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The function f defined above is based on the notion of a positive check; that
is, it indicates when the system is ready. Let us now apply De Morgan’s laws
to the function f , which is in sum-of-products form:

f = g = X · Y +X · Z + Y · Z = (X + Y ) · (X + Z) · (Y + Z)
The function g, in product-of-sums form, conveys exactly the same
information as the function f , but it performs a negative check; in other
words, g verifies the system not ready condition. You see then that whether
one chooses to implement the function in one form or another is simply a
matter of choice; the two forms give exactly the same information.

EXAMPLE 13.4 Realizing Logic Functions from Truth Tables

Problem

Realize the logic function described by the truth table below.

A B C y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Solution

Known Quantities: Value of function y(A,B,C) for each possible combination of
logical variables A, B, C.

Find: Logical expression realizing the function y.
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Analysis: To determine a logical expression for the function y, we first need to convert
the truth table into a logical expression. We do so by expressing y as the sum of the
products of the three variables for each combination that yields y = 1. If the value of a
variable is 1, we use the uncomplemented variable. If it’s 0, we use the complemented
variable. For example, the second row (first instance of y = 1) would yield the term
A · B · C. Thus,

y = A · B · C + A · B · C + A · B · C + A · B · C + A · B · C + A · B · C
= A · C(B + B)+ A · B · (C + C)+ A · B · (C + C)
= A · C + A · B + A · B = A · C + A · (B + B) = A · C + A = A+ C.

Thus, the function is a two-input OR gate, as shown in Figure 13.19.A

C
orA + C = y yOR

Figure 13.19
Comments: The derivation above has made use of two rules from Table 13.11: rules 4
and 18. Could you have predicted that the variable B would not be used in the final
realization? Why?

EXAMPLE 13.5 DeMorgan’s Theorem and Product-of-Sums
Expressions

Problem

Realize the logic function y = A+ B · C in product-of-sums form. Implement the
solution using AND, OR, and NOT gates.

Solution

Known Quantities: Logical expression for the function y(A,B,C).

Find: Physical realization using AND, OR, and NOT gates.

Analysis: We use the fact that y = y and apply DeMorgan’s theorem as follows:

y = A+ (B · C) = A · (B · C) = A · (B + C)

y = y = A · (B + C)
.

The above sum-of-products function is realized using complements of each variable
(obtained using NOT gates) and is finally complemented as shown in Figure 13.20.

A

C

B

yAND

OR

Figure 13.20

Comments: It should be evident that the original sum-of-products expression, which
could be implemented with just one AND and one OR gate has a much more efficient
realization. In the next section we show a systematic approach to function minimization.
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Focus on Computer-Aided Solutions: An Electronics WorkbenchTM simulation of the
logic circuit of Figure 13.20 may be found in the accompanying CD-ROM.

NAND and NOR Gates

In addition to the AND and OR gates we have just analyzed, the complementary
forms of these gates, called NAND and NOR, are very commonly used in practice.
In fact, NAND and NOR gates form the basis of most practical logic circuits. Figure
13.21 depicts these two gates, and illustrates how they can be easily interpreted
in terms of AND, OR, and NOT gates by virtue of De Morgan’s laws. You can
readily verify that the logic function implemented by the NAND and NOR gates
corresponds, respectively, to AND and OR gates followed by an inverter. It is very
important to note that, by De Morgan’s laws, the NAND gate performs a logical
addition on the complements of the inputs, while the NOR gate performs a logical
multiplication on the complements of the inputs. Functionally, then, any logic
function could be implemented with either NOR or NAND gates only.

A

B

NAND gate

(A . B)
A + B

(A . B) = A + B (A + B) = A . B

(A + B) 

A B A B (A . B)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

1

1

0

A

B

A

B

NOR gate

NOR

OR

A B A B

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

0

0

0

A

B

(A + B)

NAND

AND NOT NOT
A . B

Figure 13.21 Equivalence of NAND and NOR gates with AND and OR gates

In the next section we shall learn how to systematically approach the design
of logic functions. First, we provide a few examples to illustrate logic design with
NAND and NOR gates.

EXAMPLE 13.6 Realizing the AND Function with NAND Gates

Problem

Use a truth table to show that the AND function can be realized using only NAND gates,
and show the physical realization.

Solution

Known Quantities: AND and NAND truth tables.
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Find: AND realization using NAND gates.

Assumptions: Consider two-input functions and gates.

Analysis: The truth table below summarizes the two functions:

NAND AND
A B A · B A · B

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Clearly, to realize the AND function we need to simply invert the output of a NAND gate.
This is easily accomplished if we observe that a NAND gate with its inputs tied together
acts as an inverter; you can verify this in the above truth table by looking at the NAND
output for the input combinations 0-0 and 1-1, or by referring to Figure 13.22. The final
realization is shown in Figure 13.23.

0

1

0

1

1

0

0

1

A B(= A)

A

A.B

A

A A

(A.B)

NAND

NOT

Figure 13.22 NAND gate
as an inverters

A
B

A.B A.BNAND NAND

Figure 13.23

Comments: NAND gates naturally implement functions that contain complemented
products. Gates that employ negative logic are a natural consequence of the inverting
characteristics of transistor switches (refer to Section 10.5). Thus, one should expect that
NAND (and NOR) gates are very commonly employed in practice.

EXAMPLE 13.7 Realizing the AND Function with NOR Gates

Problem

Show analytically that the AND function can be realized using only NOR gates, and
determine the physical realization.

Solution

Known Quantities: AND and NOR functions.

Find: AND realization using NOR gates.

Assumptions: Consider two-input functions and gates.

Analysis: We can solve this problem using De Morgan’s theorem. The output of an
AND gate can be expressed as f = A · B. Using De Morgan’s theorem we write:

f = f = A · B = A+ B
The above function is implemented very easily if we see that a NOR gate with its input
tied together acts as a NOT gate (see Figure 13.24). Thus, the logic circuit of Figure 13.25
provides the desired answer.

0

1

0

1

1

0

0

1

A B( = A)

AA

A A

(A + B) (A + B)

NOR

Figure 13.24 NOR gate as
an inverter

A

B 
B

A

(A + B) = A.B

NOR

NOR

NOR

Figure 13.25

Comments: NOR gates naturally implement functions that contain complemented sums.
Gates that employ negative logic are a natural consequence of the inverting characteristics
of transistor switches (refer to Section 10.5). Thus, one should expect that NOR (and
NAND) gates are very commonly employed in practice.
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EXAMPLE 13.8 Realizing a Function with NAND and NOR
Gates

Problem

Realize the following function using only NAND and NOR gates:

y = (A · B)+ C

Solution

Known Quantities: Logical expression for y.

Find: Realization of y using only NAND and NOR gates.

Assumptions: Consider two-input functions and gates.

Analysis: On the basis of the two preceding examples, we see that we can realize the
term Z = (A · B) using a two-input NAND gate, and the term Z + C using a two-input
NOR gate. The solution is shown in Figure 13.26.

A

yB

C

NAND
NOR

Figure 13.26

The XOR (Exclusive OR) Gate

It is rather common practice for a manufacturer of integrated circuits to provide
common combinations of logic circuits in a single integrated circuit package. We
review many of these common logic modules in Section 13.5. An example of
this idea is provided by the exclusive OR (XOR) gate, which provides a logic
function similar, but not identical, to the OR gate we have already studied. The
XOR gate acts as an OR gate, except when its inputs are all logic 1s; in this
case, the output is a logic 0 (thus the term exclusive). Figure 13.27 shows the
logic circuit symbol adopted for this gate, and the corresponding truth table. The
logic function implemented by the XOR gate is the following: “either X or Y ,
but not both.” This description can be extended to an arbitrary number of in-
puts.

Z = X ⊕ Y

X Y Z

XOR

0

0

1

1

0

1

0

1

0

1

1

0

Truth table

X

Y

Figure 13.27 XOR gate

The symbol adopted for the exclusive OR operation is ⊕, and so we shall
write

Z = X ⊕ Y
to denote this logic operation. The XOR gate can be obtained by a combination
of the basic gates we are already familiar with. For example, if we observe that
the XOR function corresponds to Z = X⊕Y = (X+Y ) · (X · Y ), we can realize
the XOR gate by means of the circuit shown in Figure 13.28. X

Y Z 

NAND

OR

AND

Figure 13.28 Realization of
an XOR gate

Common IC logic gate configurations, device numbers, and data sheets are
included in the CD-ROM that accompanies this book. These devices are typically
available in both of the two more common device families, TTL and CMOS.
The devices listed in the CD-ROM are available in CMOS technology under
the numbers SN74AHXX. The same logic gate ICs are also available as TTL
devices.
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Check Your Understanding
13.9 Show that one can obtain an OR gate using NAND gates only. [Hint: Use three
NAND gates.]

13.10 Show that one can obtain an AND gate using NOR gates only. [Hint: Use three
NOR gates.]

13.11 Prepare a step-by-step truth table for the following logic expressions:

a. (X + Y + Z)+ (X · Y · Z) ·X
b. X · Y · Z + Y · (Z +W)
c. (X · Y + Z ·W) · (W ·X + Z · Y )

[Hint: Your truth table must have 2n entries, where n is the number of logic variables.]

13.12 Implement the logic functions of Check Your Understanding Exercise 13.11
using NAND and NOR gates only. [Hint: Use De Morgan’s theorems and the fact that

f = f .]

13.13 Implement the logic functions of Check Your Understanding Exercise 13.11
using AND, OR, and NOT gates only.

13.14 Show that the XOR function can also be expressed asZ = X ·Y+Y ·X. Realize
the corresponding function using NOT, AND, and OR gates. [Hint: Use truth tables for the
logic function Z ( as defined in the exercise) and for the XOR function.]

13.4 KARNAUGH MAPS AND LOGIC DESIGN

In examining the design of logic functions by means of logic gates, we have
discovered that more than one solution is usually available for the implementation
of a given logic expression. It should also be clear by now that some combinations
of gates can implement a given function more efficiently than others. How can we
be assured of having chosen the most efficient realization? Fortunately, there is a
procedure that utilizes a map describing all possible combinations of the variables
present in the logic function of interest. This map is called a Karnaugh map,
after its inventor. Figure 13.29 depicts the appearance of Karnaugh maps for two-,
three-, and four-variable expressions in two different forms. As can be seen, the
row and column assignments for two or more variables are arranged so that all
adjacent terms change by only one bit. For example, in the two-variable map,
the columns next to column 01 are columns 00 and 11. Also note that each map
consists of 2N cells, where N is the number of logic variables.

Each cell in a Karnaugh map contains a minterm, that is, a product of
the N variables that appear in our logic expression (in either uncomplemented or
complemented form). For example, for the case of three variables (N = 3), there
are 23 = 8 such combinations, or minterms: X ·Y ·Z,X ·Y ·Z,X ·Y ·Z,X ·Y ·Z,
X · Y ·Z, X · Y ·Z, X · Y ·Z, and X · Y ·Z. The content of each cell—that is, the
minterm—is the product of the variables appearing at the corresponding vertical
and horizontal coordinates. For example, in the three-variable map, X · Y · Z
appears at the intersection ofX ·Y andZ. The map is filled by placing a value of 1
for any combination of variables for which the desired output is a 1. For example,
consider the function of three variables for which we desire to have an output of 1
whenever the variables X, Y , and Z have the following values:
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X
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Y
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Z
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1
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X.Y X.Y
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X.Y.Z X.Y.Z X.Y.Z X.Y.Z
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W.X.Y.Z W.X.Y.Z W.X.Y.Z W.X.Y.Z

W.X.Y.Z W.X.Y.Z W.X.Y.Z W.X.Y.ZY.Z

Figure 13.29 Two-, three-, and four-variable Karnaugh maps

X = 0 Y = 1 Z = 0

X = 0 Y = 1 Z = 1

X = 1 Y = 1 Z = 0

X = 1 Y = 1 Z = 1

The same truth table is shown in Figure 13.30 together with the corresponding
Karnaugh map.

X Y

0

0

0

0

1

1

1

1

Z

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

Desired
Function

Truth table

Z

XY XYXY XY

0 11 0

Karnaugh map

Z 0 11 0

Figure 13.30 Truth table
and Karnaugh map
representations of a logic
function

The Karnaugh map provides an immediate view of the values of the function
in graphical form. Further, the arrangement of the cells in the Karnaugh map is such
that any two adjacent cells contain minterms that vary in only one variable. This
property, as will be verified shortly, is quite useful in the design of logic functions
by means of logic gates, especially if we consider the map to be continuously
wrapping around itself, as if the top and bottom, and right and left, edges were
touching each other. For the three-variable map given in Figure 13.29, for example,
the cellX · Y ·Z is adjacent toX · Y ·Z if we “ roll” the map so that the right edge
touches the left. Note that these two cells differ only in the variable X, a property
we earlier claimed adjacent cells have.1

1A useful rule to remember is that in a two-variable map there are two minterms adjacent to any given
minterm; in a three-variable map, three minterms are adjacent to any given minterm; in a
four-variable map, the number is four, and so on.
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Shown in Figure 13.31 is a more complex, four-variable logic function,
which will serve as an example in explaining how Karnaugh maps can be used
directly to implement a logic function. First, we define a subcube as a set of 2m

adjacent cells with logical value 1, for m = 1, 2, 3, . . . , N . Thus, a subcube can
consist of 1, 2, 4, 8, 16, 32,. . . cells. All possible subcubes for the four-variable
map of Figure 13.31 are shown in Figure 13.32. Note that there are no four-cell
subcubes in this particular case. Note also that there is some overlap between
subcubes. Examples of four-cell and eight-cell subcubes are shown in Figure
13.33 for an arbitrary expression.

X Y

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Z

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
0
0
0
1
1
0
0
1
1
0
0
0
0
1

Y

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

Desired
Function

Truth table for four-variable expression

Y.Z

W.X W.XW.X W.X

0 10 0

Y.Z 0 01 1

1 01 1

1 00 0Y.Z

Y.Z

Figure 13.31 Karnaugh map for a four-variable expression

Y.Z

W.X W.XW.X W.X

0 10 0

Y.Z 0 01 1

01 1

1 00 0Y.Z

Y.Z

Y.Z

W.X W.XW.X W.X

0 10 0

Y.Z 0 01 1

1 01 1

1 00 0Y.Z

Y.Z

1 cell subcubes

2 cell subcubes

1

Figure 13.32 One- and
two-cell subcubes for the
Karnaugh map of Figure 13.31

0 00 0

1 1 1

00 0

1 11 1

Y.Z

W.X W.XW.X W.X

1 10 1

Y.Z 1 00 0

1 10 1

1 00 0Y.Z

Y.Z

0

(a)

(b)

1

Y.Z

W.X W.XW.X W.X

Y.Z

Y.Z

Y.Z

Figure 13.33 Four- and
eight-cell subcubes for an
arbitrary logic function

In general, one tries to find the largest possible subcubes to cover all of the
“1” entries in the map. How do maps and subcubes help in the realization of logic
functions, then? The use of maps and subcubes in minimizing logic expressions
is best explained by considering the following rule of Boolean algebra:

Y ·X + Y ·X = Y
where the variable Y could represent a product of logic variables (for example, we
could similarly write (Z ·W) ·X + (Z ·W) ·X = Z ·W with Y = Z ·W ). This
rule is easily proven by factoring Y :

Y · (X +X)
and observing thatX+X = 1, always. Then it should be clear that the variableX
need not appear in the expression at all. Let us apply this rule to a more complex
logic expression, to verify that it can also apply to this case. Consider the logic
expression

W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z
and factor it as follows:

W · Z · Y · (X +X)+W · Y · Z · (X +X) = W · Z · Y +W · Y · Z
= Y · Z · (W +W) = Y · Z
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Quite a simplification! If we consider, now, a map in which we place a 1 in the
cells corresponding to the mintermsW ·X ·Y ·Z,W ·X ·Y ·Z,W ·X ·Y ·Z, and
W · X · Y · Z, forming the previous expression, we obtain the Karnaugh map of
Figure 13.34. It can easily be verified that the map of Figure 13.34 shows a single
four-cell subcube corresponding to the term Y · Z.

Y.Z

W.X W.XW.X W.X

0 00 0

Y.Z 0 00 0

1 11 1

0 00 0Y.Z

Y.Z

Figure 13.34 Karnaugh
map for the function
W ·X · Y · Z +W ·X · Y · Z +
W ·X · Y · Z +W ·X · Y · Z

We have not established formal rules yet, but it definitely appears that the
map method for simplifying Boolean expressions is a convenient tool. In effect,
the map has performed the algebraic simplification automatically! We can see
that in any subcube, one or more of the variables present will appear in both
complemented and uncomplemented form in all their combinations with the other
variables. These variables can be eliminated. As an illustration, in the eight-cell
subcube case of Figure 13.35, the full-blown expression would be:

W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z

+W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z

However, if we consider the eight-cell subcube, we note that the three variables
X, W , and Z appear both in complemented and uncomplemented form in all
their combinations with the other variables and thus can be removed from the
expression. This reduces the seemingly unwieldy expression simply to Y ! In
logic design terms, a simple inverter is sufficient to implement the expression.

Y.Z

W.X W.XW.X W.X

0 00 0

Y.Z 0 00 0

1 11 1

1 11 1Y.Z

Y.Z

Figure 13.35

The example just shown is a particularly simple one, but it illustrates how
simple it can be to determine the minimal expression for a logic function. It should
be apparent that the larger a subcube, the greater the simplification that will result.
For subcubes that do not intersect, as in the previous example, the solution can be
found easily, and is unique.

Sum-of-Products Realizations

Although not explicitly stated, the logic functions of the preceding section were all
in sum-of-products form. As you know, it is also possible to realize logic functions
in product-of-sums form. This section discusses the implementation of logic func-
tions in sum-of-products form and gives a set of design rules. The next section will
do the same for product-of-sums form logical expressions. The following rules
are a useful aid in determining the minimal sum-of-products expression:

F O C U S O N M E T H O D O L O G Y

Sum-of-Products Realizations

1. Begin with isolated cells. These must be used as they are, since no
simplification is possible.

2. Find all cells that are adjacent to only one other cell, forming two-cell
subcubes.

3. Find cells that form four-cell subcubes, eight-cell subcubes, and so
forth.

4. The minimal expression is formed by the collection of the smallest
number of maximal subcubes.
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The following examples illustrate the application of these principles to a variety
of problems.

EXAMPLE 13.9 Logic Circuit Design Using Karnaugh Maps

Problem

Design a logic circuit that implements the truth table of Figure 13.36.A C

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

D y

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
1
0
0
1
0
0
1
1
0
1
0
1
0
1

B

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

Figure 13.36

Solution

Known Quantities: Truth table for y(A,B,C,D).

Find: Realization of y.

Assumptions: Two-, three-, and four-input gates are available.

Analysis: We use the Karnaugh map of Figure 13.37, which is shown with values of 1
and 0 already in place. We recognize four subcubes in the map; three are four-cell
subcubes, and one is a two-cell subcube. The expressions for the subcubes are: A · B ·D
for the two-cell subcube; B · C for the subcube that wraps around the map; C ·D for the
four-by-one subcube; and A ·D for the square subcube at the bottom of the map. Thus,
the expression for y is:

y = A · B ·D + B · C + CD + AD.

11

00 1101 10

0 11 0

10 1 0

0 01 0

1 01 100

01

1 1

A.B
C.D

Figure 13.37 Karnaugh map for
Example 13.9

A

C

y
B

D

Figure 13.38 Logic circuit
realization of Karnaugh map of
Figure 13.37

The implementation of the above function with logic gates is shown in Figure 13.38.

Comments: The Karnaugh map covering of Figure 13.37 is a sum-of-products
expression because we covered the map using the ones.

EXAMPLE 13.10 Deriving a Sum-of-Products Expression
from a Logic Circuit

Problem

Derive the truth table and minimum sum-of-products expression for the circuit of Figure
13.39.
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Solution

Known Quantities: Logic circuit representing f (x, y, z). x

y

z

f

Figure 13.39

Find: Expression for f and corresponding truth table.

Analysis: To determine the truth table, we write the expression corresponding to the
logic circuit of Figure 13.39:

f = x · y + y · z
The truth table corresponding to this expression and the corresponding Karnaugh map
with sum-of-products covering are shown in Figure 13.40.

00 1101 10

0 10 0

1 11 00

1

x
y.z

K map

x

0
0
0
0
1
1
1
1

f

0
1
0
1
0
1
0
1

1
1
0
1
0
0
0
1

y z

0
0
1
1
0
0
1
1

Figure 13.40

Comments: If we used zeros in covering the Karnaugh map for this example, the resulting
expression would be a product-of-sums. You may verify that, in the case of this example,
the complexity of the circuit would be unchanged. Note also that there exists a third subcube
(x = 0, yz = 01, 11) that is not used because it does not help minimize the solution.

EXAMPLE 13.11 Realizing a Product-of-Sums Using Only
NAND Gates

Problem

Realize the following function in sum-of-products form, using only two-input NAND
gates.

f = (x + y) · (y + z)

Solution

Known quantities: f (x, y, z).

Find: Logic circuit for f using only NAND gates.

Analysis: The first step is to convert the expression for f into an expression that can be
easily implemented with NAND gates. We observe that direct application of De Morgan’s
theorem yields:

x + y = x · y
y + z = z · y

Thus, we can write the function as follows:

f = (x · y) · (z · y)
and implement it with five NAND gates, as shown in Figure 13.41
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x

y

z

f

Figure 13.41

Comments: Note that we used two NAND gates as inverters—one to obtain y, the other

to invert the output of the fourth NAND gate, equal to (x · y) · (z · y).

EXAMPLE 13.12 Simplifying Expressions by Using Karnaugh
Maps

Problem

Simplify the following expression by using a Karnaugh map.

f = x · y + x · z+ y · z

Solution

Known Quantities: f (x, y, z).

Find: Minimal expression for f .

Analysis: We cover a three-term Karnaugh map to reflect the expression give above. The
result is shown in Figure 13.42. It is clear that the Karnaugh map can be covered by using
just two terms (subcubes): f = x · y + x · z. Thus, the term y · z is redundant.

00 1101 10

0 10 1

0 11 00

1

x
y.z

K map
x.y

x.z

Figure 13.42

Comments: The Karnaugh map covering clearly shows that the term y · z corresponds to
covering a third two-cell subcube vertically intersecting the two horizontal two-cell
subcubes already shown. Clearly, the third subcube is redundant.

EXAMPLE 13.13 Simplifying a Logic Circuit by Using
the Karnaugh Map

Problem

Derive the Karnaugh map corresponding to the circuit of Figure 13.43 and use the
resulting map to simplify the expression.

x

y

z

f

Figure 13.43

Solution

Known Quantities: Logic circuit.

Find: Simplified logic circuit.
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Analysis: We first determine the expression f (x, y, z) from the logic circuit:

f = (x · z)+ (x · z)+ (y · z)
This expression leads to the Karnaugh map shown in Figure 13.44. Inspection of the
Karnaugh map reveals that the map could have been covered more efficiently by using
four-cell subcubes. The improved map covering, corresponding to the simpler function
f = x + z, and the resulting logic circuit are shown in Figure 13.45.

00 1101 10

1 11 1

1 00 10

1

x
y.z

f = y.z + x.z + y.z

Figure 13.44

00 1101 10

1 11 1

1 00 10

1

x
y.z

K map

x

z
f

f = x + z 

Figure 13.45

Comments: In general, one wishes to cover the largest possible subcubes in a Karnaugh
map.

Product-of-Sums Realizations

Thus far, we have exclusively worked with sum-of-products expressions, that is,
logic functions of the form A · B + C ·D. We know, however, that De Morgan’s
laws state that there is an equivalent form that appears as a product of sums, for
example, (W + Y ) · (Y +Z). The two forms are completely equivalent, logically,
but one of the two forms may lead to a realization involving a smaller number of
gates. When using Karnaugh maps, we may obtain the product-of-sums form very
simply by following these rules:

F O C U S O N M E T H O D O L O G Y

Product-of-Sums Realizations

1. Solve for the 0s exactly as for the 1s in sum-of-products expressions.

2. Complement the resulting expression.

The same principles stated earlier apply in covering the map with subcubes and
determining the minimal expression. The following examples illustrate how one
form may result in a more efficient solution than the other.
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EXAMPLE 13.14 Comparison of Sum-of-Products
and Product-of-Sums Designs

Problem

Realize the function f described by the accompanying truth table using both 0 and 1
coverings in the Karnaugh map.x y z f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solution

Known Quantities: Truth table for logic function.

Find: Realization in both sum-of-products and product-of-sums forms.

Analysis:

1. Product-of-sums expression. Product-of-sums expressions use zeros to determine the
logical expression from a Karnaugh map. Figure 13.46 depicts the Karnaugh map
covering with zeros, leading to the expression

f = (x + y + z) · (x + y)

00 1101 10

1 00

0 11 10

1

x
y.z

1

x + y + z 

x + y

Figure 13.46

00 1101 10

1 00

0 11 10

1

x
y.z

1

y.z

x.y

x.y

Figure 13.47

2. Sum-of-products expression. Sum-of-products expressions use ones to determine the
logical expression from a Karnaugh map. Figure 13.47 depicts the Karnaugh map
covering with ones, leading to the expression

f = (x · y)+ (x · y)+ (y · z)

Comments: The product-of-sums solution requires the use of five gates (two OR, two
NOT, and one AND), while the sum-of-products solution will use six gates (one OR, two
NOT, and three AND). Thus, solution 1 leads to the simpler design.

EXAMPLE 13.15 Product-of-Sums Design

Problem

Realize the function f described by the accompanying truth table in minimal product of
sums form.
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Solution

Known Quantities: Truth table for logic function.

x y z f

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Find: Realization in minimal product-of-sums forms.

Analysis: We cover the Karnaugh map of Figure 13.48 using zeros, and obtain the
following function:

f = z · (x + y)

00 1101 10

1 00

1 00 10

1

x
y.z

0

z x + y

Figure 13.48

Comments: Is the sum-of-products solution simpler? Try it for yourself.

FOCUS ON
MEASUREMENTS

Safety Circuit for Operation of a Stamping Press
In this example, the techniques illustrated in the preceding examples will be
applied to a practical situation. To operate a stamping press, an operator
must press two buttons (b1 and b2) one meter apart from each other and
away from the press (this ensures that the operator’s hands cannot be caught
in the press). When the buttons are pressed, the logical variables b1 and b2

are equal to 1. Thus, we can define a new variable A = b1 · b2; when A = 1,
the operator’s hands are safely away from the press. In addition to the safety
requirement, however, other conditions must be satisfied before the operator
can activate the press. The press is designed to operate on one of two
workpieces, part I and part II, but not both. Thus, acceptable logic states for
the press to be operated are “part I is in the press, but not part II” and “part II
is in the press, but not part I.” If we denote the presence of part I in the press
by the logical variable B = 1 and the presence of part II by the logical
variable C = 1, we can then impose additional requirements on the
operation of the press. For example, a robot used to place either part in the
press could activate a pair of switches (corresponding to logical variables B
and C) indicating which part, if any, is in the press. Finally, in order for the
press to be operable, it must be “ ready,” meaning that it has to have
completed any previous stamping operation. Let the logical variable D = 1
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represent the ready condition. We have now represented the operation of the
press in terms of four logical variables, summarized in the truth table of
Table 13.12. Note that only two combinations of the logical variables will
result in operation of the press: ABCD = 1011 and ABCD = 1101. You
should verify that these two conditions correspond to the desired operation
of the press. Using a Karnaugh map, realize the logic circuitry required to
implement the truth table shown.

Table 13.12 Conditions for operation of stamping press

(B) (C) (D) Press operation
(A) Part I is Part II is Press is 1 = pressing;

b1 · b2 in press in press operable 0 = not pressing

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

↑ Both buttons (b1, b2) must be pressed for this to be a 1.

Solution:
Table 13.12 can be converted to a Karnaugh map, as shown in Figure 13.49.
Since there are many more 0s than 1s in the table, the use of 0s in covering
the map will lead to greater simplification. This will result in a
product-of-sums expression. The four subcubes shown in Figure 13.49 yield
the equation

A ·D · (C + B) · (C + B)
By De Morgan’s law, this equation is equivalent to

A ·D · (C + B) · (C · B)
which can be realized by the circuit of Figure 13.50.

For the purpose of comparison, the corresponding sum-of-
products circuit is shown in Figure 13.51. Note that this circuit
employs a greater number of gates and will therefore lead to a
more expensive design.
Focus on Computer-Aided Solutions— An Electronics WorkbenchTM

simulation of the logic circuit of Figure 13.50 may be found in the
accompanying CD-ROM.
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11

00 1101 10

0 01 0

10 1 0

0 00 0

0 00 000

01

0 0

A.B
C.D

Figure 13.49

A

B

C

D

y

Figure 13.50

A

B

C

D

y

Figure 13.51

Don’t Care Conditions

Another simplification technique may be employed whenever the value of the logic
function to be implemented can be either a 1 or a 0. This condition may result
from the specification of the problem and is not uncommon. Whenever it does
not matter whether a position in the map is filled by a 1 or a 0, we use a so-called
don’t care entry, denoted by an x. Then the don’ t care can be used as either a 1 or
a 0, depending on which results in a greater simplification (i.e., helps in forming
the smallest number of maximal subcubes). The following examples illustrate the
use of don’ t cares.

EXAMPLE 13.16 Using Don’t Cares to Simplify
Expressions—1

Problem

Use don’ t care entries to simplify the expression:

f (a, b, c, d) = a · b · c · d + a · b · c · d + a · b · c · d + a · b · c · d + a · b · c · d + a · b · c · d
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Solution

Known Quantities: Logical expression; don’ t care conditions.

Find: Minimal realization.

Schematics, Diagrams, Circuits, and Given Data: Don’ t care conditions:
f (a, b, c, d) = {0100, 0110, 1010, 1110}.
Analysis: We cover the Karnaugh map of Figure 13.52 using ones, and also using x
entries for each don’ t care condition. Treating all of the x entries as ones, we complete the
covering with two four-cell subcubes and one two-cell subcube, to obtain the following
simplified expression:

f (a, b, c, d) = b · d + b · c + a · c · d

11

00 1101 10

1 00 x

10 1 x

x 01 x

0 11 100

01

0 0

a.b
c.d

b.cb.d

a.c.d

Note that the x’s never occur, and 
so they may be assigned a 1 or a 0, 
whichever will best simplify the 
expression.

Figure 13.52

Comments: Note that we could have also interpreted the don’ t care entries as zeros and
tried to solve in product-of-sums form. Verify that the expression obtained above is
indeed the minimal one.

EXAMPLE 13.17 Using Don’t Cares to Simplify
Expressions—2

Problem

Find a minimum product-of-sums realization for the expression f (a, b, c).

Solution

Known Quantities: Logical expression, don’ t care conditions.

Find: Minimal realization.

Schematics, Diagrams, Circuits, and Given Data:

f (a, b, c) = 1 for {a, b, c} = {000, 010, 011}
f (a, b, c) = don’ t care for {a, b, c} = {100, 101, 110}

Analysis: We cover the Karnaugh map of Figure 13.53 using ones, and also using x
entries for each don’ t care condition. By appropriately selecting two of the three
don’ t-care entries to be equal to 1, we complete the covering with one four-cell subcube
and one two-cell subcube, to obtain the following minimal expression:

f (a, b, c) = a · b + c

00 1101 10

x 0x x

1 00

1

a

b.c

1 1

Figure 13.53 Comments: Note that we have chosen to set one of the don’ t care entries equal to zero,
since it would not lead to any further simplification.

EXAMPLE 13.18 Using Don’t Cares to Simplify
Expressions—3

Problem

Find a minimum sum-of-products realization for the expression f (a, b, c, d).
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Solution

Known Quantities: Logical expression; don’ t care conditions.

Find: Minimal realization.

Schematics, Diagrams, Circuits, and Given Data

f (a, b, c, d) = 1 for {a, b, c, d} = {0000, 0011, 0110, 0101}
f (a, b, c, d) = don’ t care for {a, b, c, d} = {1010, 1011, 1101, 1110, 1111}

Analysis: We cover the Karnaugh map of Figure 13.54 using ones, and also using x
entries for each don’ t care condition. By appropriately selecting three of the four don’ t
care entries to be equal to 1, we complete the covering with one four-cell subcube, two
two-cell subcubes, and one one-cell subcube, to obtain the following expression:

f (a, b, c) = a · b · c · d + b · c · d + a · d + b · c · d

11

00 1101 10

0 xx x

10 x x

0 00 1

1 10 000

01

0 1

a.b

c.d

Figure 13.54Comments: Would the product-of-sums realization be simpler? Verify.

Check Your Understanding
13.15 Simplify the following expression to show that it corresponds to the functionZ:

W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z
+W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z

13.16 Simplify the following expression, using a Karnaugh map:

W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z
+W ·X · Y · Z

13.17 Simplify the following expression, using a Karnaugh map:

W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z +W ·X · Y · Z
+W ·X · Y · Z +W ·X · Y · Z

13.18 The function y of Example 13.9 can be obtained with fewer gates if we use
gates with three or four inputs. Find the minimum number of gates needed to obtain this
function.

13.19 Verify that the product-of-sums expression for Example 13.14 can be realized
with fewer gates.

13.20 Would a sum-of-products realization for Example 13.15 require fewer gates?

13.21 Prove that the circuit of Figure 13.51 can also be obtained from the sum of
products.

13.22 In Example 13.16, assign a value of 0 to the don’ t care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained in
Example 13.16?

13.23 In Example 13.17, assign a value of 0 to the don’ t care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained in
Example 13.17?

13.24 In Example 13.17, assign a value of 1 to all don’ t care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained in
Example 13.17?
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13.25 In Example 13.18, assign a value of 0 to all don’ t care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained in
Example 13.18?

13.26 In Example 13.18, assign a value of 1 to all don’ t care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained in
Example 13.18?

13.5 COMBINATIONAL LOGIC MODULES

The basic logic gates described in the previous section are used to implement more
advanced functions and are often combined to form logic modules, which, thanks
to modern technology, are available in compact integrated circuit (IC) packages.
In this section and the next, we discuss a few of the more common combinational
logic modules, illustrating how these can be used to implement advanced logic
functions.

Multiplexers

Multiplexers, or data selectors, are combinational logic circuits that permit the
selection of one of many inputs. A typical multiplexer (MUX) has 2n data lines,
n address (or data select) lines, and one output. In addition, other control inputs
(e.g., enables) may exist. Standard, commercially available MUXs allow for n up
to 4; however, two or more MUXs can be combined if a greater range is needed. The
MUX allows for one of 2n inputs to be selected as the data output; the selection of
which input is to appear at the output is made by way of the address lines. Figure
13.55 depicts the block diagram of a four-input MUX. The input data lines are
labeled D0, D1, D2, and D3; the data select, or address, lines are labeled I0 and
I1; and the output is available in both complemented and uncomplemented form,
and is thus labeled F , or F . Finally, an enable input, labeled E, is also provided,
as a means of enabling or disabling the MUX: if E = 1, the MUX is disabled;
if E = 0, it is enabled. The negative logic (MUX off when E = 1 and on when
E = 0) is represented by the small “bubble” at the enable input, which represents a
complement operation (just as at the output of NAND and NOR gates). The enable
input is useful whenever one is interested in a cascade of MUXs; this would be of
interest if we needed to select a line from a large number, say 28 = 256. Then two
4-input MUXs could be used to provide the data selection of 1 of 8.

Enable

Output

Data  select

Data 
inputs

E

F

D0

D1

D2

D3

I0I1

4-to-1
MUX

block diagram of 
4-to-1 MUX

D0

F

I0

F

Truth table of 
4-to-1 MUX

D1

D2

D3
I1

0

0

1

1

0

1

0

1

Figure 13.55 4-to-1 MUX

The material described in the previous sections is quite adequate to describe
the internal workings of a multiplexer. Figure 13.56 shows the internal construction
of a 4-to-1 MUX using exclusively NAND gates (inverters are also used, but the
reader will recall that a NAND gate can act as an inverter if properly connected).

In the design of digital systems (for example, microcomputers), a single line
is often required to carry two or more different digital signals. However, only
one signal at a time can be placed on the line. A MUX will allow us to select, at
different instants, the signal we wish to place on this single line. This property is
shown here for a 4-to-1 MUX. Figure 13.57 depicts the functional diagram of a
4-to-1 MUX, showing four data lines,D0 throughD3, and two select lines, I0 and
I1.

The data selector function of a MUX is best understood in terms of Table
13.13. In this truth table, the x’s represent don’ t care entries. As can be seen from
the truth table, the output selects one of the data lines depending on the values of
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F

D0

E

D1

D2

D3

F

I1 I0

Figure 13.56 Internal structure of the 4-to-1 MUX

Table 13.13

I1 I0 D3 D2 D1 D0 F

0 0 x x x 0 0

0 0 x x x 1 1

0 1 x x 0 x 0

0 1 x x 1 x 1

1 0 x 0 x x 0

1 0 x 1 x x 1

1 1 0 x x x 0

1 1 1 x x x 1

I1 and I0, assuming that I0 is the least significant bit. As an example, I1I0 = 10
selects D2, which means that the output, F , will select the value of the data line
D2. Therefore F = 1 if D2 = 1 and F = 0 if D2 = 0.

Enable

Output

Select lines

Data 
inputs

E

4-to-1
MUX

D0

I0

F

D1

D2

D3
I1

Figure 13.57 Functional
diagram of four-input MUX
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I1 I0
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0 1 1 0 0 1

1 0 0 1 1 0

1 1 1 1 1 1

b3 b2 b1 b0
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W1
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Figure 13.58 Read-only
memory

Read-Only Memory (ROM)

Another common technique for implementing logic functions uses a read-only
memory, or ROM. As the name implies, a ROM is a logic circuit that holds in
storage (“memory” ) information—in the form of binary numbers—that cannot be
altered but can be “ read” by a logic circuit. A ROM is an array of memory cells,
each of which can store either a 1 or a 0. The array consists of 2m×n cells, where
n is the number of bits in each word stored in ROM. To access the information
stored in ROM, m address lines are required. When an address is selected, in a
fashion similar to the operation of the MUX, the binary word corresponding to the
address selected appears at the output, which consists of n bits, that is, the same
number of bits as the stored words. In some sense, a ROM can be thought of as a
MUX that has an output consisting of a word instead of a single bit.

Figure 13.58 depicts the conceptual arrangement of a ROM with n = 4 and
m = 2. The ROM table has been filled with arbitrary 4-bit words, just for the
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purpose of illustration. In Figure 13.58, if one were to select an enable input of 0
(i.e., on) and values for the address lines of I0 = 0 and I1 = 1, the output word
would be W2 = 0110, so that b0 = 0, b1 = 1, b2 = 1, b3 = 0. Depending on
the content of the ROM and the number of address and output lines, one could
implement an arbitrary logic function.

Unfortunately, the data stored in read-only memories must be entered during
fabrication and cannot be altered later. A much more convenient type of read-
only memory is the erasable programmable read-only memory (EPROM),
the content of which can be easily programmed and stored and may be changed
if needed. EPROMs find use in many practical applications, because of their
flexibility in content and ease of programming. The following example illustrates
the use of an EPROM to perform the linearization of a nonlinear function.

FOCUS ON
MEASUREMENTS

EPROM-Based Lookup Table for Automotive Fuel Injection
System Control
One of the most common applications of EPROMs is the arithmetic lookup
table. A lookup table is similar in concept to the familiar multiplication
table and is used to store precomputed values of certain functions,
eliminating the need for actually computing the function. A practical
application of this concept is present in every automobile manufactured in
the United States since the early 1980s, as part of the exhaust
emission control system. In order for the catalytic converter to
minimize the emissions of exhaust gases (especially hydrocar-
bons, oxides of nitrogen, and carbon monoxide), it is necessary
to maintain the air-to-fuel ratio (A/F) as close as possible to the stoichio-
metric value, that is, 14.7 parts of air for each part of fuel. Most modern
engines are equipped with fuel injection systems that are capable of
delivering accurate amounts of fuel to each individual cylinder—thus, the
task of maintaining an accurate A/F amounts to measuring the mass of air
that is aspirated into each cylinder and computing the corresponding mass of
fuel. Many automobiles are equipped with a mass airflow sensor, capable of
measuring the mass of air drawn into each cylinder during each engine
cycle. Let the output of the mass airflow sensor be denoted by the variable
MA, and let this variable represent the mass of air (in g) actually entering a
cylinder during a particular stroke. It is then desired to compute the mass of
fuel, MF (also expressed in g), required to achieve and A/F of 14.7. This
computation is simply:

MF = MA

14.7

Although the above computation is a simple division, its actual
calculation in a low-cost digital computer (such as would be used on an
automobile) is rather complicated. It would be much simpler to tabulate a
number of values of MA, to precompute the variable MF , and then to store
the result of this computation into an EPROM. If the EPROM address were
made to correspond to the tabulated values of air mass, and the content at
each address to the corresponding fuel mass (according to the precomputed
values of the expression MF = MA/14.7), it would not be necessary to
perform the division by 14.7. For each measurement of air mass into one

http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw13.htm
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cylinder, an EPROM address is specified and the corresponding content is
read. The content at the specific address is the mass of fuel required by that
particular cylinder.

In practice, the fuel mass needs to be converted into a time interval
corresponding to the duration of time during which the fuel injector is open.
This final conversion factor can also be accounted for in the table. Suppose,
for example, that the fuel injector is capable of injecting KF g of fuel per
second; then the time duration, TF , during which the injector should be open
in order to inject MF g of fuel into the cylinder is given by:

TF = MF

KF
s

Therefore, the complete expression to be precomputed and stored in the
EPROM is:

TF = MA

14.7×KF s

Figure 13.59 illustrates this process graphically.

Fuel
injection
system

EPROMA/D

Digital value of TF

(EPROM content)
Digital value of MA

(EPROM address)

Analog-to-digital
converter

Air in Fuel
injector

Mass air
flow sensor

MA

TF
Fuel

injector
pulse width

Figure 13.59 Use of EPROM lookup table in automotive fuel
injection system

To provide a numerical illustration, consider a hypothetical engine
capable of aspirating air in the range 0 < MA < 0.51 g and equipped with
fuel injectors capable of injecting at the rate of 1.36 g/s. Thus, the
relationship between TF and MA is:

TF = 50×MA ms = 0.05MA s

If the digital value of MA is expressed in dg (decigrams, or
tenths of g), the lookup table of Figure 13.60 can be imple-
mented, illustrating the conversion capabilities provided by the
EPROM. Note that in order to represent the quantities of interest in an
appropriate binary format compatible with the 8-bit EPROM, the units of air
mass and of time have been scaled.
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MA (g) × 10–2

0
1
2
3
4
5

51

Address (digital
value of MA)

00000000
00000001
00000010
00000011
00000100
00000101

00110011

… …

Content (digital
value of TF)

00000000
00000101
00001010
00001111
00010100
00011001

11111111

…

TF(ms) × 10–1

0
5
10
15
20
25

255

…

Figure 13.60 Lookup table for automotive fuel injection
application

Decoders and Read and Write Memory

Decoders, which are commonly used for applications such as address decoding
or memory expansion, are combinational logic circuits as well. Our reason for
introducing decoders is to show some of the internal organization of semiconductor
memory devices. An important application of decoders in the organization of a
memory system is discussed in Chapter 14.

Figure 13.61 shows the truth table for a 2-to-4 decoder. The decoder has an
enable input, G, and select inputs, B and A. It also has four outputs, Y0 through
Y3. When the enable input is logic 1, all decoder outputs are forced to logic 1
regardless of the select inputs.

A  Y0

2-to-4
decoder

B

G  

Y1

Y2

Y3

Select Enable

AG Y0B Y1 Y2 Y3

1 x x 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

Inputs Outputs

Figure 13.61 2-to-4
decoder

This simple description of decoders permits a brief discussion of the internal
organization of an SRAM (static random-access or read and write memory).
SRAM is internally organized to provide memory with high speed (i.e., short
access time), a large bit capacity, and low cost. The memory array in this memory
device has a column length equal to the number of words, W , and a row length
equal to the number of bits per word, N . To select a word, an n-to-W decoder is
needed. Since the address inputs to the decoder select only one of the decoder’s
outputs, the decoder selects one word in the memory array. Figure 13.62 shows
the internal organization of a typical SRAM.

n address
inputs

n-to-W
decoder

B

Memory array
W = 2n

W

N

Figure 13.62 Internal organization of SRAM



Part II Electronics 639

Thus, to choose the desired word from the memory array, the proper address
inputs are required. As an example, if the number of words in the memory array
is 8, a 3-to-8 decoder is needed. Data sheets for 2-to-4 and 3-to-8 decoders from
a CMOS family data book are provided in the accompanying CD-ROM.

Check Your Understanding
13.27 Which combination of the control lines will select the data line D3 for a 4-to-1
MUX?

13.28 Show that an 8-to-1 MUX with eight data inputs (D0 through D7) and three
control lines (I0 through I2) can be used as a data selector. Which combination of the
control lines will select the data line D5?

13.29 Which combination of the control lines will select the data lineD4 for an 8-to-1
MUX?

13.30 How many address inputs do you need if the number of words in a memory
array is 16?

CONCLUSION

• Digital logic circuits are at the basis of digital computers. Such circuits operate
strictly on binary signals according to the laws of Boolean algebra.

• Combinational logic circuits can implement arbitrary Boolean logic functions.
• Combinational logic circuits include all of the logic gates—AND, OR, NAND,

NOT, and XOR—as well as logic modules such as multiplexers and read-only
memory.

CHECK YOUR UNDERSTANDING ANSWERS

CYU 13.1 (a) 100111; (b) 111011; (c) 100000000; (d) 0.011100; (e) 0.11001; (f) 0.110011; (g) 100000000.11; (h)
10000001.1001; (i) 1000000000000.11101

CYU 13.2 (a) 13; (b) 27; (c) 23; (d) 0.6875; (e) 0.203125; (f) 0.2128906 0.2128906255; (g) 59.6875; (h) 91.203125;
(i) 22.340820312

CYU 13.3 (a) 20.7510; (b) 7410; (c) 1.510; (d) 2110; (e) 1000002; (f) 10000002; (g) 110010.112; (h) 100011.111112

CYU 13.4 4,096

CYU 13.5 39 mV

CYU 13.6 (a) 111110000011; (b) 00111001001; (c) 10100110; (d) 1AE; (e) B9; (f) 6ED

CYU 13.7 (a) 00010111; (b) 01101001; (c) 0100010

CYU 13.8 (a) 0000 1011 1101; (b) 1101 0100 0111; (c) 0101 1010

CYU 13.16 W · Z +X · Z
CYU 13.17 Y · Z +X · Z
CYU 13.18 Nine gates

CYU 13.20 No

CYU 13.22 f = a · b · c · d + a · c · d + a · b · c + b · c · d
CYU 13.23 f = a · b + a · c
CYU 13.24 f = a · b + a · b + c
CYU 13.25 f = a · b · c · d + a · b · c · d + a · b · c · d + a · b · c · d
CYU 13.26 f = a · b · c · d + b · c · d + a · d + b · c · d + a · c
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CYU 13.27 I1I0 = 11

CYU 13.28 For the first part, use the same method as in Check Your Understanding Exercise 13.27, but for an 8-to-1
MUX. For the second part, I2I1I0 = 101.

CYU 13.29 I2I1I0 = 100

CYU 13.30 4

HOMEWORK PROBLEMS

Section 1: Number Systems

13.1 Convert the following base 10 numbers to hex and
binary:

a. 401 b. 273 c. 15 d. 38 e. 56

13.2 Convert the following hex numbers to base 10 and
binary:

a. A b. 66 c. 47 d. 21 e. 13

13.3 Convert the following base 10 numbers to binary:

a. 271.25 b. 53.375 c. 37.32 d. 54.27

13.4 Convert the following binary numbers to hex and
base 10:

a. 1111 b. 1001101 c. 1100101 d. 1011100
e. 11101 f. 101000

13.5 Perform the following additions all in the binary
system:

a. 11001011+ 101111

b. 10011001+ 1111011

c. 11101001+ 10011011

13.6 Perform the following subtractions all in the binary
system:

a. 10001011− 1101111

b. 10101001− 111011

c. 11000011− 10111011

13.7 Assuming that the most significant bit is the sign
bit, find the decimal value of the following
sign-magnitude form eight-bit binary numbers:

a. 11111000 b. 10011111 c. 01111001

13.8 Find the sign-magnitude form binary
representation of the following decimal numbers:

a. 126 b. −126 c. 108 d. −98

13.9 Find the two’s complement of the following binary
numbers:

a. 1111 b. 1001101 c. 1011100 d. 11101

Section 2: Combinational Logic

13.10 Use a truth table to prove that B = AB + AB.

13.11 Use truth tables to prove that
BC + BC + BA = A+ B.

13.12 Using the method of proof by perfect induction,
show that

(X + Y ) · (X +X · Y ) = Y

13.13 Using De Morgan’s theorems and the rules of
Boolean algebra, simplify the following logic function:

F(X, Y,Z) = X · Y · Z +X · Y · Z +X · (Y + Z)

13.14 Simplify the expression
f (A,B,C,D) = ABC + ACD + BCD.

13.15 Simplify the logic function
F(A,B,C) = A ·B ·C+A ·B ·C+A ·B ·C+A ·B ·C
using Boolean algebra.

13.16 Find the logic function defined by the truth table
given in Figure P13.16.

A C F

0
0
0
0

B

0
1
0

1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1

Figure P13.16

13.17 Determine the Boolean function describing the
operation of the circuit shown in Figure P13.17.

A

B

C

D

E

F

Figure P13.17
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13.18 Use a truth table to show when the output of the
circuit of Figure P13.18 is 1.

Output

x3 x2 x1

Figure P13.18

13.19 Baseball is a complicated game and often the
manager has a difficult time keeping track of all the
rules of thumb that guide decisions. To assist your
favorite baseball team you have been asked to design a
logic circuit that will flash a light when the manager
should give the steal sign. The rules have been laid out
for you by a baseball fan with limited knowledge of the
game as follows: Give the steal sign if there is a runner
on first base and
a. There are no other runners, the pitcher is

right-handed, and the runner is fast, or
b. There is one other runner on third-base, and one of

the runners is fast, or
c. There is one other runner on second-base, the

pitcher is left-handed, and both runners are fast.

Under no circumstances should the steal sign be given
if all three bases have runners. Design a logic circuit
that implements these rules to indicate when the steal
sign should be given.

13.20 A small county board is composed of three
commissioners. Each commissioner votes on measures
presented to the board by pressing a button indicating
whether the commissioner votes for or against a
measure. If two or more commissioners vote for a
measure it passes. Design a logic circuit that takes the
three votes as inputs and lights either a green or red
light to indicate whether or not a measure passed.

13.21 A water purification plant uses one tank for
chemical sterilization and a second larger tank for
settling and aeration. Each tank is equipped with two
sensors that measure the height of water in each tank
and the flow rate of water into each tank. When the
height of water or flow rate is too high the sensors
produce a logic high output. Design a logic circuit that
sounds an alarm whenever the height of water in both
tanks is too high and either of the flow rates is too high,
or whenever both flow rates are too high and the height
of water in either tank is also too high.

13.22 Many automobiles incorporate logic circuits to
alert the driver of problems or potential problems. In
one particular car, a buzzer is sounded whenever the

ignition key is turned and either a door is open or a seat
belt is not fastened. The buzzer also sounds when the
key is not turned but the lights are on. In addition, the
car will not start unless the key is in the ignition, the
car is in park, and all doors are closed and seat belts
fastened. Design a logic circuit that takes all of the
inputs listed and sounds the buzzer and starts the car
when appropriate.

13.23 An on/off start-up signal governs the compressor
motor of a large commercial air conditioning unit. In
general, the start-up signal should be on whenever the
output of a temperature sensor (S) exceeds a reference
temperature. However, you are asked to limit the
compressor start-ups to certain hours of the day and
also enable service technicians to start up or shut down
the compressor through a manual override. A
time-of-day indicator (D) is available with on/off
outputs as is a manual override switch (M). A separate
timer (T ) prohibits a compressor start-up within 10
minutes of a previous shutdown. Design a logic
diagram that incorporates the state of all four devices
(S, D, M , and T ) and produces the correct on/off
condition for the motor start-up.

Section 3: Logic Design

13.24 Find the logic function corresponding to the truth
table of Figure P13.24 in the simplest sum-of-products
form.

A C F

0
0
0
0

B

1
0
0

1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
1
1

Figure P13.24

13.25 Find the minimum expression for the output of
the logic circuit shown in Figure P13.25.

A

B

C

D
F(A, B, C, D)

Figure P13.25

13.26 Use a Karnaugh map to minimize the function
f (A,B,C) = ABC + ABC + ABC.
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13.27
a. Build the Karnaugh map for the logic function

defined by the truth table of Figure P13.27.
b. What is the minimum expression for this function?
c. Realize F using AND, OR, and NOT gates.

A C F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
1
0
0
0
1
1
1
1
1
1
0
0
0
0

B

Figure P13.27

13.28 Fill in the Karnaugh map for the function defined
by the truth table of Figure P13.28, and find the
minimum expression for the function.

A C f(A,B,C)

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

Figure P13.28

13.29 A function, F , is defined such that it equals 1
when a 4-bit input code is equivalent to any of the
decimal numbers 3, 6, 9, 12 or 15. F is 0 for input
codes 0, 2, 8 and 10. Other input values cannot occur.
Use a Karnaugh map to determine a minimal
expression for this function. Design and sketch a
circuit to implement this function using only AND and
NOT gates.

13.30 The function described in Figure P13.30 can be
constructed using only two gates. Design the circuit.

A C F

0
0
0
0
1
1
1
1

B
Input Output

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
0
1
x

Figure P13.30

13.31 Design a logic circuit which will produce the
one’s complement of an 8-bit signed binary number.

13.32 Construct the Karnaugh map for the logic
function defined by the truth table of Figure P13.32,
and find the minimum expression for the function.

A C F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
1
0
0
0
0
1
1
0
1
0
1
1
1
0

B

Figure P13.32

13.33 Modify the circuit for Problem 13.31 so that it
produces the two’s complement of the 8-bit signed
binary input.

13.34 Find the minimum output expression for the
circuit of Figure P13.34.

A

B

C

f

Figure P13.34

13.35 Design a combinational logic circuit which will
add two 4-bit binary numbers.

13.36 Minimize the expression described in the truth
table of Figure P13.36 and draw the circuit.
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A C F

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
0
1
1
1
1
0

B

Figure P13.36

13.37 Find the minimum expression for the output of
the logic circuit of Figure P13.37.

A

B

C

f

Figure P13.37

13.38 The objective of this problem is to design a
combinational logic circuit which will aid in
determination of the acceptability of emergency blood
transfusions. It is known that human blood can be
categorized into four types—A, B, AB, and O. Persons
with type A blood can donate to both A and AB types,
and can receive blood from both A and O types.
Persons with type B blood can donate to both B and
AB, and can receive from both B and O types. Persons
with type AB blood can donate only to type AB, but
can receive from any type. Persons with type O blood
can donate to any type, but can receive only from type
O. Make appropriate variable assignments and design a
circuit which will approve or disapprove any particular
transfusion based on these conditions.

13.39 Find the minimum expression for the logic
function at the output of the logic circuit of Figure
P13.39.

A

B

C
f

D

Figure P13.39

13.40 Design a combinational logic circuit which will
accept a 4-bit binary number and:

If the number is even, divide it by 210 and produce the
binary result.
If the number is odd, multiply it by 210 and produce the

binary result.

13.41
a. Fill in the Karnaugh map for the function defined in

the truth table of Figure P13.41.
b. What is the minimum expression for the function?
c. Draw the circuit, using AND, OR, and NOT gates.

A C f(A,B,C)

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
0
1
1
1
1
0

Figure P13.41

13.42
a. Fill in the Karnaugh map for the logic function

defined by the truth table of Figure P13.42.
b. What is the minimum expression for the function?
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B

Figure P13.42

13.43
a. Fill in the Karnaugh map for the logic function

defined by the truth table of Figure P13.43.
b. What is the minimum expression for the function?
c. Realize the function, using only NAND gates.
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Figure P13.43

13.44 Design a circuit with a four-bit input representing
the binary number A3A2A1A0. The output should be 1
if the input value is divisible by 3. Assume that the
circuit is to be used only for the digits 0 through 9
(thus, values for 10 to 15 can be don’ t cares).
a. Draw the Karnaugh map and truth table for the

function.
b. Determine the minimum expression for the

function.
c. Draw the circuit, using only AND, OR, and NOT

gates.

13.45 Find the simplified sum-of-products
representation of the function from the Karnaugh map
shown in Figure P13.45. Note that x is the don’ t care
term.

11

00 1101 10

0 1x 0

10 0 10 0

1 01 0

0 01 000

01

A.B

C.D

Figure P13.45

13.46 Can the circuit for Problem 13.40 be simplified if
it is known that the input represents a BCD
(binary-coded decimal) number, i.e., it can never be
greater than 1010? If not, explain why not. Otherwise,
design the simplified circuit.

13.47 Find the simplified sum-of-products
representation of the function from the Karnaugh map
shown in Figure P13.47.

11

00 1101 10

0 01 1

10 x 1x 0

0 x1 0

0 x1 000

01

A.B

C.D

Figure P13.47

13.48 One method of ensuring reliability in data
transmission systems is to transmit a parity bit along
with every nibble, byte, or word of binary data
transmitted. The parity bit confirms whether an even
or odd number of 1’s were transmitted in the data. In
even-parity systems, the parity bit is set to 1 when the
number of 1’s in the transmitted data is odd.
Odd-parity systems set the parity bit to 1 when the
number of 1’s in the transmitted data is even. Assume
that a parity-bit is transmitted for every nibble of data.
Design a logic circuit that checks the nibble of data
and transmits the proper parity bit for both even- and
odd-parity systems.

13.49 Assume that a parity bit is transmitted for every
nibble of data. Design two logic circuits that check a
nibble of data and its parity bit to determine if there
may have been an data transmission error. First assume
an even-parity system, then an odd-parity system.

13.50 Design a logic circuit that takes a 4-bit Gray code
input from an optical encoder and translates it into two
4-bit nibbles of BCD code.

13.51 Design a logic circuit that takes a 4-bit Gray code
input from an optical encoder and determines if the
input value is a multiple of 3.

13.52 The 4221 code is a base 10–oriented code that
assigns the weights 4221 to each of 4 bits in a nibble of
data. Design a logic circuit that takes a BCD nibble as
input and converts it to its 4221 equivalent. The logic
circuit should also report an error in the BCD input if
its value exceeds 1001.

13.53 The 4-bit digital output of each of two sensors
along an assembly line conveyor belt is proportional to
the number of parts which pass by on the conveyor belt
in a 30-second period. Design a logic circuit that
reports an error if the outputs of the two sensors differ
by more than one part per 30-second period.

Section 4: Logic Modules

13.54
a. Fill in the Karnaugh map for the logic function

defined by the truth table of Figure P13.54.
b. What is the minimum expression for the function?
c. Realize the function using a 1-of-8 multiplexer.
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Figure P13.54

13.55
a. Fill in the truth table for the multiplexer circuit

shown in Figure P13.55.
b. What binary function is performed by these

multiplexers?

0
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0

0
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y
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Figure P13.55

13.56 The circuit of Figure P13.56 can operate as a
4-to-16 decoder. Terminal EN denotes the enable
input. Describe the operation of the 4-to-16 decoder.
What is the role of logic variable A?

B
C
D

A

EN

3-to-8
Decoder

EN

3-to-8
Decoder

Figure P13.56

13.57 Show that the circuit given in Figure P13.57
converts 4-bit binary numbers to 4-bit Gray code.
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Figure P13.57

13.58 Suppose one of your classmates claims that the
following Boolean expressions represent the
conversion from 4-bit Gray code to 4-bit binary
numbers:

B3 = G3

B2 = G3 ⊕G2

B1 = G3 ⊕G2 ⊕G1

B0 = G3 ⊕G2 ⊕G1 ⊕G0

a. Show that your classmate’s claim is correct.
b. Draw the circuit which implements the conversion.

13.59 Select the proper inputs for a 4-input multiplexer
to implement the function
f (A,B,C) = ABC + ABC + AC. Assume the
inputs I0, I1, I2, and I3 correspond to AB, AB, AB,
and AB, respectively, and that each input may be 0, 1,
C, or C.

13.60 Select the proper inputs for an 8-bit multiplexer
to implement the function f (A,B,C,D) =∑

(2, 5, 6,
8, 9, 10, 11, 13, 14)10. Assume the inputs I0 through I7

correspond to ABC, ABC, ABC, ABC, ABC, ABC,
ABC, and ABC, respectively, and that each input may
be 0, 1, D, or D.
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C H A P T E R

14

Digital Systems

he first half of Chapter 14 continues the analysis of digital circuits that
was begun in Chapter 13 by focusing on sequential logic circuits, such
as flip-flops, counters, and shift registers. The second half of the chapter
is devoted to an overview of the basic functions of microcontrollers and

microcomputers. During the last decade, microcomputers have become a standard
tool in the analysis of engineering data, in the design of experiments, and in the
control of plants and processes. No longer a specialized electronic device to be
used only by appropriately trained computer engineers, today’s microcomputer—
perhaps more commonly represented by the ubiquitous personal computer—is a
basic tool in the engineering profession. The common thread in its application
in various engineering fields is its use in digital data acquisition instruments and
digital controllers.

Modern microcomputers are relatively easy to program, have significant
computing power and excellent memory storage capabilities, and can be readily
interfaced with other instruments and electronic devices, such as transducers, print-
ers, and other computers. The basic functions performed by the microcomputer
in a typical digital data acquisition or control application are easily described:
input signals (often analog, sometimes already in digital form) are acquired by
the computer and processed by means of suitable software to produce the desired
result (i.e., they undergo some kind of mathematical manipulation), which is then
outputted to either a display or a storage device, or is used in controlling a process,
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a plant, or an experiment. The objective of this chapter is to describe these various
processes, with the aim of giving the reader enough background information to
understand the notation used in data books and instruction manuals.

Upon completing this chapter you should be able to:

• Analyze sequential circuits including RS, D, and JK flip-flops.
• Understand the operation of binary, decade, and ring counters.
• Design simple sequential circuits using state transition diagrams.
• Understand the basic architecture of microprocessors and

microcomputers.

14.1 SEQUENTIAL LOGIC MODULES

The discussion of logic devices in Chapter 13 focuses on the general family of
combinational logic devices. The feature that distinguishes combinational logic
devices from the other major family—sequential logic devices—is that combi-
national logic circuits provide outputs that are based on a combination of present
inputs only. On the other hand, sequential logic circuits depend on present and
past input values. Because of this “memory” property, sequential circuits can store
information; this capability opens a whole new area of application for digital logic
circuits.

Latches and Flip-Flops

The basic information-storage device in a digital circuit is called a flip-flop. There
are many different varieties of flip-flops; however, all flip-flops share the following
characteristics:

1. A flip-flop is a bistable device; that is, it can remain in one of two stable
states (0 and 1) until appropriate conditions cause it to change state. Thus, a
flip-flop can serve as a memory element.

2. A flip-flop has two outputs, one of which is the complement of the other.

OutputsInputs

S

R

Q

Q

S R

0

0

1

1

Q

0

1

0

0

Present state

Reset

Set

Disallowed

Figure 14.1 RS flip-flop
symbol and truth table

RS Flip-Flop

It is customary to depict flip-flops by their block diagram and a name—such as Q

or X—representing the output variable. Figure 14.1 represents the so-called RS
flip-flop, which has two inputs, denoted by S and R, and two outputs, Q and Q.
The value at Q is called the state of the flip-flop. If Q = 1, we refer to the device
as being in the 1 state. Thus, we need define only one of the two outputs of the
flip-flop. The two inputs, R and S, are used to change the state of the flip-flop,
according to the following rules:

1. When R = S = 0, the flip-flop remains in its present state (whether 1 or 0).

2. When S = 1 and R = 0, the flip-flop is set to the 1 state (thus, the letter S,
for set).

3. When S = 0 and R = 1, the flip-flop is reset to the 0 state (thus, the letter R,
for reset).

4. It is not permitted for both S and R to be equal to 1. (This would correspond
to requiring the flip-flop to set and reset at the same time.)
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The rules just described are easily remembered by noting that 1s on the S and R

inputs correspond to the set and reset commands, respectively.
A convenient means of describing the series of transitions that occur as

the signals sent to the flip-flop inputs change is the timing diagram. A timing
diagram is a graph of the inputs and outputs of the RS flip-flop (or any other logic
device) depicting the transitions that occur over time. In effect, one could also
represent these transitions in tabular form; however, the timing diagram provides
a convenient visual representation of the evolution of the state of the flip-flop.
Figure 14.2 depicts a table of transitions for an RS flip-flop Q, as well as the
corresponding timing diagram.
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Flip-flop
is set

Flip-flop
is reset
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0
1

0
1

0

S

Q

Flip-flop
is set

Figure 14.2 Timing diagram for the RS flip-flop

It is important to note that the RS flip-flop is level-sensitive. This means
that the set and reset operations are completed only after the R and S inputs have
reached the appropriate levels. Thus, in Figure 14.2 we show the transitions in the
Q output as occurring with a small delay relative to the transitions in the R and S

inputs.
It is instructive to illustrate how an RS flip-flop can be constructed using

simple logic gates. For example, Figure 14.3 depicts a realization of such a circuit
consisting of four gates: two inverters and two NAND gates (actually, the same
result could be achieved with four NAND gates). Consider the case in which
the circuit is in the initial state Q = 0 (and therefore Q = 1). If the input
S = 1 is applied, the top NOT gate will see inputs Q = 1 and S = 0, so that

Q = (S ·Q) = (0 · 1) = 1—that is, the flip-flop is set. Note that when Q is set
to 1, Q becomes 0. This, however, does not affect the state of the Q output, since
replacing Q with 0 in the expression

Q = (S ·Q)

does not change the result:

Q = (0 · 0) = 1

Thus, the cross-coupled feedback from outputs Q and Q to the input of the NAND
gates is such that the set condition sustains itself. It is straightforward to show
(by symmetry) that a 1 input on the R line causes the device to reset (i.e., causes
Q = 0) and that this condition is also self-sustaining.

Q

Q

R

S

Q

Q

R

S

Figure 14.3 Logic gate
implementation of the RS
flip-flop
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EXAMPLE 14.1 RS Flip-Flop Timing Diagram

Problem

Determine the output of an RS flip-flop for the series of inputs given in the table below.

R 0 0 0 1 0 0 0

S 1 0 1 0 0 1 0

Solution

Known Quantities: RS flip-flop truth table (Figure 14.1).

Find: Output of RS flip-flop, Q.

Analysis: We complete the timing diagram for the RS flip-flop following the rules stated
earlier to determine the output of the device; the result is summarized below.

R 0 0 0 1 0 0 0

S 1 0 1 0 0 1 0

Q 1 1 1 0 0 1 1

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions.

R

S
Q

An extension of the RS flip-flop includes an additional enable input that
is gated into each of the other two inputs. Figure 14.4 depicts an RS flip-flop
consisting of two NOR gates. In addition, an enable input is connected through
two AND gates to the RS flip-flop, so that an input to the R or S line will be
effective only when the enable input is 1. Thus, any transitions will be controlled
by the enable input, which acts as a synchronizing signal. The enable signal may
consist of a clock, in which case the flip-flop is said to be clocked and its operation
is said to be synchronous.

The same circuit of Figure 14.4 can be used to illustrate two additional
features of flip-flops: the preset and clear functions, denoted by the inputs P

and C, respectively. When P and C are 0, they do not affect the operation of
the flip-flop. Setting P = 1 corresponds to setting S = 1, and therefore causes
the flip-flop to go into the 1 state. Thus, the term preset: this function allows the
user to preset the flip-flop to 1 at any time. When C is 1, the flip-flop is reset, or
cleared (i.e., Q is made equal to 0). Note that these direct inputs are, in general,
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Preset

Clear

Q

S

R

Q

Q
S

R

E

Preset (P)

Clear (C)

Enable

Timing diagram

Figure 14.4 RS flip-flop with enable, preset, and clear lines

asynchronous; therefore, they allow the user to preset or clear the flip-flop at any
time. A set of timing waveforms illustrating the function of the enable, preset, and
clear inputs is also shown in Figure 14.4. Note how transitions occur only when
the enable input goes high (unless the preset or clear inputs are used to override
the RS inputs).

Another extension of the RS flip-flop, called the data latch, or delay ele-
ment, is shown in Figure 14.5. In this circuit, the R input is always equal to the
inverted S input, so that whenever the enable input is high, the flip-flop is set.
This device has the dual advantage of avoiding the potential conflict that might
arise if both R and S were high and reducing the number of input connections by
eliminating the reset input. This circuit is called a data latch or delay because once
the enable input goes low, the flip-flop is latched to the previous value of the input.
Thus, this device can serve as a basic memory element, delaying the output by one
clock count with respect to the input.

D Flip-Flop

The D flip-flop is an extension of the data latch that utilizes two RS flip-flops,
as shown in Figure 14.6. In this circuit, a clock is connected to the enable input
of each flip-flop. Since Q1 sees an inverted clock signal, the latch is enabled
when the clock waveform goes low. However, since Q2 is disabled when the
clock is low, the output of the D flip-flop will not switch to the 1 state until the
clock goes high, enabling the second latch and transferring the state of Q1 to
Q2. It is important to note that the D flip-flop changes state only on the positive
edge of the clock waveform: Q1 is set on the negative edge of the clock, and
Q2 (and therefore Q) is set on the positive edge of the clock, as shown in the
timing diagram of Figure 14.6. This type of device is said to be edge-triggered.
This feature is indicated by the “knife edge” drawn next to the CLK input in the
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Figure 14.5 Data latch and associated timing diagram
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Figure 14.6 D flip-flop functional diagram, symbol, and timing waveforms

device symbol. The particular device described here is said to be positive edge–
triggered, or leading edge–triggered, since the final output of the flip-flop is set
on a positive-going clock transition.

On the basis of the rules stated in this section, the state of the D flip-flop can
be described by means of the following truth table:

D CLK Q

0 ↑ 0

1 ↑ 1

where the symbol ↑ indicates the occurrence of a positive transition.
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JK Flip-Flop

Another very common type of flip-flop is the JK flip-flop, shown in Figure 14.7.
The JK flip-flop operates according to the following rules:

• When J and K are both low, no change occurs in the state of the flip-flop.
• When J = 0 and K = 1, the flip-flop is reset to 0.
• When J = 1 and K = 0, the flip-flop is set to 1.
• When both J and K are high, the flip-flop will toggle between states at

every negative transition of the clock input, denoted from here on by the
symbol ↓.

J
S1

Functional diagram

Device symbol

E1

Q1 S2

E2

Q2

Q

Q

Q1

Q2

Q

Q

J

KR1 R2

Master Slave

CLK
K

CLK

Figure 14.7 JK flip-flop functional diagram and device symbol

Note that, functionally, the operation of the JK flip-flop can also be explained
in terms of two RS flip-flops. When the clock waveform goes high, the “master”
flip-flop is enabled; the “slave” receives the state of the master upon a negative clock
transition. The “bubble” at the clock input signifies that the device is negative or
trailing edge–triggered. This behavior is similar to that of an RS flip-flop, except
for the J = 1, K = 1 condition, which corresponds to a toggle mode rather than
to a disallowed combination of inputs.

Figure 14.8 depicts the truth table for the JK flip-flop. It is important to
note that when both inputs are 0 the flip-flop remains in its previous state at the
occurrence of a clock transition; when either input is high and the other is low,
the JK flip-flop behaves like the RS flip-flop, whereas if both inputs are high,
the output “toggles” between states every time the clock waveform undergoes a
negative transition.

Data sheets for various types of flip-flops may be found in the accompanying
CD-ROM.

Jn

J

CLK

Q

JK flip-flop

Kn Qn+1

Qn

0 (reset)

1 (set)

Qn (toggle)

K

Q

0

0

1

1

0

1

0

1

Figure 14.8 Truth
table for the JK flip-flop

EXAMPLE 14.2 The T Flip-Flop

Problem

Determine the truth table and timing diagram of the T flip-flop of Figure 14.9. Note that
the T flip-flop is a JK flip-flop with its inputs tied together.
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CLK
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Figure 14.9 T flip-flop symbol and timing waveforms

Solution

Known Quantities: JK flip-flop rules of operation (Figure 14.8).

Find: Truth table and timing diagram for T flip-flop.

Analysis: We recognize that the T flip-flop is a JK flip-flop with its inputs tied together.
Thus, the flip-flop will need only a two-element truth table to describe its operation,
corresponding to the top and bottom entries in the JK flip-flop truth table of Figure 14.8.
The truth table is shown below. A timing diagram is also included in Figure 14.9.

T CLK Qk+1

0 ↓ Qk

1 ↓ Qk

Comments: The T flip-flop takes its name from the fact that it toggles between the high
and low state. Note that the toggling frequency is one half that of the clock. Thus the T

flip-flop also acts as a divide-by-2 counter. Counters are explored in more detail in the
next subsection.

EXAMPLE 14.3 JK Flip-Flop Timing Diagram

Problem

Determine the output of a JK flip-flop for the series of inputs given in the table below. The
initial state of the flip-flop is Q0 = 1.

J 0 1 0 1 0 0 1

K 0 1 1 0 0 1 1

Solution

Known Quantities: JK flip-flop truth table (Figure 14.8).

Find: Output of RS flip-flop, Q, as a function of the input transitions.
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Analysis: We complete the timing diagram for the JK flip-flop following the rules of
Figure 14.8; the result is summarized below.

J 0 0 0 1 0 0 0

K 1 0 1 0 0 1 0

Q 1 0 0 1 1 0 1

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions. Each vertical line corresponds to a clock transition.

00

J

11 01 10 00 01 11

K

Q

1 0 0 1 0 0 1

Comments: How would the timing diagram change if the initial state of the flip-flop
were Q0 = 1?

Digital Counters

One of the more immediate applications of flip-flops is in the design of counters. A
counter is a sequential logic device that can take one of N possible states, stepping
through these states in a sequential fashion. When the counter has reached its last
state, it resets to zero and is ready to start counting again. For example, a three-
bit binary up counter would have 23 = 8 possible states, and might appear as
shown in the functional block of Figure 14.10. The input clock waveform causes
the counter to step through the eight states, making one transition for each clock
pulse. We shall shortly see that a string of JK flip-flops can accomplish this task
exactly. The device shown in Figure 14.10 also displays a reset input, which forces
the counter output to equal 0: b2b1b0 = 000.

Although binary counters are very useful in many applications, one is often
interested in a decade counter, that is, a counter that counts from 0 to 9 and then
resets. A four-bit binary counter can easily be configured in principle to provide
this function by means of simple logic that resets the counter when it has reached
the count 10012 = 910. As shown in Figure 14.11, if we connect bits b3 and b1 to
a four-input AND gate, along with b2 and b0, the output of the AND gate can be
used to reset the counter after a count of 10. Additional logic can provide a “carry”
bit whenever a reset condition is reached, which could be passed along to another
decade counter, enabling counts up to 99. Decade counters can be cascaded so as
to represent decimal digits in succession.

Although the decade counter of Figure 14.11 is attractive because of its
simplicity, this configuration would never be used in practice, because of the
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Figure 14.11 Decade counter

presence of propagation delays. These delays are caused by the finite response
time of the individual transistors in each logic device and cannot be guaranteed to be
identical for each gate and flip-flop. Thus, if the reset signal—which is presumed
to be applied at exactly the same time to each of the four JK flip-flops in the four-bit
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binary counter—does not cause the JK flip-flops to reset at exactly the same time
on account of different propagation delays, then the binary word appearing at the
output of the counter will change from 1001 to some other number, and the output
of the four-input NAND gate will no longer be high. In such a condition, the
flip-flops that have not already reset will then not be able to reset, and the counting
sequence will be irreparably compromised.

What can be done to obviate this problem? The answer is to use a system-
atic approach to the design of sequential circuits making use of state transition
diagrams. This topic will be discussed in the next section.

A simple implementation of the binary counter we have described in terms
of its functional behavior is shown in Figure 14.12. The figure depicts a three-bit
binary ripple counter, which is obtained from a cascade of three JK flip-flops.
The transition table shown in the figure illustrates how the Q output of each stage
becomes the clock input to the next stage, while each flip-flop is held in the toggle
mode. The output transitions assume that the clock, CLK, is a simple square wave
(all JKs are negative edge–triggered).
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Figure 14.12 Ripple counter

This 3-bit ripple counter can easily be configured as a divide-by-8 mecha-
nism, simply by adding an AND gate. To divide the input clock rate by 8, one
output pulse should be generated for every eight clock pulses. If one were to output
a pulse every time a binary 111 combination occurs, a simple AND gate would
suffice to generate the required condition. This solution is shown in Figure 14.13.
Note that the square wave is also included as an input to the AND gate; this en-
sures that the output is only as wide as the input signal. This application of ripple
counters is further illustrated in the following example.

J

CLK

K

Q21

1

J

CLK

K

Q31

1

J

CLK

K

Q11

1

Square
wave
input

Figure 14.13 Divide-by-8 circuit
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EXAMPLE 14.4 Divider Circuit

Problem

Draw the timing diagram for the clock input, Q0 and Q1, for the binary ripple counter of
Figure 14.14.

J

KK

J Q1Q0

Q0VCC Q1

CLK CLK

VCC

Figure 14.14

Solution

Known Quantities: JK flip-flop truth table (Figure 14.8).

Find: Output of each flip-flop, Q, as a function of the input clock transitions.

Assumptions: Assume negative-edge–triggered devices.

Analysis: Following the timing diagram of Figure 14.12, we see that Q0 switches at half
the frequency of the clock input, and that Q1 switches at half the frequency of Q0. Hence
the timing diagram shown below.

CLK

Q0

Q1

2T

4T

T

A slightly more complex version of the binary counter is the so-called syn-
chronous counter, in which the input clock drives all of the flip-flops simultane-
ously. Figure 14.15 depicts a three-bit synchronous counter. In this figure, we have
chosen to represent each flip-flop as a T flip-flop. The clocks to all the flip-flops
are incremented simultaneously. The reader should verify that Q0 toggles to 1 first
and then Q1 toggles to 1, and that the AND gate ensures that Q2 will toggle only
after Q0 and Q1 have both reached the 1 state (Q0 ·Q1 = 1).
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1 T Q0

Q0

Clock
 input

Q2Q1Q0
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Q1

T Q2
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CLK CLK CLK

Figure 14.15 Three-bit synchronous counter

Other common counters are the ring counter, illustrated in Example 14.5,
and the up-down counter, which has an additional select input that determines
whether the counter counts up or down. Data sheets for various counters may be
found in the accompanying CD-ROM.

EXAMPLE 14.5 Ring Counter

Problem

Draw the timing diagram for the ring counter of Figure 14.16.

Init

Q3S

R Q3

CLK

PR

Q1 Q0

Q2S

R Q2

CLK

CLR
Q1S

R Q1

CLK

CLR
Q0S

R Q0

CLK

CLR

Q2Q3

Clock
input

Figure 14.16 Ring counter

Solution

Known Quantities: JK flip-flop truth table (Figure 14.8).

Find: Output of each flip-flop, Q, as a function of the input clock transitions.

Assumptions: Assume that prior to applying the clock input the Init line sees a positive
transition (this initializes the counter by setting the state of the first flip-flop to 1 through a
PR (preset) input, and all other states to zero through a CLR (clear) input).

Analysis: With the initial state of Q3 = 0, a clock transition will set Q3 = 1. The clock
also causes the other three flip-flops to see a reset input of 1, since
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Q3 = Q2 = Q1 = Q0 = 0 at the time of the first clock pulse. Thus, Q2, Q1 and Q0

remain in the zero state. At the second clock pulse, since Q3 is now 1, the second flip-flop
will see a set input of one, and its output will become Q2 = 1. Q1 and Q0 remain in the
zero state, and Q3 is reset to 0. The pattern continues, causing the 1-state to ripple from
left to right and back again. This rightward rotation gives the counter its name. The
transition table is shown below.

CLK Q3 Q2 Q1 Q0

↑ 1 0 0 0
↑ 0 0 1 0
↑ 0 1 0 0
↑ 0 0 0 1
↑ 1 0 0 0
↑ 0 1 0 0
↑ 0 0 1 0

Comments: The shifting function implemented by the ring counter is used in the shift
registers discussed in the following subsection.

Focus on Computer-Aided Solutions: A ring counter simulation generated by
Electronics WorkbenchTM may be found in the accompanying CD-ROM.

FOCUS ON
MEASUREMENTS

Digital Measurement of Angular Position and Velocity
Another type of angular position encoder, besides the angular encoder
discussed in Chapter 13 in “Focus on Measurements: Position Encoders,” is
the slotted encoder shown in Figure 14.17. This encoder can be used in
conjunction with a pair of counters and a high-frequency clock to determine
the speed of rotation of the slotted wheel. As shown in Figure 14.18, a clock
of known frequency is connected to a counter while another counter records
the number of slot pulses detected by an optical slot detector as the wheel
rotates. Dividing the counter values, one could obtain the speed of the
rotating wheel in radians per second. For example, assume a clocking
frequency of 1.2 kHz. If both counters are started at zero and at some instant
the timer counter reads 2,850 and the encoder counter reads 3,050, then the
speed of the rotating encoder is found to be:

1,200
cycles

second
· 2,850 slots

3,050 cycles
= 1,121.3

slots

second

and

1,121.3 slots per second × 1◦ per slot × 2π/360 rad/degree

= 19.6 rad/s

If this encoder is connected to a rotating shaft, it is possible to
measure the angular position and velocity of the shaft. Such shaft
encoders are used in measuring the speed of rotation of electric
motors, machine tools, engines, and other rotating machinery.

http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw14.htm
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360 slots

360 slots; 1 increment = 1 degree

Figure 14.17

Time processing unit

Pulse detector

Clock Counter

Counter

Figure 14.18 Calculating the speed of rotation of the slotted
wheel

A typical application of the slotted encoder is to compute the ignition and
injection timing in an automotive engine. In an automotive engine,
information related to speed is obtained from the camshaft and the flywheel,
which have known reference points. The reference points determine the
timing for the ignition firing points and fuel injection pulses, and are
identified by special slot patterns on the camshaft and crankshaft. Two
methods are used to detect the special slots (reference points): period
measurement with additional transition detection (PMA), and period
measurement with missing transition detection (PMM). In the PMA method,
an additional slot (reference point) determines a known reference position
on the crankshaft or camshaft. In the PMM method, the reference position is
determined by the absence of a slot. Figure 14.19 illustrates a typical PMA
pulse sequence, showing the presence of an additional pulse. The additional
slot may be used to determine the timing for the ignition pulses relative to a
known position of the crankshaft. Figure 14.20 depicts a typical PMM pulse
sequence. Because the period of the pulses is known, the additional slot or
the missing slot can be easily detected and used as a reference position. How
would you implement these pulse sequences using ring counters?
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10 11 12 0

Additional
slot

Figure 14.19 PMA pulse sequence

Missing
slot

10 11 0

Figure 14.20 PMM
pulse sequence

Registers

A register consists of a cascade of flip-flops that can store binary data, one bit in
each flip-flop. The simplest type of register is the parallel input–parallel output
register shown in Figure 14.21. In this register, the “load” input pulse, which acts
on all clocks simultaneously, causes the parallel inputs b0b1b2b3 to be transferred
to the respective flip-flops. The D flip-flop employed in this register allows the
transfer from bn to Qn to occur very directly. Thus, D flip-flops are very commonly
used in this type of application. The binary word b3b2b1b0 is now “stored,” each
bit being represented by the state of a flip-flop. Until the “load” input is applied
again and a new word appears at the parallel inputs, the register will preserve the
stored word.

Q0

b0

“Load”
input b1 b2 b3

Q1 Q2 Q3

D Q1 D Q2 D Q3

CLK CLK CLK CLK

D Q0

Figure 14.21 Four-bit parallel register

The construction of the parallel register presumes that the N -bit word to be
stored is available in parallel form. However, it is often true that a binary word will
arrive in serial form, that is, one bit at a time. A register that can accommodate
this type of logic signal is called a shift register. Figure 14.22 illustrates how the
same basic structure of the parallel register applies to the shift register, except that
the input is now applied to the first flip-flop and shifted along at each clock pulse.
Note that this type of register provides both a serial and a parallel output.

Data sheets for some common registers are included in the accompanying
CD-ROM.



Part II Electronics 663

b1

Q3Q1 Q2

Q0D Serial
output

Serial
input

Clock
input

Q0

Q1D Q2D Q3D

CLK CLK CLK CLK

Figure 14.22 Four-bit shift register

FOCUS ON
MEASUREMENTS

Seven-Segment Display
A seven-segment display is a very convenient device for displaying digital
data. The display is shown in Figure 14.23. Operation of a seven-segment
display requires a decoder circuit to light the proper combinations of
segments corresponding to the desired decimal digit.

a

This display, with the appro-
priate decoder driver, is capable
of displaying values ranging
from 0 to 9.

b

c

g
f

e
d

a
b
c
d
e
f
g

Figure 14.23 Seven-
segment display
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d
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f

g

C

B

A BCD to
seven-segment

decoder

D

Figure 14.24

A typical BCD to seven-segment decoder function block is shown in
Figure 14.24, where the lowercase letters correspond to the segments shown
in Figure 14.23. The decoder features four data inputs (A, B, C, D), which
are used to light the appropriate segment(s). The outputs of the decoder are
connected to the seven-segment display. The decoder will light up the
appropriate segments corresponding to the incoming value. A BCD to
seven-segment decoder function is similar to the 2-to-4 decoder function
described in Chapter 13 and shown in Figure 13.61. Data sheets for
seven-segment display drivers may be found in the accompanying CD-ROM.

Check Your Understanding
14.1 The circuit shown in Figure 14.25 also serves as an RS flip-flop and requires only
two NOR gates. Analyze the circuit to prove that it operates as an RS flip-flop. [Hint: Use
a truth table with two variables, S and R.]
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